WorldWideScience

Sample records for weight roofs due

  1. Extra Heat Loss Through Light Weight Roofs Due to Latent Heat

    DEFF Research Database (Denmark)

    Rode, Carsten

    1996-01-01

    This report is one in a series of papers in Task 5 of IEA Annex 24 on how moisture and air movements affect the energy performance of building constructions. The effect of latent heat flow will be demonstrated by means of an example: a light weight flat roof.Latent heat flow is one of three...... processes by which moisture affects energy performance:Higher thermal conductivityMoist materials have higher thermal con-ductivity than when they are dry. This is because thermally conducting moisture replaces the better insulating air in the pores of the materials. Moisture also enhan-ces the thermal...

  2. Extra Heat Loss Through Light Weight Roofs Due to Latent Heat

    DEFF Research Database (Denmark)

    Rode, Carsten

    1996-01-01

    This report is one in a series of papers in Task 5 of IEA Annex 24 on how moisture and air movements affect the energy performance of building constructions. The effect of latent heat flow will be demonstrated by means of an example: a light weight flat roof.Latent heat flow is one of three...... processes by which moisture affects energy performance:Higher thermal conductivityMoist materials have higher thermal con-ductivity than when they are dry. This is because thermally conducting moisture replaces the better insulating air in the pores of the materials. Moisture also enhan-ces the thermal...... contact between the solid grains of a porous material. Finally, moisture may partici-pate in microscopic heat pipes in a material by which vapour diffuses from the warm to the cold sides of wide pores in the material, and is trans-ported back again by capillary action in adjacent fine pores...

  3. Orbital dystopia due to orbital roof defect.

    Science.gov (United States)

    Rha, Eun Young; Joo, Hong Sil; Byeon, Jun Hee

    2013-01-01

    We performed a retrospective review of patients who presented with delayed dystopia as a consequence of an orbital roof defect due to fractures and nontraumatic causes to search for a correlation between orbital roof defect size and surgical indications for the treatment thereof. Retrospective analyses were performed in 7 patients, all of whom presented with delayed dystopia due to orbital roof defects, between January 2001 and June 2011. The causes of orbital roof defects were displaced orbital roof fractures (5 cases), tumor (1 case), and congenital sphenoid dysplasia (1 case). All 7 patients had initially been treated conservatively and later presented with significant dystopia. The sizes of the defects were calculated on computed tomographic scans. Among the 7 patients, aspiration of cerebrospinal fluid, which caused ocular symptoms, in 1 patient with minimal displaced orbital roof and reconstruction with calvarial bone, titanium micromesh, or Medpor in 6 other patients were performed. The minimal size of the orbital roof in patients who underwent orbital roof reconstruction was 1.2 cm (defect height) x 1.0 cm (defect length), 0.94 cm(2). For all patients with orbital dystopia, displacement of the globe was corrected without any complications, regardless of whether the patient was evaluated grossly or by radiology. In this retrospective study, continuous monitoring of clinical signs and active surgical management should be considered for cases in which an orbital roof defect is detected, even if no definite symptoms are noted, to prevent delayed sequelae.

  4. Accidents due to falls from roof slabs

    Directory of Open Access Journals (Sweden)

    Bruno Alves Rudelli

    Full Text Available CONTEXT AND OBJECTIVE Falls from the roof slabs of houses are accidents of high potential severity that occur in large Brazilian cities and often affect children and adolescents. The aims of this study were to characterize the factors that predispose towards this type of fall involving children and adolescents, quantify the severity of associated lesions and suggest preventive measures. DESIGN AND SETTING Descriptive observational prospective longitudinal study in two hospitals in the metropolitan region of São Paulo. METHODS Data were collected from 29 cases of falls from roof slabs involving children and adolescents between October 2008 and October 2009. RESULTS Cases involving males were more prevalent, accounting for 84%. The predominant age group was schoolchildren (7 to 12 years old; 44%. Leisure activities were most frequently being practiced on the roof slab at the time of the fall (86%, and flying a kite was the most prevalent game (37.9%. In 72% of the cases, the children were unaccompanied by an adult responsible for them. Severe conditions such as multiple trauma and traumatic brain injuries resulted from 79% of the accidents. CONCLUSION Falls from roof slabs are accidents of high potential severity, and preventive measures aimed towards informing parents and guardians about the dangers and risk factors associated with this type of accident are needed, along with physical protective measures, such as low walls around the slab and gates with locks to restrict free access to these places.

  5. Accidents due to falls from roof slabs.

    Science.gov (United States)

    Rudelli, Bruno Alves; Silva, Marcelo Valerio Alabarce da; Akkari, Miguel; Santili, Claudio

    2013-01-01

    CONTEXT AND OBJECTIVE Falls from the roof slabs of houses are accidents of high potential severity that occur in large Brazilian cities and often affect children and adolescents. The aims of this study were to characterize the factors that predispose towards this type of fall involving children and adolescents, quantify the severity of associated lesions and suggest preventive measures. DESIGN AND SETTING Descriptive observational prospective longitudinal study in two hospitals in the metropolitan region of São Paulo. METHODS Data were collected from 29 cases of falls from roof slabs involving children and adolescents between October 2008 and October 2009. RESULTS Cases involving males were more prevalent, accounting for 84%. The predominant age group was schoolchildren (7 to 12 years old; 44%). Leisure activities were most frequently being practiced on the roof slab at the time of the fall (86%), and flying a kite was the most prevalent game (37.9%). In 72% of the cases, the children were unaccompanied by an adult responsible for them. Severe conditions such as multiple trauma and traumatic brain injuries resulted from 79% of the accidents. CONCLUSION Falls from roof slabs are accidents of high potential severity, and preventive measures aimed towards informing parents and guardians about the dangers and risk factors associated with this type of accident are needed, along with physical protective measures, such as low walls around the slab and gates with locks to restrict free access to these places.

  6. Variability of Rain Water Quality due to Roof Characteristics | Utsev ...

    African Journals Online (AJOL)

    Variability of Rain Water Quality due to Roof Characteristics. ... is receiving increased attention worldwide as an alternative source of drinking water. ... as grey water for domestic purposes but requires treatment to be used as drinking water.

  7. Analysis of mechanism of shock bump due to roof fall

    Institute of Scientific and Technical Information of China (English)

    GU Xin-jian; LI Jian-xiong

    2004-01-01

    According to the characteristics of the shock bump due to roof fall, a simple mechanics model has been established by applying the catastrophic theory and the law of energy conservation. The author suggests that the shock bump may be induced by the sudden energy release in the roof falling after underground mineral extractions, and through the systematic analysis of actual examples on site, the empirical formulae for the roof falling and energy release are derived, which would provide a new way for the study of the origin and mechanism of mine tremor due to fallen-in roof structure. It is of a great importance to enrich the shock bump theory and production safety in mine.

  8. STUDY ON THE FRACTURE AND WEIGHTING OF MAIN ROOF UNDER COMPLICATED CONDITIONS IN LONGWALL MINIG

    Institute of Scientific and Technical Information of China (English)

    何富连; 梁袁; 杨玉岷; 凌标灿

    1998-01-01

    To clarify and control the collapse and weighting of main roof in Iongwall mining is oneof the important research problems in ground control. Based on the results of physical modelexperiment and field measurement, the behaviour of main roof above trapezoidal goaf or with faultis studied in this paper. The fracture and weighting of main roof above trapezoidal goaf aredifferent from those above rectangular goaf. It depends on the mechanical relation between mainroof blocks whether the plate blocks of main roof on both sides of fault simultaneously break andcollapse.

  9. Analysis of main roof breaking form and its mechanism during first weighting in longwall face

    Institute of Scientific and Technical Information of China (English)

    HUANG Qing-xiang

    2001-01-01

    By field observation and simulating test in shallow seam logwall mining, the asymmetry breaking of main roof is discovered during the first weighting. Based on simulating model test and theoretical analysis, the mechanism of main roof first breaking is revealed, and the asymmetry breaking parameter is determined at all.

  10. Stress fracture in acetabular roof due to motocross: case report

    Directory of Open Access Journals (Sweden)

    Alexandre de Paiva Luciano

    2016-06-01

    Full Text Available ABSTRACT One of the first steps to be taken in order to reduce sports injuries such as stress fractures is to have in-depth knowledge of the nature and extent of these pathological conditions. We present a case report of a stress fracture of the acetabular roof caused through motocross. This type of case is considered rare in the literature. The description of the clinical case is as follows. The patient was a 27-year-old male who started to have medical follow-up because of uncharacteristic pain in his left hip, which was concentrated mainly in the inguinal region of the left hip during motocross practice. After clinical investigation and complementary tests, he was diagnosed with a stress fracture of the acetabular roof.

  11. Stress fracture in acetabular roof due to motocross: case report.

    Science.gov (United States)

    de Paiva Luciano, Alexandre; Filho, Nelson Franco

    2016-01-01

    One of the first steps to be taken in order to reduce sports injuries such as stress fractures is to have in-depth knowledge of the nature and extent of these pathological conditions. We present a case report of a stress fracture of the acetabular roof caused through motocross. This type of case is considered rare in the literature. The description of the clinical case is as follows. The patient was a 27-year-old male who started to have medical follow-up because of uncharacteristic pain in his left hip, which was concentrated mainly in the inguinal region of the left hip during motocross practice. After clinical investigation and complementary tests, he was diagnosed with a stress fracture of the acetabular roof.

  12. Acetabular roof arc angles and anatomic biomechanical superior acetabular weight bearing area

    Directory of Open Access Journals (Sweden)

    Thossart Harnroongroj

    2014-01-01

    Full Text Available Background: Acetabular fracture involves whether superior articular weight bearing area and stability of the hip are assessed by acetabular roof arc angles comprising medial, anterior and posterior. Many previous studies, based on clinical, biomechanics and anatomic superior articular surface of acetabulum showed different degrees of the angles. Anatomic biomechanical superior acetabular weight bearing area (ABSAWBA of the femoral head can be identified as radiographic subchondral bone density at superior acetabular dome. The fracture passes through ABSAWBA creating traumatic hip arthritis. Therefore, acetabular roof arc angles of ABSAWBA were studied in order to find out that the most appropriate degrees of recommended acetabular roof arc angles in the previous studies had no ABSAWBA involvement. Materials and Methods: ABSAWBA of femoral head was identified 68 acetabular fractures and 13 isolated pelvic fractures without unstable pelvic ring injury were enrolled. Acetabular roof arc angle was measured on anteroposterior, obturator and iliac oblique view radiographs of normal contralateral acetabulum using programmatic automation controller digital system and measurement tools. Results: Average medial, anterior and posterior acetabular roof arc angles of the ABSAWBA of 94 normal acetabulum were 39.09 (7.41, 42.49 (8.15 and 55.26 (10.08 degrees, respectively. Conclusions: Less than 39°, 42° and 55° of medial, anterior and posterior acetabular roof arc angles involve ABSAWBA of the femoral head. Application of the study results showed that 45°, 45° and 62° from the previous studies are the most appropriate medial, anterior and posterior acetabular roof arc angles without involvement of the ABSAWBA respectively.

  13. Thermal and Energy Performance of Conditioned Building Due To Insulated Sloped Roof

    Science.gov (United States)

    Irwan, Suhandi Syiful; Ahmed, Azni Zain; Zakaria, Nor Zaini; Ibrahim, Norhati

    2010-07-01

    For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m × 4.0 m × 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm-1K-1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0° , 15°, 30°, 45°, 60° and simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0° is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (AtticA-B) and indoor condition (IndoorA-B) is +7.8 °C and 0.4 °C respectively with an average energy monthly savings of 3.9 %.

  14. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Phil [Cardiff University (United Kingdom). Welsh School of Architecture; Alexandri, Eleftheria

    2008-04-15

    This paper discusses the thermal effect of covering the building envelope with vegetation on the microclimate in the built environment, for various climates and urban canyon geometries. A two-dimensional, prognostic, micro scale model has been used, developed for the purposes of this study. The climatic characteristics of nine cities, three urban canyon geometries, two canyon orientations and two wind directions are examined. The thermal effect of green roofs and green walls on the built environment is examined in both inside the canyon and at roof level. The effects of this temperature decrease on outdoors thermal comfort and energy savings are examined. Conclusions are drawn on whether plants on the building envelope can be used to tackle the heat island effect, depending on all these parameters taken into consideration. (author)

  15. Green roofs

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-04-01

    Full Text Available Green roofs are roofs that have been covered with a growing medium, creating a habitat on what would otherwise be a bland, lifeless surface. It is for this reason that green roofs are sometimes call 'vegetated' or 'living' roofs (Cantor 2008). A...

  16. Metal concentrations in soil and seepage water due to infiltration of roof runoff by long term numerical modelling.

    Science.gov (United States)

    Zimmermann, J; Dierkes, C; Göbel, P; Klinger, C; Stubbe, H; Coldewey, W G

    2005-01-01

    The qualitative effects of stormwater infiltration on soil and seepage water are investigated with long term numerical modelling. The retention behaviour of different soils and materials used in infiltration devices is determined with batch and column tests. Results of the laboratory tests are adsorption isotherms which represent input data for numerical transport modelling. The long term simulations are performed with combinations of different solutions (types of roof runoff) and infiltration devices (swale and trench) under different hydrogeological conditions. The presented results contain the infiltration of low polluted roof runoff, runoff from a roof with zinc sheets and from a roof with copper sheets concerning the heavy metals zinc, copper and lead. The increase of concentrations in the infiltration body is high. For the infiltrated water, the results show a migration to groundwater only for the low adsorbing soil.

  17. Latent Heat Flow in Light Weight Roofs and its Influence on the Thermal Performance

    DEFF Research Database (Denmark)

    Rode, Carsten; Rudbeck, Claus Christian

    1998-01-01

    on a colder surface. In these cases, themagnitude of the latent heat flux can be of the same order as the heat transfer by conduction. The latent heat transfer may result in a heat gain which coincides with other gains of an occupied building, and thus can cause an extra requirement for cooling. The paper...... reviews and quantifies the importance of heat flow processes in moist insulation systems. It then employs modeling to analyze the effect of extra heat gain caused bylatent heat transfer in the envelope on the thermal load on an office building chosen asan example. An extra cooling requirement of 6......Under certain conditions, migration of small amounts of moisture in the envelope of buildings can cause heat flow through permeable thermal insulation materials due to the conversion of latent heat when moisture evaporates from a warm surface, diffuses through the insulation, and condenses...

  18. Latent Heat Flow in Light Weight Roofs and its Influence on the Thermal Performance

    DEFF Research Database (Denmark)

    Rode, Carsten; Rudbeck, Claus Christian

    1998-01-01

    Under certain conditions, migration of small amounts of moisture in the envelope of buildings can cause heat flow through permeable thermal insulation materials due to the conversion of latent heat when moisture evaporates from a warm surface, diffuses through the insulation, and condenses...... reviews and quantifies the importance of heat flow processes in moist insulation systems. It then employs modeling to analyze the effect of extra heat gain caused bylatent heat transfer in the envelope on the thermal load on an office building chosen asan example. An extra cooling requirement of 6...... on a colder surface. In these cases, themagnitude of the latent heat flux can be of the same order as the heat transfer by conduction. The latent heat transfer may result in a heat gain which coincides with other gains of an occupied building, and thus can cause an extra requirement for cooling. The paper...

  19. The Technology of Pumping Light-weight Substrate for Roof Greening%泵送轻质屋顶绿化基材技术

    Institute of Scientific and Technical Information of China (English)

    叶建军; 韦书勇

    2009-01-01

    Rooof greening is the key measure to improve urban environment. Firstly,this paper analyzes the mommonly used technology solutions in roof greeing, and introduces some details on material selection for each layers and the existing problems in the technology of extensive green roofs.Then ,based on the above, this paper presents a new patented technology--the technology of pumping light-weight substrate for roof greening, fo-cusing on the substrate compositions and construction techniques.%屋顶绿化是改善城市环境的关键举措,本文分析了屋顶绿化的常见形式,介绍了简单屋顶绿化形式各层的材料特点、现有的简单屋顶绿化技术方案及存在的问题.在此基础上,论文介绍了一种新发明技术-泵送轻质屋顶绿化基材技术的材料组成和施工.

  20. Greenbacks from green roofs: forging a new industry in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Peck, S. W.; Callaghan, C. [Peck and Associates, Toronto, ON (Canada); Bass, B. [Environment Canada, Toronto, ON (Canada); Kuhn, M. [Toronto, ON (Canada)

    1999-03-01

    This report provides a comprehensive review of the qualitative and quantitative benefits of green roof and vertical garden technologies, explains the nature of roof greening and green roof systems, examines the barriers to their more rapid diffusion into Canadian markets, and makes recommendations as to how how these barriers may be overcome. Two basic types of green roof systems, extensive and intensive, are identified. Extensive green roofs are characterized by their low weight, low capital cost and low maintenance. Intensive green roofs, by contrast, are heavier, more costly to establish, require intensive planting and higher maintenance. Both types of green roofs may be further subdivided into accessible or inaccessible. Accessible green roofs are flat, outdoor open spaces intended for use as gardens or terraces, while inaccessible roofs are only accessible for periodic maintenance. 'Vertical gardens' are a type of extensive green roof, characterized by the growing of plants on or up against the facade of buildings. The many benefits of green roof or vertical garden technologies include energy cost savings due to increased insulation and improved protection of the roof membrane, air quality improvements, new employment opportunities for a wide range of people including suppliers of roof membranes and related products, and social benefits such as improved aesthetics, health and horticultural therapy. Barriers to diffusion in Canada have been identified as lack of awareness, lack of incentives to implement, cost implications, lack of technical standards, few existing examples and risks associated with uncertainty. The recommendations to overcome market barriers are intended to address these barriers, i.e. they call for increased efforts to generate awareness through addressing the knowledge availability issue, and through high profile demonstration projects, government-sponsored technology diffusion, financial incentives to overcome cost-based barriers

  1. Roof assembly

    CSIR Research Space (South Africa)

    De Villiers, A

    2010-01-01

    Full Text Available The objective of this chapter is to provide sustainability criteria for roof system design that can be used by planners, designers and developers as a planning, design and development guide for sustainable building projects....

  2. Green Roofs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-08-01

    A New Technology Demonstration Publication Green roofs can improve the energy performance of federal buildings, help manage stormwater, reduce airborne emissions, and mitigate the effects of urban heat islands.

  3. Impact of Caffeine on Weight Changes Due to Ketotifen Administration

    Directory of Open Access Journals (Sweden)

    Bohlool Habibi Asl

    2014-03-01

    Full Text Available Purpose: Prescription of ketotifen as an effective antihistamine in asthma and allergic conditions is associated with side effect of weight gain. Caffeine is an agent which increases thermogenesis and improves energy expenditure and also effective in asthma. The aim of current study was to evaluate caffeine impact in reducing weight gain side effect of ketotifen. Methods: Male mice at the weight limit of 20-30 g in 8 groups were randomly chosen and injected following drug dosages for 45 days intraperitoneally: control group (normal saline 10 ml/kg, three groups of ketotifen (4, 8, 16 mg/kg, three groups of caffeine (4, 8, 16 mg/kg and one group of ketotifen (4 mg/kg in combination with caffeine (4 mg/kg. Weight changes have been recorded and assessed every 3 days for 45 days. Results: The results showed that in all dosages of the two drugs, significant weight loss occurred in comparison with the control group. Conclusion: The effect of caffeine on weight loss according to our results, matches with human studies, while ketotifen contradictory to our assumption, resulted in weight loss which probably was related to the difference in metabolic pathways in mice and humans, or maybe the used doses of ketotifen in this study were insufficient to reduce TNF-α production or influence in serotonin release and be effective on appetite or weight gain.

  4. Fracturing characteristics of main roof strata when mining uphill and downhill and its effect on stability of immediate roof

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Q.; Liu, J.; Zhang, Y. (Shanxi Mining Institute (China))

    1994-04-01

    The main roof strata in uphill and downhill mining of an inclined longwall may be regarded as an elastic plate. When the ratio of longwall and short span is greater than 2, the load is mainly carried by the short span. Based on this, the authors take a unit width of an inclined rock beam in the direction of face advance and a mechanical model for studying initial and periodic weighting of the main roof was established. It shows that the interval of periodic weighting and abutment pressure in uphill mining are less than that of downhill mining and the distribution of abutment pressure in both cases is quite different. Manifestation of ground pressure in uphill mining is more evident than downhill mining. It is proved that when uphill mining is introduced, the immediate roof is less stable and roof failures are frequent due to stress component in the direction of rock strata and to spalling of coal rib. When the direction of stress component is the same as face advance, the immediate roof is more stable and vice versa if the contrary. From the roof control point of view, where conditions are favourable, priority should be given to downhill mining. 4 refs., 11 figs., 1 tab.

  5. Using Remote Sensing to Quantify Roof Albedo in Seven California Cities

    Science.gov (United States)

    Ban-Weiss, G. A.; Woods, J.; Millstein, D.; Levinson, R.

    2013-12-01

    Cool roofs reflect sunlight and therefore can reduce cooling energy use in buildings. Further, since roofs cover about 20-25% of cities, wide spread deployment of cool roofs could mitigate the urban heat island effect and partially counter urban temperature increases associated with global climate change. Accurately predicting the potential for increasing urban albedo using reflective roofs and its associated energy use and climate benefits requires detailed knowledge of the current stock of roofs at the city scale. Until now this knowledge has been limited due to a lack of availability of albedo data with sufficient spatial coverage, spatial resolution, and spectral information. In this work we use a novel source of multiband aerial imagery to derive the albedos of individual roofs in seven California cities: Los Angeles, Long Beach, San Diego, Bakersfield, Sacramento, San Francisco, and San Jose. The radiometrically calibrated, remotely sensed imagery has high spatial resolution (1 m) and four narrow (less than 0.1 μm wide) band reflectances: blue, green, red, and near-infrared. To derive the albedo of roofs in each city, we first locate roof pixels within GIS building outlines. Next we use laboratory measurements of the solar spectral reflectances of 190 roofing products to empirically relate solar reflectance (albedo) to reflectances in the four narrow bands; the root-mean-square of the residuals for the albedo prediction is 0.016. Albedos computed from remotely sensed reflectances are calibrated to ground measurements of roof albedo in each city. The error (both precision and accuracy) of albedo values is presented for each city. The area-weighted mean roof albedo (× standard deviation) for each city ranges from 0.17 × 0.08 (Los Angeles) to 0.29 × 0.15 (San Diego). In each city most roofs have low albedo in the range of 0.1 to 0.3. Roofs with albedo greater than 0.4 comprise less than 3% of total roofs and 7% of total roof area in each city. The California

  6. Green roofs: potential at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Elena M [Los Alamos National Laboratory

    2009-01-01

    Green roofs, roof systems that support vegetation, are rapidly becoming one of the most popular sustainable methods to combat urban environmental problems in North America. An extensive list of literature has been published in the past three decades recording the ecological benefits of green roofs; and now those benefits have been measured in enumerated data as a means to analyze the costs and returns of green roof technology. Most recently several studies have made substantial progress quantifying the monetary savings associated with storm water mitigation, the lessoning of the Urban Heat Island, and reduction of building cooling demands due to the implementation of green roof systems. Like any natural vegetation, a green roof is capable of absorbing the precipitation that falls on it. This capability has shown to significantly decrease the amount of storm water runoff produced by buildings as well as slow the rate at which runoff is dispensed. As a result of this reduction in volume and velocity, storm drains and sewage systems are relieved of any excess stress they might experience in a storm. For many municipalities and private building owners, any increase in storm water mitigation can result in major tax incentives and revenue that does not have to be spent on extra water treatments. Along with absorption of water, vegetation on green roofs is also capable of transpiration, the process by which moisture is evaporated into the air to cool ambient temperatures. This natural process aims to minimize the Urban Heat Island Effect, a phenomenon brought on by the dark and paved surfaces that increases air temperatures in urban cores. As the sun distributes solar radiation over a city's area, dark surfaces such as bitumen rooftops absorb solar rays and their heat. That heat is later released during the evening hours and the ambient temperatures do not cool as they normally would, creating an island of constant heat. Such excessively high temperatures induce heat

  7. Understanding Roofing Systems.

    Science.gov (United States)

    Michelsen, Ted

    2001-01-01

    Reviews the various types of multi- and single-ply roofing commonly used today in educational facilities. Roofing types described involve built-up systems, modified bitumen systems; ethylene propylene diene terpolymer roofs; and roofs of thermoplastic, metal, and foam. A description of the Roofing Industry Educational Institute is included. (GR)

  8. Roof Rockmass Characterization in an Illinois Underground Coal Mine

    Science.gov (United States)

    Osouli, Abdolreza; Shafii, Iman

    2016-08-01

    Among all United States underground coal fields, those in Illinois have the highest rate of roof fall events due to their weak and severely moisture sensitive roof rock units. Rockmass characterization is the key initial step in designing safe and economical roof control measures in underground coal mines. In this study, a performance-based roof rockmass characterization is investigated. The geologic conditions as well as underground mine geographic specifications, roof fall analysis, mining method, utilized supplemental roof control measures, and geotechnical properties of roof rock units were considered to link the roof performance to rockmass characterization. The coal mine roof rating (CMRR) rockmass characterization method was used to evaluate the roof conditions and roof support design for an underground coal mine located in the Illinois Coal Basin. The results of several mine visit mappings, laboratory test results, and geotechnical issues and concerns are presented and discussed. The roof support designs are analyzed based on the rockmass characterization and are compared with the observed performance. This study shows that (1) CMRR index is a reasonable method for characterizing roof rockmass; (2) moisture sensitivity and bedding strengths in the horizontal direction are essential parameters for roof support design in mines with weak roof conditions; and (3) the applicability of the analysis of roof bolt system for roof support design of the studied mine is questionable.

  9. Hydrologic Restoration in the Urban Environment Using Green Roofs

    OpenAIRE

    Anna Palla; Ilaria Gnecco; Luca G. Lanza

    2010-01-01

    Loss of natural soil and vegetation within the urban environment can significantly affect the hydrologic cycle by increasing storm water runoff rates and volumes. In order to mitigate these modifications in urban areas engineered systems are developed, such as green roofs, to mimic and replace functions (evapo-transpiration, infiltration, percolation) which have been altered due to the impact of human development. Green roofs, also known as vegetated roof covers, eco-roofs or nature roofs, ar...

  10. Building Integrated Photovoltaic (BIPV) Roofs for Sustainability and Energy Efficiency

    Science.gov (United States)

    2014-04-01

    conventional dark roofs, but the degradation in the first few years was significant. This was primarily due to soiling and not actual roof membrane... degradation . Since roof cleaning is not a typical DoD operations or maintenance activity, roof reflectivity was measured with the soiling during the...Roof albedo was originally planned to be measured for only Site III (MCAS Yuma), but since there were different soiling /aging/ degradation conditions

  11. Self-Directed Weight Loss Strategies: Energy Expenditure Due to Physical Activity Is Not Increased to Achieve Intended Weight Loss

    Directory of Open Access Journals (Sweden)

    Ulf Elbelt

    2015-07-01

    Full Text Available Reduced physical activity and almost unlimited availability of food are major contributors to the development of obesity. With the decline of strenuous work, energy expenditure due to spontaneous physical activity has attracted increasing attention. Our aim was to assess changes in energy expenditure, physical activity patterns and nutritional habits in obese subjects aiming at self-directed weight loss. Methods: Energy expenditure and physical activity patterns were measured with a portable armband device. Nutritional habits were assessed with a food frequency questionnaire. Results: Data on weight development, energy expenditure, physical activity patterns and nutritional habits were obtained for 105 patients over a six-month period from an initial cohort of 160 outpatients aiming at weight loss. Mean weight loss was −1.5 ± 7.0 kg (p = 0.028. Patients with weight maintenance (n = 75, with substantial weight loss (>5% body weight, n = 20 and with substantial weight gain (>5% body weight, n = 10 did not differ in regard to changes of body weight adjusted energy expenditure components (total energy expenditure: −0.2 kcal/kg/day; non-exercise activity thermogenesis: −0.3 kcal/kg/day; exercise-related activity thermogenesis (EAT: −0.2 kcal/kg/day or patterns of physical activity (duration of EAT: −2 min/day; steps/day: −156; metabolic equivalent unchanged measured objectively with a portable armband device. Self-reported consumption frequency of unfavorable food decreased significantly (p = 0.019 over the six-month period. Conclusions: An increase in energy expenditure or changes of physical activity patterns (objectively assessed with a portable armband device are not employed by obese subjects to achieve self-directed weight loss. However, modified nutritional habits could be detected with the use of a food frequency questionnaire.

  12. Roof structure theory and support resistance determination of longwall face in shallow seam

    Institute of Scientific and Technical Information of China (English)

    HUANG Qing-xiang(黄庆享)

    2003-01-01

    This paper presents the structure models founded in shallow seam, the roof asymmetry arch with three articulations in roof first weighting and the step voussoir beam in roof periodic weighting. These structure models are differ from classic theory, it establishes the new roof control theory of instability structure roof, especially in shallow seam. Based on the new roof structure theory, the support working state of "given sliding load" is put forward, and the factor of load transmitting is introduced to determine the load on roof structure. Therefore, the proper and accurate calculating methods of support resistance are established. Based on this, the dynamic structure theory in shallow seam could be predicted.

  13. New roof element system

    DEFF Research Database (Denmark)

    Ditlev, Jesper; Rudbeck, Claus Christian

    1997-01-01

    The aim of the project has been to develop an element system for warm deck roofs which, from a thermal and economical point of view, can deal with the future demands for heat loss coefficients for low slope roofs.......The aim of the project has been to develop an element system for warm deck roofs which, from a thermal and economical point of view, can deal with the future demands for heat loss coefficients for low slope roofs....

  14. Renovation of Roof Structure

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    1997-01-01

    A 30 year old not-watertight roof based on wooden boards with roofing felt have been changed to a pitched structure with cementos plates. At the same time more thermal insulation has been placed.......A 30 year old not-watertight roof based on wooden boards with roofing felt have been changed to a pitched structure with cementos plates. At the same time more thermal insulation has been placed....

  15. New roof element system

    DEFF Research Database (Denmark)

    Ditlev, Jesper; Rudbeck, Claus Christian

    1997-01-01

    The aim of the project has been to develop an element system for warm deck roofs which, from a thermal and economical point of view, can deal with the future demands for heat loss coefficients for low slope roofs.......The aim of the project has been to develop an element system for warm deck roofs which, from a thermal and economical point of view, can deal with the future demands for heat loss coefficients for low slope roofs....

  16. Diffusion-Weighted Magnetic Resonance Imaging in Rhombencephalitis due to Listeria monocytogenes

    Energy Technology Data Exchange (ETDEWEB)

    Hatipoglu, H.G.; Onbasioglu Gurbuz, M.; Sakman, B.; Yuksel, E. [Dept. of Radiology, Ankara Numune Education and Research Hospital, Ankara (Turkey)

    2007-04-15

    We present diffusion-weighted imaging findings of a case of rhombencephalitis due to Listeria monocytogenes. It is a rare, life-threatening disorder. The diagnosis is difficult by clinical findings only. In this report, we aim to draw attention to the role of conventional and diffusion-weighted magnetic resonance imaging findings. To our knowledge, this is the first case report in the literature with apparent diffusion coefficient values of diseased brain parenchyma.

  17. Green roof Malta

    OpenAIRE

    2015-01-01

    In Malta, buildings cover one third of the Island, leaving greenery in the dirt track. Green roofs are one way to bring plants back to urban areas with loads of benefits. Antoine Gatt, who manages the LifeMedGreenRoof project at the University of Malta, tells us more. http://www.um.edu.mt/think/green-roof-malta/

  18. EPA's Green Roof Research

    Science.gov (United States)

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provices insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA re...

  19. Green roof stormwater retention: effects of roof surface, slope, and media depth.

    Science.gov (United States)

    VanWoert, Nicholaus D; Rowe, D Bradley; Andresen, Jeffrey A; Rugh, Clayton L; Fernandez, R Thomas; Xiao, Lan

    2005-01-01

    Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.

  20. Childhood Craniopharyngioma with Hypothalamic Obesity - No Long-term Weight Reduction due to Rehabilitation Programs

    NARCIS (Netherlands)

    Sterkenburg, A. S.; Hoffmann, A.; Gebhardt, U.; Waldeck, E.; Springer, S.; Mueller, H. L.

    2014-01-01

    Background: Severe obesity due to hypothalamic involvement has major impact on prognosis in long-term survivors of childhood craniopharyngioma. The long-term effects of rehabilitation efforts on weight development and obesity in these patients are not analyzed up to now. Patients and Methods: 108

  1. Childhood Craniopharyngioma with Hypothalamic Obesity - No Long-term Weight Reduction due to Rehabilitation Programs

    NARCIS (Netherlands)

    Sterkenburg, A. S.; Hoffmann, A.; Gebhardt, U.; Waldeck, E.; Springer, S.; Mueller, H. L.

    2014-01-01

    Background: Severe obesity due to hypothalamic involvement has major impact on prognosis in long-term survivors of childhood craniopharyngioma. The long-term effects of rehabilitation efforts on weight development and obesity in these patients are not analyzed up to now. Patients and Methods: 108 pa

  2. Roof Polishing of Optical Fibers

    Science.gov (United States)

    Dholakia, A. R.

    1985-01-01

    Bevealed tip gives optimum coupling efficiency. Abrasive tape used to grind tip of optical fiber. Grinding force depends on stiffness of optical fiber. "Roof" shape on end of optical glass fiber increases efficiency which couples laser light. End surface angle of 65 degrees with perpendicular required for optimum coupling. Since fiber and tape are light in weight and compliant, ridge defect-free, and chipping on fiber edge totally eliminated.

  3. Free Vibration of Laminated Composite Hypar Shell Roofs with Cutouts

    Directory of Open Access Journals (Sweden)

    Sarmila Sahoo

    2011-01-01

    Full Text Available Use of laminated composites in civil engineering structural components including shell roofs is increasing day by day due to their light weight, high specific strength, and stiffness properties. In the present paper, laminated composite hypar shell (hyperbolic paraboloidal shells bounded by straight edges roofs with cutouts are analyzed for their free vibration characteristics using finite element method. An eight-noded curved shell element is used for modeling the shell. Specific numerical problems of earlier investigators are solved to compare their results with the present formulation. A number of problems are further solved where the size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints. The results are furnished in the form of figures and tables. The results are examined thoroughly to arrive at some meaningful conclusions useful to designers.

  4. Cost Comparative Study On Steel Frame Folded Plate Roofing System Vs Conventional Truss Roofing System

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-12-01

    Full Text Available Due to ever-increasing of construction materials, it becomes the foremost duty of a civil engineer to design economical and durable structures. In this project an attempt has been made to compare the cost of two types of roofing systems viz. conventional truss roofing system and steel frame folded plate roofing system. The steel frame folded plate roofing system, though found to be economical, is not widely practiced in India due to lack of knowledge regarding its analysis and design. On contrary to it, the conventional truss roofing system still remains as the widely adopted method of roofing for different types of buildings due to the available literature on its analysis, design and construction. The analysis and design of conventional truss roofing system and folded plate roofing system have been carried out for various spans. The analysis is carried out in STAAD.Pro 2004, which is based on stiffness method. Load calculations and design done manually, based on IS:875-1987, IS:800- 1984 & SP:38(1987

  5. IMPROVED ROOF STABILIZATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    Many U.S. Department of Energy (DOE) remediation sites have performed roof repair and roof replacement to stabilize facilities prior to performing deactivation and decommissioning (D&D) activities. This project will review the decision criteria used by these DOE sites, along with the type of repair system used for each different roof type. Based on this information, along with that compiled from roofing experts, a decision-making tool will be generated to aid in selecting the proper roof repair systems. Where appropriate, innovative technologies will be reviewed and applied to the decision-making tool to determine their applicability. Based on the results, applied research and development will be conducted to develop a method to repair these existing roofing systems, while providing protection for the D and D worker in a cost-efficient manner.

  6. An environmental cost-benefit analysis of alternative green roofing strategies

    Science.gov (United States)

    Richardson, M.; William, R. K.; Goodwell, A. E.; Le, P. V.; Kumar, P.; Stillwell, A. S.

    2016-12-01

    Green roofs and cool roofs are alternative roofing strategies that mitigate urban heat island effects and improve building energy performance. Green roofs consist of soil and vegetation layers that provide runoff reduction, thermal insulation, and potential natural habitat, but can require regular maintenance. Cool roofs involve a reflective layer that reflects more sunlight than traditional roofing materials, but require additional insulation during winter months. This study evaluates several roofing strategies in terms of energy performance, urban heat island mitigation, water consumption, and economic cost. We use MLCan, a multi-layer canopy model, to simulate irrigated and non-irrigated green roof cases with shallow and deep soil depths during the spring and early summer of 2012, a drought period in central Illinois. Due to the dry conditions studied, periodic irrigation is implemented in the model to evaluate its effect on evapotranspiration. We simulate traditional and cool roof scenarios by altering surface albedo and omitting vegetation and soil layers. We find that both green roofs and cool roofs significantly reduce surface temperature compared to the traditional roof simulation. Cool roof temperatures always remain below air temperature and, similar to traditional roofs, require low maintenance. Green roofs remain close to air temperature and also provide thermal insulation, runoff reduction, and carbon uptake, but might require irrigation during dry periods. Due to the longer lifetime of a green roof compared to cool and traditional roofs, we find that green roofs realize the highest long term cost savings under simulated conditions. However, using longer-life traditional roof materials (which have a higher upfront cost) can help decrease this price differential, making cool roofs the most affordable option due to the higher maintenance costs associated with green roofs

  7. Technical considerations in green roof retrofit for stormwater attenuation in the central business district

    OpenAIRE

    Wilkinson, S.; Lamond, J.; Proverbs, D.; Sharman, L.; Heller, A; Manion, J.

    2015-01-01

    Purpose: The key aspects that built environment professionals need to consider when evaluating roofs for the purpose of green roof retrofit and also when assessing green roofs for technical due diligence purposes are outlined. Although green or sod roofs have been built over many centuries, contemporary roofs adopt new approaches and technologies. The paper aims to discuss these issues. \\ud \\ud Design/methodology/approach: A mixed methods design based on a systematic review of relevant litera...

  8. Evaluation of World Population-Weighted Effective Dose due to Cosmic Ray Exposure

    Science.gov (United States)

    Sato, Tatsuhiko

    2016-01-01

    After the release of the Report of the United Nations Scientific Committee of the Effects of Atomic Radiation in 2000 (UNSCEAR2000), it became commonly accepted that the world population-weighted effective dose due to cosmic-ray exposure is 0.38 mSv, with a range from 0.3 to 2 mSv. However, these values were derived from approximate projections of altitude and geographic dependences of the cosmic-ray dose rates as well as the world population. This study hence re-evaluated the population-weighted annual effective doses and their probability densities for the entire world as well as for 230 individual nations, using a sophisticated cosmic-ray flux calculation model in tandem with detailed grid population and elevation databases. The resulting world population-weighted annual effective dose was determined to be 0.32 mSv, which is smaller than the UNSCEAR’s evaluation by 16%, with a range from 0.23 to 0.70 mSv covering 99% of the world population. These values were noted to vary with the solar modulation condition within a range of approximately 15%. All assessed population-weighted annual effective doses as well as their statistical information for each nation are provided in the supplementary files annexed to this report. These data improve our understanding of cosmic-ray radiation exposures to populations globally. PMID:27650664

  9. Evaluation of World Population-Weighted Effective Dose due to Cosmic Ray Exposure

    Science.gov (United States)

    Sato, Tatsuhiko

    2016-09-01

    After the release of the Report of the United Nations Scientific Committee of the Effects of Atomic Radiation in 2000 (UNSCEAR2000), it became commonly accepted that the world population-weighted effective dose due to cosmic-ray exposure is 0.38 mSv, with a range from 0.3 to 2 mSv. However, these values were derived from approximate projections of altitude and geographic dependences of the cosmic-ray dose rates as well as the world population. This study hence re-evaluated the population-weighted annual effective doses and their probability densities for the entire world as well as for 230 individual nations, using a sophisticated cosmic-ray flux calculation model in tandem with detailed grid population and elevation databases. The resulting world population-weighted annual effective dose was determined to be 0.32 mSv, which is smaller than the UNSCEAR’s evaluation by 16%, with a range from 0.23 to 0.70 mSv covering 99% of the world population. These values were noted to vary with the solar modulation condition within a range of approximately 15%. All assessed population-weighted annual effective doses as well as their statistical information for each nation are provided in the supplementary files annexed to this report. These data improve our understanding of cosmic-ray radiation exposures to populations globally.

  10. Evaluation of World Population-Weighted Effective Dose due to Cosmic Ray Exposure.

    Science.gov (United States)

    Sato, Tatsuhiko

    2016-09-21

    After the release of the Report of the United Nations Scientific Committee of the Effects of Atomic Radiation in 2000 (UNSCEAR2000), it became commonly accepted that the world population-weighted effective dose due to cosmic-ray exposure is 0.38 mSv, with a range from 0.3 to 2 mSv. However, these values were derived from approximate projections of altitude and geographic dependences of the cosmic-ray dose rates as well as the world population. This study hence re-evaluated the population-weighted annual effective doses and their probability densities for the entire world as well as for 230 individual nations, using a sophisticated cosmic-ray flux calculation model in tandem with detailed grid population and elevation databases. The resulting world population-weighted annual effective dose was determined to be 0.32 mSv, which is smaller than the UNSCEAR's evaluation by 16%, with a range from 0.23 to 0.70 mSv covering 99% of the world population. These values were noted to vary with the solar modulation condition within a range of approximately 15%. All assessed population-weighted annual effective doses as well as their statistical information for each nation are provided in the supplementary files annexed to this report. These data improve our understanding of cosmic-ray radiation exposures to populations globally.

  11. Collaborative active roof design

    NARCIS (Netherlands)

    Quanjel, E.M.C.J.

    2008-01-01

    Roofs play an essential role in buildings. Their value and impact often significantly surpass the cost ratio they represent in the total investment cost of the building. Traditionally, roofs have a protecting function and their basic design has changed little over hundreds of years. Nowadays

  12. The effects of green roofs in a sub-tropical system

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, M. [Austin Univ., Austin, TX (United States). Lady Bird Johnson Wildflower Center; Gardiner, B. [Austech Roof Consultants Inc., Austin, TX (United States)

    2007-07-01

    The building and environmental benefits of green roofs in non-temperate, or subtropical systems were discussed. Since there are greater climatic extremes in such systems, green roofs may offer more benefits. Most green roof research has focused on the use of succulent plants due to their low water demand and slow growth rates. The Lady Bird Johnson Wildflower Center and the Roof Consultants Institute Foundation are conducting joint research project to assess the suitability of native vegetation for use on extensive green roofs in central Texas. The project examined the effects of green roofing in a subtropical climate and the thermal properties of buildings, stormwater runoff rates, water quality, and irrigation requirements. Stormwater retention capacity of green roofs and water quality of stormwater runoff was compared to conventional roofs. The growing media that are most successful for this particular ecoregion was also identified. The focus on native plants in this study identified the characteristics of climatic adaptation, which may help to reduce total water and nutrient demand, and avoid problems associated with the introduction of potentially invasive species. The study compared performance of 6 types of green roofs and two types of traditional roof materials using simulated roof platforms. During the hottest days in August, roof membrane temperatures on the green roofs were 10 degrees C cooler than white roofs and 40 degrees C cooler than conventional black roofs. It was concluded that the temperature and water quantity characteristics of green roofs are advantageous in subtropical climates. 4 refs., 1 tab., 4 figs.

  13. Improving the durability of flat roof constructions

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Svendsen, Sv Aa Højgaard

    1999-01-01

    Flat roof constructions are mainly used on commercial, institutional and industrial buildings, where insulation is placed on top of the load-bearing deck and then covered with a roof membrane. Through time, there is a risk that the membrane will allow water passage as holes might form due...... as there is no easy method of drying it. To be able to dry the insulation, and thereby regain the functional requirements of the roofing system, two new solutions for insulating flat roofs with existing materials are proposed for high density mineral wool and expanded polystyrene. Monitoring equipment are part...... to weathering effects or physical loads. Water will then enter the insulation, and as a vapor retarder is normally found below the insulation thus trapping the water in the insulation, the leak can remain undetected for a long period. When the leak is finally discovered, the insulation has to be discharged...

  14. Mine roof supports

    Energy Technology Data Exchange (ETDEWEB)

    Dettmers, M.; Peters, B.; Weirich, W.

    1983-12-27

    A mine roof support has hydraulic props mounted between a floor sill and a roof bar which can be raised and lowered by extension and retraction of the props. A goaf shield is pivotably connected to the rear of the roof bar and is linked via levers to the floor sill. A hydraulic piston and cylinder unit is connected between the roof bar and the goaf shield. Apparatus serves to prevent damage to the support components, and especially to the unit which could be extended beyond its full stroke when the props are retracted to bring the goaf shield and the roof bar more or less into alignment. The protective apparatus is composed of a compact valve device operated by a member, such as a cam, to block the props from hydraulic pressure when the goaf shield and the roof bar assume a pre-determined angular disposition. Both the valve device and its operating member are disposed in a protected position within chambers formed inside the roof bar and the goaf shield adjacent the pivot connection therebetween.

  15. Norwegian Pitched Roof Defects

    Directory of Open Access Journals (Sweden)

    Lars Gullbrekken

    2016-06-01

    Full Text Available The building constructions investigated in this work are pitched wooden roofs with exterior vertical drainpipes and wooden load-bearing system. The aim of this research is to further investigate the building defects of pitched wooden roofs and obtain an overview of typical roof defects. The work involves an analysis of the building defect archive from the research institute SINTEF Building and Infrastructure. The findings from the SINTEF archive show that moisture is a dominant exposure factor, especially in roof constructions. In pitched wooden roofs, more than half of the defects are caused by deficiencies in design, materials, or workmanship, where these deficiencies allow moisture from precipitation or indoor moisture into the structure. Hence, it is important to increase the focus on robust and durable solutions to avoid defects both from exterior and interior moisture sources in pitched wooden roofs. Proper design of interior ventilation and vapour retarders seem to be the main ways to control entry from interior moisture sources into attic and roof spaces.

  16. Adaptable typologies for active roofs

    NARCIS (Netherlands)

    Quanjel, E.M.C.J.; Zeiler, W.

    2006-01-01

    The main objective of this part of the 6th framework Pan-European EUR-ACTIVE ROOF-er project is to improve the interaction between design participants of dynamic adaptable Active Roofs in product development and Active Roofs from an architects/ customers perspective. Improvements in Active Roof desi

  17. Green Roofs for Stormwater Management

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Results indicate that the green roofs are capable of removing 40% of the annual rainfall volume from a roof through retention and evapotranspiration. Rainfall not retained by green roofs is detained, effectively...

  18. Green roofs; Les toitures vegetalisees

    Energy Technology Data Exchange (ETDEWEB)

    Seghier, C.

    2006-03-15

    Impervious surface coverage keeps spreading in cities. Streets, sidewalks, parking lots and roofs are waterproof, meaning greater amounts of water to channel and treat and higher flood risks during heavy rainfalls. Green roofing can play a key part in addressing this alarming issue. There are three types of green roofs: extensive, semi-intensive and intensive. The extensive green roof technique uses a thin soil covering with a variety of species providing year-round plant coverage. The plants are not necessarily horticultural in which case routine maintenance is minimal. No watering is needed. Usually extensive green roofs create an ecosystem. The semi-intensive green roof technique uses a soil covering of average thickness and serves to create decorative roofing. Although maintenance is moderate, watering is essential. The intensive green roof technique produces a terrace roof garden. Another advantage of green roofs is they increase the life cycle of the sealing. Roof sealing protection may see the span of its life cycle, now at about fifteen years, doubled if the building has a green roof. planning professionals still know very little about green roofing solutions. Yet, green roofing provides unquestionable ecological qualities and thermal and acoustic performance that have proven to be environmentally friendly. Yet France lags behind northern European countries in green roofing. The Germans, Swiss, Austrians, Scandinavians and Dutch have been using the technique for more than twenty years. (A.L.B.)

  19. Requirements of inverted roofs with a drainage layer

    DEFF Research Database (Denmark)

    Leimer, Hans-Peter; Rode, Carsten; Künzel, Hartwig

    2005-01-01

    This contribution illustrates the application of the standard EN ISO 6946 regarding the heat loss of an inverted roof for different regions of Europe. An addendum to the standard (EN ISO 6946:1996/A1, 2003) introduces a correction to the thermal transmittance of inverted roofs due to rain water f...

  20. Storm Water Retention on Three Green Roofs with Distinct Climates

    Science.gov (United States)

    Breach, P. A.; Sims, A.; O'Carroll, D. M.; Robinson, C. E.; Smart, C. C.; Powers, B. S. C.

    2014-12-01

    As urbanization continues to increase the impact of cities on their surrounding environments, the feasibility of implementing low-impact development such as green roofs is of increasing interest. Green roofs retain and attenuate storm water thereby reducing the load on urban sewer systems. In addition, green roofs can provide insulation and lower roof surface temperature leading to a decrease in building energy load. Green roof technology in North American urban environments remains underused, in part due to a lack of climate appropriate green roof design guidelines. The capacity of a green roof to moderate runoff depends on the storage capacity of the growing medium at the start of a rainfall event. Storage capacity is finite, which makes rapid drainage and evapotranspiration loss critical for maximizing storage capacity between subsequent storms. Here the retention and attenuation of storm events are quantified for experimental green roof sites located in three representative Canadian climates corresponding to; semiarid conditions in Calgary, Alberta, moderate conditions in London, Ontario, and cool and humid conditions in Halifax, Nova Scotia. The storage recovery and storm water retention at each site is modelled using a modified water balance approach. Components of the water balance including evapotranspiration are predicted using climate data collected from 2012 to 2014 at each of the experimental sites. During the measurement period there were over 300 precipitation events ranging from small, frequent events (green roofs in their respective climates.

  1. Green roofs in Germany : yesterday, today and tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Herman, R. [Anhalt Univ., Bernburg (Germany)

    2003-07-01

    This presentation provided a historical overview of the development of green roofs in Germany. Real interest in green roof technology in Germany began in the 1970s at which time specific guidelines for correct installation were established. In the past 20 years there has been a dramatic increase in the number of green roofs. The main market drivers were ecological concerns, energy and cost saving potential, as well as the need to manage storm water. Green roofs have an insulating effect, leading to energy savings. Some cities in Germany have implemented an incentive program whereby reductions on city water fees are allocated to owners of green roofs. Many business opportunities have been created by an increased interest in green roofs. The demand for lava, pumice, expanded clay, recycled roof tiles, crushed brick and other materials is being met by a new industry. There has been a noted increase in green roof systems and components, as well as installation and maintenance companies. It is expected that the ever increasing price for land in German cities along with an increasing population density will spur an even greater demand for green roofs. Germany is considered one of the greenest countries in the world, due to public concern for all forms of pollution, the maintenance of ecological balance, the preservation of flora and fauna, and a respect for nature. 6 refs.

  2. Green Roofs for Stormwater Runoff Control - Abstract

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  3. Evolution of Flat Roofs

    Directory of Open Access Journals (Sweden)

    Şt. Vasiliu

    2009-01-01

    Full Text Available Roofs are constructive subassembles that are located at the top of buildings, which toghether with perimetral walls and some elements of the infrastructure belongs to the subsystem elements that close the building. Roofs must meet resistance requirements to mechanical action, thermal insulating, waterproofing and acoustic, fire resistance, durability, economy and aesthetics. The man saw the need to build roofs from the oldest ancient times. Even if the design of buildings has an empirical character, are known and are preserved until today constructions that are made in antiquity, by the Egyptians, Greeks and Romans with architectural achievements, worthy of admiration and in present time. General composition of civil construction has been influenced throughout the evolution of construction history by the level of production forces and properties of building materials available in every historical epoch. For over five millennia, building materials were stone, wood and ceramic products (concrete was used by theRomans only as filling material.

  4. Design methodology for innovative roofs

    NARCIS (Netherlands)

    Quanjel, E.M.C.J.; Zeiler, W.; Trum, H.M.G.J.

    2006-01-01

    Traditional roofs have primary, passive, functions such as protection against rain, wind, snow etc.. Nowadays, roofs are increasingly used as preferred location for additional functions such as photovoltaic systems, roof lights and safety devices. New approaches, on designing as well as assembling t

  5. Flat roof integration. CPT solar (AET IV)

    Energy Technology Data Exchange (ETDEWEB)

    Chianese, D.; Pola, I.; Bernasconi, A.; Bura, E.; Cereghetti, N.; Realini, A.; Pasinelli, P.; Rioggi, S.

    2007-11-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) takes a look at a 15.4 kWp solar power installation in Trevano, Switzerland, that features flexible amorphous silicon triple-junction modules, mounted nearly horizontally and directly laminated to flexible polyolefin membranes that form the covering of a flat roof. The main objective of this study was to verify in which order of magnitude the better thermal behaviour of amorphous silicon cells can compensate for losses due to the quasi-horizontal roof integration (lower irradiation and higher reflection), and thus be competitive in the flat roof construction and refurbishment markets. The modules used and their characteristics are described. Performance, temperature levels and energy-production are reviewed for the panels of the installation. The performance of the inverter used is also reviewed. Data on temperatures and production are presented in graphical form and optical losses are examined.

  6. Displacement, stress and seismicity in roadway roofs during mining-induced failure

    Energy Technology Data Exchange (ETDEWEB)

    Shen, B.; King, A.; Guo, H. [CSIRO Exploration & Mining, Kenmore, Qld. (Australia)

    2008-07-15

    Roof stability in gateroads is a long-standing issue in many of the underground mines in Australia that use longwall extraction methods, due primarily to a significant increase of vertical stresses ahead of the longwall face. Although numerous studies have been done in the past, the process of roof rock deformation and breakage prior to and during a roof failure in an actual mining environment is still being debated. This paper describes a new integrated roof monitoring system and the results from applying this system in an Australian underground coal mine. The system integrates displacement, stress and seismic monitoring. It has been applied to two roadways in an Australian underground coal mine during two field experiments. The key roof behaviour identified by the integrated monitoring package during the two field monitoring experiments is reported and discussed in this paper. The experiments were conducted in the 'tailgate' roadways that are adjacent to the caved zone, or 'goaf', of the previously mined panels. It was found in the experiments that, prior to roof falls, roof displacement accelerates whereas the horizontal stresses reduce. Seismic activity intensifies before major roof displacement or stress changes are evident, and subsides in the later stage of roof failure when large roof displacement is visible. The seismic resonance frequencies decrease during roof failure development. The field monitoring studies have also identified a number of quantitative and site-specific roof fall precursors potentially useful for roof fall prediction and prevention.

  7. CONSTRUCTION OF CURVED LIGHT-WEIGHT STEEL ROOFING SYSTEM%弧形钢结构屋盖系统的施工

    Institute of Scientific and Technical Information of China (English)

    陈鉴新

    2001-01-01

    钢结构技术已于1998年被建设部认定为“建筑业10项新技术”之一.通过具体的工程实践,着重介绍了轻钢结构制作安装施工工艺,为施工技术管理提供一些实践经验.%Steel Construction Technology was revised and published as one ofthe ten new technologies in the building industry by the Ministry of Construction in 1998. This paper highlights the techniques of fabrication, erection and construction of light-weight steel structures, which provides practical experiences in construction management.

  8. Experimental analysis of green roof substrate detention characteristics.

    Science.gov (United States)

    Yio, Marcus H N; Stovin, Virginia; Werdin, Jörg; Vesuviano, Gianni

    2013-01-01

    Green roofs may make an important contribution to urban stormwater management. Rainfall-runoff models are required to evaluate green roof responses to specific rainfall inputs. The roof's hydrological response is a function of its configuration, with the substrate - or growing media - providing both retention and detention of rainfall. The objective of the research described here is to quantify the detention effects due to green roof substrates, and to propose a suitable hydrological modelling approach. Laboratory results from experimental detention tests on green roof substrates are presented. It is shown that detention increases with substrate depth and as a result of increasing substrate organic content. Model structures based on reservoir routing are evaluated, and it is found that a one-parameter reservoir routing model coupled with a parameter that describes the delay to start of runoff best fits the observed data. Preliminary findings support the hypothesis that the reservoir routing parameter values can be defined from the substrate's physical characteristics.

  9. Green roof hydrologic performance and modeling: a review.

    Science.gov (United States)

    Li, Yanling; Babcock, Roger W

    2014-01-01

    Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.

