WorldWideScience

Sample records for weight polyethylene uhmwpe

  1. Thermal characterization of Ag and Ag + N ion implanted ultra-high molecular weight polyethylene (UHMWPE)

    Science.gov (United States)

    Sokullu Urkac, E.; Oztarhan, A.; Tihminlioglu, F.; Kaya, N.; Ila, D.; Muntele, C.; Budak, S.; Oks, E.; Nikolaev, A.; Ezdesir, A.; Tek, Z.

    2007-08-01

    Most of total hip joints are composed of ultra-high molecular weight polyethylene (UHMWPE). However, as ultra-high molecular weight polyethylene is too stable in a body, wear debris may accumulate and cause biological response such as bone absorption and loosening of prosthesis. In this study, ultra-high molecular weight polyethylene samples were Ag and Ag + N hybrid ion implanted by using MEVVA ion implantation technique to improve its surface properties. Samples were implanted with a fluence of 1017 ion/cm2 and extraction voltage of 30 kV. Implanted and unimplanted samples were investigated by thermo-gravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), optical microscopy (OM) and contact Angle measurement. Thermal characterization results showed that the ion bombardment induced an increase in the % crystallinity, onset and termination degradation temperatures of UHMWPE.

  2. Thermal characterization of Ag and Ag + N ion implanted ultra-high molecular weight polyethylene (UHMWPE)

    Energy Technology Data Exchange (ETDEWEB)

    Sokullu Urkac, E. [Department of Materials Science, Izmir High Technology Institute, Gulbahcekoyu Urla, Izmir (Turkey)]. E-mail: emelsu@gmail.com; Oztarhan, A. [Bioengineering Department, Ege University, Bornova, Izmir 35100 (Turkey); Tihminlioglu, F. [Department of Chemical Engineering, Izmir High Technology Institute, Gulbahcekoyu Urla, Izmir (Turkey); Kaya, N. [Bioengineering Department, Ege University, Bornova, Izmir 35100 (Turkey); Ila, D. [Center for Irradiation of Materials, Alabama A and M University, Normal AL 35762 (United States); Muntele, C. [Center for Irradiation of Materials, Alabama A and M University, Normal AL 35762 (United States); Budak, S. [Center for Irradiation of Materials, Alabama A and M University, Normal AL 35762 (United States); Oks, E. [H C Electronics Institute, Tomsk (Russian Federation); Nikolaev, A. [H C Electronics Institute, Tomsk (Russian Federation); Ezdesir, A. [R and D Department, PETKIM Holding A.S., Aliaga, Izmir 35801 (Turkey); Tek, Z. [Department of Physics, Celal Bayar University, Manisa (Turkey)

    2007-08-15

    Most of total hip joints are composed of ultra-high molecular weight polyethylene (UHMWPE ). However, as ultra-high molecular weight polyethylene is too stable in a body, wear debris may accumulate and cause biological response such as bone absorption and loosening of prosthesis. In this study, ultra-high molecular weight polyethylene samples were Ag and Ag + N hybrid ion implanted by using MEVVA ion implantation technique to improve its surface properties. Samples were implanted with a fluence of 10{sup 17} ion/cm{sup 2} and extraction voltage of 30 kV. Implanted and unimplanted samples were investigated by thermo-gravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), optical microscopy (OM) and contact Angle measurement. Thermal characterization results showed that the ion bombardment induced an increase in the % crystallinity, onset and termination degradation temperatures of UHMWPE.

  3. Evaluation of environmental degradation effects in morphology of ultra-high molecular weight polyethylene (UHMWPE) fibers

    International Nuclear Information System (INIS)

    Vivas, Viviane; Zylberberg, Marcel P.; Cardoso, Andre Luis V.; Pereira, Iaci M.; Weber, Ricardo P.; Suarez, Joao C. Miguez

    2015-01-01

    This study aims to evaluate changes in the morphology of ultra-high molecular weight polyethylene fiber (UHMWPE), before and after exposure to environmental agents. Fibers produced by two different manufacturers were analyzed. To characterize the morphology, we used the technique of small angle x-ray scattering (SAXS). The results demonstrate that the original morphology of the fibers was UHMWPE affected by the defects caused by exposure to environmental agents. (author)

  4. Structural modifications of ultra-high molecular weight polyethylene (UHMWPE) processed in attritor type mill

    International Nuclear Information System (INIS)

    Gabriel, Melina C.; Carvalho, Benjamim de M.; Pinheiro, Luis A.; Cintho, Osvaldo M.; Capocchi, Jose D.T.; Kubaski, Evaldo T.

    2009-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) is a polyethylene that has a high melt viscosity, hence its processing becomes very difficult. High-energy mechanical milling provides physical and chemical changes in polymers that have been studied recently. In order to study these changes in UHMWPE, powder of this polymer was mechanical milled in attritor type mill with a ball-to-powder weight ratio of 40:1 for 8 hours, varying the rotation speed: 200, 300, 400, 500 e 600 rpm. The polymer was characterized by scanning electron microscopy (SEM) and xray diffraction (XRD). From the XRD results it was noted that as the rotation speed increased the monoclinic phase also increased up to 500 rpm. For 600 rpm, the amount of monoclinic phase apparently decreased. At this rotation speed, the deformation rate probably increased the process temperature, allowing the monoclinic phase to return to its initial structural orthorhombic form. (author)

  5. Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications

    International Nuclear Information System (INIS)

    Riveiro, A.; Soto, R.; Val, J. del; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J.

    2014-01-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore, this material is being used in human orthopedic implants such as total hip or knee replacements. Surface modification of this material relates to changes on its chemistry, microstructure, roughness, and topography, all influencing its biological response. Surface treatment of UHMWPE is very difficult due to its high melt viscosity. This work presents a systematic approach to discern the role of different laser wavelengths (λ = 1064, 532, and 355 nm) on the surface modification of carbon coated UHMWPE samples. Influence of laser processing conditions (irradiance, pulse frequency, scanning speed, and spot overlapping) on the surface properties of this material was determined using an advanced statistical planning of experiments. A full factorial design of experiments was used to find the main effects of the processing parameters. The obtained results indicate the way to maximize surface properties which largely influence cell–material interaction.

  6. Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Riveiro, A., E-mail: ariveiro@uvigo.es [Applied Physics Department, University of Vigo, ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de España 2, 36920 Marín (Spain); Soto, R.; Val, J. del; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J. [Applied Physics Department, University of Vigo, ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2014-05-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore, this material is being used in human orthopedic implants such as total hip or knee replacements. Surface modification of this material relates to changes on its chemistry, microstructure, roughness, and topography, all influencing its biological response. Surface treatment of UHMWPE is very difficult due to its high melt viscosity. This work presents a systematic approach to discern the role of different laser wavelengths (λ = 1064, 532, and 355 nm) on the surface modification of carbon coated UHMWPE samples. Influence of laser processing conditions (irradiance, pulse frequency, scanning speed, and spot overlapping) on the surface properties of this material was determined using an advanced statistical planning of experiments. A full factorial design of experiments was used to find the main effects of the processing parameters. The obtained results indicate the way to maximize surface properties which largely influence cell–material interaction.

  7. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  8. The adhesive properties of chlorinated ultra-high molecular weight polyethylene

    NARCIS (Netherlands)

    Menting, H.N.A.M.; Voets, P.E.L.; Lemstra, P.J.

    1995-01-01

    Ultra-high molecular weight polyethylene (UHMW-PE) is well known for its abrasion and chemical resistance. Recently we developed a new application for UHMW-PE as a liner in elastomeric hoses. It was found that the adhesion between UHMW-PE and elastomers such as ethylene-propylene-diene monomer

  9. Equal channel angular extrusion of ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reinitz, Steven D., E-mail: Steven.D.Reinitz.TH@Dartmouth.edu; Engler, Alexander J.; Carlson, Evan M.; Van Citters, Douglas W.

    2016-10-01

    Ultra-high molecular weight polyethylene (UHMWPE), a common bearing surface in total joint arthroplasty, is subject to material property tradeoffs associated with conventional processing techniques. For orthopaedic applications, radiation-induced cross-linking is used to enhance the wear resistance of the material, but cross-linking also restricts relative chain movement in the amorphous regions and hence decreases toughness. Equal Channel Angular Extrusion (ECAE) is proposed as a novel mechanism by which entanglements can be introduced to the polymer bulk during consolidation, with the aim of imparting the same tribological benefits of conventional processing without complete inhibition of chain motion. ECAE processing at temperatures near the crystalline melt for UHMWPE produces (1) increased entanglements compared to control materials; (2) increasing entanglements with increasing temperature; and (3) mechanical properties between values for untreated polyethylene and for cross-linked polyethylene. These results support additional research in ECAE-processed UHMWPE for joint arthroplasty applications. - Highlights: • A new processing method for ultra-high molecular weight polyethylene is introduced. • The process produces a highly entangled polyethylene material. • Entanglements are hypothesized to enhance the wear resistance of polyethylene. • This process eliminates the trade-off between mechanical and wear properties.

  10. Surface modification of ultra-high molecular weight polyethylene (UHMWPE) by argon plasma

    International Nuclear Information System (INIS)

    Liu Hengjun; Pei Yanan; Xie Dong; Deng Xingrui; Leng, Y.X.; Jin Yong; Huang Nan

    2010-01-01

    In this work, argon (Ar) plasma generated by microwave electron cyclotron resonance (MWECR) has been used to modify the UHMWPE in order to increase the wear resistance. The results showed that the wettability, anti-scratch and wear resistance of UHMWPE treated by the Ar plasma had been improved, comparing with native UHMWPE. The FTIR and XPS spectra indicated the improvement of wettability should come from the oxygen based functional groups generated on the surface of UHMWPE. The improvement of anti-scratch and wear resistance may come from the enhancement of crosslinking of UHMWPE by Ar plasma treatment.

  11. Silver Nanoparticles Modification of Ultra High Molecular Weight Polyethylene in Non-Aqueous Medium

    OpenAIRE

    V. N. Glushko; L. I. Blokhina; E. E. Anisimova; M. V. Bogdanovskaya; V. I. Kozhukhov; T. A. Cherdyntseva

    2016-01-01

    A series of experiments for obtaining modified with silver nanoparticles ultra-high molecular weight polyethylene (UHMWPE) is done. Optimal precursors are silver trifluoroacetate, silver nitrate and silver methanesulfonate. Three variants of UHMWPE modification is studied: 1) the polyol synthesis, 2) polymer processing silver nanoparticle colloid and 3) reduction of silver salt solution in the UHMWPE polymer matrix. It is found that the last method is optimal. The specific surface of obtained...

  12. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  13. Ballistic behaviour of ultra-high molecular weight polyethylene: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L.S.; Nascimento, Lucio F.C.; Miguez Suarez, Joao Carlos

    2004-01-01

    The fiber reinforced polymer matrix composites (PMCs) are considered excellent engineering materials. In structural applications, when a high strength-to-weight ratio is fundamental for the design, PMCs are successfully replacing many conventional materials. Since World War II textile materials have been used as ballistic armor. Materials manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials, for personnel protection and armored vehicles. As these have been developed and commercialized more recently, there is not enough information about the action of the ionizing radiation in the ballistic performance of this armor material. In the present work the ballistic behavior of composite plates manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers were evaluated after exposure to gamma radiation. The ballistic tests results were related to the macromolecular modifications induced by the environmental degradation through mechanical (hardness, impact and flexure) and physicochemical (infrared spectroscopy, differential scanning calorimetry and thermal gravimetric analysis) tests. Our results indicate that gamma irradiation induces modifications in the UHMWPE macromolecular chains, altering the mechanical properties of the composite and decreasing, for higher radiation doses, its ballistic performance. These results are presented and discussed. (author)

  14. Flexible mechanoprosthesis made from woven ultra-high-molecular-weight polyethylene fibres : proof of concept in a chronic sheep model

    NARCIS (Netherlands)

    Basir, Amir; Grobben, Remco B.; Cramer, Maarten Jan; van Herwaarden, Joost A.; Vink, Aryan; Pasterkamp, Gerard; Kluin, Jolanda; Gründeman, Paul F.

    2017-01-01

    OBJECTIVES: Ultra-high-molecular-weight polyethylene (UHMWPE) fibres are flexible, have high tensile strength, and platelet and bacterial adhesion is low. Therefore, UHMWPE may overcome limitations of current mechanical valves and bioprostheses. In this study, the biocompatibility and functionality

  15. Flexible mechanoprosthesis made from woven ultra-high-molecular-weight polyethylene fibres: proof of concept in a chronic sheep model

    NARCIS (Netherlands)

    Basir, Amir; Grobben, Remco B.; Cramer, Maarten Jan; van Herwaarden, Joost A.; Vink, Aryan; Pasterkamp, Gerard; Kluin, Jolanda; Gründeman, Paul F.

    2017-01-01

    OBJECTIVES: Ultra-high-molecular-weight polyethylene (UHMWPE) fibres are flexible, have high tensile strength, and platelet and bacterial adhesion is low. Therefore, UHMWPE may overcome limitations of current mechanical valves and bioprostheses. In this study, the bio-compatibility and functionality

  16. The influence of Co-Cr and UHMWPE particles on infection persistence : An in vivo study in mice

    NARCIS (Netherlands)

    Hosman, Anton H.; Bulstra, Sjoerd K.; Sjollema, Jelmer; van der Mei, Henny C.; Busscher, Henk J.; Neut, Danielle

    Wear of metal-on-metal (cobaltchromium, CoCr particles) and metal-on-polyethylene (ultra-high-molecular-weight polyethylene, UHMWPE particles) bearing surfaces in hip prostheses is a major problem in orthopedics. This study aimed to compare the influence of CoCr and UHMWPE particles on the

  17. Functionalization of powder and fibrous microfillers for UHMWPE by treatment with polyorganosiloxane

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Qitao, Huang; Alexenko, V. O.; Ivanova, L. R.

    2017-12-01

    To develop higher strength and wear-resistant polymer composites, which are based on ultra-high molecular weight polyethylene (UHMWPE), the mechanical and tribotechnical characteristics of UHMWPE filled with wollastonite microfibers and aluminum metahydroxide AlO(OH) microparticles, preliminarily treated (functionalized) in polyorganosiloxane to increase the adhesion of the fillers to the matrix, have been studied. The choice of the fillers and the adhesion promoter for the ultra-high molecular weight polyethylene matrix is determined by the search of effective commercially available fillers and surface modifiers to design wear resistant polymeric composites for friction units in mechanical engineering. The chemical and permolecular structure and the wear track surface topography of UHMWPE composites have been investigated under dry sliding friction at different loads and sliding velocities.

  18. Ballistic behavior of ultra-high molecular weight polyethylene composite: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L. dos Santos; Nascimento, Lucio F.C.; Suarez, Joao C. Miguez; lucio2002bol.com.br

    2003-01-01

    Since World War II, textile composites have been used as ballistic armor. Ultra-high molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials. As they have been developed and commercialized only recently, there is not enough information about the effect of environmental agents in the ballistic performance of UHMWPE composites. In the present work, was evaluated the ballistic behavior of composite plates manufactured with UHMWPE fibers after exposure to gamma radiation. The ballistic tests results were related to the macromolecular alterations induced by the radiation through mechanical (hardness, impact and flexure) and physicochemical (Ftir/Mir. DSC and TGA) testing. It was observed that irradiation induces changes in the UHMWPE, degrading the ballistic performance of the composite. These results are presented and discussed. (author)

  19. Effect of γ-ray irradiation on the structure and melt fluidity of UHMWPE

    International Nuclear Information System (INIS)

    Liu Pengbo; Fan Ping; Xu Wen; Wang Kai

    2005-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) was irradiated in air by 60 Co γ-rays. The effect of γ-ray irradiation on the structure and properties of UHMWPE was studied by FTIR, intrinsic viscosity measurement, melt flow rate (MFR) measurement and mechanical property test. The experimental results show that oxygen-containing groups (mainly carbonyl group) were introduced on the molecular chain of UHMWPE during the irradiation, which caused degradation of UHMWPE. Molecular weight of UHMWPE decreased and melt flow rate increased obviously. Compared with the virgin UHMWPE, MFR of the 100 kGy-irradiated UHMWPE increased from virtually nothing to 4.8 g/10 min. Tensile yield strength and elongation at break of the irradiated UHMWPE samples were improved, whereas notched lzod impact strength of the samples decreased. Compared with the virgin UHMWPE, elongation at break of the UHMWPE samples irradiated to 100 kGy increased from 367% to 801%, and their notched lzod impact strength decreased to 576 J/m from over 1000. (authors)

  20. Mechanical, Rheological, and Bioactivity Properties of Ultra High-Molecular-Weight Polyethylene Bioactive Composites Containing Polyethylene Glycol and Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Mazatusziha Ahmad

    2012-01-01

    Full Text Available Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P precipitates on the composite surface as proven from SEM and XRD analysis.

  1. Wettability of nano-epoxies to UHMWPE fibers.

    Science.gov (United States)

    Neema, S; Salehi-Khojin, A; Zhamu, A; Zhong, W H; Jana, S; Gan, Y X

    2006-07-01

    Ultra high molecular weight polyethylene (UHMWPE) fibers have a unique combination of outstanding mechanical, physical, and chemical properties. However, as reinforcements for manufacturing high performance composite materials, UHMWPE fibers have poor wettability with most polymers. As a result, the interfacial bonding strength between the fibers and polymer matrices is very low. Recently, developing so-called nano-matrices containing reactive graphitic nanofibers (r-GNFs) has been proposed to promote the wetting of such matrices to certain types of fiber reinforcements. In this work, the wettability of UHMWPE fibers with different epoxy matrices including a nano-epoxy, and a pure epoxy was investigated. Systematic experimental work was conducted to determine the viscosity of the epoxies, the contact angle between the epoxies and the fibers. Also obtained are the surface energy of the fibers and the epoxies. The experimental results show that the wettability of the UHMWPE fibers with the nano-epoxy is much better than that of the UHMWPE fibers with the pure epoxy.

  2. The effect of chromic acid treatment on the mechanical and tribological properties of aramid fibre reinforced ultra-high molecular weight polyethylene composite

    NARCIS (Netherlands)

    Hofste, JM; Pennings, AJ; Schut, J.A.

    1998-01-01

    Surface oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder has an influence on the mixing procedure of chopped fibres and UHMWPE powder. Due to this oxidation hydrogen bonds can be formed between the fibres and powder particles, leading to a more homogeneous fibre-powder mixture.

  3. Investigation of tribological properties of graphene oxide reinforced ultrahigh molecular weight polyethylene under artificial seawater lubricating condition

    Science.gov (United States)

    Pang, Wenchao; Ni, Zifeng; Wu, JiaLiang; Zhao, Yongwu

    2018-03-01

    A range of ultrahigh molecular weight polyethylene (UHMWPE)/graphene oxide (GO) nanocomposites were fabricated using liquid-phase ultrasonication mixing followed by hot-pressing. The wettability, water absorption and corrosion resistance of composites were studied to prove the composites were suitable for application in liquid environment. The tribological properties of composites under dry, deionized water and seawater lubricating condition were investigated. The results showed that the incorporation of GO decreased the wear rate of UHMWPE under different lubricating conditions and with the increase of GO addition, the wear rate of UHMWPE/GO composites decreased. UHMWPE/GO composites exhibited better tribological behaviors under seawater lubricating condition than other conditions, because good corrosion resistance and excellent wear resistance of UHMWPE/GO composites, and the lubricating effect of seawater is also indispensable.

  4. Relationship Between Melting Kinetics and Disentangled State of UHMWPE

    NARCIS (Netherlands)

    Romano, Dario; Liu, Kangsheng; Tops, Niek; Rastogi, Sanjay

    2017-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) is a simple polymer used for many engineering applications such as ballistic, medical and applications where high mechanical properties are desired. However, its processing has always been challenging due to the high melt viscosity caused by the

  5. Influence of the graphite type in the mechanical properties of graphene nanosheets and ultra high molecular weight polyethylene (GN/UHMWPE) nanocomposites

    International Nuclear Information System (INIS)

    Lima, M.E. de A.; Coutinho, S.V.; Fim, F. de C.

    2016-01-01

    This paper studies the mechanical properties of graphene nanosheets and ultra high molecular weight polyethylene (GN/UHMWPE) nanocomposites. The graphene nanosheets were obtained by two methods: the first, from Graphite Micrograf HC11 after 8 hours in a ultrasound bath in 70% alcoholic solution; the second, from Graflake 9950 prepared by oxidizing with H 2 SO 4 /HNO 3 (4:1), followed by thermal expansion at 1050°C for 30 seconds and ultrasound bath for 20 hours. Both were oven dried for 24 hours at 110°C and subsequently added to the polymer in percentages of 0.5, 1.0 and 1.5% (w/w). The powders of the nanocomposites were mixed in a ball mill for 1 hour and molded by hot compression. XRD and SEM images was possible to verify that the Graflake's GN had higher delamination that the Micrograph's GN. The mechanical properties were affected in different percentages for each graphite type. (author)

  6. Extension induced phase separation and crystallization in semidilute solutions of ultra high molecular weight polyethylene

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Imperiali, Luna; Stepanyan, Roman

    2018-01-01

    Abstract We investigate the influence of controlled uniaxial extension on various flow induced phenomena in semidilute solutions of ultra high molecular weight polyethylene (UHMwPE). Concentrations range from 9 w% to 29 w% and the choice of solvent is paraffin oil (PO). The start-up extensional b...

  7. Radiation-grafted membranes based on polyethylene for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sherazi, Tauqir A. [Department of Chemistry, Government College University, Lahore 54000 (Pakistan); Institute for Chemical Process and Environmental Technology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada); Guiver, Michael D.; Kingston, David; Xue, Xinzhong [Institute for Chemical Process and Environmental Technology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada); Ahmad, Shujaat [PIEAS/PINSTECH, P O Nilore, Islamabad 45650 (Pakistan); Kashmiri, M. Akram [Department of Chemistry, Government College University, Lahore 54000 (Pakistan); Board of Intermediate and Secondary Education, Lahore 54000 (Pakistan)

    2010-01-01

    Styrene was grafted onto ultrahigh molecular weight polyethylene powder (UHMWPE) by gamma irradiation using a {sup 60}Co source. Compression moulded films of selected pre-irradiated styrene-grafted ultrahigh molecular weight polyethylene (UHMWPE-g-PS) were post-sulfonated to the sulfonic acid derivative (UHMWPE-g-PSSA) for use as proton exchange membranes (PEMs). The sulfonation was confirmed by X-ray photoelectron spectroscopy (XPS). The melting and flow properties of UHMWPE and UHMWPE-g-PS are conducive to forming homogeneous pore-free membranes. Both the ion conductivity and methanol permeability coefficient increased with degree of grafting, but the grafted membranes showed comparable or higher ion conductivity and lower methanol permeability than Nafion {sup registered} 117 membrane. One UHMWPE-g-PS membrane was fabricated into a membrane-electrode assembly (MEA) and tested as a single cell direct methanol fuel cell (DMFC). Low membrane cost and acceptable fuel cell performance indicate that UHMWPE-g-PSSA membranes could offer an alternative approach to perfluorosulfonic acid-type membranes for DMFC. (author)

  8. Impact of UHMWPE texture on friction and wear resistance of hip prosthesis

    Directory of Open Access Journals (Sweden)

    Eddoumy Fatima

    2013-11-01

    Full Text Available Ultra High Molecular Weight PolyEthylene (UHMWPE is a polymer widely used in hip implants (prostheses as a bearing surface against metal, because of its good mechanical properties and biocompatibility [1]. Nevertheless, the durability of such implants is limited because of failure resulting from osteolysis and aseptic loosening. These two phenomenons are due to the immune response of human body consecutive to the apparition of wear particles of UHMWPE with time.

  9. Ultra high molecular weight polyethylene (UHMWPE) fiber epoxy composite hybridized with Gadolinium and Boron nanoparticles for radiation shielding

    Science.gov (United States)

    Mani, Venkat; Prasad, Narasimha S.; Kelkar, Ajit

    2016-09-01

    Deep space radiations pose a major threat to the astronauts and their spacecraft during long duration space exploration missions. The two sources of radiation that are of concern are the galactic cosmic radiation (GCR) and the short lived secondary neutron radiations that are generated as a result of fragmentation that occurs when GCR strikes target nuclei in a spacecraft. Energy loss, during the interaction of GCR and the shielding material, increases with the charge to mass ratio of the shielding material. Hydrogen with no neutron in its nucleus has the highest charge to mass ratio and is the element which is the most effective shield against GCR. Some of the polymers because of their higher hydrogen content also serve as radiation shield materials. Ultra High Molecular Weight Polyethylene (UHMWPE) fibers, apart from possessing radiation shielding properties by the virtue of the high hydrogen content, are known for extraordinary properties. An effective radiation shielding material is the one that will offer protection from GCR and impede the secondary neutron radiations resulting from the fragmentation process. Neutrons, which result from fragmentation, do not respond to the Coulombic interaction that shield against GCR. To prevent the deleterious effects of secondary neutrons, targets such as Gadolinium are required. In this paper, the radiation shielding studies that were carried out on the fabricated sandwich panels by vacuum-assisted resin transfer molding (VARTM) process are presented. VARTM is a manufacturing process used for making large composite structures by infusing resin into base materials formed with woven fabric or fiber using vacuum pressure. Using the VARTM process, the hybridization of Epoxy/UHMWPE composites with Gadolinium nanoparticles, Boron, and Boron carbide nanoparticles in the form of sandwich panels were successfully carried out. The preliminary results from neutron radiation tests show that greater than 99% shielding performance was

  10. Aspect of use of ultrahigh molecular weight polyethylene (uhmwpe) as biomaterial and as armour material (abstract)

    International Nuclear Information System (INIS)

    Fuzail, M.

    2011-01-01

    Among the known polymeric materials, ultrahigh molecular weight polyethylene (UHMWPE) has unique properties as a biomaterial as well as armour material. Its high strength and very high modulus makes it an alternate candidate as body armour for example bullet proof vest. The drawn fibers from this material are best known for their break strength and compete with the steel and carbon fibers. On the other hand, its extremely high molar mass imparts outstanding wear resistance and impact toughness better than any other polymer which makes it a better choice as biomaterial used in hip and knee transplants. As a biomaterial, when body transplants are gamma sterilized, their shelf life depends upon the number and nature of free radicals produced during sterilization. These long-lived radicals ultimately affect the wear properties of hip and knee transplants. The Electron Spin Resonance (ESR) technique used to determine the concentration and nature of free radicals in about 16 years old powder, fibers and ram-extruded bar samples shows that at low microwave power (0.01 mW), polyenyl radicals become prominent while at high microwave power (160 mW), oxygen-centered radicals show their identity. The ESR study also exhibits that the concentration of free radicals depends upon the crystallinities of different morphologies known i.e powder, extruded bars and drawn fibers. Differential scanning calorimetry shows the order of crystallinity as: fiber > extruded bars > powder. (author)

  11. Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder. Part II: Thermal, FTIR and morphological characterisation

    Science.gov (United States)

    Aydınlı, Bahattin; Tin c̡er, Teoman

    2001-10-01

    Radiation induced grafted polyacrylic acid (PAA), polymethacrylic acid (PMAA), polyacrylamide (PAAm), poly N,N-dimethyl acrylamide (PNDAAm) and poly 1-vinyl-2 pyrrolidone (PVP) on ultra-high molecular weight polyethylene (UHMWPE) were characterised by DSC, FTIR and SEM analysis. While the effect of irradiation on pure UHMWPE was found to increase crystallinity and cause higher enthalpy of crystallisation, grafted UHMWPE powders showed lower crystallinity and enthalpy of crystallisation. In all grafted UHMWPE there existed secondary transitions corresponding to grafting polymers in the first run of DSC above 60°C and they became clearer at a higher grafting level. In the second run of DSC some Tg values appeared to shift to higher temperatures while some were not detected. FTIR analysis indicated the presence of water-soluble polymers in the grafted UHMWPE. The characteristic peaks of water-soluble polymers became sharper in the grafted UHMWPE. SEM analysis revealed that the grafting occurs both on fiber and microparticles of UHMWPE while flowing characteristic of powder is retained.

  12. New titanium and titanium/hydroxyapatite coatings on ultra-high-molecular-weight polyethylene-in vitro osteoblastic performance

    International Nuclear Information System (INIS)

    Silva, M A; Lopes, M A; Santos, J D; Fernandes, M H; Gomes, P S; Vila, M; Silva, R F

    2010-01-01

    The development of optimized hip joint materials is one of the most challenging opportunities in prosthetic technologies. In current approaches, ultra-high-molecular-weight polyethylene (UHMWPE) has been a favorite material for the acetabular component and, regarding the cementless technique, several coating options may be considered to contain and stabilize bearing surfaces and establish an improved interface with bone. In this work, newly developed constructs of UHMWPE coated with either commercially pure titanium (cpTi-UHMWPE), by DC magnetron sputtering, or with commercially pure titanium and hydroxyapatite (cpTi/HA-UHMWPE), by DC/RF magnetron co-sputtering, have been prepared and biologically characterized with human bone marrow-derived osteoblastic cultures. The cpTi-UHMWPE samples allowed a high cell growth and the expression of the complete osteoblastic phenotype, with high alkaline phosphatase activity, expression of osteogenic-associated genes and evident cell-mediated mineralization of the extracellular matrix. In comparison, the cpTi/HA-UHMWPE samples reported lower cell proliferation but earlier cell-mediated matrix mineralization. Accordingly, these newly developed systems may be suitable candidates to improve the osteointegration process in arthroplastic devices; nevertheless, further biological evaluation should be conducted.

  13. Physico-chemical characterization of polyethylene of ultra high molecular weight modified with gamma irradiation and heavy ions

    International Nuclear Information System (INIS)

    Lagarde, M; Del Grosso, M; Fasce, D; Dommarco, R; Laino, S; Fasce, L.A

    2012-01-01

    The ultra high molecular weight polyethylene (UHMWPE) is a biomaterial widely used in total joint replacement. In this work, the effect of two different irradiation techniques on UHMWPE is analyzed. One technique involves gamma irradiation (γ) followed by a thermal treatment, thus modifying the material bulk. The other implies swift heavy ion irradiation (SHI), which have an effect only on the near surface layers. The surface nanomechanical properties are evaluated from depth sensing indentation experiments, while changes in crystallinity and chemical structure are determined by DSC and Raman spectroscopy. The results show that even when both techniques are able to improve the UHMWPE wear behavior, the effect on other mechanical properties and molecular structure modification is different. The γ irradiated sample exhibits lower crystallinity, hardness and modulus than the pristine UHMWPE, while the SHI irradiated sample exhibits higher crystallinity and enhanced mechanical properties than the later

  14. Ionizing radiation effect study by electron beam on ultra high molecular weight polyethylene virgin and recycled industrial

    International Nuclear Information System (INIS)

    Rosario, Salmo Cordeiro do

    2006-01-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) is an engineering plastic which has several applications, chiefly, in specific areas of the industry and medicine. UHMWPE can be even for other applications such as: port fenders, current guide, bucket coating, silos and gutters, plugs, pulleys and surgical prosthesis. This range of applications is due to the excellent technical characteristics that this material owns, such as; high resistance to wear, high resistance to impact, anti-adherence, non toxic, excellent chemical resistance, low specific weight, easy mill processing, and high resistance to fatigue. The UHMWPE type used in this work were UTEC 3041 and UTEC 6541 of the Braskem. The recycling process of UHMWPE raised much interest, because the utilization of this raw material grew over 600% in the last decade, becoming one of the most used engineering plastics for attainment of mill processed parts after polyamide. As the utilization of this polymer in the manufacturing of parts for machinery has grown, its waste is very big, because the rest of this material is thrown out, usually not being reused. The goal of this work is to recycle the UHMWPE UTEC 3041 and study the properties of this recycled and virgin material and compare the results between both with these materials submitted to different radiation dose. (author)

  15. Highly hydrophilic ultra-high molecular weight polyethylene powder and film prepared by radiation grafting of acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Honglong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Lu; Li, Rong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Pang, Lijuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Jiangtao; Wang, Mouhua [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Wu, Guozhong, E-mail: wuguozhong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-09-30

    Highlights: • Hydrophilic UHMWPE powder and film were obtained by γ-ray pre-irradiation grafting of AA. • A low concentration of AA solution was used for surface modification of UHMWPE. • A small grafting yield of AA sufficiently improved hydrophilicity of UHMWPE powder and film. - Abstract: The surface properties of ultra-high molecular weight polyethylene (UHMWPE) are very important for its use in engineering or composites. In this work, hydrophilic UHMWPE powder and film were prepared by γ-ray pre-irradiation grafting of acrylic acid (AA) and further neutralization with sodium hydroxide solution. Variations in the chemical structure, grafting yield and hydrophilicity were investigated and compared. FT-IR and XPS analysis results showed that AA was successfully grafted onto UHMWPE powder and film; the powder was more suitable for the grafting reaction in 1 wt% AA solution than the film. Given a dose of 300 kGy, the grafting yield of AA was ∼5.7% for the powder but ∼0.8% for the film under identical conditions. Radiation grafting of a small amount of AA significantly improved the hydrophilicity of UHMWPE. The water contact angle of the UHMWPE-g-PAA powder with a grafting yield of AA at ∼5.7% decreased from 110.2° to 68.2°. Moreover, the grafting powder (UHMWPE-g-PAA) exhibited good dispersion ability in water.

  16. Characterization and Accelerated Ageing of UHMWPE Used in Orthopedic Prosthesis by Peroxide

    Science.gov (United States)

    Rocha, Magda; Mansur, Alexandra; Mansur, Herman

    2009-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been the most commonly used bearing material in total joint arthroplasty. Wear and oxidation fatigue resistance of UHMWPE are regarded as two important mechanical properties to extend the longevity of knee prostheses. Though accelerated in vitro protocols have been developed to test the relative oxidation resistance of various types of UHMWPE, its mechanism is not accurately understood yet. Thus, in the present study an accelerated ageing of UHMWPE in hydrogen peroxide solution was performed and relative oxidation was extensively characterized by Fourier Transformed Infrared Spectroscopy (FTIR) spectroscopy and the morphological changes were analyzed by Scanning Electron Microscopy (SEM). Different chemical groups of UHMWPE associated with the degradation reaction were monitored for over 120 days in order to evaluate the possible oxidation mechanism(s) which may have occurred. The results have provided strong evidence that the oxidation mechanism is rather complex, and two stages with their own particular first-order kinetics reaction patterns have been clearly identified. Furthermore, hydrogen peroxide has proven to be an efficient oxidative medium to accelerate ageing of UHMWPE.

  17. Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder. Part II: Thermal, FTIR and morphological characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Aydinli, Bahattin; Tincer, Teoman E-mail: teotin@metu.edu.tr

    2001-10-01

    Radiation induced grafted polyacrylic acid (PAA), polymethacrylic acid (PMAA), polyacrylamide (PAAm), poly N,N-dimethyl acrylamide (PNDAAm) and poly 1-vinyl-2 pyrrolidone (PVP) on ultra-high molecular weight polyethylene (UHMWPE) were characterised by DSC, FTIR and SEM analysis. While the effect of irradiation on pure UHMWPE was found to increase crystallinity and cause higher enthalpy of crystallisation, grafted UHMWPE powders showed lower crystallinity and enthalpy of crystallisation. In all grafted UHMWPE there existed secondary transitions corresponding to grafting polymers in the first run of DSC above 60 deg. C and they became clearer at a higher grafting level. In the second run of DSC some T{sub g} values appeared to shift to higher temperatures while some were not detected. FTIR analysis indicated the presence of water-soluble polymers in the grafted UHMWPE. The characteristic peaks of water-soluble polymers became sharper in the grafted UHMWPE. SEM analysis revealed that the grafting occurs both on fiber and microparticles of UHMWPE while flowing characteristic of powder is retained.

  18. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Energy Technology Data Exchange (ETDEWEB)

    Delle Side, D., E-mail: domenico.delleside@le.infn.it [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Nassisi, V.; Giuffreda, E.; Velardi, L. [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Alifano, P.; Talà, A.; Tredici, S.M. [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy)

    2014-07-15

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  19. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Science.gov (United States)

    Delle Side, D.; Nassisi, V.; Giuffreda, E.; Velardi, L.; Alifano, P.; Talà, A.; Tredici, S. M.

    2014-07-01

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  20. Enhancement of Compatibility between Ultrahigh-Molecular-Weight Polyethylene Particles and Butadiene.Nitrile Rubber Matrix with Nanoscale Ceramic Particles and Characterization of Evolving Layer

    International Nuclear Information System (INIS)

    Shadrinov, Nikolay V.; Sokolova, Marina D.; Cho, Jinho; Okhlopkova, A. A.; Lee, Jungkeun; Jeong, Daeyong

    2013-01-01

    This article examines the modification of surface properties of ultrahigh-molecular-weight polyethylene (UHMWPE) with nanoscale ceramic particles to fabricate an improved composite with butadiene.nitrile rubber (BNR). Adhesion force data showed that ceramic zeolite particles on the surface of UHMWPE modulated the surface state of the polymer and increased its compatibility with BNR. Atomic force microscopy phase images showed that UHMWPE made up the microphase around the zeolite particles and formed the evolving layer with a complex interface. The complex interface resulted in improvements in the mechanical properties of the composite, especially its low-temperature resistance coefficients, thereby improving its performance in low-temperature applications

  1. Mechanical properties of HDPE/UHMWPE blends: effect of filler loading and filler treatment.

    Science.gov (United States)

    Lai, K L K; Roziyanna, A; Ogunniyi, D S; Zainal, Arifin M I; Azlan, Ariffin A

    2004-05-01

    Various blend ratios of high-density polyethylene (HDPE) and ultra high molecular weight polyethylene (UHMWPE) were prepared with the objective of determining their suitability as biomaterials. In the unfilled state, a blend of 50/50 (HDPE/UHMWPE) ratio by weight was found to yield optimum properties in terms of processability and mechanical properties. Hydroxyapatite (HA) was compounded with the optimum blend ratio. The effects of HA loading, varied from 0 to 50wt% for both filled and unfilled blends were tested for mechanical properties. It was found that the inclusion of HA in the blend led to a remarkable improvement of mechanical properties compared to the unfilled blend. In order to improve the bonding between the polymer blend and the filler, the HA used was chemically treated with a coupling agent known as 3-(trimethoxysiyl) propyl methacrylate and the treated HA was mixed into the blend. The effect of mixing the blend with silane-treated HA also led to an overall improvement of mechanical properties.