  10. Hydrologic Restoration in the Urban Environment Using Green Roofs

    Directory of Open Access Journals (Sweden)

    Anna Palla

    2010-04-01

    Full Text Available Loss of natural soil and vegetation within the urban environment can significantly affect the hydrologic cycle by increasing storm water runoff rates and volumes. In order to mitigate these modifications in urban areas engineered systems are developed, such as green roofs, to mimic and replace functions (evapo-transpiration, infiltration, percolation which have been altered due to the impact of human development. Green roofs, also known as vegetated roof covers, eco-roofs or nature roofs, are composite complex layered structures with specific environmental benefits. They are increasingly being used as a source control measure for urban storm water management. Indeed, they are able to re-establish the natural water cycle processes and to operate hydrologic control over storm water runoff with a derived peak flow attenuation, runoff volume reduction and increase of the time of concentration. Furthermore green roofs exhibit the capacity to reduce storm water pollution; they generally act as a storage device, consequently pollutants are accumulated in the substrate layer and released when intensive rainwater washes them out. In order to investigate the hydrologic response of a green roof, the University of Genova recently developed a joint laboratory and full-scale monitoring programme by installing a “controlled” laboratory test-bed with known rainfall input and a companion green roof experimental site (40 cm depth in the town of Genoa. In the paper, data collected during the monitoring programme are presented and compared with literature data.

  11. Compensatory weight gain due to dopaminergic hypofunction: new evidence and own incidental observations

    Directory of Open Access Journals (Sweden)

    Bohr Iwo

    2008-12-01

    Full Text Available Abstract There is increasing evidence for a role of dopamine in the development of obesity. More specifically, dopaminergic hypofunction might lead to (overcompensatory food intake. Overeating and resulting weight gain may be induced by genetic predisposition for lower dopaminergic activity, but might also be a behavioral mechanism of compensating for decreased dopamine signaling after dopaminergic overstimulation, for example after smoking cessation or overconsumption of high palatable food. This hypothesis is in line with our incidental finding of increased weight gain after discontinuation of pharmaceutical dopaminergic overstimulation in rats. These findings support the crucial role of dopaminergic signaling for eating behaviors and offer an explanation for weight-gain after cessation of activities associated with high dopaminergic signaling. They further support the possibility that dopaminergic medication could be used to moderate food intake.

  12. Gut microbiota composition correlates with changes in body fat content due to weight loss.

    Science.gov (United States)

    Remely, M; Tesar, I; Hippe, B; Gnauer, S; Rust, P; Haslberger, A G

    2015-01-01

    Genetics, lifestyle, and dietary habits contribute to metabolic syndrome, but also an altered gut microbiota has been identified. Based on this knowledge it is suggested that host bacterial composition tends to change in response to dietary factors and weight loss. The aim of this study was to identify bacteria affecting host metabolism in obesity during weight loss and to correlate them with changes of the body composition obtained from bioelectrical impedance analysis (BIA). We recruited obese individuals receiving a dietary intervention according DACH (German, Austrian, and Swiss Society of Nutrition) reference values and guidelines for 'prevention and therapy of obesity' of DAG e.V., DDG, DGE e.V., and DGEM e.V. over three months. Faecal microbiota and BIA measurements were conducted at three time points, before, during, and after the intervention. Gut microbiota was analysed on the basis of 16S rDNA with quantitative real time PCR. Additionally, a food frequency questionnaire with questions to nutritional behaviour, lifestyle, and physical activity was administered before intervention. After weight reduction, obese individuals showed a significant increase of total bacterial abundance. The ratio of Firmicutes/Bacteroidetes significantly decreased during intervention. Lactobacilli significantly increased between the first and the second time point. These differences also correlated with differences in weight percentage. During the intervention period Clostridium cluster IV increased significantly between the second and the third time point. In contrast Clostridium cluster XIVa showed a decreased abundance. The dominant butyrate producer, Faecalibacterium prausnitzii, significantly increased as did the abundance of the butyryl-CoA: acetate CoA-transferase gene. Archaea and Akkermansia were significantly more prevalent after weight reduction. Our results show a clear difference in the gut bacterial composition before and after dietary intervention with a rapid

  13. Thyrotoxic hypokalemic periodic paralysis due to dietary weight-loss supplement.

    Science.gov (United States)

    Akinyemi, Emmanuel; Bercovici, Silvia; Niranjan, Selvanayagam; Paul, Nisha; Hemavathy, Bhakthavatsalam

    2011-05-01

    Herbal and dietary supplements for weight loss and in treatment of obesity are growing in popularity and acceptance in the United States. Most of these supplements can be obtained over the counter and can have serious adverse effects associated with their consumption. We describe 2 patients who developed thyrotoxic hypokalemic periodic paralysis 2-3 weeks after consuming thyroxine-containing weight-loss supplements. This is the first known case of thyrotoxic hypokalemic periodic paralysis secondary to dietary supplements. It is important that patients and physicians are aware of the severe adverse reactions associated with dietary supplements. Physicians should as a routine inquire about herbal and dietary supplement consumption during all patient encounters.

  14. Producing superhydrophobic roof tiles

    Science.gov (United States)

    Carrascosa, Luis A. M.; Facio, Dario S.; Mosquera, Maria J.

    2016-03-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  15. Linear Growth Arrest Without Weight Gain Due to Overuse of Topical Clobetasol

    Directory of Open Access Journals (Sweden)

    Zahra Razavi

    2014-11-01

    Full Text Available Prolonged potent topical glucocorticoid therapy in infants can cause iatrogenic Cushing’s syndrome. This case highlights the rarity of poor weight gain in iatrogenic Cushing’s syndrome. A 17-month-old boy was referred to outpatients pediatric endocrine clinic for evaluation of growth failure. On presentation his weight was 9.7kg (5th percentile and height was 72cm (-3.6 SD below mean for age and sex. Systemic examination revealed grossly moon-like face, hypertrichosis and thin skin in the genital area. His mother reported using local clobetasol for the previous seven months for his diaper dermatitis. Baseline plasma cortisol was low (0.3ng/ml, normal range: 60 to 280ng/ml. During standard dose of synthetic adrenocorticotropic hormone test, the peak cortisol level was 0.4ng/ml (N>180ng/ml and was consistent with hypothalamic–pituitary–adrenal axis suppression. The patient’s clinical presentation and laboratory investigations confirmed the diagnosis of secondary adrenal insufficiency and iatrogenic Cushing’s syndrome. He was treated successfully by discontinuing use of clobetasol. His appearance and growth returned to normal within two months. Morning cortisol was 101.2ng/ml after stopping the oral physiologic dose of hydrocortisone. Our case differed from other reports of iatrogenic Cushing’s syndrome by presenting in poor weight gain rather than obesity.

  16. African American women exhibit similar adherence to intervention but lose less weight due to lower energy requirements.

    Science.gov (United States)

    DeLany, J P; Jakicic, J M; Lowery, J B; Hames, K C; Kelley, D E; Goodpaster, B H

    2014-09-01

    African American (AA) women have been shown to lose less weight than Caucasian women in response to behavioral interventions. Our objective was to examine adherence to intervention and metabolic factors that may explain this difference. We examined longitudinal changes in body weight and energy expenditure (EE), and objective assessment of physical activity (PA) and energy intake (EI) during 6 months of a weight-loss intervention program, including prescribed calorie restriction and increased PA in 66 Caucasian and 39 AA severely obese women. Comparisons were also made in 25 Caucasian and 25 AA women matched for initial body weight. The AA women lost 3.6 kg less weight than Caucasian women. Total daily EE (TDEE) and resting metabolic rate (RMR) adjusted for fat free mass (FFM) were significantly lower in the AA women, whereas the decrease in RMR in response to weight loss was greater in Caucasian women. Adherence to the prescribed PA and change in PA in response to intervention were similar in AA and Caucasian women. Prescribed EI (1794±153 and 1806±153 kcal per day) and measured EI during intervention (2591±371 vs 2630±442 kcal per day) were nearly identical in matched AA and Caucasian women. However, the AA women lost significantly less body weight due to lower energy requirements (2924±279 vs 3116±340 kcal per day; Pweight loss. Therefore, to achieve similar weight loss in AA women, the prescribed caloric restriction cannot be based on weight alone, but must be lower than in Caucasians, to account for lower energy requirements.

  17. Stormwater Attenuation by Green Roofs

    Science.gov (United States)

    Sims, A.; O'Carroll, D. M.; Robinson, C. E.; Smart, C. C.

    2014-12-01

    Innovative municipal stormwater management technologies are urgently required in urban centers. Inadequate stormwater management can lead to excessive flooding, channel erosion, decreased stream baseflows, and degraded water quality. A major source of urban stormwater is unused roof space. Green roofs can be used as a stormwater management tool to reduce roof generated stormwater and generally improve the quality of runoff. With recent legislation in some North American cities, including Toronto, requiring the installation of green roofs on large buildings, research on the effectiveness of green roofs for stormwater management is important. This study aims to assess the hydrologic response of an extensive sedum green roof in London, Ontario, with emphasis on the response to large precipitation events that stress municipal stormwater infrastructure. A green roof rapidly reaches field capacity during large storm events and can show significantly different behavior before and after field capacity. At field capacity a green roof has no capillary storage left for retention of stormwater, but may still be an effective tool to attenuate peak runoff rates by transport through the green roof substrate. The attenuation of green roofs after field capacity is linked to gravity storage, where gravity storage is the water that is temporarily stored and can drain freely over time after field capacity has been established. Stormwater attenuation of a modular experimental green roof is determined from water balance calculations at 1-minute intervals. Data is used to evaluate green roof attenuation and the impact of field capacity on peak flow rates and gravity storage. In addition, a numerical model is used to simulate event based stormwater attenuation. This model is based off of the Richards equation and supporting theory of multiphase flow through porous media.

  18. Humble Opinion of Roof Gardens

    Institute of Scientific and Technical Information of China (English)

    WANGXiaoxiao; MAQiangqiang; CAOXiaojun

    2005-01-01

    With the swift development of urban construction in China and the boost in people's demands for green environments in cities, roof gardens are widely used as a new way of greening. This paper deals chiefly with the functions, building principle, classification and composing elements of roof gardens, an analysis of main ecological factors, loads, and waterproof. It suggests that roof gardens will bring about a comparatively big leap in city greening both quantitatively and qualitatively.

  19. One Roof Judicial System in Indonesia

    Directory of Open Access Journals (Sweden)

    - Sufiarina

    2012-09-01

    Full Text Available Judicial power as an independent and autonomous power must be free from any intervention and power, thus ensuring that judges possess independence and impartiality in handling cases. One of the measures for enhancing the independence and autonomy of the judiciary is by placing it under the one roof judicial arrangement developed by the Supreme Court, both from the judicial as well as the non-judicial technical aspects. Up to the present time, endeavors for bringing the four court jurisdictions under the one roof judicial arrangement developed by the Supreme Court have not been completely materialized, due to the existing dualism in judicial power at various courts. The objective of this research is to understand the developments in the endeavors towards bringing the Indonesian judicial system under the one roof judicial arrangement developed by the Supreme Court. The type of research applied is descriptive normative juridical research, namely legal research based on examining secondary data. As the research results indicate, the one roof system developed by the Supreme Court is already being implemented, with the exception of the Military Court and the Tax Court within the State Administration Court jurisdiction.

  20. Stormwater quality from extensive green roofs in a subtropical region

    Science.gov (United States)

    Onis Pessoa, Jonas; Allasia, Daniel; Tassi, Rutineia; Vaz Viega, Juliana; Fensterseifer, Paula

    2016-04-01

    Green roofs have increasingly become an integral part of urban environments, mainly due to their aesthetic benefits, thermal comfort and efficiency in controlling excess runoff. However, the effects of this emerging technology in the qualitative characteristics of rainwater is still poorly understood. In this study was evaluated the effect of two different extensive green roofs (EGRs) and a traditional roof built with corrugated fiber cement sheets (control roof) in the quality of rainwater, in a subtropical climate area in the city of Santa Maria, in southern Brazil. The principal variant between the two EGRs were the type of plant species, time since construction, soil depth and the substrate characteristics. During the monitoring period of the experiment, between the months of April and December of 2015 fourteen rainfall events were selected for qualitative analysis of water from the three roofs and directly from rainfall. It was analyzed physical (turbidity, apparent color, true color, electrical conductivity, total solids, dissolved solids, suspended solids and temperature), chemical (pH, phosphate, total nitrogen, nitrate, nitrite, chloride, sulfate, BOD, iron and total hardness), heavy metals (copper, zinc, lead and chromium) and microbiological parameters (total coliforms and E. coli). It was also characterized the substrates used in both extensive green roofs. The results showed that the quality of the water drained from EGR s was directly influenced by their substrates (in turn containing significant levels of nutrients, organic matter and some metals). The passage of rainwater through green roofs and control roof resulted in the elevation of pH, allowing the conversion of the slightly acidic rainfall into basic water. Similarly, on both types of roofs occurred an increase of the values of most of the physical, chemical and microbiological parameters compared to rainwater. This same trend was observed for heavy metals, although with a much smaller degree

  1. Recent evidence and potential mechanisms underlying weight gain and insulin resistance due to atypical antipsychotics

    Directory of Open Access Journals (Sweden)

    Ana Maria Volpato

    2013-09-01

    Full Text Available Objective: Atypical antipsychotics (AAPs promote obesity and insulin resistance. In this regard, the main objective of this study was to present potential mechanisms and evidence concerning side effects of atypical antipsychotics in humans and rodents. Method: A systematic review of the literature was performed using the MEDLINE database. We checked the references of selected articles, review articles, and books on the subject. Results: This review provides consistent results concerning the side effects of olanzapine (OL and clozapine (CLZ, whereas we found conflicting results related to other AAPs. Most studies involving humans describe the effects on body weight, adiposity, lipid profile, and blood glucose levels. However, it seems difficult to identify an animal model replicating the wide range of changes observed in humans. Animal lineage, route of administration, dose, and duration of treatment should be carefully chosen for the replication of the findings in humans. Conclusions: Patients undergoing treatment with AAPs are at higher risk of developing adverse metabolic changes. This increased risk must be taken into account when making decisions about treatment. The influence of AAPs on multiple systems is certainly the cause of such effects. Specifically, muscarinic and histaminergic pathways seem to play important roles.

  2. Cool Roofs to Save Money and Delay Global Warming

    Science.gov (United States)

    Rosenfeld, Arthur

    2006-04-01

    White roofs, and now cool-colored roofs, with a high reflectivity or `albedo' have a long history (best known around the Mediterranean) of keeping buildings and cities cool. In modern times, cool roofs have been shown to reduce air conditioning (a-c) demand and slow the formation of ozone (smog). Studies establishing a typical 10% reduction in a-c demand and electricity savings due to white roofs in California (CA) resulted in the 2005 CA new building energy efficiency standard prescribing that low-slope roofs be white, but exempting sloping roofs for aesthetic reasons. The advent (thanks to physicists' efforts) of inexpensive colored pigments with high albedo has led to 2008 CA standards requiring that even sloping roofs be cool. Here, I show that cooling the planet by reducing urban albedo through white and other cool roofs is a direct effect, much larger and immediate than the 2nd-order cooling from reduced CO2 from reduced a-c use. I then investigate widespread deployment of cool roof in major tropical and temperate cities, which cover 2% of global land area and have a proportionately higher albedo impact due to lower latitude. Here, cool roofs and cooler pavements can raise urban albedo by 10%. This directly drops the global average temperature by ˜0.05 /deg C. Though small compared to a likely 3 /deg C rise by 2060, an immediate drop of 0.05 /deg C represents a reprieve in global warming of 1 year, and represents avoiding a year's current annual world emissions of CO2, i.e. 25 GT(CO2). At a trading price of 25/tCO2, this is worth ˜625B. Cooling the planet also could save annually hundreds of billions on a-c electric bills. Finally I suggest policies to increase cool roof deployment, for example, developed world Kyoto signatories could use its CDM (Clean Development Mechanism) for cool roof programs in developing countries.

  3. Influence of Lithological Characters of Coal Bearing Formation on Stability of Roof of Coal Seams

    Institute of Scientific and Technical Information of China (English)

    孟召平; 彭苏萍; 李国庆; 黄为; 芦俊; 雷志勇

    2003-01-01

    Lithology is one of the important factors influencing the stability of roof of coal seams. In order to investigate this, the phenomenon of underground pressure and distribution of pressure were studied by using the local observation and simulation test with similar materials. The observation results show that the distance of initial weighting and periodic weighting of the mudstone roof is shorter than that of sandstone roofs. The sandstone roof with a high strength has a longer distance of initial weighting and periodic weighting, the abutment stress on the working face is big and the height of caving and fracture zone is high. The peak point of abutment stress in the sandstone roof is near to the working face and the pressure bump is inclined to occur. The result is contrary to that in case of the mudstone roof with a low strength. While in the transition zone of nipped sandstone, roof rock-mass is broken and is poor in stability, therefore, it is difficult to hold the roof.

  4. Summer Thermal Performance of Ventilated Roofs with Tiled Coverings

    Science.gov (United States)

    Bortoloni, M.; Bottarelli, M.; Piva, S.

    2017-01-01

    The thermal performance of a ventilated pitched roof with tiled coverings is analysed and compared with unventilated roofs. The analysis is carried out by means of a finite element numerical code, by solving both the fluid and thermal problems in steady-state. A whole one-floor building with a pitched roof is schematized as a 2D computational domain including the air-permeability of tiled covering. Realistic data sets for wind, temperature and solar radiation are used to simulate summer conditions at different times of the day. The results demonstrate that the batten space in pitched roofs is an effective solution for reducing the solar heat gain in summer and thus for achieving better indoor comfort conditions. The efficiency of the ventilation is strictly linked to the external wind conditions and to buoyancy forces occurring due to the heating of the tiles.

  5. Soft Roof Failure Mechanism and Supporting Method for Gob-Side Entry Retaining

    Directory of Open Access Journals (Sweden)

    Hongyun Yang

    2015-10-01

    Full Text Available To study the soft roof failure mechanism and the supporting method for a gateway in a gently inclined coal seam with a dip angle of 16° kept for gob-side entry retaining, and through the methodology of field investigation and numerical and analytical modeling, this paper analyzed the stress evolution law of roof strata at the working face end and determined that the sharp horizontal stress unloading phenomenon along the coal wall side did not appear after the working face advanced. Conversely, the horizontal stress along the gob side instantly decreased and the tensile stress produced, and the vertical stress in the central part of the roof had a higher reduction magnitude as well. An in-depth study indicates that the soft roof of the working face end subsided and seriously separated due to the effect of the front abutment pressure and the roof hanging length above the gob line, as well as certain other factors, including the rapid unloading of the lateral stress, tension and shear on the lower roof rock layer and dynamic disturbance. Those influencing factors also led to rapid crack propagation on a large scale and serious fracturing in the soft roof of the working face end. However, in the gob stress stabilized zone, the soft roof in the gob-side entry retaining has a shearing failure along the filling wall inside affected by the overburden pressure, rock bulking pressure, and roof gravity. To maintain the roof integrity, decrease the roof deformation, and enable the control of the working face end soft roof and the stabilization of the gob-side entry retaining roof, this study suggests that the preferred bolt installation angle for the soft roof situation is 70° based on the rock bolt extrusion strengthening theory.

  6. The effect of roofing material on the quality of harvested rainwater.

    Science.gov (United States)

    Mendez, Carolina B; Klenzendorf, J Brandon; Afshar, Brigit R; Simmons, Mark T; Barrett, Michael E; Kinney, Kerry A; Kirisits, Mary Jo

    2011-02-01

    Due to decreases in the availability and quality of traditional water resources, harvested rainwater is increasingly used for potable and non-potable purposes. In this study, we examined the effect of conventional roofing materials (i.e., asphalt fiberglass shingle, Galvalume(®) metal, and concrete tile) and alternative roofing materials (i.e., cool and green) on the quality of harvested rainwater. Results from pilot-scale and full-scale roofs demonstrated that rainwater harvested from any of these roofing materials would require treatment if the consumer wanted to meet United States Environmental Protection Agency primary and secondary drinking water standards or non-potable water reuse guidelines; at a minimum, first-flush diversion, filtration, and disinfection are recommended. Metal roofs are commonly recommended for rainwater harvesting applications, and this study showed that rainwater harvested from metal roofs tends to have lower concentrations of fecal indicator bacteria as compared to other roofing materials. However, concrete tile and cool roofs produced harvested rainwater quality similar to that from the metal roofs, indicating that these roofing materials also are suitable for rainwater harvesting applications. Although the shingle and green roofs produced water quality comparable in many respects to that from the other roofing materials, their dissolved organic carbon concentrations were very high (approximately one order of magnitude higher than what is typical for a finished drinking water in the United States), which might lead to high concentrations of disinfection byproducts after chlorination. Furthermore the concentrations of some metals (e.g., arsenic) in rainwater harvested from the green roof suggest that the quality of commercial growing media should be carefully examined if the harvested rainwater is being considered for domestic use. Hence, roofing material is an important consideration when designing a rainwater catchment.

  7. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    Science.gov (United States)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    under the tilted PV array. The maximum downward heat flux was 18.7 Watts per square meters for the exposed roof and 7.0 Watts per square meters under the tilted PV array, a 63% reduction due to the PV array. This study is unique as the impact of tilted and flush PV arrays could be compared against a typical exposed roof at the same roof for a commercial uninhabited building with exposed ceiling and consisting only of the building envelope. Our results indicate a more comfortable indoor environment in PV covered buildings without HVAC both in hotter and cooler seasons.

  8. Calculus of evaporation losses in oil products in fixed and floating roof tanks after API examples

    Energy Technology Data Exchange (ETDEWEB)

    Barus, D.

    1971-06-01

    From vapor pressure diagrams for products between 1 and 20 psi Reid vapor pressure and for crude oil, the author calculates the evaporation losses through daily breathing, due to temperature fluctuations and through variations in liquid level due to filling and emptying the reservoir, both for fixed roof and for floating roof tanks. The necessary tables, graphs, and nomograms are given. It is concluded that floating roof tanks have a much lower rate of loss through evaporation than fixed roof tanks. The data are based on API publications.

  9. GREEN ROOFS AS A TOOL FOR IMPROVEMENT THE STORMWATER MANAGEMENT IN URBAN AREAS

    Directory of Open Access Journals (Sweden)

    Ewa Burszta-Adamiak

    2014-10-01

    Full Text Available The interest in green roof technologies is increasing due to the many tangible benefits that allow to provide. One of them is the ability to improve stormwater management in urban areas, because construction of green roofs can retain and delay in runoff . Due to the fact that the market of green roofs in Poland is relatively young, there is still a need for research to provide detailed information about green roof hydrologic performance in the national climate conditions. The objective of this study is to present the research results on retention capacity of green roofs, carried out at the Wroclaw University of Life Sciences. The results show that the possibility of water retention is considerably improved at green roofs when antecedent dry weather period lasts longer than one day and the rainfall depth does not exceed 10 mm / day.

  10. Improving the durability of flat roof constructions

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Svendsen, Sv Aa Højgaard

    1999-01-01

    Flat roof constructions are mainly used on commercial, institutional and industrial buildings, where insulation is placed on top of the load-bearing deck and then covered with a roof membrane. Through time, there is a risk that the membrane will allow water passage as holes might form due...... to weathering effects or physical loads. Water will then enter the insulation, and as a vapor retarder is normally found below the insulation thus trapping the water in the insulation, the leak can remain undetected for a long period. When the leak is finally discovered, the insulation has to be discharged...... of the system, thereby making it easier to detect leaks faster. When a leak is detected, the membrane is repaired locally. In order to remove water which has already entered the insulation, an air gap or a system of air channels between the deck and the insulation is subjected to forced ventilation with outdoor...

  11. A School on Roof

    Institute of Scientific and Technical Information of China (English)

    ZhouChao

    2005-01-01

    March 23, Wednesday, Wuhan. It was a raining and cloudy day. One month passed but still more than 20 students had yet registered in Lingzhi Elementary School in Jianghan District, Wuhan, capital city of central Hubei Province. Zhu Zhongfan habitually looked out to the stairway of the building. “Whenever a new semester begins, a dozen of students will not come. They either go back to their hometowns or transfer to other school or even drop out.” Zhu, 49 years old, is the headmaster of the school. He began teaching at 19 and founded this school in 1999. Currently, there are 406 registered students, most of which are children of migrant workers from the countryside. As it is extremely hard to find a cheap place for school, Zhu had to locate his school on the roof of a vegetable fair building. Everyday, student's reciting of textbooks mixes with shouting of vendors, orchestrating unique symphonic melodies.

  12. Safety against formation of through cracks of profiled fibre-reinforced cement sheets for roofing

    DEFF Research Database (Denmark)

    Hansen, Klavs Feilberg; Stang, Birgitte Friis Dela

    2009-01-01

      Loads due to wind, snow or traffic on a roof determine the requirements to the strength and stiffness properties of profiled sheets for roofing. Apart from these loads, locked-in stresses can occur due to differences in temperature and moisture strains in the profiled sheets and the wooden lath...

  13. Sustainable roofs with real energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.; Petrie, T.W.

    1996-12-31

    This paper addresses the general concept of sustainability and relates it to the building owner`s selection of a low-slope roof. It offers a list of performance features of sustainable roofs. Experiences and data relevant to these features for four unique roofs are then presented which include: self-drying systems, low total equivalent warming foam insulation, roof coatings and green roofs. The paper concludes with a list of sustainable roofing features worth considering for a low-slope roof investment. Building owners and community developers are showing more interest in investing in sustainability. The potential exists to design, construct, and maintain roofs that last twice as long and reduce the building space heating and cooling energy loads resulting from the roof by 50% (based on the current predominant design of a 10-year life and a single layer of 1 to 2 in. (2.5 to 5.1 cm) of insulation). The opportunity to provide better low-slope roofs and sell more roof maintenance service is escalating. The general trend of outsourcing services could lead to roofing companies` owning the roofs they install while the traditional building owner owns the rest of the building. Such a situation would have a very desirable potential to internalize the costs of poor roof maintenance practices and high roof waste disposal costs, and to offer a profit for installing roofs that are more sustainable. 14 refs., 12 figs.

  14. Green Roofs for Stormwater Runoff Control

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  15. Sustainable roofs with real energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.; Petrie, T.W.

    1996-12-31

    This paper addresses the general concept of sustainability and relates it to the building owner`s selection of a low-slope roof. It offers a list of performance features of sustainable roofs. Experiences and data relevant to these features for four unique roofs are then presented which include: self-drying systems, low total equivalent warming foam insulation, roof coatings and green roofs. The paper concludes with a list of sustainable roofing features worth considering for a low-slope roof investment. Building owners and community developers are showing more interest in investing in sustainability. The potential exists to design, construct, and maintain roofs that last twice as long and reduce the building space heating and cooling energy loads resulting from the roof by 50% (based on the current predominant design of a 10-year life and a single layer of 1 to 2 in. (2.5 to 5.1 cm) of insulation). The opportunity to provide better low-slope roofs and sell more roof maintenance service is escalating. The general trend of outsourcing services could lead to roofing companies` owning the roofs they install while the traditional building owner owns the rest of the building. Such a situation would have a very desirable potential to internalize the costs of poor roof maintenance practices and high roof waste disposal costs, and to offer a profit for installing roofs that are more sustainable. 14 refs., 12 figs.

  16. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of roof support using mining machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters...

  17. Evaluation of energy roof direct utilization

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Rossetto, L.; Viero, L.

    1984-04-01

    Energy roofs are roofing systems equipped with channels which allow both solar and atmospheric energy collection. They were conceived as cold source for heat pump systems. The behavious of an energy roof in DHW direct heating was studied; this might extend energy roof utilization all year long. The estimates were performed through more reliable recently proposed correlations for wind convection heat transfer coefficients. The advantage of annual energy roof utilization in DHW direct heating is predictable.

  18. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  19. Soil-water fluxes modelling in a green roof

    Science.gov (United States)

    Lamera, Carlotta; Rulli, Maria Cristina; Becciu, Gianfranco; Rosso, Renzo

    2014-05-01

    Green roofs differ from a natural environment as they are on top of a building and are not connected to the natural ground; therefore it is critical that soils can drain and retain water simultaneously and that they work even in very shallow systems. The soil or growing medium used for green roofs is specifically engineered to provide the vegetation with nutrients, discharging any excess water into the drainage layer, and releasing stored water back into the substrate. In this way, medium depth and porosity plays an important role in stormwater retention and plant growth in a green roof. Due to the lack of a good understanding about the hydraulic efficiency of each green roof's layer in rainwater management, a detailed analysis of the hydrological dynamics, connected with the green roof technical design is essential in order to obtain a full characterization of the hydrologic behavior of a green roof system and its effects on the urban water cycle components. The purpose of this research is analyzing the soil-water dynamics through the different components of a green roof and modeling these processes though a detailed but clear subsurface hydrology module, based on green roof vertical soil water movement reproduction, in relation to climate forcing, basic technology components and geometric characteristics of green roof systems (thickness of the stratigraphy, soil layers and materials, vegetation typology and density). A multi-layer bucket model has been applied to examine the hydrological response of the green roof system under a temperate maritime climate, by varying the physical and geometric parameters that characterize the different components of the vegetated cover. Following a stage of validation and calibration, results confirm the suitability of the model to describe the hydrologic response of the green roof during the observed rainfall events: the discharge hydrograph profile, volume and timing, predicted by the model, matched experimental measurements

  20. [A review of green roof performance towards management of roof runoff].

    Science.gov (United States)

    Chen, Xiao-ping; Huang, Pei; Zhou, Zhi-xiang; Gao, Chi

    2015-08-01

    Green roof has a significant influence on reducing runoff volume, delaying runoff-yielding time, reducing the peak flow and improving runoff quality. This paper addressed the related research around the world and concluded from several aspects, i.e., the definition of green roof of different types, the mechanism how green roof manages runoff quantity and quality, the ability how green roof controls roof runoff, and the influence factors of green roof toward runoff quantity and quality. Afterwards, there was a need for more future work on research of green roof toward roof runoff, i.e., vegetation selection of green roof, efficient construction model selection of green roof, the regulating characteristics of green roof on roof runoff, the value assessment of green roof on roof runoff, analysis of source-sink function of green roof on the water pollutants of roof runoff and the research on the mitigation measures of roof runoff pollution. This paper provided a guideline to develop green roofs aiming to regulating roof runoff.

  1. Hydrological Performance of Green Roofs

    OpenAIRE

    Poorova, Zuzana; Vranayova, Zuzana

    2015-01-01

    There should be a balance between artificial environment and natural environment. As forests, fields, gardens and urban lands are being replaced with bituminous, concrete and unnatural surfaces, necessity of recovering green and blue spaces and natural areas is becoming more and more critical. Green roof is a tool in strategy of making more pervious areas and beating more impervious areas. Green roof is lately becoming part of urban storm water management. Considering this fact, new construct...

  2. Field Testing of an Unvented Roof with Fibrous Insulation, Tiles and Vapor Diffusion Venting

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States); Lstiburek, J. W. [Building Science Corporation, Westford, MA (United States)

    2016-02-05

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane. As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).

  3. Building America Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles, Orlando, Florida

    Energy Technology Data Exchange (ETDEWEB)

    2015-11-01

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane. As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).

  4. Installation of a Roof Mounted Photovoltaic System

    Science.gov (United States)

    Lam, M.

    2015-12-01

    In order to create a safe and comfortable environment for students to learn, a lot of electricity, which is generated from coal fired power plants, is used. Therefore, ISF Academy, a school in Hong Kong with approximately 1,500 students, will be installing a rooftop photovoltaic (PV) system with 302 solar panels. Not only will these panels be used to power a classroom, they will also serve as an educational opportunity for students to learn about the importance of renewable energy technology and its uses. There were four different options for the installation of the solar panels, and the final choice was made based on the loading capacity of the roof, considering the fact that overstressing the roof could prove to be a safety hazard. Moreover, due to consideration of the risk of typhoons in Hong Kong, the solar panel PV system will include concrete plinths as counterweights - but not so much that the roof would be severely overstressed. During and after the installation of the PV system, students involved would be able to do multiple calculations, such as determining the reduction of the school's carbon footprint. This can allow students to learn about the impact renewable energy can have on the environment. Another project students can participate in includes measuring the efficiency of the solar panels and how much power can be produced per year, which in turn can help with calculate the amount of money saved per year and when we will achieve economic parity. In short, the installation of the roof mounted PV system will not only be able to help save money for the school but also provide learning opportunities for students studying at the ISF Academy.

  5. Study on time-history characteristics of air blast wave due to great extent of roof instability%大面积顶板失稳诱发空气冲击波灾害时程特性研究

    Institute of Scientific and Technical Information of China (English)

    刘畅; 覃敏; 彭云

    2014-01-01

    采空区大面积顶板冒落可在瞬间产生破坏力极强的空气冲击波。介绍了空气冲击波的形成及危害形式,指出了传统冲击模型的缺陷,通过建立新的冲击模型,深入分析了空气冲击波从形成到消亡过程中的速度和能量变化特征,结合香炉山钨矿大面积采空区的实际情况,选取典型参数进行分析计算,结果表明:空气冲击波速度与冒落块体尺寸,顶板冒落的高度,可供逸出气体巷道的总断面积,巷道的通风阻力等因素有关;下落块体受压缩空气阻力作用,下降时间略微增加,整个冒落过程持续时间为2.89s,当下落时间为2.1s时,风速达到极值,为508.1m/s,冲击影响范围在距离事发空区的370m以内;块体下落的起始阶段受空气阻力较小,飓风速度急剧升高,下降中间阶段,飓风速度先是缓慢爬升,然后达到峰值,块体下降的后期受空气阻力作用最为明显,风速急剧下降,巷道内飓风流迅速趋于平缓;建议对香炉山钨矿采空区尽快实施充填,并采取疏堵结合、设置缓冲垫层、加强地压活动监测等措施降低冲击危险,减小冲击危害。%Air blast wave caused by great extent of roof in worked-out area can bring about a great destruction .The formation and damaging forms of impact waves were introduced .And the defects of traditional model were pointed out.In order to make a further research on the time-history characteristics of waves speed and energy during the process from generation to disappearance , a new model was established .Then the typical parameters coming from the worked-out area of Xianglushan tungsten ore were used for calculation and analysis .And the results showed that:(1) shock velocity is closely related to falling height , size of rock block, sectional area of roadways and ven-tilation resistance, et, al;(2) under the action of aerodynamic drag , the falling time of the

  6. Linking evapotranspiration to stormwater reduction and attenuation in green roofs in Calgary, Alberta

    Science.gov (United States)

    Breach, P. A.; Robinson, C. E.; Voogt, J. A.; Smart, C. C.; O'Carroll, D. M.

    2013-12-01

    Green roofs have been used for centuries to insulate buildings and beautify urban environments. European countries, especially Germany, have adopted green roofs use in modern buildings, helping raise awareness of their many potential benefits. Green roofs have been shown to: effectively reduce and filter stormwater thereby decreasing the burden on urban sewer systems; provide insulation and lower roof surface temperature leading to a decrease in building energy load and reduced sensible heat flux to the urban atmosphere; and to extend the life of a roof by decreasing the temperature fluctuations which cause roof damage. Given that green buildings can mitigate against the negative impacts of storm water runoff and reduce the heating and cooling demands, use of green roofs in Canada might prove extremely beneficial due to our intense climate. However, the implementation of green roofs in North American urban environments remains underused, in part due to a lack of climate appropriate green roof design guidelines that are supported by scientific understanding of their performance in North American climates. The capacity of a green roof installation to moderate runoff depends on the storage capacity of the rooting medium at the start of the rainfall event which in turn is constrained by roof loading. The influence of medium depth is investigated through comparison to 15 cm and 10cm deep planting modules. Storage capacity has a finite limit, making rapid drainage and evapotranspiration loss essential to restore the retardation of a subsequent storm. Sustaining live plant cover requires avoidance of saturated conditions and retention of minimum soil moisture levels. These limits constrain the design options with distinctive climatic stresses. Here the performance of experimental green roof modules is investigated under particularly high climatic stressing at Calgary Alberta Canada. 10 cm modules show rapid drying to unacceptably low residual moisture content, whereas 15

  7. Roof renovation of buildings 128 and 129

    CERN Multimedia

    2015-01-01

    The roof renovation of buildings 128 and 129 is scheduled to take place from 17 August to 15 October 2015.   During this period, access to the "raw material" workshop will be limited and controlled due to asbestos removal. Collecting your orders directly from the building will be difficult, or even impossible, and urgent requests will be difficult to carry out. We therefore ask you to create your requests via EDH, so that delivery may be carried out as soon as possible. Thank you for your understanding. GS Department

  8. Load-Bearing Capacity of Roof Trusses

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Damkilde, Lars; Munch-Andersen, J.

    2004-01-01

    systems such as roof trusses are established and statistical characteristics of the load bearing capacity are determined. The results show that there is a significant increase in the characteristic (nominal) value and a reduction in the coefficient of variation (COV) for typical loads such as permanent......-sections with low strength and stiffness will generally not have large load effects. Further, there can be system effects due to non-linear material behavior. In this paper a stochastic model is established for the bending strength and stiffness of timber beams. Next, stochastic models for typical timber structural...

  9. Establishment and performance of an experimental green roof under extreme climatic conditions.

    Science.gov (United States)

    Klein, Petra M; Coffman, Reid

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  10. Eco-Environmental Factors in Green Roof Application in Indian Cities

    Science.gov (United States)

    Mukherjee, M.

    2014-09-01

    Green-roof is the cost-effective environmental mitigation strategy for urban areas [1]. Its application is limited in India primarily due to inadequate understanding about its cost-benefit analysis and technicalities of its maintenance. Increasing awareness about green roof can alter conservative attitude towards its application. So, this work presents a quantified study on green-roof types, cost and environmental benefits while considering different geo-urban climate scenarios for cities of Kolkata, Mumbai, Chennai and New Delhi. Cost estimation for extensive and intensive green-roof with reference to commonly used roof in urban India is also worked out. Attributes considered for environmental discussion are energy savings related to thermal heat gain through roof, roof-top storm-water drainage and sound attenuation. The comparative study confirms that further focused study on individual cities would identify city-specific objectives for green-roof application; strategies like awareness, capacity building programmes, incentives, demonstration projects etc. can be worked out accordingly for wider application of green-roof in Indian cities.

  11. Manipulating soil microbial communities in extensive green roof substrates.

    Science.gov (United States)

    Molineux, Chloe J; Connop, Stuart P; Gange, Alan C

    2014-09-15

    There has been very little investigation into the soil microbial community on green roofs, yet this below ground habitat is vital for ecosystem functioning. Green roofs are often harsh environments that would greatly benefit from having a healthy microbial system, allowing efficient nutrient cycling and a degree of drought tolerance in dry summer months. To test if green roof microbial communities could be manipulated, we added mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs. There are complex relationships between depth and type of substrate and the biomass of different microbial groups, with no clear pattern being observed. Following the addition of inoculants, bacterial groups tended to increase in biomass in shallower substrates, whereas fungal biomass change was dependent on depth and type of substrate. Increased fungal biomass was found in shallow plots containing more crushed concrete and deeper plots containing more crushed brick where compost tea (a live mixture of beneficial bacteria) was added, perhaps due to the presence of helper bacteria for arbuscular mycorrhizal fungi (AMF). Often there was not an additive affect of the microbial inoculations but instead an antagonistic interaction between the added AM fungi and the compost tea. This suggests that some species of microbes may not be compatible with others, as competition for limited resources occurs within the various substrates. The overall results suggest that microbial inoculations of green roof habitats are sustainable. They need only be done once for increased biomass to be found in subsequent years, indicating that this is a novel and viable method of enhancing roof community composition.

  12. Performance Analysis of Cool Roof, Green Roof and Thermal Insulation on a Concrete Flat Roof in Tropical Climate

    OpenAIRE

    Zingre, Kishor T.; Yang, Xingguo; Wan, Man Pun

    2015-01-01

    In the tropics, the earth surface receives abundant solar radiation throughout the year contributing significantly to building heat gain and, thus, cooling demand. An effective method that can curb the heat gains through opaque roof surfaces could provide significant energy savings. This study investigates and compares the effectiveness of various passive cooling techniques including cool roof, green roof and thermal insulation for reducing the heat gain through a flat concrete roof in tropic...

  13. An Integrative Analysis of an Extensive Green Roof System: A Case Study of the Schleman Green Roof

    Science.gov (United States)

    Hoover, F.; Bowling, L. C.

    2013-12-01

    In urban environments where populations continue to rise, the need for affective stormwater management and runoff control methods is ever prevalent. Increased population growth and city expansion means greater impervious surfaces and higher rates of stormwater runoff. In well-established cities, this proves particularly difficult due to a constraining built environment and limited pervious spaces, even in cities as small as 40,000 residents. Work to reduce runoff in combined sewer systems (CSS) and municipal separated storm sewer systems (MS4) by use of best-management practices is one route currently under investigation. The Purdue University campus is making efforts to reduce their impact on the West Lafayette CSS and MS4. Green roofs are one management practice being used for runoff mitigation. Specifically, Schleman Hall, an administrative student affairs building, has a small green roof located on the second floor installed in 2008. In cooperation with Purdue Physical Facilities, monitoring and analysis for the Schleman extensive green roof at Purdue University was performed from June 2012 to December 2012. The objective was to determine the stormwater retention, output water quality and net present value for the 165 m2 roof. The results from the water balance analysis revealed retention rates on average of 58% of precipitation per rain event, where retention included soil moisture, evaporation and detention/depression storage. The water quality metrics tested were Nitrate-Nitrite (NO2-NO3), Orthophosphate (PO4), Ammonia-Ammonium ion (NH3-NH4), Sulfate (SO4), total suspended solids (TSS) and pH. The pollutant concentration and load results varied, but the pH levels from precipitation increased in all samples after passing through the substrate. SO4 and PO4 results yielded higher concentrations and loads in the green roof output than the control output and precipitation, while NO2-NO3 and NH3-NH4 yielded concentrations and loads that were reduced by the green

  14. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  15. Roof Type Selection Based on Patch-Based Classification Using Deep Learning for High Resolution Satellite Imagery

    Science.gov (United States)

    Partovi, T.; Fraundorfer, F.; Azimi, S.; Marmanis, D.; Reinartz, P.

    2017-05-01

    3D building reconstruction from remote sensing image data from satellites is still an active research topic and very valuable for 3D city modelling. The roof model is the most important component to reconstruct the Level of Details 2 (LoD2) for a building in 3D modelling. While the general solution for roof modelling relies on the detailed cues (such as lines, corners and planes) extracted from a Digital Surface Model (DSM), the correct detection of the roof type and its modelling can fail due to low quality of the DSM generated by dense stereo matching. To reduce dependencies of roof modelling on DSMs, the pansharpened satellite images as a rich resource of information are used in addition. In this paper, two strategies are employed for roof type classification. In the first one, building roof types are classified in a state-of-the-art supervised pre-trained convolutional neural network (CNN) framework. In the second strategy, deep features from deep layers of different pre-trained CNN model are extracted and then an RBF kernel using SVM is employed to classify the building roof type. Based on roof complexity of the scene, a roof library including seven types of roofs is defined. A new semi-automatic method is proposed to generate training and test patches of each roof type in the library. Using the pre-trained CNN model does not only decrease the computation time for training significantly but also increases the classification accuracy.

  16. Sloped Roof Conversions for Small, Flat-Roof Buildings.

    Science.gov (United States)

    1984-12-01

    co solve other, unrelated Table 5 List of Contacts Involved in Roof Conversion Projects California AEP-Span, San Diego Florida Duval County...Survlvablllty Section, CCB-CPS Infrastructure Branch, LANDA HQ UsaUCOH 09128 ATTN: ECJ 4/7-LOE Fort Belvoir, VA 22060 (7) ATTN

  17. Green Roof Potential in Arab Cities

    OpenAIRE

    Attia, Shady

    2014-01-01

    Urban green roofs have long been promoted as an easy and effective strategy for beautifying the built environment and increasing investment opportunity. The building roof is very important because it has a direct impact on thermal comfort and energy conservation in and around buildings. Urban green roofs can help to address the lack of green space in many urban areas. Urban green roofs provides the city with open spaces that helps reduce urban heat island effect and provides the human populat...

  18. Retention performance of green roofs in three different climate regions

    Science.gov (United States)

    Sims, Andrew W.; Robinson, Clare E.; Smart, Charles C.; Voogt, James A.; Hay, Geoffrey J.; Lundholm, Jeremey T.; Powers, Brandon; O'Carroll, Denis M.

    2016-11-01

    Green roofs are becoming increasingly popular for moderating stormwater runoff in urban areas. This study investigated the impact different climates have on the retention performance of identical green roofs installed in London Ontario (humid continental), Calgary Alberta (semi-arid, continental), and Halifax Nova Scotia (humid, maritime). Drier climates were found to have greater percent cumulative stormwater retention with Calgary (67%) having significantly better percent retention than both London (48%) and Halifax (34%). However, over the same study period the green roof in London retained the greatest depth of stormwater (598 mm), followed by the green roof in Halifax (471 mm) and then Calgary (411 mm). The impact of climate was largest for medium sized storms where the antecedent moisture condition (AMC) at the beginning of a rainfall event governs retention performance. Importantly AMC was a very good predictor of stormwater retention, with similar retention at all three sites for a given AMC, emphasizing that AMC is a relevant indicator of retention performance in any climate. For large rainfall events (i.e., >45 mm) green roof average retention ranged between 16% and 29% in all cities. Overall, drier climates have superior retention due to lower AMC in the media. However, moderate and wet climates still provide substantial total volume reduction benefits.

  19. GREEN ROOFS — A GROWING TREND

    Science.gov (United States)

    One of the most interesting stormwater control systems under evaluation by EPA are “green roofs”. Green roofs are vegetative covers applied to building roofs to slow, or totally absorb, rainfall runoff during storms. While the concept of over-planted roofs is very ancient, the go...

  20. Requirements of inverted roofs with a drainage layer

    DEFF Research Database (Denmark)

    Leimer, Hans-Peter; Rode, Carsten; Künzel, Hartwig

    2005-01-01

    flowing between the insulation and the waterproofing membrane. It is possible to calculate the extra heat loss of inverted roofs caused by rain water below the heat insulation. The extra heat loss depends on the average rainfall and on which fraction of the rain water that will drain between...... the waterproofing membrane and the thermal insulation. This paper explains the application of the standard for areas of Europe. Furthermore, some constructions are proposed, which have such small extra heat losses caused by rain water that they may be disregarded in the calculation.......This contribution illustrates the application of the standard EN ISO 6946 regarding the heat loss of an inverted roof for different regions of Europe. An addendum to the standard (EN ISO 6946:1996/A1, 2003) introduces a correction to the thermal transmittance of inverted roofs due to rain water...

  1. Evaluation of Roof Bolting Requirements Based on In-Mine Roof Bolter Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Syd S. Peng

    2005-10-01

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on this information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. For the prediction of roof geology and stability condition in real time, a micro processor was used and a program developed to monitor and record the drilling parameters of roof bolter. These parameters include feed pressure, feed flow (penetration rate), rotation pressure, rotation rate, vacuum pressure, oil temperature of hydraulic circuit, and signals for controlling machine. From the results of a series of laboratory and underground tests so far, feed pressure is found to be a good indicator for identifying the voids/fractures and estimating the roof rock strength. The method for determining quantitatively the location and the size of void/fracture and estimating the roof rock strength from the drilling parameters of roof bolter was developed. Also, a set of computational rules has been developed for in-mine roof using measured roof drilling parameters and implemented in MRGIS (Mine Roof Geology Information System), a software package developed to allow mine engineers to make use of the large amount of roof drilling parameters for predicting roof geology properties automatically. For the development of roof bolting criteria, finite element models were developed for tensioned and fully grouted bolting

  2. The Girl on the Roof

    Institute of Scientific and Technical Information of China (English)

    刘晓宁; 邓彬

    2003-01-01

    One day when the sun was shin-ning and Jillian's office at the BBCwas getting warm,she had one of her ideas."I'll go up ontothe roof after lunch,"she thought,"andsunbathe(日光浴).I've been working hard

  3. PREDICTING THERMAL PERFORMANCE OF ROOFING SYSTEMS IN SURABAYA

    Directory of Open Access Journals (Sweden)

    MINTOROGO Danny Santoso

    2015-07-01

    Full Text Available Traditional roofing systems in the developing country likes Indonesia are still be dominated by the 30o, 45o, and more pitched angle roofs; the roofing cover materials are widely used to traditional clay roof tiles, then modern concrete roof tiles, and ceramic roof tiles. In the 90’s decay, shop houses are prosperous built with flat concrete roofs dominant. Green roofs and roof ponds are almost rarely built to meet the sustainable environmental issues. Some tested various roof systems in Surabaya were carried out to observe the roof thermal performances. Mathematical equation model from three references are also performed in order to compare with the real project tested. Calculated with equation (Kabre et al., the 30o pitched concrete-roof-tile, 30o clay-roof-tile, 45o pitched concrete-roof-tile are the worst thermal heat flux coming to room respectively. In contrast, the bare soil concrete roof and roof pond system are the least heat flux streamed onto room. Based on predicted calculation without insulation and cross-ventilation attic space, the roof pond and bare soil concrete roof (greenery roof are the appropriate roof systems for the Surabaya’s climate; meanwhile the most un-recommended roof is pitched 30o or 45o angle with concrete-roof tiles roofing systems.

  4. System for monitoring of green roof performance: use of weighing roof segment and non-invasive visualization

    Science.gov (United States)

    Jelinkova, Vladmira; Dohnal, Michal; Picek, Tomas; Sacha, Jan

    2015-04-01

    Understanding the performance of technogenic substrates for green roofs is a significant task in the framework of sustainable urban planning and water/energy management. The potential retention and detention of the anthropogenic, light weight soil systems and their temporal soil structure changes are of major importance. A green roof test segment was built to investigate the benefits of such anthropogenic systems. Adaptable low-cost system allows long-term monitoring of preferred characteristics. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the substrates provide basis for detailed analysis of thermal and hydrological regime in green roof systems. The first results confirmed the benefits of green roof systems. The reduction of temperature fluctuations as well as rainfall runoff was significant. Depending on numerous factors such substrate material or vegetation cover the test green roof suppressed the roof temperature amplitude for the period analyzed. The ability to completely prevent (light rainfall events) or reduce and delay (medium and heavy rainfall events) the peak runoff was also analyzed. Special attention is being paid to the assessment of soil structural properties related to possible aggregation/disaggregation, root growth, weather conditions and associated structural changes using non-invasive imaging method. X-ray computed microtomography of undisturbed soil samples (taken from experimental segments) is used for description of pore space geometry, evaluation of surface to volume ratio, additionally for description of cracks and macropores as a product of soil flora and fauna activity. The information from computed tomography imaging will be used for numerical modeling of water flow in variable saturated porous media. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech

  5. Two-dimensional modeling of water and heat fluxes in green roof substrates

    Science.gov (United States)

    Suarez, F. I.; Sandoval, V. P.

    2016-12-01

    Due to public concern towards sustainable development, greenhouse gas emissions and energy efficiency, green roofs have become popular in the last years. Green roofs integrate vegetation into infrastructures to reach additional benefits that minimize negative impacts of the urbanization. A properly designed green roof can reduce environmental pollution, noise levels, energetic requirements or surface runoff. The correct performance of green roofs depends on site-specific conditions and on each component of the roof. The substrate and the vegetation layers strongly influence water and heat fluxes on a green roof. The substrate is an artificial media that has an improved performance compared to natural soils as it provides critical resources for vegetation survival: water, nutrients, and a growing media. Hence, it is important to study the effects of substrate properties on green roof performance. The objective of this work is to investigate how the thermal and hydraulic properties affect the behavior of a green roof through numerical modeling. The substrates that were investigated are composed by: crushed bricks and organic soil (S1); peat with perlite (S2); crushed bricks (S3); mineral soil with tree leaves (S4); and a mixture of topsoil and mineral soil (S5). The numerical model utilizes summer-arid meteorological information to evaluate the performance of each substrate. Results show that the area below the water retention curve helps to define the substrate that retains more water. In addition, the non-linearity of the water retention curve can increment the water needed to irrigate the roof. The heat propagation through the roof depends strongly on the hydraulic behavior, meaning that a combination of a substrate with low thermal conductivity and more porosity can reduce the heat fluxes across the roof. Therefore, it can minimize the energy consumed of an air-conditioner system.

  6. Hydrological Response of Sedum-Moss Roof

    Science.gov (United States)

    Bengtsson, L.

    2004-12-01

    Eco-roofs are becoming popular for aesthetic reasons and also as units of stormwater systems. It is thought that such roofs with soil cover and vegetation reduces the total runoff, the peak flows and improves the quality of the roof water. Here are reported investigations of runoff from thin, 3-4 cm soil, extensive green roofs with sedum-moss in southern Sweden. The two-year study was performed on new roofs in the eco-city Augustenborg and also on nearby old vegetative roofs. The rain intensity and the roof runoff were measured with 5 min, or in some experiments with 1 min, resolution. The annual runoff from the eco-roofs was about half that from hard roofs and was close to that of small natural rivers. However, although most rainy days there was no or little runoff from the roofs, the highest observed daily runoff values were close to the daily rainfall. Runoff is initiated, when the soil is at field capacity. Thereafter the hourly runoff corresponds closely to the hourly rainfall. For short-term high intensity storms, the runoff peak is attenuated relative the rain intensity. The time of concentration for runoff was experimentally determined applying artificial rains on existing roofs and on experimental roof plots with varying slopes and using different drainage layers. The peak runoff from the roofs was found to correspond to the rain intensity over 20-30 minutes. The probability of high rain intensity is much higher than the probability of high runoff. When intensity-duration-frequency curves were constructed, runoff with 0.4 year return period corresponded to rain with 1.5 year return period. The influence of the slope of the roofs on the runoff peak was minor as was the effect of drainage layer. The vertical flow in the soil dominates the runoff process. The influence of extensive sedum-moss vegetated roofs on runoff quality was also studied to ascertain whether vegetated roofs behave as sink or source of pollutants and whether the runoff quality changes

  7. PREDICTING THERMAL PERFORMANCE OF ROOFING SYSTEMS IN SURABAYA

    OpenAIRE

    2015-01-01

    Traditional roofing systems in the developing country likes Indonesia are still be dominated by the 30o, 45o, and more pitched angle roofs; the roofing cover materials are widely used to traditional clay roof tiles, then modern concrete roof tiles, and ceramic roof tiles. In the 90’s decay, shop houses are prosperous built with flat concrete roofs dominant. Green roofs and roof ponds are almost rarely built to meet the sustainable environmental issues. Some tested various roof systems in Sura...

  8. Establishment and performance of an experimental green roof under extreme climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Petra M., E-mail: pkklein@ou.edu [School of Meteorology, University of Oklahoma, Norman, OK (United States); Coffman, Reid, E-mail: rcoffma4@kent.edu [College of Architecture and Environmental Design, Kent State University, Kent, OH (United States)

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April–October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  9. Effect of substrate depth and rain-event history on the pollutant abatement of green roofs.

    Science.gov (United States)

    Seidl, Martin; Gromaire, Marie-Christine; Saad, Mohamed; De Gouvello, Bernard

    2013-12-01

    This study compares the effectiveness of two different thickness of green roof substrate with respect to nutrient and heavy metal retention and release. To understand and evaluate the long term behaviour of green roofs, substrate columns with the same structure and composition as the green roofs, were exposed in laboratory to artificial rain. The roofs act as a sink for C, N, P, zinc and copper for small rain events if the previous period was principally dry. Otherwise the roofs may behave as a source of pollutants, principally for carbon and phosphorus. Both field and column studies showed an important retention for Zn and Cu. The column showed, however, lower SS, DOC and metal concentrations in the percolate than could be observed in the field even if corrected for run-off. This is most probably due to the difference in exposition history and weathering processes.

  10. Generating realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap

    2011-01-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. In this paper, we introduce realistic roofs by imposing a few additional constraints. We investigate the geometric and combinatorial properties of realistic roofs, and show a connection with the straight skeleton of P. We show that the maximum possible number of distinct realistic roofs over P is ( ⌊(n-4)/4⌋ (n-4)/2) when P has n vertices. We present an algorithm that enumerates a combinatorial representation of each such roof in O(1) time per roof without repetition, after O(n 4) preprocessing time. We also present an O(n 5)-time algorithm for computing a realistic roof with minimum height or volume. © 2011 Springer-Verlag.

  11. Moisture content behaviour in extensive green roofs during dry periods: the influence of vegetation and substrate characteristics

    OpenAIRE

    Berretta, C; Poe, S.; Stovin, V.