  2. ESR Study of PE, HDPE and UHMWPE Irradiated with Ion Beams and Neutrons

    International Nuclear Information System (INIS)

    Reyes-Romero, J.

    2006-01-01

    We report the Electron Spin Resonance (RES) studies on the effects produced by bombarding with accelerated Sulfur ions, Protons and Neutrons on the Polyethylene, PE, (Hostalen and Romanian), ultra-high molecular weight polyethylene, UHMWPE, ( GUR 1050, medical grade Lennite), and high density polyethylene, HDPE, (HDPE-7000F, Polinter de Venezuela, PDVSA). The resonance spectra have been recorded using a Varian E-line-X ESR spectrometer at 100 KHz modulation frequency. In thin films of Polyethylene (Hostalen and UHMWPE) have been irradiated with Sulfur ions, S, accelerated at about 7 MeV/nucleons, and Protons at about 5 MeV/nucleons (IFIN, Romania). Samples of Polyethylene ( HDPE 7000-F) were irradiate with neutrons from a Pu-Be source (flux of 1.19 x 10 6 n/s. cm 2 , 5.65 MeV, IVIC, Venezuela) from 0 to 8 hours in the presence of air and at room temperature (RT). The ESR measurements were performed after a storage time of about 7 months, in air at room temperature. The nature of the free radicals induced by irradiation as well as the dependence of resonance line, resonance line shape and radicals concentration has been studied

  3. The effect of roughness on the tribological behavior of the prosthetic pair UHMWPE/TiN-coated stainless steel.

    Science.gov (United States)

    Gispert, M P; Serro, A P; Colaço, R; Pires, E; Saramago, B

    2008-01-01

    The effect of roughness on the tribological behavior of the prosthetic pair ultra high molecular weight polyethylene (UHMWPE)/TiN coated stainless steel was investigated. Standard and polished TiN coated stainless steel pins were tested against either standard or smooth UHMWPE disks. Hanks' Balanced Salt Solution (HBSS) and bovine serum albumin (BSA) solution in HBSS were used as lubricants. Friction and wear were determined using a pin-on-disk apparatus and the wear mechanisms were investigated through optical microscopy, scanning electron microscopy, and atomic force microscopy. The results showed that the decrease in the roughness led to a reduction of the friction coefficient and of the wear rate of UHMWPE. However, the most important effect was achieved through the decrease in the roughness of the hard TiN counterface while keeping the standard UHMWPE surface. If BSA was added to HBSS, a strong decrease of both the friction coefficient and the polymeric wear was observed independently of the roughness of both the TiN and the polyethylene surfaces. Abrasive and fatigue wear mechanisms are proposed to interpret the experimental results.

  4. The Influence of Irradiation and Accelerated Aging on the Mechanical and Tribological Properties of the Graphene Oxide/Ultra-High-Molecular-Weight Polyethylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Guodong Huang

    2016-01-01

    Full Text Available Graphene oxide/ultra-high-molecular-weight polyethylene (GO/UHMWPE nanocomposite is a potential and promising candidate for artificial joint applications. However, after irradiation and accelerated aging, the mechanical and tribological behaviors of the nanocomposites are still unclear and require further investigation. GO/UHMWPE nanocomposites were successfully fabricated using ultrasonication dispersion, ball-milling, and hot-pressing process. Then, the nanocomposites were irradiated by gamma ray at doses of 100 kGy. Finally, GO/UHMWPE nanocomposites underwent accelerated aging at 80°C for 21 days in air. The mechanical and tribological properties of GO/UHMWPE nanocomposites have been evaluated after irradiation and accelerated aging. The results indicated that the incorporation of GO could enhance the mechanical, wear, and antiscratch properties of UHMWPE. After irradiation, these properties could be further enhanced, compared to unirradiated ones. After accelerated aging, however, these properties have been significantly reduced when compared to unirradiated ones. Moreover, GO and irradiation can synergistically enhance these properties.

  5. Modeling and experiments on ballistic impact into UHMWPE yarns using flat and saddle-nosed projectiles

    NARCIS (Netherlands)

    Phoenix, S.L.; Heisserer, U.; Werff, H. van der; Jagt-Deutekom , M.J. van der

    2017-01-01

    Yarn shooting experiments were conducted to determine the ballistically-relevant, Young’s modulus and tensile strength of ultra-high molecular weight polyethylene (UHMWPE) fiber. Target specimens were Dyneema® SK76 yarns (1760 dtex), twisted to 40 turns/m, and initially tensioned to stresses ranging

  6. Cross-linked polyethylene does not reduce wear in total knee arthroplasty.

    Science.gov (United States)

    Lasurt-Bachs, S; Torner, P; Maculé, F; Prats, E; Menéndez-García, F; Ríos-Guillermo, J; Torrents, A

    To compare two different types of inserts: Ultra-high molecular weight polyethylene (UHMWPE) and cross-linked polyethylene with a quantitative and qualitative study of polyethylene wear particles in synovial fluid 3 years after total knee arthroplasty. A prospective, randomized, controlled cohort study with blinded evaluation was carried out on 25 patients undergoing staged bilateral total knee replacement, 6 months apart. Knee arthrocentesis was performed on 12 patients 3 years after surgery, and the polyethylene particles were analyzed. No significant differences were found in the number of particles generated by the two different types of inserts at 3 years from total knee arthroplasty (3,000×: x¯ cross-linked=849.7; x¯ UHMWPE=796.9; P=.63; 20,000×: x¯ cross-linked=66.3; x¯ UHMWPE=73.1; P=.76). Likewise, no differences in the probability of finding elongated (χ 2 =0.19; P=.66) or rounded (χ 2 =1.44; P=.23) particles in both types of inserts were observed. However, the probability of finding fibrillar particles is 3.08 times greater in UHMWPE. Cross-linked polyethylene does not significantly reduce the generation of polyethylene particles in patients with total knee arthroplasty, 3 years after the surgical procedure. Copyright © 2018 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Photoluminescence of ultra-high molecular weight polyethylene modified by fast atom bombardment

    International Nuclear Information System (INIS)

    Toth, S.; Fuele, M.; Veres, M.; Pocsik, I.; Koos, M.; Toth, A.; Ujvari, T.; Bertoti, I.

    2006-01-01

    An increase in the application potential of the ultra-high molecular weight polyethylene (UHMWPE) may be achieved by producing a hard, wear resistant carbonaceous modified surface layer on it. In this study the surface of UHMWPE samples was treated by 1 keV N, H and He fast atom bombardment (FAB) to obtain amorphous carbon surface layer which produces an enhancement of microhardness. The untreated and FAB-modified samples were investigated by photoluminescence, infrared, Raman and optical absorption spectroscopy. The FAB-treatment caused a nearly complete disappearance of the characteristic luminescence bands of UHMWPE (at 335, 351, 363 and 381 nm), the appearance of new bands at 459 and 495 nm due to the formation of new recombination levels in the FAB-treated samples. The remarkable decrease in integrated luminescence intensity indicates the appearance of new non-radiative recombination levels caused by FAB treatment. Structural modifications in FAB treated samples result in the development of structural arrangement containing sp 2 bonded carbon sites in rings or chains of different sizes and the electronic levels corresponding to these structural elements are situated in the forbidden gap in the electronic density of states which brings forth the observed changes of the photoluminescence properties

  8. Surface modification of UHMWPE with infrared femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Pradas, J.M., E-mail: jmfernandez@ub.edu [Departament de Fisica Aplicada i Optica, Universitat de Barcelona Marti i Franques 1, E-08028 Barcelona (Spain); Naranjo-Leon, S.; Morenza, J.L.; Serra, P. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona Marti i Franques 1, E-08028 Barcelona (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Ultra High Molecular Weight Polyethylene surface was modified with femtosecond laser pulses at 1027 nm wavelength. Black-Right-Pointing-Pointer Surface roughness is increased. Black-Right-Pointing-Pointer Ablation efficiency is maximum for 6 {mu}J pulses. Black-Right-Pointing-Pointer Irradiated surfaces remain almost chemically unaltered. - Abstract: Ultra-high-molecular-weight polyethylene (UHMWPE) is a polymer with mechanical and corrosion properties, which make it appropriate for using in biomedical devices such as hip and knee prostheses. The surface morphology and chemistry of UHMWPE influence its biocompatibility. A laser with wavelength at 1027 nm delivering 450 fs pulses at a repetition rate of 1 kHz is used to modify the surface of UHMWPE samples with 0.45 {mu}m root mean square surface roughness. Micrometric resolution is achieved with the use of a focusing lens of 0.25 NA and pulse energies of few microjoules. The study focuses in the influence of different pulse energies and pulse overlaps on the laser-induced surface roughness and ablation yield. Confocal microscopy is used to characterize changes in the morphology of the irradiated surfaces, and their chemical structure is analyzed by attenuated total reflectance infrared and Raman spectroscopies. The roughness increases as the pulse energy increases until it reaches a maximum. The ablation yield increases with the pulse energy and pulse overlap. However, the ablation yield per pulse is lower for higher pulse overlap. Pulses of 6 {mu}J have the highest ablation efficiency. Infrared and Raman spectra of samples irradiated with low energy pulses are similar to those of the pristine sample. However, some C=C and C=O bonds can be detected after irradiation with the highest pulse energies.

  9. Wear tests in a hip joint simulator of different CoCrMo counterfaces on UHMWPE

    International Nuclear Information System (INIS)

    Gonzalez-Mora, V.A.; Hoffmann, M.; Stroosnijder, R.; Gil, F.J.

    2009-01-01

    The objective in this work was to study the effect of different material counterfaces on the Ultra High Molecular Weight Polyethylene (UHMWPE) wear behavior. The materials used as counterfaces were based on CoCrMo: forged with hand polished and mass finished, CoCrMo coating applied on the forged CoCrMo alloy obtained by Physical Vapour Deposition (PVD). A hip joint simulator was designed and built for these studies. The worn surfaces were observed by optical and scanning electron microscopy. The results showed that the hand polished CoCrMo alloy caused the higher UHMWPE wear of the acetabular cups. The CoCrMo coating caused the least UHMWPE wear, while the mass finished CoCrMo alloy caused an intermediate UHMWPE wear. It is shown that the wear rates obtained in this work are closer to clinical studies than to similar hip joints simulator studies

  10. Properties of crosslinked ultra-high-molecular-weight polyethylene.

    Science.gov (United States)

    Lewis, G

    2001-02-01

    Substantially reducing the rate of generation of wear particles at the surfaces of ultra-high-molecular-weight polyethylene (UHMWPE) orthopedic implant bearing components, in vivo, is widely regarded as one of the most formidable challenges in modern arthroplasty. In the light of this, much research attention has been paid to the myriad of endogenous and exogenous factors that have been postulated to affect this wear rate, one such factor being the polymer itself. In recent years, there has been a resurgence of interest in crosslinking the polymer as a way of improving its properties that are considered relevant to its use for fabricating bearing components. Such properties include wear resistance, fatigue life, and fatigue crack propagation rate. Although a large volume of literature exists on the topic on the impact of crosslinking on the properties of UHMWPE, no critical appraisal of this literature has been published. This is one of the goals of the present article, which emphasizes three aspects. The first is the trade-off between improvement in wear resistance and depreciation in other mechanical and physical properties. The second aspect is the presentation of a method of estimating the optimal value of a crosslinking process variable (such as dose in radiation-induced crosslinking) that takes into account this trade-off. The third aspect is the description of a collection of under- and unexplored research areas in the field of crosslinked UHMWPE, such as the role of starting resin on the properties of the crosslinked polymer, and the in vitro evaluation of the wear rate of crosslinked tibial inserts and other bearing components that, in vivo, are subjected to nearly unidirectional motion.

  11. Wear of ultra-high molecular weight polyethylene against damaged and undamaged stainless steel and diamond-like carbon-coated counterfaces.

    Science.gov (United States)

    Firkins, P; Hailey, J L; Fisher, J; Lettington, A H; Butter, R

    1998-10-01

    The wear of ultra-high molecular weight polyethylene (UHMWPE) in artificial joints and the resulting wear debris-induced osteolysis remains a major clinical concern in the orthopaedic sector. Third-body damage of metallic femoral heads is often cited as a cause of accelerated polyethylene wear, and the use of ceramic femoral heads in the hip is gaining increasing favour. In the knee prostheses and for smaller diameter femoral heads, the application of hard surface coatings, such as diamond-like carbon, is receiving considerable attention. However, to date, there has been little or no investigation of the tribology of these coatings in simulated biological environments. In this study, diamond-like carbon (DLC) has been compared to stainless steel in its undamaged form and following simulated third-body damage. The wear of UHMWPE was found to be similar when sliding against undamaged DLC and stainless steel counterfaces. DLC was found to be much more damage resistant than DLC. Under test conditions that simulate third-body damage to the femoral head, the wear of UHMWPE was seven times lower against DLC than against stainless steel (P < 0.05). The study shows DLC has considerable potential as a femoral bearing surface in artificial joints.

  12. Continuous Plasma Treatment of Ultra-High-Molecular-Weight Polyethylene (UHMWPE) Fibres for Adhesion Improvement

    DEFF Research Database (Denmark)

    Teodoru, Steluta; Kusano, Yukihiro; Rozlosnik, Noemi

    2009-01-01

    A dielectric barrier discharge in Ar, He, He/O2, N2 or O2 at atmospheric pressure was used for the continuous plasma treatment of UHMWPE fibres. The influence of the input power of the discharge and the gas flow rate on surface modification is studied with the aim of adhesion improvement. Surface...

  13. Investigation of Plasma Eects in Ultra High Molecular Weight Polyethylene (UHMWPE) Cords

    DEFF Research Database (Denmark)

    Teodoru, Steluta; Kusano, Yukihiro; Rozlosnik, Noemi

    modication for improved wetting and/or adhesion with other polymeric materials. Atmospheric pressure plasma treatment is promising for this purpose due to its environmental compatibility, high treatment eects without aecting the textural characteristics of the bulk material, its applicability to a variety...... of shapes, and easy up-scaling and construction of in-line production processes. An atmospheric pressure dielectric barrier discharge (DBD) plasma is used to study surface modication eect on UHMWPE cords, operated at a frequency of ca. 40 kHz in He, He/O2, O2 and N2 gases. The cords were continuously...

  14. Oxidation resistant peroxide cross-linked UHMWPE produced by blending and surface diffusion

    International Nuclear Information System (INIS)

    Gul, Rizwan M; Oral, Ebru; Muratoglu, Orhun K

    2014-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been widely used as acetabular cup in total hip replacement (THR) and tibial component in total knee replacement (TKR). Crosslinking of UHMWPE has been successful used to improve its wear performance leading to longer life of orthopedic implants. Crosslinking can be performed by radiation or organic peroxides. Peroxide crosslinking is a convenient process as it does not require specialized equipment and the level of crosslinking can be manipulated by changing the amount of peroxide added. However, there is concern about the long-term stability of these materials due to possible presence of by-products. Vitamin E has been successfully used to promote long-term oxidative stability of UHMWPE. In this study, UHMWPE has been crosslinked using organic peroxide in the presence of Vitamin E to produce an oxidation resistant peroxide crosslinked material. Crosslinking was performed both in bulk by mixing peroxide and resin, and only on the surface using diffusion of peroxides.The results show that UHMWPE can be crosslinked using organic peroxides in the presence of vitamin E by both methods. However, the level of crosslinking decreases with the increase in vitamin E content. The wear resistance increases with the increase in crosslink density, and oxidation resistance significantly increases due to the presence of vitamin E

  15. Oxidation resistant peroxide cross-linked UHMWPE produced by blending and surface diffusion

    International Nuclear Information System (INIS)

    Gul, R. M.; Oral, E.; Muratoglu, O. K.

    2013-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been widely used as acetabular cup in total hip replacement (THR) and tibial component in total knee replacement (TKR). Crosslinking of UHMWPE has been successful used to improve its wear performance leading to longer life of orthopedic implants. Crosslinking can be performed by radiation or organic peroxides. Peroxide crosslinking is a convenient process as it does not require specialized equipment and the level of crosslinking can be manipulated by changing the amount of peroxide added. However, there is concern about the long-term stability of these materials due to possible presence of by-products. Vitamin E has been successfully used to promote long-term oxidative stability of UHMWPE. In this study, UHMWPE has been crosslinked using organic peroxide in the presence of Vitamin E to produce an oxidation resistant peroxide crosslinked material. Crosslinking was performed both in bulk by mixing peroxide and resin, and only on the surface using diffusion of peroxides.The results show that UHMWPE can be crosslinked using organic peroxides in the presence of vitamin E by both methods. However, the level of crosslinking decreases with the increase in vitamin E content. The wear resistance increases with the increase in crosslink density, and oxidation resistance significantly increases due to the presence of vitamin E. (author)

  16. Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening

    International Nuclear Information System (INIS)

    Gu, Zhipeng; Huang, Bingxue; Li, Yiwen; Tian, Meng; Li, Li; Yu, Xixun

    2016-01-01

    To enhance implant stability and prolong the service life of artificial joint component, a new approach was proposed to improve the wear resistance of artificial joint component and endow artificial joint component with the biological efficacy of resistance to aseptic loosening. Strontium calcium polyphosphate (SCPP) were interfused in ultrahigh molecular weight polyethylene (UHMWPE) by a combination of liquid nitrogen ball-milling and flat-panel curing process to prepare the SCPP/UHMWPE composites. The micro-structure, mechanical characterization, tribological characterization and bioactivities of various SCPP/UHMWPE composites were investigated. The results suggested that this method could statistically improve the wear resistance of UHMWPE resulting from a good SCPP particle dispersion. Moreover, it is also observed that the SCPP/UHMWPE composites-wear particles could promote the production of OPG by osteoblasts and decrease the production of RANKL by osteoblasts, and then increase the OPG/RANKL ratio. This indicated that the SCPP/UHMWPE composites had potential efficacy to prevent and treat aseptic loosening. Above all, the SCPP/UHMWPE composites with a suitable SCPP content would be the promising materials for fabricating artificial joint component with ability to resist aseptic loosening. - Highlights: • SCPP/UHMWPE composites could enhance biological efficacy of resistance to aseptic loosening. • SCPP would improve biological efficacy with a few sacrifice of wear resistance. • The results might provide a promising wear-resistant material for fabricating acetabular cup.

  17. Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhipeng [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041 (China); Huang, Bingxue; Li, Yiwen [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Tian, Meng [Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041 (China); Li, Li [Department of Oncology, the 452 Hospital of Chinese PLA, Chengdu 610021 (China); Yu, Xixun, E-mail: yuxixun@163.com [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2016-04-01

    To enhance implant stability and prolong the service life of artificial joint component, a new approach was proposed to improve the wear resistance of artificial joint component and endow artificial joint component with the biological efficacy of resistance to aseptic loosening. Strontium calcium polyphosphate (SCPP) were interfused in ultrahigh molecular weight polyethylene (UHMWPE) by a combination of liquid nitrogen ball-milling and flat-panel curing process to prepare the SCPP/UHMWPE composites. The micro-structure, mechanical characterization, tribological characterization and bioactivities of various SCPP/UHMWPE composites were investigated. The results suggested that this method could statistically improve the wear resistance of UHMWPE resulting from a good SCPP particle dispersion. Moreover, it is also observed that the SCPP/UHMWPE composites-wear particles could promote the production of OPG by osteoblasts and decrease the production of RANKL by osteoblasts, and then increase the OPG/RANKL ratio. This indicated that the SCPP/UHMWPE composites had potential efficacy to prevent and treat aseptic loosening. Above all, the SCPP/UHMWPE composites with a suitable SCPP content would be the promising materials for fabricating artificial joint component with ability to resist aseptic loosening. - Highlights: • SCPP/UHMWPE composites could enhance biological efficacy of resistance to aseptic loosening. • SCPP would improve biological efficacy with a few sacrifice of wear resistance. • The results might provide a promising wear-resistant material for fabricating acetabular cup.

  18. Study the effect of surface texturing on the stress distribution of UHMWPE as a bearing material during rolling motion

    NARCIS (Netherlands)

    Jamari, J.; Ismail, R.; Anwar, I.B.; Saputra, E.; Tauviqirrahman, M.; Heide, E. van der

    2016-01-01

    Tribological properties of materials used in biomedical implants will critically affect the performance of the implant. Ultra-high molecular weight polyethylene (UHMWPE) material is popular due to its great properties. Surface texturing is one of the methods to minimize friction and wear. In this

  19. Study of crosslinking onset and hydrogen annealing of ultra-high molecular weight polyethylene irradiated with high-energy protons

    Science.gov (United States)

    Wilson, John Ford

    1997-09-01

    Ultra high molecular weight polyethylene (UHMW-PE) is used extensively in hip and knee endoprostheses. Radiation damage from the sterilization of these endoprostheses prior to surgical insertion results in polymer crosslinking and decreased oxidative stability. The motivation for this study was to determine if UHMW-PE could be crosslinked by low dose proton irradiation with minimal radiation damage and its subsequent deleterious effects. I found that low dose proton irradiation and post irradiation hydrogen annealing did crosslink UHMW-PE and limit post irradiation oxidation. Crosslinking onset was investigated for UHMW-PE irradiated with 2.6 and 30 MeV H+ ions at low doses from 5.7 × 1011-2.3 × 1014 ions/cm2. Crosslinking was determined from gel permeation chromatography (GPC) of 1,2,4 trichlorobenzene sol fractions and increased with dose. Fourier transform infrared spectroscopy (FTIR) showed irradiation resulted in increased free radicals confirmed from increased carbonyl groups. Radiation damage, especially at the highest doses observed, also showed up in carbon double bonds and increased methyl end groups. Hydrogen annealing after ion irradiation resulted in 40- 50% decrease in FTIR absorption associated with carbonyl. The hydrogen annealing prevented further oxidation after aging for 1024 hours at 80oC. Hydrogen annealing was successful in healing radiation damage through reacting with the free radicals generated during proton irradiation. Polyethylenes, polyesters, and polyamides are used in diverse applications by the medical profession in the treatment of orthopedic impairments and cardiovascular disease and for neural implants. These artificial implants are sterilized with gamma irradiation prior to surgery and the resulting radiation damage can lead to accelerated deterioration of the implant properties. The findings in this study will greatly impact the continued use of these materials through the elimination of many problems associated with radiation

  20. Effect of gamma irradiation on the friction and wear of ultrahigh molecular weight polyethylene

    Science.gov (United States)

    Jones, W. R.; Hady, W. F.; Crugnola, A.

    1981-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against stainless steel 316L in dry air at 23 C is investigated, the results to be used in the development of artificial joints which are to surgically replace diseased human joints. A pin-on-disk sliding friction apparatus is used, a constant sliding speed in the range 0.061-0.27 m/s is maintained, a normal load of 1 kgf is applied with dead weight, and the irradiation dose levels are: 0, 2.5, and 5.0 Mrad. Wear and friction data and conditions for each of the ten tests are summarized, and include: (1) wear volume as a function of the sliding distance for the irradiation levels, (2) incremental wear rate, and (3) coefficient of friction as a function of the sliding distance. It is shown that (1) the friction and wear properties of UHMWPE are not significantly changed by the irradiation doses of 2.5 and 5.0 Mrad, (2) the irradiation increases the amount of insoluble gel as well as the amount of low molecular weight material, and (3) after run-in the wear rate is either steady or gradually decreases as a function of the sliding distance.

  1. Photodegradation of UHMWPE filled with iron ore fine

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Frederick Louis Dias de; Sousa, Alexandre Rangel de, E-mail: rangel@deii.cefetmg.br [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil). Departamento de Engenharia de Materiais; Medeiros, Felipe da Silva; Silva, Glaura Goulart [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Quimica; Rabello, Marcelo Silveira [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2017-03-15

    Ultra high molecular weight polyethylene (UHMWPE) is one of the most important engineering materials owing to outstanding properties like impact strength and abrasion resistance. However, the relatively low Young's modulus restricts some application and the use of fillers may be a suitable way to overcome this. The fillers can influence the photo stabilization of the compound, as it occurs to other polymers. Neat UHMWPE and its composites with 1 and 10% of iron ore fine were exposed to ultraviolet radiation for up to 33 days and then tested for mechanical properties. The stress-strain behaviour changed with degradation, with an evident necking and strain hardening region that was not observed before exposure, due to a reduction in entanglements density. From the tensile results, the filler may have a protection action against UV, particularly when a loading of 10% was present. Complementary analyses were performed, including X-ray diffraction, DSC and SEM. (author)

  2. Wear-testing of a temporomandibular joint prosthesis : UHMWPE and PTFE against a metal ball, in water and in serum

    NARCIS (Netherlands)

    Van Loon, JP; Verkerke, GJ; de Bont, LGM; Liem, RSB

    For a temporomandibular joint prosthesis, an estimation of the wear rate was needed, prior to patient application. Therefore, we determined the in vitro wear rate of the ball-socket articulation of this prosthesis, consisting of a metal head and an ultra-high molecular weight polyethylene (UHMWPE)

  3. Lifetime of Macroradicals in UHMWPE Irradiated with Electron Beam

    International Nuclear Information System (INIS)

    Costa, L.

    2006-01-01

    Interaction of high energy radiation with UHMWPE leads to the scission of C-C and C-H bonds both in the amorphous and in the criystalline phase, giving H radicals, macroradicals and trans vinylene double bonds. If oxygen is present, alkyl macroradicals react immediately with it and the oxidation chain process begins. In this case the main products are hydroperoxides. In our laboratory ultra high molecular weight polyethylene (medical grade GUR 1050) has been irradiated with electron beam in vacuum and in presence of oxygen at room temperature. Electron beam irradiation has been considered in order to neglect irradiation time, that is shorter (maximum 2 minutes) than gamma irradiation time and negligible compared to the following observation time. UHMWPE irradiated has been examined with two different techniques, FTIR and EPR spectroscopy. Micro FTIR Spectroscopy has been carried out on UHMWPE to evaluate hydroperoxide concentration in samples irradiated in presence of oxygen. Hydroperoxides and their distribution inside samples can be observed very well with FTIR microscopy after a derivatization process (with NO). The obtained hydroperoxide profile decreases when distance from the outer surface increases till it achieves a plateau. The first decrease can be attributed to macroradicals reaction with oxygen, that can diffuse only in the amorphous phase. Value obtained in the centre of block is correlated only with oxygen dissolved in UHMWPE before irradiation. If radicals live for some hours, oxygen can diffuse into UHMWPE during the macroradicals lifetime and the hydroperoxides profile is a curve similar to that obtained. Comparing the oxygen diffusion curve, calculated in the function of Fick's law, with the hydroperoxide profile, we have obtained a good agreement when oxygen diffusion is calculated over two hours. This means that the macroradicals must survive at least for two hours in the amorphous phase. EPR Spectroscopy was undertaken to explore the nature of

  4. Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials.

    Science.gov (United States)

    Pino, M; Stingelin, N; Tanner, K E

    2008-11-01

    The skirt of an artificial cornea must integrate the implant to the host sclera, a major failure of present devices. Thus, it is highly desirable to encourage the metabolic activity of the cornea by using more bioactive, flexible skirt materials. Here we describe attempts to increase the bioactivity of polyether ether ketone (PEEK), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE) films. The effectiveness of different strength NaOH pre-treatments to initiate apatite deposition on PEEK, HDPE and UHMWPE is investigated. We find that exposure of PEEK, HDPE and UHMWPE films to NaOH solutions induces the formation of potential nuclei for apatite (calcium phosphate), from which the growth of an apatite coating is stimulated when subsequently immersing the polymer films in 1.5 strength Simulated Body Fluid (SBF). As immersion time in SBF increases, further nucleation and growth produces a thicker and more compact apatite coating that can be expected to be highly bioactive. Interestingly, the apatite growth is found to also be dependent on both the concentration of NaOH solution and the structure of the polymer surface.

  5. Macroradical reaction in ultra-high molecular weight polyethylene in the presence of vitamin E

    International Nuclear Information System (INIS)

    Jahan, M.S.; Walters, B.M.

    2011-01-01

    Free radical measurements in compression molded ultra-high molecular weight polyethylene (UHMWPE), which contained vitamin E (α-tocopherol (α-T)), was performed using electron spin resonance (ESR) technique in air at room temperature following gamma irradiation (25-32 kGy) in N 2 . The vitamin E was incorporated into one set of samples by blending UHMWPE resin with vitamin E (1 and 10 wt%), then compression molded into a solid and then irradiated. Another set of samples had vitamin E incorporated into them by diffusing vitamin E at 100 o C for 2 h after irradiation. Compared to a control (with no vitamin E), the vitamin E-containing UHMWPE (α-TPE) samples suffered a partial loss of PE radicals, but this loss only occurred during or immediately after irradiation (before exposure to air). Subsequently, when all blended samples were exposed to air, the remaining radicals in each sample decayed to the well-known OIR, R1 (- · CH-[CH=CH-] m -) and R2 ( · OCH-[CH=CH-] m -) radicals. However, because of the initial loss or partial quenching, α-TPE produced a lower concentration of OIR (measured over a four-year period), but no difference was found between 1% and 10% α-TPEs. In the diffused α-TPE, similar OIR was also found when tested after four months of post-treatment exposure to air.

  6. The influence of magnetic field on ballistic performance of aramid fibre and ultrahigh molecular weight polyethylene

    International Nuclear Information System (INIS)

    Wong, Y.C.; Ruan, D.; Sesso, M.L.

    2014-01-01

    Highlights: • Ballistic tests conducted on Kevlar and UHMWPE within a magnetic field. • Repulsion force created by opposing magnet poles reduced the impact momentum. • High speed camera images showed no perforation on Kevlar due to magnetic field. • Standoff distance between magnets has an effect on the repulsion force. - Abstract: An innovative method is introduced here whereby using two sets of arrays of rare earth magnets aligned opposite each other in order to create a repulsion force owing to the like poles when facing close to each other. Ballistic test samples of aramid fibre (Kevlar K29) and ultrahigh molecular weight polyethylene (UHMWPE) were sandwiched by two sets of opposing magnets. Ballistic test was conducted using a gas gun with a 7.62 mm diameter projectile at a velocity ranging from 160 to 220 m/s. High speed camera was used to capture the ballistics testing and it shows that the magnetic repulsion force created by the opposing rare earth magnets managed to suppress the projectile from advancing into the front face of the aramid fibre. Similarly, when magnets were used, the UHMWPE sample shows the projectile perforated through the first few sheets and finally rested on the last sheet showing partial perforation

  7. Tribological behaviors of UHMWPE composites with different counter surface morphologies

    Science.gov (United States)

    Wang, Yanzhen; Yin, Zhongwei; Li, Hulin; Gao, Gengyuan

    2017-12-01

    The influence of counter surface morphologies on hybrid glass fiber (GF) and carbon fiber (CF) filled ultrahigh molecular weight polyethylene (UHMWPE) were studied under various contact pressure and sliding speed against GCr15 steel in dry condition. The goals were to investigate the tribological behavior of GF/CF/UHMWPE composite as a kind of water lubricated journal bearing material. The friction and wear behavior of composites were examined using a pin-on-disc tribometer. The morphologies of the worn surface were examined by scanning electron microscopy (SEM) and laser 3D micro-imaging and profile measurement. Generally, the wear rate and friction coefficient of composites increase as the increment of counter surface roughness. The friction coefficient increases firstly and then decrease with an increase in sliding speed and contact pressure for counterface with Ra=0.2 and 3.5 μm, while the friction coefficient decreased for counterface with Ra=0.6 μm.

  8. Supramolecular Structure and Mechanical Characteristics of Ultrahigh-Molecular-Weight Polyethylene-Inorganic Nanoparticle Nanocomposites

    International Nuclear Information System (INIS)

    Okhlopkova, T. A.; Borisova, R. V.; Nikiforov, L. A.; Spiridonov, A. M.; Okhlopkova, A. A.; Cho, Jin-Ho; Jeong, Dae-Yong

    2016-01-01

    We investigated the mechanical properties and structure of polymeric nanocomposites (PNCs) with anultrahigh-molecular-weight polyethylene (UHMWPE) matrix and aluminum and silicon oxide and nitride nanoparticle (NP) fillers. Mixing with a paddle mixer or by joint mechanical activation in a planetary mill was used for the PNC preparation. Joint mechanical activation afforded PNCs with better mechanical properties than paddle mixing. Scanning electron microscopy suggested that the poorer mechanical properties can be attributed to the disordered regions and imperfect spherulites in the PNC supramolecular structure arising from paddle mixing. The better mechanical properties observed with joint mechanical activation may derive from the uniform NP distribution in the polymer matrix and absence of disordered regions.

  9. Investigation of properties of (U)HMW-PE under the influence of gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ehe, K. von der; Wolff, D.; Boehning, M. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany)

    2012-11-01

    High molecular weight polyethylene (HMW-PE) and ultra high molecular weight polyethylene (UHMW-PE) are high performance materials, which are predestinated for a wide range of applications due to characteristics like high chemical resistance, low wear, and high hydrogen content. In addition to the application of (U)HMW-PE as sports equipment (sliding surface of snowboards, skis) and in mechanical engineering (materials for spur gears and chain guides) these polymers are used in two other and even more demanding areas: as implant material in medical technology and as a component for neutron shielding purposes in casks for storage and transport of radioactive waste. In these two cases, gamma irradiation and its impact on the molecular structure of polyethylene play an important role. In the first case, irradiation is applied for sterilization purposes and in the second one it exists as a side-effect of inserting the radioactive material in the cask. Specifically concerning their use in the field of medical technology, different types of UHMW-PE have been intensively studied. It is generally accepted that two concurrent and competitive processes, based on initial chain scission and subsequent reactions of C-centered radicals and molecular fragments, occur in PE as a consequence of radiation: radical recombination accounts for crosslinking, together with some disproportionation, formation of low molecular weight fragments, and recrystallization. Furthermore, formation of oxygenated structures in the presence of traces of oxygen is a competitive process to those mentioned above. Radiation induced scission preferentially takes place in the amorphous phase and noncrystalline surface of the crystallites and results in shorter polymer chains, fewer entanglements, and consequently, increased molecular mobility. The latter enables folding of polymer segments and thus, crystal growth and increased perfection in the crystal lamellae. With regard to the long-term application of

  10. The effect of gamma irradiation and shelf aging in air on the oxidation of ultra-high molecular weight polyethylene

    International Nuclear Information System (INIS)

    Al-Ma'adeed, M.A.; Al-Qaradawi, I.Y.; Madi, N.; Al-Thani, N.J.

    2006-01-01

    This study has investigated the effect of shelf aging, for up to one year in air, on the properties of gamma-irradiated ultra-high molecular weight polyethylene (UHMWPE). A variety of techniques were used to characterize the properties of treated samples. Differential scanning calorimetery (DSC) was used to characterize the morphology. The extent of cross-linking in a polymer network was detected by swelling measurements. The durometer hardness test was used to measure the relative hardness of this material, and changes in density were also measured. Results from all these measurements were combined to explain the changes in the microstructure of the aged, irradiated UHMWPE. This study shows that crystallinity is increased with radiation dose and with aging due to chain scission, which leads to a reduction in the molecular weight of the material. This allows the chains to rearrange to form crystalline regions. Positron annihilation lifetime spectroscopy confirms these conclusions. Fractional free volumes have been deduced from lifetime parameters, which correlate with the data obtained by the other techniques

  11. High-Energy Impact Behaviors of Hybrid Composite Plates Strengthened with 3D-UHMWPE Composites

    Directory of Open Access Journals (Sweden)

    Sang-Youl Lee

    2018-01-01

    Full Text Available This study deals with drop-impact effects of new hybrid concrete plates strengthened with an ultrahigh molecular weight polyethylene (UHMWPE. The proposed 3D-UHMWPE results in excellent mechanical properties such as high abrasion resistance, impact strength, and low coefficient of friction. These special properties allow the product to be used in several high-performance applications. In this study, we used two kinds of high-performance materials for the impact reinforcement of a structure made of conventional materials such as a concrete. In particular, the impact mechanism of a fiber-concrete hybrid structure was studied using various parameters. The parametric studies are focused on the various effects of drop-impact on the structural performance. The combined effects of using different fiber-reinforced materials on the impact behavers are also investigated.

  12. Biomechanical testing of new meniscal repair techniques containing ultra high-molecular weight polyethylene suture.

    Science.gov (United States)

    Barber, F Alan; Herbert, Morley A; Schroeder, F Alexander; Aziz-Jacobo, Jorge; Sutker, Michael J

    2009-09-01

    To evaluate the biomechanical characteristics of current meniscal repair techniques containing ultra high-molecular weight polyethylene (UHMWPE) suture with and without cyclic loading. Vertical longitudinal cuts made in porcine menisci were secured with a single repair device. Noncycled and cycled (500 cycles) biomechanical tests were performed on the following groups: group 1, No. 2-0 Mersilene vertical suture (Ethicon, Somerville, NJ); group 2, No. 2-0 Orthocord vertical suture (DePuy Mitek, Westwood, MA); group 3, No. 0 Ultrabraid vertical suture (Smith & Nephew Endoscopy, Andover, MA); group 4, No. 2-0 FiberWire vertical suture (Arthrex, Naples, FL); group 5, vertically oriented mattress suture by use of an Ultra FasT-Fix device (Smith & Nephew Endoscopy) with No. 0 Ultrabraid; group 6, vertically oriented mattress suture by use of a RapidLoc A2 device (DePuy Mitek) with No. 2-0 Orthocord suture; group 7, vertically oriented stitch by use of a MaxFire device with MaxBraid PE suture (Biomet Sports Medicine, Warsaw, IN); and group 8, an obliquely oriented stitch of No. 0 UHMWPE suture inserted by use of a CrossFix device (Cayenne Medical, Scottsdale, AZ). Endpoints were failure loads, failure modes, stiffness, and cyclic displacement. Mean single-pull loads were calculated for Ultra FasT-Fix (121 N), FiberWire (110 N), MaxFire (130 N), Mersilene (84 N), Orthocord (124 N), RapidLoc A2 (86 N), CrossFix (77 N), and Ultrabraid (109 N). After 500 cyclic loads, the Orthocord (222 N) repair was stronger than the others: Ultra FasT-Fix (110 N), FiberWire (117 N), MaxFire (132 N), Mersilene (89 N), RapidLoc A2 (108 N), CrossFix (95 N), and Ultrabraid (126 N) (P Fix, RapidLoc A2, and MaxFire) were comparable to the isolated UHMWPE-containing suture repairs on single-failure load testing. UHMWPE-containing suture repairs are stronger than braided polyester suture repairs, but pure UHMWPE suture (Ultrabraid) elongated more during cycling. Orthocord suture is significantly

  13. Laser ablation of UHMWPE-polyethylene by 438 nm high energy pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L.; Gammino, S.; Mezzasalma, A.M.; Visco, A.M.; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Krasa, J.; Laska, L.; Pfeifer, M.; Rohlena, K.; Boody, F.P

    2004-04-15

    Pulsed laser ablation of ultra-high-molecular-weight-polyethylene (UHMWPE) is investigated at Prague Asterix Laser System (PALS) Laboratory. The high ablation yield as a function of laser energy is presented at 438 nm laser wavelength. The mechanisms of the polymer ablation are studied on the base of ''in situ'' analysis, such as mass quadrupole spectrometry and time-of-flight measurements, and ''ex situ'' analysis, such as SEM investigations and Raman spectroscopy. Results show that the laser irradiation induces a strong polymer dehydrogenation and molecular emission due to different C{sub x}H{sub y} groups having high kinetic energy and high charge state. At a laser pulse energy of 150 J the H{sup +}, C{sup n+} ions (n=1 to 6) are emitted from the plasma with velocities of the order of 10{sup 8} cm/s, while the C{sub x}H{sub y} groups and the carbon clusters, detected up to C{sub 16}, have a velocity about one or two order magnitude lower. The laser ablation process produces a deep crater in the polymer, which depth depends on the laser pulse energy and it is of the order of 500 {mu}m. The crater volume increases with the laser pulse energy. Results demonstrated that the laser radiation modifies the polymer chains because dehydrogenated material and carbon-like structures are detected in the crater walls and in the bottom of the crater, respectively. A comparison of the experimental results with the data available in literature is presented and discussed.

  14. Macroradical reaction in ultra-high molecular weight polyethylene in the presence of vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Jahan, M.S., E-mail: mjahan@memphis.ed [Department of Physics, Biomaterials Research Laboratory, University of Memphis, 216 Manning Hall, Memphis, TN 38152 (United States); Walters, B.M. [Department of Physics, Biomaterials Research Laboratory, University of Memphis, 216 Manning Hall, Memphis, TN 38152 (United States)

    2011-02-15

    Free radical measurements in compression molded ultra-high molecular weight polyethylene (UHMWPE), which contained vitamin E ({alpha}-tocopherol ({alpha}-T)), was performed using electron spin resonance (ESR) technique in air at room temperature following gamma irradiation (25-32 kGy) in N{sub 2}. The vitamin E was incorporated into one set of samples by blending UHMWPE resin with vitamin E (1 and 10 wt%), then compression molded into a solid and then irradiated. Another set of samples had vitamin E incorporated into them by diffusing vitamin E at 100 {sup o}C for 2 h after irradiation. Compared to a control (with no vitamin E), the vitamin E-containing UHMWPE ({alpha}-TPE) samples suffered a partial loss of PE radicals, but this loss only occurred during or immediately after irradiation (before exposure to air). Subsequently, when all blended samples were exposed to air, the remaining radicals in each sample decayed to the well-known OIR, R1 (-{sup {center_dot}C}H-[CH=CH-]{sub m}-) and R2 ({sup {center_dot}O}CH-[CH=CH-]{sub m}-) radicals. However, because of the initial loss or partial quenching, {alpha}-TPE produced a lower concentration of OIR (measured over a four-year period), but no difference was found between 1% and 10% {alpha}-TPEs. In the diffused {alpha}-TPE, similar OIR was also found when tested after four months of post-treatment exposure to air.

  15. Deformation and Stress Response of Carbon Nanotubes/UHMWPE Composites under Extensional-Shear Coupling Flow

    Science.gov (United States)

    Wang, Junxia; Cao, Changlin; Yu, Dingshan; Chen, Xudong

    2018-02-01

    In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.

  16. Effects of 108 Days Tritium Exposure on UHMW-PE, PTFE, and Vespel(R)

    International Nuclear Information System (INIS)

    Clark, E.A.

    2003-01-01

    Samples of three polymers, Ultra-High Molecular Weight Polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE), also known as Teflon(R), and Vespel(R) polyimide were exposed to 1 atmosphere of tritium gas at ambient temperature for 108 days. Sample mass and size measurements to calculate density, spectra-colorimetry, dynamic mechanical analysis (DMA), and Fourier-transform infrared spectroscopy (FT-IR) were employed to characterize the effects of this exposure on these samples. This technical report is the first report from this research program

  17. Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review

    Directory of Open Access Journals (Sweden)

    Pierangiola Bracco

    2017-07-01

    Full Text Available Ultra-high molecular weight polyethylene (UHMWPE is the most common bearing material in total joint arthroplasty due to its unique combination of superior mechanical properties and wear resistance over other polymers. A great deal of research in recent decades has focused on further improving its performances, in order to provide durable implants in young and active patients. From “historical”, gamma-air sterilized polyethylenes, to the so-called first and second generation of highly crosslinked materials, a variety of different formulations have progressively appeared in the market. This paper reviews the structure–properties relationship of these materials, with a particular emphasis on the in vitro and in vivo wear performances, through an analysis of the existing literature.

  18. Improvement of polyethylene by irradiation in artificial joints

    International Nuclear Information System (INIS)

    Oonishi, H.; Takayama, Y.

    1992-01-01

    The decrease in socket thickness of several total hip prostheses was measured on X-ray film. The following prostheses were compared: (1) SOM ''28 mm metal head and an ultra-high-molecular-weight-polyethylene (UHMWPE) socket irradiated with 10 8 rad of γ-radiation'', (2) T-28 ''28 mm metal head and a UHMWPE socket not irradiated'', (3) Bioceram ''28 mm alumina head and UHMWPE not irradiated'' and (4) irradiated Bioceram ''28 mm alumina head and UHMWPE socket irradiated with 10 8 rad of γ-radiation''. The average steady state wear rate of SOM, T-28, Bioceram and irradiated Bioceram were 0.076, 0.247, 0.098 and 0.072 mm/year, respectively. The weight bearing portion of the irradiated socket presented a clearly-outlined and irregular pattern of about 0.1 μm thickness having a smooth ripple surface. The scratch and holding phenomenon characteristic of non-irradiated sockets was not observed at all. In our experimental tests using an IS sliding wear test machine, the wear measured as decrease of thickness was smallest at 10 8 rad, although there was an increase in the coefficient of friction. Our experimental and clinical findings suggest that the best total hip prosthesis at present is one with an alumina head and a UHMWPE socket irradiated with 10 8 rad of γ-radiation. (author)

  19. Development and validation of the small punch test for UHMWPE used in total joint replacements

    Energy Technology Data Exchange (ETDEWEB)

    Edidin, A.A. [Drexel Univ., Philadelphia, PA (United States). School of Biomedical Engineering, Science and Health Systems; Howmedica Osteonics Corp., Allendale, NJ (United States); Kurtz, S.M. [Drexel Univ., Philadelphia, PA (United States). School of Biomedical Engineering, Science and Health Systems; Thomas Jefferson Univ., Philadelphia, PA (United States). Dept. of Orthopaedic Surgery; Exponent, Inc., Philadelphia, PA (United States)

    2001-07-01

    In order to better understand the mechanical effects of oxidative degradation, improved oxidative stability and crosslinking on ultra-high molecular weight polyethylene (UHMWPE), a unique miniature specimen mechanical testing technique, known as the small punch test, was developed for evaluating total joint replacement components. The small punch test involves deforming a disk-shaped specimen having a thickness of 0.5 mm and a diameter of 6.4 mm. In addition to its small specimen size, the small punch test differs from conventional testing in that deformation of the UHMWPE specimen occurs under multiaxial loading conditions. Using the small punch test, we have traced the evolution of mechanical behavior in UHMWPE after natural (shelf-storage) and accelerated aging conditions. In addition, we have determined relationships between the mechanical behavior of UHMWPE and the biologically relevant wear debris volume generated in total hip replacements. The small punch test has also been used to investigate the effects of radiation crosslinking which has been shown to improve the wear performance in an in vitro hip simulator. However, the crosslinking and subsequent thermal processes used to improve the wear behavior may compromise the native mechanical behavior by changing the ductility and toughness of the UHMWPE bearing. The primary objective of this study was to investigate which tradeoffs exist related to the mechanical behavior associated with various clinically available types of highly crosslinked and thermally treated UHMWPE. We also review the development and validation of the small punch disk bend test and highlight its application to problems of clinical relevance in both hip and knee arthroplasty. (orig.)

  20. Bacterial adherence on UHMWPE doped with Vitamin E: an in vitro study

    International Nuclear Information System (INIS)

    Molina-Manso D; Gomez-Barrena E; Esteban J; Adames H; Martinez M J; Cordero J; Fernandez-Roblas R; Puertolas J A

    2010-01-01

    Biomaterials may improve its capacity to resist bacterial adherence, and subsequent infection through material changes. Our aim was to test the bacterial adherence to vitamin E (VE) doped UHMWPE with S. aureus and S. epidermidis (collection and clinical strains), compared to virgin material. Experimental UHMWPE with 3%, 0.4%, and commercial 0.1% VE concentration (1000 ppm) were tested. The biofilm-developing ability was used as a covariable. The collection strain of S. aureus showed significantly less adherence to the commercial VE UHMWPE (p=0.036) but the clinical strains did not significantly modified its adhesion to UHMWPE in presence of VE. The collection strain of S. epidermidis showed significantly less adherence to experimental UHMWPE with VE, independently of the concentration used (p=0.008). However, only 1 of the 4 clinical strains under study clearly confirmed these results in commercial VE polyethylene. Vitamin E doped UHMWPE affects the adherence of some S. aureus and S. epidermidis strains, independently of the concentration in use, but the results showed important intraspecies differences.

  1. Influence of DBD plasma pretreatment on the deposition of chitosan onto UHMWPE fiber surfaces for improvement of adhesion and dyeing properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yu, E-mail: ren.y@ntu.edu.cn [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); College of Textile and Clothing Engineering, Soochow University, Jiangsu 215021 (China); Kuangda Fibre Technology Co., Ltd., Jiangsu 213161 (China); Ding, Zhirong [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Wang, Chunxia [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Zang, Chuanfeng; Zhang, Yin; Xu, Lin [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China)

    2017-02-28

    Highlights: • The DBD plasma and chitosan combined treatment were performed on UHMWPE fibers. • The SEM and XPS analysis confirmed that chitosan was adsorbed on the UHMWPE fiber surfaces after the combined treatment. • The IFSS between the UHMWPE fiber and the epoxy resin reached 2.25 MPa with 100 s plasma pretreatment. • The dyeability of the UHMWPE fibers after the combined treatment was significantly improved. - Abstract: The combination treatment of dielectric barrier discharge (DBD) plasma and chitosan coatings was performed on ultrahigh molecular weight polyethylene (UHMWPE) fibers in order to improve the wettability, dyeability and adhesion properties. The properties of UHMWPE fibers coated with chitosan, after being pretreated by DBD plasma, were evaluated through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The interfacial shear strength (IFSS) between the fiber and the epoxy resin was determined using the single fiber pull-out test technique. The modified UHMWPE fibers were dyed with reactive dyes after the combined treatment. Surface wettability and dyeability were investigated by water contact angle and K/S measurement, respectively. SEM images confirmed that the chitosan was induced onto the surfaces of the UHMWPE fibers after the combined treatment. The XPS analysis showed that the oxygen and nitrogen contents of the UHMWPE fiber surfaces after the combined treatment were higher than that of the fiber modified by chitosan without DBD plasma pretreatment. Meanwhile, the UHMWPE fibers treated with combination of DBD plasma and chitosan treatment had better wettability, dyeability and adhesion property than those of the non-plasma pretreated surfaces, indicating that DBD plasma pretreatment facilitated the deposition of chitosan onto the UHMWPE surfaces.

  2. Effect of Argon Plasma Treatment on Tribological Properties of UHMWPE/MWCNT Nanocomposites

    Directory of Open Access Journals (Sweden)

    Nitturi Naresh Kumar

    2016-08-01

    Full Text Available Ultra-high molecular weight polyethylene (UHMWPE is widely used in artificial joints in the replacement of knee, hip and shoulder that has been impaired as a result of arthritis or other degenerative joint diseases. The UHMWPE made plastic cup is placed in the joint socket in contact with a metal or ceramic ball affixed to a metal stem. Effective reinforcement of multi-walled carbon nanotubes (MWCNTs in UHMWPE results in improved mechanical and tribological properties. The hydrophobic nature of the nanocomposites surface results in lesser contact with biological fluids during the physiological interaction. In this project, we investigate the UHMWPE/MWCNTs nanocomposites reinforced with MWCNTs at different concentrations. The samples were treated with cold argon plasma at different exposure times. The water contact angles for 60 min plasma-treated nanocomposites with 0.0, 0.5, 1.0, 1.5, and 2.0 wt % MWCNTs were found to be 55.65°, 52.51°, 48.01°, 43.72°, and 37.18° respectively. Increasing the treatment time of nanocomposites has shown transformation from a hydrophobic to a hydrophilic nature due to carboxyl groups being bonded on the surface for treated nanocomposites. Wear analysis was performed under dry, and also under biological lubrication, conditions of all treated samples. The wear factor of untreated pure UHMWPE sample was reduced by 68% and 80%, under dry and lubricated conditions, respectively, as compared to 2 wt % 60 min-treated sample. The kinetic friction co-efficient was also noted under both conditions. The hardness of nanocomposites increased with both MWCNTs loading and plasma treatment time. Similarly, the surface roughness of the nanocomposites was reduced.

  3. Characterization and tribology of PEG-like coatings on UHMWPE for total hip replacements.

    Science.gov (United States)

    Kane, Sheryl R; Ashby, Paul D; Pruitt, Lisa A

    2010-03-15

    A crosslinked hydrogel coating similar to poly(ethylene glycol) (PEG) was covalently bonded to the surface of ultrahigh molecular weight polyethylene (UHMWPE) to improve the lubricity and wear resistance of the UHWMPE for use in total joint replacements. The chemistry, hydrophilicity, and protein adsorption resistance of the coatings were determined, and the wear behavior of the PEG-like coating was examined by two methods: pin-on-disk tribometry to evaluate macroscale behavior, and atomic force microscopy (AFM) to simulate asperity wear. As expected, the coating was found to be highly PEG-like, with approximately 83% ether content by x-ray photoelectron spectroscopy and more hydrophilic and resistant to protein adsorption than uncoated UHMWPE. Pin-on-disk testing showed that the PEG-like coating could survive 3 MPa of contact pressure, comparable to that experienced by total hip replacements. AFM nanoscratching experiments uncovered three damage mechanisms for the coatings: adhesion/microfracture, pure adhesion, and delamination. The latter two mechanisms appear to correlate well with wear patterns induced by pin-on-disk testing and evaluated by attenuated total reflection Fourier transform infrared spectroscopy mapping. Understanding the mechanisms by which the PEG-like coatings wear is critical for improving the behavior of subsequent generations of wear-resistant hydrogel coatings. (c) 2009 Wiley Periodicals, Inc.

  4. Development of extremely low wear cross-link polyethylene for 30 years

    International Nuclear Information System (INIS)

    Oonishi, Hironobu; Fujita, Hiroshi; Kim, Seok-Cheol; Ito, Shigeru; Masuda, Shingo; Clarke, I.C.

    2003-01-01

    In this report we present our long-term developmental and clinical results with both highly cross-linked and extensively cross-linked polyethylene materials. Beginning in 1970s, we performed wear screening studies on ultra high molecular weight polyethylene (UHMWPE) (GUR412) sterilized by gamma-irradiation in air (range 0 to 10,000 kGy). From these scientific studies the 1,000 kGy dose (100 Mrad) appeared optimal, and so we began clinical use in 1971, and that continued into 1978. The radiographic wear-rates in patients with 1,000 kGy sockets, assessed by radiography, appeared 6-fold reduced compared to our standard UHMWPE sockets. Note also that we had not used any post-sterilization heat treatment for these pioneering extensively cross-linked polyethylene sockets. With clinical use now over 30 years, it was also clear that there was no adverse oxidation created by any free radicals present in our extensively cross-linked polyethylene sockets. With these encouraging clinical results, we further studied laboratory wear results with the modern UHMWPE resins, using the irradiation doses 1,000, 5,000, 10,000 and 15,000 kGy and with both saline and serum lubricants in hip simulators. These more recent studies demonstrated that the wear in extensively cross-linked polyethylene sockets was undetectable, less even than the measurement errors in the simulator techniques. It was unfortunate that the physical properties of such extensively cross-linked polyethylene sockets did not meet the current International Organization for Standardization (ISO) and American Society for Testing and Materials (ASTM) standards. Thus, despite the excellent wear performance of these materials, we decided to investigate also the properties of the 60 kGy irradiated UHMWPE. The polyethylene sheet (GUR1050) was first irradiated with 35 kGy under N2 and then heat treated to remove free radicals. The socket liners were then machined to shape and resterilized with 25 kGy under N2 gas. The

  5. Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite

    International Nuclear Information System (INIS)

    Sharma, Rajeev Kumar; Agarwal, Meenakshi; Balani, Kantesh

    2016-01-01

    Bacterial infection of implants can be controlled by selective trapping of bacteria, followed with consequent killing by targeted antibacterial agents. Herein, the role of various ZnO morphologies, viz. micro-rods (R), nanoparticles (NP), and micro-disks (D) on antibacterial efficacy of ZnO via release of Zn"2"+ and H_2O_2 is assessed, both as isolated powders and via incorporating them in cytocompatible ultra high molecular weight polyethylene (UHMWPE). Though ZnO is antibacterial, interestingly, all ZnO morphologies elicited a supportive growth of gram-negative bacteria (Escherichia coli) in culture medium (until 28–35 μg/ml). But, all ZnO morphologies did elicit bactericidal effect on gram positive bacteria (Staphylococcus aureus or Staphylococcus epidermidis) both in culture medium (for 0–2.5 μg/ml) or when incorporated (5–20 wt.%) into UHMWPE. The bactericidal mechanisms were quantified for various ZnO morphologies via: (i) H_2O_2 production, (ii) Zn"2"+ release, and (iii) the presence of surface oxygen vacancies. On one hand, where only ZnO(NP) elicited release of H_2O_2 in the absence of light, maximum Zn"2"+ release was elicited by ZnO(D). Interestingly, when ZnO is incorporated as reinforcement (5–20 wt.%), its antibacterial action against E. coli was vividly observed due to selective proliferation of bacteria only on friendly UHMWPE matrix. Hence, luring bacteria on affable UHMWPE surface can be complemented with their targeted killing by ZnO present in composite. - Highlights: • The role of ZnO morphology in affecting bactericidal mechanisms • Quantification of Zn"2"+ release, H_2O_2 production and surface oxygen vacancy defects • Inherent resistance by gram negative bacteria at lower ZnO concentrations • Containment of bacteria on polymeric surface and consequent targeted killing by ZnO

  6. The role of hydroperoxides as a precursor in the radiation-induced graft polymerization of methyl methacrylate to ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Sekiguchi, Masayuki [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2010-06-15

    A graft polymerization of methyl methacrylate (MMA) to ultra-high molecular weight polyethylene (UHMWPE) with Co-60 gamma-ray irradiation in air at room temperature has been carried out. The grafting yields were measured as a function of the storage time (elapsed time from the end of irradiation to the start of grafting), and it was found that the yields reach at the maximum values at around several days since the end of irradiation. In order to clarify the precursor of the graft polymerization, changes of the radical yields and the carbonyl groups were measured as a function of storage time with ESR and microscopic FT-IR, respectively. From the similarities between the depth profiles of the hydroperoxide formation and the grafting products, it was concluded that the hydroperoxides can be main precursors of the grafting of the radiation-induced polymerization of MMA to UHMWPE under the given conditions.

  7. The role of hydroperoxides as a precursor in the radiation-induced graft polymerization of methyl methacrylate to ultra-high molecular weight polyethylene

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Katsumura, Yosuke; Kudo, Hisaaki; Sekiguchi, Masayuki

    2010-01-01

    A graft polymerization of methyl methacrylate (MMA) to ultra-high molecular weight polyethylene (UHMWPE) with Co-60 γ-ray irradiation in air at room temperature has been carried out. The grafting yields were measured as a function of the storage time (elapsed time from the end of irradiation to the start of grafting), and it was found that the yields reach at the maximum values at around several days since the end of irradiation. In order to clarify the precursor of the graft polymerization, changes of the radical yields and the carbonyl groups were measured as a function of storage time with ESR and microscopic FT-IR, respectively. From the similarities between the depth profiles of the hydroperoxide formation and the grafting products, it was concluded that the hydroperoxides can be main precursors of the grafting of the radiation-induced polymerization of MMA to UHMWPE under the given conditions.

  8. Effect of crosslinking UHMWPE on its tensile and compressive creep performance.

    Science.gov (United States)

    Lewis, G; Carroll, M

    2001-01-01

    The in vitro quasi-static tensile and compressive creep properties of three sets of GUR 1050 ultra-high-molecular-weight polyethylene (UHMWPE) specimens were obtained. These sets were: control (as-received stock); "low-gamma" (specimens were crosslinked using gamma radiation, with a minimum dose of 5 Mrad); and "high-gamma" (specimens were crosslinked using gamma radiation, with a minimum dose of 15 Mrad). The % crystallinity (%C) and crosslink density (rho(x)) of the specimens in the three sets were also obtained. It was found that, in both tension and compression, crosslinking resulted in a significant depreciation in the creep properties, relative to control. The trend in the creep results is explained in terms of the impact of crosslinking on the polymer's %C and rho(x). The present results are in contrast to literature reports that show that crosslinking enhances the wear resistance of the polymer. The implications of the present results, taken together with the aforementioned literature results, are fully discussed vis-a-vis the use of crosslinked UHMWPE for fabricating articular components for arthroplasties.

  9. Wear and creep of highly crosslinked polyethylene against cobalt chrome and ceramic femoral heads.

    Science.gov (United States)

    Galvin, A L; Jennings, L M; Tipper, J L; Ingham, E; Fisher, J

    2010-10-01

    The wear and creep characteristics of highly crosslinked ultrahigh-molecular-weight polyethylene (UHMWPE) articulating against large-diameter (36mm) ceramic and cobalt chrome femoral heads have been investigated in a physiological anatomical hip joint simulator for 10 million cycles. The crosslinked UHMWPE/ceramic combination showed higher volume deformation due to creep plus wear during the first 2 million cycles, and a steady-state wear rate 40 per cent lower than that of the crosslinked UHMWPE/cobalt chrome combination. Wear particles were isolated and characterized from the hip simulator lubricants. The wear particles were similar in size and morphology for both head materials. The particle isolation methodology used could not detect a statistically significant difference between the particles produced by the cobalt chrome and alumina ceramic femoral heads.

  10. Radiation Chemistry of Polyethylenes for Total Joint Applications

    International Nuclear Information System (INIS)

    Muratoglu, O.K.

    2006-01-01

    Wear and fatigue damage of polyethylene could limit the longevity of total hip and knee reconstructions used to treat end-stage joint diseases. Wear debris causes peri-prosthetic osteolysis, resulting in bone loss and component loosening ultimately necessitating revision surgery. Wear rate of polyethylene can be reduced by radiation crosslinking. Irradiation not only crosslinks the amorphous phase of polyethylene but also creates residual free radicals (RFR), the precursor to long-term oxidation. We used post-irradiation melting to eliminate the RFRs and improve oxidative stability. We determined the molecular weight between crosslinks (M c ) as a function of radiation-dose level and showed the wear rate to scale linearly with M c . Irradiated and melted polyethylene, in clinical use since 1998, show a significant reduction in wear in vivo through radiographic follow-up studies and analysis of surgically explanted acetabular liners. Irradiation and melting reduces the crystallinity and mechanical properties of polyethylene therefore it cannot be used for high demand joint applications, such as posterior stabilized knees. We replaced the post-irradiation melting step with ?-tocopherol (vitamin-E) doping to stabilize the RFRs and prevent long-term stability and at the same time prevent the loss of mechanical properties. 100kGy irradiated polyethylene was soaked in 120 degree vitamin-E followed by a homogenization step at 120degree. The ?-tocopherol doped samples showed no detectable oxidation after accelerating aging at 80degree in air for 5 weeks. The wear rate was comparable to that of 100-kGy irradiated and melted polyethylene with both clean and third body added bovine serum lubrication. The fatigue strength of ?-tocopherol doped polyethylene (ΔKi=0.9MPa.m 1 /2) were higher than that of 100-kGy irradiated and melted polyethylene (ΔKi=0.5 MPa.m 1 /2). Similarly, the ultimate tensile and yield strength of α-tocopherol doped polyethylenes were significantly

  11. Supercritical CO2 impregnation of polyethylene components for medical purposes

    Directory of Open Access Journals (Sweden)

    Gamse Thomas

    2007-01-01

    Full Text Available Modem hip and knee endoprosthesis are produced in titanium and to reduce the friction at the contact area polymer parts, mainly ultra-high molecular weight polyethylene (UHMW-PE, are installed. The polyethylene is impregnated with a-tocopherol (vitamin E before processing for remarkable decrease of oxidative degradation. Cross linked UHMW-PE offers much higher stability, but a-tocopherol cannot be added before processing, because a-tocopherol hinders the cross linking process accompanied by a heavy degradation of the vitamin. The impregnation of UHMW-PE with a-tocopherol has to be performed after the cross linking process and an accurate concentration has to be achieved over the cross section of the whole material. In the first tests UHMW-PE-cubes were stored in pure a-tocopherol under inert atmosphere at temperatures from 100 to 150 °C resulting in a high mass fraction of a-tocopherol in the edge zones and no constant concentration over the cross section. For better distribution and for regulating the mass fraction of a-tocopherol in the cross linked UHMW-PE material supercritical CO2 impregnation tests were investigated. Again UHMW-PE-cubes were impregnated in an autoclave with a-tocopherol dissolved in supercritical CO2 at different pressures and temperatures with variable impregnation times and vitamin E concentrations. Based on the excellent results of supercritical CO2 impregnation standard hip and knee cups were stabilized nearly homogeneously with varying mass fraction of a-tocopherol.

  12. Surface functionalization of solid state ultra-high molecular weight polyethylene through chemical grafting

    Science.gov (United States)

    Sherazi, Tauqir A.; Rehman, Tayyiba; Naqvi, Syed Ali Raza; Shaikh, Ahson Jabbar; Shahzad, Sohail Anjum; Abbas, Ghazanfar; Raza, Rizwan; Waseem, Amir

    2015-12-01

    The surface of ultra-high molecular weight polyethylene (UHMWPE) powder was functionalized with styrene using chemical grafting technique. The grafting process was initiated through radical generation on base polymer matrix in the solid state by sodium thiosulfate, while peroxides formed at radical sites during this process were dissociated by ceric ammonium nitrate. Various factors were optimized and reasonably high level of monomer grafting was achieved, i.e., 15.6%. The effect of different acids as additive and divinyl benzene (DVB) as a cross-linking agent was also studied. Post-grafting sulfonation was conducted to introduce the ionic moieties to the grafted polymer. Ion-exchange capacity (IEC) was measured experimentally and is found to be 1.04 meq g-1, which is in close agreement with the theoretical IEC values. The chemical structure of grafted and functionalized polymer was characterized by attenuated total reflection infrared spectroscopy (ATR-FTIR) and thermal properties were investigated by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Thermal analysis depicts that the presence of radicals on the polymer chain accelerates the thermal decomposition process. The results signify that the chemical grafting is an effective tool for substantial surface modification and subsequent functionalization of polyethylene.

  13. In vitro wear assessments of fixed and mobile UHMWPE total knee replacement

    International Nuclear Information System (INIS)

    Affatato, Saverio; Bracco, Pierangiola; Sudanese, Alessandra

    2013-01-01

    Highlights: ► In this study we examined the wear behaviour of total knee UHMWPE menisci. ► We used two different knee designs: mobile and fixed menisci. ► We used a knee simulator and FTIR analyses to evaluate the wear behaviour. ► Our conclusions are that the two designs had a different wear behaviour. - Abstract: This work discusses the wear behaviour of two different ultra-high-molecular-weight-polyethylene tibial component designs. Mobile and fixed bearings were tested on a knee wear simulator for 5 million cycles using bovine calf serum as lubricant. We correlated the wear results with the chemical characterisation of the investigated materials: Fourier Transformed Infra Red Spectroscopy analyses, Differential Scanning Calorimetry and cross-link density measurements were used to assess the chemical features of this polyethylene. Mobile and fixed polyethylene inserts showed a different wear behaviour: the mobile designs components showed lower weight losses than the fixed components (109 ± 6 mg and 163 ± 80 mg, respectively). Significant statistical differences were observed in wear rate (P = 0.035, Kolmogorov–Smirnov Test for two samples). From a molecular point of view, typical radiation-induced oxidation profiles were observed in all the tested polyethylene samples, but the overall degradation was more significant in the fixed bearing inserts and this is likely to play a role on the wear performances

  14. Homocomposites of chopped fluorinated polyethylene fiber with low-density polyethylene matrix

    International Nuclear Information System (INIS)

    Maity, J.; Jacob, C.; Das, C.K.; Alam, S.; Singh, R.P.

    2008-01-01

    Conventional composites are generally prepared by adding reinforcing agent to a matrix and the matrix wherein the reinforcing agents are different in chemical composition with the later having superior mechanical properties. This work presents the preparation and properties of homocomposites consisting of a low-density polyethylene (LDPE) matrix and an ultra high molecular weight polyethylene (UHMWPE) fiber reinforcing phase. Direct fluorination is an important surface modification process by which only a thin upper layer is modified, the bulk properties of the polymer remaining unchanged. In this work, surface fluorination of UHMWPE fiber was done and then fiber characterization was performed. It was observed that after fluorination the fiber surface became rough. Composites were then prepared using both fluorinated and non-fluorinated polyethylene fiber with a low-density polyethylene (LDPE) matrix to prepare single polymer composites. It was found that the thermal stability and mechanical properties were improved for fluorinated fiber composites. X-ray diffraction (XRD) analysis showed that the crystallinity of the composites increased and it is maximum for fluorinated fiber composites. Tensile strength (TS) and modulus also increased while elongation at break (EB) decreased for fiber composites and was a maximum for fluorinated fiber composites. Scanning electron microscopic analysis indicates that that the distribution of fiber into the matrix is homogeneous. It also indicates the better adhesion between the matrix and the reinforcing agent for modified fiber composites. We also did surface fluorination of the prepared composites and base polymer for knowing its application to different fields such as printability wettability, etc. To determine the various properties such as printability, wettability and adhesion properties, contact angle measurement was done. It was observed that the surface energies of surface modified composites and base polymer increases

  15. Multilayer porous UHMWPE scaffolds for bone defects replacement

    International Nuclear Information System (INIS)

    Maksimkin, A.V.; Senatov, F.S.; Anisimova, N.Yu.; Kiselevskiy, M.V.; Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A.; Kaloshkin, S.D.

    2017-01-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  16. Multilayer porous UHMWPE scaffolds for bone defects replacement

    Energy Technology Data Exchange (ETDEWEB)

    Maksimkin, A.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Senatov, F.S., E-mail: senatov@misis.ru [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Anisimova, N.Yu.; Kiselevskiy, M.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); N.N. Blokhin Russian Cancer Research Center, Moscow (Russian Federation); Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A. [State Plant of Medicinal Drugs, Moscow (Russian Federation); Kaloshkin, S.D. [National University of Science and Technology “MISIS”, Moscow (Russian Federation)

    2017-04-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  17. The effect of radiation dose on the crosslink density of ultra-high molecular weight polyethylene (UHMWPE) measured by a novel swelling method

    International Nuclear Information System (INIS)

    Muratoglu, O.K.; Bragdon, C.R.; O'Connor, D.O.; Jasty, M.; Harris, W.H.

    1998-01-01

    The crosslink density of a polyethylene network structure can be determined by swelling in hot xylene (130 deg C). The Flory's swelling theory is generally used to calculate the crosslink density, dx (ln(l-q -1 )+q -1 +Xq -1 )/(V 1 q -1/3 ), where V 1 is the molar volume of xylene at 130 deg C (136 cc/mol), X is the xylene-polyethylene interaction parameter, and q is the equilibrium volume swelling ratio of cross-linked network in hot xylene. Conventionally, q is measured using gravimetric methods as described in ASTM D2765-95. However, as noted in the ASTM standard, the gravimetric method has a large error factor associated with the measurement of q (as much as 100%). UHMWPE was irradiated (range of 25 to 300 kGy) using an AECL I 10/1 linear electron beam accelerator operated at 1 kW. The irradiated specimens were subsequently melt-annealed at 150 deg C for 2 hours in vacuum. For swelling experiments, 2 mm thin samples were machined using a diamond blade. The sample sizes were kept at around 3x3x2 mm and the bottom and top surfaces were machined parallel to each other. The equilibrium volume swelling ratios were determined using a Perkin-Elmer TMA/DMA 7 (n=3 for each radiation dose level). The samples were placed in a quartz basket-probe assembly and lowered into a xylene/antioxidant bath at room temperature. The xylene was then heated to 130 deg C at 5 deg C/min and held at 130 deg C for 2 hours. The swelling was then recorded with the upward motion of the probe until the equilibrium swelling was achieved. (The experiments were carried out in 3 orthogonal directions which confirmed the isotropy of swelling). (author)

  18. Surface modification of carbon fibers and its effect on the fiber–matrix interaction of UHMWPE based composites

    International Nuclear Information System (INIS)

    Chukov, D.I.; Stepashkin, A.A.; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.