    2014-01-01

    Evapotranspiration (ET) is a key parameter that influences the stormwater retention capacity, and thus the hydrological performance, of green roofs. This paper investigates how the moisture content in extensive green roofs varies during dry periods due to evapotranspiration. The study is supported by 29 months continuous field monitoring of the moisture content within four green roof test beds. The beds incorporated three different substrates, with three being vegetated with sedum and one lef...

  12. Acute partial sleep deprivation due to environmental noise increases weight gain by reducing energy expenditure in rodents.

    Science.gov (United States)

    Parrish, Jennifer B; Teske, Jennifer A

    2017-01-01

    Chronic partial sleep deprivation (SD) by environmental noise exposure increases weight gain and feeding in rodents, which contrasts weight loss after acute SD by physical methods. This study tested whether acute environmental noise exposure reduced sleep and its effect on weight gain, food intake, physical activity, and energy expenditure (EE). It was hypothesized that acute exposure would (1) increase weight gain and feeding and (2) reduce sleep, physical activity, and EE (total and individual components); and (3) behavioral changes would persist throughout recovery from SD. Three-month old male Sprague-Dawley rats slept ad libitum, were noise exposed (12-h light cycle), and allowed to recover (36 h). Weight gain, food intake, sleep/wake, physical activity, and EE were measured. Acute environmental noise exposure had no effect on feeding, increased weight gain (P sleep (P sleep, rest, and physical activity reduce total EE and contribute to weight gain during acute SD and recovery from SD. These data emphasize the importance of increasing physical activity after SD to prevent obesity. © 2016 The Obesity Society.

  13. Analysis and control on anomaly water inrush in roof of fully-mechanized mining field

    Institute of Scientific and Technical Information of China (English)

    Peng Linjun; Yang Xiaojie; Sun Xiaoming

    2011-01-01

    Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production. Roof water inrush can trigger a wide range of roof collapse, causing major accidents from breaking roof supports while caving. These failures flood wells and do a great deal of damage to mines and endanger mine safety. Our objective is to analyze the anomalies of water inrush crushing the support at the #6301 working face in the ]isan Coal Mine of the Yanzhou Mining Group. Through information of water inrush to the roof, damage caused by tectonic movements, information on the damage caused by roof collapse and the theory about the distribution of pressure in mine abutments, we advice adjusting the length of the working face and the position of open-off cut relatively to the rich water area. In the case of anomalous roof pressure we should develop a state equation to estimate preventive measures with "transferring rock beam" theory. Simultaneously,we improve the capacity of drainage equipment and ensured adequate water retention at the storehouse.These are all major technologies to ensure the control and prevention against accidents caused by anomalous water inrush in roofs, thus ensuring safety in the production process of a coal mine.

  14. Energy and Economic Evaluation of Green Roofs for Residential Buildings in Hot-Humid Climates

    Directory of Open Access Journals (Sweden)

    Abubakar S. Mahmoud

    2017-03-01

    Full Text Available Green roofs may be considered a passive energy saving technology that also offer benefits like environmental friendliness and enhancement of aesthetic and architectural qualities of buildings. This paper examines the energy and economic viability of the green roof technology in the hot humid climate of Saudi Arabia by considering a modern four bedroom residential building in the city of Dhahran as a case study. The base case and green roof modelling of the selected building has been developed with the help of DesignBuilder software. The base case model has been validated with the help of 3-month measured data about the energy consumption without a green roof installed. The result shows that the energy consumption for the base case is 169 kWh/m2 while the energy consumption due to the application of a green roof on the entire roof surface is 110 kWh/m2. For the three investigated green roof options, energy saving is found to be in the range of 24% to 35%. The economic evaluation based on the net present value (NPV approach for 40 years with consideration to other environmental advantages indicates that the benefits of the green roof technology are realized towards the end of the life cycle of the building.

  15. Choosing the right green roof media for water quality

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, W.F.; Hathaway, A.M.; Smith, J.T.; Calabria, J. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Biological and Agricultural Engineering

    2006-07-01

    Due to the large concentrations of a variety of contaminants entering streams and rivers, stormwater is a significant contributor to the impairment of North Carolina (NC) waters. Pollutants range from pesticides and nutrients to oils and petroleum products to construction chemicals and sediment which are evident in fish kills, contamination of drinking water supplies, and deterioration of wildlife habitats. One of the major tools to improve storm water quality are stormwater best management practices (BMPs). BMPs include bioretention areas, wet and dry detention ponds, constructed wetlands, and sand filters. One option for urban BMPs is the green roof which uses rooftop square footage that would not otherwise be available on the ground. A research project was conducted that tests two field green roofs in Raleigh and Asheville, NC. In addition, a laboratory test was conducted in 2004 and a plot study of three designer media was conducted in 2005 on the NC State University Campus in Raleigh, NC. The objectives of the research were to examine how different green roof media reduce concentrations of nitrogen and phosphorus, if the leaching rate of nitrogen and phosphorus from soil media of field green roofs decrease with time, and to determine whether green roofs can be used as nutrient reduction BMPs. This paper provided background information on previous green roof stormwater research, discussed each of the sites chosen for the study in detail and presented the field monitoring process and laboratory study methodology. This was followed by a detailed examination of the results. It was concluded that an optimal soil media can be established that balances plant growth with water quality and quantity control. 16 refs., 2 tabs., 8 figs.

  16. Intermittent Fever, Progressive Weight Gain, and Personality Changes in a Five-Year-Old Girl: Unusual Paraneoplastic Syndrome due to Presacral Ganglioneuroma

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2016-01-01

    Full Text Available Ganglioneuromas are rare tumors in the neuroblastoma group. Paraneoplastic syndrome (PNS due to presacral ganglioneuromas was hardly reported in previous literature. Here, we reported that a case of a 5-year-old girl with a presacral ganglioneuroma presented with PNS, who presented with intermittent fever, progressive weight gain, and personality changes. Our report revealed intermittent fever, progressive weight gain, and personality changes may represent rare paraneoplastic syndromes in ganglioneuromas.

  17. Evaluating convex roof entanglement measures.

    Science.gov (United States)

    Tóth, Géza; Moroder, Tobias; Gühne, Otfried

    2015-04-24

    We show a powerful method to compute entanglement measures based on convex roof constructions. In particular, our method is applicable to measures that, for pure states, can be written as low order polynomials of operator expectation values. We show how to compute the linear entropy of entanglement, the linear entanglement of assistance, and a bound on the dimension of the entanglement for bipartite systems. We discuss how to obtain the convex roof of the three-tangle for three-qubit states. We also show how to calculate the linear entropy of entanglement and the quantum Fisher information based on partial information or device independent information. We demonstrate the usefulness of our method by concrete examples.

  18. Factors Influencing Arthropod Diversity on Green Roofs

    Directory of Open Access Journals (Sweden)

    Bracha Y. Schindler

    2011-01-01

    Full Text Available Green roofs have potential for providing substantial habitat to plants, birds, and arthropod species that are not well supported by other urban habitats. Whereas the plants on a typical green roof are chosen and planted by people, the arthropods that colonize it can serve as an indicator of the ability of this novel habitat to support a diverse community of organisms. The goal of this observational study was to determine which physical characteristics of a roof or characteristics of its vegetation correlate with arthropod diversity on the roof. We intensively sampled the number of insect families on one roof with pitfall traps and also measured the soil arthropod species richness on six green roofs in the Boston, MA area. We found that the number of arthropod species in soil, and arthropod families in pitfall traps, was positively correlated with living vegetation cover. The number of arthropod species was not significantly correlated with plant diversity, green roof size, distance from the ground, or distance to the nearest vegetated habitat from the roof. Our results suggest that vegetation cover may be more important than vegetation diversity for roof arthropod diversity, at least for the first few years after establishment. Additionally, we found that even green roofs that are small and isolated can support a community of arthropods that include important functional groups of the soil food web.

  19. Demonstration of energy savings of cool roofs

    Energy Technology Data Exchange (ETDEWEB)

    Konopacki, S.; Gartland, L.; Akbari, H. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Rainer, L. [Davis Energy Group, Davis, CA (United States)

    1998-06-01

    Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.

  20. Future oriented and more sustainable green roofs

    Energy Technology Data Exchange (ETDEWEB)

    Appl, R.; Ansel, W. [Deutscher Dachgartnerverband, Nuertingen (Germany)

    2004-07-01

    The contribution that green roofs make to sustainable urban Development were discussed with reference to the support that the industry has received in Germany. The German Roof Gardener Association (DDV) was established in the 1990s with an objective to replace the billions of square feet of bare or gravel flat roof surface area in Germany with ecological green roofs. The DDV created guidelines for the systems and components being used in green roof constructions, starting from the raw material to the production and transport of the material, and to the recycling of the material after demolition. Green roofs in Germany are now made mandatory by local authorities. Green roofs offer innovative technological features as well as additional use. Combined with extensive or intensive greening, these roofs reduce the use of building land. They must be built to last the lifetime of the building and given proper care and maintenance. In the twenty-first century, green roof systems will be made of recycled and environmentally sound material. The purpose of the green roof is to provide not only a permanent location for vegetation, but also offer further possibilities of utilization, such as additional thermal insulation, fall protection systems or even constructions for solar power facilities. This paper addressed issues regarding the extended life expectancy of a roof, savings on stormwater tax and thermal values for insulation calculations. Green roofs in Germany currently represent an important element in stormwater management by slowing down, filtering and diminishing rain water runoff. The excess water is guided into cisterns and used for the irrigation of the roof gardens and for flushing toilets. 5 figs.

  1. Demonstration of energy savings of cool roofs

    Energy Technology Data Exchange (ETDEWEB)

    Konopacki, S.; Gartland, L.; Akbari, H. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Rainer, L. [Davis Energy Group, Davis, CA (United States)

    1998-06-01

    Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.

  2. Solar thermal roofs; Zonthermische daken

    Energy Technology Data Exchange (ETDEWEB)

    Van de Waerdt, J. [DWA installatie- en energieadvies, Bodegraven (Netherlands)

    2012-11-15

    The purpose of the brochure is to increase the effective application of solar thermal roofs. The target group includes consultants, installers, architects and contractors. Attention is paid to the design, parameters for comparison, yield simulations and experiences gained in projects [Dutch] Het doel van de brochure is het vergroten van de effectieve toepassing van zonthermische daken. Tot de doelgroep behoren installatieadviseurs, installateurs, architecten en opdrachtgevers in de bouw. Aandacht wordt besteed aan het ontwerp, parameters voor vergelijking, opbrengstsimulaties en ervaringen opgedaan in projecten.

  3. Polyurethane adhesives in flat roofs

    Directory of Open Access Journals (Sweden)

    Bogárová Markéta

    2017-01-01

    Full Text Available It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is to calculate the exact amount of adhesive, which is required to guarantee the resistance against wind suction. In this problematic we can not find help neither in technical data sheets provided by the manufactures. Some of these data sheets contain at least information about amount of adhesive depending on location in roof plane and building height, but they do not specify the strength of such connection. It was therefore resorted to select several representatives polyurethane adhesives and their subsequent testing on specimens simulating the flat roof segment. The paper described the test methodology and results for two types of polyurethane adhesives.

  4. Solight - Investigation on lightweight PV-Module mountings for gravel roofs; Solight - Untersuchung Leicht-Modulaufstaenderungen fuer Kiesflachdaecher

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Ch.; Frei, R.

    2002-07-01

    The additional load of a photovoltaic (PV) plant on a flat roof represents a problem for certain types of buildings what regards the static reserves. Such roofs cannot be used today to produce solar power with the existing mounting systems for solar PV modules. A goal of the project was to find a way to secure the possibility of using flat roofs with critical static reserves as locations for PV plants. The main innovation of the development of the new mounting system Solight consists in the compensation of the usually needed additional weight of the mounting system - to guarantee the heavy wind loads according to the Swiss standard 'SIA 160/1' - by the already existing dead load of the roof. This compensation allows a minimisation of the additional weight brought on the roof by the mounting system by a factor 3 to 5. The PV module holding structure itself should have almost no weight, so the additional weight brought onto the roof would remain minimal. The main goal - to make the large number of flat roofs with critical static reserves accessible for the equipment with PV plants - was reached and at the same time the resources consumption and the manufacturing costs of the mounting systems were reduced. (author)

  5. Do gallstones found before sleeve gastrectomy behave the same as those formed after surgery due to weight loss?

    Science.gov (United States)

    Conley, Alexandria; Tarboush, Moayad; Manatsathit, Wuttiporn; Meguid, Ahmed; Szpunar, Suzanna; Hawasli, Abdelkader

    2016-11-01

    Gallstone formation is prevalent in the bariatric population and after weight loss. We believe that gallstones found preoperatively behave differently and may not cause significant complications as those developing after weight loss. Thus, prophylactic cholecystectomy before or during sleeve gastrectomy (SG) may not be necessary. Patients undergoing SG from January 2011 to May 2012 were evaluated for the presence of gallstones and development of symptoms or need for cholecystectomy postoperatively. Group 1 (n = 18) had gallstones preoperatively. Group 2 (n = 29) developed gallstones after weight loss. Both groups' demographics were similar. Symptomatic gallstones occurred in 1 patient (5.6%) in group 1 and in 9 patients (31.0%) in group 2 (P = .19). Percent excess body mass index loss (%EBL) was 58 ± 24% vs 70 ± 22% (P = .11) with a mean follow-up of 8.9 ± 6.2 and 14.7 ± 3.9 months for group 1 and group 2, respectively (P = .005). Asymptomatic gallstones found before SG tend to have less risk of becoming symptomatic than those formed after weight loss. There was no statistical significant difference because of small sample. Prophylactic cholecystectomy, however, may not be warranted in these patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Use of T1-weighted/T2-weighted magnetic resonance ratio to elucidate changes due to amyloid β accumulation in cognitively normal subjects

    Directory of Open Access Journals (Sweden)

    Fumihiko Yasuno

    2017-01-01

    Full Text Available The ratio of signal intensity in T1-weighted (T1w and T2-weighted (T2w magnetic resonance imaging (MRI was recently proposed to enhance the sensitivity of detecting changes in disease-related signal intensity. The objective of this study was to test the effectiveness of T1w/T2w image ratios as an easily accessible biomarker for amyloid beta (Aβ accumulation. We performed the T1w/T2w analysis in cognitively normal elderly individuals. We applied [11C] Pittsburgh Compound B (PiB-PET to the same individuals, and Aβ deposition was quantified by its binding potential (PiB-BPND. The subjects were divided into low and high PiB-BPND groups, and group differences in regional T1w/T2w values were evaluated. In the regions where we found a significant group difference, we conducted a correlation analysis between regional T1w/T2w values and PiB-BPND. Subjects with high global cortical PiB-BPND showed a significantly higher regional T1w/T2w ratio in the frontal cortex and anterior cingulate cortex. We found a significant positive relationship between the regional T1w/T2w ratio and Aβ accumulation. Moreover, with a T1w/T2w ratio of 0.55 in the medial frontal regions, we correctly discriminated subjects with high PiB-BPND from the entire subject population with a sensitivity of 84.6% and specificity of 80.0%. Our results indicate that early Aβ-induced pathological changes can be detected using the T1w/T2w ratio on MRI. We believe that the T1w/T2w ratio is a prospective stable biological marker of early Aβ accumulation in cognitively normal individuals. The availability of such an accessible marker would improve the efficiency of clinical trials focusing on the initial disease stages by reducing the number of subjects who require screening by Aβ-PET scan or lumbar puncture.

  7. Extensive Green Roof Ecological Benefits in Latvia

    OpenAIRE

    Rušenieks, Rihards; Kamenders, Agris

    2013-01-01

    Extensive green roof ecological benefits are studiedin this paper. The research contains a brief explanation aboutgreen roof technology and green roof ecological benefits. Greenroof capability to retain rainwater runoff by accumulating it instorage layers and conducting it back into the atmospherethrough evapotranspiration is studied and modeled. Modeling isdone in Stormwater Management Model 5.0 software. The modelis based on an existing warehouse-type building located in Rigaand hourly Riga...

  8. Integrated Green Roofs System and its Role of Achieving Sustainability in Residential Buildings in Urban Area in Athens, Greece and Famagusta, North Cyprus

    Directory of Open Access Journals (Sweden)

    Seyed Mehran shahidipour

    2014-06-01

    Full Text Available In this paper, the characteristics and importance of the green roof in urban area would investigate in some residential buildings in Athens, Greece and then, some strategies give to integrate green roof in residential buildings in Famagusta, north Cyprus due to the importance of energy saving and thermal comfort in residential buildings. These days, sustainable architecture is spreading around the world. Therefore, Sustainable architecture has important role in design buildings and urban design due to high amount of energy use and global warming around the world. There are different methods in sustainable design and one of them that has significant role is design green roof. Green roof integrated to the roof of the buildings to provide the suitable indoor temperature without spending high amount of budget. The methodology is qualitative type that trough the literature review and survey would be understood the importance and role of the green roof in both architecture and urban area. There are many significant architects like Wright that they understood how greenery would improve the function of the building in terms of provide thermal comfort and indoor temperature for the residences, and green roof as well. In Famagusta, there is not any green roof however, the design and integrating of green roof is inexpensive. Green roof should design properly depend on the characteristic of the climate of every place so, the location, temperature, and humidity, location, and wind have influence on the design of the green roof.

  9. Realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap

    2013-11-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. According to this definition, some roofs may have faces isolated from the boundary of P or even local minima, which are undesirable for several practical reasons. In this paper, we introduce realistic roofs by imposing a few additional constraints. We investigate the geometric and combinatorial properties of realistic roofs and show that the straight skeleton induces a realistic roof with maximum height and volume. We also show that the maximum possible number of distinct realistic roofs over P is ((n-4)(n-4)/4 /2⌋) when P has n vertices. We present an algorithm that enumerates a combinatorial representation of each such roof in O(1) time per roof without repetition, after O(n4) preprocessing time. We also present an O(n5)-time algorithm for computing a realistic roof with minimum height or volume. © 2013 Elsevier B.V.

  10. Green roofs provide habitat for urban bats

    Directory of Open Access Journals (Sweden)

    K.L. Parkins

    2015-07-01

    Full Text Available Understanding bat use of human-altered habitat is critical for developing effective conservation plans for this ecologically important taxon. Green roofs, building rooftops covered in growing medium and vegetation, are increasingly important conservation tools that make use of underutilized space to provide breeding and foraging grounds for urban wildlife. Green roofs are especially important in highly urbanized areas such as New York City (NYC, which has more rooftops (34% than green space (13%. To date, no studies have examined the extent to which North American bats utilize urban green roofs. To investigate the role of green roofs in supporting urban bats, we monitored bat activity using ultrasonic recorders on four green and four conventional roofs located in highly developed areas of NYC, which were paired to control for location, height, and local variability in surrounding habitat and species diversity. We then identified bat vocalizations on these recordings to the species level. We documented the presence of five of nine possible bat species over both roof types: Lasiurus borealis, L. cinereus, L. noctivagans, P. subflavus,andE. fuscus. Of the bat calls that could be identified to the species level, 66% were from L. borealis. Overall levels of bat activity were higher over green roofs than over conventional roofs. This study provides evidence that, in addition to well documented ecosystem benefits, urban green roofs contribute to urban habitat availability for several North American bat species.

  11. Innovative Ballasted Flat Roof Solar PV Racking System

    Energy Technology Data Exchange (ETDEWEB)

    Peek, Richard T. [Cascade Engineering, Grand Rapids, MI (United States)

    2014-12-15

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction of the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.

  12. Innovative Ballasted Flat Roof Solar PV Racking System

    Energy Technology Data Exchange (ETDEWEB)

    Peek, Richard T.

    2015-01-23

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction of the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.

  13. Mechanical model of roof on stope and its analysis

    Institute of Scientific and Technical Information of China (English)

    WAGN Hong-wei; CHEN Zhong-hui; DU Ze-chao; ZHANG Jian

    2005-01-01

    Based on the engineering background of No.8402 stope face in Silaogou Coal Mine of Datong Mineral Bureau and the theory of plate presented by researchers before,considering surrounding rock structure in the stope and according to mechanical property of rock bodies with various kinds of joint planes, presented an assumption that the key roof was divided into a series of elastic plate group by joint planes, then set up mechanical model of elastic plate group with pin joint. After compared the deflection and the stress in the mechanical model by numerical modeling with data from field engineering, the rule of rock plates' break in turn and the difference in rock plates' stress during the roof's first and periodic weighting along the stope face were found.

  14. Defects and behaviour of inverted flat roof from the point of building physics

    Directory of Open Access Journals (Sweden)

    Misar Ivan

    2017-01-01

    Full Text Available One of the most discussed flat roof structures during the last 20 years is a structure called inverted roof, where the main thermal insulation layer is placed above the main waterproofing system. The reasons why this type of flat roof is or could be chosen are more less clear. Usually it is the intention to protect the main waterproofing system, usually of synthetic or bituminous membranes, against the impact of outdoor air thermal changes, against any prospective mechanical damages and also to reduce risk of water vapor condensation in the structure. This type of structure could help to solve the vapor/thermal difficulties during the design of the flat roof over the space with higher indoor air humidity like swimming pools or specific industrial processes. Due to the higher rate of safety against mechanical damage it is also used quite often in the case of the design of the roof terraces or roof gardens. Nevertheless, the correct attitude during the design of the structure is to take into considerations all possible aspects including the defects and problems which are most typical for each one type of structure. This paper is willing to give the brief overview of the typical defects for inverted flat roofs and to contribute a little to the understanding of commonly discussed effect of undergoing water beneath the thermal insulation itself and decreasing thus the thermal protection efficiency as well as the inner surface temperature.

  15. Cancer incidence due to excess body weight and leisure-time physical inactivity in Canada: implications for prevention.

    Science.gov (United States)

    Brenner, Darren R

    2014-09-01

    This analysis aimed to estimate the number of incident cases of various cancers attributable to excess body weight (overweight, obesity) and leisure-time physical inactivity annually in Canada. The number of attributable cancers was estimated using the population attributable fraction (PAF), risk estimates from recent meta-analyses and population exposure prevalence estimates obtained from the Canadian Community Health Survey (2000). Age-sex-site-specific cancer incidence was obtained from Statistics Canada tables for the most up-to-date year with full national data, 2007. Where the evidence for association has been deemed sufficient, we estimated the number of incident cases of the following cancers attributable to obesity: colon, breast, endometrium, esophagus (adenocarcinomas), gallbladder, pancreas and kidney; and to physical inactivity: colon, breast, endometrium, prostate, lung and/or bronchus, and ovarian. Overall, estimates of all cancer incidence in 2007 suggest that at least 3.5% (n=5771) and 7.9% (n=12,885) are attributed to excess body weight and physical inactivity respectively. For both risk factors the burden of disease was greater among women than among men. Thousands of incident cases of cancer could be prevented annually in Canada as good evidence exists for effective interventions to reduce these risk factors in the population. Copyright © 2014. Published by Elsevier Inc.

  16. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  17. Models for acoustical properties of green roof materials

    OpenAIRE

    2011-01-01

    To predict the acoustical effects of green roof structures it is necessary to be able to model the acoustical properties of their materials including gravel. For time domain calculations it is convenient to use the phenomenological model due to Zwikker and Kosten. However this phenomenological model is related to a low frequency/high flow resistivity approximation of more ‘exact’ identical pore models. The results of fitting predictions to short range level difference data and to impedance da...

  18. Wind loads on solar energy roofs

    NARCIS (Netherlands)

    Geurts, C.P.W.; Bentum, C.A. van

    2007-01-01

    This paper presents an overview of the wind loads on roofs, equipped with solar energy products, so called Active Roofs. Values given in this paper have been based on wind tunnel and full scale measurements, carried out at TNO, and on an interpretation of existing rules and guidelines. The results a

  19. Integrated roof wind energy system

    Directory of Open Access Journals (Sweden)

    Moonen S.P.G.

    2012-10-01

    Full Text Available Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  20. Integrated roof wind energy system

    Science.gov (United States)

    Suma, A. B.; Ferraro, R. M.; Dano, B.; Moonen, S. P. G.

    2012-10-01

    Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  1. Water quantity and quality response of a green roof to storm events: Experimental and monitoring observations.

    Science.gov (United States)

    Carpenter, Corey M G; Todorov, Dimitar; Driscoll, Charles T; Montesdeoca, Mario

    2016-11-01

    Syracuse, New York is working under a court-ordered agreement to limit combined sewer overflows (CSO) to local surface waters. Green infrastructure technologies, including green roofs, are being implemented as part of a CSO abatement strategy and to develop co-benefits of diminished stormwater runoff, including decreased loading of contaminants to the wastewater system and surface waters. The objective of this study was to examine the quantity and quality of discharge associated with precipitation events over an annual cycle from a green roof in Syracuse, NY and to compare measurements from this monitoring program with results from a roof irrigation experiment. Wet deposition, roof drainage, and water quality were measured for 87 storm events during an approximately 12 month period over 2011-2012. Water and nutrient (total phosphorus, total nitrogen, and dissolved organic carbon) mass balances were conducted on an event basis to evaluate retention annually and during the growing and non-growing seasons. These results are compared with a hydrological manipulation experiment, which comprised of artificially watering of the roof. Loadings of nutrients were calculated for experimental and actual storms using the concentration of nutrients and the flow data of water discharging the roof. The green roof was effective in retaining precipitation quantity from storm events (mean percent retention 96.8%, SD = 2.7%, n = 87), although the relative fraction of water retained decreased with increases in the size of the event. There was no difference in water retention of the green roof for the growing and non-growing seasons. Drainage waters exhibited high concentration of nutrients during the warm temperature growing season, particularly total nitrogen and dissolved organic carbon. Overall, nutrient losses were low because of the strong retention of water. However, there was marked variation in the retention of nutrients by season due to variations in concentrations in roof

  2. Drought versus heat: What's the major constraint on Mediterranean green roof plants?

    Energy Technology Data Exchange (ETDEWEB)

    Savi, Tadeja, E-mail: tsavi@units.it [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Dal Borgo, Anna, E-mail: dalborgo.anna@gmail.com [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Love, Veronica L., E-mail: vllove1@sheffield.ac.uk [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Department of Landscape, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN (United Kingdom); Andri, Sergio, E-mail: s.andri@seic.it [Harpo seic verdepensile, Via Torino 34, 34123 Trieste (Italy); Tretiach, Mauro, E-mail: tretiach@units.it [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Nardini, Andrea, E-mail: nardini@units.it [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy)

    2016-10-01

    Green roofs are gaining momentum in the arid and semi-arid regions due to their multiple benefits as compared with conventional roofs. One of the most critical steps in green roof installation is the selection of drought and heat tolerant species that can thrive under extreme microclimate conditions. We monitored the water status, growth and survival of 11 drought-adapted shrub species grown on shallow green roof modules (10 and 13 cm deep substrate) and analyzed traits enabling plants to cope with drought (symplastic and apoplastic resistance) and heat stress (root membrane stability). The physiological traits conferring efficiency/safety to the water transport system under severe drought influenced plant water status and represent good predictors of both plant water use and growth rates over green roofs. Moreover, our data suggest that high substrate temperature represents a stress factor affecting plant survival to a larger extent than drought per se. In fact, the major cause influencing seedling survival on shallow substrates was the species-specific root resistance to heat, a single and easy measurable trait that should be integrated into the methodological framework for screening and selection of suitable shrub species for roof greening in the Mediterranean. - Highlights: • The use of hardy shrub species for roof greening should be increased. • We monitored water status of 11 shrub species growing on shallow green roofs. • Species heat and drought tolerance, growth, and survival were studied. • High substrate temperature significantly affected plant survival. • Root resistance to heat could be used as trait for species selection for green roofs.

  3. Thermal insulation performance of green roof systems

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Serdar; Morgan, Susan; Retzlaff, William; Once, Orcun [southern Illinois University (United States)], e-mail: scelik@siue.edu, e-mail: smorgan@siue.edu, e-mail: wretzla@siue.edu, e-mail: oonce@siue.edu

    2011-07-01

    With the increasing costs of energy, good building insulation has become increasingly important. Among existing insulation techniques is the green roof system, which consists of covering the roof of a building envelop with plants. The aim of this paper is to assess the impact of vegetation type and growth media on the thermal performance of green roof systems. Twelve different green roof samples were made with 4 different growth media and 3 sedum types. Temperature at the sample base was recorded every 15 minutes for 3 years; the insulation behavior was then analysed. Results showed that the insulation characteristics were achieved with a combination of haydite and sedum sexangulare. This study demonstrated that the choice of growth media and vegetation is important to the green roof system's performance; further research is required to better understand the interactions between growth media and plant roots.

  4. Experimental polyurethane foam roof systems, part 2

    Science.gov (United States)

    Alumbaugh, R. L.; Keeton, J. R.; Humm, E. F.

    1983-01-01

    An experimental roofing installation is described in which polyurethane foam (PUF) was spray-applied directly to metal Butlerib-type metal decks, the roof divided into five approximately equal areas, and the PUF protected with five different elastomeric coating systems. Three of the coating systems were damaged by hailstones about a year after installation; these systems were recoated within 3 years of the initial installation. The current coatings include two of the original coating systems - a plural component silicone and a single component silicone - and those applied over the three systems damaged by hail - a single component silicone, an aluminum filled, hydrocarbon-extended catalyzed urethane, and a catalyzed urethane. The performance of these five PUF systems over a 7-year period is reported. The temperature distributions throughout the roof systems are described. The decay in the thermal conductivity of the PUF roof over a 5-year period is presented, and the energy savings realized by foaming the roof are presented.

  5. Study on the Thermal Effects and Air Quality Improvement of Green Roof

    Directory of Open Access Journals (Sweden)

    Heng Luo

    2015-03-01

    Full Text Available Heat island phenomenon and air quality deterioration issues are two major problems that have occurred during the process of urbanization, especially in developing countries. A number of measures have been proposed, among which roof greening is considered as a promising one due to its outstanding performance in thermal effects as well as air quality improvement. A self-maintenance system, termed the Green Roof Manager (GRM, which comprises the irrigation and shadowing subsystems, is proposed in this paper, focusing on the automatic and reliable operation of the roof greening system rather than exploiting new plant species. A three month long experiment was set up, resulting in the observation that a 14.7% of, on average, temperature reduction can be achieved in summer after deploying the GRM system. During a 24-hour monitoring experiment the PM2.5 concentrations above the GRM was reduced by up to 14.1% over the bare roof.

  6. Green roof impact on the hydrological cycle components

    Science.gov (United States)

    Lamera, Carlotta; Rulli, Maria Cristina; Becciu, Gianfranco; Rosso, Renzo

    2013-04-01

    In the last decades the importance of storm water management in urban areas has increased considerably, due to both urbanization extension and to a greater concern for environment pollution. Traditional storm water control practices, based on the "all to the sewer" attitude, rely on conveyance to route storm water runoff from urban impervious surfaces towards the nearby natural water bodies. In recent years, infiltration facilities are receiving an increasing attention, due to their particular efficiency in restoring a balance in hydrological cycle quite equal to quite pre-urbanization condition. In particular, such techniques are designed to capture, temporarily retain and infiltrate storm water, promote evapotranspiration and harvest water at the source, encouraging in general evaporation, evapotranspiration, groundwater recharge and the re-use of storm water. Green roofs are emerging as an increasingly popular Sustainable Urban Drainage Systems (SUDS) technique for urban storm water management. Indeed, they are able to operate hydrologic control over storm water runoff: they allow a significant reduction of peak flows and runoff volumes collected by drainage system, with a consequent reduction of flooding events and pollution masses discharges by CSO. Furthermore green roofs have a positive influence on the microclimate in urban areas by helping in lower urban air temperatures and mitigate the heat island effect. Last but not least, they have the advantage of improving the thermal insulation of buildings, with significant energy savings. A detailed analysis of the hydrological dynamics, connected both with the characteristics of the climatic context and with the green roof technical design, is essential in order to obtain a full characterization of the hydrologic behavior of a green roof system and its effects on the urban water cycle components. The purpose of this paper is to analysis the hydrological effects and urban benefits of the vegetation cover of a

  7. Excess body weight, liver steatosis, and early fibrosis progression due to hepatitis C recurrence after liver transplantation

    Institute of Scientific and Technical Information of China (English)

    Pierluigi Toniutto; Carlo Fabris; Claudio Avellini; Rosalba Minisini; Davide Bitetto; Elisabetta Rossi; Carlo Smirne; Mario Pirisi

    2005-01-01

    AIM: To investigate how weight gain after OLT affects the speed of fibrosis progression (SFP) during recurrent hepatitis C virus (HCV) infection of the graft.METHODS: Ninety consecutive patients (63 males,median age 53 years; 55 with HCV-related liver disease),transplanted at a single institution, were studied. All were followed for at least 2 years after OLT and had at least one follow-up graft biopsy, performed not earlier than 1 year after the transplant operation. For each biopsy, a single,experienced pathologist gave an estimate of both the staging according to Ishak and the degree of hepatic steatosis.The SFP was quantified in fibrosis units/month (FU/mo).The lipid metabolism status of patients was summarized by the plasma triglycerides/cholesterol (T/C) ratio. Body mass index (BMI) was measured before OLT, and 1 and 2 years after it.RESULTS: In the HCV positive group, the highest SFP was observed in the first post-OLT year. At that time point,a SFP ≤0.100 FU/mo was observed more frequently among recipients who had received their graft from a young donor and had a pre-transplant BMI value >26.0 kg/m2. At completion of the first post-transplant year, a BMI value >26.5 kg/m2 was associated with a T/C ratio ≤1. The proportion of patients with SFP >0.100 FU/mo descended in the following order: female recipients with a high T/C ratio, male recipients with high T/C ratio, and recipients of either gender with low T/C ratio. Hepatic steatosis was observed more frequently in recipients who, in the first post-transplant year, had increased their BMI ≥1.5 kg/m2 in comparison to the pre-transplant value. Hepatic steatosis was inversely associated with the staging score.CONCLUSION: Among HCV positive recipients, excessweight gain post-OLT does not represent a factor favoring early liver fibrosis development and might even be protective against it.

  8. Solar roof Spansko-Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Majdandzic, L. [Croatian Professional Society for Solar Energy, Zagreb (Croatia); Peric, M. [Brodarski Institute, Zagreb (Croatia); Matic, Z. [Hrvoje Pozar Energy Institute, Zagreb (Croatia)

    2004-07-01

    This paper presents a project named ''Solar roof Spansko-Zagreb'' with data for half a year of operation. This is the first grid-connected project in the Republic of Croatia. The project comprises of solar collectors providing thermal energy, and of PV modules providing electricity. This building does not emit carbon dioxide into the environment, a major contributor of global warming. The concept shows that passive and active use of solar energy can meet power needs of a building, without disrupting the comfort of habitation. The building reduces consumption of fossil fuels thus reducing the emission of harmful substances into the environment. This project represents an initiative for increased use of solar energy, especially on islands in coastal region and hinterland of Croatia. (orig.)

  9. Decision Guide for Roof Slope Selection

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, T.R.

    1988-01-01

    This decision guide has been written for personnel who are responsible for the design, construction, and replacement of Air Force roofs. It provides the necessary information and analytical tools for making prudent and cost-effective decisions regarding the amount of slope to provide in various roofing situations. Because the expertise and experience of the decision makers will vary, the guide contains both basic slope-related concepts as well as more sophisticated technical data. This breadth of information enables the less experienced user to develop an understanding of roof slope issues before applying the more sophisticated analytical tools, while the experienced user can proceed directly to the technical sections. Although much of this guide is devoted to the analysis of costs, it is not a cost-estimating document. It does, however, provide the reader with the relative costs of a variety of roof slope options; and it shows how to determine the relative cost-effectiveness of different options. The selection of the proper roof slope coupled with good roof design, a quality installation, periodic inspection, and appropriate maintenance and repair will achieve the Air Force's objective of obtaining the best possible roofing value for its buildings.

  10. Horizontal roof gap of backfill hydraulic support

    Institute of Scientific and Technical Information of China (English)

    张强; 张吉雄; 邰阳; 方坤; 殷伟

    2015-01-01

    For the backfill hydraulic support as the key equipment for achieving integration of backfilling and coal mining simultaneously in the practical process, its characteristics will directly influence the backfill body’s compression ratio. Horizontal roof gap, as a key parameter of backfilling characteristics, may impact the backfilling effect from the aspects of control of roof subsidence in advance, support stress, backfilling process and the support design. Firstly, the reason why horizontal roof gap exists was analyzed and its definition, causes and connotation were introduced, then adopting the Pro/E 3D simulation software, three typical 3D entity models of backfill hydraulic supports were built, based on the influence of horizontal roof gap on backfilling effect, and influence rules of four factors, i.e. support height, suspension height, suspension angle and tamping angle, were emphatically analyzed on horizontal roof gap. The results indicate that, the four factors all have significant impacts on horizontal roof gap, but show differences in influence trend and degree, showing negative linear correlation, positive linear correlation, positive semi-parabolic correlation and negative semi-parabolic correlation, respectively. Four legs type is the most adaptive to the four factors, while six legs (II) type has the poorest adaptability, and the horizontal roof gap is small under large support height, small suspension height, small suspension angle and large tamping angle situation. By means of optimizing structure components and their positional relation and suspension height of backfill scrape conveyor in the process of support design and through controlling working face deployment, roof subsidence in advance, mining height and backfilling during engineering application, the horizontal roof gap is optimized. The research results can be served as theoretical basis for support design and guidance for backfill support to have better performance in backfilling.

  11. Trends in the design, construction and operation of green roofs to improve the rainwater quality. State of the art

    Directory of Open Access Journals (Sweden)

    Jair Andrés Morales Mojica

    2017-07-01

    Full Text Available The green roofs appear as technology for the improvement water quality. This article identifies trends in the conditions of design, construction and operation of green roofs, which aim is to improve the quality of rainwater. A literature review was carried out in order to collect 45 original research papers from databases as Scopus, Science Direct, and Redalyc. From the information collected trends in increments and reductions in the concentrations of the main water quality parameters, seasons of the year with the best results, types of green roofs , types of substrate and most common components, construction trends (dimensions, inclination, Materials and layers and vegetation used in these systems have been determined. The results show that green roofs have the ability to neutralize acid rain. Extensive type roofs are the ones most commonly used, due to its characteristics of construction, functionality and low maintenance requirements.

  12. STUDY ON HARD ROOF ROCKBURST IN COAL MINE

    Institute of Scientific and Technical Information of China (English)

    潘一山; 陈德军; 章梦涛

    1997-01-01

    Based on practical observation in Mentougou Mine, a general law of roof rockburst is put forward. The destabilization theory of roof rockburst has been established. The general laws of microquake premonition and earth sound in roof rockburst is advanced. The relationship between roof rockburst and rockburst of coal body is studied.

  13. Analysis on thermal measuring of green roof

    Institute of Scientific and Technical Information of China (English)

    唐鸣放; 蒋琳

    2009-01-01

    Comparison of thermal performance between a green roof room and a bare roof room was presented during the cooling period in Shanghai. The results show that the electricity can be saved about 0.08 kW·h/(d·m2),and the heat flux can be reduced by about 70%; the inner surface temperature variation is about 1.0 ℃ comparing with the indoor temperature when using the green roof,and the extra equivalent heat resistance is 1.0 m2·K/W.

  14. Metal and nutrient dynamics on an aged intensive green roof.

    Science.gov (United States)

    Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L

    2014-01-01

    Runoff and rainfall quality was compared between an aged intensive green roof and an adjacent conventional roof surface. Nutrient concentrations in the runoff were generally below Environmental Quality Standard (EQS) values and the green roof exhibited NO3(-) retention. Cu, Pb and Zn concentrations were in excess of EQS values for the protection of surface water. Green roof runoff was also significantly higher in Fe and Pb than on the bare roof and in rainfall. Input-output fluxes revealed the green roof to be a potential source of Pb. High concentrations of Pb within the green roof soil and bare roof dusts provide a potential source of Pb in runoff. The origin of the Pb is likely from historic urban atmospheric deposition. Aged green roofs may therefore act as a source of legacy metal pollution. This needs to be considered when constructing green roofs with the aim of improving pollution remediation.

  15. Calculating the Insulated Car Roof Opening System Components and Strength Analysis of Car Design in Its Various Embodiments

    Directory of Open Access Journals (Sweden)

    V. S. Kopytov

    2016-01-01

    Full Text Available Opening roof cars can be used in transportation of a diversity of goods that require weather protection. Their operation allows us to fulfill the tasks of the Ministry of Railways that is to ensure both the qualitative and lossless transportation of various national economy and special loads and the significant improvement in the technical and economic indexes of the industry. Thus, there are three embodiment options of the opening roofs: single-leaf roof with axial of rotation along one car side; double-leaf roof with axial of rotation of its flaps along both car sides; single-leaf roof with axial of rotation along the car end wall. The work analyses and compares the first two options of the opening systems of the car roof. Analysis of various schemes of opening the roof-insulated cars is based on kinematic and force calculations. The paper defines how the changing length of hydraulic cylinders depends on the stroke and on the arm of applied force, depending on the opening roof angle for various embodiment options. To find the forces acting on the cylinders were determined the forces acting on the roof and the total applied moment of all the forces acting on them with respect to the axial of rotation. Thus, the total applied moment was considered to comprise the weighting unbalance moments of the roof and snow on it, as well as a moment of the force of wind acting on the roof (dead wind or downwind. Upon finding how the changing total moment of the force applied to the roof depends on the rotation angle and on the change of the applied force arm of hydraulic cylinders, the work determines the forces acting on the cylinders. The maximum tensile and compression force acting on the cylinders allows us to define their geometric characteristics such as piston stroke, diameter of the rod, piston-and rod-working cavity. Using a software package SADAS (developed at the Department "Rocket Launching Complexes" in BMSTU the core models were built and

  16. Drought versus heat: What's the major constraint on Mediterranean green roof plants?

    Science.gov (United States)

    Savi, Tadeja; Dal Borgo, Anna; Love, Veronica L; Andri, Sergio; Tretiach, Mauro; Nardini, Andrea

    2016-10-01

    Green roofs are gaining momentum in the arid and semi-arid regions due to their multiple benefits as compared with conventional roofs. One of the most critical steps in green roof installation is the selection of drought and heat tolerant species that can thrive under extreme microclimate conditions. We monitored the water status, growth and survival of 11 drought-adapted shrub species grown on shallow green roof modules (10 and 13cm deep substrate) and analyzed traits enabling plants to cope with drought (symplastic and apoplastic resistance) and heat stress (root membrane stability). The physiological traits conferring efficiency/safety to the water transport system under severe drought influenced plant water status and represent good predictors of both plant water use and growth rates over green roofs. Moreover, our data suggest that high substrate temperature represents a stress factor affecting plant survival to a larger extent than drought per se. In fact, the major cause influencing seedling survival on shallow substrates was the species-specific root resistance to heat, a single and easy measurable trait that should be integrated into the methodological framework for screening and selection of suitable shrub species for roof greening in the Mediterranean.

  17. Evaluation of green roof as green technology for urban stormwater quantity and quality controls

    Science.gov (United States)

    Kok, K. H.; Sidek, L. M.; Abidin, M. R. Z.; Basri, H.; Muda, Z. C.; Beddu, S.

    2013-06-01

    Promoting green design, construction, reconstruction and operation of buildings has never been more critical than now due to the ever increasing greenhouse gas emissions and rapid urbanizations that are fuelling climate change more quickly. Driven by environmental needs, Green Building Index (GBI) was founded in Malaysia to drive initiative to lead the property industry towards becoming more environment-friendly. Green roof system is one of the assessment criteria of this rating system which is under category of sustainable site planning and management. An extensive green roof was constructed in Humid Tropics Center (HTC) Kuala Lumpur as one of the components for Stormwater Management Ecohydrology (SME) in order to obtain scientific data of the system. This paper evaluates the performance of extensive green roof at Humid Tropics Center with respect to urban heat island mitigation and stormwater quantity and quality controls. Findings indicate that there was a reduction of around 1.5°C for indoor temperature of the building after installation of green roof. Simulations showed that the peak discharge was reduced up to 24% relative to impervious brown roof. The results show an increment of pH and high concentration of phosphate for the runoff generated from the green roof and the runoff water quality ranged between class I and II under INWQS.

  18. Life, death, and resurrection on a green roof in Toronto

    Energy Technology Data Exchange (ETDEWEB)

    McGlade, T. [Perennial Gardens Corp., Toronto, ON (Canada)

    2004-07-01

    The Sears warehouse building in Toronto was constructed in 1910 and has been converted to a 400 unit loft condominium. Perennial Gardens Corporation was hired to landscape a rooftop garden on the huge open roof area to provide a place for residents to barbecue and relax. The process began with engineers placing the venting for the drains directly into the planting beds and addressing roof drain and sloping issues. There were many physical aspects which caused a variety of problems with this project, namely high wind velocity with a swirling effect which meant that all trees had to be tripod staked; soil erosion due to the wind; the plants which were mostly plugs or 4 inch pots contained soil which was not compatible with the sopraflor used through the rooftop and a major problem with dogs using the rooftop area. This landscape project demonstrated that not all perennials are suited for a green roof. The original planting list was provided along with problems encountered. 5 figs.

  19. Standard tests for the characterization of roofing slate pathologies

    Directory of Open Access Journals (Sweden)

    Cárdenes, V.

    2012-06-01

    Full Text Available The pathologies formed in slate roofs are mainly due to the presence of potentially unstable minerals (iron sulfides, carbonates and organic matter. These minerals may become altered by the effect of environmental agents, once the slate roof is finished. The pathologies are mainly associated with oxidation and gypsification processes of the cited mineral phases. In this work, the potential pathologies of several Spanish roofing slates are identified, using the tests defined in the European Norms EN 12326:2005, 14147:2004 and 11597:2007.

    Las patologías que se originan en pizarra para cubiertas son debidas fundamentalmente a la presencia de materiales alterables (sulfuros de hierro, carbonatos y materia orgánica. Estos minerales pueden llegar a alterarse por efecto de los agentes medioambientales, una vez que la pizarra es puesta en obra. Las patologías están principalmente asociadas a procesos de oxidación y yesificación de las citadas fases minerales. En este trabajo se determinan las patologías potenciales de varias pizarras para cubiertas españolas, utilizando los ensayos definidos en las normas UNE-EN 12326:2005, 14147:2004 y 11597:2007.

  20. Operation of roof pond systems, considering its advantages and disadvantages

    Energy Technology Data Exchange (ETDEWEB)

    Noohi, Samira; Rezaei, Davood [Faculty of engineering, Zanjan University (Iran, Islamic Republic of)], email: noohi.sam@gmail.com, email: d_rezaei@znu.ac.ir

    2011-07-01

    With the coming shortage of fossil fuels it is important to develop energy efficient buildings to reduce both energy consumption and pollution at the same time. The roof pond system is a passive solar system which gathers heat from the sun and can distribute it to the living space to cool it or heat it by changing the operating cycle. Although not recent, this method has not been widely implemented due to certain limitations and the aim of this paper is to assess the different advantages and disadvantages of this system over other passive solar heating systems. This study showed that a roof pond has a low impact on the building, provides controllable energy delivery and variations in indoor temperature are low; however it requires an active solar system as a backup and vegetation can limit sunlight penetration. This study highlighted that the efficiency of the roof system pond depends on climate conditions and that it is best suited to lower latitude and low humidity areas.

  1. Carbon sequestration potential of extensive green roofs.

    Science.gov (United States)

    Getter, Kristin L; Rowe, D Bradley; Robertson, G Philip; Cregg, Bert M; Andresen, Jeffrey A

    2009-10-01

    Two studies were conducted with the objective of quantifying the carbon storage potential of extensive green roofs. The first was performed on eight roofs in Michigan and four roofs in Maryland, ranging from 1 to 6 years in age. All 12 green roofs were composed primarily of Sedum species, and substrate depths ranged from 2.5 to 12.7 cm. Aboveground plant material was harvested in the fall of 2006. On average, these roofs stored 162 g C x m(-2) in aboveground biomass. The second study was conducted on a roof in East Lansing, MI. Twenty plots were established on 21 April 2007 with a substrate depth of 6.0 cm. In addition to a substrate only control, the other plots were sown with a single species of Sedum (S. acre, S. album, S. kamtshaticum, or S. spurium). Species and substrate depth represent typical extensive green roofs in the United States. Plant material and substrate were harvested seven times across two growing seasons. Results at the end of the second year showed that aboveground plant material storage varied by species, ranging from 64 g C x m(-2) (S. acre) to 239 g C x m(-2) (S. album), with an average of 168 g C x m(-2). Belowground biomass ranged from 37 g C x m(-2) (S. acre) to 185 g C x m(-2) (S. kamtschaticum) and averaged 107 g C x m(-2). Substrate carbon content averaged 913 g C x m(-2), with no species effect, which represents a sequestration rate of 100 g C x m(-2) over the 2 years of this study. The entire extensive green roof system sequestered 375 g C x m(-2) in above- and belowground biomass and substrate organic matter.

  2. Green Roofs and Green Building Rating Systems

    OpenAIRE

    Liaw; Chao-Hsien

    2015-01-01

    The environmental benefits for green building from the Leadership in Energy and Environment Design (LEED) and Ecology, Energy, Waste, and Health (EEWH) rating systems have been extensively investigated; however, the effect of green roofs on the credit-earning mechanisms is relatively unexplored. This study is concerned with the environmental benefits of green roofs with respect to sustainability, stormwater control, energy savings, and water resources. We focused on the relationsh...

  3. Supportive treatment in weight-losing cancer patients due to the additive adverse effects of radiation treatment and/or chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Erkurt, E.; Tunali, C. [Cukurova University Medical Faculty, Dept. of Radiation Oncology, Balcali-Adana (Turkey); Erkisi, M. [Cukurova University Medical Faculty, Dept. of Medical Oncology (Turkey)

    2000-12-01

    The reversal of anorexia and weight loss especially in patients with advanced cancer suffering from radiation treatment (RT) -related complications and debilitated further during RT would be a welcome relief. The purpose of this study is to evaluate the feasibility of supportive treatment with megestrol acetate (MA) in the weight-losing cancer patients increasingly experiencing anorexia, smell, taste, and weight loss due to the additive adverse effects of RT plus or minus chemotherapy and how MA changes the additive role of the severity of RT reactions on such patients. >From June 1997 to October 1998, 100 eligible patients were enrolled on a randomized, placebo-controlled clinical trial. Of the 100 patients, 46 received MA during RT and 4 after the end of the RT, and 50 received placebo for 3 months. Subjective parameters were assessed by a brief questionnaire form based on scoring from 1 to 5, according to the degree of the loss or change for each parameter of malnutrition, appetite, taste and smell developed by the researchers. At the end of the study a statistically significant weight gain was achieved in the patient group receiving MA compared to the placebo group (+ 3 to + 5 kg versus -3.7 to -5.9 kg, p=0.000). Significant improvements were seen in performance status (p=0.000), appetite (p=0.000), malnutrition (p=0.000), loss of taste (p=0.000) and smell qualities (p=0.02) in the MA group compared to the placebo group. In the MA group there was no statistically significant difference related to the weight changes according to the grade of either the acute or late RT effects (p=0.65 and 0.07, respectively). Whereas, in the placebo group a statistically significant additive effect of the acute and late RT effects was detected on weight loss (p=0.008 and 0.007, respectively). It was observed no side-effects of MA in a 3-month time follow-up. The use of MA 480 mg/day during RT was effective in reversing anorexia and weight loss in spite of the acute RT effects

  4. Six aspects to inspirational green roof design

    Energy Technology Data Exchange (ETDEWEB)

    Kiers, H. [SWA Group, Sausalito, CA (United States)

    2004-07-01

    Green roofs have been categorized as a technology that is not initially faster, better or cheaper, and may even under perform established products. However, green roofs have features and values that early adopters are ready to experiment with in small markets, thereby creating awareness of the technology. Termed as disruptive technologies, green roofs can become competitive within the mainstream market against established products. The challenge in green roof construction is to find the correct balance between idealistic principles and leading edge design. This paper presented case studies to examine the following 6 aspects of design fundamentals to the creation of inspirational green roofs: the use of colour; experimentation with materials and technology; incorporation of texture, form, and pattern; definition of space; engagement of vistas; and, principles of bio-regionalism. It was concluded that good design is not enough to lead to widespread green roof implementation. It was emphasized that change will occur primarily because of the benefits acquired through implementation. 11 refs., 7 figs.

  5. Physical properties and hydrological response of green roof substrates based on recycled construction materials

    Science.gov (United States)

    Vanwalleghem, Tom; Hayas, Antonio; Jiménez-Quiñones, Daniel; Peña, Adolfo; Giráldez, Juan Vicente

    2015-04-01

    Green roofs in urban areas improve the building's energy efficiency and provide a wide array of additional environmental benefits. Characterizing and predicting the physical properties and hydrological response of green roofs is necessary to understand the roof's heat balance, which is controlled to a large extent by the substrate's water content, to predict the runoff response and functioning as a part of sustainable urban drainage systems and to plan irrigation of the plants in drier climates. This study examines 10 different extensive green roof substrates, based on recycled construction materials. Green roof simulation decks were installed in boxes of 0,6 m x 0,4 m to a depth of 70 mm, 10 with and 10 without plants. Total water holding capacity of the substrates varied between 10,4 - 23,9 %, with an additional 19 % retained by the drainage layer and geotextiles used in the simulation deck. An important compaction of 30 % on average was observed after 1,5 months. Final bulk densities are between 1457 - 1993 kg m-3. In an evaporation experiment, it was shown that the water evaporated from the green roofs is controlled mainly by the relative moisture content. Substrate properties exerted only a secondary control, with the lowest evaporation rates from the substrates with highest coarse crushed aggregate content and with the highest clay content. The evaporation model proposed here was shown to work well to simulate the evolution of the water balance and therefore the specific unit weight over longer time periods in all substrates, with a Nash-Sutcliffe model efficiency of 0.989. Finally, plants were found to grow satisfactorily in all substrates. Therefore, when regular irrigation is provided, it was concluded that green roofs based on recycled construction materials are a viable option. Future research will have to explore the long-term plant dynamics under water-limited conditions.

  6. The Perception of Malaysian Architects towards the Implementation of Green Roofs: A Review of Practices, Methodologies and Future Research

    Directory of Open Access Journals (Sweden)

    Zahir M.H. Md.

    2014-01-01

    Full Text Available The implementation of green roofs or vegetated roof as a sustainable tool to mitigate the Urban Heat Island effect is relatively new in Malaysia. Although it has not been tested on an urban scale, many research findings have indicated that green roofs can contribute towards enhancing the environmental and aesthetical quality of the built environment. It was hypothesized that the low application of green roofs in the Malaysian construction industry is due to the lack of awareness, understanding and experience in its benefits especially among building practitioners. As a result, this research was initiated to determine the perception and understanding of Malaysian architects in green roofs implementation issues, as well as to identify their level of acceptance and readiness. This paper reviews practices and different research approaches in understanding the factors that influence architect’s perception towards the implementation of green roofs in the Malaysian construction industry. Architects were chosen as the only respondents due to their intensive involvement in the conceptualisation, planning, design and construction stage of a built environment project. Extensive literature review was conducted to explore past experiences in green roof implementation and to develop the theoretical framework for this research.

  7. 轻骨料混凝土与EPS板复合生产屋面隔热砖的试验研究%The Experimental Studies on the Roofing Heat Insulation Brick Produced by the Combination of Light Weight Aggregate Concrete and Polystyrene Board

    Institute of Scientific and Technical Information of China (English)

    陈秀峰; 严捍东

    2011-01-01

    A production technology for a new kind of roofing composition heat insulation brick was studied in the paper. That has surface layer and bottom layer of light weight aggregate concrete, sandwich layer of Polystyrene (EPS) broad with certain height and skin decoration layer of color and water proof cement mortar. The influence pattern of sandwich layer height of EPS board, type of light weight aggregate concrete and mating mode among layers on the compressive strength, flexural strength, bulk density, thermal conductivity and water absorption in 24 hour of composition heat insulation brick were measured and analyzed systematically by trial. The experimental results demonstrate that the height of EPS broad should be 15mm - 20mm. Some properties of composition heat insulation brick could be improved at some extent by means of the technology of the constant volume replacement of pottery sand by EPS granule or expansion perlite of 40% to 80% and punching hole at EPS broad. That technology can be adopted reasonably in practice manufacture.%研究了一种新型屋面复合隔热砖的生产技术,它以轻骨料混凝土为面层和底层,中间复合一定厚度的聚苯乙烯(EPS)板,表层采用彩色防水水泥砂浆装饰.通过试验系统测试和分析了芯层EPS板厚度、轻骨料混凝土种类、层间联接方式对复合隔热砖抗压强度、抗折强度、压缩比、表现密度、导热系数、24 h吸水率的影响规律.试验结果表明EPS板的厚度宜为15 mm-20 mm,40% - 80% EPS颗粒或膨胀珍珠岩等体积取代陶砂、EPS板穿孔等技术在一定程度上可以改善复合隔热砖的部分性能,实际生产时可以合理采用.