    2014-01-01

    Highlights: • Both chemical and thermal treatments of UKN 5000 carbon fibers allow one to obtain well-developed surface. • The changes of structure and properties of VMN-4 fibers after both thermal and chemical oxidation are insignificant due to more perfect initial structure of these fibers. • The oxidative treatment of carbon fibers allows one to improve the interfacial interaction in the UHMWPE-based composites. • The oxidative treatment of the fibers allows one to a triple increase of Young’s modulus of the modified fibers reinforced UHMWPE composites. -- Abstract: The PAN-based carbon fibers (CF) were subjected to thermal and chemical oxidation under various conditions. The variation in the surface morphology of carbon fibers after surface treatment was analyzed by scanning electron microscopy (SEM). It was found that the tensile strength of carbon fibers changed after surface modification. The interaction between the fibers and the matrix OF ultra-high molecular weight polyethylene (UHMWPE) was characterized by the Young modulus of produced composites. It was shown that the Young modulus of composites reinforced with modified carbon fibers was significantly higher than that of composites reinforced with non-modified fibers

  19. Surface modification of vascular endothelial growth factor-loaded silk fibroin to improve biological performance of ultra-high-molecular-weight polyethylene via promoting angiogenesis

    Directory of Open Access Journals (Sweden)

    Ai C

    2017-10-01

    Full Text Available Chengchong Ai, Dandan Sheng, Jun Chen, Jiangyu Cai, Siheng Wang, Jia Jiang, Shiyi Chen Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China Abstract: Ultra-high-molecular-weight polyethylene (UHMWPE has been applied in orthopedics, as the materials of joint prosthesis, artificial ligaments, and sutures due to its advantages such as high tensile strength, good wear resistance, and chemical stability. However, postoperative osteolysis induced by UHMWPE wear particles and poor bone–implant healing interface due to scarcity of osseointegration is a significant problem and should be solved imperatively. In order to enhance its affinity to bone tissue, vascular endothelial growth factor (VEGF was loaded on the surface of materials, the loading was performed by silk fibroin (SF coating to achieve a controlled-release delivery. Several techniques including field emission scanning electron microscopy (FESEM and attenuated total reflectance (ATR-Fourier transform infrared (FTIR and water contact angle measurement were used to validate the effectiveness of introduction of SF/VEGF. The result of ELISA demonstrated that the release of VEGF was well maintained up to 4 weeks. The modified UHMWPE was evaluated by both in vitro and in vivo experiments. According to the results of FESEM and cell counting kit-8 (CCK-8 assay, bone marrow mesenchymal stem cells cultured on the UHMWPE coated with SF/VEGF and SF exhibited a better proliferation performance than that of the pristine UHMWPE. The model rabbit of anterior cruciate ligament reconstruction was used to observe the graft–bone healing process in vivo. The results of histological evaluation, microcomputed tomography (micro-CT analysis, and biomechanical tests performed at 6 and 12 weeks after surgery demonstrated that graft–bone healing could be significantly improved due to the effect of VEGF on angiogenesis, which was loaded on the surface by SF

  20. Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rajeev Kumar [Biomaterials Processing and Characterization Laboratory, Indian Institute of Technology Kanpur, Kanpur -208016 (India); Agarwal, Meenakshi [Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh - 201303 (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Biomaterials Processing and Characterization Laboratory, Indian Institute of Technology Kanpur, Kanpur -208016 (India)

    2016-05-01

    Bacterial infection of implants can be controlled by selective trapping of bacteria, followed with consequent killing by targeted antibacterial agents. Herein, the role of various ZnO morphologies, viz. micro-rods (R), nanoparticles (NP), and micro-disks (D) on antibacterial efficacy of ZnO via release of Zn{sup 2+} and H{sub 2}O{sub 2} is assessed, both as isolated powders and via incorporating them in cytocompatible ultra high molecular weight polyethylene (UHMWPE). Though ZnO is antibacterial, interestingly, all ZnO morphologies elicited a supportive growth of gram-negative bacteria (Escherichia coli) in culture medium (until 28–35 μg/ml). But, all ZnO morphologies did elicit bactericidal effect on gram positive bacteria (Staphylococcus aureus or Staphylococcus epidermidis) both in culture medium (for 0–2.5 μg/ml) or when incorporated (5–20 wt.%) into UHMWPE. The bactericidal mechanisms were quantified for various ZnO morphologies via: (i) H{sub 2}O{sub 2} production, (ii) Zn{sup 2+} release, and (iii) the presence of surface oxygen vacancies. On one hand, where only ZnO(NP) elicited release of H{sub 2}O{sub 2} in the absence of light, maximum Zn{sup 2+} release was elicited by ZnO(D). Interestingly, when ZnO is incorporated as reinforcement (5–20 wt.%), its antibacterial action against E. coli was vividly observed due to selective proliferation of bacteria only on friendly UHMWPE matrix. Hence, luring bacteria on affable UHMWPE surface can be complemented with their targeted killing by ZnO present in composite. - Highlights: • The role of ZnO morphology in affecting bactericidal mechanisms • Quantification of Zn{sup 2+} release, H{sub 2}O{sub 2} production and surface oxygen vacancy defects • Inherent resistance by gram negative bacteria at lower ZnO concentrations • Containment of bacteria on polymeric surface and consequent targeted killing by ZnO.

  1. Multilayer porous UHMWPE scaffolds for bone defects replacement.

    Science.gov (United States)

    Maksimkin, A V; Senatov, F S; Anisimova, N Yu; Kiselevskiy, M V; Zalepugin, D Yu; Chernyshova, I V; Tilkunova, N A; Kaloshkin, S D

    2017-04-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79±2%; the pore size range was 80-700μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Dielectric relaxation and ac conduction in γ-irradiated UHMWPE/MWCNTs nano composites: Impedance spectroscopy analysis

    International Nuclear Information System (INIS)

    Maqbool, Syed Asad; Mehmood, Malik Sajjad; Mukhtar, Saqlain Saqib; Baluch, Mansoor A.; Khan, Shamim; Yasin, Tariq; Khan, Yaqoob

    2017-01-01

    The dielectric behavior of γ-irradiated ultra-high molecular weight polyethylene (UHMWPE) and its nano composites (NCs) with γ-ray modified multi wall carbon nano tubes (γ-MWCNTs) and MWCNTs had been studied using impedance spectroscopy. The study had been carried out in the frequency range of 20–2 MHz at room temperature. All samples (pure and NCs) were prepared in the form of sheets and irradiated with γ-dose of 50 kGy and 100 kGy, respectively. The comprehensive analysis of results revealed that resistivity of UHMWPE for conduction decreased on irradiation and incorporation of MWCNTs (whether γ ray modified or un-modified) due to the radiation induced damage and conductive networks induced by MWCNTs. At low frequency range a significant increase in the dielectric constant had been observed because of irradiation and addition of MWNCTs. The trend of loss tangent and ac conductivity for each investigated sample depended on resistivity offered and had a decreasing trend as a function of frequency. Moreover, dissipation factor increased with the incorporation of MWNCTs and irradiation from 0.12 to 0.22. In addition to this, non-frequency dependent static dielectric constant was also found to increase with irradiation and incorporation of MWCNTs. The relaxation time was found to increase from 1.2 to 4.3 ms due to hindrance offered by radiation induced mutual cross linking of PE chains and polymer-MWNCTs bindings. - Highlights: • The resistivity for conduction in pristine UHMWPE is decreased with γ-irradiation. • Conduction in PE/MWCNTs nanocomposites increased due to MWCNTs addition. • Static dielectric constant of UHMWPE increased with γ-irradiation. • Static dielectric constant of UHMWPE increased due to MWCNTs incorporation.

  3. High temperature homogenization improves impact toughness of vitamin E-diffused, irradiated UHMWPE.

    Science.gov (United States)

    Oral, Ebru; O'Brien, Caitlin; Doshi, Brinda; Muratoglu, Orhun K

    2017-06-01

    Diffusion of vitamin E into radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is used to increase stability against oxidation of total joint implant components. The dispersion of vitamin E throughout implant preforms has been optimized by a two-step process of doping and homogenization. Both of these steps are performed below the peak melting point of the cross-linked polymer (homogenization of antioxidant-doped, radiation cross-linked UHMWPE could improve its toughness. We found that homogenization at 300°C for 8 h resulted in an increase in the impact toughness (74 kJ/m 2 compared to 67 kJ/m 2 ), the ultimate tensile strength (50 MPa compared to 43 MPa) and elongation at break (271% compared to 236%). The high temperature treatment did not compromise the wear resistance or the oxidative stability as measured by oxidation induction time. In addition, the desired homogeneity was achieved at a much shorter duration (8 h compared to >240 h) by using high temperature homogenization. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1343-1347, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Plasma parameters effects on the properties, aging and stability behaviors of allylamine plasma coated ultra-high molecular weight polyethylene (UHMWPE) films

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Gaelle, E-mail: gaelle.aziz@ugent.be; Thukkaram, Monica; De Geyter, Nathalie; Morent, Rino

    2017-07-01

    Highlights: • Medium to atmospheric pressure DBD is used to deposit amino rich films. • Process parameters affect the films’ surface chemical and physical properties. • High deposition rates can be reached by varying the power and/or monomer flow rate. • High amino selectivity (NH{sub 2}/N in %) is obtained at low powers and high monomer concentration. • Aging and stability behaviors of the deposited coatings can be controlled by carefully choosing the plasma parameters. - Abstract: In this work, a dielectric barrier discharge (DBD) operated at medium to atmospheric pressure has been used for the deposition of thin polyallylamine (PAA) films on ultra-high molecular weight polyethylene (UHMWPE) substrates. The effect of treatment time (1–5 min), discharge power (5.7–24.0 W), monomer concentration (1–2 g/h) and pressure (10–100 kPa) on the films properties, aging and stability behaviors have been investigated. The used characterization techniques are X-ray photoelectron spectroscopy, water contact angle and optical reflectance spectroscopy. In this paper, it is shown that plasma treatment time does not affect the coatings chemistry; whereas plasma power, monomer concentration and pressure control the coatings properties. It is also shown that the deposition rate of the deposited films changes with varying W/FM values. At low W/FM values, high deposition rates of up to 2 nm/s are observed. Plasma treatments were also characterized by their amino efficiency ([NH{sub 2}]/[C] in %) and amino selectivity ([NH{sub 2}]/[N] in %). Depending on the used parameters, these varied between 12.3% and 20% and between 71.2% and 91.1%, respectively. For the aging study, coatings that preserved most of their hydrophilicity were obtained at power ≤11.3 W, monomer concentration ≥1.5 g/h and pressure ≥50 kPa. For the stability study, coatings that showed the highest [N] (%) and lowest percentage of thickness decrease were obtained at ≤2 min, 24.0 W, 1 g/h and

  5. The effect of radiation dose on the crosslink density of ultra-high molecular weight polyethylene (UHMWPE) measured by a novel swelling method

    International Nuclear Information System (INIS)

    Muratoglu, O.K.; Bragdon, C.R.; O'Connor, D.O.; Jasty, M.; Harris, W.H.

    1998-01-01

    The crosslink density of a polyethylene network structure can be determined by swelling in hot xylene (130 deg C). The Flory's swelling theory is generally used to calculate the crosslink density, dx (ln(l-q -1 ) + q -1 + Xq -1 )/(V l q -1/3 ), where V l is the molar volume of xylene at 130 deg C (136 cc/mol), X is the xylene-polyethylene interaction parameter, and q is the equilibrium volume swelling ratio of cross-linked network in hot xylene. Conventionally, q is measured using gravimetric methods as described in ASTM D2765-95. However, as noted in the ASTM standard, the gravimetric method has a large error factor associated with the measurement of q (as much as 100%). UHMWPE was irradiated (range of 25 to 300 kGy) using an AECL I 10/1 linear electron beam accelerator operated at 1 kW. The irradiated specimens were subsequently melt-annealed at 150 deg C for 2 hours in vacuum. For swelling experiments, 2 mm thin samples were machined using a diamond blade. The sample sizes were kept at around 3x3x2 mm and the bottom and top surfaces were machined parallel to each other. The equilibrium volume swelling ratios were determined using a Perkin-Elmer TMA/DMA 7 (n=3 for each radiation dose level). The samples were placed in a quartz basket-probe assembly and lowered into a xylene/antioxidant bath at room temperature. The xylene was then heated to 130 deg C at 5 deg C/min and held at 130 deg C for 2 hours. The swelling was then recorded with the upward motion of the probe until the equilibrium swelling was achieved. (The experiments were carried out in 3 orthogonal directions which confirmed the isotropy of swelling). From this one-dimensional change in height, q was calculated by taking into account the volumetric expansion due to heating and melting. (author)

  6. Evaluation of the effect of vitamin E doped UHMWPE on biofilm development and infection using an in vivo experimental model

    International Nuclear Information System (INIS)

    Molina-Manso D; Gomez-Barrena E; Alonso-Rodriguez N; Sandoval E; Cordero J; Fernandez-Roblas R; Puertolas J A; Esteban J

    2010-01-01

    The aim of our study was the evaluation of an in vivo experimental model of implant-related septic arthritis. 5 x 10 mm strips out of a polyethylene sheet 500 microns thick were incubated with a 0.5 McFarland bacterial suspension of collection strains S. aureus and S. epidermidis. A surgical experimental model was prepared, implanting the samples in the subquadricipital articular space of the rabbit's knee. After 7 days of survival, the knee joint was opened wide through the previous surgical approach and the polyethylene sample was retrieved. The UHMWPE samples were processed following a sonication and quantification protocol. Ten rabbits for each species were studied, five with each material. Negative controls (UHMWPE strips without attached bacteria) were also implanted in contralateral knees. S. aureus colonies were detected only in three rabbits with non-treated UHMWPE and in two with vitamin E-doped UHMWPE. No differences in colony counts were observed for S. aureus. No growth was detected for S. epidermidis, although clinical signs of infection were detected in all animals with inoculated samples. The model was useful to evaluate the effect of modifications in biomaterials, although highly pathogenic bacteria are needed to obtain quantifiable data.

  7. Nondestructive characterization of UHMWPE armor materials

    Science.gov (United States)

    Chiou, Chien-Ping; Margetan, Frank J.; Barnard, Daniel J.; Hsu, David K.; Jensen, Terrence; Eisenmann, David

    2012-05-01

    Ultra-high molecular weight polyethylene (UHMWPE) is a material increasingly used for fabricating helmet and body armor. In this work, plate specimens consolidated from thin fiber sheets in series 3124 and 3130 were examined with ultrasound, X-ray and terahertz radiation. Ultrasonic through-transmission scans using both air-coupled and immersion modes revealed that the 3130 series material generally had much lower attenuation than the 3124 series, and that certain 3124 plates had extremely high attenuation. Due to the relatively low inspection frequencies used, pulse-echo immersion ultrasonic testing could not detect distinct flaw echoes from the interior. To characterize the nature of the defective condition that was responsible for the high ultrasonic attenuation, terahertz radiation in the time-domain spectroscopy mode were used to image the flaws. Terahertz scan images obtained on the high attenuation samples clearly showed a distribution of a large number of defects, possibly small planar delaminations, throughout the volume of the interior. Their precise nature and morphology are to be verified by optical microscopy of the sectioned surface.

  8. Nondestructive characterization of UHMWPE armor materials

    International Nuclear Information System (INIS)

    Chiou, Chien-Ping; Margetan, Frank J.; Barnard, Daniel J.; Hsu, David K.; Jensen, Terrence; Eisenmann, David

    2012-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) is a material increasingly used for fabricating helmet and body armor. In this work, plate specimens consolidated from thin fiber sheets in series 3124 and 3130 were examined with ultrasound, X-ray and terahertz radiation. Ultrasonic through-transmission scans using both air-coupled and immersion modes revealed that the 3130 series material generally had much lower attenuation than the 3124 series, and that certain 3124 plates had extremely high attenuation. Due to the relatively low inspection frequencies used, pulse-echo immersion ultrasonic testing could not detect distinct flaw echoes from the interior. To characterize the nature of the defective condition that was responsible for the high ultrasonic attenuation, terahertz radiation in the time-domain spectroscopy mode were used to image the flaws. Terahertz scan images obtained on the high attenuation samples clearly showed a distribution of a large number of defects, possibly small planar delaminations, throughout the volume of the interior. Their precise nature and morphology are to be verified by optical microscopy of the sectioned surface.

  9. Influence of ionizing irradiation in air and nitrogen for sterilization of surgical grade polyethylene for implants

    International Nuclear Information System (INIS)

    Streicher, R.M.

    1988-01-01

    The influence of the atmosphere and the applied dose during ionizing radiation treatment on selected properties of ultra high molecular weight polyethylene (UHMWPE) have been investigated. A linear correlation between extinction coefficient and applied doses in air from 6 to 125 kGy was found, while oxidation was not linear with irradiation in nitrogen. Bacteria survival rate shows a necessary minimum dose of 15 kGy for assured sterility of the product. Post reaction of latent free radicals in UHMWPE created during irradiation, which react or recombine time- and environment dependent, has also been investigated after storage of UHMWPE-films in air and nitrogen at 21 0 C and in water at body temperature 37 0 C for up to nine months. Results show that the properties of UHMWPE after radiation-sterilization change depending on time, the absorbed dose, the atmosphere where irradiation took place and the environment of storage. UHMWPE, which mainly crosslinks during irradiation degrades by an oxidation process after sterilizing when stored in air and even more in water at body temperature. So irradiation and storage in nitrogen before implantation in the human body is beneficial. (author)

  10. Pin on flat wear volume prediction of UHMWPE against cp Ti for orthopedic applications

    Science.gov (United States)

    Handoko, Suyitno, Dharmastiti, Rini; Magetsari, Rahadyan

    2018-04-01

    Tribological assessment of orthopedic biomaterials requires a lot of testing time. Researchers must test the biomaterials in millions of cycles at low frequency (1 Hz) to mimic the in vivo conditions. It is a problem because product designs and developments could not wait longer for wear data to predict the lifetime of their products. The problem can be solved with the use of computation techniques to model the wear phenomena and provide predicted data. The aim of this research is to predict the wear volume of the commonly used ultra high molecular weight polyethylene (UHMWPE) sliding against commercially pure titanium (cp Ti) in the unidirectional pin on flat tests. The 9 mm diameter UHMWPE pin and cp Ti plate contact mechanics were modeled using Abaqus. Contact pressure was set at 3 MPa. Outputs of the computations (contact pressure and contact area) were used to calculate the wear volume with Archard law. A custom Python script was made to automate the process. The results were then compared with experimental data for validations. The predicted data were in a good trend with numerical errors from 0.3% up to 26%.

  11. Contact Stress Generation on the UHMWPE Tibial Insert

    Directory of Open Access Journals (Sweden)

    S. Petrović Savić

    2014-12-01

    Full Text Available Total knee replacement (TKR is considered, during last years, as a very successful surgical technique for removing knee joint deformities and eliminating pain caused by cartilage damage. In literature, as primary causes for knee joint endoprothesis damage are cited complex movements which cause occurrences of complex stress conditions, sagital radius conformity, sliding, types of materials etc. Aim of this study is analysis of contact stresses that occur on tibial implant for 15°, 45° and 60° knee flexion and 50 kg, 75 kg, 100 kg and 125 kg weight. Knee joint prosthesis model and finite elements method (FEM analysis are done in software Catia V5. For this analysis we used ultra-high molecular weight polyethylene (UHMWPE for tibial implant material and AISI 316, AISI 317, AISI 321, 17-4PH, CoCrMo, Ti6Al4V and SAE A-286 for femoral component materials. Results show that area of maximal contact stress is identified in medial and lateral part of tibial implant. Von Mises stress values vary regarding of flexion degree and weight, but values are approximate for types of chosen materials. Contact stress location corresponds to damage that occur on tibial implant during exploitation.

  12. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    International Nuclear Information System (INIS)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J

    2010-01-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF X ). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  13. Preparation and characterization of CNTs/UHMWPE nanocomposites via a novel mixer under synergy of ultrasonic wave and extensional deformation.

    Science.gov (United States)

    Yin, Xiaochun; Li, Sai; He, Guangjian; Feng, Yanhong; Wen, Jingsong

    2018-05-01

    In this work, design and development of a new melt mixing method and corresponding mixer for polymer materials were reported. Effects of ultrasonic power and sonication time on the carbon nanotubes (CNTs) filled ultra high molecular weight polyethylene (UHMWPE) nanocomposites were experimentally studied. Transmission Electron Microscopy images showed that homogeneous dispersion of CNTs in intractable UHMWPE matrix is successfully realized due to the synergetic effect of ultrasonic wave and extensional deformation without any aid of other additives or solvents. Differential scanning calorimetry results revealed an increase in crystallinity and crystallization rate due to the finer dispersion of the CNTs in the matrix which act as nucleating point. Composites' complex viscosity and storage modulus decreased sharply at first and then leveled off with the increase of sonication time or the ultrasonic power. The thermal stability and the tensile strength of the CNTs/UHMWPE nanocomposites improved by using this novel mixing method. This is the first method that combined the ultrasonic wave and the extensional deformation in which the elongation rate, sonication time and ultrasonic power can be adjusted simultaneously during mixing. The novel mixer offers several advantages such as environment-friendly, high mixing efficiency, self-cleaning and wide adaptability to materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Evaluation of the effect of vitamin E doped UHMWPE on biofilm development and infection using an in vivo experimental model

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Manso D; Gomez-Barrena E; Alonso-Rodriguez N; Sandoval E; Cordero J; Fernandez-Roblas R; Puertolas J A; Esteban J, E-mail: dmolina@fjd.es

    2010-11-01

    The aim of our study was the evaluation of an in vivo experimental model of implant-related septic arthritis. 5 x 10 mm strips out of a polyethylene sheet 500 microns thick were incubated with a 0.5 McFarland bacterial suspension of collection strains S. aureus and S. epidermidis. A surgical experimental model was prepared, implanting the samples in the subquadricipital articular space of the rabbit's knee. After 7 days of survival, the knee joint was opened wide through the previous surgical approach and the polyethylene sample was retrieved. The UHMWPE samples were processed following a sonication and quantification protocol. Ten rabbits for each species were studied, five with each material. Negative controls (UHMWPE strips without attached bacteria) were also implanted in contralateral knees. S. aureus colonies were detected only in three rabbits with non-treated UHMWPE and in two with vitamin E-doped UHMWPE. No differences in colony counts were observed for S. aureus. No growth was detected for S. epidermidis, although clinical signs of infection were detected in all animals with inoculated samples. The model was useful to evaluate the effect of modifications in biomaterials, although highly pathogenic bacteria are needed to obtain quantifiable data.

  15. Influence of the graphite type in the mechanical properties of graphene nanosheets and ultra high molecular weight polyethylene (GN/UHMWPE) nanocomposites; Influencia do tipo de grafite nas propriedades mecanicas do nanocomposito de nanolaminas de grafeno com polietileno de ultra alta massa molar (NG/PEUAPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.E. de A.; Coutinho, S.V.; Fim, F. de C., E-mail: fabianafim@ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Engenharia de Materiais

    2016-07-01

    This paper studies the mechanical properties of graphene nanosheets and ultra high molecular weight polyethylene (GN/UHMWPE) nanocomposites. The graphene nanosheets were obtained by two methods: the first, from Graphite Micrograf HC11 after 8 hours in a ultrasound bath in 70% alcoholic solution; the second, from Graflake 9950 prepared by oxidizing with H{sub 2}SO{sub 4}/HNO{sub 3} (4:1), followed by thermal expansion at 1050°C for 30 seconds and ultrasound bath for 20 hours. Both were oven dried for 24 hours at 110°C and subsequently added to the polymer in percentages of 0.5, 1.0 and 1.5% (w/w). The powders of the nanocomposites were mixed in a ball mill for 1 hour and molded by hot compression. XRD and SEM images was possible to verify that the Graflake's GN had higher delamination that the Micrograph's GN. The mechanical properties were affected in different percentages for each graphite type. (author)

  16. Tensile strength of solution-spun, ultradrawn ultrahigh-molecular-weight polyethylene fibers. 1. Influence of fiber diameter

    OpenAIRE

    Bastiaansen, C.W.M.

    1992-01-01

    The influence of fiber diam. on the tensile strength of soln.-spun, ultradrawn, ultrahigh-mol.-wt. polyethylene (UHMWPE, mol. wt. >103 kg/mol) fibers was studied. Fibers with a wide range of diams. were produced by varying the polymer concn. in soln. and by applying a drawdown to the fibers. The tensile strength of drawn fibers was compared at a const. Young's modulus in order to eliminate the influence of morphol. parameters, such as degree of chain orientation and extension, on the fracture...

  17. Characteristics of Friction Stir Processed UHMW Polyethylene Based Composite

    Science.gov (United States)

    Hussain, G.; Khan, I.

    2018-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) based composites are widely used in biomedical and food industries because of their biocompatibility and enhanced properties. The aim of this study was to fabricate UHMWPE / nHA composite through heat assisted Friction Stir Processing. The rotational speed (ω), feed rate (f), volume fraction of nHA (v) and shoulder temperature (T) were selected as the process parameters. Macroscopic and microscopic analysis revealed that these parameters have significant effects on the distribution of reinforcing material, defects formation and material mixing. Defects were observed especially at low levels of (ω, T) and high levels of (f, v). Low level of v with medium levels of other parameters resulted in better mixing and minimum defects. A 10% increase in strength with only 1% reduction in Percent Elongation was observed at the above set of conditions. Moreover, the resulted hardness of the composite was higher than that of the parent material.

  18. Oxidation and Free Radical Decay in Vitamin E-stabilized, Radiation Cross-linked UHMWPE

    International Nuclear Information System (INIS)

    Oral, E.

    2006-01-01

    A novel a-tocopherol (vitamin E, α-T)-stabilized, cross-linked ultra-high molecular weight polyethylene (UHMWPE) (αTPE) was developed for total joint arthroplasty as a bearing surface with low wear and improved mechanical properties. Accelerated aging showed α-T protects irradiated UHMWPE against oxidation. However, accelerated aging may not truly reflect in vivo and shelf oxidation. We used real-time aging to monitor the evolution of oxidation and free radical signals of α-T to determine the mechanism of oxidative stability. UHMWPE blocks (30x30x10 mm) were machined and γ-irradiated (85 kGy) in argon. The blocks were doped in α-T for 5 hours at 120 degree and homogenized for 64 hours at 120 degree in argon, packaged in vacuum and γ-sterilized (25 kGy). Samples were aged in air at room temperature, in air at 40 degree and in water at 40 degree. Measurements were at 1, 2, 3, 4 and 7 months. Sections cut from the aged blocks (150μm) were boiled in hexane overnight to extract free species and evaluated by FTIR. Oxidation indices were calculated by taking the area under the carbonyl peak and normalizing it to a skeletal peak. ESR was used to determine the content and type of free radicals. Control was 100-kGy irradiated, unstabilized UHMWPE. αTPE showed a small amount of oxidation, which stabilized after 2 months. This indicated that the decay of the hydroperoxides formed by the reaction of the residual free radicals with oxygen was exhausted by α-T due to its ability to scavenge free radicals. In contrast, control UHMWPE continued to oxidize because the residual free radicals likely continued to form hydroperoxides and additional free radicals, furthering the oxidation reactions. There was a shift in the free radical signature of both αTPE and control from the sextet alkyl/allyl radicals to a sharp singlet during aging. Most likely, trapped free radicals move along the crystal stems until they react with another free radical or until they reach the crystal

  19. Do oxidized zirconium femoral heads reduce polyethylene wear in cemented THAs? A blinded randomized clinical trial.

    Science.gov (United States)

    Zaoui, Amine; Hage, Samer El; Langlois, Jean; Scemama, Caroline; Courpied, Jean Pierre; Hamadouche, Moussa

    2015-12-01

    Charnley low-friction torque total hip arthroplasty (THA) remains the gold standard in THA. The main cause for failure is wear of the socket. Highly crosslinked polyethylene (HXLPE) has been associated with reduced wear rates. Also, oxidized zirconium has shown in vitro reduced wear rates. However, to our knowledge, there are no data comparing oxidized zirconium femoral heads with metal heads against HXLPE or ultrahigh-molecular-weight polyethylene (UHMWPE) when 22.25-mm bearings were used, which was the same size that performed so well in Charnley-type THAs. We hypothesized that after a minimal 4-year followup (1) use of HXLPE would result in lower radiographic wear than UHMWPE when articulating with a stainless steel head or with an oxidized zirconium head; (2) use of oxidized zirconium would result in lower radiographic wear than stainless steel when articulating with UHMWPE and HXLPE; and (3) there would be no difference in terms of Merle d'Aubigné scores between the bearing couple combinations. One hundred patients were randomized to receive cemented THA with either oxidized zirconium or a stainless steel femoral head. UHMWPE was used in the first 50 patients, whereas HXLPE was used in the next 50 patients. There were 25 patients in each of the four bearing couple combinations. All other parameters were identical in both groups. Complete followup was available in 86 of these patients. Femoral head penetration was measured using a validated computer-assisted method dedicated to all-polyethylene sockets. Clinical results were compared between the groups using the Merle d'Aubigné score. In the UHMWPE series, the median steady-state penetration rate from 1 year onward was 0.03 mm/year (range, 0.003-0.25 mm/year) in the oxidized zirconium group versus 0.11 mm/year (range, 0.03-0.29 mm/year) in the metal group (difference of medians 0.08, p zirconium group versus 0.05 mm/year (range, -0.39 to 0.11 mm/year) in the metal group (difference of medians 0.03, p

  20. Does vitamin E-blended polyethylene reduce wear in primary total hip arthroplasty: a blinded randomised clinical trial.

    Science.gov (United States)

    Scemama, Caroline; Anract, Philippe; Dumaine, Valérie; Babinet, Antoine; Courpied, Jean Pierre; Hamadouche, Moussa

    2017-06-01

    Some data indicate that first-generation highly cross-linked polyethylene (HXLPE) can oxidise in vivo and is associated with reduced mechanical properties. To overcome these limitations, a natural anti-oxidant vitamin E has been added to HXLPE to preserve the mechanical properties and decrease oxidative degradation whilst conserving high wear resistance. We hypothesised that after a minimal three years of follow-up the use of vitamin E-blended HXLPE would result in lower radiographic wear when compared with ultra-high molecular weight polyethylene (UHMWPE). One hundred patients were randomised to receive hybrid total hip arthroplasty (THA) using a monoblock cementless acetabular component made either of UHMWPE or vitamin E-blended HXLPE. All other parameters were identical in both groups. Complete follow-up was available for 74 of these patients. Femoral head penetration was measured using a validated computer-assisted method. The median creep measured 0.111 mm (range, -0.576 - +0.444 mm) in the vitamin E-blended group versus 0.170 mm (range, -0.861 - +0.884 mm) in the UHMWPE group (difference of medians, 0.059; p = 0.046). The median steady state penetration rate was -0.008 mm/year (range, -0.88 - +0.64 mm/year) in the vitamin E-blended group versus 0.133 mm/year (range, -0.84 - +0.85 mm/year) in the UHMWPE group (difference of medians 0.141, p = 0.043). This study demonstrated that femoral head penetration was lower when using vitamin E-blended HXLPE when compared with UHMWPE, with a steady-state penetration rate far below the osteolysis threshold. Longer-term follow-up is needed to warrant whether wear reduction will generate less occurrence of osteolysis and aseptic loosening.

  1. Wear of cross-linked polyethylene against itself: a material suitable for surface replacement of the finger joint.

    Science.gov (United States)

    Sibly, T F; Unsworth, A

    1991-05-01

    Cross-linking of polyethylene (XLPE) has dramatically improved its properties in industrial applications, and it may also have some application in the field of human joint replacement. Additionally it has the advantage of permitting a lower molecular weight base material to be used, so that components may be injection moulded rather than machined. This study therefore investigates the wear resistance of medical grade cross-linked polyethylene (XLPE), cross-linked by a silane-grafting process, with a molecular weight between cross links of 5430 g mol(-1). This first report investigates the wear resistance of XLPE against itself, because for certain joints, such as the metacarpo-phalangeal joint, the material may have a high enough wear resistance to allow both bearing surfaces to be made from it. Tests were carried out both on a reciprocating pin and plate machine with pins loaded at 10 and 40 N and also on a new finger joint simulator, which simulates the loads applied to and the movements of, the metacarpo-phalangeal joint. An average wear rate of 1.8 x 10(-6) mm3 N-1 m-1 was found (range 0.9-2.75 x 10(-6) mm3 N-1 m-1). This is about six times greater than the wear rate of non-cross-linked ultra high molecular weight polyethylene (UHMWPE) against stainless steel, but for applications with low loading, such as the metacarpo-phalangeal joint, this material is shown to have adequate wear resistance. The coefficient of friction was 0.1, which is similar to that of UHMWPE on stainless steel.

  2. Comportamento balístico de compósito de polietileno de altíssimo peso molecular: efeito da radiação gama Ballistic behaviour of ultra-high molecular weight polyethylene: effect of gamma radiation

    Directory of Open Access Journals (Sweden)

    Andreia L. S. Alves

    2004-06-01

    polyethylene (UHMWPE fibers are used in the production of armor materials, for personnel protection and armored vehicles. As these have been developed and commercialized more recently, there is not enough information about the action of the ionizing radiation in the ballistic performance of this armor material. In the present work the ballistic behavior of composite plates manufactured with ultrahigh molecular weight polyethylene (UHMWPE fibers were evaluated after exposure to gamma radiation. The ballistic tests results were related to the macromolecular modifications induced by the environmental degradation through mechanical (hardness, impact and flexure and physicochemical (infrared spectroscopy, differential scanning calorimetry and thermal gravimetric analysis tests. Our results indicate that gamma irradiation induces modifications in the UHMWPE macromolecular chains, altering the mechanical properties of the composite and decreasing, for higher radiation doses, its ballistic performance. These results are presented and discussed.

  3. Význam a vlastnosti UHMWPE v aloplastice velkých kloubů z pohledu moderní medicíny

    Czech Academy of Sciences Publication Activity Database

    Fulín, P.; Pokorný, D.; Sosna, A.; Štefan, J.; Šlouf, Miroslav; Nevoralová, Martina

    -, č. 2 (2014), s. 20-22 ISSN 1803-3679 R&D Projects: GA TA ČR TA01011406 Institutional support: RVO:61389013 Keywords : UHMWPE * polyethylen * joint replacement Subject RIV: CD - Macromolecular Chemistry http://www. medicina aumeni.cz/index.php?action=44

  4. Influence of ethylene glycol pretreatment on effectiveness of atmospheric pressure plasma treatment of polyethylene fibers

    International Nuclear Information System (INIS)

    Wen Ying; Li Ranxing; Cai Fang; Fu Kun; Peng Shujing; Jiang Qiuran; Yao Lan; Qiu Yiping

    2010-01-01

    For atmospheric pressure plasma treatments, the results of plasma treatments may be influenced by liquids adsorbed into the substrate. This paper studies the influence of ethylene glycol (EG) pretreatment on the effectiveness of atmospheric plasma jet (APPJ) treatment of ultrahigh molecular weight polyethylene (UHMWPE) fibers with 0.31% and 0.42% weight gain after soaked in EG/water solution with concentration of 0.15 and 0.3 mol/l for 24 h, respectively. Scanning electron microscopy (SEM) shows that the surface of fibers pretreated with EG/water solution does not have observable difference from that of the control group. The X-ray photoelectron spectroscopy (XPS) results show that the oxygen concentration on the surface of EG-pretreated fibers is increased less than the plasma directly treated fibers. The interfacial shear strength (IFSS) of plasma directly treated fibers to epoxy is increased almost 3 times compared with the control group while that of EG-pretreated fibers to epoxy does not change except for the fibers pretreated with lower EG concentration and longer plasma treatment time. EG pretreatment reduces the water contact angle of UHMWPE fibers. In conclusion, EG pretreatment can hamper the effect of plasma treatment of UHMWPE fibers and therefore longer plasma treatment duration is required for fibers pretreated with EG.

  5. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint.

    Science.gov (United States)

    Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe

    2015-02-01

    Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Photodegradation of UHMWPE Compounded with Annatto and Beetroot Extracts

    Directory of Open Access Journals (Sweden)

    Alexandre Rangel de Sousa

    2016-01-01

    Full Text Available We observed the anti-UV action of beetroot extract in an ultra-high molecular weight (UHMWPE matrix. The beetroot extract and the one prepared from annatto seed also acted efficiently as pigment to the same polymeric matrix. Neat UHMWPE and UHMWPE compounded with annatto and beet extract were compression molded and tensile specimens were obtained from the molded plates and submitted to UV radiation for up to 42 days. Tensile tests were performed and it was observed that the beet extract had a stabilizing action in the polymer compared to neat polymer and the one with annatto extract. Complementary analyses showed good homogenization of the extracts through the polymer matrix indicating the possibility of use as pigment, although the annatto extract appeared to be very unstable under irradiation. Spectroscopic characterization helped to explain the stability of the extracts before and after molding.