  8. Simulation tests to assess occupational exposure to airborne asbestos from artificially weathered asphalt-based roofing products.

    Science.gov (United States)

    Sheehan, Patrick; Mowat, Fionna; Weidling, Ryan; Floyd, Mark

    2010-11-01

    Historically, asbestos-containing roof cements and coatings were widely used for patching and repairing leaks. Although fiber releases from these materials when newly applied have been studied, there are virtually no useful data on airborne asbestos fiber concentrations associated with the repair or removal of weathered roof coatings and cements, as most studies involve complete tear-out of old roofs, rather than only limited removal of the roof coating or cement during a repair job. This study was undertaken to estimate potential chrysotile asbestos fiber exposures specific to these types of roofing products following artificially enhanced weathering. Roof panels coated with plastic roof cement and fibered roof coating were subjected to intense solar radiation and daily simulated precipitation events for 1 year and then scraped to remove the weathered materials to assess chrysotile fiber release and potential worker exposures. Analysis of measured fiber concentrations for hand scraping of the weathered products showed 8-h time-weighted average concentrations that were well below the current Occupational Safety and Health Administration permissible exposure limit for asbestos. There was, however, visibly more dust and a few more fibers collected during the hand scraping of weathered products compared to the cured products previously tested. There was a notable difference between fibers released from weathered and cured roofing products. In weathered samples, a large fraction of chrysotile fibers contained low concentrations of or essentially no magnesium and did not meet the spectral, mineralogical, or morphological definitions of chrysotile asbestos. The extent of magnesium leaching from chrysotile fibers is of interest because several researchers have reported that magnesium-depleted chrysotile fibers are less toxic and produce fewer mesothelial tumors in animal studies than normal chrysotile fibers.

  9. Green roof valuation: a probabilistic economic analysis of environmental benefits.

    Science.gov (United States)

    Clark, Corrie; Adriaens, Peter; Talbot, F Brian

    2008-03-15

    Green (vegetated) roofs have gained global acceptance as a technologythat has the potential to help mitigate the multifaceted, complex environmental problems of urban centers. While policies that encourage green roofs exist atthe local and regional level, installation costs remain at a premium and deter investment in this technology. The objective of this paper is to quantitatively integrate the range of stormwater, energy, and air pollution benefits of green roofs into an economic model that captures the building-specific scale. Currently, green roofs are primarily valued on increased roof longevity, reduced stormwater runoff, and decreased building energy consumption. Proper valuation of these benefits can reduce the present value of a green roof if investors look beyond the upfront capital costs. Net present value (NPV) analysis comparing a conventional roof system to an extensive green roof system demonstrates that at the end of the green roof lifetime the NPV for the green roof is between 20.3 and 25.2% less than the NPV for the conventional roof over 40 years. The additional upfront investment is recovered at the time when a conventional roof would be replaced. Increasing evidence suggests that green roofs may play a significant role in urban air quality improvement For example, uptake of N0x is estimated to range from $1683 to $6383 per metric ton of NOx reduction. These benefits were included in this study, and results translate to an annual benefit of $895-3392 for a 2000 square meter vegetated roof. Improved air quality leads to a mean NPV for the green roof that is 24.5-40.2% less than the mean conventional roof NPV. Through innovative policies, the inclusion of air pollution mitigation and the reduction of municipal stormwater infrastructure costs in economic valuation of environmental benefits of green roofs can reduce the cost gap that currently hinders U.S. investment in green roof technology.

  10. Performance Evaluation and Field Application of Red Clay Green Roof Vegetation Blocks for Ecological Restoration Projects

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2017-02-01

    Full Text Available In this study, for restoration of ecological systems in buildings, porous vegetation red clay green roof blocks were designed for performance evaluation. Blast furnace slag (BFS; fine aggregates (agg., coarse aggregates, polyvinyl alcohol (PVA fiber (hydrophilic fiber, and red clay (ecofriendly additive material were applied to the construction of the porous vegetation red clay green roof blocks. A decrease in cement use is one way of reducing carbon emissions. To increase the water retentivity and the efficiency of roof vegetation blocks, blast furnace slag aggregates with excellent water absorptivity and polyvinyl alcohol fiber with a water absorption rate above 20% were added. In particular, the addition of polyvinyl alcohol fiber prevents performance reduction of the green roof vegetation blocks during freezing and melting in winter. Compressive strength, void ratio, and unit-mass tests were conducted to evaluate the performance of the roof vegetation blocks. After their application to roof vegetation, the effect of water purification was evaluated. According to the experimental results, the mix that satisfies the target performance of green roof vegetation blocks (compression strength above 8 MPa, void ratio above 20%, unit mass 2.0 kg/cm3 or below is: cement = 128.95 kg/m3, BFS = 96.75 kg/m3, red clay = 96.75 kg/m3, water = 81.50 kg/m3, BFS agg. = 1450 kg/m3, PVA fiber = 1.26 kg/m3. The green roof vegetation blocks were designed using the mix that satisfied the target performance. To find the amount of attainable water due to rainfall, a rainfall meter was installed after application of the roof vegetation to measure daily rainfall and calculate the amount of attainable water. The results show that, for 1 mm of rainfall, it is possible to attain about 0.53 L of water per 1 m2. In addition, the water quality of effluents after application of roof vegetation was analyzed, and the results satisfied Class 4 of the River-life Environmental

  11. Retention capacity of extensive green roofs

    Directory of Open Access Journals (Sweden)

    Sobczyk Małgorzata

    2016-09-01

    Full Text Available Climate change causes a more frequent occurrence of extreme events. The result of these phenomena is the occurrence of floods and flooding, and periods of drought. Particularly unfavorable is intensive rainfall over the urban catchments. To prevent the negative consequences of these phenomena, unconventional solutions should be used. The use of green roofs in urban areas will serve the sustainable development of cities and the impact on local ecological changes. The study was performed at two green roof platforms 1.2×1.2×0.1 m each. An analysis was performed at different intensities given for precipitation. 20 min for the rain to stop was observed from 68 to 100% precipitation. The study was divided into two parts. The first part of the study has been performed in the dry period. In contrast, another round of tests was repeated in other conditions after rainfall. The amount of water at two experimental green roofs platforms before the test was 11.0 dm3. The research relates to the impact of green roofs on local hydrological changes. Development of technologies for green roofs had a positive impact on mitigating the effects of climate change associated with the occurrence of flooding the city.

  12. Integrated real-time roof monitoring

    Institute of Scientific and Technical Information of China (English)

    SHEN Bao-tang; GUO Hua; KING Andrew

    2009-01-01

    CSIRO has recently developed a real-time roof monitoring system for under-ground coal mines and successfully tried the system in gate roads at Ulan Mine. The sys-tem integrated displacement monitoring, stress monitoring and seismic monitoring in one package. It included GEL multianchor extensometers, vibrating wire uniaxial stress meters, ESG seismic monitoring system with microseismic sensors and high-frequency AE sen-sors. The monitoring system automated and the data can be automatically collected by a central computer located in an underground nonhazardous area. The data are then trans-ferred to the surface via an optical fiber cable. The real-time data were accessed at any location with an Internet connection. The trials of the system in two tailgates at Ulan Mine demonstrate that the system is effective for monitoring the behavior and stability of read-ways during Iongwall mining. The continuous roof displacement/stress data show clear precursors of roof falls. The seismic data (event count and locations) provide insights into the roof failure process during roof fall.

  13. Fuel Consumption Impacts of Auto Roof Racks

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuche; Meier, Alan

    2016-05-01

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks' fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing. The results show that nationwide, roof racks are responsible for 0.8% of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. The aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks--if successful--could save more fuel nationally.

  14. Green roof seasonal variation: comparison of the hydrologic behavior of a thick and a thin extensive system in New York City

    Science.gov (United States)

    Elliott, R. M.; Gibson, R. A.; Carson, T. B.; Marasco, D. E.; Culligan, P. J.; McGillis, W. R.

    2016-07-01

    Green roofs have been utilized for urban stormwater management due to their ability to capture rainwater locally. Studies of the most common type, extensive green roofs, have demonstrated that green roofs can retain significant amounts of stormwater, but have also shown variation in seasonal performance. The purpose of this study is to determine how time of year impacts the hydrologic performance of extensive green roofs considering the covariates of antecedent dry weather period (ADWP), potential evapotranspiration (ET0) and storm event size. To do this, nearly four years of monitoring data from two full-scale extensive green roofs (with differing substrate depths of 100 mm and 31 mm) are analyzed. The annual performance is then modeled using a common empirical relationship between rainfall and green roof runoff, with the addition of Julian day in one approach, ET0 in another, and both ADWP and ET0 in a third approach. Together the monitoring and modeling results confirm that stormwater retention is highest in warmer months, the green roofs retain more rainfall with longer ADWPs, and the seasonal variations in behavior are more pronounced for the roof with the thinner media than the roof with the deeper media. Overall, the ability of seasonal accounting to improve stormwater retention modeling is demonstrated; modification of the empirical model to include ADWP, and ET0 improves the model R 2 from 0.944 to 0.975 for the thinner roof, and from 0.866 to 0.870 for the deeper roof. Furthermore, estimating the runoff with the empirical approach was shown to be more accurate then using a water balance model, with model R 2 of 0.944 and 0.866 compared to 0.975 and 0.866 for the thinner and deeper roof, respectively. This finding is attributed to the difficulty of accurately parameterizing the water balance model.

  15. Change in molecular weight due to important pfatp6 and pfmdr1 polymorphisms and susceptibility to antimalarial drug: Possible role of epigenetic phenomenon

    Directory of Open Access Journals (Sweden)

    Somsri Wiwanitkit

    2017-03-01

    Full Text Available Malaria is an important tropical mosquito borne infection. It is still the present global public health issue. The management of malaria requires antimalarial drugs. The resistance to antimalarial drugs is a very big problem. The genetic variant is proposed to be an important factor affecting susceptibility to antimalarial drug. Here, the authors studied the change in molecular weight due to important pfatp6 and pfmdr1 polymorphisms and further implied the interrelationship with susceptibility to antimalarial drug. The greatest change can be seen in case of G639D (of pfatp6 polymorphism while the least change can be seen in the case of N1042D (of pfmdr1 polymorphism. The results from some studies imply that there must be other factors that affect the susceptibility to antimalarial drugs. Those factors might be protein conformation factors, epigenetic factors or environmental factors. Further studies on these aspects should be carried out. It is concluded for possible role of epigenetic phenomenon.

  16. Study of Dynamic Behavior of Multilayered Clamped Composite Skewed Hypar Shell Roofs under Impact Load

    Directory of Open Access Journals (Sweden)

    Sanjoy Das Neogi

    2013-01-01

    Full Text Available With advancement in the field of structural engineering, hunt for smarter materials has channelised the research towards the application of composite material. It is the high specific weight and specific stiffness of this material that have drawn the interest of different industrial sectors. Civil engineers also picked up composites to use it as a roofing material. Laminated composite shells, which can cover large column-free area and reduces dead weight of structure, show vulnerability under sudden impact due to their low transverse shear resistances. This study utilises finite element tool to investigate the dynamic response of a multilayered laminated composite hypar shells for fully clamped boundary condition. This class of shells is unique in a sense that the curvature has only the radius of cross curvature and these shells do not admit easy closed form solution particularly when the boundary conditions are complicated. Contact behavior of impactor and impacted mass has been modeled by modified Hertzian contact law and time-dependent equations are solved using Newmark’s time integration technique. Basic aim is to analyse the shell for symmetrically placed multilayered angle and cross ply lamination under different impact velocities.

  17. Roofing as a source of nonpoint water pollution.

    Science.gov (United States)

    Chang, Mingteh; McBroom, Matthew W; Scott Beasley, R

    2004-12-01

    Sixteen wooden structures with two roofs each were installed to study runoff quality for four commonly used roofing materials (wood shingle, composition shingle, painted aluminum, and galvanized iron) at Nacogdoches, Texas. Each roof, either facing NW or SE, was 1.22 m wide x 3.66 m long with a 25.8% roof slope. Thus, there were 32 alternatively arranged roofs, consisting of four roof types x two aspects x four replicates, in the study. Runoff from the roofs was collected through galvanized gutters, downspouts, and splitters. The roof runoff was compared to rainwater collected by a wet/dry acid rain collector for the concentrations of eight water quality variables, i.e. Cu(2+), Mn(2+), Pb(2+), Zn(2+), Mg(2+), Al(3+), EC and pH. Based on 31 storms collected between October 1997 and December 1998, the results showed: (1) concentrations of pH, Cu, and Zn in rainwater already exceed the EPA freshwater quality standards even without pollutant inputs from roofs, (2) Zn and Cu, the two most serious pollutants in roof runoff, exceeded the EPA national freshwater water quality standards in virtually 100% and more than 60% of the samples, respectively, (3) pH, EC, and Zn were the only three variables significantly affected by roofing materials, (4) differences in Zn concentrations were significant among all roof types and between all roof runoff and rainwater samples, (5) although there were no differences in Cu concentrations among all roof types and between roof runoff and rainwater, all means and medians of runoff and rainwater exceeded the national water quality standards, (6) water quality from wood shingles was the worst among the roof types studied, and (7) although SE is the most frequent and NW the least frequent direction for incoming storms, only EC, Mg, Mn, and Zn in wood shingle runoff from the SE were significantly higher than those from the NW; the two aspects affected no other elements in runoff from the other three roof types. Also, Zn concentrations from

  18. Green Roofs and Green Building Rating Systems

    Directory of Open Access Journals (Sweden)

    Liaw

    2015-01-01

    Full Text Available The environmental benefits for green building from the Leadership in Energy and Environment Design (LEED and Ecology, Energy, Waste, and Health (EEWH rating systems have been extensively investigated; however, the effect of green roofs on the credit-earning mechanisms is relatively unexplored. This study is concerned with the environmental benefits of green roofs with respect to sustainability, stormwater control, energy savings, and water resources. We focused on the relationship between green coverage and the credits of the rating systems, evaluated the credits efficiency, and performed cost analysis. As an example, we used a university building in Keelung, Northern Taiwan. The findings suggest that with EEWH, the proposed green coverage is 50–75%, whereas with LEED, the proposed green coverage is 100%. These findings have implications for the application of green roofs in green building.

  19. Weathering of Roofing Materials-An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Paul; Akbari, Hashem; Levinson, Ronnen; Miller, William A.

    2006-03-30

    An overview of several aspects of the weathering of roofing materials is presented. Degradation of materials initiated by ultraviolet radiation is discussed for plastics used in roofing, as well as wood and asphalt. Elevated temperatures accelerate many deleterious chemical reactions and hasten diffusion of material components. Effects of moisture include decay of wood, acceleration of corrosion of metals, staining of clay, and freeze-thaw damage. Soiling of roofing materials causes objectionable stains and reduces the solar reflectance of reflective materials. (Soiling of non-reflective materials can also increase solar reflectance.) Soiling can be attributed to biological growth (e.g., cyanobacteria, fungi, algae), deposits of organic and mineral particles, and to the accumulation of flyash, hydrocarbons and soot from combustion.

  20. Effects of roof and rainwater characteristics on copper concentrations in roof runoff.

    Science.gov (United States)

    Bielmyer, Gretchen K; Arnold, W Ray; Tomasso, Joseph R; Isely, Jeff J; Klaine, Stephen J

    2012-05-01

    Copper sheeting is a common roofing material used in many parts of the world. However, copper dissolved from roof sheeting represents a source of copper ions to watersheds. Researchers have studied and recently developed a simple and efficient model to predict copper runoff rates. Important input parameters include precipitation amount, rain pH, and roof angle. We hypothesized that the length of a roof also positively correlates with copper concentration (thus, runoff rates) on the basis that runoff concentrations should positively correlate with contact time between acidic rain and the copper sheet. In this study, a novel system was designed to test and model the effects of roof length (length of roof from crown to the drip edge) on runoff copper concentrations relative to rain pH and roof angle. The system consisted of a flat-bottom copper trough mounted on an apparatus that allowed run length and slope to be varied. Water of known chemistry was trickled down the trough at a constant rate and sampled at the bottom. Consistent with other studies, as pH of the synthetic rainwater decreased, runoff copper concentrations increased. At all pH values tested, these results indicated that run length was more important in explaining variability in copper concentrations than was the roof slope. The regression equation with log-transformed data (R(2) = 0.873) accounted for slightly more variability than the equation with untransformed data (R(2) = 0.834). In log-transformed data, roof angle was not significant in predicting copper concentrations.

  1. Quality of Rainwater from Different Roof Material

    Directory of Open Access Journals (Sweden)

    Olaoye, R.A

    2012-08-01

    Full Text Available Roof material is an important consideration when designing a rainwater catchment system .This is because it affects the quality of the harvested rainwater which invariably affects the usage as potable or non potable.This study was carried out to determine the quality of rainwater from four different roofing materials (asbestos, aluminium, concrete and corrugated plastic within Ogbomosho North Local Government Area of Oyo State, Nigeria, between the months of July to October, 2011. The rainwater samples were taken to the laboratory and analyzed as recommended by Nigerian standard for Drinking Water Quality (NSDQW and World Health Organization (WHO.All the Physical and most of the chemical parameters analyzed conformed to the recommended standard value apart from chloride and total hardness value. Of interest is the rainwater sample from asbestos roofing sheet which had the highest mean value for pH (6.75, total hardness (84 – 86mg/l, aluminium concentration (3 – 9 mg/l, copper (0.03 – 0.04 mg/l, nitrate (31.9 – 39mg/l, and sulphate value between 11- 14mg/l, although, all these parameters fell within the standard values. However, Coliform as bacterial indicator was present in samples from asbestos, concrete and corrugated plastic roof, only the aluminium roof was free from pathogenic contamination. To ensure that the rainwater harvested satisfies health requirement for consumption as specified, all the harvested rainwater should be given some level of treatment in terms of pH, total hardness, chloride concentration and bacterial contamination. It was recommended that the rainwater from all the roofs in this case study area, be carefully examined. Consequently, if the harvested rainwater is being considered for domestic use, the gutters and the catchment areas should be regularly cleaned to remove animal droppings and leaves from over hanging trees as well as boiled to adequate temperature.

  2. Weak roof fall simulation for a longwall face

    Energy Technology Data Exchange (ETDEWEB)

    Nazimko, V.V.; Khalimendick, U.M.; Zborshtchick, M.P.; Danilov, V.K.; Sugakov, V.A. [Donetsk State Technical University, Donetsk (Ukraine)

    1999-07-01

    A particle flow algorithm has been employed to investigate immediate roof stability. It is demonstrated that weak rock layers and a lack of powered supports are the most important factors which impact stability to the roof. 1 ref., 4 figs.

  3. Thermoplastic Single-Ply Roof Relieves Water Damage and Inconvenience.

    Science.gov (United States)

    Williams, Jennifer Lynn

    2002-01-01

    Assesses use of thermoplastic single-ply roofs by North Carolina's Mars Hill College to prevent leaks, reduce maintenance costs, and enhance the value of their older historic buildings. Administrators comment on the roof's installation efficiency and cleanliness. (GR)

  4. Stability analysis of subgrade cave roofs in karst region

    Institute of Scientific and Technical Information of China (English)

    蒋冲; 赵明华; 曹文贵

    2008-01-01

    According to the engineering features of subgrade cave roof in karst region, the clamped beam model of subgrade cave roof in karst region was set up. Based on the catastrophe theory, the cusp catastrophe model for bearing capacity of subgrade cave roof and safe thickness of subgrade cave roof in karst region was established. The necessary instability conditions of subgrade cave roof were deduced, and then the methods to determine safe thickness of cave roofs under piles and bearing capacity of subgrade cave roof were proposed. At the same time, a practical engineering project was applied to verifying this method, which has been proved successfu1ly. At last, the major factors that affect the stability on cave roof under pile in karst region were deeply discussed and some results in quality were acquired.

  5. Roof separation characteristics of laminated weak roof strata of longwall roadway

    Institute of Scientific and Technical Information of China (English)

    LU Ting-kan; LIU Yu-zhou

    2004-01-01

    The roof separation was investigated in a coal mine as part of the site characterization of roof strata deterioration in a longwall roadway. The separation of laminated,weak roof strata was initially characterized as the maximum separation, effect of geological setting on separation and the effect of mining activities (heading development,time-dependent and longwall extraction) on separation. Then the separation process was studied, so as to answer the questions of: when the separation occurs; where the separation is located and what geological setting it relates to; how large of the separation is; and how the separation propagates.

  6. The Benefits of Green Roofing for Latvian Building Environment

    OpenAIRE

    Kara, P.; Pastars, P

    2013-01-01

    Green roofs serve several purposes for a building, such as absorbing rainwater, providing insulation, creating a habitat for wildlife and helping to lower urban air temperatures and mitigate the heat island effect. The modern trend started when green roofs were developed in Germany in the 1960s, and has since spread to many countries. Today, it is estimated that about 10% of all German roofs have been “greened”. Green roofs are also becoming increasingly popular in the United States, although...

  7. The Self-Drying Concept for Flat Roofs

    DEFF Research Database (Denmark)

    Korsgaard, Vagn; Bunch-Nielsen, Tommy; Rode, Carsten

    1996-01-01

    Moisture in flat roof systems with an insulation layer has been a long-standing issue for the roof industry. It is now realised, that it is unrealistic and too costly to try to completely keep moisture from entering a roof assembly during its service life. The approach, therefore, should be to ke...... cold- and warm deck roof systems in climate zones where a vapor retarder is needed, if the traditional water proof vapor retarder is substituted by a water permeable vapor retarder....

  8. Pressure relief and structure stability mechanism of hard roof for gob-side entry retaining

    Institute of Scientific and Technical Information of China (English)

    韩昌良; 张农; 李宝玉; 司光耀; 郑西贵

    2015-01-01

    In order to explore the pressure relief and structure stability mechanism of lateral cantilever structure in the stope under the direct coverage of thick hard roof and its impact on the gob-side entry retaining, a lateral cantilever fractured structural mechanical model was established on the basis of clarification for the stress environment of gob-side entry retaining, and the equation of roof given deformation and the balance judgment for fracture block were obtained. The optimal cantilever length was proposed based on the comparison of roof structural characteristics and the stress, deformation law of surrounding rocks under six different cantilever lengths by numerical simulation method. Double stress peaks exist on the sides of gob-side entry retaining and the entry located in the low stress area. The pressure of gob-side entry retaining can be relieved by reducing the cantilever length. However, due to the impact of arch structure of rock beam, unduly short cantilever would result in insufficient pressure relief and unduly long cantilever would bring larger roof stress which results in intense deformation. Therefore, there is optimal cantilever length, which was 7-8 m in this project that enables to achieve the minimum deformation and the most stabilized rock structure of entry retaining. An engineering case of gob-side entry retaining with the direct coverage of 10 m thick hard limestone roof was put forward, and the measured data verified the reasonability of conclusion.

  9. Experimental analysis of the ventilated roof thermal performance; Analise experimental do desempenho termico de coberturas ventiladas

    Energy Technology Data Exchange (ETDEWEB)

    Cunha Neto, Jose Antonio Bellini da; Nicolau, Vicente de Paulo; Philippi, Paulo Cesar; Pereira, Fernando Oscar Ruttkay [Santa Catarina Univ., Florianopolis, SC (Brazil)

    1988-12-31

    Double ventilated roofs are being increasingly used in buildings for reducing the radiant solar load. Heat is transferred from the tiles by thermal convection with cooling breezes which flow in the spacing between the covers and this process will define the thermal efficiency of the roof. In this paper, the results of an experimental work are presented, regarding the thermal performance of ventilated roofs. The measuring process is complicated due to the following factors: i) high turbulence intensity of atmospheric flows, ii) high frequency temperature fluctuations of the cooling breezes, iii) need of high accuracy in temperature measurement, specially for predicting the temperature difference between the air flow and the internal cover. These factors contribute to a high dispersion in the values of the heat transfer coefficient with the air speed in the roof, and difficult the modelisation of the process. Nevertheless, taking the above difficulties in account, the results appear to be reliable and have been compared with a numerical model for simulating the thermal behaviour of the roof. (author) . 7 refs., 7 figs.

  10. Properties of Rice Husk Ash Stabilized Laterite Roof Tiles

    Directory of Open Access Journals (Sweden)

    Momoh Omuya RAHEEM

    2013-11-01

    Full Text Available This paper presents the results of work on the possibility of using of Rice Husk Ash (RHA in the production of clay roof tiles. The pozzolana content of the ash was determined using X-Ray Fluorescence (XRF to confirm the key elements of RHA as a good pozzolanic material. The tiles were produced by moulding clay-RHA blends of various proportions of RHA used in wooden moulds. The percentages by weight of RHA added to various mixes were 0, 5, 10, 15, 20, 25 and 30% RHA and the tiles were fired at 900°C, 1000°C and 1100°C in an electric furnace. The water absorption, density, permeability and Transverse Breaking Stress (TBS of the roof tile produced were tested using manual TBS testing apparatus and weighing balances. The relative trends of the properties tested were dependent on pozzolanic property of RHA and since the sum of the active pozzolanas - SiO2, Al2O3 and Fe2O3 present in the ash is 86.01% and meets 70% minimum recommend by ASTM C618-92a for Class F pozzolana. Most optimal results were obtained at 15% RHA and 900°C temperature for water absorption, density, permeability and Transverse Breaking Stress (TBS.

  11. Increased Ocular Pulse Amplitude Associated with Unilateral Dysgenesis of the Orbital Roof

    Directory of Open Access Journals (Sweden)

    Ami Shah Vira

    2015-05-01

    Full Text Available Introduction: Two patients (one with neurofibromatosis type 1 presented with unilateral ocular pulsation. Methods: A CT scan of the orbits revealed extensive dysgenesis of the orbital roof with herniation of the frontal lobe into the orbit in both cases. PASCAL dynamic contour tonometry was performed. Results: The ipsilateral ocular pulse amplitude (OPA was greater than the contralateral side, and the ocular pulse waveform morphology more closely approximated the known intracranial waveform in these patients. Conclusions: We hypothesize that the greater OPA was due to stronger transmission of the intracranial pressure waveform amplitude and morphology in the absence of the orbital roof.

  12. Study of Falling Roof Vibrations in a Production Face at Roof Support Resistance in the Form of Concentrated Force

    Science.gov (United States)

    Buyalich, G. D.; Buyalich, K. G.; Umrikhina, V. Yu

    2016-08-01

    One of the main reasons of roof support failures in production faces is mismatch of their parameters and parameters of dynamic impact on the metal structure from the falling roof during its secondary convergences. To assess the parameters of vibrational interaction of roof support with the roof, it was suggested to use computational models of forces application and a partial differential equation of fourth order describing this process, its numerical solution allowed to assess frequency, amplitude and speed of roof strata movement depending on physical and mechanical properties of the roof strata as well as on load bearing and geometry parameters of the roof support. To simplify solving of the differential equation, roof support response was taken as the concentrated force.

  13. 40 CFR 63.1042 - Standards-Separator fixed roof.

    Science.gov (United States)

    2010-07-01

    ...) National Emission Standards for Oil-Water Separators and Organic-Water Separators § 63.1042 Standards... controlling air emissions from an oil-water separator or organic-water separator using a fixed roof. (b) The... interface of the roof edge and the separator wall. (3) Each opening in the fixed roof shall be equipped...

  14. Recovery and reuse of asphalt roofing waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.; Graziano, G.; Shepherd, P.

    1984-02-02

    Burning of asphalt roofing waste as a fuel and incorporating asphalt roofing waste in bituminous paving were identified as the two outstanding resource recovery concepts out of ten studied. Four additional concepts might be worth considering under different market or technical circumstances. Another four concepts were rated as worth no further consideration at this time. This study of the recovery of the resource represented in asphalt roofing waste has identified the sources and quantities of roofing waste. About six million cubic yards of scrap roofing are generated annually in the United States, about 94% from removal of old roofing at the job site and the remainder from roofing material production at factories. Waste disposal is a growing problem for manufacturers and contractors. Nearly all roofing waste is hauled to landfills at a considerable expense to roofing contractors and manufacturers. Recovery of the roofing waste resource should require only a modest economic incentive. The asphalt contained in roofing waste represents an energy resource of more than 7 x 10/sup 13/ Btu/year. Another 1 x 10/sup 13/ Btu/year may be contained in field-applied asphalt on commercial building roofs. The two concepts recommended by this study appear to offer the broadest applicability, the most favorable economics, and the highest potential for near-term implementation to reuse this resource.

  15. Green Roof Technology- Mitigate Urban Heat Island (UHI Effect

    Directory of Open Access Journals (Sweden)

    Odli Z.S. M.

    2016-01-01

    Full Text Available Alterations on the land surfaces, which are attributed by human activities, especially in cities, cause many implications to the ecosystem. The increase of buildings in cities is reflecting the growth of human activities resulted in a significant temperature increase and warmer pattern in the urban area than the surrounding countryside. The phenomenon defined as urban heat island. This study investigates the application and efficiency of the green roof as an approach to mitigate urban heat island and reducing indoor temperature in a building. Two types of roof models, which consist of vegetative roof and non-vegetative roof, were built to investigate the efficiency of vegetated roof in reducing indoor temperature compared to the non-vegetated roof. The outdoor and indoor temperature and humidity of each roof model were monitored by using RH520 Thermo Hygrometer. The data was collected for three times in a week for 9 weeks at 9:00am to 5:00pm. It was found that the indoor average temperature data for vegetative roof could be reduced 2.4°C from the outdoor average temperature and 0.8°C for non-vegetative roof. The difference of temperature reduction for vegetative roof was greater than the nonvegetative roof, thus indicate that green roof was highly efficient in reducing indoor temperature and mitigate urban heat island impact.

  16. Green roof establishment in extreme conditions : two case studies

    Energy Technology Data Exchange (ETDEWEB)

    Grothe, R. [Aloha Landscaping, Inc., Mendota Heights, MN (United States); Trichie, J. [Shakopee Mdewakanton Sioux Community, MN (United States)

    2007-07-01

    Green roof construction in the United States is growing at a rate of 60 to 80 per cent per year. This paper presented two case studies of green roof construction in Minnesota. In both cases, construction and budgeting delays moved the installation of the green roofs from early-May to mid-July. The first case study was a 20,000 square foot extensive green roof on the new Minneapolis Central Library which was completed in 2005. The second case study was a 30,000 square foot extensive green roof on the Mdewakanton Sioux Waste Water Treatment Plant in Shakopee, which was completed in 2006. This paper demonstrated that in order for green roofs to serve the functions for which they were intended, clear guidelines and specifications are needed to ensure that they are healthy. The size and locations of the two roofs were quite different, but they were identical in terms of waterproofing. State-of-the-art inverted hot-applied roof membrane technology was used in both roofs along with sub-surface irrigation systems. A mycorrhizae fungi was used in both cases to amend the growing medium. Both roofs used a diverse pallet of native and traditional sedum plant material. This paper highlighted preventative measures taken to ensure the successful installation and establishment of the two roofs built during extreme heat and drought-like conditions. The positive results confirm that it is possible to install green roofs during extremely harsh summer conditions. 9 refs., 4 tabs., 3 figs.

  17. 30 CFR 75.211 - Roof testing and scaling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Roof testing and scaling. 75.211 Section 75.211 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.211 Roof testing and scaling. (a)...

  18. Causes of falls of roof in South African collieries

    CSIR Research Space (South Africa)

    Van der Merwe, JN

    2001-08-01

    Full Text Available on ta l s tre ss W ea th er ing Ba d m ini ng Dy ke s Bu rn t c oa l Contribution (% ) All Skin Large Major Figure 25. Causes of roof falls seen against the background of thickness of roof falls. 24 10 Influence of roof rock...

  19. Research into the Reliability of the Overlap Joint of Bituminous Heat Welded Roofing Materials

    Directory of Open Access Journals (Sweden)

    Darius Balčiūnas

    2012-11-01

    Full Text Available Abstract The conducted analysis has revealed that the most common reason of leaks in bituminous roofs is caused by a lack of adhesion between two nearby sheets of roof cover. Regarding the above mentioned problems, reliability, testing methods and data analysis methods of the overlap joint is observed more closely. The research conducted by different scientists worldwide has showed difficulties in evaluating the obtained data due to a lack of information on how these samples were produced. Therefore, it is proposed to evaluate the influence of welding time analyzing the mechanical properties of the joints of bituminous heat welded roofing materials. The influence of welding time, when the samples are produced, and mechanical properties of overlap joints are practically proved according to LST standards. The test results have showed that welding time does not have a significant influence on the shear resistance of overlap joints but is important regarding its limited deformation.

  20. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Storage Vessels § 65.45... control storage vessel regulated material emissions by using an external floating roof converted into an...

  1. Evaluation of military helmets and roof padding on head injury potential from vertical impacts.

    Science.gov (United States)

    Franklyn, Melanie; Laing, Sheridan

    2016-10-02

    Soldiers in military vehicles subjected to underbelly blasts can sustain traumatic head and neck injuries due to a head impact with the roof. The severity of head and neck trauma can be influenced by the amount of head clearance available to the occupant as well as factors such as wearing a military helmet or the presence of padding on the interior roof. The aim of the current study was to examine the interaction between a Hybrid III headform, the helmet system, and the interior roof of the vehicle under vertical loading. Using a head impact machine and a Hybrid III headform, tests were conducted on a rigid steel plate in a number of different configurations and velocities to assess helmet shell and padding performance, to evaluate different vehicle roof padding materials, and to determine the relative injury mitigating contributions of both the helmet and the roof padding. The resultant translational head acceleration was measured and the head injury criterion (HIC) was calculated for each impact. For impacts with a helmeted headform hitting the steel plate only, which represented a common scenario in an underbelly blast event, velocities of ≤6 m/s resulted in HIC values below the FMVSS 201U threshold of 1,000, and a velocity of 7 m/s resulted in HIC values well over the threshold. Roof padding was found to reduce the peak translational head acceleration and the HIC, with rigid IMPAXX foams performing better than semirigid ethylene vinyl acetate (EVA) foam. However, the head injury potential was reduced considerably more by wearing a helmet than by the addition of roof padding. The results of this study provide initial quantitative findings that provide a better understanding of helmet-roof interactions in vertical impacts and the contributions of the military helmet and roof padding to mitigating head injury potential. Findings from this study will be used to inform further testing with the future aim of developing a new minimum head clearance standard for

  2. Additional double-wall roof in single-wall, closed, convective incubators: Impact on body heat loss from premature infants and optimal adjustment of the incubator air temperature.

    Science.gov (United States)

    Delanaud, Stéphane; Decima, Pauline; Pelletier, Amandine; Libert, Jean-Pierre; Stephan-Blanchard, Erwan; Bach, Véronique; Tourneux, Pierre

    2016-09-01

    Radiant heat loss is high in low-birth-weight (LBW) neonates. Double-wall or single-wall incubators with an additional double-wall roof panel that can be removed during phototherapy are used to reduce Radiant heat loss. There are no data on how the incubators should be used when this second roof panel is removed. The aim of the study was to assess the heat exchanges in LBW neonates in a single-wall incubator with and without an additional roof panel. To determine the optimal thermoneutral incubator air temperature. Influence of the additional double-wall roof was assessed by using a thermal mannequin simulating a LBW neonate. Then, we calculated the optimal incubator air temperature from a cohort of human LBW neonate in the absence of the additional roof panel. Twenty-three LBW neonates (birth weight: 750-1800g; gestational age: 28-32 weeks) were included. With the additional roof panel, R was lower but convective and evaporative skin heat losses were greater. This difference can be overcome by increasing the incubator air temperature by 0.15-0.20°C. The benefit of an additional roof panel was cancelled out by greater body heat losses through other routes. Understanding the heat transfers between the neonate and the environment is essential for optimizing incubators.

  3. 30 CFR 75.204 - Roof bolting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Roof bolting. 75.204 Section 75.204 Mineral... or the equivalent may be used. (3) Bearing plates used with wood or metal materials shall be at least... against wood; or (ii) Have exceeded the maximum specified torque or tension by 50 percent. (6) The...

  4. Load-Bearing Capacity of Roof Trusses

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Damkilde, Lars; Munch-Andersen, J.

    2004-01-01

    systems such as roof trusses are established and statistical characteristics of the load bearing capacity are determined. The results show that there is a significant increase in the characteristic (nominal) value and a reduction in the coefficient of variation (COV) for typical loads such as permanent...

  5. Evolution of cool-roof standards in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

    2008-07-11

    Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

  6. Ecological Impacts of Replacing Traditional Roofs with Green Roofs in Two Urban Areas

    Directory of Open Access Journals (Sweden)

    Timothy Carter

    2008-01-01

    Full Text Available Urban land cover is dominated by impervious surface that degrades both terrestrial and aquatic ecosystems relative to predevelopment conditions. There are significant opportunities for designers of urban landscapes to use alternative land covers that have multiple functions, benefiting both human and nonhuman components of the urban ecosystem. Vegetated (green roofs are one form of alternative land cover that has shown the potential to provide a variety of ecological benefits in urban areas. We evaluated how stormwater retention, building energy and temperature, and rooftop habitat are influenced by the use of green roofs using test plots in Georgia and Massachusetts. Green roofs were shown to recreate part of the predevelopment hydrology through increasing interception, stormwater storage, evaporation, and transpiration on the rooftop and worked extremely well for small storm events. Temperature reductions were found on the green rooftop as compared to an asphalt surface, although other roof technologies that minimize temperatures, such as lighter colored membranes, provide similar benefits. Novel habitat was created on the rooftop, although the extent of this habitat was limited in part by plant survivability and the need for additional water inputs for diverse plant communities to survive. Despite the challenges, the green roof benefits reported here suggest that green roofs can be used effectively as a multifunctional land cover in urban areas.

  7. Maximal loads acting on legs of powered roof support unit in longwalls with bumping hazards

    Institute of Scientific and Technical Information of China (English)

    StanislawSzweda

    2001-01-01

    during blasting. The majority of recorded force changes in the legs has been caused by a dynamic interaction of the roof. They are characterized by a load increase coefficient Kd, satisfying the inequality i .06 < Kd = Fm/Fst.p < 1.24. A much smeller number of cases, when the external load acted on the bases, was recorded. Individual, recorded results of measurements indicate that changes of the force in the legs, caused by external loads of this type, run more intensively due to roof loads (1.08 < Kd< l. 80), particularly in these cases when the nearthe-roof layer of the seam Is under mining. A determination of more precise relations among the changes of forces in the legs, caused by a dynamic interaction of the floor and the bases and the mining and geological conditions requires a performance of additional underground tests. Keywords longwall, bumping hazard, powered roof support unit

  8. Status of cool roof standards in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen

    2007-06-01

    Since 1999, several widely used building energy efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool roof credits or requirements. We review the technical development of cool roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discuss the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool roof provisions can be used as models to address cool roofs in building energy standards worldwide.

  9. Impact of climate and vegetation type on evapotranspiration from green roofs

    Science.gov (United States)

    Sia, M. E.; Robinson, C. E.; O'Carroll, D. M.; Voogt, J. A.; Smart, C. C.; Way, D. A.

    2015-12-01

    Green roofs are an increasingly popular low impact development tool used to mitigate the adverse effects of urbanization and the loss of vegetated spaces. The benefits of green roofs include reducing stormwater volume and peak flows, reducing building energy loads, and mitigating the urban heat island effect. Evapotranspiration (ET) is a key process fundamental to hydrologic and thermal performance of green roofs. For example, ET governs the water storage volume available in the soil medium and thus the ability of the green roof to retain and attenuate stormwater. Green roof design considerations such as soil medium depth and plant type impact ET rates. Additionally, climate has a strong impact on ET rates. To date, the influence between climate and green roof design factors (e.g. vegetation type and soil medium depth) on ET rates have not been well quantified. We performed a field study to evaluate the impact of climate, vegetation type, and soil medium depth on ET rates from extensive modular green roofs over prolonged drying periods. Three Canadian cities with distinct climates were chosen as field sites: London, ON, Calgary, AB, and Halifax, NS. At each site, daily module weights were recorded from May to August in 2013 and 2014 for approximately 40 green roof modules. These modules were divided into four vegetation treatments (three single species and one mixed species), and each treatment was divided into two groups of soil medium depth (10 cm or 15 cm). Daily ET rates and seasonal moisture loss were calculated and compared for the modules to determine which treatment provided the highest ET rates. The root depth profile, leaf area index, and stomatal resistance were also measured. On average, daily ET rates among the vegetation treatments did not vary greatly, however, observations on plant survival indicate which plant types are best suited for each site. In all three sites, mixed species in 15 cm of soil medium had higher seasonal moisture loss compared to

  10. Green roofs as a means of pollution abatement.

    Science.gov (United States)

    Rowe, D Bradley

    2011-01-01

    Green roofs involve growing vegetation on rooftops and are one tool that can help mitigate the negative effects of pollution. This review encompasses published research to date on how green roofs can help mitigate pollution, how green roof materials influence the magnitude of these benefits, and suggests future research directions. The discussion concentrates on how green roofs influence air pollution, carbon dioxide emissions, carbon sequestration, longevity of roofing membranes that result in fewer roofing materials in landfills, water quality of stormwater runoff, and noise pollution. Suggestions for future directions for research include plant selection, development of improved growing substrates, urban rooftop agriculture, water quality of runoff, supplemental irrigation, the use of grey water, air pollution, carbon sequestration, effects on human health, combining green roofs with complementary related technologies, and economics and policy issues.

  11. STUDIES ON THE LAW OF ROOF-COAL MOVEMENT BY USING THE ROOF-COAL CAVING METHOD

    Institute of Scientific and Technical Information of China (English)

    张海戈; 徐秉业; 沈新普; 王志勤

    1996-01-01

    In this paper, the law of roof-coal movement has been investigated through the fieldmeasurement, theoretical analysis and numerical calculation. Several results, which are of im-portant values for caving process, design of the supports, controlling end-face stability, raisingrecovery rate, realizing working face high output and other related aspects in practice, havebeen obtained. These results mainly include the following: roof-coal breaking curve of soft-coalseam, roof-coal movement curve of soft-coal and medium-hard coal seam, and roof-coal move-ment equation. The roof-coal caveability has been analyzed.

  12. Establishing green roof infrastructure through environmental policy instruments.

    Science.gov (United States)

    Carter, Timothy; Fowler, Laurie

    2008-07-01

    Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated

  13. Establishing Green Roof Infrastructure Through Environmental Policy Instruments

    Science.gov (United States)

    Carter, Timothy; Fowler, Laurie

    2008-07-01

    Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated

  14. MODELING OF THE SNOW LOAD ON THE ROOFS OF INDUSTRIAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    Zolina Tat’yana Vladimirovna

    2016-08-01

    Full Text Available When designing load-bearing framework structures using the method of limiting states it is necessary to determine the maximum possible value of snow load for the entire period of operation of an industrial building for the possibility of transition. The magnitude of the snow load is randomly changed over the time, and therefore the most appropriate form of its display is a probabilistic model of random process. The authors have identified the most preferable approach to modeling of snow load. It consists in presenting a selective sequence of the year maximums in the form of a continuous random variable distributed according to the Gumbel law. Its parameters are expressed through the mathematical expectation and the standard sample set of meteorological observations. According to the calculated values of the parameters the authors have built a graphic interpretation of the law of distribution of this random variable. When building a model of the total snow load on the roof of a building the influence of various factors should be considered, such as: • snow shedding at a given roof slope; • snow movement caused by wind; • distribution of snow depending on the roof shape; • snow melting depending on the thermal characteristics of the roof; • the ability to drain meltwater from the surface of the roof. The resulting model of snow load is adapted for implementation using software complex “DINCIB-new” developed by the authors. The proposed approach to the modeling of the snow load on the roof of an industrial building allows correlating the repeatability period of its limit calculated value with the residual life of the research object. This has become possible due to the multiple implementation of an automated algorithm for calculating an industrial building, which was developed by the authors, with account of the varying values of snow load in relation to the corresponding mathematical expectation, with registering the quantities of

  15. Inspection and Reconstruction of Metal-Roof Deformation under Wind Pressure Based on Bend Sensors.

    Science.gov (United States)

    Yang, Liman; Cui, Langfu; Li, Yunhua; An, Chao

    2017-05-06

    Metal roof sheathings are widely employed in large-span buildings because of their light weight, high strength and corrosion resistance. However, their severe working environment may lead to deformation, leakage and wind-lift, etc. Thus, predicting these damages in advance and taking maintenance measures accordingly has become important to avoid economic losses and personal injuries. Conventionally, the health monitoring of metal roofs mainly relies on manual inspection, which unavoidably compromises the working efficiency and cannot diagnose and predict possible failures in time. Thus, we proposed a novel damage monitoring scheme implemented by laying bend sensors on vital points of metal roofs to precisely monitor the deformation in real time. A fast reconstruction model based on improved Levy-type solution is established to estimate the overall deflection distribution from the measured data. A standing seam metal roof under wind pressure is modeled as an elastic thin plate with a uniform load and symmetrical boundaries. The superposition method and Levy solution are adopted to obtain the analytical model that can converge quickly through simplifying an infinite series. The truncation error of this model is further analyzed. Simulation and experiments are carried out. They show that the proposed model is in reasonable agreement with the experimental results.

  16. Directional hydraulic fracturing to control hard-roof rockburst in coal mines

    Institute of Scientific and Technical Information of China (English)

    Fan Jun; Dou Linming; He Hu; Du Taotao; Zhang Shibin; Gui Bing; Sun Xinglin

    2012-01-01

    Hard roof is the main factor that induces rock-burst.In view of the present obvious weakness of control measures for hard roof rockburst in domestic collieries,the mechanism and field application of directional hydraulic fracturing technology for rock-burst prevention have been investigated in this paper using theoretical analysis and numerical simulation.The results show that the weighting span of the main roof and the released kinetic energy as well as the total elastic energy decreased greatly after the directional fracturing of hard roof with the mining progression,thereby reducing the rockburst hazard degree to coal body.The directional hydraulic fracturing technology was carried out in 6305 working face of Jisan Coal Mine to prevent rockburst.Field practices have proved that this technology is much simpler and safer to operate with better prevention effect compared with blasting.By optimizing the operation procedures and developing a new technology of automated high-pressure delivery pipe,the maximum fracturing radius now reaches more than 9 m and the borehole depth exceeds 20 m.Additionally,drilling cutting method was applied to monitor the stress of the coal mass before and after the fracturing,and the drill cuttings dropped significantly which indicates that the burst prevention effect of directional hydraulic fracturing technology is very remarkable.The research results of this paper have laid a theoretical and practical foundation for the widespread application of the directional hydraulic fracturing technology in China.

  17. Roof pre-blasting to prevent support crushing and water inrush accidents

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaozhen; Xu Jialin; Zhu Weibing; Li Yingchun

    2012-01-01

    Support crushing and water inrush when mining under an unconsolidated confined aquifer in the Qidong Coal Mine was prevented by roof pre-blasting.The mechanism and applicable conditions for this method have been studied.The results show that when an overburden structure that may cause support crushing and a water inrush accident exists the weakening of the primary key stratum,which thereby reduces its weighting step,roof pre-blasting is both feasible and effective.If the position of the primary key stratum can be moved upward to exceed 10 times the mining height the possibility of support crushing and water inrush disaster caused by key stratum compound breakage will be lowered.The overburden structure of the number 7121 working face was considered during the design of a technical proposal involving roof pre-blasting.After comprehensively analyzing the applicability of roof pre-blasting the resulting design prevented support crushing and water inrush disasters from happening at the number 7121 working face and laid a solid foundation for mining safely.

  18. Mainstreaming green roofs in urban regeneration, Birmingham, UK

    Energy Technology Data Exchange (ETDEWEB)

    Coyne, R. [Groundwork Birmingham and Solihull, Handsworth, Birmingham (United Kingdom)

    2006-07-01

    Historically, Birmingham, United Kingdom was an industrial metal finishing and car production centre. The city centre was redeveloped in the 1960s and 1970s. The new infrastructure was car-dominated with an elevated urban motorway, which forced pedestrians underground. In the 1980s, due to failing industry, rising unemployment and the negative image created by the concrete infrastructure, the city went into decline. In response, the city developed a strong redevelopment vision. This included policies such as removing the concrete collar, greatly expanding the city centre core and rebranding as a service sector centre. However, it was also determined that in addition to these policy transformations, increasing knowledge about the impact of development on the environment was also needed. The value of environmental protection and brownfield regeneration was emphasized. It was determined that green roofs would be able to provide benefits across a range of social and environmental issues including air quality, sustainable urban drainage, visual amenity and biodiversity. As such, a large grant to install the first green roofs in Birmingham city centre on 4 buildings was sought. The grant will be used for research on biodiversity, energy and water management and to demonstrate benefits to developers and decision makers. The main planning driver is mitigation for destruction of black redstart sites as brownfield sites are redeveloped. Simultaneously, measurable targets will be established for Birmingham City Council to adopt in order to deliver sustainable development.

  19. Maximal loads acting on legs of powered roof support unit in longwalls with bumping hazards

    Institute of Scientific and Technical Information of China (English)

    Stanislaw Szweda

    2001-01-01

    acting on a unit du ring blasting. The majority of recorded force changes in the legs has been caused by a dyna mic interaction of the roof. They are characterized by a load increase coefficie nt Kd, satisfying the inequality 1.06due to roof loads (1.08roof layer of the seam is under mining. A determination of more precise relations among the changes of forces in the legs, caused by a dynamic interacti on of the floor and the bases and the mining and geological conditions requires a performance of additional underground tests.

  20. PERFORMANCE OF AN EARTHQUAKE EXCITED ROOF DIAPHRAGM.

    Science.gov (United States)

    Celebi, M.; Brady, G.; Safak, E.; Converse, A.; ,

    1986-01-01

    The objective of this paper is to study the earthquake performance of the roof diaphragm of the West Valley College gymnasium in Saratoga, California through a complete set of acceleration records obtained during the 24 April 1984 Morgan Hill Earthquake (M equals 6. 1). The roof diaphragm of the 112 ft. multiplied by 144 ft. rectangular, symmetric gymnasium consists of 3/8 in. plywood over tongue-and-groove sheathing attached to steel trusses supported by reinforced concrete columns and walls. Three sensors placed in the direction of each of the axes of the diaphragm facilitate the evaluation of in-plane deformation of the diaphragm. Other sensors placed at ground level measure vertical and horizontal motion of the building floor, and consequently allow the calculation of the relative motion of the diaphragm with respect to the ground level.

  1. Lightning Protection of Floating Roof Tanks

    Directory of Open Access Journals (Sweden)

    Adekitan,

    2013-10-01

    Full Text Available Prior to export, processed crude oil is stored in Floating Roof Tanks (FRT to further allow any trapped gas within the crude oil to escape, as this stabilises the crude oil. In the oil and gas industry, FRT’s are vital in the processing of crude oil to the acceptable export specification.In the tropics and other lightning prone regions, lightning induced floating roof tank fire constitutes a major threat to crude oil production. Among others, a single lightning incident could result in the loss of life, product and production time, avoidable incident review time, damaged equipment, wasted repair cost, bad publicity and loss of income.This paper therefore, is aimed at providing an effective solution to the menace of lightning induced tank fire by focussing on the starting process of the lightning induced fire and proposing alternative concepts for breaking the fire triangle before fire ensues

  2. Creating a marketplace for green roofs in Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Vitt Sale, L. [Wright and Co. Chicago, IL (United States); Berkshire, M. [City of Chicago, IL (United States)

    2004-07-01

    Since 2003, the Chicago Department of Planning and Development has been encouraging city developers to consider installing green roofs on buildings in Chicago, with the belief that this practice results in mitigation of the urban heat island effect, cleaner runoff leaving green roofs, sound attenuation, aesthetic value, oxygen production, and mitigation of carbon dioxide emissions. However, the benefits to developers, which include reduced stormwater runoff, extended roof life and energy savings, in total do not offset the first cost premium of a green roof. Despite this, and with no mandate requiring green roofs, the marketplace is growing. After seeing green roofs on a tour in Europe, the mayor of Chicago encouraged the first design and installation of a 20,300 square foot demonstration green roof in Chicago, and other city-sponsored pilot projects followed shortly after. Since then, the number of green roofs in Chicago has grown to over one million square feet. A map of Chicago showing locations of most of the projects was presented. It was suggested that lower prices for green roofs, higher energy costs and an inclination to invest in long-term strategies would accelerate the market. In an effort to engage the public in dialogue, the Department of Planning and Development held seminars to promote the benefits of green roofs . Participants had many questions about the applicability of green roofs to Chicago, expressing skepticism that Chicago's climate would provide the same benefits as in Europe. Other concerns were expressed regarding the devaluation of property values resulting from placing green roofs on buildings; doubts about roof leaks; maintenance practices; and, bugs and mold. Since the first cost premium of the system remains a question, most participants expressed interest in some kind of incentive program, but remained open-minded if benefits could be proved. 6 figs.

  3. Scaling of economic benefits from green roof implementation in Washington, DC.

    Science.gov (United States)

    Niu, Hao; Clark, Corrie; Zhou, Jiti; Adriaens, Peter

    2010-06-01

    Green roof technology is recognized for mitigating stormwater runoff and energy consumption. Methods to overcome the cost gap between green roofs and conventional roofs were recently quantified by incorporating air quality benefits. This study investigates the impact of scaling on these benefits at the city-wide scale using Washington, DC as a test bed because of the proposed targets in the 20-20-20 vision (20 million ft(2) by 2020) articulated by Casey Trees, a nonprofit organization. Building-specific stormwater benefits were analyzed assuming two proposed policy scenarios for stormwater fees ranging from 35 to 50% reduction for green roof implementation. Heat flux calculations were used to estimate building-specific energy savings for commercial buildings. To assess benefits at the city scale, stormwater infrastructure savings were based on operational savings and size reduction due to reduced stormwater volume generation. Scaled energy infrastructure benefits were calculated using two size reductions methods for air conditioners. Avoided carbon dioxide, nitrogen oxide (NO(x)), and sulfur dioxide emissions were based on reductions in electricity and natural gas consumption. Lastly, experimental and fugacity-based estimates were used to quantify the NO(x) uptake by green roofs, which was translated to health benefits using U.S. Environmental Protection Agency models. The results of the net present value (NPV) analysis showed that stormwater infrastructure benefits totaled $1.04 million (M), while fee-based stormwater benefits were $0.22-0.32 M/y. Energy savings were $0.87 M/y, while air conditioner resizing benefits were estimated at $0.02 to $0.04 M/y and avoided emissions benefits (based on current emission trading values) were $0.09 M-0.41 M/y. Over the lifetime of the green roof (40 years), the NPV is about 30-40% less than that of conventional roofs (not including green roof maintenance costs). These considerable benefits, in concert with current and

  4. Experimental Polyurethane Foam Roof Systems - II.

    Science.gov (United States)

    1983-01-01

    reflect the effects of cloud cover, windspeed, and radiation from the roof during early morning and late evening hours. Measurement of the area under the...INN \\k I, N’. tlir’I’iii V A I \\’A SIurelS42r. K110i tlIe. I ct Ili Solair i imip .\\r nill. Kiw\\\\, tMe. I N I C(I’ 0)1,4 (IC, Ni’rtolk. \\.A ( ( I

  5. Roof timber for fortifying mining works

    Energy Technology Data Exchange (ETDEWEB)

    Shirokov, A.P.; Kuntsevich, V.IK.; Pishchulin, V.V.; Seryi, A.M.; Volkov, P.A.

    1981-05-15

    The roof timber for fortifying mining works includes spring-mounted hinged elements made from a special rolled metal. In order to increase the carrying capacity of the support by increasing the deformation threshold, the springs are mounted by their expanded section to the lower side of the hinge; their ends are connected in turn to the elements made from the special rolled metal on both sides of the hinge.

  6. EXTRUDED POLYSTYRENE FOAM IN FLAT ROOFS

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-09-01

    Full Text Available In our article we prove the necessity of applying thermal insulation with low water absorption and resistance and preserving mechanical and thermophysical properties in corrosive environment in flat roofs, where there is always a danger of penetrating condensed moisture into the structure. As such material we offered extruded polystyrene foam - heat-insulating polymer material with uniformly distributed closed cells. The products are used in the form of slab insulation and special items - for forming slopes and venting.

  7. Control of roofs difficult to break down

    Energy Technology Data Exchange (ETDEWEB)

    Lukashov, V.G.; Suslyakov, V.P.; Korobov, A.N.

    1981-03-01

    This paper describes a method of advanced torpedoing a roof difficult to break down at the Polysaevskaya coal mine. It consists in placing explosive charges in the roof ahead of the coal face. Three schemes were tested: boreholes were drilled parallel to the face, perpendicular or inclined at an angle to the face. Boreholes were 112 mm in diameter and their length ranged from 30 to 100 m, distance between the boreholes amounted to 20 m. 6ZhV ammonite explosive, 90 mm in diameter and 500 mm long, were used. Torpedos were 2 m long, and separated by 3 to 4 m long air pockets. When a roof characterized by a high compressive strength coefficient (about 10 on the Protod'yakonov scale) was torpedoed, 250 kg of ammonite were used for a borehole 80 m long, and 160 kg for a borehole 50 m long. When borehole length was reduced to 40 m explosive consumption decreased to 117 kg. In the case of rocks with compressive strength coefficient of 6, explosive amount was two times lower. In a coal mine in which an OKP-70 face system was used applying advanced torpedoing increased labor productivity of the face by 30% and reduced cost of mining by 42%. Number of work accidents was reduced 13 times. (In Russian)

  8. Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California.

    Science.gov (United States)

    Epstein, Scott A; Lee, Sang-Mi; Katzenstein, Aaron S; Carreras-Sospedra, Marc; Zhang, Xinqiu; Farina, Salvatore C; Vahmani, Pouya; Fine, Philip M; Ban-Weiss, George

    2017-08-22

    The installation of roofing materials with increased solar reflectance (i.e., "cool roofs") can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California's Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.

  9. High signal in the adenohypophysis on T1-weighted images presumably due to manganese deposits in patients on long-term parenteral nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Dietemann, J.L.; Diniz, R.L.F.C.; Reis, M. Jr.; Neugroschl, C.; Soehsten, S. von [Department of Radiology 2, University Hospital of Strasbourg (France); Reimund, J.M.; Baumann, R. [Department of Hepatogastroenterology, University Hospital of Strasbourg (France); Warter, J.M. [Department of Neurology, University Hospital of Strasbourg (France)

    1998-12-01

    Hypermanganesaemia is reported in patients on long-term parenteral nutrition. Deposition of manganese, giving high signal on T1-weighted images, may involve the basal ganglia. MRI in nine patients (mean age 51 years, range 31-75 years) on long-term parenteral nutrition (mean duration 30 months, range 6-126 months), demonstrated high signal in the anterior pituitary gland on T1-weighted sagittal and coronal images. The gland appeared normal on T2-weighted images. Signal intensity in the basal ganglia on T1-weighted images was increased in all patients. Endocrine assessment showed no significant abnormality. Neurological examination showed a mild parkinsonian movement disorder in one patient. Hypermanganaesemia was present in all nine (1.3-2.8 {mu}mol/l, mean 1.87 {mu}mol/l). The high signal in the anterior pituitary gland was probably related to deposition of paramagnetic substances, especially manganese. (orig.) With 2 figs., 1 tab., 17 refs.

  10. Simulation tests to assess occupational exposure to airborne asbestos from asphalt-based roofing products.

    Science.gov (United States)

    Mowat, Fionna; Weidling, Ryan; Sheehan, Patrick

    2007-07-01

    This study sought to evaluate exposure from specific products to evaluate potential risk from roof repair activities. Five asbestos-containing fibered roof coatings and plastic cements, representing a broad range of these types of products, were tested in exposure simulations. These products were applied to representative roof substrates. Release of asbestos fibers during application and sanding of the product shortly thereafter (wet sanding) were tested initially. Other roof substrates were cured to simulate a product that had been on a rooftop for several months and then were tested to evaluate release of fibers during hand sanding and hand scraping activities. Additional tests were also conducted to evaluate asbestos release during product removal from tools and clothing. Two personal (n = 84) and background/clearance (n = 49) samples were collected during each 30-min test and analyzed for total fiber concentration [phase-contrast microscopy (PCM)] and for asbestos fiber count [transmission electron microscopy (TEM)]. PCM concentrations ranged from <0.005 to 0.032 fibers per cubic centimeter (f cc(-1)). Chrysotile fibers were detected in 28 of 84 personal samples collected. TEM concentrations ranged from <0.0021 to 0.056 f cc(-1). Calculated 8-h time-weighted averages (TWAs) ranged from 0.0003 to 0.002 f cc(-1) and were comparable to the background TWA concentration of 0.0002 f cc(-1) measured in this study. Based on these results, it is unlikely that roofers were exposed to airborne asbestos concentrations above the current or historical occupational guidelines during scraping and sanding of these products during roof repair.

  11. NC green roof stormwater quantity and quality field evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Moran, A.; Hunt, B.; Jennings, G. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Biological and Agricultural Engineering

    2004-07-01

    A study was conducted in an effort to establish design standards for green roofs in North Carolina (NC). It was conducted in light of recent regulations that require stormwater runoff to be treated by structural controls in urban development. Two extensive green roofs were constructed within the Neuse River Basin in order to estimate the per cent of precipitation retained by the green roof; estimate the per cent peak flow reduction; determine whether green roofs can be used as nutrient reduction best management practices (BMPs) and if so, what removal efficiency should be assigned to green roofs; identify green roof vegetation types that thrive in central and eastern NC and find an optimal depth of soil for desirable plant growth. The determining factors for greater water retention were found to be soil depth and plant selection. BMPs such as bioretention areas, wet and dry detention ponds, constructed wetlands, and sand filters are commonly seen throughout NC. A new option for BMPs is the green roof to use thousands of square feet available on rooftops that would not otherwise be available on the ground. Each green roof in this study retained about 60 per cent of the total recorded rainfall during a nine-month observation period. The average peak flow reduction for both green roofs was about 85 per cent. Water quality data indicated that higher concentrations of total nitrogen and total phosphorous were present in the green roof runoff than in the control roof runoff and in the rainfall at each green roof site. This may be a result of N and P leaching from the soil media, which was composed of 15 per cent compost. It was suggested that leaching could be reduced with less organic matter present in the soil media. 12 refs., 1 tab., 8 figs.

  12. Research on hydraulic-powered roof supports test problems

    Institute of Scientific and Technical Information of China (English)

    SUN Hong-bo; JIANG Jin-qiu; MA Qiang

    2011-01-01

    The load-bearing characters of hydraulic-powered roof support with dual telescopic legs were analyzed. With a specific type hydraulic-powered roof support with dual telescopic legs for research object, the inside load test problems in factories was analyzed, and the correct test methods were given, which can enhance the test efficiency and make the factories away from the error design of hydraulic-powered roof supports and legs.

  13. Reviewing Green roof design approaches: Case study of residential buildings

    OpenAIRE

    Özarısoy, Bertuğ

    2013-01-01

    ABSTRACT: High density of the residential areas and steep land value in the cities have driven people to maximize liveable and productive spaces in urban settings. This includes the reinvention of roof functions extending merely as a protection from the elements to a platform of housing green building technologies such as green roofs. Increased interest in green roofs have led to advances in technology. An entire industry has sprung up which specializes in lightweight growing materials, ro...

  14. TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Cherry, Nigel J [ORNL; Allen, Richard Lowell [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL; Ronnen, Levinson [Lawrence Berkeley National Laboratory (LBNL); Akbari, Hashem [Lawrence Berkeley National Laboratory (LBNL); Berhahl, Paul [Lawrence Berkeley National Laboratory (LBNL)

    2010-03-01

    Aesthetically pleasing dark roofs can be formulated to reflect like a highly reflective white roof in the near infrared portion of the solar spectrum. New paint pigments increase the near infrared reflectance of exterior finishes by minimizing the absorption of near-infrared radiation (NIR). The boost in the NIR reflectance drops the surface temperatures of roofs and walls, which in turn reduces cooling-energy use and provides savings for the homeowner and relief for the utilities. In moderate and hot climates, a roof surface with high solar reflectance and high thermal emittance was shown by Akbari et al. (2004) and by Parker and Sherwin (1998) to reduce the exterior temperature and produce savings in comfort cooling. The new cool color pigments can potentially reduce emissions of carbon dioxide, which in turn reduces metropolitan heat buildup and urban smog. The pigments can also help conserve water resources otherwise used to clean and process fuel consumed by fossil-fuel driven power plants. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning, retards smog formation, and improves thermal comfort. Parker, Sonne and Sherwin (2002) demonstrated that white barrel and white flat tiles reduced cooling energy consumption by 22% of the base load used by an adjacent and identical home having direct nailed dark shingles. Part of the savings was due to the reflectance of the white tiles; however, another part was due to the mass of the tile and to the venting occurring within the double batten installation. With, Cherry and Haig (2009) have studied the influence of the thermal mass and batten space ventilation and have found that, referenced to an asphalt shingle system, it can be equivalent to an additional 28 points of solar reflectivity. The double batten arrangement has wooden counter battens laid vertically (soffit-to-ridge) against the roof deck, and then the conventional battens are laid horizontally across the

  15. Effect of Opening the Sash of a Centre-Pivot Roof Window on Wind Pressure Coefficients

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Wigö, Hans; Heiselberg, Per

    2014-01-01

    This paper describes the effect of outward opening the sash of a window on local and overall wind pressures. Wind tunnel experiments were used for the purpose of evaluation. A centre-pivot roof window on a pitched roof in a modelled scaled building was used in the analysis of wind pressures. The ...... pressure distribution nearby the window. The use of wind pressure coefficients from the analysis of sealed plain surface may lead to erroneous estimation of airflow rate.......This paper describes the effect of outward opening the sash of a window on local and overall wind pressures. Wind tunnel experiments were used for the purpose of evaluation. A centre-pivot roof window on a pitched roof in a modelled scaled building was used in the analysis of wind pressures....... The wind pressures were defined in terms of wind pressure coefficients. Traditionally wind pressure coefficients are extracted from the analysis of sealed plain surface. These wind pressure coefficients are used to estimate the natural ventilation rate through windows/openings due to wind effect. Surface...

  16. GPS on Every Roof, GPS Sensor Network for Post-Seismic Building-Wise Damage Identification

    Directory of Open Access Journals (Sweden)

    Kenji Oguni

    2013-12-01

    Full Text Available Development of wireless sensor network equipped with GPS for post-seismic building-wise damage identification is presented in this paper. This system is called GPS on Every Roof. Sensor node equipped with GPS antenna and receiver is installed on the top of the roof of each and every building. The position of this sensor node is measured before and after earthquake. The final goal of this system is to i identify the displacement of the roof of each house and ii collect the information of displacement of the roof of the houses through wireless communication. Superposing this information on GIS, building-wise damage distribution due to earthquake can be obtained. The system overview, hardware and some of the key components of the system such as on-board GPS relative positioning algorithm to achieve the accuracy in the order of several centimeters are described in detail. Also, the results from a field experiment using a wireless sensor network with 39 sensor nodes are presented.

  17. Green Roof Evaluation: A Holistic ‘Long Life, Loose Fit, Low Energy’ Approach

    Directory of Open Access Journals (Sweden)

    Craig Langston

    2015-11-01

    Full Text Available Green roofs have potential to improve the social and environmental performance of detached housing in Australia, yet often they are overlooked due to prohibitive capital cost and a range of other perceptions that are difficult to quantify. A classic evaluation problem is invoked that must balance short and long term benefits. Using two distinct designs of the same floor area, green roof and traditional housing prototypes are analysed to determine the relative ‘breakeven’ point when long-term benefits become feasible. It is discovered that green roofs are unlikely to be viable in their own right, but when coupled with an overall design strategy of long life (durability, loose fit (adaptability and low energy (sustainability they can deliver least cost (affordability over time as well as unlock valuable social and environmental rewards. This outcome can be realised within 25% of a home’s expected design life of at least one hundred years. The results demonstrate that residential green roofs, when integrated as part of a holistic approach, can be both individually and collectively justified on key economic, social and environmental criteria, and are therefore able to claim a valuable contribution towards wider sustainable development goals.

  18. Modelling runoff on ceramic tile roofs using the kinematic wave equations

    Science.gov (United States)

    Silveira, Alexandre; Abrantes, João; de Lima, João; Lira, Lincoln

    2016-04-01

    Rainwater harvesting is a water saving alternative strategy that presents many advantages and can provide solutions to address major water resources problems, such as fresh water scarcity, urban stream degradation and flooding. In recent years, these problems have become global challenges, due to climatic change, population growth and increasing urbanisation. Generally, roofs are the first to come into contact with rainwater; thus, they are the best candidates for rainwater harvesting. In this context, the correct evaluation of roof runoff quantity and quality is essential to effectively design rainwater harvesting systems. Despite this, many studies usually focus on the qualitative aspects in detriment of the quantitative aspects. Laboratory studies using rainfall simulators have been widely used to investigate rainfall-runoff processes. These studies enabled a detailed exploration and systematic replication of a large range of hydrologic conditions, such as rainfall spatial and temporal characteristics, providing for a fast way to obtain precise and consistent data that can be used to calibrate and validate numerical models. This study aims to evaluate the performance of a kinematic wave based numerical model in simulating runoff on sloping roofs, by comparing the numerical results with the ones obtained from laboratory rainfall simulations on a real-scale ceramic tile roof (Lusa tiles). For all studied slopes, simulated discharge hydrographs had a good adjust to observed ones. Coefficient of determination and Nash-Sutcliffe efficiency values were close to 1.0. Particularly, peak discharges, times to peak and peak durations were very well simulated.

  19. Implementing Sustainability Criteria for Selecting a Roof Assembly Typology in Medium Span Buildings

    Directory of Open Access Journals (Sweden)

    Julian Canto-Perello

    2015-05-01

    Full Text Available Technological advances have allowed the development of new roof assembly typologies with higher efficiency and less waste. However, in the construction sector the focus is generally on reducing cost and not in sustainable development factors. Short-sighted building planning based only on economic criteria should be avoided improving decision support systems. In addition, the selection of an appropriate roof assembly in a building’s design stage is a complex problem due to the existence of different tangible and intangible factors and the multiple alternatives available. The roof typologies under study involve prefabricated concrete, steel and laminated wood structures. This research work applies a multi-criteria hybrid model combining the Analytical Hierarchy Process with the Delphi method and the VIKOR technique for implementing sustainability criteria in the selection of a roof assembly in medium span buildings. The proposed decision support system enables the use of the triple bottom line that considers economic, social and environmental criteria. Under the criteria analyzed, the compromise solution found is the self-supporting curved system.

  20. Hazard assessment of the stability of a cavern roof along the coastline

    Science.gov (United States)

    Reina, A.; Lollino, P.

    2009-04-01

    This work concerns the hazard assessment about the stability of a large shallow depth cavern, located along the coastline rocky sector of Polignano town (Apulia, Southern Italy) under an intensely urbanised area. This cavern, which lies at the sea level, has been created by a prolonged process of sea erosion within a rock mass formed of a lower stratified limestone mass and an upper Gravina Calcarenite mass. The thickness of the cavern roof, which has a dome shape, is less than 10 metres in the centre. Important buildings, as hotels and private houses, are located just above the top of the roof. Erosion processes have been observed to be still active along the whole cavern due to climate factors and, in particular, to sea salt weathering and sea spray effects. In 2007 a large calcarenite block, 3 m large, fell down from the cavern roof and consequently a field investigation campaign was carried out for a rational stabilization plan in order to understand the current stability conditions of the roof and the potential failure mechanism. Therefore, a thorough geo-structural survey has firstly been carried out, together with laboratory and in-situ testing for measuring the physical and mechanical properties of the calcarenite rock and of the corresponding joints. A monitoring system has also been planned and installed in order to measure the erosional rate and the block displacements in the cavern.

  1. Development of Clay Tile Coatings for Steep-Sloped Cool Roofs

    Directory of Open Access Journals (Sweden)

    Lucia Brinchi

    2013-07-01

    Full Text Available Most of the pitched roofs of existing buildings in Europe are covered by non-white roofing products, e.g., clay tiles. Typical, cost effective, cool roof solutions are not applicable to these buildings due to important constraints deriving from: (i the owners of homes with roofs visible from the ground level; (ii the regulation about the preservation of the historic architecture and the minimization of the visual environment impact, in particular in historic centers. In this perspective, the present paper deals with the development of high reflective coatings with the purpose to elaborate “cool” tiles with the same visual appearance of traditional tiles for application to historic buildings. Integrated experimental analyses of reflectance, emittance, and superficial temperature were carried out. Deep analysis of the reflectance spectra is undertaken to evaluate the effect of different mineral pigments, binders, and an engobe basecoat. Two tile typologies are investigated: substrate-basecoat-topcoat three-layer tile and substrate-topcoat two-layer tile. The main results show that the developed coatings are able to increase the overall solar reflectance by more than 20% with acceptable visual appearance, suitable for application in historic buildings. Additionally, the effect of a substrate engobe layer allows some further contribution to the increase of the overall reflectance characteristics.

  2. Can green roofs provide habitat for urban bees (Hymenoptera: Apidae?

    Directory of Open Access Journals (Sweden)

    Laurence Packer

    2009-01-01

    Full Text Available Increasing urbanization of many regions of the world has resulted in the decline of suitable habitat for wild flora and fauna. Green roofs have been suggested as a potential avenue to provide patches of good-quality habitat in highly developed regions. In this study, we surveyed green roofs for bee diversity and abundance to determine their potential as quality habitats in an urban area for these important pollinators. By comparing various biodiversity measures between green roofs and ground-level sites, we show that green roofs provide habitat to many bee species. Implications for pollinator conservation and urban agricultural production are discussed.

  3. TECHNICAL CONSIDERATIONS FOR THE PLANNING OF ROOF GARDENS

    Directory of Open Access Journals (Sweden)

    Nizamettin KOÇ

    1998-01-01

    Full Text Available Increases in population, buildings, traffic density and air pollution is the most specific characteristics of metropol cities. These conditions effect the living quality negatively. That is why architectures and planners should find both aesthetic and functional planning approach in urban areas. Roof gardens, which affect positively urban ecology in many ways, have an important place in this approach. Planning aproach of roof gardens are rather different compare to ground level design. Structural elements under the roof gardens againist the infiltration of water. That is why it is important that roof garden plannings should have some layers shuclh as drainage, insulation, waterproofing, filter layers and irrigation andf drainage systems.

  4. STRUCTURE AND STABILITY OF MAIN ROOF AFTER ITS FRACTURE

    Institute of Scientific and Technical Information of China (English)

    朱德仁; 钱鸣高

    1990-01-01

    A serics of physical modelings in which a main roof is considered as a Kirchhoff plate supported or clammed by Winkler elastic foundation were performed to simulate the fracturing process of the main roof in longwall mining. Based on these modelings spatial structures of the main roof after its fracture are described, blocks of the fractured main roof are classified and their behaviors are analyzed in this paper. Additionally, two stability indexes of the structures are defined, and the factors affecting stability of the structures with different boundaries and geometric conditions are discussed.

  5. COMPARATIVE STUDY OF DIFFERENT TYPES OF ROOF AND INDOOR TEMPERATURES IN TROPICAL CLIMATE

    Directory of Open Access Journals (Sweden)

    Mrs. M. Ponni

    2015-04-01

    Full Text Available A roof provides protection to be safe from direct sunlight. From the shelter, shadow alone is not expected. Durability, sustainability, less life cycle cost, and low maintenance cost are expected from a selected roof. The world has a thirst to have a best roof. No roof will fulfil the requirement of humanity since the climatic conditions are different. Hence the roof should be selected according to the prevailing climate. And the roof selection depends on the need, taste and the spending capability of the house owner. Thatched shed, tiles covered roof, light roofs either using galvanized sheets or asbestos sheets, painted or unpainted metal sheets, RCC, Green roof, Roof pond, insulated roof, reflective roof, and cool roof are the roofs so far brought into use. Whatever be the roof, it should provide thermal comfort. Thermal comfort is felt through the thermal experience of the occupants. Thermal experience depends on the indoor temperature. Energy efficiency of a building is highly based on the indoor ambient temperature. Energy efficiency in buildings is compelling, cost effective, saves money and useful to compromise resource energy shortage. A light roof named as Single Decker (SID and an insulated double roof using hybrid technique named as (DOD are taken for this study. Among the selected roofs the DOD provides a better thermal performance and thermal comfort. The study has been carried out for the summer peak period in April 2014. Thermal performance and indoor temperature of the DOD is compared with other roof studies.

  6. Entire cities could benefit from green roofs : Heleen Mees is investigating how five metropolises are greenifying their roofs

    OpenAIRE

    Mees, Heleen

    2014-01-01

    Rotterdam is making good progress with its creation of green roofs. Heleen Mees, researcher at Utrecht University, drew this conclusion from her research, in which she compared the green roof policy of four different cities with that of Rotterdam. Rotterdam awards grants to those wishing to create a green roof, thereby helping to promote the general acceptance of green roofs in the city. However, the researcher thinks this policy should be followed up: “You can’t award grants forever.”

  7. Green roof systems: a study of public attitudes and preferences in southern Spain.

    Science.gov (United States)

    Fernandez-Cañero, Rafael; Emilsson, Tobias; Fernandez-Barba, Carolina; Herrera Machuca, Miguel Ángel

    2013-10-15

    This study investigates people's preconceptions of green roofs and their visual preference for different green roof design alternatives in relation to behavioral, social and demographical variables. The investigation was performed as a visual preference study using digital images created to represent eight different alternatives: gravel roof, extensive green roof with Sedums not in flower, extensive green roof with sedums in bloom, semi-intensive green roof with sedums and ornamental grasses, semi-intensive green roof with shrubs, intensive green roof planted with a lawn, intensive green roof with succulent and trees and intensive green roof with shrubs and trees. Using a Likert-type scale, 450 respondents were asked to indicate their preference for each digital image. Results indicated that respondents' sociodemographic characteristics and childhood environmental background influenced their preferences toward different green roof types. Results also showed that green roofs with a more careful design, greater variety of vegetation structure, and more variety of colors were preferred over alternatives.

  8. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Tabares Velasco, P. C.

    2011-04-01

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  9. Optimal location selection for the installation of urban green roofs considering honeybee habitats along with socio-economic and environmental effects.

    Science.gov (United States)

    Gwak, Jae Ha; Lee, Bo Kyeong; Lee, Won Kyung; Sohn, So Young

    2017-03-15

    This study proposes a new framework for the selection of optimal locations for green roofs to achieve a sustainable urban ecosystem. The proposed framework selects building sites that can maximize the benefits of green roofs, based not only on the socio-economic and environmental benefits to urban residents, but also on the provision of urban foraging sites for honeybees. The framework comprises three steps. First, building candidates for green roofs are selected considering the building type. Second, the selected building candidates are ranked in terms of their expected socio-economic and environmental effects. The benefits of green roofs are improved energy efficiency and air quality, reduction of urban flood risk and infrastructure improvement costs, reuse of storm water, and creation of space for education and leisure. Furthermore, the estimated cost of installing green roofs is also considered. We employ spatial data to determine the expected effects of green roofs on each building unit, because the benefits and costs may vary depending on the location of the building. This is due to the heterogeneous spatial conditions. In the third step, the final building sites are proposed by solving the maximal covering location problem (MCLP) to determine the optimal locations for green roofs as urban honeybee foraging sites. As an illustrative example, we apply the proposed framework in Seoul, Korea. This new framework is expected to contribute to sustainable urban ecosystems.

  10. Comparing wildlife habitat and biodiversity across green roof type

    Energy Technology Data Exchange (ETDEWEB)

    Coffman, R.R. [Oklahoma Univ., Tulsa, OK (United States). Dept. of Landscape Architecture

    2007-07-01

    Green roofs represent restorative practices within human dominated ecosystems. They create habitat, increase local biodiversity, and restore ecosystem function. Cities are now promoting this technology as a part of mitigation for the loss of local habitat, making the green roof necessary in sustainable development. While most green roofs create some form of habitat for local and migratory fauna, some systems are designed to provide specific habitat for species of concern. Despite this, little is actually known about the wildlife communities inhabiting green roofs. Only a few studies have provided broad taxa descriptions across a range of green roof habitats, and none have attempted to measure the biodiversity across green roof class. Therefore, this study examined two different vegetated roof systems representative of North America. They were constructed under alternative priorities such as energy, stormwater and aesthetics. The wildlife community appears to be a result of the green roof's physical composition. Wildlife community composition and biodiversity is expected be different yet comparable between the two general types of green roofs, known as extensive and intensive. This study recorded the community composition found in the two classes of ecoroofs and assessed biodiversity and similarity at the community and group taxa levels of insects, spiders and birds. Renyi family of diversity indices were used to compare the communities. They were further described through indices and ratios such as Shannon's, Simpson's, Sorenson and Morsita's. In general, community biodiversity was found to be slightly higher in the intensive green roof than the extensive green roof. 26 refs., 4 tabs., 4 figs.

  11. The Geometric Theory of Roof Reflector Resonators

    Science.gov (United States)

    1976-12-01

    with solid state lasers, beginning in 1967. Soncini and Svelto (Refs 39 and 40) and Cubeddu, Polloni, Sacchi, and Svelto (Ref 11) have used pairs of 900...used by these authors is shown in Fig. 5. 13 In all experiments the output was found to be highly repeatable from pulse to pulse. Soncini and Svelto ...DeLang and Boumhuis (Fig. 4(b) ) and Soncini and Svelto (Fig. 5 ) have observed in their lasers are the samn except that iii the former the roof

  12. High Efficiency Solar Integrated Roof Membrane Product

    Energy Technology Data Exchange (ETDEWEB)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  13. Surface energy balance of an extensive green roof as quantified by full year eddy-covariance measurements.

    Science.gov (United States)

    Heusinger, Jannik; Weber, Stephan

    2017-01-15

    Green roofs are discussed as a promising type of green infrastructure to lower heat stress in cities. In order to enhance evaporative cooling, green roofs should ideally have similar Bowen ratio (β=sensible heat flux/latent heat flux) characteristics such as rural sites, especially during summer periods with high air temperatures. We use the eddy-covariance (EC) method to quantify the energy balance of an 8600m(2) extensive, non-irrigated green roof at the Berlin Brandenburg Airport, Germany over a full annual cycle. To understand the influence of water availability on green roof-atmosphere energy exchange, we studied dry and wet periods and looked into functional relationships between leaf area, volumetric water content (VWC) of the substrate, shortwave radiation and β. The surface energy balance was dominated by turbulent heat fluxes in comparison to conductive substrate heat fluxes. The Bowen ratio was slightly below unity on average but highly variable due to ambient meteorology and substrate water availability, i.e. β increased to 2 in the summer season. During dry periods mean daytime β was 3, which is comparable to typical values of urban instead of rural sites. In contrast, mean daytime β was 0.3 during wet periods. Following a summer wet period the green roof maximum daily evapotranspiration (ET) was 3.3mm, which is a threefold increase with respect to the mean summer ET. A multiple regression model indicated that the substrate VWC at the present site has to be >0.11m(3)m(-3) during summer high insolation periods (>500Wm(-2)) in order to maintain favourable green roof energy partitioning, i.e. mid-day βgreen roofs can be significantly optimised by using sustainable irrigation approaches.

  14. Assessment of natural radioactivity and mass attenuation coefficients of brick and roofing tile used in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Damla, N., E-mail: nevzat.damla@batman.edu.tr [Batman University, Department of Physics, 72060 Batman (Turkey); Cevik, U.; Kobya, A.I. [Karadeniz Technical University, Department of Physics, 61080 Trabzon (Turkey); Celik, A. [Giresun University, Department of Physics, 28049 Giresun (Turkey); Celik, N. [Guemueshane University, Department of Physics Engineering, 29100 Guemueshane Turkey (Turkey); Yildirim, I. [Karadeniz Technical University, Department of Forest Industry, 61080 Tranzon (Turkey)

    2011-08-15

    In this study the distribution of natural radionuclides ({sup 226}Ra, {sup 232}Th, {sup 40}K) in brick and roofing tile samples commonly used as building materials in Turkey was measured by using gamma spectrometry. The activity concentrations, radium equivalent activities (Ra{sub eq}), representative level index, indoor absorbed dose rate in air values and annual effective dose due to the intake of the above-mentioned radionuclides in the brick and roofing tile samples were estimated to assess the radiation hazard for people living in dwellings made of the materials studied. The measured average activity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K were 34 {+-} 14, 34 {+-} 13 and 462 {+-} 175 Bq.kg{sup -1}, respectively, for brick samples. For roofing tile, the average activity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K were measured to be 34 {+-} 14, 33 {+-} 12 and 429 {+-} 161 Bq.kg{sup -1}, respectively. The concentrations for these natural radionuclides were compared with the reported data of other countries. The Ra{sub eq} values of all samples were lower than the limit of 370 Bq.kg{sup -1}, equivalent to a gamma dose of 1.5 mSv.a{sup -1} recommended by OECD. This study shows that the measured brick and roofing tile samples do not pose any significant source of radiation hazard and are safe to be used as building materials. Moreover, the experimental mass attenuation coefficients ({mu}/{rho}) of brick and roofing tile samples were determined in the energy range 80-1332 keV using the gamma ray transmission method. The experimental mass attenuation coefficients were compared with theoretical values obtained using XCOM. It was found that the computed values and the experimental results of this work are in good agreement with those reported in the literature. The chemical compositions and structural analysis (XRD) of the brick and roofing tile samples are also presented. - Highlights: > In this study, the distribution of natural

  15. A generative statistical approach to automatic 3D building roof reconstruction from laser scanning data

    Science.gov (United States)

    Huang, Hai; Brenner, Claus; Sester, Monika

    2013-05-01

    This paper presents a generative statistical approach to automatic 3D building roof reconstruction from airborne laser scanning point clouds. In previous works, bottom-up methods, e.g., points clustering, plane detection, and contour extraction, are widely used. Due to the data artefacts caused by tree clutter, reflection from windows, water features, etc., the bottom-up reconstruction in urban areas may suffer from a number of incomplete or irregular roof parts. Manually given geometric constraints are usually needed to ensure plausible results. In this work we propose an automatic process with emphasis on top-down approaches. The input point cloud is firstly pre-segmented into subzones containing a limited number of buildings to reduce the computational complexity for large urban scenes. For the building extraction and reconstruction in the subzones we propose a pure top-down statistical scheme, in which the bottom-up efforts or additional data like building footprints are no more required. Based on a predefined primitive library we conduct a generative modeling to reconstruct roof models that fit the data. Primitives are assembled into an entire roof with given rules of combination and merging. Overlaps of primitives are allowed in the assembly. The selection of roof primitives, as well as the sampling of their parameters, is driven by a variant of Markov Chain Monte Carlo technique with specified jump mechanism. Experiments are performed on data-sets of different building types (from simple houses, high-rise buildings to combined building groups) and resolutions. The results show robustness despite the data artefacts mentioned above and plausibility in reconstruction.

  16. DIFFERENT ROOF BEHAVIOUR UNDER DIFFERENT UPPER MINING BOUNDARY CONDITION IN DATONG

    Institute of Scientific and Technical Information of China (English)

    康立勋

    1997-01-01

    Understanding roof behaviour and immediate roof failure patterns of Iongwall face is a prerequisite for establishing correct roof control theory and appplying effective roof control measures. Roof behaviour and immediate roof failure pattern have a close relationship with upper mining boundary conditions of Iongwall face. According to actual situation of Datong Mining Area, upper mining boundary conditions of Iongwall face have been classified into 5 types in this paper. Roof behaviour and immediate roof failure pattern under each upper mining boundary condition are discussed in details.

  17. Low Birth Weight due to Intrauterine Growth Restriction and/or Preterm Birth: Effects on Nephron Number and Long-Term Renal Health

    Directory of Open Access Journals (Sweden)

    Vladislava Zohdi

    2012-01-01

    Full Text Available Epidemiological studies have clearly demonstrated a strong association between low birth weight and long-term renal disease. A potential mediator of this long-term risk is a reduction in nephron endowment in the low birth weight infant at the beginning of life. Importantly, nephrons are only formed early in life; during normal gestation, nephrogenesis is complete by about 32–36 weeks, with no new nephrons formed after this time during the lifetime of the individual. Hence, given that a loss of a critical number of nephrons is the hallmark of renal disease, an increased severity and acceleration of renal disease is likely when the number of nephrons is already reduced prior to disease onset. Low birth weight can result from intrauterine growth restriction (IUGR or preterm birth; a high proportion of babies born prematurely also exhibit IUGR. In this paper, we describe how IUGR and preterm birth adversely impact on nephrogenesis and how a subsequent reduced nephron endowment at the beginning of life may lead to long-term risk of renal disease, but not necessarily hypertension.

  18. 40 CFR 63.1043 - Standards-Separator floating roof.

    Science.gov (United States)

    2010-07-01

    ...) National Emission Standards for Oil-Water Separators and Organic-Water Separators § 63.1043 Standards... controlling air emissions from an oil-water separator or organic-water separator using a floating roof. (b... floating roof shall be equipped with two continuous seals, one above the other, between the wall of...

  19. Integral design methodology for collaborative design of sustainable roofs

    NARCIS (Netherlands)

    Quanjel, E.M.C.J.

    2006-01-01

    Normally the roof is the part of building which gets minimal attention to use for integration with the comfort system of the building. This is striking, as the roof is an important possible building component for containing sustainable energy systems. The sustainable energy possible options are ofte

  20. Fourier analysis of conductive heat transfer for glazed roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  1. Hygrothermal Performance of West Coast Wood Deck Roofing System

    Energy Technology Data Exchange (ETDEWEB)

    Pallin, Simon B [ORNL; Kehrer, Manfred [ORNL; Desjarlais, Andre Omer [ORNL

    2014-02-01

    Simulations of roofing assemblies are necessary in order to understand and adequately predict actual the hygrothermal performance. At the request of GAF, simulations have been setup to verify the difference in performance between white and black roofing membrane colors in relation to critical moisture accumulation for traditional low slope wood deck roofing systems typically deployed in various western U.S. Climate Zones. The performance of these roof assemblies has been simulated in the hygrothermal calculation tool of WUFI, from which the result was evaluated based on a defined criterion for moisture safety. The criterion was defined as the maximum accepted water content for wood materials and the highest acceptable moisture accumulation rate in relation to the risk of rot. Based on the criterion, the roof assemblies were certified as being either safe, risky or assumed to fail. The roof assemblies were simulated in different western climates, with varying insulation thicknesses, two different types of wooden decking, applied with varying interior moisture load and with either a high or low solar absorptivity at the roof surface (black or white surface color). The results show that the performance of the studied roof assemblies differs with regard to all of the varying parameters, especially the climate and the indoor moisture load.

  2. Hygrothermal Performance of West Coast Wood Deck Roofing System

    Energy Technology Data Exchange (ETDEWEB)

    Pallin, Simon B [ORNL; Kehrer, Manfred [ORNL; Desjarlais, Andre Omer [ORNL

    2014-02-01

    Simulations of roofing assemblies are necessary in order to understand and adequately predict actual the hygrothermal performance. At the request of GAF, simulations have been setup to verify the difference in performance between white and black roofing membrane colors in relation to critical moisture accumulation for traditional low slope wood deck roofing systems typically deployed in various western U.S. Climate Zones. The performance of these roof assemblies has been simulated in the hygrothermal calculation tool of WUFI, from which the result was evaluated based on a defined criterion for moisture safety. The criterion was defined as the maximum accepted water content for wood materials and the highest acceptable moisture accumulation rate in relation to the risk of rot. Based on the criterion, the roof assemblies were certified as being either safe, risky or assumed to fail. The roof assemblies were simulated in different western climates, with varying insulation thicknesses, two different types of wooden decking, applied with varying interior moisture load and with either a high or low solar absorptivity at the roof surface (black or white surface color). The results show that the performance of the studied roof assemblies differs with regard to all of the varying parameters, especially the climate and the indoor moisture load.

  3. Extensive Green Roof Research Program at Colorado State University

    Science.gov (United States)

    In the high elevation, semi-arid climate of Colorado, green roofs have not been scientifically tested. This research examined alternative plant species, media blends, and plant interactions on an existing modular extensive green roof in Denver, Colorado. Six plant species were ev...

  4. Corrosion-Resistant Roof with Integrated Photovoltaic Power System

    Science.gov (United States)

    2014-02-01

    metal roof panel are being monitored using a non-operational mockup of a PV module and roofing panel installed on the exposure rack. Four experi...conditions Examination of 1 year’s data downloaded from the corrosion sensors placed between the metal panel and PV module on the system mockup in

  5. The Discharge Coefficient of a Centre-Pivot Roof Window

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Afshari, Alireza; Nielsen, Peter V.

    2012-01-01

    value of discharge coefficient is used. The constant value of discharge coefficient leads to deceptive airflow estimation in the cases of centre-pivot roof windows. The object of this paper is to study and evaluate the discharge coefficient of the centre pivot roof window. Focus is given...

  6. U-value measurements on a roof window

    DEFF Research Database (Denmark)

    Duer, Karsten

    1998-01-01

    This report describes the results of the U-value measurements performed on a roof window. The work is as a part of the development of an ISO/CEN standard measuring procedure for roof windows.The measurements have been performed using the procedures given in ISO 12567 draft version 1998...

  7. Opportunities Green Roofs Can Offer Ghanaians and their Cities

    African Journals Online (AJOL)

    Lone Star College System

    2015-08-17

    Aug 17, 2015 ... Review. Green roofs: A possible best management practice for enhancing the ... development in Ghana in this era of climate change and variability. Key words: Green roof, .... mitigation of urban heat island effect and indoor energy consumption. ..... through buildings, air pollution, emission of greenhouse.

  8. A Roof for the Lion's House

    Science.gov (United States)

    1978-01-01

    Fans of the National Football League's Detroit Lions don't worry about gameday weather. Their magnificent new Pontiac Stadium has a domed, air-supported, fabric roof that admits light but protects the playing field and patrons from the elements. The 80,000-seat "Silverdome" is the world's largest fabric-covered structure-and aerospace technology played an important part in its construction. The key to economical construction of the Silverdome-and many other types of buildings-is a spinoff of fiber glass Beta yarn coated with Teflon TFE fluorocarbon resin. The big advance it offers is permanency. Fabric structures-tents, for example have been around since the earliest years of human civilization. But their coverings-hides, canvas and more recently plastics-were considered temporary; though tough, these fabrics were subject to weather deterioration. Teflon TFE-coated Beta Fiberglas is virtually impervious to the effects of weather and sunlight and it won't stretch, shrink, mildew or rot, thus has exceptional longevity; it is also very strong, lightweight, flame resistant and requires no periodic cleaning, because dirt will not stick to the surface of Teflon TFE. And to top all that, it costs only 30 to 40 percent as much as conventional roofing.

  9. Green-roof as a solution to solve stormwater management issues? Assessment on a long time period at the parcel scale

    Science.gov (United States)

    Versini, P.-A.; Petrucci, G.; de Gouvello, B.

    2014-09-01

    Experimental green-roof rainfall-runoff observations have shown a positive impact on stormwater management at the building scale; with a decrease in the peak discharge and a decrease in runoff volume. This efficiency of green-roofs varies from one rainfall event to another depending on precipitation characteristics and substrate antecedent conditions. Due to this variability, currently, green-roofs are rarely officially used as a regulation tool to manage stormwater. Indeed, regulation rules governing the connection to the stormwater network are usually based on absolute threshold values that always have to be respected: maximum areal flow-rate or minimum retention volume for example. In this context, the aim of this study is to illustrate how a green-roof could represent an alternative to solve stormwater management issues, if the regulation rules were further based on statistics. For this purpose, a modelling scheme has been established at the parcel scale to simulate the hydrological response of several roof configurations: impervious, strictly regulated (in terms of areal flow-rate or retention volume), and covered by different types of green-roof matter. Simulations were carried out on a long precipitation time period (23 years) that included a large and heterogeneous set of hydrometeorological conditions. Results obtained for the different roof configurations were compared. Based on the return period of the rainfall event, the probability to respect some regulation rules (defined from real situations) was assessed. They illustrate that green-roofs reduce stormwater runoff compared to an impervious roof surface and can guarantee the respect of the regulation rules in most of the cases. Moreover, their implementation can appear more realistic than that of other infrastructures strictly complying with regulations and demanding significant storage capacity.

  10. Stormwater runoff mitigation and nutrient leaching from a green roof designed to attract native pollinating insects

    Science.gov (United States)

    Fogarty, S.; Grogan, D. S.; Hale, S. R.

    2013-12-01

    a rooftop? 2) How does this design compare with the performance of the extant Green Grid green roof system on the roof in regard to storm water runoff mitigation and nutrient leaching? and 3) Using GIS, can this information be scaled to a larger region (i.e. UNH campus, the NH Seacoast, NH cities, etc.) to determine areas of particular interest for pollinator conservation? Runoff mitigation, as a percentage of precipitation, is expected to be greater than that on the roof with proprietary substrate, though nutrient leaching may be greater as well due to the higher organic matter content. Paired with GIS data on NH ecoregions, these results will help to identify areas in the state that would benefit from the construction of pollinator habitat corridors, including urban areas that may not have been previously considered.

  11. Thermal Behavior of Green Roofs Applied to Tropical Climate

    Directory of Open Access Journals (Sweden)

    Grace Tibério Cardoso

    2013-01-01

    Full Text Available The main goal of this paper is to present results on an experimental field about the green roofs thermal behavior, compared to other traditional roof covering systems. On the one hand, it intends to describe shortly the constructive system of a green roof with a lightweight building system, which has a sustainable building materials character and, on the other, it worries with the water reuse and with the run-off delay. The main methodological procedure adopted to study the thermal behavior of green roof was installing thermocouples to collect surface temperatures and indoor air, later comparing them with existing prototypes in an experimental plot. The thermal behavior analysis of cover systems was assessed by a representative episode of the climate fact, based on the dynamic climate approach. The experimental results from internal air temperature measurements show that the green roofs applied to warm and dry climates also provide an interesting time lag with surface and internal air temperature reduction.

  12. A pilot study to evaluate runoff quantity from green roofs.

    Science.gov (United States)

    Lee, Ju Young; Lee, Min Jung; Han, Mooyoung

    2015-04-01

    The use of green roofs is gaining increased recognition in many countries as a solution that can be used to improve environmental quality and reduce runoff quantity. To achieve these goals, pilot-scale green roof assemblies have been constructed and operated in an urban setting. From a stormwater management perspective, green roofs are 42.8-60.8% effective in reducing runoff for 200 mm soil depth and 13.8-34.4% effective in reducing runoff for 150 mm soil depth. By using Spearman rank correlation analysis, high rainfall intensity was shown to have a negative relationship with delayed occurrence time, demonstrating that the soil media in green roofs do not efficiently retain rainwater. Increasing the number of antecedent dry days can help to improve water retention capacity and delay occurrence time. From the viewpoint of runoff water quality, green roofs are regarded as the best management practice by filtration and adsorption through growth media (soil).

  13. APPLICATION OF THE ROOF DISTURBANCETO MONITORING AND PREDICTINGTHE GROUND PRESSURE

    Institute of Scientific and Technical Information of China (English)

    付国彬; 钱鸣高

    1992-01-01

    Based on study of the influence of main roof fracture on ground pressure,this paper considered the immediate roof as a semi-infinite long beam on a Winkler elastic foundation. In the model the coal seam is the foundation and the pressure caused by rnian roof deflection is the load.Having solved the model and analyzed relevant factors,the authors indicate that the disturbance caused by the breakage of the mian roof can be observed in both gates of iongwaii face and explain why it can be. The paper points out that the applicability of the method to obtain the disturbance information by measuring the loads on supports is wider than that by measuring the roof convergence rate. The results are useful for monitoring and predicting ground pressure.

  14. Modelling of green roof hydrological performance for urban drainage applications

    DEFF Research Database (Denmark)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen

    2014-01-01

    Green roofs are being widely implemented for stormwater management and their impact on the urban hydrological cycle can be evaluated by incorporating them into urban drainage models. This paper presents a model of green roof long term and single event hydrological performance. The model includes...... from 3 different extensive sedum roofs in Denmark. These data consist of high-resolution measurements of runoff, precipitation and atmospheric variables in the period 2010–2012. The hydrological response of green roofs was quantified based on statistical analysis of the results of a 22-year (1989...... and that the mean annual runoff is not linearly related to the storage. Green roofs have therefore the potential to be important parts of future urban stormwater management plans....

  15. Sedum-dominated green-roofs in a semi-arid region increase CO2 concentrations during the dry season.

    Science.gov (United States)

    Agra, Har'el; Klein, Tamir; Vasl, Amiel; Shalom, Hadar; Kadas, Gyongyver; Blaustein, Leon

    2017-04-15

    Green roofs are expected to absorb and store carbon in plants and soils and thereby reduce the high CO2 concentration levels in big cities. Sedum species, which are succulent perennials, are commonly used in extensive green roofs due to their shallow root system and ability to withstand long water deficiencies. Here we examined CO2 fixation and emission rates for Mediterranean Sedum sediforme on green-roof experimental plots. During late winter to early spring, we monitored CO2 concentrations inside transparent tents placed over 1m(2) plots and followed gas exchange at the leaf level using a portable gas-exchange system. We found high rates of CO2 emission at daytime, which is when CO2 concentration in the city is the highest. Both plot- and leaf-scale measurements showed that these CO2 emissions were not fully compensated by the nighttime uptake. We conclude that although carbon sequestration may only be a secondary benefit of green roofs, for improving this ecosystem service, other plant species than Sedum should also be considered for use in green roofs, especially in Mediterranean and other semi-arid climates.

  16. Energy conservation on large air-conditioned buildings: use of evaporative roof cooling in hot and dry climates

    Energy Technology Data Exchange (ETDEWEB)

    Sodha, M.S.; Sawhney, R.L.; Deshmukh, M.K.

    Energy conservation potential of the evaporative roof cooling technique for a cinema house in a composite climate (characterized by Delhi) has been evaluated. Thermal loads due to heat conduction through the building envelope, the required ventilation and the occupants have been taken into account. Life-cycle-cost analysis has been employed to evaluate the cost effectiveness of this energy conservation technique. It is seen that evaporative cooling on the roof leads to a net saving of 14% in the initial investment and 17% in the annual cost.

  17. Mobilization and distribution of lead originating from roof dust and wet deposition in a roof runoff system.

    Science.gov (United States)

    Yu, Jianghua; Yu, Haixia; Huang, Xiaogu

    2015-12-01

    In this research, the mobilization and distribution of lead originating in roof dust and wet deposition were investigated within a roof dust-rooftop-runoff system. The results indicated that lead from roof dust and wet deposition showed different transport dynamics in runoff system and that this process was significantly influenced by the rainfall intensity. Lead present in the roof dust could be easily washed off into the runoff, and nearly 60 % of the total lead content was present in particulate form. Most of the lead from the roof dust was transported during the late period of rainfall; however, the lead concentration was higher for several minutes at the rainfall beginning. Even though some of the lead from wet deposition, simulated with a standard isotope substance, was adsorbed onto adhered roof dust and/or retained on rooftop in runoff system, most of it (50-82 %) remained as dissolved lead in the runoff for rainfall events of varying intensity. Regarding the distribution of lead in the runoff system, the results indicated that it could be carried in the runoff in dissolved and particulate form, be adsorbed to adhered roof dust, or remain on the rooftop because of adsorption to the roof material. Lead from the different sources showed different distribution patterns that were also related to the rainfall intensity. Higher rainfall intensity resulted in a higher proportion of lead in the runoff and a lower proportion of lead remaining on the rooftop.

  18. Entire cities could benefit from green roofs : Heleen Mees is investigating how five metropolises are greenifying their roofs

    NARCIS (Netherlands)

    Mees, Heleen

    2014-01-01

    Rotterdam is making good progress with its creation of green roofs. Heleen Mees, researcher at Utrecht University, drew this conclusion from her research, in which she compared the green roof policy of four different cities with that of Rotterdam. Rotterdam awards grants to those wishing to create a

  19. Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California

    Science.gov (United States)

    Epstein, Scott A.; Lee, Sang-Mi; Katzenstein, Aaron S.; Carreras-Sospedra, Marc; Zhang, Xinqiu; Farina, Salvatore C.; Vahmani, Pouya; Fine, Philip M.; Ban-Weiss, George

    2017-08-01

    The installation of roofing materials with increased solar reflectance (i.e., “cool roofs”) can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California’s Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.

  20. Serum stimulation of CCR7 chemotaxis due to coagulation factor XIIa-dependent production of high-molecular-weight kininogen domain 5.

    Science.gov (United States)

    Ponda, Manish P; Breslow, Jan L

    2016-10-24

    Chemokines and their receptors play a critical role in immune function by directing cell-specific movement. C-C chemokine receptor 7 (CCR7) facilitates entry of T cells into lymph nodes. CCR7-dependent chemotaxis requires either of the cognate ligands C-C chemokine ligand 19 (CCL19) or CCL21. Although CCR7-dependent chemotaxis can be augmented through receptor up-regulation or by increased chemokine concentrations, we found that chemotaxis is also markedly enhanced by serum in vitro. Upon purification, the serum cofactor activity was ascribed to domain 5 of high-molecular-weight kininogen. This peptide was necessary and sufficient for accelerated chemotaxis. The cofactor activity in serum was dependent on coagulation factor XIIa, a serine protease known to induce cleavage of high-molecular-weight kininogen (HK) at sites of inflammation. Within domain 5, we synthesized a 24-amino acid peptide that could recapitulate the activity of intact serum through a mechanism distinct from up-regulating CCR7 expression or promoting chemokine binding to CCR7. This peptide interacts with the extracellular matrix protein thrombospondin 4 (TSP4), and antibodies to TSP4 neutralize its activity. In vivo, an HK domain 5 peptide stimulated homing of both T and B cells to lymph nodes. A circulating cofactor that is activated at inflammatory foci to enhance lymphocyte chemotaxis represents a powerful mechanism coupling inflammation to adaptive immunity.

  1. [A case of spindle cell carcinoma of the stomach presenting with hematochezia and weight loss due to fistulous tract formation with colon].

    Science.gov (United States)

    An, Ji Won; Cheung, Dae Young; Seo, Min Woo; Lee, Hyun Jung; Lee, In Kyu; Kim, Tae Jung; Kim, Jin Il; Kim, Jae Kwang

    2013-08-25

    Spindle cell carcinoma (SpCC) is a rare tumor consisting of spindle cells which express cytokeratin. Despite recent advances in immunohistochemical and genetic studies, precise histogenesis of SpCC is still controversial and this tumor had been referred to with a wide range of names (in the past): carcinosarcoma, pseudosarcoma, sarcomatoid carcinoma, pseudosarcomatous carcinoma, and collision tumor. Recently, the authors experienced an extremely rare case of SpCC arising from the stomach. A 64-year-old male presented with unintended weight loss and hematochezia. Endoscopic examination revealed a fistulous tract between the stomach and the transverse colon which was made by direct invasion of SpCC of the stomach to the colon. Histologically, the tumor was positive for both vimentin and cytokeratin but negative for CD117, CD34, actin, and desmin. Herein, we report a case of SpCC arising from the stomach that formed a fistulous tract with the colon which was diagnosed during evaluation of hematochezia and weight loss.

  2. Interdisciplinary design study of a high-rise integrated roof wind energy system

    Science.gov (United States)

    Dekker, R. W. A.; Ferraro, R. M.; Suma, A. B.; Moonen, S. P. G.

    2012-10-01

    Today's market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES) presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT) in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM). Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.

  3. Interdisciplinary design study of a high-rise integrated roof wind energy system

    Directory of Open Access Journals (Sweden)

    Moonen S.P.G.

    2012-10-01

    Full Text Available Today’s market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM. Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.

  4. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    Science.gov (United States)

    Vahmani, P.; Sun, F.; Hall, A.; Ban-Weiss, G.

    2016-12-01

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling. Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate

  5. Persistent fever and weight loss due to an interleukin-6-producing adrenocortical oncocytoma in a girl--review of the literature.

    Science.gov (United States)

    Kawahara, Yuta; Morimoto, Akira; Onoue, Akinori; Kashii, Yoshifumi; Fukushima, Noriyoshi; Gunji, Yuji

    2014-08-01

    Adrenocortical oncocytomas are rarely reported, occur almost exclusively in adults, and are mostly nonfunctional. Here, we report an interleukin-6 (IL-6)-producing adrenocortical oncocytoma in an 11-year-old girl presenting with fever, body weight loss, and increased levels of inflammatory markers and serum IL-6. Imaging studies revealed a 4-cm mass in the left adrenal gland. After complete resection, laboratory findings returned to normal. Histology was consistent with adrenocortical oncocytoma, and the tumor cells stained positive for IL-6. IL-6-producing adrenocortical oncocytoma should be included in the differential diagnosis and imaging studies should be performed in patients presenting with persistent fever of unknown origin and high levels of inflammatory markers.

  6. Adventures on the roof of the world

    Science.gov (United States)

    Leslie,, David M.

    2013-01-01

    To conduct field biology requires tenacity, grit, and flexibility; to endeavor to achieve conservation success requires patience, persistence, and passion. The essence of field biology and the hope for conservation success are both reflected admirably in George B. Schaller's most recent book, Tibet Wild: A Naturalist's Journeys on the Roof of the World. I can think of no living biologist who embodies these characteristics more than Schaller does. Nearly 80 years old, he still regularly treks in faraway lands, observing and recording the natural history of species that the vast majority of us will never see in the wild. Schaller is a vanguard, and Tibet Wild, like his other books, is a sentinel of urgent conservation need.

  7. Precast Prestressed Concrete Truss-Girder for Roof Applications

    Directory of Open Access Journals (Sweden)

    Peter Samir

    2014-01-01

    Full Text Available Steel trusses are the most popular system for supporting long-span roofs in commercial buildings, such as warehouses and aircraft hangars. There are several advantages of steel trusses, such as lightweight, ease of handling and erection, and geometric flexibility. However, they have some drawbacks, such as high material and maintenance cost, and low fire resistance. In this paper, a precast concrete truss is proposed as an alternative to steel trusses for spans up to 48 m (160 ft without intermediate supports. The proposed design is easy to produce and has lower construction and maintenance costs than steel trusses. The truss consists of two segments that are formed using standard bridge girder forms with block-outs in the web which result in having diagonals and vertical members and reduces girder weight. The two segments are then connected using a wet joint and post-tensioned longitudinally to form a crowned truss. The proposed design optimizes the truss-girder member locations, cross-sections, and material use. A 9 m (30 ft long truss specimen is constructed using self-consolidated concrete to investigate the constructability and structural capacity of the proposed design. A finite element analysis of the specimen is conducted to investigate stresses at truss diagonals, verticals, and connections. Testing results indicate the production and structural efficiency of the developed system.

  8. Characterization of ceramic roof tile wastes as pozzolanic admixture.

    Science.gov (United States)

    Lavat, Araceli E; Trezza, Monica A; Poggi, Mónica

    2009-05-01

    The aim of this work is to study the recycling of tile wastes in the manufacture of blended cements. Cracked or broken ceramic bodies are not accepted as commercial products and, therefore, the unsold waste of the ceramic industry becomes an environment problem. The use of powdered roof tile in cement production, as pozzolanic addition, is reported. The wastes were classified as nonglazed, natural and black glazed tiles. The mineralogy of the powders was controlled by SEM-EDX microscopy, XRD analysis and FTIR spectroscopy. Particle size was checked by laser granulometry. Once the materials were fully characterized, pozzolanic lime consumption tests and Fratini tests were carried out. Different formulations of cement-tile blends were prepared by incorporation of up to 30% weight ratios of recycled waste. The compressive strength of the resulting specimens was measured. The evolution of hydration of the cement-tile blends was analyzed by XRD and FTIR techniques. Vibrational spectroscopy presented accurate evidence of pozzolanic activity. The results of the investigation confirmed the potential use of these waste materials to produce pozzolanic cement.

  9. A field study to evaluate runoff quality from green roofs.

    Science.gov (United States)

    Vijayaraghavan, K; Joshi, U M; Balasubramanian, R

    2012-03-15

    Green (vegetated) roofs are emerging as practical strategies to improve the environmental quality of cities. However, the impact of green roofs on the storm water quality remains a topic of concern to city planners and environmental policy makers. This study investigated whether green roofs act as a source or a sink of various metals (Na, K, Ca, Mg, Al, Fe, Cu, Cd, Pb, Zn, Mn, Cr, Ni, Li and Co), inorganic anions (NO3-, NO2-, PO4(3-), SO4(2-), Cl-, F- and Br-) and cation (NH4+). A series of green roof assemblies were constructed. Four different real rain events and several artificial rain events were considered for the study. Results showed that concentrations of most of the chemical components in runoff were highest during the beginning of rain events and subsided in the subsequent rain events. Some of the important components present in the runoff include Na, K, Ca, Mg, Li, Fe, Al, Cu, NO3-, PO4(3-) and SO4(2-). However, the concentration of these chemical components in the roof runoff strongly depends on the nature of substrates used in the green roof and the volume of rain. Based on the USEPA standards for freshwater quality, we conclude that the green roof used in this study is reasonably effective except that the runoff contains significant amounts of NO3- and PO4(3-).