  7. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reznickova, Alena, E-mail: alena.reznickova@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Novotna, Zdenka, E-mail: zdenka1.novotna@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Kolska, Zdenka [Faculty of Science, J.E. Purkyně University, 400 96 Usti nad Labem (Czech Republic); Kasalkova, Nikola Slepickova [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Rimpelova, Silvie [Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Svorcik, Vaclav [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic)

    2015-07-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. - Highlights: • Plasma activation of LDPE, HDPE and UHMWPE • Study of surface properties by several techniques: ARXPS, AFM, zeta-potential, and goniometry • Investigation of adhesion and spreading of vascular smooth muscle cells (VSMCs) and mouse fibroblasts (L929)

  8. A Multicenter Approach Evaluating the Impact of Vitamin E-Blended Polyethylene in Cementless Total Hip Replacement

    Science.gov (United States)

    Jäger, Marcus; van Wasen, Andrea; Warwas, Sebastian; Landgraeber, Stefan; Haversath, Marcel; Group, VITAS

    2014-01-01

    Since polyethylene is one of the most frequently used biomaterials as a liner in total hip arthroplasty, strong efforts have been made to improve design and material properties over the last 50 years. Antioxidants seems to be a promising alternative to further increase durability and reduce polyethylene wear in long term. As of yet, only in vitro results are available. While they are promising, there is yet no clinical evidence that the new material shows these advantages in vivo. To answer the question if vitamin-E enhanced ultra-high molecular weight polyethylene (UHMWPE) is able to improve long-term survivorship of cementless total hip arthroplasty we initiated a randomized long-term multicenter trial. Designed as a superiority study, the oxidation index assessed in retrieval analyses of explanted liners was chosen as primary parameter. Radiographic results (wear rate, osteolysis, radiolucency) and functional outcome (Harris Hip Scores, University of California-Los Angeles, Hip Disability and Osteoarthritis Outcome Score, Visual Analogue Scale) will serve as secondary parameters. Patients with the indication for a cementless total hip arthroplasty will be asked to participate in the study and will be randomized to either receive a standard hip replacement with a highly cross-linked UHMWPE-X liner or a highly cross-linked vitamin-E supplemented UHMWPE-XE liner. The follow-up will be 15 years, with evaluation after 5, 10 and 15 years. The controlled randomized study has been designed to determine if Vitamin-E supplemented highly cross-linked polyethylene liners are superior to standard XLPE liners in cementless total hip arthroplasty. While several studies have been started to evaluate the influence of vitamin-E, most of them evaluate wear rates and functional results. The approach used for this multicenter study, to analyze the oxidation status of retrieved implants, should make it possible to directly evaluate the ageing process and development of the implant

  9. A multicenter approach evaluating the impact of vitamin E-blended polyethylene in cementless total hip replacement

    Directory of Open Access Journals (Sweden)

    Marcus Jäger

    2014-04-01

    Full Text Available Since polyethylene is one of the most frequently used biomaterials as a liner in total hip arthroplasty, strong efforts have been made to improve design and material properties over the last 50 years. Antioxidants seems to be a promising alternative to further increase durability and reduce polyethylene wear in long term. As of yet, only in vitro results are available. While they are promising, there is yet no clinical evidence that the new material shows these advantages in vivo. To answer the question if vitamin-E enhanced ultra-high molecular weight polyethylene (UHMWPE is able to improve long-term survivorship of cementless total hip arthroplasty we initiated a randomized long-term multicenter trial. Designed as a superiority study, the oxidation index assessed in retrieval analyses of explanted liners was chosen as primary parameter. Radiographic results (wear rate, osteolysis, radiolucency and functional outcome (Harris Hip Scores, University of California-Los Angeles, Hip Disability and Osteoarthritis Outcome Score, Visual Analogue Scale will serve as secondary parameters. Patients with the indication for a cementless total hip arthroplasty will be asked to participate in the study and will be randomized to either receive a standard hip replacement with a highly cross-linked UHMWPE-X liner or a highly cross-linked vitamin-E supplemented UHMWPE-XE liner. The follow-up will be 15 years, with evaluation after 5, 10 and 15 years. The controlled randomized study has been designed to determine if Vitamin-E supplemented highly cross-linked polyethylene liners are superior to standard XLPE liners in cementless total hip arthroplasty. While several studies have been started to evaluate the influence of vitamin-E, most of them evaluate wear rates and functional results. The approach used for this multicenter study, to analyze the oxidation status of retrieved implants, should make it possible to directly evaluate the ageing process and development

  10. Wear resistant performance of highly cross-linked and annealed ultra-high molecular weight polyethylene against ceramic heads in total hip arthroplasty.

    Science.gov (United States)

    Sato, Taishi; Nakashima, Yasuharu; Akiyama, Mio; Yamamoto, Takuaki; Mawatari, Taro; Itokawa, Takashi; Ohishi, Masanobu; Motomura, Goro; Hirata, Masanobu; Iwamoto, Yukihide

    2012-12-01

    The purpose of this study was to examine the effects of ceramic femoral head material, size, and implantation periods on the wear of annealed, cross-linked ultra-high molecular weight polyethylene (UHMWPE) (XLPE) in total hip arthroplasty compared to non-cross-linked conventional UHMWPE (CPE). XLPE was fabricated by cross-linking with 60 kGy irradiation and annealing. Femoral heads made from zirconia and alumina ceramics and cobalt-chrome (CoCr) of 22 or 26 mm diameter were used. In this retrospective cohort study, the femoral head penetration into the cup was measured digitally on radiographs of 367 hips with XLPE and 64 hips with CPE. The average follow-up periods were 6.3 and 11.9 years, respectively. Both XLPE creep and wear rates were significantly lower than those of CPE (0.19 mm vs. 0.44 mm, 0.0001 mm/year vs. 0.09 mm/year, respectively). Zirconia displayed increased wear rates compared to alumina in CPE; however, there was no difference among head materials in XLPE (0.0008, 0.00007, and -0.009 mm/year for zirconia, alumina, and CoCr, respectively). Neither head size or implantation period impacted XLPE wear. In contrast to CPE, XLPE displayed low wear rates surpassing the effects of varying femoral head material, size, implantation period, and patient demographics. Further follow-up is required to determine the long-term clinical performance of the annealed XLPE. Copyright © 2012 Orthopaedic Research Society.

  11. Modification of UHMWPE membrane with a PE/clay/PE-G-MA nano composite film to treat oily effluents; Modificacao de membrana de PEUAPM com filme nanocomposito de PEAD/argila/PE-G-MA para o tratamento de efluentes oleosos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Suelem S.L.; Silva, Caio M.B.; Leal, Tania L; Carvalho, Laura H; Costa, Anna R.M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)], e-mail: tanlucleal@yahoo.com.br

    2011-07-01

    Interest in techniques of surface modification is evinced by the large number of studies in recent decades. In this work the internal surfaces of polymeric membranes of ultra high molecular weight polyethylene (UHMWPE) were modified by impregnation of HDPE/organoclay/PE-g-MA nanocomposite film. The addition of PE-g-MA aims to increase polymer/clay interaction and to control and/or modify surface characteristics of UHMWPE membranes, such as permeability and pore size, so as to make the membranes more efficient and/or appropriate for effluent treatment, more specifically in the treatment of oil contaminated water. The films were analyzed by infrared spectroscopy (FTIR), the modified membranes were characterized by scanning electron microscopy (SEM) and their performance (permeate flux and selectivity) were measured using distilled water and an oil in water dispersion. (author)

  12. Development and Characterization of UHMWPE Fiber-Reinforced Hydrogels For Meniscal Replacement

    Science.gov (United States)

    Holloway, Julianne Leigh

    Meniscal tears are the most common orthopedic injuries to the human body. The current treatment of choice, however, is a partial meniscectomy that leads to osteoarthritis proportional to the amount of tissue removed. As a result, there is a significant clinical need to develop materials capable of restoring the biomechanical contact stress distribution to the knee after meniscectomy and preventing the onset of osteoarthritis. In this work, a fiber-reinforced hydrogel-based synthetic meniscus was developed that allows for tailoring of the mechanical properties and molding of the implant to match the size, shape, and property distribution of the native tissue. Physically cross-linked poly(vinyl alcohol) (PVA) hydrogels were reinforced with ultrahigh molecular weight polyethylene (UHMWPE) fibers and characterized in compression (0.1-0.8 MPa) and tension (0.1-250 MPa) showing fine control over mechanical properties within the range of the human meniscus. Morphology and crystallinity analysis of PVA hydrogels showed increases in crystallinity and PVA densification, or phase separation, with freeze-thaw cycles. A comparison of freeze-thawed and aged, physically cross-linked hydrogels provided insight on both crystallinity and phase separation as mechanisms for PVA gelation. Results indicated both mechanisms independently contributed to hydrogel modulus for freeze-thawed hydrogels. In vitro swelling studies were performed using osmotic solutions to replicate the swelling pressure present in the knee. Minimal swelling was observed for hydrogels with a PVA concentration of 30-35 wt%, independently of hydrogel freeze-thaw cycles. This allows for independent tailoring of hydrogel modulus and pore structure using freeze-thaw cycles and swelling behavior using polymer concentration to match a wide range of properties needed for various soft tissue applications. The UHMWPE-PVA interface was identified as a significant weakness. To improve interfacial adhesion, a novel

  13. High frequency circular translation pin-on-disk method for accelerated wear testing of ultrahigh molecular weight polyethylene as a bearing material in total hip arthroplasty.

    Science.gov (United States)

    Saikko, Vesa

    2015-01-21

    The temporal change of the direction of sliding relative to the ultrahigh molecular weight polyethylene (UHMWPE) component of prosthetic joints is known to be of crucial importance with respect to wear. One complete revolution of the resultant friction vector is commonly called a wear cycle. It was hypothesized that in order to accelerate the wear test, the cycle frequency may be substantially increased if the circumference of the slide track is reduced in proportion, and still the wear mechanisms remain realistic and no overheating takes place. This requires an additional slow motion mechanism with which the lubrication of the contact is maintained and wear particles are conveyed away from the contact. A three-station, dual motion high frequency circular translation pin-on-disk (HF-CTPOD) device with a relative cycle frequency of 25.3 Hz and an average sliding velocity of 27.4 mm/s was designed. The pins circularly translated at high frequency (1.0 mm per cycle, 24.8 Hz, clockwise), and the disks at low frequency (31.4mm per cycle, 0.5 Hz, counter-clockwise). In a 22 million cycle (10 day) test, the wear rate of conventional gamma-sterilized UHMWPE pins against polished CoCr disks in diluted serum was 1.8 mg per 24 h, which was six times higher than that in the established 1 Hz CTPOD device. The wear mechanisms were similar. Burnishing of the pin was the predominant feature. No overheating took place. With the dual motion HF-CTPOD method, the wear testing of UHMWPE as a bearing material in total hip arthroplasty can be substantially accelerated without concerns of the validity of the wear simulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Tribo-biological deposits on the articulating surfaces of metal-on-polyethylene total hip implants retrieved from patients

    Science.gov (United States)

    Cui, Zhiwei; Tian, Yi-Xing; Yue, Wen; Yang, Lei; Li, Qunyang

    2016-06-01

    Artificial total hip arthroplasty (THA) is one of the most effective orthopaedic surgeries that has been used for decades. However, wear of the articulating surfaces is one of the key failure causes limiting the lifetime of total hip implant. In this paper, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were employed to explore the composition and formation mechanism of the tribo-layer on the articulating surfaces of metal-on-polyethylene (MoPE) implants retrieved from patients. Results showed that, in contrast to conventional understanding, the attached tribo-layer contained not only denatured proteins but also a fraction of polymer particles. The formation of the tribo-layer was believed to relate to lubrication regime, which was supposed to be largely affected by the nature of the ultra-high-molecule-weight-polyethylene (UHMWPE). Wear and formation of tribo-layer could be minimized in elasto-hydrodynamic lubrication (EHL) regime when the UHMWPE was less stiff and have a morphology containing micro-pits; whereas the wear was more severe and tribo-layer formed in boundary lubrication. Our results and analyses suggest that enhancing interface lubrication may be more effective on reducing wear than increasing the hardness of material. This finding may shed light on the design strategy of artificial hip joints.

  15. Radiation Shielding of Lunar Regolith/Polyethylene Composites and Lunar Regolith/Water Mixtures

    Science.gov (United States)

    Johnson, Quincy F.; Gersey, Brad; Wilkins, Richard; Zhou, Jianren

    2011-01-01

    Space radiation is a complex mixed field of ionizing radiation that can pose hazardous risks to sophisticated electronics and humans. Mission planning for lunar exploration and long duration habitat construction will face tremendous challenges of shielding against various types of space radiation in an attempt to minimize the detrimental effects it may have on materials, electronics, and humans. In late 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) discovered that water content in lunar regolith found in certain areas on the moon can be up to 5.6 +/-2.8 weight percent (wt%) [A. Colaprete, et. al., Science, Vol. 330, 463 (2010). ]. In this work, shielding studies were performed utilizing ultra high molecular weight polyethylene (UHMWPE) and aluminum, both being standard space shielding materials, simulated lunar regolith/ polyethylene composites, and simulated lunar regolith mixed with UHMWPE particles and water. Based on the LCROSS findings, radiation shielding experiments were conducted to test for shielding efficiency of regolith/UHMWPE/water mixtures with various percentages of water to compare relative shielding characteristics of these materials. One set of radiation studies were performed using the proton synchrotron at the Loma Linda Medical University where high energy protons similar to those found on the surface of the moon can be generated. A similar experimental protocol was also used at a high energy spalation neutron source at Los Alamos Neutron Science Center (LANSCE). These experiments studied the shielding efficiency against secondary neutrons, another major component of space radiation field. In both the proton and neutron studies, shielding efficiency was determined by utilizing a tissue equivalent proportional counter (TEPC) behind various thicknesses of shielding composite panels or mixture materials. Preliminary results from these studies indicated that adding 2 wt% water to regolith particles could increase shielding of

  16. Natural polyphenols enhance stability of crosslinked UHMWPE for joint implants.

    Science.gov (United States)

    Shen, Jie; Gao, Guorong; Liu, Xincai; Fu, Jun

    2015-03-01

    Radiation-crosslinked UHMWPE has been used for joint implants since the 1990s. Postirradiation remelting enhances oxidative stability, but with some loss in strength and toughness. Vitamin E-stabilized crosslinked UHMWPE has shown improved strength and stability as compared with irradiated and remelted UHMWPE. With more active phenolic hydroxyl groups, natural polyphenols are widely used in the food and pharmaceutical industries as potent stabilizers and could be useful for oxidative stability in crosslinked UHMWPE. We asked whether UHMWPE blended with polyphenols would (1) show higher oxidation resistance after radiation crosslinking; (2) preserve the mechanical properties of UHMWPE after accelerated aging; and (3) alter the wear resistance of radiation-crosslinked UHMWPE. The polyphenols, gallic acid and dodecyl gallate, were blended with medical-grade UHMWPE followed by consolidation and electron beam irradiation at 100 kGy. Radiation-crosslinked virgin and vitamin E-blended UHMWPEs were used as reference materials. The UHMWPEs were aged at 120 °C in air with oxidation levels analyzed by infrared spectroscopy. Tensile (n = 5 per group) and impact (n = 3 per group) properties before and after aging as per ASTM F2003 were evaluated. The wear rates were examined by pin-on-disc testing (n = 3 per group). The data were reported as mean ± SDs. Statistical analysis was performed by using Student's t-test for a two-tailed distribution with unequal variance for tensile and impact data obtained with n ≥ 3. A significant difference is defined with p Accelerated aging of these polyphenol-blended UHMWPEs resulted in ultimate tensile strength of 50.4 ± 1.4 MPa and impact strength of 53 ± 5 kJ/m(2) for 100 kGy-irradiated UHMWPE with 0.05 wt% dodecyl gallate, for example, in comparison to 51.2 ± 0.7 MPa (p = 0.75) and 58 ± 5 kJ/m(2) (p = 0.29) before aging. The pin-on-disc wear rates of 100 kGy-irradiated UHMWPE with 0.05 wt% dodecyl gallate and 0.05 wt% gallic acid

  17. An activated energy approach for accelerated testing of the deformation of UHMWPE in artificial joints.

    Science.gov (United States)

    Galetz, Mathias Christian; Glatzel, Uwe

    2010-05-01

    The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process. The activation energy and volume of that process do not change between 23 degrees C and 50 degrees C. This suggests that the deformation mechanism under compression remains stable within this temperature range. Tribological tests are conducted to transfer this activated energy approach to the deformation behavior under loading typical for artificial knee joints. While this approach does not cover the wear mechanisms close to the surface, testing at higher temperatures is shown to have a significant potential to reduce the testing time for lifetime predictions in terms of the macroscopic creep and deformation behavior of artificial joints. Copyright 2010. Published by Elsevier Ltd.

  18. Trace concentrations of vitamin E protect radiation crosslinked UHMWPE from oxidative degradation.

    Science.gov (United States)

    Kurtz, S M; Dumbleton, J; Siskey, R S; Wang, A; Manley, M

    2009-08-01

    The effect of very low concentrations of Vitamin E on the stability and mechanical behavior of UHMWPE remains unknown. We tested the hypothesis that the oxidation resistance of Vitamin E-blended UHMWPE would be influenced by trace doses of antioxidant, resin, and radiation treatment. Trace concentrations (Vitamin E) were blended separately with GUR 1020 and 1050 resins and molded into disks. From each disk, three groups of 10 mm thick blocks were machined: (1) no irradiation (control); (2) 30 kGy of gamma irradiation in nitrogen; and (3) 75 kGy of gamma irradiation in air. Specimens were subjected to three aging protocols: (a) no aging (control); (b) two weeks and (c) four weeks of accelerated aging in accordance with ASTM F 2003 (i.e., 70 degrees C and 5 atm oxygen). The minimum concentration of Vitamin E needed to stabilize UHMWPE during our accelerated tests depended upon the method of radiation processing. For the 30 and 75 kGy irradiated materials, the addition of 125 ppm or more Vitamin E was sufficient to maintain baseline mechanical and chemical properties through two weeks of accelerated aging. For these groups, the addition of 375 ppm or 500 ppm, respectively, was necessary to maintain baseline mechanical and chemical properties throughout the four-week accelerated aging period. UHMWPE resin molecular weight did not have an effect on oxidation behavior. The results of this experiment therefore supported our hypotheses that trace concentrations of Vitamin E, coupled with radiation treatment-but not resin grade-influence the mechanical and oxidative degradation behavior of UHMWPE.

  19. Welding behavior of semi-crystalline polymers 2. The effect of cocrystallisation on autoadhesion

    NARCIS (Netherlands)

    Xue, Y.-Q.; Tervoort, T.A.; Rastogi, S.; Lemstra, P.J.

    2000-01-01

    The effect of cocrystallization on the welding behavior of semicrystalline polymers was studied by means of T-peel testing at room temperature, using ultrahigh-molecular-weight polyethylene (UHMWPE) as a model polymer. Solution-cast films of UHMWPE have a very special morphology, consisting of

  20. Disentangled solid state and metastable polymer melt; a solvent free route to high-modulus high-strength tapes and films of UHMWPE

    Science.gov (United States)

    Rastogi, Sanjay

    2013-03-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) having average molar mass greater than a million g/mol is an engineering polymer. Due to its light-weight, high abrasion resistance and biocompatibility it is used for demanding applications such as body armour, prostheses etc. At present, because of its high melt viscosity to achieve the uniaxial/biaxial properties in the form of fibers/films the polymer is processed via solution route where nearly 95wt% of the solvent is used to process 5wt% of the polymer. In past several attempts have been made to process the polymer without using any solvent. However, compared to the solvent processing route the achieved mechanical properties were rather poor. Here we show that by controlled synthesis it is feasible to obtain UHMWPE that could be processed free of solvent to make uniaxial tapes and biaxial films, having unprecedented mechanical properties, exceeding that of the solution spun fibers. We address some of the fundamental aspects of chemistry, physics, rheology and processing for the development of desired morphological features to achieve the ultimate mechanical properties in tapes and films. The paper will also address the metastable melt state obtained on melting of the disentangled crystals and its implication on rheology in linear and nonlinear viscoelastic region. Solid state NMR studies will be applied to establish disentangled state in solid state to the polymerisation conditions. References: Macromolecules 2011, 44(14), 5558-5568; Nature Materials 2005, 4, 635-641; Phys Rev Lett 2006, 96(21), 218303-218205. The authors acknowledge financial support by the Dutch Polymer Institute.

  1. Biotribological behavior of Ag-ZrCxN1-x coatings against UHMWPE for joint prostheses devices.

    Science.gov (United States)

    Calderon V, S; Sánchez-López, J C; Cavaleiro, A; Carvalho, S

    2015-01-01

    This study aims to evaluate the structural, mechanical and tribological properties of zirconium carbonitrides (ZrCxN1-x) coatings with embedded silver nanoparticles, produced with the intention of achieving a material with enhanced multi-functional properties, including mechanical strength, corrosion resistance, tribological performance and antibacterial behavior suitable for their use in joint prostheses. The coatings were deposited by direct current (DC) reactive magnetron sputtering onto 316 L stainless steel, changing the silver content from 0 to 20 at% by modifying the current density applied to the targets. Different nitrogen and acetylene gas fluxes were used as reactive gases. The coatings revealed different mixtures of crystalline ZrCxN1-x, silver nanoparticles and amorphous carbon phases. The hardness of the films was found to be mainly controlled by the ratio between the hard (ZrCxN1-x) and soft (Ag and amorphous carbon) phases in the films, fluctuating between 7.4 and 20.4 GPa. The coefficient of friction, measured against ultra-high molecular weight polyethylene (UHMWPE) in Hank's balanced salt solution with 10 gL(-1) albumin, is governed by the surface roughness and hardness. The UHMWPE wear rates were in the same order of magnitude (between 1.4 and 2.0 × 10(-6)mm(3)N(-1)m(-1)), justified by the effect of the protective layer of albumin formed during the tests. The small differences were due to the hydrophobic/hydrophilic character of the surface, as well as to the silver content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Thermal Response of UHMWPE Materials in a Flash Flame Test Environment

    Science.gov (United States)

    2014-11-13

    protection. The UHMWPE fabric immediately began disintegrating during the flash flame exposure. During the test, one end of the UHMWPE fabric...UHMWPE material after the test. There were places where the fabric material appeared to have melted and re-solidified, creating areas of solid plastic ...and Observations The midscale test results showed that any direct flame on the UHMWPE materials will cause rapid disintegration of the material

  3. Application of atmospheric pressure plasma on polyethylene for increased prosthesis adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Van Vrekhem, S., E-mail: stijn.vanvrekhem@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium); Cools, P. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium); Declercq, H. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium); Tissue Engineering Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 6B3, 9000 Ghent (Belgium); Van Tongel, A. [Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185 13K12, 9000 Ghent (Belgium); Vercruysse, C.; Cornelissen, M. [Tissue Engineering Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 6B3, 9000 Ghent (Belgium); De Geyter, N.; Morent, R. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium)

    2015-12-01

    Biopolymers are often subjected to surface modification in order to improve their surface characteristics. The goal of this study is to show the use of plasma technology to enhance the adhesion of ultra-high molecular weight polyethylene (UHMWPE) shoulder prostheses. Two different plasma techniques (low pressure plasma activation and atmospheric pressure plasma polymerization) are performed on UHMWPE to increase the adhesion between (1) the polymer and polymethylmethacrylate (PMMA) bone cement and (2) the polymer and osteoblast cells. Both techniques are performed using a dielectric barrier discharge (DBD). A previous paper showed that low pressure plasma activation of UHMWPE results in the incorporation of oxygen-containing functional groups, which leads to an increased surface wettability. Atmospheric pressure plasma polymerization of methylmethacrylate (MMA) on UHMWPE results in a PMMA-like coating, which could be deposited with a high degree of control of chemical composition and layer thickness. The thin film also proved to be relatively stable upon incubation in a phosphate buffer solution (PBS). This paper discusses the next stage of the study, which includes testing the adhesion of the plasma-activated and plasma-polymerized samples to bone cement through pull-out tests and testing the cell adhesion and proliferation on the samples. In order to perform the pull-out tests, all samples were cut to standard dimensions and fixed in bone cement in a reproducible way with a sample holder specially designed for this purpose. The cell adhesion and proliferation were tested by means of an MTS assay and live/dead staining after culturing MC3T3 osteoblast cells on UHMWPE samples. The results show that both plasma activation and plasma polymerization significantly improve the adhesion to bone cement and enhance cell adhesion and proliferation. In conclusion, it can be stated that the use of plasma technology can lead to an implant with improved quality and a subsequent

  4. Measurements of Free Radical in Vitamin E-Doped Ultra-High Molecular Weight Polyethylene: Dependence on Materials Processing and Irradiation Environments

    International Nuclear Information System (INIS)

    Ridley, M. D.

    2006-01-01

    In an effort to combat oxidation of the load-bearing, polyethylene (PE) components of total hip- and knee-joint replacement devices, antioxidant such as vitamin E (α-Tocopherol (α-T)) has been introduced into polymer matrix. In this study we investigated effect of α-T on free radicals in medical grade ultra-high molecular weight polyethylene (UHMWPE), GUR 1020 resin. Since oxidation resistance depends on radical reaction, we used electron spin resonance (ESR) technique for direct detection of free radicals before and after irradiation. High concentration (20% by vol.) of α-T was used so its ESR signal (due to α-T-O degree radical) could be distinguished among the overwhelming signals due to PE radicals. Two groups of samples were investigated. In one group, samples were prepared from blends of α-T and UHMWPE powder (α-T-P), and in the second group, from compression molded blocks (α-T-B). In each group, samples were γ-irradiated in sealed packages filled with N 2 , or in open air, and free radicals were measured in open air environment as a function of time. Also included in this study were α-T, and powder resin and compression molded blocks without any α-T. Following irradiation in air, α-T-P and α-T produced identical ESR spectra showing characteristic feature of α-T-O degree radical. Absence of PE radicals in the ESR signals suggests quenching/repairing of PE radicals by α-T in presence of oxygen. However, when irradiation was performed in N 2 , ESR signals of α-T-P exhibited superimposed resonance lines due to PE and α-T-O degree radicals. Furthermore, presence of a-T or α-T-O degree radicals did not prevent subsequent oxidation of PE radicals in producing stable, oxygen-induced radicals (OIR). Post-irradiation oxidation index measured by FTIR, however, did not show any difference between these samples. Compression molded samples, with or without α-T, produced ESR spectra showing features characteristics of PE radicals only, and there was no

  5. Measurements of free radical in vitamin E-doped ultra-high molecular weight polyethylene: Dependence on materials processing and irradiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, M.D. [Department of Physics, Biomaterials Research Laboratory, University of Memphis, 216 Manning Hall, Memphis, TN 38152 (United States); Jahan, M.S. [Department of Physics, Biomaterials Research Laboratory, University of Memphis, 216 Manning Hall, Memphis, TN 38152 (United States)], E-mail: mjahan@memphis.edu

    2007-12-15

    Ultra-high molecular weight polyethylene (UHMWPE), doped with vitamin E ({alpha}-tocopherol ({alpha}-T)), was irradiated with gamma rays in nitrogen (N{sub 2}) or air, and the resulting free radicals were detected in air using an electron spin resonance (ESR) technique. Two groups of samples were investigated. In one group, samples were prepared from blends of {alpha}-T (20 wt%) and UHMWPE powder (PPE-{alpha}-T) and, in the other, from compression molded blocks (CMPE-{alpha}-T). The CMPE-{alpha}-T blocks contained 0% (control), 0.5%, 1.0%, 10.0%, 15.0%, 20.0% and 25.0% {alpha}-T by weight. When irradiation was performed in air, the ESR spectrum of powder samples showed the presence of only vitamin E radical (tocopheroxyl, {alpha}-T-O{sup {center_dot}}), and there was no detectable signal due to PE radicals (alkyl/allyl). Most likely, all PE radicals were quenched by vitamin E during irradiation in air. However, when irradiation was performed in N{sub 2}, composite ESR spectra showed the presence of both PE and {alpha}-T-O{sup {center_dot}} radicals. Compared to the control (PPE, 0% {alpha}-T) PE radicals in PPE-20% {alpha}-T were found to be significantly reduced or quenched by {alpha}-T. The presence of {alpha}-T in powder samples, however, did not affect the long-term (71 days in this study) oxidation behavior of the PE radicals. Compression molded samples, with and without {alpha}-T, produced identical ESR spectra irrespective of their irradiation environment N{sub 2} or air. However, radical concentration, measured immediately after irradiation, was found to be an order of magnitude less in CMPE-{alpha}-T than in the control (CMPE-0% {alpha}-T). They also evidenced identical structural changes in the respective ESR spectra during subsequent oxidation for 24 days in open air. These observations suggest that {alpha}-T can effectively quench a significant fraction of PE radicals during irradiation, but has no measurable effect on subsequent reactions. No

  6. Influence of load and sliding velocity on wear resistance of solid-lubricant composites of ultra-high molecular weight polyethylene

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Buslovich, D. G.; Alexenko, V. O.; Ivanova, L. R.

    2017-12-01

    To determine the limits of the operation loading intervals appropriate for the use of solid lubricant UHMWPE composites in tribounits for mechanical engineering and medicine, the tribotechnical properties of UHMWPE blends with the optimum solid lubricant filler content (polytetrafluoroethylene, calcium stearate, molybdenum disulfide, colloidal graphite, boron nitride) are studied under dry sliding friction at different velocities (V = 0.3 and 0.5 m/s) and loads (P = 60 and 140 N). It is shown that the wear resistance of solid lubricant UHMWPE composites at moderate sliding velocities (V = 0.3 m/s) and loads (P = 60 N) increases 2-3 times in comparison with pure UHMWPE, while at high load P = 140 N wear resistance of both neat UHMWPE and its composites is reduced almost twice. At high sliding velocities and loads (up to P = 140 N), multiple increasing of the wear of pure UHMWPE and its composites takes place (by the factor of 5 to 10). The operational conditions of UHMWPE composites in tribounits in engineering and medicine are discussed.

  7. CR TKA UHMWPE Wear Tested after Artificial Aging of the Vitamin E Treated Gliding Component by Simulating Daily Patient Activities

    Directory of Open Access Journals (Sweden)

    Jens Schwiesau

    2014-01-01

    Full Text Available The wear behaviour of total knee arthroplasty (TKA is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE cruciate retaining (CR total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62±0.53 mg/million cycles falling within the limit of previous reports for established wear test methods.

  8. CR TKA UHMWPE wear tested after artificial aging of the vitamin E treated gliding component by simulating daily patient activities.

    Science.gov (United States)

    Schwiesau, Jens; Fritz, Bernhard; Kutzner, Ines; Bergmann, Georg; Grupp, Thomas M

    2014-01-01

    The wear behaviour of total knee arthroplasty (TKA) is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE) cruciate retaining (CR) total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62 ± 0.53 mg/million cycles falling within the limit of previous reports for established wear test methods.

  9. The coefficient of friction of UHMWPE along an entire walking cycle using a ball-on-disc tribometer under arthrokinematics and loading conditions prescribed by ISO 14243-3:2014.

    Science.gov (United States)

    Barceinas-Sanchez, J D O; Alvarez-Vera, M; Montoya-Santiyanes, L A; Dominguez-Lopez, I; Garcia-Garcia, A L

    2017-01-01

    The observation of tribological phenomena occurring in total knee replacement (TKR) simulators may be obscured by the intrinsic complexity of their operation: the dynamics and kinematics prescribed by the ISO 14243-3:2014 standard, and the geometry of the surfaces involved. On the other hand, evaluating the individual performance of the tribosystem elements may be carried out in simpler apparatuses. An experimental method is presented here, by means of which the arthrokinematics and loading conditions prescribed by the said standard are adapted to a ball-on-disc configuration in order to observe the behavior of the coefficient of friction along an entire walking cycle, using the contact point of an AISI 316L stainless steel ball rolling/sliding on an ultra-high molecular weight polyethylene (UHMWPE) disc, lubricated by a solution of fetal bovine serum, at 37°C. The method was tried on two different testing fluids prepared with protein concentrations of 20g/L, according to the said standard, and 36g/L, as received. The statistical model obtained for the behavior of the COF during the entire walking cycle may be used in numerical simulations of UHMWPE wear, under the conditions established by ISO 14243-3:2014. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Comparison of in vivo characteristics of polyethylene wear particles produced by a metal and a ceramic femoral component in total knee replacement].

    Science.gov (United States)

    Veigl, D; Vavřík, P; Pokorný, D; Slouf, M; Pavlova, E; Landor, I

    2011-01-01

    The aim of the study was to evaluate in vivo and compare, in terms of the quality and number of ultra high-molecular polyethylene (UHMWPE) wear particles, total knee replacements of identical construction differing only in the material used for femoral component production, i.e., CoCrMo alloy or ZrO2 ceramics. Samples of peri-prosthetic granuloma tissue were collected in two patients with total knee replacement suffering from implant migration, who were matched in relevant characteristics. The primary knee replacement in Patient 1 with a CoCrMo femoral component was done 7.2 years and in Patient 2 with a ZrO2 implant 6.8 years before this assessment. The polyethylene wear-induced granuloma was analysed by the MORF method enabling us to assess the shape and size of wear debris and the IRc method for assessment of particle concentration. In the granuloma tissue samples of Patient 1, on the average, particles were 0.30 mm in size and their relative volume was 0.19. In the Patient 2 tissue samples, the average size of particles was 0.33 mm and their relative volume was 0.26. There was no significant difference in either particle morphology or their concentration in the granuloma tissue between the two patients. One of the options of how to reduce the production of polyethylene wear particles is to improve the tribological properties of contacting surfaces in total knee replacement by substituting a cobalt-chrome femoral component with a zirconia ceramic femoral component. The previous in vitro testing carried out with a mechanical simulator under conditions approaching real weight-bearing in the human body did show a nearly three-fold decrease in the number of UHMWPE wear particles in zirconia components. The evaluation of granuloma tissue induced by the activity of a real prosthetic joint for nearly seven years, however, did not reveal any great difference in either quality or quantity of polyethylene debris between the two replacements. The difference of surface

  11. CoCrMo alloy vs. UHMWPE Particulate Implant Debris Induces Sex Dependent Aseptic Osteolysis Responses In Vivo using a Murine Model

    Science.gov (United States)

    Landgraeber, Stefan; Samelko, Lauryn; McAllister, Kyron; Putz, Sebastian; Jacobs, Joshua.J.; Hallab, Nadim James

    2018-01-01

    Background: The rate of revision for some designs of total hip replacements due to idiopathic aseptic loosening has been reported as higher for women. However, whether this is environmental or inherently sex-related is not clear. Objective: Can particle induced osteolysis be sex dependent? And if so, is this dependent on the type of implant debris (e.g. metal vs polymer)? The objective of this study was to test for material dependent inflammatory osteolysis that may be linked to sex using CoCrMo and implant grade conventional polyethylene (UHMWPE), using an in vivo murine calvaria model. Methods: Healthy 12 week old female and male C57BL/6J mice were treated with UHMWPE (1.0um ECD) or CoCrMo particles (0.9um ECD) or received sham surgery. Bone resorption was assessed by micro-computed tomography, histology and histomorphometry on day 12 post challenge. Results: Female mice that received CoCrMo particles showed significantly more inflammatory osteolysis and bone destruction compared to the females who received UHMWPE implant debris. Moreover, females challenged with CoCrMo particles exhibited 120% more inflammatory bone loss compared to males (p<0.01) challenged with CoCrMo implant debris (but this was not the case for UHMWPE particles). Conclusion: We demonstrated sex-specific differences in the amount of osteolysis resulting from CoCrMo particle challenge. This suggests osteo-immune responses to metal debris are preferentially higher in female compared to male mice, and supports the contention that there may be inherent sex related susceptibility to some types of implant debris. PMID:29785221

  12. Hydrogel fibers for ACL prosthesis: design and mechanical evaluation of PVA and PVA/UHMWPE fiber constructs.

    Science.gov (United States)

    Bach, Jason S; Detrez, Fabrice; Cherkaoui, Mohammed; Cantournet, Sabine; Ku, David N; Corté, Laurent

    2013-05-31

    Prosthetic devices for anterior cruciate ligament (ACL) reconstruction have been unsuccessful due to mechanical failure or chronic inflammation. Polymer hydrogels combine biocompatibility and unique low friction properties; however, their prior use for ligament reconstruction has been restricted to coatings due to insufficient tensile mechanics. Here, we investigate new constructs of polyvinyl alcohol (PVA) hydrogel fibers. In water, these fibers swell to an equilibrium water content of 50% by weight, retaining a tensile modulus greater than 40 MPa along the fiber axis at low strain. Rope constructs were assembled for ACL replacement and mechanical properties were compared with data from the literature. Pure PVA hydrogel constructs closely reproduce the non-linear tensile stiffness of the native ACL with an ultimate strength of about 2000 N. An additional safety factor in tensile strength was achieved with composite braids by adding ultrahigh molecular weight polyethylene (UHMWPE) fibers around a core of PVA cords. Composition and braiding angle are adjusted to produce a non-linear tensile behavior within the range of the native ligament that can be predicted by a simple rope model. This design was found to sustain over one million cycles between 50 and 450 N with limited damage and less than 20% creep. The promising mechanical performances of these systems provide justification for more extensive in vivo evaluation. Copyright © 2013. Published by Elsevier Ltd.

  13. The relationship of polyethylene wear to particle size, distribution, and number: A possible factor explaining the risk of osteolysis after hip arthroplasty

    Czech Academy of Sciences Publication Activity Database

    Gallo, J.; Šlouf, Miroslav; Goodman, S. B.

    94B, č. 1 (2010), s. 171-177 ISSN 1552-4973 R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : wear debris * polyethylene (UHMWPE) * periprosthetic osteolysis Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.220, year: 2010

  14. Wear behaviour of the couple polyethylene Ti6Al4V: Effects of the metallic surface preparation and nitrogen implantation

    Science.gov (United States)

    Martinella, R.; Giovanardi, S.; Palombarini, G.; Corchia, M.; Delogu, P.; Giorgi, R.; Tosello, C.

    The wear behaviour improvement of the tribological couple Ti6Al4V-UHMWPE is of great interest to the medical field. Wear tests were carried out in water on a reciprocating UHMWPE annulus on implanted Ti6Al4V disc tribotestcr, with loads and velocities simulating those of hip joints. A comparison of wear behaviours was also carried out between untreated Ti6Al4V samples and Ti6Al4V subjected to a special lapping procedure. UHMWPE worn against ion-implanted and especially lapped Ti alloy showed the lowest wear rate, while, the highest (about one order of magnitude) was shown by the UHMWPE against untreated Ti6Al4V samples. XPS and AES surface analyses were carried out on metallic discs to examine the chemical composition of the surface before wear tests. Moreover depth distribution of nitrogen in implanted samples was determined using the same techniques. SEM observations displayed a polyethylene transfer film on all metallic surfaces, particularly on untreated Ti6Al4V samples. A discussion about uselessness of more conventional surface treatments for the Ti alloy is also reported.

  15. Chemical modification of high molecular weight polyethylene through gamma radiation for biomaterials applications

    International Nuclear Information System (INIS)

    Raposo, Matheus P.; Rocha, Marisa C.G.