  10. Comparative life cycle assessment of standard and green roofs.

    Science.gov (United States)

    Saiz, Susana; Kennedy, Christopher; Bass, Brad; Pressnail, Kim

    2006-07-01

    Life cycle assessment (LCA) is used to evaluate the benefits, primarily from reduced energy consumption, resulting from the addition of a green roof to an eight story residential building in Madrid. Building energy use is simulated and a bottom-up LCA is conducted assuming a 50 year building life. The key property of a green roof is its low solar absorptance, which causes lower surface temperature, thereby reducing the heat flux through the roof. Savings in annual energy use are just over 1%, but summer cooling load is reduced by over 6% and reductions in peak hour cooling load in the upper floors reach 25%. By replacing the common flat roof with a green roof, environmental impacts are reduced by between 1.0 and 5.3%. Similar reductions might be achieved by using a white roof with additional insulation for winter, but more substantial reductions are achieved if common use of green roofs leads to reductions in the urban heat island.

  11. Numerical analysis of application for induction caving roof

    Institute of Scientific and Technical Information of China (English)

    HU Jian-hua; ZHOU Ke-ping; LI Xi-bing; YANG Nian-ge; SU Jia-hong

    2005-01-01

    New method for handling roof of the base successive mining is proposed, which is induction caving in the roof. The key is that it is made certain to the station of the space-time in the induction caving roof, as the stress is released with the mining process. And applying the catastrophe theory, the influencing factors of induction caving roof are studied in the emptied areas, such as the mechanical property of the surrounding rock, the area of the gob,the scope and dimension of tensile stress. The results show that the key factor is the area of the gob to the method of the induction caving roof. Then according to the geology and the ore characteristic, the three dimension FEM mechanical model is built in Tongkeng Mine, the laws of the tensile stress are analyzed to the space and the time in the roof with the mining, then it is rational design to the mine step and time of the handing the roof.

  12. Chemical composition of water from roofs in Gdansk, Poland

    Energy Technology Data Exchange (ETDEWEB)

    Tsakovski, Stefan, E-mail: stsakovski@chem.uni-sofia.b [Chair of Physical Chemistry, Faculty of Chemistry, University of Sofia, J Bourchier Blvd. 1, 1164 Sofia (Bulgaria); Tobiszewski, Marek [Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), 11/12 G. Narutowicza St., 80-952 Gdansk (Poland); Simeonov, Vasil, E-mail: vsimeonov@chem.uni-sofia.b [Chair of Analytical Chemistry, Faculty of Chemistry, University of Sofia, 1164 Sofia (Bulgaria); Polkowska, Zaneta [Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), 11/12 G. Narutowicza St., 80-952 Gdansk (Poland); Namiesnik, Jacek, E-mail: chemanal@pg.gda.p [Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), 11/12 G. Narutowicza St., 80-952 Gdansk (Poland)

    2010-01-15

    This study deals with the assessment of roof runoff waters from the region of Gdansk collected during the winter season (2007/2008). The chemical analysis includes 16 chemical variables: major ions, PAHs and PCBs measured at 3 sampling sites for 6-14 rain events. Although the data set is of limited volume the statistical data treatment using self-organizing maps (SOM) reveals the main factors controlling roof runoff water quality even for a data set with small dimension. This effort for explanation of the identified factors by the possible emission sources of the urban environment and air-particulate formation seems to be very reliable. Additionally to the roof runoff water quality factors the rain events patterns are found: 'background' group of events and groups formally named 'PAHs', 'PCBs' and 'air-borne particles' - dominated events. The SOM classification results give an opportunity to uncover the role of roof 'impact' on the runoff waters. Rain runoff water quality is described by four latent factors and the 'roof' impact is uncovered. - Identification of the urban roof runoff water quality factors and 'roof' impact by self-organizing map classification.

  13. Multi functional roof structures of the energy efficient buildings

    Directory of Open Access Journals (Sweden)

    Krstić Aleksandra

    2006-01-01

    Full Text Available Modern architectural concepts, which are based on rational energy consumption of buildings and the use of solar energy as a renewable energy source, give the new and significant role to the roofs that become multifunctional structures. Various energy efficient roof structures and elements, beside the role of protection, provide thermal and electric energy supply, natural ventilation and cooling of a building, natural lighting of the indoor space sunbeam protection, water supply for technical use, thus according to the above mentioned functions, classification and analysis of such roof structures and elements are made in this paper. The search for new architectural values and optimization in total energy balance of a building or the likewise for the urban complex, gave to roofs the role of "climatic membranes". Contemporary roof forms and materials clearly exemplify their multifunctional features. There are numerous possibilities to achieve the new and attractive roof design which broadens to the whole construction. With such inducement, this paper principally analyze the configuration characteristics of the energy efficient roof structures and elements, as well as the visual effects that may be achieved by their application.

  14. Rainwater runoff retention on an aged intensive green roof.

    Science.gov (United States)

    Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L

    2013-09-01

    Urban areas are characterised by large proportions of impervious surfaces which increases rainwater runoff and the potential for surface water flooding. Increased precipitation is predicted under current climate change projections, which will put further pressure on urban populations and infrastructure. Roof greening can be used within flood mitigation schemes to restore the urban hydrological balance of cities. Intensive green roofs, with their deeper substrates and higher plant biomass, are able to retain greater quantities of runoff, and there is a need for more studies on this less common type of green roof which also investigate the effect of factors such as age and vegetation composition. Runoff quantities from an aged intensive green roof in Manchester, UK, were analysed for 69 rainfall events, and compared to those on an adjacent paved roof. Average retention was 65.7% on the green roof and 33.6% on the bare roof. A comprehensive soil classification revealed the substrate, a mineral soil, to be in good general condition and also high in organic matter content which can increase the water holding capacity of soils. Large variation in the retention data made the use of predictive regression models unfeasible. This variation arose from complex interactions between Antecedant Dry Weather Period (ADWP), season, monthly weather trends, and rainfall duration, quantity and peak intensity. However, significantly lower retention was seen for high rainfall events, and in autumn, which had above average rainfall. The study period only covers one unusually wet year, so a longer study may uncover relationships to factors which can be applied to intensive roofs elsewhere. Annual rainfall retention for Manchester city centre could be increased by 2.3% by a 10% increase in intensive green roof construction. The results of this study will be of particular interest to practitioners implementing greenspace adaptation in temperate and cool maritime climates.

  15. Cool roofs as an energy conservation measure for federal buildings

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Haider; Akbari, Hashem

    2003-04-07

    We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

  16. Compositional differences between roof and floor rocks of the Skaergaard Intrusion

    Science.gov (United States)

    Salmonsen, Lars Peter; Tegner, Christian; Barfod, Gry H.; Lesher, Charles E.

    2014-05-01

    floor cumulates. Our data corroborates this interpretation. They also confirm that the concentrations of incompatible elements in certain levels of the roof rocks exceed what can be explained by trapped liquid contents. This is explained by instability of the upper solidification front and infiltration of evolved liquid into tension gashes. Fourthly, recent melt inclusion and textural studies show that the magma exsolved into immiscible Fe- and Si-rich liquids. It has been suggested that the buoyant Si-rich end-member segregated and rose to the roof. Compared to the Layered Series, the Upper Border Series is enriched in all incompatible elements regardless of their affinity to the Fe- or Si-rich melt. Thus, the effect of high trapped-liquid fractions dominates over that of liquid separation due to immiscibility. During solidification of the last 10 percent of the magma (UZb, UZc and Sandwich Horizon), however, concentrations of Fe, Mn and Ca decrease in the roof rocks while they increase in the floor rocks. Simultaneously, Si, K and Na increase strongly in the roof relative to the floor rocks. We interpret this as a consequence of efficient segregation of immiscible silicate liquids at least during the late stages of differentiation.

  17. Specifying, Installing and Maintaining Built-Up and Modified Bitumen Roofing Systems.

    Science.gov (United States)

    Hobson, Joseph W.

    2000-01-01

    Examines built-up, modified bitumen, and hybrid combinations of the two roofing systems and offers advise on how to assure high- quality performance and durability when using them. Included is a glossary of commercial roofing terms and asphalt roofing resources to aid in making decisions on roofing and systems product selection. (GR)

  18. Automatic Generation of 3D Building Models with Multiple Roofs

    Institute of Scientific and Technical Information of China (English)

    Kenichi Sugihara; Yoshitugu Hayashi

    2008-01-01

    Based on building footprints (building polygons) on digital maps, we are proposing the GIS and CG integrated system that automatically generates 3D building models with multiple roofs. Most building polygons' edges meet at right angles (orthogonal polygon). The integrated system partitions orthogonal building polygons into a set of rectangles and places rectangular roofs and box-shaped building bodies on these rectangles. In order to partition an orthogonal polygon, we proposed a useful polygon expression in deciding from which vertex a dividing line is drawn. In this paper, we propose a new scheme for partitioning building polygons and show the process of creating 3D roof models.

  19. Structural and chemical changes in ultra-high-molecular-weight polyethylene due to gamma radiation-induced crosslinking and annealing in air.

    Science.gov (United States)

    Viano, A M; Spence, K E; Shanks, M A; Scott, M A; Redfearn, R D; Carlson, C W; Holm, T A; Ray, A K

    2007-01-01

    Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) is the material of choice for one of the articulating surfaces in many total joint replacements, notably hip and knee prostheses. The various methods used by the orthopaedic biomaterials industry to sterilize and anneal UHMWPE components, and the resulting oxidation and crosslinking, affect the mechanical wear resistance properties in ways still unknown at the microscopic and molecular levels. Transmission electron microscopy and chemical pyrolysis were used to quantify crosslinking induced by gamma irradiation and annealing in air. Changes in lamellar stacking and the amount of crosslinking suggest two types of crosslinking: relatively unstable crosslinks in the amorphous region initially resulting from gamma irradiation which are later replaced by more thermally stable crosslinks resulting from rearrangements at the annealing temperature. Lamellar mobility, the ability of crystalline lamellae to flow in the material, is enhanced during the transition from one type of bond to the other, and this appears to optimize near eight hours of annealing time. Results from decomposition and percent crystallinity measurements provide further support for this theory.

  20. The impact of roofing material on building energy performance

    Science.gov (United States)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  1. Can green roof act as a sink for contaminants? A methodological study to evaluate runoff quality from green roofs.

    Science.gov (United States)

    Vijayaraghavan, K; Joshi, Umid Man

    2014-11-01

    The present study examines whether green roofs act as a sink or source of contaminants based on various physico-chemical parameters (pH, conductivity and total dissolved solids) and metals (Na, K, Ca, Mg, Al, Fe, Cr, Cu, Ni, Zn, Cd and Pb). The performance of green roof substrate prepared using perlite, vermiculite, sand, crushed brick, and coco-peat, was compared with local garden soil based on improvement of runoff quality. Portulaca grandiflora was used as green roof vegetation. Four different green roof configurations, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). In general, the vegetated green roof assemblies generated better-quality runoff with less conductivity and total metal ion concentration compared to un-vegetated assemblies. Of the different green roof configurations examined, P. grandiflora planted on green roof substrate acted as sink for various metals and showed the potential to generate better runoff.

  2. The Feasibility of Installing and Monitoring an Extensive Green Roof at Purdue University

    OpenAIRE

    2007-01-01

    The Boiler Green Initiative (BGI) is a student-run organization working to improve environmental sustainability at the Purdue University West Lafayette campus. A main goal of BGI's is to install a green roof on an existing building on campus that is being replaced. We discuss the benefits of green roofs, the feasibility of having one installed on the Armory's roof and the various monitoring options we have researched. Flat roofs are especially amenable to the green roof system, so a building ...

  3. Modeling a Hydrologically Optimal Green Roof Media Mixture

    Science.gov (United States)

    Background/Questions/MethodsA key environmental concern in managing urban ecosystems is controlling stormwater runoff to ameliorate pollution problems and sewage overflows. Vegetated green roofs have become an important green infrastructure tool to collect, store, and gradually r...

  4. Roof Isolation System - A Vibration Absorber for Buildings

    Institute of Scientific and Technical Information of China (English)

    田志昌; 钱稼茹

    2001-01-01

    A roof isolation system is proposed to reduce the dynamic response of buildings to earthquake excitations. In the system, frictional materials are inserted between the roof slab and the beams that support the slab. The roof slab and the beams are connected by springs. The optimum stiffness of the system is determined to minimize the seismic response of the buildings. A comparative study of the responses of an eight-story frame structure with and without the proposed system to ground motions was carried out to assess the system effectiveness. The study showed that the system energy dissipation capacity is nonlinear. The effectiveness of the system is related to the frequency and the acceleration of the ground motion. The system reduces the maximum lateral displacement response and the maximum inter-story drift response of the building by as much as 45% except for the roof.

  5. Experimental measurements and numerical modelling of a green roof

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, Renato M.; Castellotti, Francesco; Busato, Filippo [Padova Univ., Dept. of Management and Engineering, Vicenza (Italy)

    2005-12-15

    Green roof utilisation has been known since ancient times both in hot and cold climates. Nowadays, it has been reconsidered at issue of energy saving and pollution reduction. In this paper, some measurement sessions on a green roof installed by the Vicenza Hospital are described. A data logging system with temperature, humidity, rainfall, radiation, etc. sensors surveyed both the parameters related to the green roof and to the rooms underneath. The aim is to evaluate the passive cooling, stressing the evapotranspiration role in summer time. Furthermore, the enhanced insulating properties have been tested during winter time. A predictive numerical model has been developed in a building simulation software (TRNSYS) to calculate thermal and energy performances of a building with a green roof, varying the meteorological dataset for a specific geographic zone. (Author)

  6. MODELING OF STORM WATER RUNOFF FROM GREEN ROOFS

    Directory of Open Access Journals (Sweden)

    Ewa Burszta-Adamiak

    2014-10-01

    Full Text Available Apart from direct measurements, modelling of runoff from green roofs is valuable source of information about effectiveness of this type of structure from hydrological point of view. Among different type of models, the most frequently used are numerical models. They allow to assess the impact of green roofs on decrease and attenuation of runoff, reduction of peak runoff and value of water retention. This paper presents preliminary results of research on computing the rate of runoff from green roofs using GARDENIA model. The analysis has been carried out for selected rainfall events registered during measuring campaign on pilot-scale green roofs. Obtained results are promising and show good fit between observed and simulated runoff.

  7. High Alumina Refractory Bricks for Electric Arc Furnace Roofs

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ 1 Scope This standard specifies the sort, technical requirement, test method, inspection rules, marking, packing, transportation, storage and quality certification of high alumina refractory bricks for electric arc furnace roofs.

  8. Green roofs: A possible best management practice for enhancing ...

    African Journals Online (AJOL)

    ... roofs: A possible best management practice for enhancing the environmental quality ... erodes the natural ability of the locale to perform its ecosystem services. ... structural components, formulation of guidelines for the industry, government ...

  9. Home advantage in retractable-roof baseball stadia.

    Science.gov (United States)

    Romanowich, Paul

    2012-10-01

    This study examined whether the home advantage varies for open-air, domed, or retractable-roof baseball stadia, and whether having the roof open or closed affects the home advantage in retractable-roof baseball stadia. Data from Major League Baseball (MLB) games played between 2001 and 2009 were analyzed for whether or not the presence of a home-advantage was dependent on the type of home stadium used. Home advantage was robust for all three types of stadia. A significant effect of stadium type on home advantage was found, with a greater home advantage for teams playing home games in domed stadia relative to open-air stadia, replicating a previous study. There was a greater home advantage for teams playing home games in domed stadia relative to retractable-roof stadia. No other differences in the home advantage were found; results are discussed in terms of familiarity with the facility.

  10. Diaphragm Effect of Steel Space Roof Systems in Hall Structures

    Directory of Open Access Journals (Sweden)

    Mehmet FENKLİ

    2015-09-01

    Full Text Available Hall structures have been used widely for different purposes. They have are reinforced concrete frames and shear wall with steel space roof systems. Earthquake response of hall structures is different from building type structures. One of the most critical nodes is diaphragm effect of steel space roof on earthquake response of hall structures. Diaphragm effect is depending on lateral stiffness capacity of steel space roof system. Lateral stiffness of steel space roof system is related to modulation geometry, support conditions, selected sections and system geometry. In current paper, three representative models which are commonly used in Turkey were taken in to account for investigation. Results of numerical tests were present comparatively

  11. How EPA's Asbestos Regulations Apply to Roofing Materials

    Science.gov (United States)

    Guidance Manual and letters that clarify the applicability of the asbestos National Emissions Standard for Hazardous Air Pollutants (NESHAP) to the removal of asbestos-containing roofing material including tiles, and piping during demolition

  12. Application of solar roof shallow pool at individual residental buildings

    Directory of Open Access Journals (Sweden)

    Gavrilović Dragan J.

    2011-01-01

    Full Text Available The paper discusses the possibility of applying shallow roof pools of water on the basis of passive solar water capture functioning as thermal batteries and thermal "regulators" in a "hot - cold" mode with individual residential buildings. With this application, the utilization of the existing functionality of the building roof area would improve and open up the possibility of achieving better overall bio-climate individual object. By using this system, a flat roof impassable "terrace" takes on a new, additional energy function, which proves the ability to reduce overall energy consumption of total conventional seasonal heating and cooling consumption of a building. Supporting of this intention, the paper gives a variant solution of an easily prefabricated reinforced concrete roof system of shallow water pool that works on the principle of passive solar energy capture.

  13. Entry roof truss-bolt system test under the gob of contiguous seams

    Institute of Scientific and Technical Information of China (English)

    LIAN Chuan-jie; XU Wei-ya; WANG Ya-jie

    2007-01-01

    Roof bolt support system has been widely applied in the No.7.9 seam in Caozhuang coal mine.However,it has not been able to be applied in the NO.10-2 seam since the small interburden(2m)between NO.9 and NO.10-2 seam.The NO.9 and NO.10-2 seams are contiguous seams.The NO.9 seam has been mined out and the NO.10-2 seam will be mined under the gob of the NO.9 seam.The roof strata of the NO.10-2 seam may have been weakened and fractured due to the shear failure caused by the NO.9 seam mining activities.The steel beam sets spaced at 0.8 m have been used to support the entry of the NO.10-2 seam.In order to speed up the advance rate and cut entry development cost,a test area,using roof bolt in conjunction with truss-system,was successfully conducted.This paper presents the support system design,application of designed system,and the test results.Test results provide a cheaper,quicker,and safer way to support entry for the No.10-2 seam.

  14. Soil-roots Strength Performance of Extensive Green Roof by Using Axonopus Compressus

    Science.gov (United States)

    Yusoff, N. A.; Ramli, M. N.; Chik, T. N. T.; Ahmad, H.; Abdullah, M. F.; Kasmin, H.; Embong, Z.

    2016-07-01

    Green roof technology has been proven to provide potential environmental benefits including improved building thermal performance, removal of air pollution and reduced storm water runoff. Installation of green roof also involved soil element usage as a plant growth medium which creates several interactions between both strands. This study was carried out to investigate the soil-roots strength performance of green roof at different construction period up to 4 months. Axonopus compressus (pearl grass) was planted in a ExE test plot with a designated suitable soil medium. Direct shear test was conducted for each plot to determine the soil shear strength according to different construction period. In addition, some basic geotechnical testing also been carried out. The results showed that the shear strength of soil sample increased over different construction period of 1st, 2nd, 3rd and 4th month with average result 3.81 kPa, 5.55 kPa, 6.05 kPa and 6.48 kPa respectively. Shear strength of rooted soil samples was higher than the soil samples without roots (control sample). In conclusion, increment of soil-roots shear strength was due to root growth over the time. The soil-roots shear strength development of Axonopus compressus can be expressed in a linear equation as: y = 0.851x + 3.345, where y = shear stress and x = time.

  15. Systematic Study of the Failure of a Light-Frame Wood Roof in a Tornado

    Directory of Open Access Journals (Sweden)

    Christine Standohar-Alfano

    2012-12-01

    Full Text Available Tornadoes are a particularly devastating natural hazard that affect communities across the United States, particularly the Midwest and South. They are unique from an engineering point-of-view due to their very low probability of occurrence but often highly destructive consequences. The 2011 season was particularly devastating to the Southeastern portion of the U.S. This paper presents a single case study of a 2012 tornado that struck a single large rural light-frame wood house with an unconventional roof system. A fragility methodology was used as a tool to probabilistically study the loss of the roof system, and bound an Enhanced Fujita (EF scale rating of the tornado. The tornado was initially rated as an EF3 tornado by the U.S. National Weather Service. However, following a detailed site inspection verified with numerical structural models, the tornado was downgraded to an EF2 tornado. As expected, the use of nail connections in a roof-to-wall connection resulted in a weaker link compared to a hurricane clip. The approach presented in this paper can be used as a supplement to the EF rating provided by U.S. National Weather Service meteorologists when unusual conditions in either the structure or surroundings exists.

  16. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  17. MODELING OF STORM WATER RUNOFF FROM GREEN ROOFS

    OpenAIRE

    Ewa Burszta-Adamiak; Wiesław Fiałkiewicz

    2014-01-01

    Apart from direct measurements, modelling of runoff from green roofs is valuable source of information about effectiveness of this type of structure from hydrological point of view. Among different type of models, the most frequently used are numerical models. They allow to assess the impact of green roofs on decrease and attenuation of runoff, reduction of peak runoff and value of water retention. This paper presents preliminary results of research on computing the rate of runoff from green ...

  18. On the Design of Suspended Roofs with Paraboloidal Surfaces

    Directory of Open Access Journals (Sweden)

    N. Ungureanu

    2006-01-01

    Full Text Available Some considerations concerning the design of the paraboloidal suspended roofs are made. The main geometric aspects are first time presented. For the roofs we propose, as pattern, the equivalent continuum membranes, and the efforts in the cable are determined by using the membrane efforts and their equations. Two examples are analyzed: elliptic paraboloide and hyperbolic paraboloide, with horizontal projection under the form of an ellipse.

  19. Composition and Diversity of Avian Communities Using a New Urban Habitat: Green Roofs

    Science.gov (United States)

    Washburn, Brian E.; Swearingin, Ryan M.; Pullins, Craig K.; Rice, Matthew E.

    2016-06-01

    Green roofs on buildings are becoming popular and represent a new component of the urban landscape. Public benefits of green roof projects include reduced stormwater runoff, improved air quality, reduced urban heat island effects, and aesthetic values. As part of a city-wide plan, several green roofs have been constructed at Chicago's O'Hare International Airport (ORD). Like some other landscaping features, green roofs on or near an airport might attract wildlife and thus increase the risk of bird-aircraft collisions. During 2007-2011, we conducted a series of studies to evaluate wildlife use of newly constructed green roofs and traditional (gravel) roofs on buildings at ORD. These green roofs were 0.04-1.62 ha in area and consisted of primarily stonecrop species for vegetation. A total of 188 birds were observed using roofs during this research. Of the birds using green roofs, 66, 23, and 4 % were Killdeer, European Starlings, and Mourning Doves, respectively. Killdeer nested on green roofs, whereas the other species perched, foraged, or loafed. Birds used green roofs almost exclusively between May and October. Overall, avian use of the green roofs was minimal and similar to that of buildings with traditional roofs. Although green roofs with other vegetation types might offer forage or cover to birds and thus attract potentially hazardous wildlife, the stonecrop-vegetated green roofs in this study did not increase the risk of bird-aircraft collisions.

  20. Thin soil layer of green roof systems studied by X-Ray CT

    Science.gov (United States)

    Šácha, Jan; Jelínková, Vladimíra; Dohnal, Michal

    2016-04-01

    The popular non-invasive visualization technique of X-ray computed tomography (CT) has been used for 3D examination of thin soil layer of vegetated roof systems. The two categories of anthropogenic soils, usually used for green roof systems, were scanned during the first months after green roof system construction. First was represented by stripped topsoil with admixed crushed bricks and was well graded in terms of particle size distribution. The other category represented a commercial lightweight technogenic substrate. The undisturbed soil samples of total volume of 62.8 ccm were studied be means of X-ray Computed Tomography using X-ray Inspection System GE Phoenix Nanomex 180T with resulting spatial resolution about 57 μm in all directions. For both soil categories visible macroporosity, connectivity (described by the Euler characteristic), dimensionless connectivity and critical cross section of pore network were determined. Moreover, the temporal structural changes of studied soils were discussed together with heat and water regime of the green roof system. The analysis of CT images of anthropogenic soils was problematic due to the different X-ray attenuation of individual constituents. The correct determination of the threshold image intensity differentiating the soil constituents from the air phase had substantial importance for soil pore network analyses. However, X-ray CT derived macroporosity profiles reveal significant temporal changes notably in the soil comprised the stripped topsoil with admixed crushed bricks. The results implies that the technogenic substrate is structurally more stable over time compared to the stripped topsoil. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  1. The gastrocoel roof plate in embryos of different frogs.

    Science.gov (United States)

    Sáenz-Ponce, Natalia; Santillana-Ortiz, Juan-Diego; del Pino, Eugenia M

    2012-02-01

    The morphology of the gastrocoel roof plate and the presence of cilia in this structure were examined in embryos of four species of frogs. Embryos of Ceratophrys stolzmanni (Ceratophryidae) and Engystomops randi (Leiuperidae) develop rapidly, provide comparison for the analysis of gastrocoel roof plate development in the slow-developing embryos of Epipedobates machalilla (Dendrobatidae) and Gastrotheca riobambae (Hemiphractidae). Embryos of the analyzed frogs develop from eggs of different sizes, and display different reproductive and developmental strategies. In particular, dorsal convergence and extension and archenteron elongation begin during gastrulation in embryos of rapidly developing frogs, as in Xenopus laevis. In contrast, cells that involute during gastrulation are stored in the large circumblastoporal collar that develops around the closed blastopore in embryos of slow-developing frogs. Dorsal convergence and extension only start after blastopore closure in slow-developing frog embryos. However, in the neurulae, a gastrocoel roof plate develops, despite the accumulation of superficial mesodermal cells in the circumblastoporal collar. Embryos of all four species develop a ciliated gastrocoel roof plate at the beginning of neurulation. Accordingly, fluid-flow across the gastrocoel roof plate is likely the mechanism of left-right asymmetry patterning in these frogs, as in X. laevis and other vertebrates. A ciliated gastrocoel roof plate, with a likely origin as superficial mesoderm, is conserved in frogs belonging to four different families and with different modes of gastrulation.

  2. A method for the design of longwall gateroad roof support

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, W. [Geowork Engineering, Emerald, Qld. (Australia)

    2009-06-15

    A longwall gateroad roof support design method for roadway development and panel extraction is demonstrated. It is a hybrid numerical and empirical method called gateroad roof support model (GRSM), where specification of roof support comes from charts or equations. GRSM defines suggested roof support densities by linking a rock-mass classification with an index of mining-induced stress, using a large empirical database of Bowen Basin mining experience. Inherent in the development of GRSM is a rock-mass classification scheme applicable to coal measure strata. Coal mine roof rating (CMRR) is an established and robust coal industry standard, while the geological strength index (GSI) may also be used to determine rock-mass geomechanical properties. An elastic three-dimensional numerical model was established to calculate an index of mining induced stress, for both roadway development and longwall retreat. Equations to calculate stress index derived from the numerical modelling have been developed. An industry standard method of quantifying roof support is adopted as a base template (GRSUP). The statistical analyses indicated that an improved quantification of installed support can be gained by simple modifications to the standard formulation of GRSUP. The position of the mathematically determined stable/failed boundary in the design charts can be changed depending on design criteria and specified risk.

  3. Modelling of green roofs' hydrologic performance using EPA's SWMM.

    Science.gov (United States)

    Burszta-Adamiak, E; Mrowiec, M

    2013-01-01

    Green roofs significantly affect the increase in water retention and thus the management of rain water in urban areas. In Poland, as in many other European countries, excess rainwater resulting from snowmelt and heavy rainfall contributes to the development of local flooding in urban areas. Opportunities to reduce surface runoff and reduce flood risks are among the reasons why green roofs are more likely to be used also in this country. However, there are relatively few data on their in situ performance. In this study the storm water performance was simulated for the green roofs experimental plots using the Storm Water Management Model (SWMM) with Low Impact Development (LID) Controls module (version 5.0.022). The model consists of many parameters for a particular layer of green roofs but simulation results were unsatisfactory considering the hydrologic response of the green roofs. For the majority of the tested rain events, the Nash coefficient had negative values. It indicates a weak fit between observed and measured flow-rates. Therefore complexity of the LID module does not affect the increase of its accuracy. Further research at a technical scale is needed to determine the role of the green roof slope, vegetation cover and drying process during the inter-event periods.

  4. Reliability Analysis of a Green Roof Under Different Storm Scenarios

    Science.gov (United States)

    William, R. K.; Stillwell, A. S.

    2015-12-01

    Urban environments continue to face the challenges of localized flooding and decreased water quality brought on by the increasing amount of impervious area in the built environment. Green infrastructure provides an alternative to conventional storm sewer design by using natural processes to filter and store stormwater at its source. However, there are currently few consistent standards available in North America to ensure that installed green infrastructure is performing as expected. This analysis offers a method for characterizing green roof failure using a visual aid commonly used in earthquake engineering: fragility curves. We adapted the concept of the fragility curve based on the efficiency in runoff reduction provided by a green roof compared to a conventional roof under different storm scenarios. We then used the 2D distributed surface water-groundwater coupled model MIKE SHE to model the impact that a real green roof might have on runoff in different storm events. We then employed a multiple regression analysis to generate an algebraic demand model that was input into the Matlab-based reliability analysis model FERUM, which was then used to calculate the probability of failure. The use of reliability analysis as a part of green infrastructure design code can provide insights into green roof weaknesses and areas for improvement. It also supports the design of code that is more resilient than current standards and is easily testable for failure. Finally, the understanding of reliability of a single green roof module under different scenarios can support holistic testing of system reliability.

  5. Green roofs and the LEED green building rating system

    Energy Technology Data Exchange (ETDEWEB)

    Kula, R. [Sustainable Solutions Inc., Wagoner, OK (United States)

    2005-07-01

    The sustainable building industry is becoming increasingly aware of the host of public and private benefits that green roofs can provide in built environments. In dense urban environments, green roofs function to reduce stormwater runoff, urban heat island effects, and particulate matter (PM) pollution. The emerging green roof industry is now poised to support the efforts of green building networks in North America. This paper discussed the general benefits of green roofs, and their recognition within the Leadership in Energy and Environmental Design (LEED) Green Building Rating System. A case study of Mountain Equipment Co-op's Winnipeg site was presented. The building's green roof was directly responsible for earning 5 credits and contributing to the achievement of an additional 2 credits under the LEEDS certification process. Credits were earned for reduced site disturbance; landscape design to reduce heat islands; and water efficiency. The green roof at the site provided the vast majority of the building's cooling needs through an evaporative cooling trough. A photovoltaic pump was used to feed the building's irrigation system, as well as to pump ground water through cooling valances. It was concluded that the rise of sustainable building practices and the LEED Green Building Rating System will revolutionize the way new buildings are constructed.

  6. Proposed Measures to Protect Temporary Roofs from Unwanted Heat Gains

    Directory of Open Access Journals (Sweden)

    Omar S. Asfour

    2017-06-01

    Full Text Available This study focuses on the uncompleted multi-storey residential buildings located in hot climates. This construction pattern is common in the case of incremental housing, where additional floors are added to the building as housing needs grow. Top roofs in these buildings are usually left without thermal insulation until the rest of upper floors are erected. This causes higher thermal discomfort in the top flats compared to the lower ones. Thus, the aim of this study is to investigate thermal effect of some proposed temporary measures that are intended to protect these roofs from unwanted heat gains until the rest of storeys are constructed. This has been carried out using thermal modelling to find out the effect of these measures on the amount of heat transfer through the roof in both summer and winter times. The analysis showed that it is possible to achieve competent thermal protection of the top roof compared to the layered thermal insulation using simple, cost-effective, and reversible measures. Among the examined measures, covering the roof with white foldable sheets and the use of pergolas have been found to be the most effective measures. In both cases, a reduction of 38% in conductive heat transfer through the top roof in summer was observed compared to the unprotected modelling case.

  7. Adipose tissue metabolism and inflammation are differently affected by weight loss in obese mice due to either a high-fat diet restriction or change to a low-fat diet.

    Science.gov (United States)

    Hoevenaars, Femke P M; Keijer, Jaap; Herreman, Laure; Palm, Inge; Hegeman, Maria A; Swarts, Hans J M; van Schothorst, Evert M

    2014-05-01

    Restriction of a high-fat diet (HFD) and a change to a low-fat diet (LFD) are two interventions that were shown to promote weight loss and improve parameters of metabolic health in obesity. Examination of the biochemical and molecular responses of white adipose tissue (WAT) to these interventions has not been performed so far. Here, male C57BL/6JOlaHsd mice, harboring an intact nicotinamide nucleotide transhydrogenase gene, were fed a purified 40 energy% HFD for 14 weeks to induce obesity. Afterward, mice were divided into three dietary groups: HFD (maintained on HFD), LFD (changed to LFD with identical ingredients), and HFD-CR (restricted to 70 % of the HFD). The effects of the interventions were examined after 5 weeks. Beneficial effects were seen for both HFD-CR and LFD (compared to HFD) regarding physiological parameters (body weight and fat mass) and metabolic parameters, including circulating insulin and leptin levels. Macrophage infiltration in WAT was reduced by both interventions, although more effectively by HFD-CR. Strikingly, molecular parameters in WAT differed between HFD-CR and LFD, with increased activation of mitochondrial carbohydrate and fat metabolism in HFD-CR mice. Our results confirm that restriction of the amount of dietary intake and reduction in the dietary energy content are both effective in inducing weight loss. The larger decrease in WAT inflammation and increase in mitochondrial carbohydrate metabolism may be due to a larger degree of energy restriction in HFD-CR, but could also be due to superior effectiveness of dietary restriction in weight loss strategies.

  8. Temperature reduction in attic and ceiling via insulation of several passive roof designs

    Energy Technology Data Exchange (ETDEWEB)

    Ong, K.S., E-mail: Ong.Kok.Seng@eng.monash.edu.m [Monash University Sunway Campus, Jalan Lagoon Selatan, 46150 Bandar Sunway (Malaysia)

    2011-06-15

    Research highlights: {yields} Six passive roof designs were tested simultaneously outdoors. {yields} Roof, attic and ceiling temperatures were determined. {yields} Solar collector roof design provided the coolest attic and ceiling. {yields} Placing insulation under roof is preferred to above ceiling. -- Abstract: High ambient temperatures coupled with high humidity lead to uncomfortable conditions that are non-conducive for human comfort and productivity. Heat transmission through the roof could be reduced by providing insulation in the attic under the roof or above the ceiling. A roof solar collector could provide both ventilation and cooling in the attic. Several laboratory sized units of passive roof designs were constructed and tested side-by-side under outdoor conditions to obtain temperature data of the roof, attic and ceiling in order to compare their performances.

  9. Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

    2002-12-15

    Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical California nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code (Title

  10. Moisture content behaviour in extensive green roofs during dry periods: The influence of vegetation and substrate characteristics

    Science.gov (United States)

    Berretta, Christian; Poë, Simon; Stovin, Virginia

    2014-04-01

    Evapotranspiration (ET) is a key parameter that influences the stormwater retention capacity, and thus the hydrological performance, of green roofs. This paper investigates how the moisture content in extensive green roofs varies during dry periods due to evapotranspiration. The study is supported by 29 months continuous field monitoring of the moisture content within four green roof test beds. The beds incorporated three different substrates, with three being vegetated with sedum and one left unvegetated. Water content reflectometers were located at three different soil depths to measure the soil moisture profile and to record temporal changes in moisture content at a five-minute resolution. The moisture content vertical profiles varied consistently, with slightly elevated moisture content levels being recorded at the deepest substrate layer in the vegetated systems. Daily moisture loss rates were influenced by both temperature and moisture content, with reduced moisture loss/evapotranspiration when the soil moisture was restricted. The presence of vegetation resulted in higher daily moisture loss. Finally, it is demonstrated that the observed moisture content data can be accurately simulated using a hydrologic model based on water balance and two conventional Potential ET models (Hargreaves and FAO56 Penman-Monteith) combined with a soil moisture extraction function. Configuration-specific correction factors have been proposed to account for differences between green roof systems and standard reference crops.

  11. Developing resilient green roofs in a dry climate.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S; Brien, C J

    2014-08-15

    Living roofs are an emerging green infrastructure technology that can potentially be used to ameliorate both climate change and urban heat island effects. There is not much information regarding the design of green roofs for dry climates and so the aim of this study was to develop low maintenance and unfertilized green roofs for a dry climate. This paper describes the effects of four important elements of green roofs namely slope, depth, growing media and plant species and their possible interactions in terms of plant growth responses in a dry climate. Sixteen medium-scale green roofs were set up and monitored during a one year period. This experiment consisted of twelve vegetated platforms and four non-vegetated platforms as controls. The design for the experiment was a split-split-plot design in which the factors Slope (1° and 25°) and Depth (100mm, 300 mm) were randomized to the platforms (main plots). Root depth and volume, average height of plants, final dry biomass and ground cover, relative growth rate, final dry shoot-root ratio, water use efficiency and leaf succulence were studied during a twelve month period. The results showed little growth of the plants in media type A, whilst the growth was significant in both media types B and C. On average, a 90% survival rate of plants was observed. Also the growth indices indicated that some plants can grow efficiently in the harsh environment created by green roofs in a dry climate. The root growth pattern showed that retained water in the drainage layer is an alternative source of water for plants. It was also shown that stormwater can be used as a source of irrigation water for green roofs during six months of the year at the study site. In summary, mild sloping intensive systems containing media type C and planted with either Chrysocephalum apiculatum or Disphyma crassifolium showed the best performance.

  12. Comparison of Software Models for Energy Savings from Cool Roofs

    Energy Technology Data Exchange (ETDEWEB)

    New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Yu (Joe) [White Box Technologies; Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  13. Evaluation of solar energy on the roofs of livestock houses

    Directory of Open Access Journals (Sweden)

    Paolo Liberati

    2013-03-01

    Full Text Available There is a great potential for production of thermal and electrical energy by means of solar collectors on farms. To assess in advance the performance of the alternative plant solutions, a computational model for the determination of solar energy absorbed by surfaces with different exposures as a function of latitude, day, orientation and inclination has been created. Its application to roofs of buildings typically used for animal housing is presented; these were mono-pitch, gabled, and shed type roofs. For each building, the annual energy absorption per unit of floor area is calculated by varying orientation and slope of the pitches. For roof surfaces exposed only in one direction (mono-pitch or shed, the orientation is shown to be a dominant factor with respect to the slope in determining the annual energy uptake. The maximum uptake is obtained with exposure to the south and is greater the higher the slope (up to 67.5%. For gabled roofs, the total uptake is negatively affected by the worse exposed pitch and does not vary significantly, for a given slope, with orientation (up to 2.8%. The maximum gain is obtained with the optimal building azimuth (0° and the highest slope. The shed type, since it is affected by the shade induced by the upper pitch over the lower, cannot reach the level of a mono-pitch roof: -1.5% with a slope of 10% and -21% with a slope of 67.5% with the optimal building azimuth of 90°. However, its performance is slightly higher than the corresponding gabled roof (+2.5%, therefore, it could be a convenient alternative if optimally oriented and, above all, if the collectors are installed on the predominantly sunny part of the roof.

  14. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

    2011-05-25

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling

  15. Development Of An Improved Concrete Roman Tile Alternative Roofing System Using Waste Raw Materials Paper amp Saw Dust As Additives

    Directory of Open Access Journals (Sweden)

    Adegoke

    2015-05-01

    Full Text Available ABSTRACT Since the early civilizations in China Neolithic and the Middle East humans have recognized the dual desirable roles of clay tiles as roofing material which remain valid today - First it was an effective means to shed water from buildings and secondly it reduced the spread of fire. The Standard Double Roman tile SDRT was the first roof tile to be mass produced in South Africa. The Double Roman can trace its shape back to Roman engineering principles where it was discovered that arches have an ability to withstand greater pressures as the arch distributes the weight more evenly down to the base of the structure. However after the initial introduction of the concrete tile to Nigerian roofing market architects began to express displeasure with its unusually heavier weight than other competing roofing materials. Suggestions were made to original manufacturers for product improvement by reducing the overall product weight. Concrete tiles are composite materials made from mixture of Portland cement sharp sand smooth sand and natural fibre. Bolyn Industries 7 has established that a mix ratio by volume of 1cement112sharp sand112smooth sand with some fibre makes a good concrete tile product. The sharp sand provides strength while smooth sand provides smoothness to the concrete surface. This study seeks to improve the current Double Roman product by reducing its overall product weight which is currently at about 5.0 kg to about 4.0 kg. Going by the previous experience with Polycrete invention 2 it is hereby conceived that replacement of smooth sand with lighter waste materials such as paper or saw dust in the concrete tile constituents may achieve the desired product weight reduction. The study investigates the most economic mix ratio of the concrete tile constituents to achieve the desirable engineering properties of light weight strength durability water tightness and rust-proofness. Results with preliminary mix trials indicate that replacement

  16. Cool roofs and the influence on the energy consumption under Danish conditions

    DEFF Research Database (Denmark)

    Brandt, Erik; Bunch-Nielsen, Tommy; Juhl, Lasse

    that there are no significant advantages of using white roofing felt instead of dark under Danish conditions in common buildings with active heating and passive cooling. Quite to the contrary it appears that dark roofing felts have significant advantages over white roofing felts. The results are discussed in the paper....... It should be mentioned that white roofing materials might be beneficial for poorly insulated buildings with high internal heat loads. In this case the white roofing might contribute to a reduced cooling. Also buildings with constant cooling demands or cold-storage plants etc. may benefit from white roofing...

  17. A comparative analysis of selected parameters of roofing used in the Polish construction industry

    Directory of Open Access Journals (Sweden)

    Radziszewska-Zielina Elżbieta

    2014-06-01

    Full Text Available Roofing is an important element in the construction of the roof. It is also one of the essential elements of the whole building. The choice of roofing should depend on technical parameters that affect the quality of the materials used and the price. The present paper is a comparative analysis of the properties of five roofing materials selected as examples with respect to twelve parameters. As can be seen from the comparative analysis of the roofing parameters, roofing tile is by far the best material, receiving the highest score in the ranking

  18. Roof heat loss detection using airborne thermal infrared imagery

    Science.gov (United States)

    Kern, K.; Bauer, C.; Sulzer, W.

    2012-12-01

    As part of the Austrian and European attempt to reduce energy consumption and greenhouse gas emissions, thermal rehabilitation and the improvement of the energy efficiency of buildings became an important topic in research as well as in building construction and refurbishment. Today, in-situ thermal infrared measurements are routinely used to determine energy loss through the building envelope. However, in-situ thermal surveys are expensive and time consuming, and in many cases the detection of the amount and location of waste heat leaving building through roofs is not possible with ground-based observations. For some years now, a new generation of high-resolution thermal infrared sensors makes it possible to survey heat-loss through roofs at a high level of detail and accuracy. However, to date, comparable studies have mainly been conducted on buildings with uniform roof covering and provided two-dimensional, qualitative information. This pilot study aims to survey the heat-loss through roofs of the buildings of the University of Graz (Austria) campus by using high-resolution airborne thermal infrared imagery (TABI 1800 - Thermal Airborne Broadband imager). TABI-1800 acquires data in a spectral range from 3.7 - 4.8 micron, a thermal resolution of 0.05 °C and a spatial resolution of 0.6 m. The remote sensing data is calibrated to different roof coverings (e.g. clay shingle, asphalt shingle, tin roof, glass) and combined with a roof surface model to determine the amount of waste heat leaving the building and to identify hot spots. The additional integration of information about the conditions underneath the roofs into the study allows a more detailed analysis of the upward heat flux and is a significant improvement of existing methods. The resulting data set provides useful information to the university facility service for infrastructure maintenance, especially in terms of attic and roof insulation improvements. Beyond that, the project is supposed to raise public

  19. Thermal Performance of Building Roof with Infrared Reflective Coatings

    Institute of Scientific and Technical Information of China (English)

    SHEN Hui; TAN Hong-wei; KATSUO MIKI; LIU Xiao-yu

    2009-01-01

    This paper investigated the applicability and effects of infrared reflective coating on energy con-sumption of factory building in hot summer and warm winter zone. It first resorted to theoretical calculation, which demonstrated the beneficial effects of infrared reflective coating on reducing building energy consumption. Then it analyzed a field measurement done on two identical rooms respectively with ordinary coated roof and in-frared reflective coated roof from November 2006 to October 2007, on a 24h basis. The measured data include exterior and interior roof surface temperature, indoor air temperature, and indoor globe temperature. The relat-ed weather data is from a weather station near the measured area. The continuous measurement has been accom-plished in southern China, and the measured data indicate that roof surface temperature and heat gain are signifi-cantly decreased in summer while slight negative effects in winter are induced by adopting infrared reflective coating. Thus it is simple and applicable to reduce building energy consumption in this area by applying infrared reflective coating. Regress equation between reduced roof thermal property, such as surface temperature and heat gain, and reduction in absorbed solar radiation shows their highly linear relationship. Based on the mea-sured data, it is estimated that the reduced power consumption is 3.45 kWh/m2·month in June.

  20. Empirically Derived Strength of Residential Roof Structures for Solar Installations.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Stephen F.; Sanchez, Alfred; Campos, Ivan A.; Gerstle, Walter H.

    2014-12-01

    Engineering certification for the installation of solar photovoltaic (PV) modules on wood roofs is often denied because existing wood roofs do not meet structural design codes. This work is intended to show that many roofs are actually sufficiently strong given the conservatism in codes, documented allowable strengths, roof structure system effects, and beam composite action produced by joist-sheathing interaction. This report provides results from a testing program to provide actual load carrying capacity of residential rooftops. The results reveal that the actual load carrying capacity of structural members and systems tested are significantly stronger than allowable loads provided by the International Residential Code (IRC 2009) and the national structural code found in Minimum Design Loads for Buildings and Other Structures (ASCE 7-10). Engineering analysis of residential rooftops typically ignores the system affects and beam composite action in determining rooftop stresses given a potential PV installation. This extreme conservatism combined with conservatism in codes and published allowable stress values for roof building materials (NDS 2012) lead to the perception that well built homes may not have adequate load bearing capacity to enable a rooftop PV installation. However, based on the test results presented in this report of residential rooftop structural systems, the actual load bearing capacity is several times higher than published values (NDS 2012).

  1. Effect of Composite Action on the Strength of Wood Roofs

    Directory of Open Access Journals (Sweden)

    Ivan A. Campos Varela

    2015-01-01

    Full Text Available Engineering certification for the installation of solar photovoltaic modules on wood roofs is often denied because existing wood roofs do not meet current building codes. Rather than requiring expensive structural retrofits, we desire to show that many roofs are actually sufficiently strong if the effect of composite action produced by joist-sheathing interaction is considered. In a series of laboratory experiments using a limited number of two-by-four wood joists with and without sheathing panels, conventionally sheathed stud-grade joists, surprisingly, exhibited between 18% and 63% higher nominal strength than similar bare joists. To explain this strength increase, a simple model was developed to predict the strengths of the nailed partially composite sections, but the model only justifies a 1.4% to 3.8% increase in bending strength of joists with an allowable bending strength of 1000 psi. More testing is indicated to resolve this discrepancy between laboratory results and analytical modeling results. In addition to elucidating nonlinear partial composite behavior of existing roof systems, this paper shows that, with minor changes in roof framing practices, strength increases of 70% or more are achievable, compared to the strengths of conventionally sheathed joists.

  2. A fuzzy approach to selecting roof supports in longwall mining

    Directory of Open Access Journals (Sweden)

    Yetkin, M. E.

    2016-05-01

    Full Text Available As a decision-making problem, selecting proper machines and equipment plays a key role for mining sites and companies. Many factors affect this decision, and values belonging to these factors can be expressed numerically and/or non-numerically. In order to make the most appropriate decision, engineers must carry out an evaluation process that comprises all criteria that might affect decision-making. To achieve this, multi-criteria decision-making tools are used. As a result of technological developments, coal outputs in longwall mining have risen tremendously over the last decades, and longwall mechanisation has become unavoidable. The significance of powered roof supports in particular increases day- by-day, since the rate of roof support has to be in accordance with the rate of face advance in longwalls. In this study, an integrated fuzzy analytic hierarchy process and fuzzy goal programming model is used to select the most suitable powered roof supports. The procedure is applied to a real-life underground coal mine that is operated using the longwall method. Seven alternative powered roof supports are compared with each other, taking a total of 24 decision criteria under four main topics into account. In conclusion, the most suitable roof supports for the mine under study are determined and recommended to the decision-makers of the system.

  3. The green roof dilemma - discussion of Francis and Lorimer (2011).

    Science.gov (United States)

    Henry, Alexandre; Frascaria-Lacoste, Nathalie

    2012-08-15

    Urban ecosystems are the most complex mosaics of vegetative land cover that can be found. In a recent paper, Francis and Lorimer (2011) evaluated the reconciliation potential of living roofs and walls. For these authors, these two techniques for habitat improvement have strong potential for urban reconciliation ecology. However they have some ecological and societal limitations such as the physical extreme environmental characteristics, the monetary investment and the cultural perceptions of urban nature. We are interested in their results and support their conclusions. However, for a considerable time, green roofs have been designed to provide urban greenery for buildings and the green roof market has only focused on extensive roof at a restricted scale within cities. Thus, we have strong doubts about the relevance of their use as possible integrated elements of the network. Furthermore, without dynamic progress in research and the implementation of well-thought-out policies, what will be the real capital gain from green roofs with respect to land-use complementation in cities? If we agree with Francis and Lorimer (2011) considering that urban reconciliation ecology between nature and citizens is a current major challenge, then "adaptive collaborative management" is a fundamental requirement.

  4. A New Kind of Roof Greening System in China

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    With the wider use of green roofs, new technology and new materials are being applied to the field of building roof greening forbuildings. This paper introduces BRGS (built- up roof greening system), a new type of roof greening system that differs from roofgreening systems currently used in China in that it integrates a main and an auxiliary water storage capacity into the roof greeningsystem. Compared to other systems currently in use, BRGS offers a simpler, quicker, less labor intensive construction process;lighter floor load; and lower long term maintenance requirements and costs. It also makes full use of rainwater and snowmelt,which provides a significant amount of water to plants. This paper also introduces a planting experiment, the results of whichindicate that plants during their early stages of growth tolerate an alkaline environment, and that after a period of time, the pHvalue level of water stored in BRGS approaches 8.3, so we can conclude that BRGS is suitable for construction engineering.

  5. Numerical simulation of flows around long-span flat roof

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-ying; WU Yue; SHEN Shi-zhao

    2005-01-01

    Long-span roof with span larger than height always has a complicated three-dimensional curve. Wind pressure on the roof is often influenced not only by the atmospheric turbulence, but also by the "signature" turbulence provoked in the wind by the structure itself. So it is necessary to study characteristics of flows around the roof. In this paper, three-dimensional numerical simulation of wind-induced pressure has been performed on a long-span flat roof by means of Computational Fluid Dynamics (CFD) software--FLUENT. The flow characteristics are studied by considering some parameters, such as wind direction, span-height ratio, roof pitch, flow characteristics, roughness of terrain. The simulation is based upon the Reynolds-averaged equations, in which Reynolds stress equation model (RSM) and SIMPLE technology (Semi-Implicit Method for Pressure-Linked Equations) have been used. Compared with wind tunnel tests, the computational results have good agreement with the experimental data. It is proved that the results are creditable and the method is feasible.

  6. Weight gain - unintentional

    Science.gov (United States)

    ... be due to menstruation, heart or kidney failure, preeclampsia, or medicines you take. A rapid weight gain ... al. Position of the American Dietetic Association: weight management. J Am Diet Assoc . 2009;109:330-46. ...

  7. The Influence of Hydrologic Parameters on the Hydraulic Efficiency of an Extensive Green Roof in Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Giuseppina Garofalo

    2016-01-01

    Full Text Available In an urban environment, green roofs represent a sustainable solution for mitigating stormwater volumes and hydrograph peaks. So far, many literature studies have investigated the hydraulic efficiency and the subsurface runoff coefficient of green roofs, showing their strong variability according to several factors, including the characteristics of storm events. Furthermore, only few studies have focused on the hydraulic efficiency of green roofs under Mediterranean climate conditions and defined the influencing hydrological parameters on the subsurface runoff coefficient. Nevertheless, for designing purposes, it is crucial to properly assess the subsurface runoff coefficient of a given green roof under specific climate conditions and its influencing factors. This study intends to, firstly, evaluate the subsurface runoff coefficient at daily and event-time scales for a given green roof, through a conceptual model implemented in SWMM. The model was loaded with both daily and 1-min rainfall data from two Mediterranean climate sites, one in Thessaloniki, Greece and one in Cosenza, Italy, respectively. Then, the most influencing hydrological parameters were examined through a statistical regression analysis. The findings show that the daily subsurface runoff coefficient is 0.70 for both sites, while the event-based one is 0.79 with a standard deviation of 0.23 for the site in Cosenza, Italy. The multiple linear regression analysis revealed that the influencing parameters are the rainfall intensity and antecedent dry weather period with a confidence level of 95%. This study demonstrated that, due to the high variability of the subsurface runoff coefficient, the use of a unique value for design purposes is inappropriate and that a preliminary estimation could be obtained as a function of the total rainfall depth and the antecedent dry weather period by using the validated multi-regression relationship which is site specific.

  8. Weight Management

    Science.gov (United States)

    ... Anger Weight Management Weight Management Smoking and Weight Healthy Weight Loss Being Comfortable in Your Own Skin Your Weight Loss Expectations & Goals Healthier Lifestyle Healthier Lifestyle Physical Fitness Food & Nutrition Sleep, Stress & Relaxation Emotions & Relationships HealthyYouTXT ...

  9. Plant functional traits predict green roof ecosystem services.

    Science.gov (United States)

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.

  10. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [Building Science Corporation, Westford, MA (United States); Lstiburek, Joseph W. [Building Science Corporation, Westford, MA (United States)

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  11. Damage to thermal insulation foams in low-slope roof systems caused by simulated foot traffic

    National Research Council Canada - National Science Library

    Liu, Karen K; Booth, R. J

    1999-01-01

    The results indicated that common.ly used foam plastic roof insulations will be damaged if exposed to foot traffic, and that their protection with fibrous overlay boards as recommended by roofing contractor associations continues...

  12. Extraction of Roof Lines from High-Resolution Images by a Grouping Method

    Science.gov (United States)

    Dal Poz, A. P.; Fernandes, V. J. M.

    2016-06-01

    This paper proposes a method for extracting groups of straight lines that represent roof boundaries and roof ridgelines from highresolution aerial images using corresponding Airborne Laser Scanner (ALS) roof polyhedrons as initial approximations. The proposed method is based on two main steps. First, straight lines that are candidates to represent roof ridgelines and roof boundaries of a building are extracted from the aerial image. Second, a group of straight lines that represent roof boundaries and roof ridgelines of a selected building is obtained through the optimization of a Markov Random Field (MRF)-based energy function using the genetic algorithm optimization method. The formulation of this energy function considers several attributes, such as the proximity of the extracted straight lines to the corresponding projected ALS-derived roof polyhedron and the rectangularity (extracted straight lines that intersect at nearly 90°). Experimental results are presented and discussed in this paper.

  13. Single-Sided Natural Ventilation through a Velux Roof Window

    DEFF Research Database (Denmark)

    Li, Zhigang; Nielsen, Peter Vilhelm; Fransson, J.

    2004-01-01

    This paper investigates the single-sided natural ventilation through a VELUX centre pivot roof window under natural weather conditions. The aim of the investigation is to develop an empirical formulation for air flow rate through a roof window based on CFD and tracer gas decay measurement methods....... CFD can separate buoyancy and wind effects in the calculation of the air flow rate through a window opening, but it is difficult to isolate wind effect from buoyancy forces during measurements. The ?Warren-plot? method can be used to separate and analyse the measured data which are dominated by stack...

  14. Modelling of green roof hydrological performance for urban drainage applications

    Science.gov (United States)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten; Bergen Jensen, Marina; Binning, Philip John

    2014-11-01

    Green roofs are being widely implemented for stormwater management and their impact on the urban hydrological cycle can be evaluated by incorporating them into urban drainage models. This paper presents a model of green roof long term and single event hydrological performance. The model includes surface and subsurface storage components representing the overall retention capacity of the green roof which is continuously re-established by evapotranspiration. The runoff from the model is described through a non-linear reservoir approach. The model was calibrated and validated using measurement data from 3 different extensive sedum roofs in Denmark. These data consist of high-resolution measurements of runoff, precipitation and atmospheric variables in the period 2010-2012. The hydrological response of green roofs was quantified based on statistical analysis of the results of a 22-year (1989-2010) continuous simulation with Danish climate data. The results show that during single events, the 10 min runoff intensities were reduced by 10-36% for 5-10 years return period and 40-78% for 0.1-1 year return period; the runoff volumes were reduced by 2-5% for 5-10 years return period and 18-28% for 0.1-1 year return period. Annual runoff volumes were estimated to be 43-68% of the total precipitation. The peak time delay was found to greatly vary from 0 to more than 40 min depending on the type of event, and a general decrease in the time delay was observed for increasing rainfall intensities. Furthermore, the model was used to evaluate the variation of the average annual runoff from green roofs as a function of the total available storage and vegetation type. The results show that even a few millimeters of storage can reduce the mean annual runoff by up to 20% when compared to a traditional roof and that the mean annual runoff is not linearly related to the storage. Green roofs have therefore the potential to be important parts of future urban stormwater management plans.

  15. Retention performance of green roofs in representative climates worldwide

    Science.gov (United States)

    Viola, F.; Hellies, M.; Deidda, R.

    2017-10-01

    The ongoing process of global urbanization contributes to an increase in stormwater runoff from impervious surfaces, threatening also water quality. Green roofs have been proved to be innovative stormwater management measures to partially restore natural states, enhancing interception, infiltration and evapotranspiration fluxes. The amount of water that is retained within green roofs depends not only on their depth, but also on the climate, which drives the stochastic soil moisture dynamic. In this context, a simple tool for assessing performance of green roofs worldwide in terms of retained water is still missing and highly desirable for practical assessments. The aim of this work is to explore retention performance of green roofs as a function of their depth and in different climate regimes. Two soil depths are investigated, one representing the intensive configuration and another representing the extensive one. The role of the climate in driving water retention has been represented by rainfall and potential evapotranspiration dynamics. A simple conceptual weather generator has been implemented and used for stochastic simulation of daily rainfall and potential evapotranspiration. Stochastic forcing is used as an input of a simple conceptual hydrological model for estimating long-term water partitioning between rainfall, runoff and actual evapotranspiration. Coupling the stochastic weather generator with the conceptual hydrological model, we assessed the amount of rainfall diverted into evapotranspiration for different combinations of annual rainfall and potential evapotranspiration in five representative climatic regimes. Results quantified the capabilities of green roofs in retaining rainfall and consequently in reducing discharges into sewer systems at an annual time scale. The role of substrate depth has been recognized to be crucial in determining green roofs retention performance, which in general increase from extensive to intensive settings. Looking at the

  16. Roof collapse of shallow tunnels with limit analysis method

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-li; LONG Ze-xiang

    2015-01-01

    A new failure mechanism is proposed to analyze the roof collapse based on nonlinear failure criterion. Limit analysis approach and variational principle are used to obtain analytical findings concerning the stability of potential roof. Then, parametric study is carried out to derive the change rule of corresponding parameters on the influence of collapsing shape, which is of paramount engineering significance to instruct the tunnel excavations. In comparison with existing results, the findings show agreement and validity of the proposed method. The actual collapse in certain shallow tunnels is well in accordance with the proposed failure mechanism.

  17. Crystalline roof glazing - Westside shopping centre, Berne; Kristalline Dachverglasungen

    Energy Technology Data Exchange (ETDEWEB)

    Enkerli, W.

    2009-07-01

    This illustrated article takes a look at the new shopping and leisure centre on the western outskirts of Berne, Switzerland. In particular, the roof of this unusual building over the motorway with its sloping walls and zig-zag design is looked at. The centre's shopping mall, adventure baths and spa, a multiplex cinema, an old peoples' home and a hotel are briefly discussed, as is the embedding of the centre in its suburban environment. The roof construction with its crystalline skylights is examined and discussed in detail. The centre's building technical services are also briefly commented on.

  18. Digging the New York City Skyline: soil fungal communities in green roofs and city parks.

    Science.gov (United States)

    McGuire, Krista L; Payne, Sara G; Palmer, Matthew I; Gillikin, Caitlyn M; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A; Massmann, Audrey L; Orazi, Giulia; Essene, Adam; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs.

  19. Digging the New York City Skyline: soil fungal communities in green roofs and city parks.

    Directory of Open Access Journals (Sweden)

    Krista L McGuire

    Full Text Available In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs.

  20. Using ground penetrating radar for roof hazard detection in underground mines. Report of investigations/1996

    Energy Technology Data Exchange (ETDEWEB)

    Molinda, G.M.; Monaghan, W.D.; Mowrey, G.L.; Persetic, G.F.

    1996-08-01

    Ground penetrating radar (GPR) is being investigated for the potential to determine roof hazards in underground mines. GPR surveys were conducted at four field sites with accompanying ground truth in order to determine the value of GPR for roof hazard detection. The resolution of the current system allows detection of gross roof fractures (>1/4 in zone) or rider beds in coal measure roof. Differences in data quality are discussed, as well as suggestions for collecting improved data.

  1. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Science.gov (United States)

    2010-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable to...

  2. Who governs climate adaptation? Getting green roofs for stormwater retention off the ground

    NARCIS (Netherlands)

    Mees, H.L.P.; Driessen, P.P.J.; Runhaar, H.A.C.; Stamatelos, J.

    2013-01-01

    Green roofs are an innovative solution for urban stormwater management. This paper examines governance arrangements for green roofs as a ‘no-regrets’ climate adaptation measure in five cities. We analysed who governs green roofs, why and with what outcome. Our results show that hierarchical and mark

  3. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    Science.gov (United States)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  4. Potential benefits of plant diversity on vegetated roofs: a literature review.

    Science.gov (United States)

    Cook-Patton, Susan C; Bauerle, Taryn L

    2012-09-15

    Although vegetated green roofs can be difficult to establish and maintain, they are an increasingly popular method for mitigating the negative environmental impacts of urbanization. Most green roof development has focused on maximizing green roof performance by planting one or a few drought-tolerant species. We present an alternative approach, which recognizes green roofs as dynamic ecosystems and employs a diversity of species. We draw links between the ecological and green roof literature to generate testable predictions about how increasing plant diversity could improve short- and long-term green roof functioning. Although we found few papers that experimentally manipulated diversity on green roofs, those that did revealed ecological dynamics similar to those in more natural systems. However, there are many unresolved issues. To improve overall green roof performance, we should (1) elucidate the links among plant diversity, structural complexity, and green roof performance, (2) describe feedback mechanisms between plant and animal diversity on green roofs, (3) identify species with complementary traits, and (4) determine whether diverse green roof communities are more resilient to disturbance and environmental change than less diverse green roofs.

  5. Wind loads on stand-off photovoltaic systems on pitched roofs

    NARCIS (Netherlands)

    Geurts, C.P.W.; Blackmore, P.

    2013-01-01

    Stand-off photovoltaic systems are a popular measure for retrofitting of existing pitched roofs.Panels are generally mounted parallel to the existing roof coverings,usually roofing tiles.Full scale and wind tunnel experiments have been performed to determine the net uplift loads on these systems, wh

  6. Evaluation of Green Roof Water Quantity and Quality Performance in an Urban Climate

    Science.gov (United States)

    In this report we present an analysis of water benefits from an array of observed green roof and control (non-vegetated) roof project sites throughout NYC. The projects are located on a variety of building sites and represent a diverse set of available extensive green roof instal...

  7. Evaluation of Green Roof Plants and Materials for Semi-Arid Climates

    Science.gov (United States)

    Abstract While green roof systems have proven to be highly effective in the evaporative cooling of buildings, reduction of roof top temperatures, protection of roof membranes from solar radiation degradation, reducing stormwater runoff, as well as beautification of the urban roo...

  8. Green Roofs: A Part of Green Infrastructure Strategy for Urban Areas

    Science.gov (United States)

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provides insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA rep...

  9. Analysis of mechanical behaviors of big pipe roof for shallow buried large-span tunnel

    Institute of Scientific and Technical Information of China (English)

    Li Jian; Tan Zhongsheng; Yu Yu; Guo Xiaohong

    2013-01-01

    A series of researches on mechanical behaviors of big pipe roof for shallow large-span loess tunnel were carried out based on the Wenxiang tunnel in Zhengzhou-Xi’an Special Passenger Railway. The longitudinal de-formations of the pipe roofs were monitored and the mechanical behaviors of the pipe roofs were analyzed at the test section. A new double-parameter elastic foundation beam model for pipe roof in shallow tunnels was put for-ward in Wenxiang tunnel. The measured values and the calculation results agreed well with each other,revealing the force-deformation law of big pipe roof in loess tunnel:At about 15 m in front of the excavating face,the pipe roof starts to bear the load;at about 15 m behind the excavating face,the force of the pipe roof tends to be stabi-lized;the longitudinal deformation of the whole pipe roofs is groove-shaped distribution,and the largest force of pipe roofs is at the excavating face. Simultaneously,the results also indicate that mechanical behaviors of pipe roof closely relate to the location of the excavation face,the footage of the tunnelling cycle and the mechanics pa-rameters of pipe roof and rock. The conclusions can be reference for the design parameter optimization and the con-struction scheme selection of pipe roofs,and have been verified by the result of numerical analysis software FLAC3D and deformation monitoring.

  10. Thermally insulating green roof with model function. Roof gardens gain acceptance; Waermedaemmendes Gruendach mit Vorbildfunktion. Dachbegruenung macht Schule

    Energy Technology Data Exchange (ETDEWEB)

    Appl, Roland [ZinCo GmbH, Unterensingen (Germany)

    2010-07-01

    The new built consolidated school for physically disabled and speech handicapped persons in the Swabian Dettingen/Teck (Federal Republic of Germany) has a model function in every sense. This school provides a space for the promotion and personal development for more than 120 pupils from the region around Kirchheim (Federal Republic of Germany). In addition, a kindergarten for speech handicapped infants is integrated. The school is future-oriented and exemplary not only in its function, but also in its outside form. Wood as a naturally grown building material covers the fronts, and plants decorate the roofs. The heat insulating roof planting makes a substantial contribution to the structural thermal protection.

  11. Asphalt and Wood Shingling. Roofing Workbook and Tests.

    Science.gov (United States)

    Brown, Arthur

    This combination workbook and set of tests contains materials on asphalt and wood shingling that have been designed to be used by those studying to enter the roofing and waterproofing trade. It consists of seven instructional units and seven accompanying objective tests. Covered in the individual units are the following topics: shingling…

  12. 40 CFR 65.44 - External floating roof (EFR).

    Science.gov (United States)

    2010-07-01

    ... Section 65.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Storage Vessels § 65.44 External floating roof (EFR). (a) EFR design requirements. The owner or operator who elects to control storage vessel regulated material...

  13. Wind loads on solar energy systems, mounted on flat roofs

    NARCIS (Netherlands)

    Geurts, C.P.W.; Bentum, C.A. van; Blackmore, P.

    2005-01-01

    Wind loads on solar energy systems are not covered by current wind loading standards. This paper describes results of a parametric study into the wind loads on solar energy systems, which are placed on flat roofs. Wind tunnel measurements have been carried out on a number of configurations. The resu

  14. Collapse of the roof of a football stadium

    NARCIS (Netherlands)

    Borsje, H.; Renier, B.; Burggraaf, H.G.

    2014-01-01

    In the summer of 2011 the Dutch football club FC Twente was building an extension of their stadium De Grolsch Veste, to increase the capacity of the stadium. On july 7th 2011, during construction, the roof of the partially finished extension collapsed. As a result of this accident two workers were

  15. THERMAL INFRARED INSPECTION OF ROOF INSULATION USING UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2015-08-01

    Full Text Available UAVs equipped with high-resolution thermal cameras provide an excellent investigative tool used for a multitude of building-specific applications, including roof insulation inspection. We have presented in this study a relative thermographic calibration algorithm and a superpixel Markov Random Field model to address problems in thermal infrared inspection of roof insulation using UAVs. The relative thermographic radiometric calibration algorithm is designed to address the autogain problem of the thermal camera. Results show the algorithm can enhance the contrast between warm and cool areas on the roof surface in thermal images, and produces more constant thermal signatures of different roof insulations or surfaces, which could facilitate both visual interpretation and computer-based thermal anomaly detection. An automatic thermal anomaly detection algorithm based on superpixel Markov Random Field is proposed, which is more computationally efficient than pixel based MRF, and can potentially improve the production throughput capacity and increase the detection accuracy for thermal anomaly detection. Experimental results show the effectiveness of the proposed method.

  16. Evaluation of green roof characteristics in green building assessment

    Directory of Open Access Journals (Sweden)

    Sekulić Mirjana

    2013-01-01

    Full Text Available Methodology of building evaluation based on green building characteristics is rapidly gaining momentum, mainly in foreign, but also in domestic building practice. This methodology is being carried out through different Green Building Certification Systems, which are complex evaluation mechanisms based on numerous criteria of sustainability, addressing both ecological issues, but also economic and social ones. Green roof represents one of the 'must have' features of contemporary buildings aiming to gain green label. This paradigm is based on their numerous characteristics which contribute to different aspects of building sustainability, among which are savings in energy and water consumption, but also ecological balance and quality of built environment. Criteria used for evaluation of green roof solutions and their overall contribution to the building, are integral part of all of the mentioned certification systems, but the way they are structured and formulated inside each system varies significantly, hence causing differences in evaluation results. This paper presents the analysis of green roof related criteria of three characteristic green building certification systems: LEED, BREEAM and CASBEE. These systems are chosen primarily because of the different evaluation methodology, but also because of their market prevalence and perspectives of usage in the domestic practice. Conclusions driven from these analyses and comparisons provide insight into main aspect of green roof planning and construction which are relevant for the overall building sustainability assessment.

  17. Demonstration of Three Corrosion-Resistant Sustainable Roofing Systems

    Science.gov (United States)

    2013-06-01

    panel using grommet-type metal fasteners with neoprene sleeves. Next, the crew installed the gutter piece over the eave flashing. The roof panels were...in Figure 33). The attachment was made using the fas- teners having the neoprene sleeves placed at every-other high rib. Figure 32. View showing

  18. 30 CFR 75.206 - Conventional roof support.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Conventional roof support. 75.206 Section 75.206 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... square inches. (d) Materials other than wood used for support shall have support strength at...

  19. Green Roof Research through EPA's Regional Applied Research Effort - slides

    Science.gov (United States)

    The U.S. Environmental Protection Agency’s (EPA) Regional Applied Research Effort (RARE) allows the Regions of the EPA to choose research projects to be performed in partnership with EPA’s Office of Research and Development (ORD). Over the last decade, several green roof projects...

  20. Wind loads on solar energy systems, mounted on flat roofs

    NARCIS (Netherlands)

    Geurts, C.P.W.; Bentum, C.A. van; Blackmore, P.

    2005-01-01

    Wind loads on solar energy systems are not covered by current wind loading standards. This paper describes results of a parametric study into the wind loads on solar energy systems, which are placed on flat roofs. Wind tunnel measurements have been carried out on a number of configurations. The resu

  1. Urban reconciliation ecology: the potential of living roofs and walls.

    Science.gov (United States)

    Francis, Robert A; Lorimer, Jamie

    2011-06-01

    Reconciling human and non-human use of urban regions to support biological conservation represents a major challenge for the 21st century. The concept of reconciliation ecology, by which the anthropogenic environment may be modified to encourage non-human use and biodiversity preservation without compromising societal utilization, potentially represents an appropriate paradigm for urban conservation given the generally poor opportunities that exist for reserve establishment and ecological restoration in urban areas. Two habitat improvement techniques with great potential for reconciliation ecology in urban areas are the installation of living roofs and walls, which have been shown to support a range of taxa at local scales. This paper evaluates the reconciliation potential of living roofs and walls, in particular highlighting both ecological and societal limitations that need to be overcome for application at the landscape scale. We further consider that successful utilization of living roofs and walls for urban reconciliation ecology will rely heavily on the participation of urban citizens, and that a 'citizen science' model is needed to facilitate public participation and support and to create an evidence base to determine their effectiveness. Living roofs and walls are just one aspect of urban reconciliation ecology, but are particularly important 'bottom-up' techniques for improving urban biodiversity that can be performed directly by the citizenry.

  2. Collapse of the roof of a football stadium

    NARCIS (Netherlands)

    Borsje, H.; Renier, B.; Burggraaf, H.G.

    2014-01-01

    In the summer of 2011 the Dutch football club FC Twente was building an extension of their stadium De Grolsch Veste, to increase the capacity of the stadium. On july 7th 2011, during construction, the roof of the partially finished extension collapsed. As a result of this accident two workers were k

  3. Predictive Service Life Tests for Roofing Membranes: Phase 1

    Science.gov (United States)

    1993-12-01

    April 1991), pp 37-38, 40, 42, 44, 46. Puterman . M., K.H. Reinhorn, and M. Marton, "Specifications for Quality Assurance of Single-Ply Membrane...Material." Third International Symposium on Roofing Technology (NRCA, 1991), pp 271-275. Puterman , M., I. Soroka, and A. Bentur, "Deterioration of

  4. Survey of the Pagoda Timber Roof in Derneburg Castle

    Science.gov (United States)

    Perria, E.; Sieder, M.; Hoyer, S.; Krafczyk, C.

    2017-05-01

    The work analyses the historical roof of Derneburg Castle, in the municipality of Holle, Hildesheim's district, Lower Saxony, Germany. The roof is assembled according to Laves Balken's system (Laves beam's system), developed by the architect Georg Ludwig Friedrich Laves (1788-1864). The system has the peculiarity to consist of beams that are split along the half of the cross section, and maintained diverged by wooden wedges, distributed along the length of the beam. The system increases the height of the beam, and elevates the bending capacity of it (Weber, 1964). The work has been developed in the frame of an interdisciplinary project in the fields of architecture, engineering and photogrammetry. Main aim of the project is the developing of a structural model to understand the load-carrying capacity of Laves Balken's system from the laser-scanning model. For this reason, extensive surveys and photo documentation were collected on three areas of the roof construction, characterized by three peculiar usage of Laves Balken's system. The work presents the survey of the pagoda-roof that covers the tower of the castle, and problems that can be encountered during the survey of very complex timber constructions.

  5. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lstiburek, Joseph W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  6. Urban heat mitigation by roof surface materials during the East Asian summer monsoon

    Science.gov (United States)

    Lee, Seungjoon; Ryu, Youngryel; Jiang, Chongya

    2015-12-01

    Roof surface materials, such as green and white roofs, have attracted attention in their role in urban heat mitigation, and various studies have assessed the cooling performance of roof surface materials during hot and sunny summer seasons. However, summers in the East Asian monsoon climate region are characterized by significant fluctuations in weather events, such as dry periods, heatwaves, and rainy and cloudy days. This study investigated the efficacy of different roof surface materials for heat mitigation, considering the temperatures both at and beneath the surface of the roof covering materials during a summer monsoon in Seoul, Korea. We performed continuous observations of temperature at and beneath the surface of the roof covering materials, and manual observation of albedo and the normalized difference vegetation index for a white roof, two green roofs (grass (Poa pratensis) and sedum (Sedum sarmentosum)), and a reference surface. Overall, the surface temperature of the white roof was significantly lower than that of the grass and sedum roofs (1.1 °C and 1.3 °C), whereas the temperature beneath the surface of the white roof did not differ significantly from that of the grass and sedum roofs during the summer. The degree of cloudiness significantly modified the surface temperature of the white roof compared with that of the grass and sedum roofs, which depended on plant metabolisms. It was difficult for the grass to maintain its cooling ability without adequate watering management. After considering the cooling performance and maintenance efforts for different environmental conditions, we concluded that white roof performed better in urban heat mitigation than grass and sedum during the East Asian summer monsoon. Our findings will be useful in urban heat mitigation in the region.

  7. Evaluating Cool Impervious Surfaces: Application to an Energy-Efficient Residential Roof and to City Pavements

    Science.gov (United States)

    Rosado, Pablo Javier

    heating savings of 4% and electric heating savings of 3%. The slightly positive fractional annual heating energy savings likely resulted from the tile roof's high thermal capacitance, which increased the overnight temperature of the attic air. Thus cool tile roofs should be perceived as a technology that provides energy and environmental benefits during the cooling season as well as the heating season. The second topic investigates the direct and indirect effects of cool pavements on the energy use of California's building stock. First, a simple urban canyon model was developed to calculate the canyon albedo after the user provides the solar position, canyon orientation, and dimensions of the canyon walls, road, and setbacks. Next, a method is presented to correct the values of temperature changes obtained from previous urban climate models to values that would be obtained from canyon geometries that distinguish between road and setbacks (e.g. sidewalk, front yard). The new canyon model is used to scale the temperature changes obtained from a recent urban climate model that simulated the climatological impact of cool pavements on various California cities. The adjusted temperature changes are then combined with building energy simulations to investigate the effect of cool pavements on the cooling, heating, and lighting energy uses of buildings as well as the environmental impact related to these energy uses. Net (direct + indirect) conditioning (cooling + heating) energy savings and environmental savings from cool pavements were smaller in residential buildings than in commercial buildings. Additionally, residential buildings strongly dominate the building stock in all of the evaluated cities. Therefore, even though most cities yielded conditioning energy and environmental savings, they were small due to the minuscule savings from the residential buildings. When increasing the albedo by 0.20 of all public pavements in different California cities, Los Angeles was the city

  8. A Case Study of Effective Support Working Resistance and Roof Support Technology in Thick Seam Fully-Mechanized Face Mining with Hard Roof Conditions

    Directory of Open Access Journals (Sweden)

    Wei-bin Guo

    2017-06-01

    Full Text Available This paper presents the engineering geological properties and roof control tecnology for a thick coal seam fully-mechanized face mining with hard roof conditions (THC at the Jinhuagong Coal Mine (JCM, northwest China. The effective support working resistance and appropriate roof control technology are two critical factors for safe and productive mining in the THC. The load-estimate-method (LOEM is the effective method to determine the support working resistance for normal working conditions (the mining height less than 3.5 m. In order to prevent support crushing accidents from happening and to ensure the safety and high-efficiency in the THC, the LOEM was modified based on the structure of the overlying strata in the THC. The strata which can form the voussoir beam structure in normal working conditions and will break in the form of cantilever beam in the THC is defined as the key strata in the immediate roof. Therefore, the hanging length of the key strata in the immediate roof was considered in the LOEM. Furthermore, a method for calculating the hanging length of the key strata in the immediate roof and its influencing factors were proposed using cantilever beam theory analysis of the structure of the overlying strata. Moreover, in order to fully fill the goaf area with caving roof to reduce the energy accumulation of main roof movement, it was decided to apply destress blasting technique (DEBT at the JCM to control the large hanging length of the hard roof, so as to reduce the impact of the hard main roof movement on the working face. The key technique parameters of the roof caving borehole were also proposed. The obtained results demonstrated that the theoretical analysis is reasonable, and the chosen support type and the DEBT could meet the roof control requirements. The THC has achieved safety and high-efficiency mining.

  9. Roof Weakening of Hydraulic Fracturing for Control of Hanging Roof in the Face End of High Gassy Coal Longwall Mining: A Case Study

    Science.gov (United States)

    Huang, Bingxiang; Wang, Youzhuang

    2016-09-01

    The occurence of hanging roof commonly arises in the face end of longwall coal mining under hard roof conditions. The sudden break and subsequent caving of a hanging roof could result in the extrusion of gas in the gob to the face, causing gas concentrations to rise sharply and to increase to over a safety-limited value. A series of linear fracturing-holes of 32 mm diameter were drilled into the roof of the entries with an anchor rig. According to the theory that the gob should be fully filled with the fragmentized falling roof rock, the drilling depth is determined as being 3 5 times the mining height if the broken expansion coefficient takes an empirical value. Considering the general extension range of cracks and the supporting form of the entryway, the spacing distance between two drilling holes is determined as being 1 2 times the crack's range of extension. Using a mounting pipe, a high pressure resistant sealing device of a small diameter-size was sent to the designated location for the high-pressure hydraulic fracturing of the roof rock. The hydraulic fracturing created the main hydro-fracturing crack and airfoil branch cracks in the interior of the roof-rock, transforming the roof structure and weakening the strength of the roof to form a weak plane which accelerated roof caving, and eventually induced the full caving in of the roof in time with the help of ground pressure. For holes deeper than 4 m, retreating hydraulic fracturing could ensure the uniformity of crack extension. Tested and applied at several mines in Shengdong Mining District, the highest ruptured water pressure was found to be 55 MPa, and the hanging roof at the face end was reduced in length from 12 m to less than 1 2 m. This technology has eliminated the risk of the extrusion of gas which has accumulated in the gob.

  10. Using ground penetrating radar for roof hazard detection in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Molinda, G.M.; Monaghan, W.P.; Mowrey, G.L. [Dept. of Energy, Pittsburgh, PA (United States)

    1996-12-31

    Ground Penetrating Radar (GPR) is being investigated for the potential to determine roof hazards in underground mines. GPR surveys were conducted at four field sites with accompanying ground truth in order to determine the value of GPR for roof hazard detection. The resolution of the current system allows detection of gross roof fractures (>{1/4} in zone) or rider beds in coal measure roof. Data quality is not yet sufficient to detect small bed separations or subtle lithologic changes in the roof. Differences in data quality are discussed, as well as suggestions for collecting improved data.

  11. Using ground penetrating radar for roof hazard detection in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Molinda, G.M.; Monaghan, W.P.; Mowrey, G.L.; Persetic, G.F. [Department of Energy, Pittsburgh, PA (United States)

    1996-12-01

    Ground Penetrating Radar (GPR) is being investigated for the potential to determine roof hazards in underground mines. GPR surveys were conducted at four field sites with accompanying ground truth in order to determine the value of GPR for roof hazard detection. The resolution of the current system allows detection of gross roof fractures (>63 cm (>1/4 in) zone) or rider beds in coal measure roof. Data quality is not yet sufficient to detect small bed separations or subtle lithologic changes in the roof. Differences in data quality are discussed, as well as suggestions for collecting improved data.

  12. Assessment of green roof systems in terms of water and energy balance

    Directory of Open Access Journals (Sweden)

    Mert Ekşi

    2016-01-01

    Full Text Available Green roofs concept term is used for extensive green roofs which are planted with herbaceous plants that can be adapted into changeable environmental conditions on a shallow substrate layer, require minimal maintenance, installed for their benefits to building and urban scale. Main objective of this study is to determine the characteristics of a green roof such as thermal insulation, water holding capacity, runoff characteristics, plant growth and its interaction with environmental factors in Istanbul climate conditions by performing comparative measurements. In this study, a research site (IU Green Roof Research Station was founded to assess water and energy balance of green roofs. Thus, a typical green roof was evaluated in terms of water and energy balance and its interaction with the building and city was determined. energy efficiency of green roof system was 77% higher than reference roof. Temperature fluctuations on green roof section of the roof were 79% lower. In addition, green roof retained 12,8% - 100% of precipitation and delayed runoff up to 23 hours depending on water content of substrate.

  13. Theoretical relationships between first flush of roof runoff and influencing factors

    Institute of Scientific and Technical Information of China (English)

    Biao WANG; Tian LI

    2009-01-01

    Considering the short length of building roofs,a theoretical analysis of the first flush of roof runoff was conducted based on the kinematic wave and pollutant erosion equations.This mathematical derivation with analytical solutions predicts pollutant mass first flush(MFF),mean concentration of initial runoff(MCIF),mean concentration of roof runoff(MCRRl with diversion of initial portion and residual mass available on the bed surface (RS) after the entire rnnoff under the condition of constant excess rainfall.And the effects of the associated influencing factors(roof length,roof gradient,roof surface roughness.rainfall intensity,rainfall duration,and erosion coefficients)on them were discussed while the values of parameters referred to the previous studies.The results showed that for roofs whose length is shorter than 20 m.both the increase in roof length and roof gradient and the decrease in roof surface roughness result in larger MFF and MCIF and smaller MCRR and RS.which is beneficial to water reuse and pollution reduction.The theoretical relationship between the first flush and the influencing factors may aid the planning and design of roof in terms of rainwater utilization or diffuse pollution control.

  14. Experimental Heat Transfer Study on Green Roofs in a Semiarid Climate during Summer

    Directory of Open Access Journals (Sweden)

    Roy J. Issa

    2015-01-01

    Full Text Available An experimental study was conducted on green roofs under the semiarid summer climatic conditions of West Texas to investigate the effect of soil type, moisture content, and the presence of a top soil grass layer on the conductive heat transfer through the roof. Two soil types were investigated: uniform sand and local silt clay. Tests were also conducted on a control roof. A dual-needle heat-pulse sensor was used to conduct thermal property tests on the soils. The tests reveal that unlike sand, the thermal conductivity of silt clay did not increase continuously with soil moisture. Better heat transfer conditions were achieved when the sand and silt clay roofs were watered to a water depth of 10 mm per day rather than double the amount of 20 mm per day. The roof with silt clay soil had the lowest fluctuation in inner temperature between daytime and nighttime. Green roofs with silt clay soil required more than twice the amount of soil moisture than green roofs with sand to achieve similar roof heat transfer rates. The best net heat flux gains for vegetated green roofs were 4.7 W/m2 for the sand roof and 7.8 W/m2 for the silt clay roof.

  15. Characteristics of Residual Atrial Posterior Wall and Roof-Dependent Atrial Tachycardias after Pulmonary Vein Isolation.

    Science.gov (United States)

    Matsumoto, Akinori; Fukuzawa, Koji; Kiuchi, Kunihiko; Konishi, Hiroki; Ichibori, Hirotoshi; Imada, Hiroshi; Hyogo, Kiyohiro; Kurose, Jun; Takaya, Tomofumi; Mori, Shumpei; Yoshida, Akihiro; Hirata, Ken-Ichi; Nishii, Tatsuya; Kono, Atsushi

    2016-10-01

    Roof-dependent atrial tachycardia (roof AT) sometimes occurs after pulmonary vein isolation (PVI) of atrial fibrillation (AF). This study aimed to investigate the relationship between the anatomy of the residual left atrial posterior wall and occurrence of roof AT. A total of 265 patients with AF who underwent PVI were enrolled. After the PVI, induced or recurrent roof AT was confirmed by an entrainment maneuver or activation mapping using a three-dimensional (3D) mapping system. To identify the predictors of roof AT, the minimum distance between both PVI lines (d-PVI) was measured by a 3D mapping system and the anatomical parameters, including the left atrial (LA) diameter, left atrial volume index (LAVi), and shape of the left atrial roof, were analyzed by 3D computed tomography. Roof AT was documented in 11 (4.2%) of 265 patients. A multivariable analysis demonstrated that the d-PVI, Deep V shape of the LA roof, and LAVi were associated with roof AT occurrences (d-PVI: odds ratio: 0.72, confidence interval [CI]: 0.61-0.86, P PVI and LAVi, respectively. The shorter d-PVI at the LA roof, greater LAVi, and Deep V shape were associated with the occurrence of a roof AT. © 2016 Wiley Periodicals, Inc.

  16. Field Testing of an Unvented Roof with Fibrous Insulation, Tiles, and Vapor Diffusion Venting

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States); Lstiburek, J. W. [Building Science Corporation, Westford, MA (United States)

    2016-02-01

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane. As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design.

  17. A Review of Methods for the Manufacture of Residential Roofing Materials

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Berdahl, Paul

    2003-06-01

    Shingles, tiles, and metal products comprise over 80% (by roof area) of the California roofing market (54-58% fiberglass shingle, 8-10% concrete tile, 8-10% clay tile, 7% metal, 3% wood shake, and 3% slate). In climates with significant demand for cooling energy, increasing roof solar reflectance reduces energy consumption in mechanically cooled buildings, and improves occupant comfort in non-conditioned buildings. This report examines methods for manufacturing fiberglass shingles, concrete tiles, clay tiles, and metal roofing. The report also discusses innovative methods for increasing the solar reflectance of these roofing materials. We have focused on these four roofing products because they are typically colored with pigmented coatings or additives. A better understanding of the current practices for manufacturing colored roofing materials would allow us to develop cool colored materials creatively and more effectively.

  18. 具有正比权值完工时间与交货期偏差加权和最小化单机随机调度%STOCHASTIC SINGLE MACHINE SCHEDULING TO MINIMIZE TOTAL WEIGHTED DEVIATIONS OF COMPLETION TIMES FROM A COMMON DUE DATE WITH PROPORTIONAL WEIGHTS

    Institute of Scientific and Technical Information of China (English)

    贾春福

    2003-01-01

    The deterministic problem of minimizing total weighted deviations of job completion times from a common due date on a single machine (abbreviated to TWD problem) is a typical scheduling model in Just-InTime production environment. The general TWD problem is NP-hard. However, the LPT (Largest Processing Time) job sequence is optimal for the case where the job weights are proportional to processing times. In this paper, we consider the stochastic counterpart of the TWD problem with proportional weights. The processing times and the due date are exponentially distributed random variables with arbitrary positive rates. It is shown that the LEPT (Largest Expected Processing Time) job sequence is optimal. Moreover, the case where the machine is subject to stochastic breakdowns is also discussed.%完工时间与交货期偏差加权和最小化单机调度(简记TWD)问题是Just-In-Time生产环境下典型的调度模型,是NP-hard问题.然而工件权值与加工时间成正比时,LPT(Largest Processing Time)调度最优.本文考虑了随机TWD问题,其中工件的加工时间和交货期都服从指数分布,证明了LEPT(Largest ExpectedProcessing Time)调度的最优性,并进一步将结论推广到机器随机故障的情形.

  19. Segmentation of Sloped Roofs from Airborne LiDAR Point Clouds Using Ridge-Based Hierarchical Decomposition

    Directory of Open Access Journals (Sweden)

    Hongchao Fan

    2014-04-01

    Full Text Available This paper presents a new approach for roof facet segmentation based on ridge detection and hierarchical decomposition along ridges. The proposed approach exploits the fact that every roof can be composed of a set of gabled roofs and single facets which are separated by the gabled roofs. In this work, firstly, building footprints stored in OpenStreetMap are used to extract 3D points on roofs. Then, roofs are segmented into roof facets. The algorithm starts with detecting roof ridges using RANSAC since they are parallel to the horizon and situated on the top of the roof. The roof ridges are utilized to indicate the location and direction of the gabled roof. Thus, points on the two roof facets along a roof ridge can be identified based on their connectivity and coplanarity. The results of the segmentation benefit the further process of roof reconstruction because many parameters, including the position, angle and size of the gabled roof can be calculated and used as priori knowledge for the model-driven approach, and topologies among the point segments are made known for the data-driven approach. The algorithm has been validated in the test sites of two towns next to Bavaria Forest national park. The experimental results show that building roofs can be segmented with both high correctness and completeness simultaneously.

  20. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Science.gov (United States)

    2010-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close...

  1. Optimizing the building envelopes with green roofs : a discussion of architectural and energy performance requirements

    Energy Technology Data Exchange (ETDEWEB)

    Hagerman, J. [Columbia Univ., New York, NY (United States). Dept. of Civil Engineering]|[Rafael Vinoly Architects, New York, NY (United States); Hodge, D. [Rafael Vinoly Architects, New York, NY (United States)

    2006-07-01

    This paper provided recommendations for optimized green roof technologies inspired by an architect firm's involvement in designing a 255,000 square foot green roof on top of the Howard Hughes Medical Institute's Janelia Farm Research Campus in Virginia. During the course of the green roof construction and installation, the architects found that green roofs needed design flexibility to meet their conceptual design requirements. It was suggested that the use of a modular system might allow for easier inspection access as well as the ability for the planting material to be reconfigured. It was noted that green roof systems can sometimes conflict with water management strategies of the building envelope. Green roof component lists do not make reference to the layers of construction within the building envelope, as it is often assumed that they are irrelevant to green roof design. Modular products offer Architects flexibility in design and maintenance, and products can be incorporated into more sophisticated water management details, offering simplicity of design, ease of installation, and ease of roof membrane inspection. A thermal analysis of modular and monolithic roof assemblies was conducted which showed that the assemblies contributed very little to the overall thermal insulation envelope when the positive thermal benefits of the green roof failed. It was recommended that green roof installations should be designed to sit directly on top of the roof membranes to replace the building's insulation envelope. Foamglas was proposed as a material for building insulation and to prevent root penetration. An evaluation of the R-values of various green roof systems at failure was also provided to give guidance to Architects incorporating green roofs in building envelopes. 3 refs., 3 tabs., 8 figs.

  2. Energy Performance Impacts from Competing Low-slope Roofing Choices and Photovoltaic Technologies

    Science.gov (United States)

    Nagengast, Amy L.

    With such a vast quantity of space, commercial low-slope roofs offer significant potential for sustainable roofing technology deployment. Specifically, building energy performance can be improved by installing rooftop energy technologies such as photovoltaic (PV) panels, and/or including designs such as white or green roofs instead of traditional black. This research aims to inform and support roof decisions through quantified energy performance impacts across roof choices and photovoltaic technologies. The primary dataset for this research was measured over a 16 month period (May 24, 2011 to October 13, 2012) from a large field experiment in Pittsburgh, Pennsylvania on top of a commercial warehouse with white, black and green roof sections, each with portions covered by polycrystalline photovoltaic panels. Results from the Pittsburgh experiment were extended to three different cities (San Diego, CA; Huntsville, AL; and Phoenix, AZ) chosen to represent a wide range of irradiance and temperature values. First, this research evaluated the difference in electricity production from a green-moss roof and black roof underneath photovoltaic panels to determine if the green roof's cooler air increases the panel efficiency. Second, separate studies examine 1) average hourly heat flux by month for unobstructed and shaded roof membranes 2) heat flux peak time delay, and 3) air temperature across roof types. Results of this research show green roofs slightly increased (0.8-1.5%) PV panel efficiency in temperatures approximately at or above 25° C (77°F) compared to black roofs. However in cool climates, like Pittsburgh, the roof type under the PV panels had little overall impact on PV performance when considering year round temperatures. Instead, roof decisions should place a stronger emphasis on heat flux impacts. The green roof outperformed both black and white roofs at minimizing total conductive heat flux. These heat flow values were used to develop a new, straight

  3. Moisture changes in oak and hickory fuel chips on roofed and unroofed Louisiana air-drying grounds as affected by pile depth and turning of chips

    Energy Technology Data Exchange (ETDEWEB)

    Koch, P.

    1983-06-01

    Freshly cut whole-tree hickory chips had lower moisture content (MC) initially and dried more rapidly than those of southern red oak. Such chips spread during April, 1981 in roofed trays did not dry to 20 percent MC, ovendry-weight basis, faster than those spread in October, 1980. In roofed trays, unturned chips spread 4 inches deep generally dried more rapidly than if spread 8 or 12 inches deep. Times to 20 percent average MC for layers 4, 8, and 12 inches deep were 78 to 94, 79 to 136, and 81 to 150 days, respectively. Twelve-inch-thick layers of southern red oak chips in unroofed trays increased in MC with time, but less so if turned weekly. Twelve-inch-thick layers of southern red oak chips in roofed trays dried considerably faster if turned. Even when in roofed trays and turned weekly, however, 87 days of drying were required to reach 31 percent average MC, and 151 days to reach 29 percent MC.

  4. Green Roof Concepts as a Passive Cooling Approach in Tropical Climate- An Overview

    Directory of Open Access Journals (Sweden)

    Kamarulzaman Noorazlina

    2014-01-01

    Full Text Available Nowadays, increasing of energy consumption due to global warming issues such as heat island effects has attracted the awareness of researchers, architects, engineers, property developers, and authorities to the crucial of green construction or sustainable development concept. Energy efficiency has been identified as a key consideration in discussions of this concept. In term of energy, Malaysia ranked 33rd in the list of global electricity consumption and 25th in the list of man-made carbon dioxide emissions. If energy consumption continues to increase at its current rate, domestic petroleum reserve in Peninsular Malaysia is predicted to be depleted by 2014 and Sarawak by 2020 [1]. As responding to the increasing of energy consumption, the demand of green roof technology as passive cooling technique has been recognized worldwide. Generally, by greening the rooftops in urban area, the impact on the urban climate and microclimate as well as on the indoor climate of buildings beneath them will be reduced. Therefore, this paper systematically review the concepts of green roof to give a basic understanding as global. Discussion on the benefits of this concept and its components among topic will be discussed.

  5. Quantitative measurement of natural radioactivity in some roofing tile materials used in upper Egypt.

    Science.gov (United States)

    Uosif, M A M

    2013-09-01

    The quantitative measurement of radionuclides ((226)Ra, (232)Th and (40)K) in some roofing tile materials (granite, alabaster, marble, traditional and advanced ceramic) used in Upper Egypt is presented in this paper. Measurements were done by using gamma spectrometry (NaI (Tl) 3" × 3"). The values of concentration of natural radionuclides were in the following ranges: 12-78.9 Bq kg(-1) for (226)Ra, 8.4-113.1 Bq kg(-1) for (232)Th and 94.9-509 Bq kg(-1)for (40)K. The activity concentration index (I), the specific dose rates indoors ( ) and the annual effective dose (DE) due to gamma radiation were calculated for each investigated sample. The lowest value of I is 0.19 for alabaster, while the highest one is 0.88 for traditional and advanced ceramic. The ranges of DE are between 0.03 and 0.13 mSv, it is below the maximal permitted values, so that the examined materials could be used as roofing tiles in the construction of new buildings.

  6. Software Practicalization for Analysis of Wind-Induced Vibrations of Large Span Roof Structures

    Institute of Scientific and Technical Information of China (English)

    ZHANG Enuo; YANG Weiguo; ZHEN Wei; NA Xiangqian

    2005-01-01

    Wind loads are key considerations in the structural design of large-span structures since wind loads can be more important than earthquake loads, especially for large flexible structures. The analysis of wind loads on large span roof structures (LSRS) requires large amounts of calculations. Due to the combined effects of horizontal and vertical winds, the wind-induced vibrations of LSRS are analyzed in this paper with the frequency domain method as the first application of method for the analysis of the wind response of LSRS. A program is developed to analyze the wind-induced vibrations due to a combination of wind vibration modes. The program, which predicts the wind vibration coefficient and the wind pressure acting on the LSRS, interfaces with other finite element software to facilitate analysis of wind loads in the design of LSRS. The effectiveness and accuracy of the frequency domain method have been verified by numerical analyses of practical projects.

  7. Designing an advanced available-to-promise mechanism compatible with the make-to-forecast production systems through integrating inventory allocation and job shop scheduling with due dates and weighted earliness/tardiness cost

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2016-06-01

    Full Text Available In the competitive business world, applying a reliable and powerful mechanism to support decision makers in manufacturing companies and helping them save time by considering varieties of effective factors is an inevitable issue. Advanced Available-to-Promise is a perfect tool to design and perform such a mechanism. In this study, this mechanism which is compatible with the Make-to-Forecast production systems is presented. The ability to distinguish between batch mode and real-time mode advanced available-to-promise is one of the unique superiorities of the proposed model. We also try to strengthen this mechanism by integrating the inventory allocation and job shop scheduling by considering due dates and weighted earliness/tardiness cost that leads to more precise decisions. A mixed integer programming (MIP model and a heuristic algorithm according to its disability to solve large size problems are presented. The designed experiments and the obtained results have proved the efficiency of the proposed heuristic method.

  8. Quality Assessment of Roof Planes Extracted from Height Data for Solar Energy Systems by the EAGLE Platform

    Directory of Open Access Journals (Sweden)

    Simon Schuffert

    2015-12-01

    Full Text Available Due to the increasing scarcity of fossil fuels and the upwards trend in energy costs over time, many countries—especially in Europe—have begun to modify their energy policies aiming to increase that percentage obtained from renewable energies. The EAGLE (FP7 program, European Commission has developed a web-based platform to promote renewable energy systems (RES in the public and private sectors, and to deliver a comprehensive information source for all interested users. In this paper, a comprehensive quality assessment of extracted roof planes suitable for solar energy installations (photovoltaic, solar thermal from height data derived automatically from both LiDAR (Light Detection and Ranging and aerial images will be presented. A shadow analysis is performed regarding the daily path of the sun including the shading effects of nearby objects (chimneys, dormers, vegetation, buildings, topography, etc.. A quality assessment was carried out for both LiDAR and aerial images of the same test sites in UK and Germany concerning building outline accuracy, extraction rate of roof planes and the accuracy of their geometric parameters (inclination and aspect angle, size. The benefit is an optimized system to extract roof planes for RES with a high level of detail, accuracy and flexibility (concerning different commonly available data sources including an estimation of quality of the results which is important for individual house owners as well as for regional applications by governments or solar energy companies to judge their usefulness.

  9. Positive effects of vegetation: urban heat island and green roofs.

    Science.gov (United States)

    Susca, T; Gaffin, S R; Dell'osso, G R

    2011-01-01

    This paper attempts to evaluate the positive effects of vegetation with a multi-scale approach: an urban and a building scale. Monitoring the urban heat island in four areas of New York City, we have found an average of 2 °C difference of temperatures between the most and the least vegetated areas, ascribable to the substitution of vegetation with man-made building materials. At micro-scale, we have assessed the effect of surface albedo on climate through the use of a climatological model. Then, using the CO(2) equivalents as indicators of the impact on climate, we have compared the surface albedo, and the construction, replacement and use phase of a black, a white and a green roof. By our analyses, we found that both the white and the green roofs are less impactive than the black one; with the thermal resistance, the biological activity of plants and the surface albedo playing a crucial role.

  10. Towards a generic rainfall-runoff model for green roofs.

    Science.gov (United States)

    Kasmin, H; Stovin, V R; Hathway, E A

    2010-01-01

    A simple conceptual model for green roof hydrological processes is shown to reproduce monitored data, both during a storm event, and over a longer continuous simulation period. The model comprises a substrate moisture storage component and a transient storage component. Storage within the substrate represents the roof's overall stormwater retention capacity (or initial losses). Following a storm event the retention capacity is restored by evapotranspiration (ET). However, standard methods for quantifying ET do not exist. Monthly ET values are identified using four different approaches: analysis of storm event antecedent dry weather period and initial losses data; calibration of the ET parameter in a continuous simulation model; use of the Thornthwaite ET formula; and direct laboratory measurement of evaporation. There appears to be potential to adapt the Thornthwaite ET formula to provide monthly ET estimates from local temperature data. The development of a standardized laboratory test for ET will enable differences resulting from substrate characteristics to be quantified.

  11. Modeling Košice Green Roofs Maps

    Science.gov (United States)

    Poorova, Zuzana; Vranayova, Zuzana

    2017-06-01

    The need to house population in urban areas is expected to rise to 66% in 2050, according to United Nations. The replacement of natural permeable green areas with concrete constructions and hard surfaces will be noticed. The densification of existing built-up areas is responsible for the decreasing vegetation, which results in the lack of evapotranspiration cooling the air. Such decreasing vegetation causes urban heat islands. Since roofs and pavements have a very low albedo, they absorb a lot of sunlight. Several studies have shown that natural and permeable surfaces, as in the case of green roofs, can play crucial role in mitigating this negative climate phenomenon and providing higher efficiency for the building, leading to savings. Such as water saving, what is the main idea of this research.

  12. Identifying fall-protection training needs for residential roofing subcontractors.

    Science.gov (United States)

    Hung, Yu-Hsiu; Winchester, Woodrow W; Smith-Jackson, Tonya L; Kleiner, Brian M; Babski-Reeves, Kari L; Mills, Thomas H

    2013-05-01

    Falls remain the leading cause of injuries and fatalities in the small residential roofing industry and analogous investigations are underrepresented in the literature. To address this issue, fall-protection training needs were explored through 29 semi-structured interviews among residential roofing subcontractors with respect to recommendations for the design of fall-protection training. Content analysis using grounded theory was conducted to analyze participants' responses. Results of the analysis revealed six themes related to the design of current fall-protection training: (1) barriers to safety training; (2) problems of formal safety-training programs; (3) recommendations for training implementation; (4) important areas for fall-protection training; (5) training delivery means; and (6) design features of training materials. Results of the study suggest the need for informal jobsite safety training to complement what had been covered in formalized safety training. This work also provides recommendations for the design of a more likely adopted fall-protection training program.

  13. Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs

    Science.gov (United States)

    Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz

    2017-01-01

    The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.

  14. Impact of green roofs on stormwater quality in a South Australian urban environment.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S; Kazemi, F

    2014-02-01

    Green roofs are an increasingly important component of water sensitive urban design systems and can potentially improve the quality of urban runoff. However, there is evidence that they can occasionally act as a source rather than a sink for pollutants. In this study, the water quality of the outflow from both intensive and extensive green roof systems were studied in the city of Adelaide, South Australia over a period of nine months. The aim was to examine the effects of different green roof configurations on stormwater quality and to compare this with runoff from aluminium and asphalt roofs as control surfaces. The contaminant concentrations in runoff from both intensive and extensive green roofs generally decreased during the study period. A comparison between the two types of green roof showed that except for some events for EC, TDS and chloride, the values of the parameters such as pH, turbidity, nitrate, phosphate and potassium in intensive green roof outflows were higher than in the outflows from the extensive green roofs. These concentrations were compared to local, state, national and international water quality guidelines in order to investigate the potential for outflow runoff from green roofs to be reused for potable and non-potable purposes. The study found that green roof outflow can provide an alternative water source for non-potable purposes such as urban landscape irrigation and toilet flushing.

  15. Potted Plants on Flat Roof as a Strategy to Reduce Indoor Temperature in Malaysian Climate

    Directory of Open Access Journals (Sweden)

    Asmat Ismail

    2010-01-01

    Full Text Available Problem statement: The phenomenon of global warming or climate change has led to many environmental issues including higher atmospheric temperatures, intensive precipitation, increase greenhouse gaseous emission and of course increase indoor discomfort condition. Researchers worldwide collectively agreed that one way of reducing the impact of global warming is by implementing green roof technology which integrates vegetation, growing medium and water proofing membrane on top of the roof surface. However, none of them have ever studied on how much the potted plants on the roof top could contribute to lessen the environmental problems. Therefore, this study investigates the effect of potted plants on flat roof on the indoor temperature inside building in Malaysian climate. Approach: This study emphasized on experimental approach of the room with flat roof. Measurements were conducted in two phases i.e., room with potted plant on the roof and room with bare roof. The measurements were conducted on the same room. Results: The experiment showed a promising result whereby the average indoor temperature dropped between 0.21 and 1.73°C had been observed during the measurements, while average indoor surface temperatures difference between roof with potted plants and bare roof of 7.86°C had been recorded during daytime hour. Conclusion: Potted plants on flat roof had a great potential in reducing the indoor temperature of the room underneath and could contributed to the reduction of energy consumption in building.

  16. Cycle graph analysis for 3D roof structure modelling: Concepts and performance

    Science.gov (United States)

    Perera, Gamage Sanka Nirodha; Maas, Hans-Gerd

    2014-07-01

    The paper presents a cycle graph analysis approach to the automatic reconstruction of 3D roof models from airborne laser scanner data. The nature of convergences of topological relations of plane adjacencies, allowing for the reconstruction of roof corner geometries with preserved topology, can be derived from cycles in roof topology graphs. The topology between roof adjacencies is defined in terms of ridge-lines and step-edges. In the proposed method, the input point cloud is first segmented and roof topology is derived while extracting roof planes from identified non-terrain segments. Orientation and placement regularities are applied on weakly defined edges using a piecewise regularization approach prior to the reconstruction, which assists in preserving symmetries in building geometry. Roof corners are geometrically modelled using the shortest closed cycles and the outermost cycle derived from roof topology graph in which external target graphs are no longer required. Based on test results, we show that the proposed approach can handle complexities with nearly 90% of the detected roof faces reconstructed correctly. The approach allows complex height jumps and various types of building roofs to be firmly reconstructed without prior knowledge of primitive building types.

  17. Weight Management

    Science.gov (United States)

    ... Health Information Weight Management English English Español Weight Management Obesity is a chronic condition that affects more ... Liver (NASH) Heart Disease & Stroke Sleep Apnea Weight Management Topics About Food Portions Bariatric Surgery for Severe ...

  18. EXISTING PROBLEMS ANALYZIS OF ORGANIZATIONAL AND TECHNOLOGICAL RELIABILITY OF ROOFING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. V. Radkevich

    2015-03-01

    Full Text Available Purpose. The article aims at analysis of existing approaches towards engineering, construction, reconstruction and major repair of buildings roofing systems and constructions for solving the matters regarding organizational and technological reliability. Methodology. The survey is based on methods of analogy, scientific analysis and synthesis. Findings. The analysis of innovative technologies as well as new construction materials for roofing has been carried out. Problems regarding their organizational and technological reliability have been specified. Relevance of the given problems has been grounded. Correlation between reliability of constructed facility or roofing repair from thoroughly chosen technology and also construction process organization in general was determined. All the specifications influencing roofing organizational and technological reliability have been divided into primary and secondary. New methodic conception including all the constituents of roofing in the whole has been worked out. Ukrainian and European specification documents have been taking into account. Roofing organizational and technological reliability scheme considering the factors that form reliability has been suggested. An urgent need for creation of roofing model taking into consideration the innovative technologies and latest roofing materials for choosing its rational variant has been emerged. It has to meet both customers and specification documents requirements and also desired level of organizational and technological reliability. Originality. For the first time the notion of «organizational and technological reliability» has been applied to roofing. Fundamental investigation of this notion has been suggested. Roofing reliability dependence on all its components as a whole has been analyzed. New approach towards roofing problems solving conception has been developed. Practical value. The survey results may be applied at roofing engineering and

  19. Characteristic roofing slates from Spain: Mormeau and Los Molinos

    Science.gov (United States)

    Cardenes Van den Eynde, Victor; Cnudde, Veerle; Cnudde, Jean Pierre

    2014-05-01

    Characteristic roofing slates from Spain: Mormeau and Los Molinos Cardenes1, V., Cnudde1, V., Cnudde1, J.P. 1 Department of Geology and Soil Science, Ghent University, Krijgslaan 281, S8, 9000 Ghent, Belgium. The world's major roofing slate outcrops are found in the NW of Spain, in the Ordovician terrains of the domain of the Truchas Syncline. In this remote area, slate was quarried since ancient times for the use of the inhabitants of the region. Half of a century ago, an industrialization process took place in this area, which began to produce high quality roofing slate for many buildings from Japan to the USA, and especially in Europe. Since then, Spanish slate roofing has been widely used for new buildings and also for restoration of historical buildings. This work revises the occurrence and characteristics of the two most representative grey slate varieties from the Truchas Syncline, Mormeau, a fine-grained slate, and Los Molinos, also a grey slate with a slightly coarser grain. Both slates have a very similar aspect, but Mormeau slate have some iron sulphides on its composition that sometimes forms oxidation spots. Mormeau beds are found at the Middle-Upper Ordovician age Casaio Formation, while Los Molinos beds are located at the Rozadais Formation, of age Upper Ordovician, defined as formation just for the Truchas Syncline domain. Both slates have a high degree of homogeneity on their constructive characteristics, with a typical composition of quartz, mica and chlorites, and a metamorphic degree corresponding to the green schists facies. This work revises the history and characteristics of both slates, that can be considered as lithotypes that can be used as a reference during the prospection of new slate outcrops worldwide. The presented varieties of slate are proposed for their inclusion as Global Heritage Stones.

  20. A modelling study of long term green roof retention performance.

    Science.gov (United States)

    Stovin, Virginia; Poë, Simon; Berretta, Christian

    2013-12-15

    This paper outlines the development of a conceptual hydrological flux model for the long term continuous simulation of runoff and drought risk for green roof systems. A green roof's retention capacity depends upon its physical configuration, but it is also strongly influenced by local climatic controls, including the rainfall characteristics and the restoration of retention capacity associated with evapotranspiration during dry weather periods. The model includes a function that links evapotranspiration rates to substrate moisture content, and is validated against observed runoff data. The model's application to typical extensive green roof configurations is demonstrated with reference to four UK locations characterised by contrasting climatic regimes, using 30-year rainfall time-series inputs at hourly simulation time steps. It is shown that retention performance is dependent upon local climatic conditions. Volumetric retention ranges from 0.19 (cool, wet climate) to 0.59 (warm, dry climate). Per event retention is also considered, and it is demonstrated that retention performance decreases significantly when high return period events are considered in isolation. For example, in Sheffield the median per-event retention is 1.00 (many small events), but the median retention for events exceeding a 1 in 1 yr return period threshold is only 0.10. The simulation tool also provides useful information about the likelihood of drought periods, for which irrigation may be required. A sensitivity study suggests that green roofs with reduced moisture-holding capacity and/or low evapotranspiration rates will tend to offer reduced levels of retention, whilst high moisture-holding capacity and low evapotranspiration rates offer the strongest drought resistance.