    2015-01-01

    Ultra high molecular weight polyethylene has been used in the medical field due to its high mechanical properties compared to the other polymers. Its main application is in the development of orthopedic implants, which requires high resistance to abrasion. One of the most used methods is the introduction of crosslinks in the polymer through gamma irradiation. In order to prevent oxidation reactions, studies have been developed using tacoferol (vitamin E) as an antioxidant for the material. The ascorbic acid (vitamin C), however, has been appointed as a viable alternative for vitamin E. In this work, a high molecular weight polyethylene grade (HMWPE) and polyethylene samples formulated with vitamin C were submitted to gamma radiation. Thermodynamic-mechanical methods and gel content determinations were used to characterize the samples obtained. The sample containing 1% of vitamin C and irradiated with 50 KGy of gamma radiation presented the highest content of crosslinks. (author)

  16. Regression models to predict the behavior of the coefficient of friction of AISI 316L on UHMWPE under ISO 14243-3 conditions.

    Science.gov (United States)

    Garcia-Garcia, A L; Alvarez-Vera, M; Montoya-Santiyanes, L A; Dominguez-Lopez, I; Montes-Seguedo, J L; Sosa-Savedra, J C; Barceinas-Sanchez, J D O

    2018-06-01

    Friction is the natural response of all tribosystems. In a total knee replacement (TKR) prosthetic device, its measurement is hindered by the complex geometry of its integrating parts and that of the testing simulation rig operating under the ISO 14243-3:2014 standard. To develop prediction models of the coefficient of friction (COF) between AISI 316L steel and ultra-high molecular weight polyethylene (UHMWPE) lubricated with fetal bovine serum dilutions, the arthrokinematics and loading conditions prescribed by the ISO 142433: 2014 standard were translated to a simpler geometrical setup, via Hertz contact theory. Tribological testing proceeded by loading a stainless steel AISI 316L ball against the surface of a UHMWPE disk, with the test fluid at 37 °C. The method has been applied to study the behavior of the COF during a whole walking cycle. On the other hand, the role of protein aggregation phenomena as a lubrication mechanism has been extensively studied in hip joint replacements but little explored for the operating conditions of a TKR. Lubricant testing fluids were prepared with fetal bovine serum (FBS) dilutions having protein mass concentrations of 5, 10, 20 and 36 g/L. The results were contrasted against deionized, sterilized water. The results indicate that even at protein concentration as low as 5 g/L, protein aggregation phenomena play an important role in the lubrication of the metal-on-polymer tribopair. The regression models of the COF developed herein are available for numerical simulations of the tribological behavior of the aforementioned tribosystem. In this case, surface stress rather than film thickness should be considered. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Characterization of silane coated hollow sphere alumina-reinforced

    Indian Academy of Sciences (India)

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites ...

  18. Adhesion improvement of fibres by continuous plasma treatment at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Sørensen, Bent F.

    2013-01-01

    Carbon fibres and ultra-high-molecular-weight polyethylene (UHMWPE) fibres were continuously treated by a dielectric barrier discharge plasma at atmospheric pressure for adhesion improvement with epoxy resins. The plasma treatment improved wettability, increased the oxygen containing polar...

  19. Adhesion improvement of fibres by continuous plasma treatment at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Y.; Andersen, Tom L.; Soerensen, B.F.; Toftegaard, H.L.; Teodoru, S. [Technical Univ. of Denmark. DTU Wind Energy, Risoe Campus, Roskilde (Denmark); Hansen, Charles M. [Hoersholm (Denmark)

    2013-09-01

    Carbon fibres and ultra-high-molecular-weight polyethylene (UHMWPE) fibres were continuously treated by a dielectric barrier discharge plasma at atmospheric pressure for adhesion improvement with epoxy resins. The plasma treatment improved wettability, increased the oxygen containing polar functional groups at the surface, and subsequently improved adhesion to the epoxy and fracture resistance of epoxy composites. Hansen solubility parameters (HSP), quantitatively describing physical interactions among molecules, were measured for the UHMWPE fibre surfaces. The result identifies two distinct types of surfaces in both the plasma treated and the untreated fibres. One type is typical of polyethylene polymers while the other is characteristic of the oxygenated surface at much higher values of HSP. (Author)

  20. Sintesis Bahan Dasar Tibial Tray Berbasis HDPE Yang Diperkuat Dengan Iradiasi Gamma

    Directory of Open Access Journals (Sweden)

    Sulistioso Giat S.

    2014-04-01

    Full Text Available Tibial tray yang sudah komersil dibuat dari Polimer Ultra High Molecular Weight Polyethylene (UHMWPE tetapi harganya sangat mahal. Oleh karena itu pada penelitian ini digunakan polimer High Density Polyethylene (HDPE untuk pembuatan tibial tray karena harganya yang lebih murah dan memiliki kemiripan sifat dengan UHMWPE. HDPE dibuat dengan dua metode, yaitu metode hot press dan pemanasan tanpa tekanan (PTT. UHMWPE dengan metode hot press digunakan sebagai pembanding. Metode hot press dilakukan pada suhu 180 °C dan diberi tekanan sebesar 200 kg/cm2. Sedangkan metode pemanasan tanpa tekanan (PTT dilakukan di dalam oven pada suhu 180°C. Film tipis UHMWPE dan sampel HDPE yang dihasilkan dari kedua metode tersebut, kemudian diiradiasi sinar gamma dengan variasi dosis 0, 100, 200, 300 dan 500 kGy. Karakterisasi mencakup analisis morfologi dengan Scanning Electron Microscope (SEM, uji kekerasan, kekuatan tarik, dan derajat kristalinitas. Semakin tinggi dosis radiasi, maka kekerasan dan derajat kristalinitas semakin meningkat, tetapi kekuatan tarik semakin menurun. Dosis radiasi untuk sampel HDPE yang optimum , adalah 100 kGy untuk HDPE yang dibuat dengan metoda hot press, pada kondisi ini HDPE mempunyai kekuatan mekanik mendekati nilai kekuatan mekanik UHMWPE, sedangkan HDPE yang dibuat dengan metode PTT kekuatan mekaniknya masih dibawah kekuatan mekanik HDPE yang dibuat dengan metoda hot press 

  1. Characterization of the mechanical properties of a new grade of ultra high molecular weight polyethylene and modeling with the viscoplasticity based on overstress.

    Science.gov (United States)

    Khan, Fazeel; Yeakle, Colin; Gomaa, Said

    2012-02-01

    Enhancements to the service life and performance of orthopedic implants used in total knee and hip replacement procedures can be achieved through optimization of design and the development of superior biocompatible polymeric materials. The introduction of a new or modified polymer must, naturally, be preceded by a rigorous testing program. This paper presents the assessment of the mechanical properties of a new filled grade of ultra high molecular weight polyethylene (UHMWPE) designated AOX(TM) and developed by DePuy Orthopaedics Inc. The deformation behavior was investigated through a series of tensile and compressive tests including strain rate sensitivity, creep, relaxation, and recovery. The polymer was found to exhibit rate-reversal behavior for certain loading histories: strain rate during creep with a compressive stress can be negative, positive, or change between the two during a test. Analogous behavior occurs during relaxation as well. This behavior lies beyond the realm of most numerical models used to computationally investigate and improve part geometry through finite element analysis of components. To address this shortcoming, the viscoplasticity theory based on overstress (VBO) has been suitably modified to capture these trends. VBO is a state variable based model in a differential formulation. Numerical simulation and prediction of all of the aforementioned tests, including good reproduction of the rate reversal behavior, is presented in this study. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Comparison of mechanical and tribotechnical properties of UHMWPE reinforced with basalt fibers and particles

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Qitao, Huang; Ivanova, L. R.

    2016-11-01

    Mechanical and tribotechnical properties of UHMWPE composites reinforced with basalt fibers and particles under dry sliding friction and abrasion were investigated. It is shown that adding of the basalt particles provides higher wear resistance under the dry sliding friction while at abrasion filling by the basalt fibers is more efficient since the wear resistance of the reinforced UHMWPE composites is by 3.7 times higher in contrast with the neat polymer. Wear mechanisms of the polymeric UHMWPE composites under various types of wear are discussed.

  3. Equation of State and Damage in Polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Joshua Damon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cady, Carl Mcelhinney [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Carl A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clements, Bradford Edwin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dattelbaum, Dana Mcgraw [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fezzaa, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Gustavsen, Richard L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hooks, Daniel Edwin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Iverson, Adam Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jensen, Brian J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jordan, Jennifer Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jones, David Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Junghans, Sylvia Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lang, John Michael Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LeBrun, Thomas John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewis, Matthew W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maerzke, Katie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Timothy Henry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramos, Kyle James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rigg, Paulo [Washington State Univ., Pullman, WA (United States); Schilling, Benjamin Fritz [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinclair, N. [Washington State Univ., Pullman, WA (United States); Stull, Jamie Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Watkins, Erik Benjamin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Welch, Cynthia F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Welch, Paul Michael Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-10

    The dynamic response of polymers differs significantly from those of metals, upon which many of the National Laboratories' deformation, damage, and failure models are based. Their moduli, yield strength, and damage characteristics are highly strain rate-, temperature-, and phase-dependent, requiring models that encompass a wide range of phenomena including some not in equilibrium. Recently, Los Alamos developed the Glassy Amorphous Polymer (GAP)1 model [1] to address limitations in existing models of polymer deformation. GAP captures both volumetric (equation of state) and deviatoric (shear) response, including a non-equilibrium component to the former (a feature determined to be crucial in capturing the low-pressure, viscoelastic response to impact loading). GAP has already been applied to polymers such as PMMA, PTFE, epoxy, and Kel-F 800, but with an emphasis on impact response as opposed to damage or failure. The current effort was launched to address this gap in predictive capability. For reasons that will be made clear, semi-crystalline polyethylene (PE) was chosen to serve as a model system for parameterization and validation. PE (-C2H4-)n is one of the most widely used polymers in industrial and engineering contexts, chiey due to the versatility of its mechanical response. This response can be tuned through network and chain structure, degree of crystallinity, and molecular weight. PE is found in several forms including low density (LDPE), high density (HDPE), and ultra-high molecular weight (UHMWPE). The focus here was on HDPE and UHMWPE, of pedigree described in the following section. Materials were well-characterized prior to study and are representative of semi-crystalline polymers of interest to DOE and DoD. Semi-crystalline PE undergoes a glass transition at low temperature (-35°C) and melts across a range of moderate temperatures (~80-180°C), depending on its structure. It is typically inert chemically, has low

  4. Research on Mechanical Behaviors of Micro-crystal Muscovite/UHMWPE Composites to Impact Loading

    Directory of Open Access Journals (Sweden)

    Hu Huarong

    2016-01-01

    Full Text Available UHMWPE composites were prepared by hot pressing process with micro-crystal muscovite as reinforced particulates. The mechanical behaviors of composites to impact loading was evaluated by split Hopkinson bar. The results demonstrated that dynamic yield stress and failure stress of UHMWPE composites were gradually increased when the filling amount was less than 20%; when the filling content of muscovite was around 15%, the energy absorption efficiency of the composite reaches maximum value. It was also found that when strain rate within 3200/s, the dynamic yield stress, failure stress and energy absorption efficiency of UHMWPE composites increased with the increase of strain rate and display strain rate enhancement effect.

  5. High molecular weight poly(L-lactide) and poly(ethylene oxide) blends : Thermal characterization and physical properties

    NARCIS (Netherlands)

    Nijenhuis, AJ; Colstee, E; Grijpma, DW; Pennings, AJ

    1996-01-01

    The miscibility of high molecular weight poly(L-lactide) (PLLA) with high molecular weight poly(ethylene oxide) (PEG) was studied by differential scanning calorimetry. Ail blends containing up to 50 weight% PEO showed single glass transition temperatures. The PLLA and PEO melting temperatures were

  6. A Novel Technique for Assessing Antioxidant Concentration in Retrieved UHMWPE.

    Science.gov (United States)

    Currier, Barbara H; Van Citters, Douglas W

    2017-05-01

    Antioxidants added to UHMWPE to prevent in vivo oxidation are important to the long-term performance of hip and knee arthroplasty. Diffused vitamin E antioxidant polyethylene raised questions about potential in vivo elution that could cause inflammatory reactions in periprosthetic tissues and also potentially leave the implant once again prone to oxidation. Currently, there is no information on the elution, if any, of antioxidants from implant polyethylene materials in vivo. (1) Do antioxidants, especially diffused vitamin E, elute from antioxidant polyethylene in vivo? (2) Can extraction of the retrieved antioxidant polyethylene (to remove absorbed species from the in vivo environment near the articular and nonarticular surfaces) improve the identification of antioxidant content? (3) Can actual antioxidant content be estimated from calculated antioxidant indices by accounting for ester content (from absorbed species) near the articular and nonarticular surfaces? An institutional review board-approved retrieval laboratory received 39 antioxidant polyethylene hip and knee retrievals at revision from 25 surgeons with in vivo time of 0.02 to 3.6 years (median, 1.3 years). These consecutive antioxidant polyethylene retrievals, received between May 2010 and February 2016, were made from three different antioxidant highly crosslinked polyethylene materials: diffused vitamin E, blended vitamin E, and hindered phenol antioxidant pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)] propionate (here and after referred to as PBHP). Retrievals were analyzed using Fourier transform infrared (FTIR) spectroscopy. Absorbed ester index (1725-1740 cm -1 normalized to 1365-1371 cm -1 ), and vitamin E index (1245-1275 cm -1 ) and PBHP index (1125-1150 cm -1 ), normalized to 1850-1985 cm -1 , were defined. Microtomed thin sections of PBHP and vitamin E retrievals were hexane-extracted to remove absorbed species from the in vivo environment in an effort to improve

  7. High-energy ion implantation of polymeric fibers for modification of reinforcement-matrix adhesion

    International Nuclear Information System (INIS)

    Grummon, D.S.; Schalek, R.; Ozzello, A.; Kalantar, J.; Drzal, L.T.

    1991-01-01

    We have previously reported on the effect of high-energy ion irradiation of ultrahigh molecular weight polyethylene (UHMW-PE), and Kevlar-49 polyaramid fibers, on fiber-matrix adhesion and interfacial shear strength (ISS) in epoxy matrix composites. Irradiation of UHMW-PE fibers produced large improvements in interfacial shear strength, without degrading fiber tensile strength. ISS was not generally affected in irradiated Kevlar-49, and fiber tensile strength decreased. The divergence in response between polyaramid and polyethylene relates both to differences in the mesoscopic structure of the individual fibers, and to the different forms of beam induced structural modification favored by the individual polymer chemistries. Here we report results of surface energy measurements, infrared spectroscopy analysis, and X-ray photoelectron spectroscopy studies on UHMW-PE and polyaramid fibers, irradiated to fluences between 2x10 12 and 5x10 15 cm -2 with N + , Ar + , Ti + , Na + , and He + at energies between 30 and 400 keV. UHMW-PE fibers showed a pronounced increase in the polar component of surface energy which could be associated with carbonyl, hydroxyl and hydroperoxide groups at the surface. Kevlar, on the other hand, tended toward carbonization and showed a decrease in nitrogen and oxygen concentrations and a sharp drop in polar surface energy. (orig.)

  8. Weight of Polyethylene Wear Particles is Similar in TKAs with Oxidized Zirconium and Cobalt-chrome Prostheses

    Science.gov (United States)

    Kim, Jun-Shik; Huh, Wansoo; Lee, Kwang-Hoon

    2009-01-01

    Background The greater lubricity and resistance to scratching of oxidized zirconium femoral components are expected to result in less polyethylene wear than cobalt-chrome femoral components. Questions/purposes We examined polyethylene wear particles in synovial fluid and compared the weight, size (equivalent circle diameter), and shape (aspect ratio) of polyethylene wear particles in knees with an oxidized zirconium femoral component with those in knees with a cobalt-chrome femoral component. Patients and Methods One hundred patients received an oxidized zirconium femoral component in one knee and a cobalt-chrome femoral component in the other. There were 73 women and 27 men with a mean age of 55.6 years (range, 44–60 years). The minimum followup was 5 years (mean, 5.5 years; range, 5–6 years). Polyethylene wear particles were analyzed using thermogravimetric methods and scanning electron microscopy. Results The weight of polyethylene wear particles produced at the bearing surface was 0.0223 ± 0.0054 g in 1 g synovial fluid in patients with an oxidized zirconium femoral component and 0.0228 ± 0.0062 g in patients with a cobalt-chrome femoral component. Size and shape of polyethylene wear particles were 0.59 ± 0.05 μm and 1.21 ± 0.24, respectively, in the patients with an oxidized zirconium femoral component and 0.52 ± 0.03 μm and 1.27 ± 0.31, respectively, in the patients with a cobalt-chrome femoral component. Knee Society knee and function scores, radiographic results, and complication rate were similar between the knees with an oxidized zirconium and cobalt-chrome femoral component. Conclusions The weight, size, and shape of polyethylene wear particles were similar in the knees with an oxidized zirconium and a cobalt-chrome femoral component. We found the theoretical advantages of this surface did not provide the actual advantage. Level of Evidence Level I, therapeutic study. See the guidelines for Authors for a complete

  9. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo

    DEFF Research Database (Denmark)

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H

    2014-01-01

    when compared to virgin gamma irradiated cross-linked UHMWPE. Groups received equal amount of particulate debris overlaying the calvarium for 10 days. Calvarial bone was examined using high resolution micro-CT and histomorphometric analyses. There was a statistically significant difference between...

  10. Modeling Ballistic Response of Ultra-High-Molecular-Weight Polyethylene (UHMWPE)

    Science.gov (United States)

    2016-07-01

    in high-speed penetration problems , the material would fail and erode, and the regular contact algorithm cannot update the contact surfaces...High velocity impact and armour design. Express Polymer Letters. 2011;5(3):262–272. 14. Chocron S, King N, Walker JD, Heisserer U, Werff H

  11. Biocompatibility evaluation of HDPE-UHMWPE reinforced β-TCP nanocomposites using highly purified human osteoblast cells.

    Science.gov (United States)

    Shokrgozar, M A; Farokhi, M; Rajaei, F; Bagheri, M H A; Azari, Sh; Ghasemi, I; Mottaghitalab, F; Azadmanesh, K; Radfar, J

    2010-12-15

    Biocompatibility of β-TCP/HDPE-UHMWPE nanocomposite as a new bone substitute material was evaluated by using highly purified human osteoblast cells. Human osteoblast cells were isolated from bone tissue and characterized by immunofluorescence Staining before and after purification using magnetic bead system. Moreover, proliferation, alkaline phosphatase production, cell attachment, calcium deposition, gene expression, and morphology of osteoblast cells on β-TCP/HDPE-UHMWPE nanocomposites were evaluated. The results have shown that the human osteoblast cells were successfully purified and were suitable for subsequent cell culturing process. The high proliferation rate of osteoblast cells on β-TCP/HDPE-UHMWPE nanocomposite confirmed the great biocompatibility of the scaffold. Expression of bone-specific genes was taken place after the cells were incubated in composite extract solutions. Furthermore, osteoblast cells were able to mineralize the matrix next to composite samples. Scanning electron microscopy demonstrated that cells had normal morphology on the scaffold. Thus, these results indicated that the nanosized β-TCP/HDPE-UHMWPE blend composites could be potential scaffold, which is used in bone tissue engineering. Copyright © 2010 Wiley Periodicals, Inc.

  12. Mechanistic and morphological origins of ultra-high molecular weight polyethylene wear debris in total joint replacement prostheses.

    Science.gov (United States)

    Wang, A; Stark, C; Dumbleton, J H

    1996-01-01

    The mechanistic and morphological origins of microscopic wear debris generated from UHMWPE articular surfaces in total joint replacement prostheses are investigated in this study. It was found experimentally that the molecular chain structure at the articulating surface of UHMWPE undergoes a re-organization process due to strain accumulation caused by surface traction. This molecular re-organization process creates a fibre-like surface texture that exhibits an anisotropic behaviour similar to a unidirectionally reinforced polymer composite. This composite responds to stresses favourably if loaded along the fibre axis but unfavourably if loaded off axis. Due to the very complex multi-axial motion/loading nature at the articular surfaces in total joint replacements, the stress tensors applied to each localized asperity contact area continuously change their directions and magnitudes. These changes in the localized stress field create an off-axis loading situation at each localized contact zone with respect to the orientation of the molecular chains. Depending on the off-axis angle, failure of the molecular structure occurs in three different ways: tensile rupture at very small off-axis angles, shear rupture at intermediate off-axis angles and transverse splitting at large off-axis angles. These failure mechanisms all produce similar fibre-like wear debris. However, the failure stresses differ significantly among the three modes. According to this molecular wear theory, the preferred polymer microstructure for optimal wear resistance would be a three-dimensionally strong network connected by covalent bonds between molecular chains. For UHMWPE, a three-dimensional molecular network can be created by radiation induced cross-linking. Experiments conducted on both gamma irradiated and unirradiated UHMWPE specimens using a linear wear machine and multi-axial joint simulators confirmed the validity of the molecular wear theory.

  13. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    International Nuclear Information System (INIS)

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-01-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N 2 /H 2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  14. Effect of γ-irradiation on the thermal properties of UHMWPE ...

    Indian Academy of Sciences (India)

    irradiation on the thermal properties of UHMWPE/MWCNTs nanocomposites: a comparative study of incorporating unmodified and γ -ray-modified MWCNTs. SAQLAIN SAQIB MUKHTAR MALIK SAJJAD MEHMOOD SYED ASAD MAQBOOL ...

  15. Nanometer size wear debris generated from ultra high molecular weight polyethylene in vivo

    Czech Academy of Sciences Publication Activity Database

    Lapčíková, Monika; Šlouf, Miroslav; Dybal, Jiří; Zolotarevova, E.; Entlicher, G.; Pokorný, D.; Gallo, J.; Sosna, A.

    2009-01-01

    Roč. 266, 1-2 (2009), s. 349-355 ISSN 0043-1648 R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : ultra high molecular weight polyethylene * nanometer size wear debris * morphology of wear particles Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.771, year: 2009

  16. Structure modification of UHMWPE used for total joint replacements

    Czech Academy of Sciences Publication Activity Database

    Nevoralová, Martina; Baldrian, Josef; Pospíšil, Jan; Chodák, I.; Horák, Zdeněk

    74B, č. 2 (2005), s. 800-807 ISSN 1552-4973 R&D Projects: GA AV ČR IBS4050009 Institutional research plan: CEZ:AV0Z40500505 Keywords : UHMWPE * modification * gamma radiation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.621, year: 2005

  17. Effect of γ-irradiation on the thermal properties of UHMWPE ...

    Indian Academy of Sciences (India)

    65

    addition to this, researchers are working on figuring out new and smarter fillers ... crystallinity for UHMWPE/MWCNTs due to reduction of crystalline lamellae density of ... hours at 200 rpm using the facility available at Pakistan Institute of ...

  18. Investigation of the effects of intense pulsed particle beams on the durability of metal-to-plastic interfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Somuri V.; Renk, Timothy J.; Provencio, Paula Polyak; Petersen, Donald W. (University of Alabama, Birmingham, AL); Petersen, Thomas D. (University of California, San Diego, CA); Buchheit, Thomas Edward; McNulty, Donald E. (DePuy Orthopaedic, Inc., Warsaw, IN); Engelko, Vladimir (D. V. Efremov Scientific Research Institute of the Electrophysical Apparatus, St. Petersburg, Russia)

    2005-02-01

    We have investigated the potential for intense particle beam surface modification to improve the mechanical properties of materials commonly used in the human body for contact surfaces in, for example, hip and knee implants. The materials studied include Ultra-High Molecular Weight Polyethylene (UHMWPE), Ti-6Al-4Al (titanium alloy), and Co-Cr-Mo alloy. Samples in flat form were exposed to both ion and electron beams (UHMWPE), and to ion beam treatment (metals). Post-analysis indicated a degradation in bulk properties of the UHMWPE, except in the case of the lightest ion fluence tested. A surface-alloyed Hf/Ti layer on the Ti-6Al-4V is found to improve surface wear durability, and have favorable biocompatibility. A promising nanolaminate ceramic coating is applied to the Co-Cr-Mo to improve surface hardness.

  19. Tribological properties of solid lubricants filled glass fiber reinforced polyamide 6 composites

    International Nuclear Information System (INIS)

    Li, Du-Xin; You, Yi-Lan; Deng, Xin; Li, Wen-Juan; Xie, Ying

    2013-01-01

    Highlights: ► The tribological properties of GF/PA6 improved by the incorporation of PTFE. ► PTFE and UHMWPE exhibited a synergism effect on reducing friction coefficient. ► Solid lubricants enlarged the range of applied velocity for GF/PA6 composite. - Abstract: The main purpose of this paper is to further optimize the tribological properties of the glass fiber reinforced PA6 (GF/PA6,15/85 by weight) for high performance friction materials using single or combinative solid lubricants such as Polytetrafluroethylene (PTFE), ultra-high molecular weight polyethylene (UHMWPE) and the combination of both of them. Various polymer blends, where GF/PA6 acts as the polymer matrix and solid lubricants as the dispersed phase were prepared by injection molding. The tribological properties of these materials and the synergism as a result of the incorporation of both PTFE and UHMWPE were investigated. The results showed that, at a load of 40 N and a velocity of 200 rpm, PTFE was effective in improving the tribological capabilities of matrix material. On the contrary, UHMWPE was not conductive to maintain the structure integrity of GF/PA6 composite and harmful to the friction and wear properties. The combination of PTFE and UHMWPE showed synergism on further reducing the friction coefficient of the composites filled with either PTFE or UHMWPE only. Effects of load and velocity on tribological behavior were also discussed. To further understand the wear mechanism, the worn surfaces were examined by scanning electron microscopy

  20. Moldagem por compressão a frio do polietileno de ultra alto peso molecular. Parte 1: influência do tamanho, distribuição e morfologia da partícula na densidade a verde Cold compression molding of ultra high molecular weight polyethylene. Part 1: influence of the size, distribution and morphology of particles on the green density

    Directory of Open Access Journals (Sweden)

    Bernadete A. Bittencourt

    2009-01-01

    Full Text Available Neste trabalho foram investigadas as características de amostras de pó de polietileno de ultra alto peso molecular (PEUAPM, tais como porosidade, morfologia, tamanho médio e distribuição de partícula, que são importantes na moldagem por compressão a frio. Também foi avaliada a influência dessas características na densidade a verde de pré-formas. As amostras dos pós foram caracterizadas por calorimetria diferencial de varredura (DSC, análise granulométrica, absorção de óleo, área superficial, porosimetria de mercúrio, fluidez do pó, densidade de compactação, densidade aparente e microscopia eletrônica de varredura (MEV. Através das técnicas de caracterização estudadas ficou evidenciado que as características da partícula citadas anteriormente, assim como o parâmetro de densificação (DP, que é função direta da porosidade interparticular, favorecem a densidade a verde relativa (DVR e consequentemente a tensão de resistência à flexão (TRF.In this paper an investigation was made of the characteristics of Ultra High Molecular Weight Polyethylene (UHMWPE powder samples, including porosity, particles average size, size distribution and morphology, which are important in cold compression molding. The influence of these characteristics on the green density of molded pre-shapes was also investigated. The UHMWPE powder samples were characterized by Differential Scanning Calorimetry (DSC, granulometric analysis, oil absorption, surface area, mercury porosity, density compaction, apparent density and Scanning Electron Microscopy (SEM. The characterization techniques used demonstrate that the UHMWPE particles characteristics cited above as well as the densification parameter (DP, which is a direct function of the interparticles porosity, affect the relative green density (RGD and hence, the flexural tensile strength (FTS.

  1. A study of the oriented composites with the conductive segregated structure obtained via solid-phase processing of the UHMWPE reactor powder mixed with the carbon nanofillers

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Oleg V. [Moscow Institute of Physics and Technology (State University,) Institutskiy per., Dolgoprudny, Moscow Region, 141700 (Russian Federation); N.S. Enikolopov Institute of Synthetic Polymer Materials of RAS, Profsoyuznaya st., Moscow, 117393 (Russian Federation); Kechek’yan, Alexander S.; Shevchenko, Vitaly G.; Kurkin, Tikhon S.; Golubev, Evgeny K.; Ozerin, Alexander N. [N.S. Enikolopov Institute of Synthetic Polymer Materials of RAS, Profsoyuznaya st., Moscow, 117393 (Russian Federation); Karpushkin, Evgeny A.; Sergeev, Vladimir G. [Moscow State University, Chemical Department, Leninskie Gori, Moscow, 119234 (Russian Federation)

    2016-05-18

    Electrically conductive oriented polymer nano-composites of different compositions, based on the reactor powder of ultra-high-molecular-weight polyethylene (UHMWPE) with a special morphology, filled with particles of nanostructured graphite (NG), multi-walled carbon nanotubes (MWCNTs), and electrically conductive carbon black (CB), were investigated. Polymer composites were obtained via compaction of the mechanical mixture of the polymer and filler powder, followed by uniaxial deformation of the material under homogeneous shear (HS) conditions (all of the processing stages were conducted at room temperature). Resulted composites possess a high tensile strength, high level of the electrical conductivity and low percolation threshold, owing it to the formation of the segregated conductive structure, The influence of the type of nanosized carbon filler, degree of the deformation under HS condition, temperature and etc. on the electrical conductivity and mechanical properties of strengthened conductive composites oriented under homogeneous shear conditions was investigated. Changes in the electrical conductivity of oriented composite materials during reversible “tension–shrinkage” cycles along the orientation axis direction were studied. A theoretical approach, describing the process of transformation of the conductive system as a response on polymer phase deformation and volume change, was proposed, based on the data received from the analysis of the conductivity behavior during the uniaxial deformation and thermal treatment of composites.

  2. Production of porous filter elements from PEUAPM nanocomposites and silver nanoparticles; Producao de elementos filtrantes porosos a partir de nanocompositos de PEUAPM e nanoparticulas de prata

    Energy Technology Data Exchange (ETDEWEB)

    Bizzo, M.A.; Hui, W.S., E-mail: mbizzo@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Departamento de Engenharia Metalurgica e de Materiais

    2014-07-01

    The production of filter elements for water based in polymers is widespread in the market, but has an undesirable characteristic: they are not efficient and able to retain or eliminate microorganisms at all times. This paper proposes to produce nanocomposite filters with biocidal properties composed of ultra-high molecular weight polyethylene(UHMWPE) and silver nanoparticles, the UHMWPE is responsible for the uniform porous structure of the filters and the silver nanoparticles incorporated on the polymer are responsible for the biocide action. Particulate polymer that presents a different particle size curve was used for sintering the filters. Samples of filter elements obtained in this work were characterized by the techniques of X-ray diffraction, scanning electron microscopy and EDS microanalysis. The results indicated a porosity of approximately 49% in the filter, and the formation of the nanocomposite. key-words: nanocomposites, silver, UHMWPE, filter elements. (author)

  3. Production of porous filter elements from PEUAPM nanocomposites and silver nanoparticles

    International Nuclear Information System (INIS)

    Bizzo, M.A.; Hui, W.S.

    2014-01-01

    The production of filter elements for water based in polymers is widespread in the market, but has an undesirable characteristic: they are not efficient and able to retain or eliminate microorganisms at all times. This paper proposes to produce nanocomposite filters with biocidal properties composed of ultra-high molecular weight polyethylene(UHMWPE) and silver nanoparticles, the UHMWPE is responsible for the uniform porous structure of the filters and the silver nanoparticles incorporated on the polymer are responsible for the biocide action. Particulate polymer that presents a different particle size curve was used for sintering the filters. Samples of filter elements obtained in this work were characterized by the techniques of X-ray diffraction, scanning electron microscopy and EDS microanalysis. The results indicated a porosity of approximately 49% in the filter, and the formation of the nanocomposite. key-words: nanocomposites, silver, UHMWPE, filter elements. (author)

  4. Synthesis of Functional Materials by Radiation

    International Nuclear Information System (INIS)

    Noh, Y. C.; Kang, P. H.; Choi, J. H.

    2006-06-01

    The radiation crosslinking, grafting, curing and degradation can be easily adjusted and is easily reproducible by controlling the radiation dose. These studies aim to develop new biomaterials such as wound healing, tissue engineering and antiadhesion barrier. The effect of thermal treatment and irradiation on the physico-chemical properties of ultra-high molecular weight polyethylene (UHMWPE) used in orthopedic implants was investigated. If a large amount of polymer radicals remain trapped after the irradiation of ultra-high molecular weight polyethylene (UHMWPE), the radicals may significantly alter the physical properties of UHMWPE during long shelf storage and implantation for a long time period. UHMWPE irradiated in the molten state had a higher crosslinking extent and a lower wear rate than one irradiated in the room temperature. The radiation grafting technology can develop membrane of fuel cell and Li secondary battery and heavy metal absorbents. Proton exchange membranes were prepared by γ-irradiation-induced grafting of styrene into fluorinated polymer films and subsequent sulfonation. Results of the present work suggest that radiation induced-graft polymerization can be used as alternative method to blending to prepare polymer electrolyte membranes for lithium battery applications. The polypropylene-based compatibilizers, polypropylene-g-maleic anhydride (PP-MAH), polypropylene-g-maleic anhydride/styrene (PP-St/MAH), and polypropylene-g-acrylic acid (PP-AA), were prepared by a high energy irradiation method. The compatibilizing effect of newly prepared graft copolymers on immiscible PP/Nylon6 blends has been studied by means of UTM, SEM, and DSC techniques. The results indicate that PP-MAH and PP-St/MAH are more effective compatibilizers for PP/Nylon6 blends than PP-AA showing more than 30 % increase in impact strength, and the compatibilizing effect on PP/Nylon6 blends depends on molecular structure of the compatibilizers and the composition of the

  5. The interplay of plasma treatment and gold coating and ultra-high molecular weight polyethylene: On the cytocompatibility

    Czech Academy of Sciences Publication Activity Database

    Novotná, Z.; Rimpelová, S.; Juřík, P.; Veselý, M.; Kolská, Z.; Hubáček, Tomáš; Ruml, T.; Švorčík, V.

    2017-01-01

    Roč. 71, FEB (2017), s. 125-131 ISSN 0928-4931 R&D Projects: GA MŠk LM2015075 Institutional support: RVO:60077344 Keywords : UHMWPE * plasma treatment * gold sputtering * atomic force microscopy Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 4.164, year: 2016

  6. Impact of some environmental conditions on the tensile, creep-recovery, relaxation, melting and crystallinity behaviour of UHMWPE-GUR 410-medical grade

    International Nuclear Information System (INIS)

    Mourad, A.-H.I.; Fouad, H.; Elleithy, Rabeh

    2009-01-01

    The present work was undertaken to examine the effect of some environmental media (sodium hydroxide NaOH solution, water, ice, UV irradiation dose and pre-heat treatment) on the mechanical (quasi-static tensile creep-recovery and relaxation) and physical/thermal (melting and crystallinity) behaviour of the ultra high molecular weight polyethylene (UHMWPE-GUR 410-medical grade), that has several biomedical and engineering applications. The results show changes in the mechanical properties due to these environmental effects. The pre-heat treatment has significantly enhanced the tensile properties compared to virgin specimens' properties. Improvement due to pre-heat treatment at 100 o C is more than that at 50 o C. Specimens' storing in ice, NaOH and water has not affected significantly the tensile properties. All properties except fracture strain have enhanced due to specimens exposure to UV irradiation. The differential scanning calorimetry results indicate that environmental media have not any noticeable effects on the melting temperature. However, a significant increase in the degree of crystallinity was observed for all specimens versus that for virgin specimens. The creep and permanent strains of the tested virgin material increase with temperature and lineally increase with applied load. The specimens' exposure to environmental media has improved the creep resistance and the permanent creep strain when compared with that for virgin ones. Remarkable increase was observed in the initial relaxation and residual stress of the exposed specimens against that for virgin specimens.

  7. Evaluation of carbon nanotubes and graphene as reinforcements for UHMWPE-based composites in arthroplastic applications: A review.

    Science.gov (United States)

    Puértolas, J A; Kurtz, S M

    2014-11-01

    In this review we have evaluated the state of the art of CNT/UHMWPE and graphene/UHMWPE composites from four different points of view: mechanical properties, chemical stability, wear resistance and biocompatibility. The performance of these new carbonaceous composites allows us to conclude that these materials have overcome a first step on the way to developing into an alternative to the current HXLPEs used in orthopedic applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Quantification of structural changes of UHMWPE components in total joint replacements

    Czech Academy of Sciences Publication Activity Database

    Fulín, P.; Pokorný, D.; Šlouf, Miroslav; Nevoralová, Martina; Vacková, Taťana; Dybal, Jiří; Pilař, Jan

    2014-01-01

    Roč. 15, 28 March (2014), 109_1-109_8 E-ISSN 1471-2474 R&D Projects: GA TA ČR TA01011406; GA MZd NT12229 Institutional support: RVO:61389013 Keywords : UHMWPE * oxidative damage * residual radicals Subject RIV: FI - Traumatology, Orthopedics Impact factor: 1.717, year: 2014

  9. Effects of ionizing radiation on the properties of ultra-high molecular weight polyethylene (PE-UHMW)

    International Nuclear Information System (INIS)

    Kurth, M.