  1. The Transitivity Analysis of A Woman on a Roof

    Institute of Scientific and Technical Information of China (English)

    庞亚飞

    2012-01-01

      From the perspective of the transitivity theory, this dissertation aims to analyze feminist ideas in Doris Lessing’ s novel A Woman on a Roof. The analysis triumphantly proves that the transitivity system in SFG is an effective method in understand⁃ing author’ s feminist ideas. It is strongly hoped that this attempt will provide some valuable experience for better appreciating of other English novels.

  2. The Tajik People: Crown on the Roof of the World

    Institute of Scientific and Technical Information of China (English)

    GuBingshu

    2004-01-01

    The Tajiks reside in relative isolation in the snow-capped Pamir Mountain range of West China near the borders of Afghanistan, Pakistan and Russia. The Pamir mountains, known as the “roof of the world”, surround this specially designated Tajik district in three directions, and a desert borders the region on the fourth. The largest concentration of Tajik people live on the edge of Tashkorgan,

  3. PV on existing roofs. Experiences of sixty households

    Energy Technology Data Exchange (ETDEWEB)

    Kaan, H.F.; Van Dijk, A.L.; Van Leeuwen, M. [ECN Renewable Energy in the Built Environment DEGO, Petten (Netherlands)

    2001-05-01

    In order to stimulate the use of PV (photovoltaic energy) in the Netherlands, the Dutch government offers a subsidy of 3.40 Euro per Watt peak installed after January 2001. It is hoped that this will facilitate the market for PV systems. The newly to be build houses form a substantial potential as PV carriers, but the existing housing stock is much larger. PV on existing houses has been promoted for several years now in the Netherlands, amongst others by utilities, PV manufacturers and the environmental organization Greenpeace. The new subsidy scheme will undoubtedly have a large impact on the PV demand for existing houses. However, it is doubtful whether the technology is mature enough to meet a large scale demand. In order to learn from experiences with small scale PV systems on roofs of existing houses, the Energy research Centre of the Netherlands (ECN) has set up a research project in which participating employees give access to the roofs of their houses to install PV systems. Fifty-nine ECN employees entered for participation in this project. This group provides a random selection of roofs, so that many different types of roof integration can be examined. Subjects included in the project investigations are: constructional aspects, yield and reliability of systems, institutional aspects such as getting building permits, aesthetics, behavioural aspects. The project was set up in 2000. In April 2001, the installation had been monitored and evaluated. Also the preparatory and initial findings and experiences of project participants have been registered through a questionnaire. The yield of the modules is registered by the participants.

  4. Suspended solids in and turbidity of runoff from green roofs.

    Science.gov (United States)

    Morgan, Susan; Alyaseri, Isam; Retzlaff, William

    2011-01-01

    Green roof technology is used to reduce the quantity of stormwater runoff, but questions remain regarding its impact on quality. This study analyzed the total suspended solids (TSS) in and the turbidity of runoff from green roof growth media mixed with composted pine bark in an indoor pot study. The results showed that there were elevated levels of TSS and turbidity in the runoff that decreased over time for all growth media. Both TSS and turbidity are affected by the type of growth media. Lava and haydite had higher mean TSS and mean turbidity than arkalyte and bottom ash. Vegetation reduced the mean turbidity and mean TSS of the first flush by an average of 53% and 63%, respectively, but generally had no statistically significant effect thereafter. The results indicate that the media, rather than the vegetation, has a greater effect on TSS and turbidity in the runoff In areas with stringent water quality regulations for stormwater runoff from developed sites, media selection may be an important consideration. It may also be necessary in these regions to ensure that the roof is planted prior to receiving rainfall to minimize the first flush effect and that any irrigation does not result in runoff.

  5. A generic hydrological model for a green roof drainage layer.

    Science.gov (United States)

    Vesuviano, Gianni; Stovin, Virginia

    2013-01-01

    A rainfall simulator of length 5 m and width 1 m was used to supply constant intensity and largely spatially uniform water inflow events to 100 different configurations of commercially available green roof drainage layer and protection mat. The runoff from each inflow event was collected and sampled at one-second intervals. Time-series runoff responses were subsequently produced for each of the tested configurations, using the average response of three repeat tests. Runoff models, based on storage routing (dS/dt = I-Q) and a power-law relationship between storage and runoff (Q = kS(n)), and incorporating a delay parameter, were created. The parameters k, n and delay were optimized to best fit each of the runoff responses individually. The range and pattern of optimized parameter values was analysed with respect to roof and event configuration. An analysis was performed to determine the sensitivity of the shape of the runoff profile to changes in parameter values. There appears to be potential to consolidate values of n by roof slope and drainage component material.

  6. Study of water infiltration in a lightweight green roof substrate

    Science.gov (United States)

    Tomankova, Klara; Holeckova, Martina; Jelinkova, Vladimira; Snehota, Michal

    2015-04-01

    Green roofs have a positive impact on the environment (e.g. improving microclimate and air quality in cities, reducing solar absorbance and storm water). A laboratory infiltration experiment was conducted on the narrow flume serving as 2D vertical model of a green roof. The lightweight Optigreen substrate Type M was used (depth of 20 cm). The front wall of the flume was transparent and inspected by digital camera. The experiment was designed to measure pressure head, volumetric water content and calculate water retention in the substrate. Experiment comprised three artificial rainfall intensities with different values of initial water content of the substrate. The experimental results confirmed that green roofs have the ability to retain rainwater and thus have a beneficial effect on reducing runoff. In the experiment with the artificial 10 minutes rainfall event (total precipitation of 29 mm), the air dry substrate retained 95.9 % of precipitation. On the other hand for moist initial condition 4.2 % of precipitations amount was captured in the substrate. Additionally, the analysis of images taken during the experiment confirmed preferential flow and uneven advancement of the wetting front. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  7. Taphonomic and sedimentologic characterization of roof-shale floras

    Energy Technology Data Exchange (ETDEWEB)

    Gastaldo, R.A.; Pfefferkorn, H.W.; DiMichele, W.A. [Auburn University, Auburn, IL (United States). Dept. of Geology

    1995-12-31

    Roof-shale floras have been a major source of data for the understanding of Carboniferous vegetation. Early debate on their origin centered around the question of whether these megafloral assemblages are autochthonous or allochthonous. In these discussions, the sedimentological context in which the preserved fossil assemblage (taphoflora) occurred was largely ignored. W.C. Darrah saw the complexity of these issues, presented helpful starting points for further investigations, and influenced the thinking of the next generation. This chapter characterizes the sedimentological and taphonomic features of a spectrum of roof-shale floras. There are three levels at which the preservation of plant parts can be viewed: (1) early taphonomic processes and earliest diagenesis can destroy or preserve plant parts in a given clastic depositional setting; (2) those plant parts that are preserved can be autochthonous, parautochthonour, or allochthonous in relationship to their original place of growth; (3) with respect to a peat layer (coal bed), the overlying clastic material can be deposited in a continuous transition, after a short temporal break (discontinuity), or after a significant hiatus of time. Characterization of roof-shale floras must take into consideration the sedimentological interpretation of the associated lithologies, the stratigraphic sequence, and the taphonomic processes involved in their formation. Characterization is essential before such floras can be used in higher-level interpretations, such as paleoecological reconstructions. 72 refs., 3 figs., 3 tabs.

  8. Retrofitted green roofs and walls and improvements in thermal comfort

    Science.gov (United States)

    Feitosa, Renato Castiglia; Wilkinson, Sara

    2017-06-01

    Increased urbanization has led to a worsening in the quality of life for many people living in large cities in respect of the urban heat island effect and increases of indoor temperatures in housing and other buildings. A solution may be to retrofit existing environments to their former conditions, with a combination of green infrastructures applied to existing walls and rooftops. Retrofitted green roofs may attenuate housing temperature. However, with tall buildings, facade areas are much larger compared to rooftop areas, the role of green walls in mitigating extreme temperatures is more pronounced. Thus, the combination of green roofs and green walls is expected to promote a better thermal performance in the building envelope. For this purpose, a modular vegetated system is adopted for covering both walls and rooftops. Rather than temperature itself, the heat index, which comprises the combined effect of temperature and relative humidity is used in the evaluation of thermal comfort in small scale experiments performed in Sydney - Australia, where identical timber framed structures prototypes (vegetated and non-vegetated) are compared. The results have shown a different understanding of thermal comfort improvement regarding heat index rather than temperature itself. The combination of green roof and walls has a valid role to play in heat index attenuation.

  9. Minimal watering regime impacts on desert adapted green roof plant performance

    Science.gov (United States)

    Kovachich, S.; Pavao-Zuckerman, M.; Templer, S.; Livingston, M.; Stoltz, R.; Smith, S.

    2011-12-01

    Roof tops can cover one-fifth of urban areas and can greatly alter the movement of matter and energy in cities. With traditional roofing methods and materials, roof tops readily absorb heat and as a result, buildings and the surrounding urban area heat to unnaturally high temperatures. It is hypothesized that extensive green roofs would have wide-ranging benefits for arid environments. However, little is known about the cost of water use associated with green roof installations and how to balance energy reduction needs with water costs in this water limited environment. We are conducting a pilot study to test whether a) green roofs with native plants and environmentally-responsible watering regimes will prove successful in arid environments and if b) green roofs provide ecosystem services with responsible water application. Three species of Sonoran Desert natives, Dyssodia pentachaeta (groundcover), Calliandra eriophylla (shrub), and Hesperaloe parviflora (succulent) have been planted in experimental plots [1 m2 model houses and roofs, replicated in triplicate] with two sandy, rocky desert soil mixtures (light mix: 60% expanded shale and heavy mix: organic and sandy mix with 50% shale) at the Biosphere 2 campus near Oracle, Az. The green roofs are watered by two different techniques. The first technique provides "smart watering", the minimal amount of water needed by green roof plants based on precipitation and historical data. The second watering technique is considered heavy and does not take into account environmental conditions. Preliminary data from the experimental plots shows a 30% decrease in daytime roof top temperatures on green roofs and a 10% decrease in interior temperatures in buildings with green roofs. This trend occurs with both watering regimes (heavy and light). This finding suggests that additional irrigation yields no extra heat reduction and energy savings. In order to explain this phenomenon more clearly, we use co-located temperature and

  10. Role of MRI in the diagnosis of insufficiency fractures of the sacrum and acetabular roof

    Energy Technology Data Exchange (ETDEWEB)

    Grangier, C.; Garcia, J.; Howarth, N.R. [Departement de Radiologie, Division de Radiodiagnostic, Hopital Cantonal Universitaire de Geneve, CH-1211 Geneva 14 (Switzerland); May, M. [Departement de Radiologie, Division de Radio-Oncologie, Hopital Cantonal Universitaire de Geneve, CH-1211 Geneva 14 (Switzerland); Rossier, P. [Departement de Radiologie, Division de Medecine Nucleaire, Hopital Cantonal Universitaire de Geneve, CH-1211 Geneva 14 (Switzerland)

    1997-09-01

    Twenty patients with sacral and acetabular roof insufficiency fractures were reviewed retrospectively. There were 16 women (80%) and 4 males (age range 48-86 years, excluding an 8-year-old boy). Thirteen patients had a known tumour, and nine had received pelvic irradiation. All patients, except one who was asymptomatic, presented with low back or hip pain. In patients with a known tumor, metastases were suspected. Plain radiography (20), bone scintigrams (16), MR examinations (20), and bone densitometry (14) were performed. Nine patients also each had a CT scan. Results and conclusions. In three cases the CT scan performed 10-25 days after onset of symptoms was interpreted as normal. MR examination performed a few days after the CT scan showed in each of these three patients a fracture line with a band of edema. Scintigraphy was very sensitive, but the H-shaped pattern of sacral uptake, specific for an insufficiency fracture, was detected in only three of 16 cases. The earliest MR sign was medullary edema, seen as early as 18 days after the onset of symptoms. On spin echo (SE) T1-weighted images (T1WI), the hypointense signal of edema could mask a fracture line. On SE T2WI the fracture line could be detected within the hyperintense edema (10 of 17 patients with examinations including SE T2WI). However, in four patients a fracture of the sacrum was not seen on T2WI, these having been obtained in the axial plane. For this reason, intravenous gadolinium was injected, revealing a fracture line in 12 of 14 examinations, or fat suppression sequences were performed, revealing a fracture line in five of five cases. The total number of fractures detected was 17 [15 fractures of the sacrum (bilateral in 10 cases) and two of the acetabular roof]. At a later stage, the edema resolved and the fracture was clearly seen. The two cases of fracture of the acetabular roof were easily recognized at MRI, particularly in the sagittal plane. (orig./AJ). With 5 figs., 2 tabs.

  11. The pilot and demonstration SOLRIF project (Solar Roof Integration Frame); P+D Projekt SOLRIF (Solar Roof Integration Frame)

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, D.

    2000-07-01

    Building integration technologies for photovoltaic systems are, beside cell and module improvements, one of the most important aspects to reduce the price of solar electricity. But beside costs, there are other relevant requirements such as the architectural and aesthetical appearance of the building itself. SOLRIF is a new photovoltaic (PV) system for inclined roofs, which meets the aspects described above. Combined with any solar panel, SOLRIF forms a sealed roofing layer, like standard roofs with tiles, while generating electricity at the same time and offering a sustainable solution without greenhouse gases at zero operating costs. This new system is suitable for almost any type of inclined roofs in existing or new buildings and meets high aesthetical demands too. The innovative design is optimised in view of economical, ecological and functional aspects. The SOLRIF system consists of any type of PV laminate and four especially designed aluminium profiles, which replace the conventional framing of standard PV laminates. SOLRIF is independent of the size and makes of the PV laminates and is therefore suited to different products. During the two years project time 6 installations with a total amount of over 100 kW nominal power have been realised in Switzerland. Further approximately 150 kWp have been installed in Germany since the beginning of 2000. In advance, two test installations, one in Switzerland and one in the Netherlands were built. Several tests were done with the test installations in order to gain experiences at different locations. Improvements were done concerning the side finishing and on the profiles to reduce the material. The experiences with the installation and operation of SOLRIF elements are very positive. The product has reached a high quality level and has proved its proper function. (author)

  12. Physico-technical measurement of green roof in climate chamber module

    Directory of Open Access Journals (Sweden)

    Baláž Richard

    2015-06-01

    Full Text Available Not for nothing it is said that "a good roof is priceless." Although it may lead to discussions, which roof is good, because there are a lot of requirements and criteria for the functional characterization. It must be understood that the roof structure defines the durability of the building as a unit, therefore it defines lifetime of other parts of the building and also the function of space that is covered by the roof. Therefore it is very important to pay particular attention to the design, as well as the realization of the roof structure. The aim of this publication is to judge the physical and technical parameters in the design of the roof coating module in a climatic chamber.

  13. The behaviour of roof gable walls under the effect of earthquake load

    Directory of Open Access Journals (Sweden)

    M. Kamanli

    2010-02-01

    Full Text Available In this study, the effect of earthquake loads on roof gable walls and the behaviours of these roof gable walls are investigated. In preparation of the study, two experiments on cradle roof system which gets and does not get any loads off the roof members were carried out in all. The experiments were performed on the shaking table in Earthquake Research Department of General Directorate of Disaster Affairs. Through the experiments, some considerable results were obtained on the behaviours of roof gable walls under the effect of horizontal dynamic loads. The results obtained at the end of these examinations are given and discussed. Furthermore, suggestions to make the brick gable walls more reliable against the loads of earthquake are given. When the results of the experiments were generally taken into consideration, it was realized that the gable walls in both roof systems would partly or completely collapse even under the effect of a little horizontal dynamic load.

  14. Rock mass movements around development workings in various density of standing-and-roof-bolting support

    Institute of Scientific and Technical Information of China (English)

    MAJCHERCZYK Tadeusz; MALKOWSKLI Piotr; NIEDBALSKI Zbighiew

    2008-01-01

    Presented measurement results of roof rocks and wall rock movements of un-derground development workings after their drifting. The research was carried out in thecoal mine workings with standing-and-roof bolting support. There were various density ofthe support, so the aim of the special monitoring programme was to determine movementintensity of rock mass in the premises of the heading area. There were four types of re-search did by the authors. They measured convergence, roof layers separation using tell-tales and sonic probes and load bearing of the headings' roofs by hydraulic dynamometers.Evaluation of fracture zone around the heading and investigation the load zone caused byfailed roof rocks may become a basement for the determination of support parameters ofthe workings. The combined system of standing support and roof bolting seems to be anessential for underground headings protection.

  15. Numerical simulation of greening effects for idealised roofs with regional climate forcing

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Guenter [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie

    2012-04-15

    A numerical model was used to simulate temperature distribution in and above an extensive green roof with a long term forcing adopted from a regional climate model. Time variations of temperature for different time scales ranging from days to decades have been calculated. The results are in good agreement with selected field experiments and generally reinforce the understanding prevailing in literature regarding temperature differences of green roofs compared to a concrete roof. Green roofs result in a significant reduction of daytime human heat load and an improvement of thermal comfort conditions, while during night-time a concrete roof favours low temperatures and a low number of minimum temperatures above 20 C (tropical nights). A future shift in seasonal precipitation would necessitate irrigation in the summer months to ensure the vitality of roof vegetation. An estimation of the amount of additional watering and the increased number of watering days per year is given. (orig.)

  16. Technology Solutions Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    K. Ueno and J. Lstiburek

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a "control" vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise.

  17. Assessment and evaluation of noise controls on roof bolting equipment and a method for predicting sound pressure levels in underground coal mining

    Science.gov (United States)

    Matetic, Rudy J.

    Over-exposure to noise remains a widespread and serious health hazard in the U.S. mining industries despite 25 years of regulation. Every day, 80% of the nation's miners go to work in an environment where the time weighted average (TWA) noise level exceeds 85 dBA and more than 25% of the miners are exposed to a TWA noise level that exceeds 90 dBA, the permissible exposure limit (PEL). Additionally, MSHA coal noise sample data collected from 2000 to 2002 show that 65% of the equipment whose operators exceeded 100% noise dosage comprise only seven different types of machines; auger miners, bulldozers, continuous miners, front end loaders, roof bolters, shuttle cars (electric), and trucks. In addition, the MSHA data indicate that the roof bolter is third among all the equipment and second among equipment in underground coal whose operators exceed 100% dosage. A research program was implemented to: (1) determine, characterize and to measure sound power levels radiated by a roof bolting machine during differing drilling configurations (thrust, rotational speed, penetration rate, etc.) and utilizing differing types of drilling methods in high compressive strength rock media (>20,000 psi). The research approach characterized the sound power level results from laboratory testing and provided the mining industry with empirical data relative to utilizing differing noise control technologies (drilling configurations and types of drilling methods) in reducing sound power level emissions on a roof bolting machine; (2) distinguish and correlate the empirical data into one, statistically valid, equation, in which, provided the mining industry with a tool to predict overall sound power levels of a roof bolting machine given any type of drilling configuration and drilling method utilized in industry; (3) provided the mining industry with several approaches to predict or determine sound pressure levels in an underground coal mine utilizing laboratory test results from a roof bolting

  18. Dermal exposure and urinary 1-hydroxypyrene among asphalt roofing workers.

    Science.gov (United States)

    McClean, M D; Rinehart, R D; Sapkota, A; Cavallari, J M; Herrick, R F

    2007-01-01

    The primary objective of this study was to identify significant determinants of dermal exposure to polycyclic aromatic compounds (PACs) among asphalt roofing workers and use urinary 1-hydroxyprene (1-OHP) measurements to evaluate the effect of dermal exposure on total absorbed dose. The study population included 26 asphalt roofing workers who performed three primary tasks: tearing off old roofs (tear-off), putting down new roofs (put-down), and operating the kettle at ground level (kettle). During multiple consecutive work shifts (90 workerdays), dermal patch samples were collected from the underside of each worker's wrists and were analyzed for PACs, pyrene, and benzo(a)pyrene (BAP). During the same work week, urine samples were collected at pre-shift, post-shift, and bedtime each day and were analyzed for 1-OHP (205 urine samples). Linear mixed effects models were used to evaluate the dermal measurements for the purpose of identifying important determinants of exposure, and to evaluate urinary 1-OHP measurements for the purpose of identifying important determinants of total absorbed dose. Dermal exposures to PAC, pyrene, and BAP were found to vary significantly by roofing task (tear-off > put-down > kettle) and by the presence of an old coal tar pitch roof (pitch > no pitch). For each of the three analytes, the adjusted mean dermal exposures associated with tear-off (812 ng PAC/cm2, 14.9 ng pyrene/cm2, 4.5 ng BAP/cm2) were approximately four times higher than exposures associated with operating the kettle (181 ng PAC/cm2, 4.1 ng pyrene/cm2, 1.1 ng BAP/cm2). Exposure to coal tar pitch was associated with a 6-fold increase in PAC exposure (p = 0.0005), an 8-fold increase in pyrene exposure (p pitch roof was removed, accounting for a 3.7-fold difference at pre-shift (p = 0.01), a 5.0-fold difference at post-shift (p = 0.004), and a 7.2-fold difference at bedtime (p = 0.002). The pyrene measurements obtained during the work shift were found to be strongly correlated

  19. Weighted Clustering

    CERN Document Server

    Ackerman, Margareta; Branzei, Simina; Loker, David

    2011-01-01

    In this paper we investigate clustering in the weighted setting, in which every data point is assigned a real valued weight. We conduct a theoretical analysis on the influence of weighted data on standard clustering algorithms in each of the partitional and hierarchical settings, characterising the precise conditions under which such algorithms react to weights, and classifying clustering methods into three broad categories: weight-responsive, weight-considering, and weight-robust. Our analysis raises several interesting questions and can be directly mapped to the classical unweighted setting.

  20. Regional climate consequences of large-scale cool roof and photovoltaic array deployment

    Energy Technology Data Exchange (ETDEWEB)

    Millstein, Dev; Menon, Surabi, E-mail: dmillstein@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2011-07-15

    Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and photovoltaic arrays (low reflection) have the potential to change radiative forcing, surface temperatures, and regional weather patterns. In this work we investigate the regional climate and radiative effects of modifying surface albedo to mimic massive deployment of cool surfaces (roofs and pavements) and, separately, photovoltaic arrays across the United States. We use a fully coupled regional climate model, the Weather Research and Forecasting (WRF) model, to investigate feedbacks between surface albedo changes, surface temperature, precipitation and average cloud cover. With the adoption of cool roofs and pavements, domain-wide annual average outgoing radiation increased by 0.16 {+-} 0.03 W m{sup -2} (mean {+-} 95% C.I.) and afternoon summertime temperature in urban locations was reduced by 0.11-0.53 deg. C, although some urban areas showed no statistically significant temperature changes. In response to increased urban albedo, some rural locations showed summer afternoon temperature increases of up to + 0.27 deg. C and these regions were correlated with less cloud cover and lower precipitation. The emissions offset obtained by this increase in outgoing radiation is calculated to be 3.3 {+-} 0.5 Gt CO{sub 2} (mean {+-} 95% C.I.). The hypothetical solar arrays were designed to be able to produce one terawatt of peak energy and were located in the Mojave Desert of California. To simulate the arrays, the desert surface albedo was darkened, causing local afternoon temperature increases of up to + 0.4 deg. C. Due to the solar arrays, local and regional wind patterns within a 300 km radius were affected. Statistically significant but lower magnitude changes to temperature and radiation could be seen across the domain due to the introduction of the solar arrays. The addition of photovoltaic arrays caused no significant change to summertime outgoing

  1. Solar Air Heating Metal Roofing for Reroofing, New Construction, and Retrofit

    Science.gov (United States)

    2013-06-01

    variety of useful purposes. This specific project: • Re-roofed a badly worn and patched BUR with a long life metal roof, • Provided insulation...ranging from the high 40s to the high 70s. In addition, the roof had been patched several times and needed replacement. The U.S. Department of...Global, Johnston , RI, July 2008. 5. Typical Meteorological Year (TMY) Data file, available from the National Solar Radiation Database, http

  2. Measure Guideline: Deep Energy Enclosure Retrofit for Zero Energy Ready House Flat Roofs

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, H. [Building Science Corporation, Westford, MA (United States); Pettit, B. [Building Science Corporation, Westford, MA (United States)

    2015-05-01

    This Measure Guideline provides design and construction information for a deep energy enclosure retrofit (DEER) solution of a flat roof assembly. It describes the strategies and procedures for an exterior retrofit of a flat, wood-framed roof with brick masonry exterior walls, using exterior and interior (framing cavity) insulation. The approach supported in this guide could also be adapted for use with flat, wood-framed roofs with wood-framed exterior walls.

  3. Measure Guideline. Deep Energy Enclosure Retrofit for Zero Energy Ready House Flat Roofs

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, H. [Building Science Corporation, Westford, MA (United States); Pettit, B. [Building Science Corporation, Westford, MA (United States)

    2015-05-29

    This Measure Guideline provides design and construction information for a deep energy enclosure retrofit solution of a flat roof assembly. It describes the strategies and procedures for an exterior retrofit of a flat wood-framed roof with brick masonry exterior walls using exterior and interior (framing cavity) insulation. The approach supported in this guide could also be adapted for use with flat wood-framed roofs with wood-framed exterior walls.

  4. Public versus Private Incentives to Invest in Green Roofs: A Cost Benefit Analysis for Flanders.

    OpenAIRE

    Claus, Karla; Rousseau, Sandra

    2010-01-01

    By means of a cost benefit analysis, we compare public and private incentives to invest in extensive green roofs in urban areas. From the comparison of these public and private incentives we find that subsidies for green roofs are socially desirable and that subsidies are actually needed to convince potential private investors to construct green roofs. Specifically, we estimate the costs and benefits associated with an investment project in Groot-Bijgaarden (Belgium) where a real estate inves...

  5. Manipulating soil microbial communities in extensive green\\ud roof substrates

    OpenAIRE

    Molineux, Chloe; Connop, Stuart; Gange, Alan

    2014-01-01

    There has been very little investigation into the soil microbial community on green roofs, yet this below ground habitat is vital for ecosystem functioning. Green roofs are often harsh environments that would greatly benefit from having a healthy microbial system, allowing efficient nutrient cycling and a degree of drought tolerance in dry summer months. To test if green roof microbial communities could be manipulated,we added mycorrhizal fungi and a microbial mixture (‘compost tea’) to green...

  6. Comparison of the Behaviour of Curved and Straight Types of Steel Shell Roof Structures

    OpenAIRE

    Behnamasl, Mana

    2010-01-01

    ABSTRACT: In this research, the straight and curved models of the steel shell roof with different plates were analysed, designed and the results were compared with one another. Through this exercise it is aimed at achieving an ideal shell roof structure which could cover a larger surface. Therefore, three types of shell roofs were considered duopitch, cylindrical and dome and the main objective was to compare the straight and curved model of the shells. According to the findings of the liter...

  7. Numerical evaluation of the thermal performances of roof-mounted radiant barriers

    OpenAIRE

    Miranville, Frédéric; Boyer, Harry; Lucas, Franck; Johan, Seriacaroupin

    2014-01-01

    International audience; This paper deals with the thermal performances of roof-mounted radiant barriers. Using dynamic simulations of a mathematical model of a whole test cell including a radiant barrier installed between the roof top and the ceiling, the thermal performance of the roof is calculated. The mean method is more particularly used to assess the thermal resistance of the building component and lead to a value which is compared to the one obtained for a mass insulation product such ...

  8. Solar Air Heating Metal Roofing for Reroofing, New Construction, and Retrofit

    Science.gov (United States)

    2013-05-20

    testing of an approved BUR roof is not equivalent to the fire testing of other building materials such as foam plastic. In general, the fire...FINAL REPORT Solar Air Heating Metal Roofing For Reroofing, New Construction, and Retrofit ESTCP Project EW-201148 MAY 2013 John... Roofing For Reroofing, New Construction, and Retrofit ii REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting

  9. Roof selection for rainwater harvesting: quantity and quality assessments in Spain.

    Science.gov (United States)

    Farreny, Ramon; Morales-Pinzón, Tito; Guisasola, Albert; Tayà, Carlota; Rieradevall, Joan; Gabarrell, Xavier

    2011-05-01

    Roofs are the first candidates for rainwater harvesting in urban areas. This research integrates quantitative and qualitative data of rooftop stormwater runoff in an urban Mediterranean-weather environment. The objective of this paper is to provide criteria for the roof selection in order to maximise the availability and quality of rainwater. Four roofs have been selected and monitored over a period of 2 years (2008-2010): three sloping roofs - clay tiles, metal sheet and polycarbonate plastic - and one flat gravel roof. The authors offer a model for the estimation of the runoff volume and the initial abstraction of each roof, and assess the physicochemical contamination of roof runoff. Great differences in the runoff coefficient (RC) are observed, depending mostly on the slope and the roughness of the roof. Thus, sloping smooth roofs (RC>0.90) may harvest up to about 50% more rainwater than flat rough roofs (RC=0.62). Physicochemical runoff quality appears to be generally better than the average quality found in the literature review (conductivity: 85.0 ± 10.0 μS/cm, total suspended solids: 5.98 ± 0.95 mg/L, total organic carbon: 11.6 ± 1.7 mg/L, pH: 7.59 ± 0.07 upH). However, statistically significant differences are found between sloping and flat rough roofs for some parameters (conductivity, total organic carbon, total carbonates system and ammonium), with the former presenting better quality in all parameters (except for ammonium). The results have an important significance for local governments and urban planners in the (re)design of buildings and cities from the perspective of sustainable rainwater management. The inclusion of criteria related to the roof's slope and roughness in city planning may be useful to promote rainwater as an alternative water supply while preventing flooding and water scarcity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Membrane and Flashing Condition Indexes for Modified Bitumen Roofs: Inspection and Distress Manual

    Science.gov (United States)

    2010-03-01

    ER D C/ CE R L TR -1 0 -5 Membrane and Flashing Condition Indexes for Modified Bitumen Roofs Inspection and Distress Manual David M...ERDC/CERL TR-10-5 March 2010 Membrane and Flashing Condition Indexes for Modified Bitumen Roofs Inspection and Distress Manual David M...Compliance” ERDC/CERL TR-10-5 ii Abstract: The U.S. Army is currently responsible for maintaining mil- lions of square feet of modified bitumen roofing

  11. Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

    2004-07-01

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

  12. Field Evaluation of Four Novel Roof Designs for Energy-Efficient Manufactured Homes

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E. [Levy Partnership Inc., New York, NY (United States); Dentz, J. [Levy Partnership Inc., New York, NY (United States); Ansanelli, E. [Levy Partnership Inc., New York, NY (United States); Barker, G. [Levy Partnership Inc., New York, NY (United States); Rath, P. [Levy Partnership Inc., New York, NY (United States); Dadia, D. [Levy Partnership Inc., New York, NY (United States)

    2015-12-01

    A five-bay roof test structure was built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes. The roof structure in Jamestown, California was designed to examine how differences in roof construction impact space conditioning loads, wood moisture content and attic humidity levels. Conclusions are drawn from the data on the relative energy and moisture performance of various configurations of vented and sealed attics.

  13. Modeling the relative roles of the foehn wind and urban expansion in the 2002 Beijing heat wave and possible mitigation by high reflective roofs

    Science.gov (United States)

    Ma, Hongyun; Shao, Haiyan; Song, Jie

    2014-02-01

    Rapid urbanization has intensified summer heat waves in recent decades in Beijing, China. In this study, effectiveness of applying high-reflectance roofs on mitigating the warming effects caused by urban expansion and foehn wind was simulated for a record-breaking heat wave occurred in Beijing during July 13-15, 2002. Simulation experiments were performed using the Weather Research and Forecast (WRF version 3.0) model coupled with an urban canopy model. The modeled diurnal air temperatures were compared well with station observations in the city and the wind convergence caused by urban heat island (UHI) effect could be simulated clearly. By increasing urban roof albedo, the simulated UHI effect was reduced due to decreased net radiation, and the simulated wind convergence in the urban area was weakened. Using WRF3.0 model, the warming effects caused by urban expansion and foehn wind were quantified separately, and were compared with the cooling effect due to the increased roof albedo. Results illustrated that the foehn warming effect under the northwesterly wind contributed greatly to this heat wave event in Beijing, while contribution from urban expansion accompanied by anthropogenic heating was secondary, and was mostly evident at night. Increasing roof albedo could reduce air temperature both in the day and at night, and could more than offset the urban expansion effect. The combined warming caused by the urban expansion and the foehn wind could be potentially offset with high-reflectance roofs by 58.8 % or cooled by 1.4 °C in the early afternoon on July 14, 2002, the hottest day during the heat wave.

  14. Reprint of “Moisture content behaviour in extensive green roofs during dry periods: The influence of vegetation and substrate characteristics”

    Science.gov (United States)

    Berretta, Christian; Poë, Simon; Stovin, Virginia

    2014-08-01

    Evapotranspiration (ET) is a key parameter that influences the stormwater retention capacity, and thus the hydrological performance, of green roofs. This paper investigates how the moisture content in extensive green roofs varies during dry periods due to evapotranspiration. The study is supported by 29 months continuous field monitoring of the moisture content within four green roof test beds. The beds incorporated three different substrates, with three being vegetated with sedum and one left unvegetated. Water content reflectometers were located at three different soil depths to measure the soil moisture profile and to record temporal changes in moisture content at a five-minute resolution. The moisture content vertical profiles varied consistently, with slightly elevated moisture content levels being recorded at the deepest substrate layer in the vegetated systems. Daily moisture loss rates were influenced by both temperature and moisture content, with reduced moisture loss/evapotranspiration when the soil moisture was restricted. The presence of vegetation resulted in higher daily moisture loss. Finally, it is demonstrated that the observed moisture content data can be accurately simulated using a hydrologic model based on water balance and two conventional Potential ET models (Hargreaves and FAO56 Penman-Monteith) combined with a soil moisture extraction function. Configuration-specific correction factors have been proposed to account for differences between green roof systems and standard reference crops.

  15. Enhancement of life cycle assessment (LCA) methodology to include the effect of surface albedo on climate change: Comparing black and white roofs.

    Science.gov (United States)

    Susca, Tiziana

    2012-04-01

    Traditionally, life cycle assessment (LCA) does not estimate a key property: surface albedo. Here an enhancement of the LCA methodology has been proposed through the development and employment of a time-dependent climatological model for including the effect of surface albedo on climate. The theoretical findings derived by the time-dependent model have been applied to the case study of a black and a white roof evaluated in the time-frames of 50 and 100 years focusing on the impact on global warming potential. The comparative life cycle impact assessment of the two roofs shows that the high surface albedo plays a crucial role in offsetting radiative forcings. In the 50-year time horizon, surface albedo is responsible for a decrease in CO(2)eq of 110-184 kg and 131-217 kg in 100 years. Furthermore, the white roof compared to the black roof, due to the high albedo, decreases the annual energy use of about 3.6-4.5 kWh/m(2).

  16. Development of a green roof environmental monitoring and meteorological network in new york city.

    Science.gov (United States)

    Gaffin, Stuart R; Khanbilvardi, Reza; Rosenzweig, Cynthia

    2009-01-01

    Green roofs (with plant cover) are gaining attention in the United States as a versatile new environmental mitigation technology. Interest in data on the environmental performance of these systems is growing, particularly with respect to urban heat island mitigation and stormwater runoff control. We are deploying research stations on a diverse array of green roofs within the New York City area, affording a new opportunity to monitor urban environmental conditions at small scales. We show some green roof systems being monitored, describe the sensor selection employed to study energy balance, and show samples of selected data. These roofs should be superior to other urban rooftops as sites for meteorological stations.

  17. Comparison of different UHI mitigation strategies: the street- versus roof-level implementation

    Science.gov (United States)

    Li, X.; Georgescu, M.; Norford, L. K.

    2015-12-01

    Many mitigation approaches have been proposed to ameliorate the deleterious aspects of urbalization on climate, with special focus on the notorious urban heat island (UHI) effect. Of these approaches, high reflectance roof (cool roof) and pavement (cool pavement) and green roof or greenery are most commonly used and widely studied. However, the debate regarding the better implementation of cool and green technology is still ongoing. In this study, numerical sensitivity tests are carried out to evaluate the mitigation effect of the cool and green implementations at the city scale. The effects of roof-level and street-level implementations are compared in the context of a tropical urban environment.

  18. The Research Progress of Roof Greening%屋顶绿化研究进展

    Institute of Scientific and Technical Information of China (English)

    杨雪; 吴煜; 郑玉贤

    2014-01-01

    The article mainly summarizes the present research situation of roof greening in recent years ,including roof greening's classification ,and function and the research of the roof greening plants'resistance selection .In the end ,the article particularly speculates roof greening plant's resistance selection research .%综述了屋顶绿化近几年的研究现状,包括屋顶绿化的分类、功能及屋顶绿化植物的抗性筛选研究。重点针对屋顶绿化植物的抗性筛选研究进行了展望。

  19. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Grin, A. [Building Science Corporation, Somerville, MA (United States); Smegal, J. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-10-01

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  20. Development of a Green Roof Environmental Monitoring and Meteorological Network in New York City

    Directory of Open Access Journals (Sweden)

    Cynthia Rosenzweig

    2009-04-01

    Full Text Available Green roofs (with plant cover are gaining attention in the United States as a versatile new environmental mitigation technology. Interest in data on the environmental performance of these systems is growing, particularly with respect to urban heat island mitigation and stormwater runoff control. We are deploying research stations on a diverse array of green roofs within the New York City area, affording a new opportunity to monitor urban environmental conditions at small scales. We show some green roof systems being monitored, describe the sensor selection employed to study energy balance, and show samples of selected data. These roofs should be superior to other urban rooftops as sites for meteorological stations.

  1. Mechanical analysis of roof stability under nonlinear compaction of solid backfill body

    Institute of Scientific and Technical Information of China (English)

    Li Meng⇑; Zhang Jixiong; Liu Zhan; Zhao Xu; Huang Peng

    2016-01-01

    Based on the compaction characteristic test and the nonlinear compaction deformation characteristics of backfill material, this paper applies the theory of nonlinear elastic foundation of thin plate to establish a mechanical model of backfill body and roof in solid dense backfill coal mining. This study critically anal-yses the deflection equation of the roof by the energy method, derives the conditions of roof breakage and combined with concrete engineering practice analyses, determines roof movement regularity and stabil-ity in solid dense backfill mining. Analysis of the engineering practice of the 13,120 backfill panel of Pingmei 12# mine shows the theoretical maximum of roof convergence in backfill mining to be 415 mm which is in significant agreement with the measured value. During the advancing process of solid backfill mining at the panel, the maximum tensile stress on the roof is less than its tensile strength which does not satisfy the conditions for roof breakage. Drilling results on the roof and ground pressure monitoring show that the integrity of roof is strong, which is consistent with the theoretical calculations described in this study. The results presented in the study provide a basis for further investigation into strata movement theory in solid dense backfill mining.

  2. Stress state and caving danger of the roof in bolt supporting roadway

    Institute of Scientific and Technical Information of China (English)

    LIU Shao-wei; XU Li-li

    2006-01-01

    The start point of this text is the bottleneck problem of bolt supporting coal entry that is security problem of bolt supporting roof,we divide one entry into some sections with different stress, simulate stress field of wall rock and rockbolt solidified at different sections used umbrella disperse soft UDEC(universal distinct element code), we educe that the stress level of wallrock and bolt solidified is higher in roof fall risk section, and roof rockbolt load can reflect this rule clearly, that offer an important guideline in monitoring entry roof fall risk.

  3. Thermal performance of sisal fiber-cement roofing tiles for rural constructions

    National Research Council Canada - National Science Library

    Tonoli, Gustavo Henrique Denzin; Santos, Sérgio Francisco dos; Rabi, José Antonio; Santos, Wilson Nunes dos; Savastano Junior, Holmer

    2011-01-01

    .... Nonasbestos fiber-cement roofing components reinforced with cellulose pulp from sisal (Agave sisalana) were produced by slurry and dewatering techniques, with an optional addition of polypropylene fibers...

  4. Design of self-cleaning TiO2 coating on clay roofing tiles

    Science.gov (United States)

    Hadnadjev, Milica; Ranogajec, Jonjaua; Petrovic, Snezana; Markov, Sinisa; Ducman, Vilma; Marinkovic-Neducin, Radmila

    2010-07-01

    The phenomenon of heterogeneous photocatalysis takes place in the degradation process of many organic contaminants on solid surfaces. Photocatalysis is based on the excitation of the semiconductor by irradiation with supraband gap photons and the migration of electron-hole pairs to the surface of the photocatalysts, leading to the reaction of the holes with adsorbed H2O and OH- to form hydroxyl radicals. Due to the stability and photosensitivity of TiO2 semiconductors, this system is well studied and is of great interest from an ecological and industrial point of view for use in the field of building materials. Clay roofing tiles, due to their long-term exploitation, are subject to physical, chemical and biological degradation that leads to deterioration. Ceramic systems have a high percentage of total porosity and considering their non-tolerance of organic coating, the use of surface active materials (SAM) that induce porosity in TiO2 coatings is of vital significance. Photocatalytic coatings applied on clay roofing tiles under industrial conditions were designed by varying the quantity of TiO2 (mass/cm2) on the tile surface (thin and thick TiO2 layer). The positive changes in specific surface area and mesopore structure of the designed coatings were made by the addition of PEG 600 as a surface active material. It was shown that a thin photocatalytic layer (0.399 mg suspension/cm2 tile surface), applied onto ceramic tiles under industrial conditions, had better photocatalytic activity in methylene blue decomposition, hydrophilicity and antimicrobial activity than a thick photocatalytic coating (0.885 mg suspension/cm2).

  5. RAINWATER QUALITY COLLECTED FROM DIFFERENT ROOF TYPES

    Directory of Open Access Journals (Sweden)

    Rosicler Aparecida de Oliveira Reinato

    2011-10-01

    Full Text Available Re-utilization of water is a technique which aims to preserve a natural resource, seeking for an alternative that is capable of fulfilling the population’s demand while minding the needs of future generations. In such context, the re-utilization of rain water has been proving to be a viable alternative, as far as having sufficient water in feasible quality and quantity so as to fulfil daily demands is concerned. Water collecting and re-utilizing is an ancient technique performed for both home and agricultural-related aims. Such technique became less common as time went by, as the modern piped water systems became increasingly available. Nowadays, due to an increase in water needs, the alternative of re-utilization of water is being brought back and more often used. The number of industrial companies in the process of adapting to environmental laws and granting ISO 14000 certification is increasing. Such adaptations include rain water collecting and re-utilization. In states such as São Paulo and Rio de Janeiro laws oblige industrial companies with areas of 500 square meters or larger to collecting rain water, which not only aims at re-utilizing it but also at decreasing the risks of potential floods. In this context, this work aimed to assessing both the importance of rain water re-utilization and the problem of casual contamination of water by heavy metals which would render any re-use alternatives as not feasible, by carrying out chemical, physical and microbiological analyses. When comparing results, rain water featured higher quality.

  6. Asphalt Roofing Shingles Into Energy Project Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, Rex, PE

    2008-04-28

    Based on a widely cited September, 1999 report by the Vermont Agency of Natural Resources, nearly 11 million tons of asphalt roofing shingle wastes are produced in the United States each year. Recent data suggests that the total is made up of about 9.4 million tons from roofing tear-offs and about 1.6 million tons from manufacturing scrap. Developing beneficial uses for these materials would conserve natural resources, promote protection of the environment and strengthen the economy. This project explored the feasibility of using chipped asphalt shingle materials in cement manufacturing kilns and circulating fluidized bed (CFB) boilers. A method of enhancing the value of chipped shingle materials for use as fuel by removing certain fractions for use as substitute raw materials for the manufacture of new shingles was also explored. Procedures were developed to prevent asbestos containing materials from being processed at the chipping facilities, and the frequency of the occurrence of asbestos in residential roofing tear-off materials was evaluated. The economic feasibility of each potential use was evaluated based on experience gained during the project and on a review of the well established use of shingle materials in hot mix asphalt. This project demonstrated that chipped asphalt shingle materials can be suitable for use as fuel in circulating fluidized boilers and cement kilns. More experience would be necessary to determine the full benefits that could be derived and to discover long term effects, but no technical barriers to full scale commercial use of chipped asphalt shingle materials in these applications were discovered. While the technical feasibility of various options was demonstrated, only the use of asphalt shingle materials in hot mix asphalt applications is currently viable economically.

  7. Roof top extensions for multifamily houses in Slovakia

    Science.gov (United States)

    Szekeres, K.

    2010-12-01

    In the countries of the European Union with the exception of Malta, approximately 100.1 million multifamily dwelling units are situated. These dwellings count for an average of 47.5% of the total housing stock in European Union countries. At present in Slovakia and also other countries of Central and Eastern Europe, there are vast housing areas which were built after World War II. Slovakia's multifamily housing stock was privatized during the 1990s. Considering that the economy of Slovakia is not capable of replacing the existing housing fund, which is located in the multifamily houses that were built after World War II, it is necessary to place an increased emphasis on the renovation of this housing fund. The expenditures for the refurbishment of multifamily housing stock in recent decades, when compared with the demand, have been at a very low level. The main problems involving the current multifamily housing stock in Slovakia are: the need for modernization, the low level of energy efficiency, and the insufficient level of building maintenance. One of the options for creating sufficient sources for the renovation of apartment buildings is to utilize the roofs of apartment buildings as construction areas for building additional floors (over - roofing). The means acquired from the sale of the new floors after deducting the costs can be used for renovation. It is a matter of a one-time possibility, which is limited by many factors that depend on the localization and constructive technical solutions for apartment buildings. This article is an outcome of the SuReFit "Sustainable Roof Extension Retrofit for High-Rise Social Housing in Europe" international research project.

  8. Structural changes of green roof growing substrate layer studied by X-ray CT

    Science.gov (United States)

    Jelinkova, Vladimira; Sacha, Jan; Dohnal, Michal; Snehota, Michal

    2017-04-01

    Increasing interest in green infrastructure linked with newly implemented legislation/rules/laws worldwide opens up research potential for field of soil hydrology. A better understanding of function of engineered soils involved in green infrastructure solutions such as green roofs or rain garden is needed. A soil layer is considered as a highly significant component of the aforesaid systems. In comparison with a natural soil, the engineered soil is assumed to be the more challenging case due to rapid structure changes early stages after its build-up. The green infrastructure efficiency depends on the physical and chemical properties of the soil, which are, in the case of engineered soils, a function of its initial composition and subsequent soil formation processes. The project presented in this paper is focused on fundamental processes in the relatively thick layer of engineered soil. The initial structure development, during which the pore geometry is altered by the growth of plant roots, water influx, solid particles translocation and other soil formation processes, is investigated with the help of noninvasive imaging technique  X-ray computed tomography. The soil development has been studied on undisturbed soil samples taken periodically from green roof test system during early stages of its life cycle. Two approaches and sample sizes were employed. In the first approach, undisturbed samples (volume of about 63 cm3) were taken each time from the test site and scanned by X-ray CT. In the second approach, samples (volume of about 630 cm3) were permanently installed at the test site and has been repeatedly removed to perform X-ray CT imaging. CT-derived macroporosity profiles reveal significant temporal changes of soil structure. Clogging of pores by fine particles and fissures development are two most significant changes that would affect the green roof system efficiency. This work has been supported by the Ministry of Education, Youth and Sports within

  9. A parametric study of the thermal performance of green roofs in different climates through energy modeling

    Science.gov (United States)

    Mukherjee, Sananda

    In recent years, there has been great interest in the potential of green roofs as an alternative roofing option to reduce the energy consumed by individual buildings as well as mitigate large scale urban environmental problems such as the heat island effect. There is a widespread recognition and a growing literature of measured data that suggest green roofs can reduce building energy consumption. This thesis investigates the potential of green roofs in reducing the building energy loads and focuses on how the different parameters of a green roof assembly affect the thermal performance of a building. A green roof assembly is modeled in Design Builder- a 3D graphical design modeling and energy use simulation program (interface) that uses the EnergyPlus simulation engine, and the simulated data set thus obtained is compared to field experiment data to validate the roof assembly model on the basis of how accurately it simulates the behavior of a green roof. Then the software is used to evaluate the thermal performance of several green roof assemblies under three different climate types, looking at the whole building energy consumption. For the purpose of this parametric simulation study, a prototypical single story small office building is considered and one parameter of the green roof is altered for each simulation run in order to understand its effect on building's energy loads. These parameters include different insulation thicknesses, leaf area indices (LAI) and growing medium or soil depth, each of which are tested under the three different climate types. The energy use intensities (EUIs), the peak and annual heating and cooling loads resulting from the use of these green roof assemblies are compared with each other and to a cool roof base case to determine the energy load reductions, if any. The heat flux through the roof is also evaluated and compared. The simulation results are then organized and finally presented as a decision support tool that would

  10. Habitat connectivity shapes urban arthropod communities: the key role of green roofs.

    Science.gov (United States)

    Braaker, S; Ghazoul, J; Obrist, M K; Moretti, M

    2014-04-01

    The installation of green roofs, defined here as rooftops with a shallow soil cover and extensive vegetation, has been proposed as a possible measure to mitigate the loss of green space caused by the steady growth of cities. However, the effectiveness of green roofs in supporting arthropod communities, and the extent to which they facilitate connectivity of these communities within the urban environment is currently largely unknown. We investigated the variation of species community composition (beta diversity) of four arthropod groups with contrasting mobility (Carabidae, Araneae, Curculionidae, and Apidae) on 40 green roofs and 40 extensively managed green sites on the ground in the city of Zurich, Switzerland. With redundancy analysis and variation partitioning, we (1) disentangled the relative importance of local environmental conditions, the surrounding land cover composition, and habitat connectivity on species community composition, (2) searched for specific spatial scales of habitat connectivity for the different arthropod groups, and (3) discussed the ecological and functional value of green roofs in cities. Our study revealed that on green roofs community composition of high-mobility arthropod groups (bees and weevils) were mainly shaped by habitat connectivity, while low-mobility arthropod groups (carabids and spiders) were more influenced by local environmental conditions. A similar but less pronounced pattern was found for ground communities. The high importance of habitat connectivity in shaping high-mobility species community composition indicates that these green roof communities are substantially connected by the frequent exchange of individuals among surrounding green roofs. On the other hand, low-mobility species communities on green roofs are more likely connected to ground sites than to other green roofs. The integration of green roofs in urban spatial planning strategies has great potential to enable higher connectivity among green spaces, so

  11. Use of green roofs for ultra-urban stream restoration in the Georgia Piedmont, USA

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T. [Georgia Univ., Athens, GA (United States). Inst. of Technology; Rasmussen, T.C. [Georgia Univ., Athens, GA (United States). Warnell School of Forest Resources

    2005-07-01

    As a result of clean water acts in the United States, stormwater permits are required for local governments that are designed to reduce impacts on receiving water bodies. Elevated runoff volumes and rates lead to high pollutant transfer and altered hydrology. Best management practices (BMP) for stormwater include porous pavements, bioretention ponds and vegetated swales. Green roofs have been overlooked as a tool for managing stormwater. This study tested vegetated roof plots at the University of Georgia for their effectiveness in reducing stormwater flows. Two test sites were retrofitted onto an existing flat roof at a site on the university campus. A control plot was used to validate the green roof performance. Storm events were continuously monitored for a 1 year period. Flow was calculated based on the width of the orifice and the height of the water. Detailed spatial analysis was then performed in an urban watershed to determine the effect of widespread green roof implementation using a soil conservation service curve number model. Green roof curve numbers were found for 11 storm events. Composite curve numbers were established for different scenarios to model changes in stormwater volume for existing land cover, the greening of all roofs, and the greening of all flat roofs. Results showed that green roof stormwater retention ranged from 39 to 100 per cent. It was concluded that green roofs alone cannot solely be relied on to provide the minimum recommended stormwater management at the watershed scale. Green roofs must be used with other management strategies in a comprehensive watershed management plan if effective rehabilitation is to be considered. 14 refs., 2 tabs., 5 figs.

  12. Life-cycle cost-benefit analysis of extensive vegetated roof systems.

    Science.gov (United States)

    Carter, Timothy; Keeler, Andrew

    2008-05-01

    The built environment has been a significant cause of environmental degradation in the previously undeveloped landscape. As public and private interest in restoring the environmental integrity of urban areas continues to increase, new construction practices are being developed that explicitly value beneficial environmental characteristics. The use of vegetation on a rooftop--commonly called a green roof--as an alternative to traditional roofing materials is an increasingly utilized example of such practices. The vegetation and growing media perform a number of functions that improve environmental performance, including: absorption of rainfall, reduction of roof temperatures, improvement in ambient air quality, and provision of urban habitat. A better accounting of the green roof's total costs and benefits to society and to the private sector will aid in the design of policy instruments and educational materials that affect individual decisions about green roof construction. This study uses data collected from an experimental green roof plot to develop a benefit cost analysis (BCA) for the life cycle of extensive (thin layer) green roof systems in an urban watershed. The results from this analysis are compared with a traditional roofing scenario. The net present value (NPV) of this type of green roof currently ranges from 10% to 14% more expensive than its conventional counterpart. A reduction of 20% in green roof construction cost would make the social NPV of the practice less than traditional roof NPV. Considering the positive social benefits and relatively novel nature of the practice, incentives encouraging the use of this practice in highly urbanized watersheds are strongly recommended.

  13. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof

    Energy Technology Data Exchange (ETDEWEB)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy, E-mail: jlundholm@smu.ca

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%–26% volumetric moisture content) and temperature (21 °C–36 °C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  14. Weight Control

    Science.gov (United States)

    ... obese. Achieving a healthy weight can help you control your cholesterol, blood pressure and blood sugar. It ... use more calories than you eat. A weight-control strategy might include Choosing low-fat, low-calorie ...

  15. ROOFER Inventory Procedures and Inspection Manual for Metal Panel Roofing

    Science.gov (United States)

    2012-12-01

    DESIGN CATEGORY CODE : I I I I I I TYPE CONST • : p I FACILITY NUMBER : I I I I I I I LOCATION : USE : I YEAR BUILT: ROOF SECTIONS : A 1,097 SF...INST . NO.: I I I I I I DATE : I I AGENCY I I NST .: BUILDING NAME : BUILDING NUMBER : DESIGN ~-TEGORY CODE : I I I I I I TYPE CONST...oov.nstope Sioo lfM H o oruns8810d I ....... , or ocner Integrated S!¥oght S!Ons or de<trooouon PanetOefect SPH jOint botwoen_ skylight panol and

  16. Restoration of roof trusses in Mudejar Churches in Granada.

    Directory of Open Access Journals (Sweden)

    Antonio Luis Espinar Moreno

    1999-04-01

    Full Text Available The article presents the restoration works on the polychrome trusses of the parish churches of Santa María y San Pedro de Caniles and Santiago de Baza, financed by the Department of Culture of the Junta de Andalucía (Autonomous Government of Andalusia and the parishes themselves. Both works were carried out between 1994 and 1997 and are part of a global intervention on the buildings, although here we are concentrating mainly on the restoration of the roof trusses and their beautiful paint work, elements of major interest, which justify the general intervention.

  17. Attic or Roof? An Evaluation of Two Advanced Weatherization Packages

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K.

    2012-06-01

    This project examines implementation of advanced retrofit measures in the context of a large-scale weatherization program and the archetypal Chicago brick bungalow. One strategy applies best practice air sealing methods and a standard insulation method to the attic floor. The other strategy creates an unvented roof assembly using materials and methods typically available to weatherization contractors. Through implementations of the retrofit strategies in a total of eight (8) test homes, the research found that the two different strategies achieve similar reductions in air leakage measurement (55%) and predicted energy performance (18%) relative to the pre-retrofit conditions.

  18. Nut member and mine roof support system incorporating same

    Energy Technology Data Exchange (ETDEWEB)

    Wright, R.L.

    1986-10-21

    This patent describes an improved mine roof support system including a support plate having a central opening, and an elongated rod having a leading end inserted into a drill hole behind a resin cartridge and advanced to break the cartridge and rotated to mix the components thereof to form a hardened, chemical anchor for the rod, and a trailing end of predetermined diameter from which the rod is threaded for a portion of its length. The improvement described here comprises a nut element engaged with the threaded portion of the rod.

  19. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  20. Birth Weight

    Science.gov (United States)

    ... baby, taken just after he or she is born. A low birth weight is less than 5.5 pounds. A high ... weight is more than 8.8 pounds. A low birth weight baby can be born too small, too early (premature), or both. This ...