    1990-01-01

    Ultra high molecular weight polyethylene (PE-UHMW) is used in most artificial joint replacement devices. Prior to implantation in biological environment, radiatin sterilization by 60 Co or electron beam is common. It is well known that polyethylene exposed to ionizing radiation of any sort undergo physical changes due to chain scission and/or crosslinking. PE-UHMW sheets, 8 mm thick, were either 60 Co or electron beam irradiated, in the range of 10-150 kGy under air or nitrogen atmoshere. The crystallinity of the irradiated samples increases with the irradiation dose. The chain scission/crosslinking events ratio determine the network structure and the sol/gel ratio. The latter was found to depend on irradiation dose, radiation atmosphere and sample thickness. Moreover 60 Co-irradiation is about 5 times more effective in forming PE-UHMW gel than electron-irradiation. Besides the degree of crosslinking, the molecular weight distribution is the main determinant of the structural properties of PE-UHMW. Low molecular weight fractions were also found. Using a dose of 30 kGy ( 60 Co in air), the average molecular weight of the soluble part after extraction decreased from originally 2.3 million g/mol to 170.000 g/mol, corresponding to a factor of about 10. These changes in molecular weight have a strong influence on the mechanical properties of PE-UHMW. Crosslinking slightly increases the yield strength, while the elongation at break decreases. Long-term compressive creep is reduced if the material is irradiated. Obviously, increased crystallinity after oxidative chain scission affects a higher deformation resistance. Radiation crosslinked structures cause a significant increase in abrasion resistance. The above described structural changes occur even upon irradiation of very low doses as used during sterilization. This study will enable to reduce the radiation sterilization damage and thus to gain long term stability of PE-UHMW medical devices. (orig./BBR)

  10. Enhancement of mechanical and tribotechnical properties of polymer composites with thermoplastic UHMWPE and PEEK matrices by loading carbon nanofibers/nanotubes

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Anh, Nguyen Duc; Alexenko, V. O.; Ivanova, L. R.

    2017-12-01

    For comparative evaluation of the influence of carbon nanofiber/nanotube loading in two different thermoplastic matrices (UHMWPE and PEEK), some mechanical and tribotechnical properties of the nanocomposites have been studied. It is shown that mechanical properties of nanocomposites change in various manners with increasing loading of carbon nanofibers and nanotubes. Herewith, the wear resistance of the "UHMWPE+1 wt% CNF and PEEK + 1 wt% CNF" composites under dry sliding friction is doubled. It is shown that, regardless of various effects on permolecular structure formation, the studied nanofillers enhance the wear resistance of the composites in a similar manner. A comparative analysis of the influence of nanofillers on the modification of mechanical and tribotechnical properties of UHMWPE- and PEEK-based matrices is made.

  11. Synthesis and properties of aqueous polyurethane dispersions: Influence of molecular weight of polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Mumtaz, Fatima; Zuber, Mohammad; Zia, Khalid Mahmood [Government College University, Faisalabad (Pakistan); Jamil, Tahir [University of the Punjab, Lahore (Pakistan); Hussain, Rizwan [National Engineering and Scientific Commission (NESCOM), Islamabad (Pakistan)

    2013-12-15

    Aqueous polyurethane dispersions (PUDs) have recently emerged as important alternatives to their solvent-based counterparts for various applications due to increasing health and environmental awareness. A series of aqueous polyurethane dispersions containing carboxylate anion as hydrophilic pendant groups were synthesized through step growth polymerization reaction using hexamethylene diisocyanate (HDI), 1,4-butanediol (1,4-BDO), dimethylol propionic acid (DMPA) and polyethylene glycol (PEG) of different molecular weight. Effect of PEG molecular weight was investigated on molecular structure, contact angle measurement, and physical and adhesive properties of PU emulsions. Fourier transform infrared spectroscopy (FT-IR) was used to check the completion of polymerization reaction. Contact angle measurement indicated that the hydrophilicity of polymer increases by increasing molecular weight of PEG with a corresponding decrease in contact angle. Results of T-peel test showed a decrease in peel strength by increasing molecular weight of PEG. Moreover, solid contents%, drying time and storage stability suggested fast drying properties and greater stability of aqueous PU dispersions.

  12. Comparative study of the wear resistance of Al2O3-coated MA956 superalloy

    Directory of Open Access Journals (Sweden)

    Canahua Loza, Hugo

    2000-10-01

    Full Text Available Preoxidation of the MA956 superalloy, proposed as a prosthetic biomaterial, generates a compact and inert a-alumina surface layer. The aim of this study is to assess the wear resistance provided by this alumina layer on the MA956 alloy in comparison with the same coated alloy and versus high density polyethylene. Comparative wear tests were carried out in both dry and wet conditions using the couples MA956/MA956, MA956/UHMWPE (ultra high molecular weight polyethylene and 316LVM/UHMWPE. The results corresponding to the couples MA956/MA956, with and without alumina layer, show that the load has more significant effect than the rotation speed on the weight loss and on the roughness. On the other hand the alumina surface layer provides a clear wear protection. The weight losses of the MA956 specimen in this couple are ten times lower when testing under wet conditions than under dry conditions. The MA956/UHMWPE couple behaves much better than the 316LVM/UHMWPE, as it presents the lowest values of friction coefíicient and weight losses of the MA956 specimen. These are only detectable after 70,000 cycles under a 70 MPa contact pressure. This couple offers the best guarantee of a prolonged service life for articulated parts in a prosthesis.

    La superaleación MA956, que se ha propuesto como biomaterial para prótesis osteoarticulares genera, mediante un adecuado tratamiento de preoxidación, una capa superficial, compacta e inerte, de alúmina alfa. El objetivo del presente trabajo es el estudio de la resistencia al desgaste de esta capa de alúmina, cuando se encuentra en contacto con la propia aleación recubierta y con polietileno de alta densidad. Se realizaron ensayos comparativos de desgaste, tanto en seco como en húmedo, con los pares MA956/MA956, MA956/UHMWPE (polietileno de muy elevado peso molecular y 316LVM/UHMWPE. Los resultados obtenidos con el par MA956/MA956, con y sin capa de alúmina, indican que la carga es el factor de mayor

  13. The impact of surface and geometry on coefficient of friction of artificial hip joints.

    Science.gov (United States)

    Choudhury, Dipankar; Vrbka, Martin; Mamat, Azuddin Bin; Stavness, Ian; Roy, Chanchal K; Mootanah, Rajshree; Krupka, Ivan

    2017-08-01

    Coefficient of friction (COF) tests were conducted on 28-mm and 36-mm-diameter hip joint prostheses for four different material combinations, with or without the presence of Ultra High Molecular Weight Polyethylene (UHMWPE) particles using a novel pendulum hip simulator. The effects of three micro dimpled arrays on femoral head against a polyethylene and a metallic cup were also investigated. Clearance played a vital role in the COF of ceramic on polyethylene and ceramic on ceramic artificial hip joints. Micro dimpled metallic femoral heads yielded higher COF against a polyethylene cup; however, with metal on metal prostheses the dimpled arrays significantly reduced the COF. In situ images revealed evidence that the dimple arrays enhanced film formation, which was the main mechanism that contributed to reduced friction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characterization for DRX and FTIR of the surface of UWMWPE for critical applications

    International Nuclear Information System (INIS)

    Medeiros, Keila M. de; Araujo, E.M.; Lira, H.L.; Patricio, Aline C.L.; Lima, Carlos A.P. de

    2009-01-01

    Biomaterials is the result of the application of the science of the materials to the medicine, understands a new and important spectrum of the knowledge - Science of Biomaterials. The principal aspects that determine the acting of a bio material in the human body are three: biocompatibility, mechanical properties and degradation. This work had the objective to modify and to oxidate the surface of ultra-high molecular weight polyethylene (UHMWPE). It was utilized for this modification water sandpapers and for oxidation the hydrogen peroxide (H 2 O 2 ). The surface of UHMWPE it was modified with water sandpapers of numbers 180, 600 and 1200 mesh and oxidated with the H 2 O 2 in different concentrations of 35 and 60%. The samples already with its modified surfaces had been submitted to the characterization using itself the following techniques: diffraction de ray-X and Fourier transform infra-red spectroscopy. The physical modification (sanded) and chemistry (H 2 O 2 ) of the surface of UHMWPE was important because it looks for improving the interaction techniques of the implants with the bone. (author)

  15. Polymeric thermal analysis of C + H and C + H + Ar ion implanted UHMWPE samples

    International Nuclear Information System (INIS)

    Kaya, N.; Oztarhan, Ahmet M.; Urkac, E.S.; Ila, D.; Budak, S.; Oks, E.; Nikolaev, A.; Ezdesir, A.; Tihminlioglu, F.; Tek, Z.; Cetiner, S.; Muntele, C.

    2007-01-01

    Chemical surface characterization of C + H hybrid ion implanted UHMWPE samples were carried out using DSC (differential scanning calorimeter) and TGA (thermal gravimetric analysis) techniques. Samples were implanted with a fluence of 10 17 ion/cm 2 and an extraction voltage of 30 kV. The study of TGA and DSC curves showed that: (1) Polymeric decomposition temperature increased (2) T m , ΔC p and ΔH m values changed while ΔC p and ΔH m increased. T g value could not be measured, because of some experimental limitations. However, the increase in ΔH m values showed that T g values increased (3) the branch density which indicated the increase in number of cross-link (M c ) decreased in ion implanted samples and (4) increase in ΔH m values indicated increase in crystallinity of implanted surface of UHMWPE samples

  16. Análisis experimental del desgaste entre UHMWPE y acero inoxidable 316l empleados en la manufactura de prótesis coxofemorales

    Directory of Open Access Journals (Sweden)

    Ricardo Gustavo Rodríguez Cañizo

    2010-07-01

    ículas desprendidas disminuyen considerablemente cuando se utiliza suero bovino como lubricante para replicar las condiciones reales de operación del sistema por tener propiedades muy semejantes a las del fluido sinovial presente en la articulación de la cadera. El caso seco representó el peor escenario en donde se produce mayor daño. Palabras clave: pruebas pin-on-disk, copa acetabular, cabeza femoral, suero bovino, tasa anual de desgaste, coeficientes de fricción. Abstract The most common cause of failure in coxofemoral prostheses is the loosening between the components of the system, namely the acetabular cup and the femoral head. In this work a tribologic analysis of wear suffered in the components is presented, due to when the surfaces in contact are worn, the mechanical function of the system is compromised as the wearing implies a change in the geometry of the components, thus in their dimensions, resulting on a looseness between the cup and the head. The materials considered in this study are Ultra High Molecular Weight Polyethylene (UHMWPE for the cup and 316L Stainless Steel for the femoral head, which represent the surgeons choice for elderly patients. The annual wearing rate between these components was experimentally determined, as well as the amount of debris produced during contact. Firstly, the loading conditions were determined analytically considering those acting on the femoral head taking into consideration the wearing area during human walk. Secondly, the experimental analysis consisted in wearing tests using a tribology pin-on-disk machine, specifically built for this study. The tests to determine the volumetric loss of the components were performed under three different operational conditions: dry, lubricated with bovine serum and lubricated with destilated water. The experimental set up consisted on UHMWPE pins and 316L Stainless steel discs simulating the equivalent wear of ten years of usage of the prostheses. Lastly, the obtained results proved that

  17. Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate).

    Science.gov (United States)

    Bohr, Adam; Wang, Yingya; Harmankaya, Necati; Water, Jorrit J; Baldursdottír, Stefania; Almdal, Kristoffer; Beck-Broichsitter, Moritz

    2017-06-01

    Poly(ethylene carbonate) (PEC) is a unique biomaterial showing significant potential for controlled drug delivery applications. The current study investigated the impact of the molecular weight on the biological performance of drug-loaded PEC films. Following the preparation and thorough physicochemical characterization of diverse PEC (molecular weights: 85, 110, 133, 174 and 196kDa), the degradation and drug release behavior of rifampicin- and bovine serum albumin-loaded PEC films was investigated in vitro (in the presence and absence of cholesterol esterase), in cell culture (RAW264.7 macrophages) and in vivo (subcutaneous implantation in rats). All investigated samples degraded by means of surface erosion (mass loss, but constant molecular weight), which was accompanied by a predictable, erosion-controlled drug release pattern. Accordingly, the obtained in vitro degradation half-lives correlated well with the observed in vitro half-times of drug delivery (R 2 =0.96). Here, the PEC of the highest molecular weight resulted in the fastest degradation/drug release. When incubated with macrophages or implanted in animals, the degradation rate of PEC films superimposed the results of in vitro incubations with cholesterol esterase. Interestingly, SEM analysis indicated a distinct surface erosion process for enzyme-, macrophage- and in vivo-treated polymer films in a molecular weight-dependent manner. Overall, the molecular weight of surface-eroding PEC was identified as an essential parameter to control the spatial and temporal on-demand degradation and drug release from the employed delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Polymeric compositions incorporating polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  19. Effect of electron beam radiation on the structure and mechanical properties of ultra high molecular weight polyethylene fibers

    International Nuclear Information System (INIS)

    Li Shujun; Sun Weijun; Liu Xiuju; Gao Yongzhong; Li Huisheng

    1998-01-01

    Ultra high molecular weight polyethylene fibers have been crosslinked by electron beam. The structure and mechanical properties of them have been investigated in different irradiation atmospheres. The obtained results show that the gel content and crosslinking density increase with the increase of dose, the swelling ratio and average molecular weight of crosslinked net decrease with the increase of dose, the tensile strength and failure elongation decrease with the increase of dose, the tensile modulus increases with the increase of dose. When the samples are irradiated in air, vacuum and acetylene atmospheres, the effect of irradiation in acetylene atmosphere is best

  20. A comparison of the efficacy of various antioxidants on the oxidative stability of irradiated polyethylene.

    Science.gov (United States)

    Hope, Natalie; Bellare, Anuj

    2015-03-01

    Ultrahigh-molecular-weight polyethylene (UHMWPE) is subjected to radiation crosslinking to form highly crosslinked polyethylene (HXLPE), which has improved wear resistance. First-generation HXLPE was subjected to thermal treatment to reduce or quench free radicals that can induce long-term oxidative degeneration. Most recently, antioxidants have been added to HXLPE to induce oxidative resistance rather than by thermal treatment. However, antioxidants can interfere with the efficiency of radiation crosslinking. We sought to identify (1) which antioxidant from among those tested (vitamin E, β-carotene, butylated hydroxytoluene, or pentaerythritol tetrakis [methylene-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate]) causes the least reduction of crosslinking; (2) which promotes the greatest oxidative stability; and (3) which had the lowest ratio of oxidation index to crosslink density. Medical-grade polyethylene (PE) resin was blended with 0.1 weight % of the following stabilizers: alpha tocopherol (vitamin E), β-carotene, butylated hydroxytoluene (BHT), and pentaerythritol tetrakis [methylene-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (a hindered phenol antioxidant [HPAO]). These blends were compression-molded into sheets and subjected to electron beam irradiation to a dose of 100 kGy. Equilibrium swelling experiments were conducted to calculate crosslink density. Each PE was subjected to accelerated aging for a period of 2 weeks and Fourier transform infrared spectroscopy was used to measure the maximum oxidation. Statistical analysis was conducted using analysis of variance with Fisher's protected least significant difference in which a p value of tested (1.49, ES = 1.94; 95% CI, 1.32-1.66) followed by HPAO-PE (1.70, ES = 1.52; 95% CI, 1.61-1.80), vitamin E-PE (2.21, ES = 0.52; 95% CI, 2.05-2.38), and β-carotene-PE (2.69, ES = -0.43; 95% CI, 2.46-2.93) compared with control PE (2.47, 95% CI, 2.07-2.88) with β-carotene (p = 0.208) and vitamin E (p = 0

  1. A study of TiN-coated metal-on-polymer bearing materials for hip prosthesis

    Science.gov (United States)

    Lee, Sung Bai; Choi, Jin Young; Park, Won Woong; Jeon, Jun Hong; Won, Sung Ok; Byun, Ji Young; Lim, Sang Ho; Han, Seung Hee

    2010-08-01

    The TiN-coated metal-on-polymer hip prosthetic pair has the potential to reduce wear debris of UHMWPE (ultra-high molecular weight polyethylene) and to prevent metallic-ion-induced cytotoxicity. However, high quality and adherent film is a key to the clinical success of hip prostheses. In this study, titanium nitride (TiN) films were deposited on stainless steel using plasma immersion ion implantation & deposition (PIII&D) technique to create high-quality film and an adherent interface. The chemical state and composition were analyzed by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and energy dispersive spectroscopy (EDS). The mechanical properties of the films were characterized using a micro-hardness tester and a pin-on-disk wear tester, and an x-ray diffractometer (XRD) was used for a crystallographic analysis. The PIII&D-treated TiN films showed a stoichiometric and (200) preferred orientation and micro-hardness up to 150 % higher than untreated film. A TiN-coated specimen using the PIII&D process also showed less UHMWPE wear compared to untreated specimens. The volumetric wear rate of UHMWPE could be reduced by as much as 42 % compared to when Co-Cr alloy was used. The results of this study show that advanced TiN-coating via the PIII&D process is a viable means of reducing UHMWPE wear in the metal-on-polymer bearing couple.

  2. Tribological and Mechanical Behaviors of Polyamide 6/Glass Fiber Composite Filled with Various Solid Lubricants

    Directory of Open Access Journals (Sweden)

    Duxin Li

    2013-01-01

    Full Text Available The effects of polytetrafluoroethylene (PTFE, graphite, ultrahigh molecular weight polyethylene (UHMWPE, and their compounds on mechanical and tribological properties of glass-fiber-reinforced polyamide 6 (PA6/GF were studied. The polymeric materials were blended using twin-screw extruder and subsequently injection molded for test samples. Mechanical properties were investigated in terms of hardness, tensile strength, and impact strength. Friction and wear experiments were run under ambient conditions at a rotating speed of 200 rpm and load of 100 N. The morphologies of the worn surfaces were also observed with scanning electron microscope. The results showed that graphite could increase the tensile strength of PA6/GF-15 composite, but the material became soft. Graphite/UHMWPE complex solid lubricants were effective in increasing the already high impact strength of PA6/GF-15 composite. 5% PTFE gave the maximum reduction in the coefficient of friction. However, PTFE/UHMWPE complex solid lubricants were the best choice for improving both friction and wear behaviors due to the lower friction coefficient and mass wear rate. Moreover, the worn surface of PA6 composites revealed that adhesive wear, abrasive wear, and fatigue wear occurred in this study.

  3. Tribological and mechanical behaviors of polyamide 6/glass fiber composite filled with various solid lubricants.

    Science.gov (United States)

    Li, Duxin; Xie, Ying; Li, Wenjuan; You, Yilan; Deng, Xin

    2013-01-01

    The effects of polytetrafluoroethylene (PTFE), graphite, ultrahigh molecular weight polyethylene (UHMWPE), and their compounds on mechanical and tribological properties of glass-fiber-reinforced polyamide 6 (PA6/GF) were studied. The polymeric materials were blended using twin-screw extruder and subsequently injection molded for test samples. Mechanical properties were investigated in terms of hardness, tensile strength, and impact strength. Friction and wear experiments were run under ambient conditions at a rotating speed of 200 rpm and load of 100 N. The morphologies of the worn surfaces were also observed with scanning electron microscope. The results showed that graphite could increase the tensile strength of PA6/GF-15 composite, but the material became soft. Graphite/UHMWPE complex solid lubricants were effective in increasing the already high impact strength of PA6/GF-15 composite. 5% PTFE gave the maximum reduction in the coefficient of friction. However, PTFE/UHMWPE complex solid lubricants were the best choice for improving both friction and wear behaviors due to the lower friction coefficient and mass wear rate. Moreover, the worn surface of PA6 composites revealed that adhesive wear, abrasive wear, and fatigue wear occurred in this study.

  4. Low Velocity Impact Properties of Aluminum Foam Sandwich Structural Composite

    Directory of Open Access Journals (Sweden)

    ZHAO Jin-hua

    2018-01-01

    Full Text Available Sandwich structural composites were prepared by aluminum foam as core materials with basalt fiber(BF and ultra-high molecular weight polyethylene(UHMWPE fiber composite as faceplate. The effect of factors of different fiber type faceplates, fabric layer design and the thickness of the corematerials on the impact properties and damage mode of aluminum foam sandwich structure was studied. The impact properties were also analyzed to compare with aluminum honeycomb sandwich structure. The results show that BF/aluminum foam sandwich structural composites has bigger impact damage load than UHMWPE/aluminum foam sandwich structure, but less impact displacement and energy absorption. The inter-layer hybrid fabric design of BF and UHMWPE has higher impact load and energy absorption than the overlay hybrid fabric design faceplate sandwich structure. With the increase of the thickness of aluminum foam,the impact load of the sandwich structure decreases, but the energy absorption increases. Aluminum foam sandwich structure has higher impact load than the aluminum honeycomb sandwich structure, but smaller damage energy absorption; the damage mode of aluminum foam core material is mainly the fracture at the impact area, while aluminum honeycomb core has obvious overall compression failure.

  5. Degradation of polyethylene by Trichoderma harzianum--SEM, FTIR, and NMR analyses.

    Science.gov (United States)

    Sowmya, H V; Ramalingappa; Krishnappa, M; Thippeswamy, B

    2014-10-01

    Trichoderma harzianum was isolated from local dumpsites of Shivamogga District for use in the biodegradation of polyethylene. Soil sample of that dumpsite was used for isolation of T. harzianum. Degradation was carried out using autoclaved, UV-treated, and surface-sterilized polyethylene. Degradation was monitored by observing weight loss and changes in physical structure by scanning electron microscopy, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. T. harzianum was able to degrade treated polyethylene (40%) more efficiently than autoclaved (23%) and surface-sterilized polyethylene (13%). Enzymes responsible for polyethylene degradation were screened from T. harzianum and were identified as laccase and manganese peroxidase. These enzymes were produced in large amount, and their activity was calculated using spectrophotometric method and crude extraction of enzymes was carried out. Molecular weight of laccase was determined as 88 kDa and that of manganese peroxidase was 55 kDa. The capacity of crude enzymes to degrade polyethylene was also determined. By observing these results, we can conclude that this organism may act as solution for the problem caused by polyethylene in nature.

  6. Process for producing chlorinated polyethylene

    International Nuclear Information System (INIS)

    Nose, Shinji; Takayama, Shin-ichi; Kodama, Takashi.

    1970-01-01

    A process for chlorinated polyethylene by the chlorination of an aqueous suspension of polyethylene without the use catalysts is given, using 5-55% by gel content of cross-linked polyethylene powders. The products have favorable material workability, transparency, impact strength and tensile properties. In the case of peroxide cross-linking, a mixture of peroxides with polyethylene must be ground after heat treatment. The polyethylene may preferably have a gel content of 5-55%. The chlorination temperature may be 40 0 C or more, preferably 60 0 to 160 0 C. In one example, high pressure polymerized fine polyethylene powders of 15μ having a density of 0.935 g/cc, a softening point of 114 0 C, an average molecular weight of 35,000 were irradiated in air with 40 Mrad electron beams from a 2 MV Cockcroft-Walton type accelerator at room temperature. The thus irradiated polyethylene had a gel content of 55% and a softening point of 119 0 C. It was chlorinated upto a chlorine content of 33% at 100 0 C. Products were white crystals having a melting point of 122 0 C and a melting heat value of 32 mcal/mg. A sheet formed from this product showed a tensile strength of 280 kg/cm 2 , an elongation of 370% and a hardness of 90. (Iwakiri, K.)

  7. Modification of UHMWPE crystalline structure by means of e-beam irradiation and thermal treatment

    Czech Academy of Sciences Publication Activity Database

    Šlouf, Miroslav; Synková, Hana; Baldrian, Josef; Stephan, M.; Dorschner, H.

    2006-01-01

    Roč. 13, č. 3 (2006), s. 171 ISSN 1211-5894. [Czech and Slovak Crystallographic Colloquium. 22.06.2006-24.06.2006, Grenoble] R&D Projects: GA ČR GA106/04/1118 Institutional research plan: CEZ:AV0Z40500505 Keywords : UHMWPE * wear testing Subject RIV: CF - Physical ; Theoretical Chemistry http://www. xray .cz/ms/default.htm

  8. Measuring polyethylene wear in total knee arthroplasty by RSA: differences between weight-bearing and non-weight-bearing positioning.

    Science.gov (United States)

    van Ijsseldijk, Emiel A; Valstar, Edward R; Stoel, Berend C; de Ridder, Ruud; Nelissen, Rob G H H; Kaptein, Bart L

    2014-04-01

    Measuring the minimum-joint-space-width (mJSW) in total knee arthroplasty (TKA) in Roentgen stereophotogrammetric analysis (RSA) provides valuable information on polyethylene wear, a leading cause for TKA failure. Most existing studies use non-weight-bearing (NWB) patient positioning. The latter may compromise mJSW measurements due to knee laxity with subsequent non-contact between the TKA components. We investigated the difference in mJSW between weight-bearing (WB) and NWB images and the association with mediolateral (ML) knee stability. At one-year follow-up, 23 TKAs were included from an ongoing RSA study, and ML stability was evaluated. For each examination, the mJSW and femoral-tibial contact locations were measured. A linear regression model was used to analyze the association between the mJSW difference (NWB-WB) with the ML stability and contact locations. The mean mJSW difference was 0.28 mm medially and 0.20 mm laterally. Four TKAs had medium (5-9°) and 19 TKAs had high (RSA studies are influenced by knee laxity, but may still provide information on wear progression based on TKA with high ML stability. A direct comparison of mJSW measurements from WB and NWB data is not possible. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Oriented nanocomposites of ultrahigh-molecular-weight polyethylene and gold

    NARCIS (Netherlands)

    Heffels, W.; Bastiaansen, C.W.M.; Caseri, W.R.; Smith, P.

    2000-01-01

    Polymer nanocomposites were prepd. by mixing ultrahigh-mol.-wt. polyethylene and gold colloids coated with a self-assembled monolayer of dodecanethiol. Subsequently, these materials were oriented by solid state drawing which induced the formation of uniaxially oriented arrays of gold particles. As a

  10. Chemical modification of high molecular weight polyethylene through gamma radiation for biomaterials applications; Modificacao quimica de polietileno de alto peso molecular atraves de radiacao gama para aplicacao em biomateriais

    Energy Technology Data Exchange (ETDEWEB)

    Raposo, Matheus P.; Rocha, Marisa C.G., E-mail: matheusmerlim@hotmail.com [Universidade Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico

    2015-07-01

    Ultra high molecular weight polyethylene has been used in the medical field due to its high mechanical properties compared to the other polymers. Its main application is in the development of orthopedic implants, which requires high resistance to abrasion. One of the most used methods is the introduction of crosslinks in the polymer through gamma irradiation. In order to prevent oxidation reactions, studies have been developed using tacoferol (vitamin E) as an antioxidant for the material. The ascorbic acid (vitamin C), however, has been appointed as a viable alternative for vitamin E. In this work, a high molecular weight polyethylene grade (HMWPE) and polyethylene samples formulated with vitamin C were submitted to gamma radiation. Thermodynamic-mechanical methods and gel content determinations were used to characterize the samples obtained. The sample containing 1% of vitamin C and irradiated with 50 KGy of gamma radiation presented the highest content of crosslinks. (author)

  11. Single-Point Incremental Forming of Two Biocompatible Polymers: An Insight into Their Thermal and Structural Properties

    Directory of Open Access Journals (Sweden)

    Luis Marcelo Lozano-Sánchez

    2018-04-01

    Full Text Available Sheets of polycaprolactone (PCL and ultra-high molecular weight polyethylene (UHMWPE were fabricated and shaped by the Single-Point Incremental Forming process (SPIF. The performance of these biocompatible polymers in SPIF was assessed through the variation of four main parameters: the diameter of the forming tool, the spindle speed, the feed rate, and the step size based on a Box–Behnken design of experiments of four variables and three levels. The design of experiments allowed us to identify the parameters that most affect the forming of PCL and UHMWPE. The study was completed by means of a deep characterization of the thermal and structural properties of both polymers. These properties were correlated to the performance of the polymers observed in SPIF, and it was found that the polymer chains are oriented as a consequence of the SPIF processing. Moreover, by X-ray diffraction it was proved that polymer chains behave differently on each surface of the fabricated parts, since the chains on the surface in contact with the forming tool are oriented horizontally, while on the opposite surface they are oriented in the vertical direction. The unit cell of UHMWPE is distorted, passing from an orthorhombic cell to a monoclinic due to the slippage between crystallites. This slippage between crystallites was observed in both PCL and UHMWPE, and was identified as an alpha star thermal transition located in the rubbery region between the glass transition and the melting point of each polymer.

  12. Oscillatory device for use with linear tribometer, for tribological evaluation of biomaterials

    Science.gov (United States)

    Athayde, J. N.; Siqueira, C. J. M.; Kuromoto, N. K.; Cambraia, H. N.

    2017-07-01

    Orthopedic implants still have limitations regarding their durability, despite being in use for over fifty years. Particles arising from wear due to the relative motion of their surfaces remain responsible for aseptic failure. This paper presents a device to be coupled with a reciprocal linear tribometer to reproduce the ex vivo wear of biomaterials, allowing the measurement of force and coefficient of friction. The device consists of a structure connected to the tribometer that transforms its reciprocal linear motion into one that is oscillatory for the mechanical assembly that contains the samples to test the desired biomaterials. The tribological pair used for testing consisted of Ultra High Molecular Weight Polyethylene (UHMWPE) in conjunction with the austenitic stainless steel AISI 316L in dry lubrication. The results showed that the values of the coefficient of friction in the linear mode and oscillatory mode and the UHMWPE life curve in the oscillatory mode were consistent with those cited in the literature for tests in a dry lubrication environment. Moreover, the UHMWPE sample life curve showed a reduction in the wear rate that can be explained by the preponderance of a wear mechanism over the others. The volumetric wear showed an increase with the number of cycles.

  13. Behaviour of neutron moderator materials at high temperatures in CASTOR registered -casks: qualification and assessment

    International Nuclear Information System (INIS)

    Krietsch, T.; Wolff, D.; Knopp, U.; Brocke, H.D.

    2004-01-01

    The Federal Institute for Materials Research and Testing (BAM) is the responsible German authority for the assessment of mechanical and thermal designs of transport and storage casks for radioactive materials. BAM checks up the proofs of the applicants in their safety reports and assesses the conformity to the Regulations for the Safe Transport of Radioactive Material. One applicant is the Gesellschaft fuer Nuklear-Behaelter mbH (GNB) with a new generation of transport and storage casks of CASTOR registered -design. GNB typically uses ultra high molecular weight Polyethylene (UHMW-PE) for the moderation of free neutrons. Rods made of UHMW-PE are positioned in axial bore holes in the wall of the cask and plates of UHMW-PE are in free spaces between primary and secondary lid and between the bottom of the cask and an outer plate (Figure 1). Because of the heat generated by the radioactive inventory and because of a strained spring at the bottom of every bore hole, UHMW-PE is subjected to permanent thermal and mechanical loads as well as loads from gamma and neutron radiation. UHMW-PE has been used under routine- and normal conditions of transport for maximum temperatures up to 130 C. For new generations of CASTOR registered -design maximum temperatures will be increased up to 160 C. That means a permanent use of UHMW-PE at temperatures within and above the melting region of the crystallites. In this paper, some results of special investigations for the proofs of usability of UHMW-PE at temperatures up to 160 C under real conditions of transport and storage in CASTOR registered -casks are given. For that, investigations on temperature dependent expansion behaviour under laboratory conditions as well as in large scale experiments, especially in the case of multiple heating and cooling, were done. Besides, geometrical creep strength for long-term loading by temperatures and pressures with regard to the chemical and physical stability properties of UHMW-PE above the

  14. Comparing Single-Point and Multi-point Calibration Methods in Modulated DSC

    Energy Technology Data Exchange (ETDEWEB)

    Van Buskirk, Caleb Griffith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-14

    Heat capacity measurements for High Density Polyethylene (HDPE) and Ultra-high Molecular Weight Polyethylene (UHMWPE) were performed using Modulated Differential Scanning Calorimetry (mDSC) over a wide temperature range, -70 to 115 °C, with a TA Instruments Q2000 mDSC. The default calibration method for this instrument involves measuring the heat capacity of a sapphire standard at a single temperature near the middle of the temperature range of interest. However, this method often fails for temperature ranges that exceed a 50 °C interval, likely because of drift or non-linearity in the instrument's heat capacity readings over time or over the temperature range. Therefore, in this study a method was developed to calibrate the instrument using multiple temperatures and the same sapphire standard.

  15. Investigation of nanoscale reinforcement into textile polymers

    Science.gov (United States)

    Khan, Mujibur Rahman

    A dual inclusion strategy for textile polymers has been investigated to increase elastic energy storage capacity of fibers used in high velocity impact applications. Commercial fibers such as Spectra and Dyneema are made from ultra high molecular weight polyethylene (UHMWPE). Dynamic elastic energy of these fibers is still low therefore limiting their wholesale application without a secondary metallic or ceramic component. The idea in this investigation is to develop methodologies so that the elastic energy of polyethylene based fibers can be increased by several folds. This would allow manufacturing of an all-fabric system for high impact applications. The dual inclusion consists of a polymer phase and a nanoscale inorganic phase to polyethylene. The polymer phase was nylon-6 and the inorganic phase was carbon nanotubes (CNTs). Nylon-6 was blended as a minor phase into UHMWPE and was chosen because of its large fracture strain -- almost one order higher than that of UHMWPE. On the other hand, CNTs with their very high strength, modulus, and aspect ratio, contributed to sharing of load and sliding of polymer interfaces as they aligned during extrusion and strain hardening processes. A solution spinning process was developed to produce UHMWPE filaments reinforced with CNTs and nylon-6. The procedure involved dispersing of CNTs into paraffin oil through sonication followed by dissolving polymers into paraffin-CNT solution using a homogenizer. The admixture was fed into a single screw extruder for melt mixing and extrusion through an orifice. The extrudate was rinsed via a hexane bath, stabilized through a heater, and then drawn into a filament winder with controlled stretching. In the next step, the as produced filaments were strain-hardened through repeated loading unloading cycles under tension. Neat and reinforced filaments were characterized through DSC (Differential Scanning Calorimetry), XRD (X-ray Diffraction), Raman Spectroscopy, SEM (Scanning Electron

  16. Modeling and Experiments on Ballistic Impact into UHMWPE Yarns Using Flat and Saddle-Nosed Projectiles

    Directory of Open Access Journals (Sweden)

    Stuart Leigh Phoenix

    2017-03-01

    Full Text Available Yarn shooting experiments were conducted to determine the ballistically-relevant, Young’s modulus and tensile strength of ultra-high molecular weight polyethylene (UHMWPE fiber. Target specimens were Dyneema® SK76 yarns (1760 dtex, twisted to 40 turns/m, and initially tensioned to stresses ranging from 29 to 2200 MPa. Yarns were impacted, transversely, by two types of cylindrical steel projectiles at velocities ranging from 150 to 555 m/s: (i a reverse-fired, fragment simulating projectile (FSP where the flat rear face impacted the yarn rather than the beveled nose; and (ii a ‘saddle-nosed projectile’ having a specially contoured nose imparting circular curvature in the region of impact, but opposite curvature transversely to prevent yarn slippage off the nose. Experimental data consisted of sequential photographic images of the progress of the triangular transverse wave, as well as tensile wave speed measured using spaced, piezo-electric sensors. Yarn Young’s modulus, calculated from the tensile wave-speed, varied from 133 GPa at minimal initial tension to 208 GPa at the highest initial tensions. However, varying projectile impact velocity, and thus, the strain jump on impact, had negligible effect on the modulus. Contrary to predictions from the classical Cole-Smith model for 1D yarn impact, the critical velocity for yarn failure differed significantly for the two projectile types, being 18% lower for the flat-faced, reversed FSP projectile compared to the saddle-nosed projectile, which converts to an apparent 25% difference in yarn strength. To explain this difference, a wave-propagation model was developed that incorporates tension wave collision under blunt impact by a flat-faced projectile, in contrast to outward wave propagation in the classical model. Agreement between experiment and model predictions was outstanding across a wide range of initial yarn tensions. However, plots of calculated failure stress versus yarn pre

  17. An evaluation of the effects of PEO/PEG molecular weights on extruded alumina rods

    Science.gov (United States)

    Bolger, Nancy Beth

    1998-12-01

    Alumina rods were piston extruded from bodies containing polyethylene glycols (PEGs) and polyethylene oxides (PEOs) with molecular weights ranging from 1,300 to 3,800,000 g/mol. A blend of aluminas possessing different particle size distributions was evaluated with regard to its extrusion pressure by varying the amount of PEG/PEO addition. Behavior exhibited by the alumina blend was dependent upon the additive that was used. The higher molecular weight binders with average molecular weight of 200,000 g/mol and 3,350,000 g/mol displayed the most severe behaviors of near dilatant and dilatant respectively. Physical properties of the green and fired states, as well as the binder burnout, were investigated with the changing additions. Correlation between the green and fired strengths and the changing molecular weights were examined. The additive present influenced the surface properties of the rods, which affected the green strengths. The highest average molecular weight polyethylene glycols showed higher green strengths, while the lowest green strengths were observed for the high molecular weight polyethylene oxides. Fired strengths generally ranged from approximately 12,000 psi to 16,000 psi for additive batches. Alumina pellets containing twelve separate combinations of polyethylene glycol with polyethylene oxide were dry pressed. Physical properties of the green and fired states were examined. Statistical analysis was performed upon the data and seven combinations of polyethylene glycol with polyethylene oxide were deemed significant. These combinations in conjunction with the same alumina blend were then piston extruded. The addition of polyethylene glycol reduced the near dilatant behavior exhibited by the 200,000 g/mol average molecular weight polyethylene oxide. Dilatant behavior was completely eliminated from the 3,350,000 g/mol average molecular weight polyethylene oxide batches. Physical properties of the green and fired states were again investigated with

  18. Probabilistic Analysis of Wear of Polymer Material used in Medical Implants

    Directory of Open Access Journals (Sweden)

    T. Goswami

    2016-05-01

    Full Text Available Probabilistic methods are applied to the study of fatigue wear of sliding surfaces. A variance of time to failure (to occurrence of maximum allowable wear depth is evaluated as a function of a mean wear rate of normal wear and a size of wear particles. A method of estimating probability of failure-free work during a certain time interval (reliability is presented. An effect of the bedding-in phase of wear on the reliability is taken into account. Experimental data for Ultra High Molecular Weight Polyethylene (UHMWPE cups of artificial hip implants is used to make numerical calculations.

  19. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  20. Surface modification of biocompatible materials. Seitai tekigo zairyo no hyomen kaishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Tateishi, T [Mechanical Engineering Lab., Tsukuba, Ibaraki (Japan)

    1993-07-05

    The necessary conditions for biocompatible materials such as human bone, joints and teeth are mainly classified into biological condition and mechanical conditions. The former condition is consisted of chemical stability without causing poisoning or allergy, compatibility of good biological tissue, no carcinogenesis and not antigenicity, no decomposition and degradation inside human body, not causing adsorbate or precipitate. As for the latter, appropriate static strength, elastic modulus and hardness together with the characteristics like fatigue resistance, wear resistance and lubricating properties are given. As for other conditions for biomaterials, characteristics as a functional material, workability, adhesion and so forth are important. When surface nitrification of sintered Ti, forging Ti, sintered Ti-6Al-4V and forging Ti-6Al-4V is carried out, the solubility is decreased significantly by surface nitrification. The powder generated by the wear of nitriding Ti-6Al-4V with ultra high molecular weight polyethylene (UHMWPE) is less cell poisoning than the powder caused by the wear of the other alumina, stabilized zirconia, hydroxy apatite with UHMWPE. 16 refs., 2 figs., 1 tab.

  1. A new rabbit model of implant-related biofilm infection: development and evaluation

    Science.gov (United States)

    Chu, Cheng-Bing; Zeng, Hong; Shen, Ding-Xia; Wang, Hui; Wang, Ji-Fang; Cui, Fu-Zhai

    2016-03-01

    This study is to establish a rabbit model for human prosthetic joint infection and biofilm formation. Thirty-two healthy adult rabbits were randomly divided into four groups and implanted with stainless steel screws and ultra-high molecular weight polyethylene (UHMWPE) washers in the non-articular surface of the femoral lateral condyle of the right hind knees. The rabbit knee joints were inoculated with 1 mL saline containing 0, 102, 103, 104 CFU of Staphylococcus epidermidis ( S. epidermidis) isolated from the patient with total knee arthroplasty (TKA) infection, respectively. On the 14th postoperative day, the UHMWPE washers from the optimal 103 CFU group were further examined. The SEM examination showed a typical biofilm construction that circular S. epidermidis were embedded in a mucous-like matrix. In addition, the LCSM examination showed that the biofilm consisted of the polysaccharide stained bright green fluorescence and S. epidermidis radiating red fluorescence. Thus, we successfully create a rabbit model for prosthetic joint infection and biofilm formation, which should be valuable for biofilm studies.

  2. Analysis of behind the armor ballistic trauma.

    Science.gov (United States)

    Wen, Yaoke; Xu, Cheng; Wang, Shu; Batra, R C

    2015-05-01

    The impact response of body armor composed of a ceramic plate with an ultrahigh molecular weight polyethylene (UHMWPE) fiber-reinforced composite and layers of UHMWPE fibers shielding a block of ballistic gelatin has been experimentally and numerically analyzed. It is a surrogate model for studying injuries to human torso caused by a bullet striking body protection armor placed on a person. Photographs taken with a high speed camera are used to determine deformations of the armor and the gelatin. The maximum depth of the temporary cavity formed in the ballistic gelatin and the peak pressure 40mm behind the center of the gelatin front face contacting the armor are found to be, respectively, ~34mm and ~15MPa. The Johnson-Holmquist material model has been used to simulate deformations and failure of the ceramic. The UHMWPE fiber-reinforced composite and the UHMWPE fiber layers are modeled as linear elastic orthotropic materials. The gelatin is modeled as a strain-rate dependent hyperelastic material. Values of material parameters are taken from the open literature. The computed evolution of the temporary cavity formed in the gelatin is found to qualitatively agree with that seen in experiments. Furthermore, the computed time histories of the average pressure at four points in the gelatin agree with the corresponding experimentally measured ones. The maximum pressure at a point and the depth of the temporary cavity formed in the gelatin can be taken as measures of the severity of the bodily injury caused by the impact; e.g. see the United States National Institute of Justice standard 0101.06-Ballistic Resistance of Body Armor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Making continuous bubble type polyethylene foam incombustible

    International Nuclear Information System (INIS)

    Kaji, Kanako; Hatada, Motoyoshi; Yoshizawa, Iwao; Komai, Kuniaki; Kohara, Choji.

    1989-01-01

    Since continuous bubble type plastic foam has excellent compression characteristics and sound absorption characteristics, it has been widely used as cushion material, sealing material, sound insulating material and so on. However, the most part of plastic foam is taken by air, therefore at the time of fires, it becomes a very dangerous material. At present, the material used mostly as the seat cushions for airliners, railroad coaches, automobiles and others is polyurethane foam, but since it contains C-N couples in its molecules, it is feared to generate cyanic gas according to the condition of combustion. As the plastic foam that does not generate harmful gas at the time of fires, there is continuous bubble type polyethylene which is excellent in its weathering property and chemical resistance. A reactive, phosphorus-containing oligomer has large molecular weight and two or more double couplings in a molecule, therefore, it does not enter the inside of polyethylene, and polymerizes and crosslinks on the surfaces of bubble walls in the foam, accordingly it is expected that the apparent graft polymerization is carried out, and it is very effective for making polyethylene foam incombustible. The method of making graft foam, the properties of graft foam and so on are reported. When the graft polymerization of this oligomer to continuous bubble type polyethylene foam was tried, highly incombustible polyethylene foam was obtained. (K.I.)

  4. Studies on the biodegradation of natural and synthetic polyethylene ...

    African Journals Online (AJOL)

    Michael Horsfall

    a Orissa University of Agriculture & Technology, Bhubaneswar 751 003, Orissa, India b *School of Bio Sciences ... The initial and final dry weights of plastic bags before and .... The washed polyethylene particles were air-dried and weighed.

  5. Hydrolytically and reductively degradable high-molecular-weight poly(ethylene glycol)s

    Czech Academy of Sciences Publication Activity Database

    Braunová, Alena; Pechar, Michal; Laga, Richard; Ulbrich, Karel

    2007-01-01

    Roč. 208, č. 24 (2007), s. 2642-2653 ISSN 1022-1352 R&D Projects: GA AV ČR KAN200200651; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable * drug delivery systems * gene delivery vectors * poly(ethylene glycol) Subject RIV: CE - Biochemistry Impact factor: 2.046, year: 2007

  6. Dosimetric features and kinetic analysis of thermoluminescence from ultra-high molecular weight polyethylene

    Science.gov (United States)

    Chithambo, M. L.

    2012-08-01

    Thermoluminescence (TL) from beta irradiated ultra-high molecular weight polyethylene has been studied for measurements between 30 and 200 °C. An aliquot studied in this work produced TL glow curves consisting of two peaks, the main peak at 88 °C and a weaker intensity peak at 148 °C for heating at 1 °C s-1 following an excitation dose of 215 Gy. The position of the main peak is poorly reproducible for heating rates of 0.2 and 0.6 °C s-1 investigated with the peak position decreasing when the sample is freshly irradiated and the TL re-measured. The said change in peak position is however less of an effect for measurements made at 1 °C s-1 with the peak position being fairly reproducible in this case. Further measurements of the dosimetric properties of ultra-high molecular weight polyethylene showed that its dose response is linear from 26 Gy to about 161 Gy but exhibits slower growth in intensity with dose from about 860 Gy after regions of sub- and supra-linearity in between. If the TL is not measured immediately after irradiation, the signal fades with the delay approximately exponentially. In addition, a number of tests including phosphorescence analysis showed the possibility that the order of kinetics might not be unique but sensitive to several factors including measurement temperature. Thus for instance, the dependence of the peak position on the stop temperature in the partial heating procedure Tm - Tstop implied first-order kinetics but analysis of the geometrical factor μg for the same set of data gave μg = 0.46 ± 0.03 a value corresponding to characteristics somewhat intermediate between first and second order. In comparison, the results of analysis of the phosphorescence recorded at several temperatures on the rising edge of the main peak were only in agreement for measurements at 40 °C with general-order analysis suggesting second-order kinetics apply as did TL-like transformation of the monotonic phosphorescence decay. Both results were

  7. The Mechanical Properties of Recycled Polyethylene-Polyethylene Terephthalate Composites

    Directory of Open Access Journals (Sweden)

    Ehsan Avazverdi

    2015-02-01

    Full Text Available Polyethylene terephthalate (PET, one of the thermoplastic polymers, is encountered with arduous problems in its recycling. After recycling, its mechanical properties drop dramatically and therefore it cannot be used to produce the products as virgin PET does. Polyethylene is a thermoplastic polymer which can be easily recycled using the conventional recycling processes. The decreased mechanical properties of virgin polyethylene due to the environmental factors can be improved by reinforcing fillers. In this paper, we studied the effects of adding recycled polyethylene terephthalate (rPET as a filler, in various amounts with different sizes, on the physical and mechanical properties of recycled polyethylene. Composite samples were prepared using an internal mixer at temperature 185°C, well below rPET melting point (250°C, and characterized by their mechanical properties. To improve the compatibility between different components, PE grafted with maleic anhydride was added as a coupling agent in all the compositions under study. The mechanical properties of the prepared samples were performed using the tensile strength, impact strength, surface hardness and melt flow index (MFI tests. To check the dispersity of the polyethylene terephthalate powder in the polyethylene matrix, light microscopy was used. The results showed that the addition of rPET improved the tensile energy, tensile modulus and surface hardness of the composites while reduced the melt flow index, elongation-at-yield, tensile strength and fracture energy of impact test. We could conclude that with increasing rPET percentage in the recycled polyethylene matrix, the composite became brittle, in other words it decreased the plastic behavior of recycled polyethylene. Decreasing particle size led to higher surface contacts, increased the mechanical properties and made the composite more brittle. The light microscopy micrographs of the samples showed a good distribution of small r

  8. Investigation on the effect of formulation and process variables of Polyethylene Foams Production

    International Nuclear Information System (INIS)

    Barikani, H.; Sarai, M.

    2001-01-01

    Polyolefin foams such as polyethylene, polypropylene and their copolymers have been extensively used in packaging, automotive, military, marine, cable industries and sports, due to their unique properties namely: light weight, chemical resistance, thermal insulation, inertness, abrasion resistance, buoyancy and low cost. With regards to domestic mass production of polyethylene, replacement of polyurethane with polyethylene foam is very important in some applications from economical point of view. In this research preparation of high density and low density polyethylene foams were studied and the effect of formulation factors such as blowing agent, cross-linker, calcium carbonate, zinc oxide and processing factors such as heat, pressure and reaction time on density and cell size were investigated

  9. Comparison of Polyethylene Glycol-Electrolyte Solution vs Polyethylene Glycol-3350 for the Treatment of Fecal Impaction in Pediatric Patients.

    Science.gov (United States)

    Boles, Erin E; Gaines, Cameryn L; Tillman, Emma M

    2015-01-01

    The objective of this study was to evaluate the safety and efficacy of polyethylene glycol-electrolyte solution vs polyethylene glycol-3350 for the treatment of fecal impaction in pediatric patients. A retrospective, observational, institutional review board-approved study was conducted over a 1-year time period. Patients were included in the study if they were admitted to the hospital with a diagnosis of fecal impaction or constipation and were treated with either polyethylene glycol-electrolyte solution (PEG-ES) or polyethylene glycol-3350 (PEG-3350). Patients were excluded if they were discharged prior to resolution of treatment and/or did not receive PEG-ES or PEG-3350. Fifty-one patients (ranging in age from 1 month to 15 years) were evaluated: 23 patients received PEG-ES and 28 patients received PEG-3350. Sex, race, age, and weight were not statistically different between the 2 groups. Resolution of fecal impaction was not significantly different between PEG-ES vs PEG-3350 (87% and 86%, respectively; p = 0.87). There was only 1 reported side effect with PEG-3350, vs 11 reported side effects with PEG-ES (p PEG-3350 is as effective as PEG-ES for the treatment of fecal impaction in pediatric patients and is associated with fewer side effects.

  10. [Mobility of a polyethylene tibial insert in a mobile total knee prosthesis].

    Science.gov (United States)

    Castel, E; Roger, B; Camproux, A; Saillant, G

    1999-03-01

    We have studied the mobility of a mobile tibial implant in total knee arthroplasty (TKA) by a radiographical evaluation. We analyzed mobility of the polyethylene tibial insert of 15 "G2S" TKA implanted for one year or more. We established a dynamic radiographical evaluation. We used 3 weight-bearing radiographs: AP in extension and two lateral (one in extension and one at 90 degrees of flexion), two AP with femoral internal and external rotation, 2 strict lateral X-rays in neutral rotation in antero-posterior replacement with a 25 kilograms strength Telos, and 2 AP in varus and valgus with Telos. Wilcoxon's test and Fisher's exact test were used for statistical evaluation. Our study demonstrated preservation of the polyethylene mobility in tibial TKA implant in all movements: in rotation, in antero-posterior translation with Telos, and even in antero-posterior translation during physiological condition with flexion-extension weight-bearing radiographs. Statistical tests were very significant. We noticed that flexion induced anterior translation of tibial polyethylene when PCL was preserved. This study answered to our question whether mobility of TKA tibial implant persists after implantation. This mobility should reduce loosening forces to the tibia and stress in the polyethylene component. Now we have to determine the amplitude of mobility required to reach this objective.

  11. Tissue response to intraperitoneal implants of polyethylene oxide-modified polyethylene terephthalate.

    Science.gov (United States)

    Desai, N P; Hubbell, J A

    1992-01-01

    Polyethylene terephthalate films surface modified with polyethylene oxide of mol wt 18,500 g/mol (18.5 k) by a previously described technique, were implanted in the peritoneal cavity of mice, along with their respective untreated controls, for periods of 1-28 d. The implants were retrieved and examined for tissue reactivity and cellular adherence. The control polyethylene terephthalate surfaces showed an initial inflammatory reaction followed by an extensive fibrotic response with a mean thickness of 60 microns at 28 d. By contrast, polyethylene oxide-modified polyethylene terephthalate showed only a mild inflammatory response and no fibrotic encapsulation throughout the implantation period: at 28 d a cellular monolayer was observed. Apparently either the polyethylene oxide-modified surface was stimulating less inflammation, which was in turn stimulating less fibroblastic overgrowth, or the cellular adhesion to the polyethylene oxide-modified surface was too weak to support cellular multilayers.

  12. 78 FR 69817 - Polyethylene Retail Carrier Bags From Thailand: Final Court Decision and Amended Final Results of...

    Science.gov (United States)

    2013-11-21

    ... Bags From Thailand: Final Court Decision and Amended Final Results of Administrative Review of the..., which recalculated the weighted-average duty margin for polyethylene retail carrier bags (PRCBs) from... Packaging at the CIT. \\2\\ See Polyethylene Retail Carrier Bags from Thailand: Final Results and Partial...

  13. Simulation of the filtration mechanism of hyaluronic acid in total knee prosthesis

    International Nuclear Information System (INIS)

    Paolo, J Di; Berli, M E; Campana, D M; Ubal, S; Cardenes, L D

    2007-01-01

    Polyethylene (UHMWPE) wear in current knee prosthesis causes prosthesis loosening after no more than 15 years. In this work, a steady state one-dimensional lubrication model with non- Newtonian fluid, porous elastic layer on tibial component, ultra-filtration mechanism of fluid and some features of the surface roughness is studied through a numerical technique based on the Finite Element Method. The results show that the UHMWPE stiffness makes difficult the lubrication mechanism of the artificial joint and promotes abrasive and fatigue wear. Nevertheless, the use of compliant porous materials on the tibial component could reduce friction and wear. Moreover, the ultra-filtration mechanism promotes efficiency on the joint

  14. A Tribological Assessment of Ultra High Molecular Weight Polyethylene Types GUR 1020 and GUR 1050 for Orthopedic Applications

    Directory of Open Access Journals (Sweden)

    Benjamin J. Hunt

    2016-06-01

    Full Text Available The wear properties of biomaterials have been demonstrated to have a high importance within orthopedic bearing surfaces. This study performed a comparison of the wear between the two main grades of Ultra High Molecular Weight Polyethylene types GUR 1020 and GUR 1050 articulating against Cobalt Chromium. Such a high capacity wear comparison has not been reported elsewhere in the scientific literature. Under an identical testing protocol it was found that GUR 1020 had a wear factor of 3.92 ± 0.55 × 10 − 6 ( mm 3 / Nm and GUR 1050 had a wear factor of 3.64 ± 0.39 × 10 − 6 ( mm 3 / Nm , with a non-statistical significant difference of p = 0.052. These wear factors correlate closely with those observed from other screening wear studies and explant analysis.

  15. Multifunctional Carbon Nanotube/Polyethylene Complex Composites for Space Radiation Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polyethylene (PE), due to its high hydrogen content relative to its weight, has been identified by NASA as a promising radiation shielding material against galactic...

  16. Biomimetic porous high-density polyethylene/polyethylene- grafted-maleic anhydride scaffold with improved in vitro cytocompatibility.

    Science.gov (United States)

    Sharma, Swati; Bhaskar, Nitu; Bose, Surjasarathi; Basu, Bikaramjit

    2018-05-01

    A major challenge for tissue engineering is to design and to develop a porous biocompatible scaffold, which can mimic the properties of natural tissue. As a first step towards this endeavour, we here demonstrate a distinct methodology in biomimetically synthesized porous high-density polyethylene scaffolds. Co-extrusion approach was adopted, whereby high-density polyethylene was melt mixed with polyethylene oxide to form an immiscible binary blend. Selective dissolution of polyethylene oxide from the biphasic system revealed droplet-matrix-type morphology. An attempt to stabilize such morphology against thermal and shear effects was made by the addition of polyethylene- grafted-maleic anhydride as a compatibilizer. A maximum ultimate tensile strength of 7 MPa and elastic modulus of 370 MPa were displayed by the high-density polyethylene/polyethylene oxide binary blend with 5% maleated polyethylene during uniaxial tensile loading. The cell culture experiments with murine myoblast C2C12 cell line indicated that compared to neat high-density polyethylene and high-density polyethylene/polyethylene oxide, the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride scaffold significantly increased muscle cell attachment and proliferation with distinct elongated threadlike appearance and highly stained nuclei, in vitro. This has been partly attributed to the change in surface wettability property with a reduced contact angle (∼72°) for 5% PE- g-MA blends. These findings suggest that the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride can be treated as a cell growth substrate in bioengineering applications.

  17. The Determination of Polyethylene Glycol in Untreated Urine Samples by High Performance Liquid Chromatography for Intestinal Permeability Studies

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Pedersen, Walther Batsberg; Philipsen, E.

    1985-01-01

    Polyethylene glycol in urine samples has been investigated by high performance liquid chromatography. The molecular weights ranged from 634 to 1338. The urine samples were applied to the chromatographic system without any pre-treatment. For samples with a concentration of 0.2% polyethylene glycol...

  18. Nová metoda kvantifikace otěrových částic UHMWPE v okolí kloubních náhrad

    Czech Academy of Sciences Publication Activity Database

    Pokorný, D.; Šlouf, Miroslav; Dybal, Jiří; Zolotarevova, E.; Veselý, F.; Jahoda, D.; Vavřík, P.; Landor, I.; Entlicher, G.; Sosna, A.

    2009-01-01

    Roč. 76, č. 5 (2009), s. 374-381 ISSN 0001-5415 R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : ultra high-molecular weight polyethylene * total hip arthroplasty * wear Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.628, year: 2009

  19. Ultrafiltration membranes from waste polyethylene terephthalate and additives: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Smitha Rajesh

    2014-01-01

    Full Text Available The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET and polyvinylpyrrolidone (PVP is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP, molecular weight cut-off (MWCO, and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.

  20. Plasticization of poly(lactic acid) using different molecular weight of Poly(ethylene glycol)

    Science.gov (United States)

    Septevani, Athanasia Amanda; Bhakri, Samsul

    2017-11-01

    Poly (lactic acid) (PLA) has been known as an excellent candidate for developing the future bioplastic due to its biodegradability and competitive price. However, inherent brittleness and low thermal stability of PLA have limited its applications. Considerable studies have been developed to improve the flexibility of PLA, in which blending PLA with various plasticizers has been identified as a cost-effective way to lower glass-transition temperature (Tg) and thus improve its elongation property. In this study, PLA was modified by incorporating poly(ethylene glycol) as a plasticizer with different molecular weights (M¯w 400, 1000, and 6000, called respectively as PEG 400, PEG 1000, and PEG 6000) via a solvent-casting blend method. FTIR was used for analyzing the chemical interaction while TGA and DSC measured the thermal behavior of PLA/PEG. The results indicated that the addition of lower M¯w (PEG 400 and PEG 1000) could reduce the Tg due to the enhancement of chain mobility of PLA with PEG and so driving into a more amorphous states resulted reduction of melting temperature (Tm) compared to the neat PLA. Further, at a higher M¯w of PEG 6000, the longer chain of ethylene glycol, in contrast, resulted a gradual increase in the Tg as well as Tm where the value went back to the point of neat PLA compared to the other lower molecular weight of PLA. This was due to the decrease in polymer miscibility with the increasing of M¯w. In terms of thermal stability, the addition of PEG exhibited two step degradation behavior while the neat PLA only possessed single step degradation. The presence of PEG could act as a protective barrier layer that could hinder the permeability of the volatile compound and product during decomposition reaction and thus could eventually delay and slower the degradation process. It was observed that the addition of PEG at higher M¯w (PEG1000 and PEG 6000) exhibited a higher second degradation temperature up to 380 °C.

  1. Multimeric, Multifunctional Derivatives of Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Gian Maria Bonora

    2011-07-01

    Full Text Available This article reviews the use of multifunctional polymers founded on high-molecular weight poly(ethylene glycol (PEG. The design of new PEG derivatives assembled in a dendrimer-like multimeric fashion or bearing different functionalities on the same molecule is described. Their use as new drug delivery systems based on the conjugation of multiple copies or diversely active drugs on the same biocompatible support is illustrated.

  2. Efficacy of polyethylene glycol 4000 on constipation of

    Directory of Open Access Journals (Sweden)

    ZHANG Lian-yang

    2010-06-01

    Full Text Available Constipation is one of themost common chronic gastrointestinal problems. The estimated incidence of constipation in the United States is3% to 19% in general population.1,2 Patientswith head injuries, spinal cord injuries, pelvic fractures, lower extremity fractures ormultiple traumas require a long-term bed rest, during which the incidence of constipation reached as high as 50%.3,4 Constipation always brings inconvenience and tremendous suffering to patientsand strongly influences the recovery from primary disease. Irritants or lubricants can relieve the symptoms, but long-term application of them may lead to side effects like melanosis coli5 and cathartic colon6. The absorption of fat soluble vitamins is also affected.7 Polyethylene glycol 4000 (trade name: Forlax®, a long chain polymer with a high molecular weight, can conjugate withwater molecule through hydrogen bond to increase the water content and volume of stools, thereby, facilitate bowelmovement and defecation.8,9 It is neither absorbed nor metabolized in the digestive tract, hence it is highly safe and well tolerable. Thus, long-term medication of polyethylene glycol 4000 is conducive to the reconstruction of normal defecation pattern. Therefore, polyethylene glycol 4000 is now being widely used as the mainstay adult chronic functional constipation management.10,11 The aim of this study was to verify the efficacy and safety of polyethylene glycol 4000 on adult functional constipation of posttraumatic bedridden patients.

  3. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Soeda, Shin [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2011-02-15

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  4. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Katsumura, Yosuke; Kudo, Hisaaki; Soeda, Shin

    2011-01-01

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  5. The interplay of plasma treatment and gold coating and ultra-high molecular weight polyethylene: On the cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Novotná, Zdenka, E-mail: zdenka1.novotn@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology Prague, Prague (Czech Republic); Rimpelová, Silvie; Juřík, Petr [Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague (Czech Republic); Veselý, Martin [Department of Organic Technology, University of Chemistry and Technology Prague, Prague (Czech Republic); Kolská, Zdenka [Faculty and Science, J. E. Purkinje University in Usti nad Labem, Usti nad Labem (Czech Republic); Hubáček, Tomáš [Biology Centre CAS CR, SoWa National Research Infrastructure, Ceske Budejovice (Czech Republic); Ruml, Tomáš [Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague (Czech Republic); Švorčík, Václav [Department of Solid State Engineering, University of Chemistry and Technology Prague, Prague (Czech Republic)

    2017-02-01

    We have investigated the application of Ar plasma for creation of nanostructured ultra high molecular weight polyethylene (PE) surface in order to enhance adhesion of mouse embryonic fibroblasts (L929). The aim of this study was to investigate the effect of the interface between plasma-treated and gold-coated PE on adhesion and spreading of cells. The surface properties of pristine samples and its modified counterparts were studied by different experimental techniques (gravimetry, goniometry and X-ray photoelectron spectroscopy (XPS), electrokinetic analysis), which were used for characterization of treated and sputtered layers, polarity and surface chemical structure, respectively. Further, atomic force microscopy (AFM) was employed to study the surface morphology and roughness. Biological responses of cells seeded on PE samples were evaluated in terms of cell adhesion, spreading, morphology and proliferation. Detailed cell morphology and intercellular connections were followed by scanning electron microscopy (SEM). As it was expected the thickness of a deposited gold film was an increasing function of the sputtering time. Despite the fact that plasma treatment proceeded in inert plasma, oxidized degradation products were formed on the PE surface which would contribute to increased hydrophilicity (wettability) of the plasma treated polymer. The XPS method showed a decrease in carbon concentration with increasing plasma treatment. Cell adhesion measured on the interface between plasma treated and gold coated PE was inversely proportional to the thickness of a gold layer on a sample. - Highlights: • Gold-coating improved wettability of polyethylene in comparison with plasma-treatment. • Plasma-treatment increased the surface roughness while the subsequent gold-coating decreased the roughness. • Adhesion and growth of mouse embryonic fibroblasts (L929) were studied in vitro. • Low amounts of gold nanoparticles released in the medium promoted cell growth.

  6. The interplay of plasma treatment and gold coating and ultra-high molecular weight polyethylene: On the cytocompatibility

    International Nuclear Information System (INIS)

    Novotná, Zdenka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdenka; Hubáček, Tomáš; Ruml, Tomáš; Švorčík, Václav

    2017-01-01

    We have investigated the application of Ar plasma for creation of nanostructured ultra high molecular weight polyethylene (PE) surface in order to enhance adhesion of mouse embryonic fibroblasts (L929). The aim of this study was to investigate the effect of the interface between plasma-treated and gold-coated PE on adhesion and spreading of cells. The surface properties of pristine samples and its modified counterparts were studied by different experimental techniques (gravimetry, goniometry and X-ray photoelectron spectroscopy (XPS), electrokinetic analysis), which were used for characterization of treated and sputtered layers, polarity and surface chemical structure, respectively. Further, atomic force microscopy (AFM) was employed to study the surface morphology and roughness. Biological responses of cells seeded on PE samples were evaluated in terms of cell adhesion, spreading, morphology and proliferation. Detailed cell morphology and intercellular connections were followed by scanning electron microscopy (SEM). As it was expected the thickness of a deposited gold film was an increasing function of the sputtering time. Despite the fact that plasma treatment proceeded in inert plasma, oxidized degradation products were formed on the PE surface which would contribute to increased hydrophilicity (wettability) of the plasma treated polymer. The XPS method showed a decrease in carbon concentration with increasing plasma treatment. Cell adhesion measured on the interface between plasma treated and gold coated PE was inversely proportional to the thickness of a gold layer on a sample. - Highlights: • Gold-coating improved wettability of polyethylene in comparison with plasma-treatment. • Plasma-treatment increased the surface roughness while the subsequent gold-coating decreased the roughness. • Adhesion and growth of mouse embryonic fibroblasts (L929) were studied in vitro. • Low amounts of gold nanoparticles released in the medium promoted cell growth.

  7. Quantification of UHMWPE wear in periprosthetic tissues of hip arthroplasty: Description of a new method based on IR and comparison with radiographic appearance

    Czech Academy of Sciences Publication Activity Database

    Šlouf, Miroslav; Pokorný, D.; Entlicher, G.; Dybal, Jiří; Synková, Hana; Lapčíková, Monika; Fejfarková, Z.; Špundová, M.; Veselý, F.; Sosna, A.

    2008-01-01

    Roč. 265, 5-6 (2008), s. 674-684 ISSN 0043-1648 R&D Projects: GA ČR GA106/04/1118; GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : UHMWPE * isolation of wear debris * quantification of wear particles Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.509, year: 2008

  8. Influence of natural fibers on the phase transitions in high-density polyethylene composites using dynamic mechanical analysis

    Science.gov (United States)

    Mehdi Tajvidi; Robert H. Falk; John C. Hermanson; Colin Felton

    2003-01-01

    Dynamic mechanical analysis was employed to evaluate the performance of various natural fibers in high-density polyethylene composites. Kenaf, newsprint, rice hulls, and wood flour were sources of fiber. Composites were made at 25 percent and 50 percent by weight fiber contents. Maleic anhydride modified polyethylene was also added at 1:25 ratio to the fiber....

  9. Dynamic mechanical analysis of compatibilizer effect on the mechanical properties of wood flour/high-density polyethylene composites

    Science.gov (United States)

    Mehdi Behzad; Medhi Tajvidi; Ghanbar Ehrahimi; Robert H. Falk

    2004-01-01

    In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents...

  10. Crystallization and unusual rheological behavior in poly(ethylene oxide)–clay nanocomposites

    KAUST Repository

    Kelarakis, Antonios; Giannelis, Emmanuel P.

    2011-01-01

    We report a systematic study of the crystallization and rheological behavior of poly(ethylene oxide) (PEO)-clay nanocomposites. To that end a series of nanocomposites based on PEOs of different molecular weight (103 < MW < 105 g/mol) and clay

  11. Use of radiation in biomaterials science

    International Nuclear Information System (INIS)

    Benson, Roberto S.

    2002-01-01

    Radiation is widely used in the biomaterials science for surface modification, sterilization and to improve bulk properties. Radiation is also used to design of biochips, and in situ photopolymerizable of bioadhesives. The energy sources most commonly used in the irradiation of biomaterials are high-energy electrons, gamma radiation, ultraviolet (UV) and visible light. Surface modification involves placement of selective chemical moieties on the surface of a material by chemical reactions to improve biointeraction for cell adhesion and proliferation, hemocompatibility and water absorption. The exposure of a polymer to radiation, especially ionizing radiation, can lead to chain scission or crosslinking with changes in bulk and surface properties. Sterilization by irradiation is designed to inactivate most pathogens from the surface of biomedical devices. An overview of the use of gamma and UV radiation to improve surface tissue compatibility, bulk properties and surface properties for wear resistance, formation of hydrogels and curing dental sealants and bone adhesives is presented. Gamma and vacuum ultraviolet (VUV) irradiated ultrahigh molecular weight polyethylene (UHMWPE) exhibit improvement in surface modulus and hardness. The surface modulus and hardness of UHMWPE showed a dependence on type of radiation, dosage and processing. VUV surface modified e-PTFE vascular grafts exhibit increases in hydrophilicity and improvement towards adhesion of fibrin glue

  12. Use of radiation in biomaterials science

    Science.gov (United States)

    Benson, Roberto S.

    2002-05-01

    Radiation is widely used in the biomaterials science for surface modification, sterilization and to improve bulk properties. Radiation is also used to design of biochips, and in situ photopolymerizable of bioadhesives. The energy sources most commonly used in the irradiation of biomaterials are high-energy electrons, gamma radiation, ultraviolet (UV) and visible light. Surface modification involves placement of selective chemical moieties on the surface of a material by chemical reactions to improve biointeraction for cell adhesion and proliferation, hemocompatibility and water absorption. The exposure of a polymer to radiation, especially ionizing radiation, can lead to chain scission or crosslinking with changes in bulk and surface properties. Sterilization by irradiation is designed to inactivate most pathogens from the surface of biomedical devices. An overview of the use of gamma and UV radiation to improve surface tissue compatibility, bulk properties and surface properties for wear resistance, formation of hydrogels and curing dental sealants and bone adhesives is presented. Gamma and vacuum ultraviolet (VUV) irradiated ultrahigh molecular weight polyethylene (UHMWPE) exhibit improvement in surface modulus and hardness. The surface modulus and hardness of UHMWPE showed a dependence on type of radiation, dosage and processing. VUV surface modified e-PTFE vascular grafts exhibit increases in hydrophilicity and improvement towards adhesion of fibrin glue.

  13. The influence of modification of elastomer compositions in polyethylene oxides on their resistance to mineral oils

    Directory of Open Access Journals (Sweden)

    E. P. Uss

    2017-01-01

    Full Text Available The influence of modifying of elastomer compositions based on nitrile rubber in the medium of low molecular weight polyethylene oxide on resistance of rubbers to liquid aggressive mediawas studied. Standard hydrocarbon oils – oil ASTM №1 and ASTM №3, having a constant chemical composition and properties, were used as aggressive fluids. Resistance of elastomer compositions to standard oil was evaluated by change in weight, volume and relative compression set after keeping the samples in these oils at elevated temperatures. The influence of aggressive environment on the degree of swelling and the value of compression set of compositions modified in polyethylene oxides medium was established. It has been shown that the mass/volume of modified rubbers during aging in oil ASTM №1 reduced to a lesser degree compared to unmodified samples, which is probably due to the influence of low molecular weight polyethylene oxides for the formation of vulcanizates structure. At the same time exposure to oil ASTM №3 of elastomer compositions increases the degree of swelling of modified rubber more than unmodified, which can be due to destruction by the action of aggressive medium additional intermolecular bonds between macromolecules of polyethylene oxide and rubber, resulting in increased flexibility of the elastomeric matrix segments. It revealed that modification of rubbers in low molecular weightpolyethylene oxides facilitates preparation of rubber with low compression set after aging in standard oils at elevated temperatures.

  14. Preparation of High Modulus Poly(Ethylene Terephthalate: Influence of Molecular Weight, Extrusion, and Drawing Parameters

    Directory of Open Access Journals (Sweden)

    Jian Min Zhang

    2017-01-01

    Full Text Available Poly(ethylene terephthalate (PET which is one of the most commercially important polymers, has for many years been an interesting candidate for the production of high performance fibres and tapes. In current study, we focus on investigating the effects of the various processing variables on the mechanical properties of PET produced by a distinctive process of melt spinning and uniaxial two-stage solid-state drawing (SSD. These processing variables include screw rotation speed during extrusion, fibre take-up speed, molecular weight, draw-ratio, and drawing temperature. As-spun PET production using a single-screw extrusion process was first optimized to induce an optimal polymer microstructure for subsequent drawing processes. It was found that less crystallization which occurred during this process would lead to better drawability, higher draw-ratio, and mechanical properties in the subsequent SSD process. Then the effect of drawing temperature (DT in uniaxial two-stage SSD process was studied to understand how DT (

  15. Effects of strain rate and temperature on the mechanical behavior of carbon black reinforced elastomers based on butyl rubber and high molecular weight polyethylene

    Science.gov (United States)

    Hussein, M.

    2018-06-01

    The influence of the mechanical property and morphology of different blend ratio of Butyl rubber (IIR)/high molecular weight polyethylene (PE) by temperature and strain rate are performed. Special attention has been considered to a ductile-brittle transition that is known to occur at around 60 °C. The idea is to explain the unexpected phenomenon of brittleness which directly related to all tensile mechanical properties such as the strength of blends, modulus of elasticity of filled and unfilled IIR-polyethylene blends. In particular, the initial Young's modulus, tensile strength and strain at failure exhibit similar dependency on strain rate and temperature. These quantities lowered and increased with an increment of temperature, whereas the increased with increasing of strain rate. Furthermore, the tensile strength and strain at failure decreases for all temperatures range with the increase of PE content in the blend, except Young's modulus in reverse. The strain rate sensitivity index parameter of the examined polymeric materials is consistent with the micro-mechanisms of deformation and the behavior was well described by an Eyring relationship leading to an activation volume of ∼1 nm3, except for the highest value of unfilled IIR ∼8.45 nm3.

  16. Transparent Low Molecular Weight Poly(Ethylene Glycol Diacrylate-Based Hydrogels as Film Media for Photoswitchable Drugs

    Directory of Open Access Journals (Sweden)

    Théophile Pelras

    2017-11-01

    Full Text Available Hydrogels have shown a great potential as materials for drug delivery systems thanks to their usually excellent bio-compatibility and their ability to trap water-soluble organic molecules in a porous network. In this study, poly(ethylene glycol-based hydrogels containing a model dye were synthesized by ultraviolet (UV-A photopolymerization of low-molecular weight macro-monomers and the material properties (dye release ability, transparency, morphology, and polymerization kinetics were studied. Real-time infrared measurements revealed that the photopolymerization of the materials was strongly limited when the dye was added to the uncured formulation. Consequently, the procedure was adapted to allow for the formation of sufficiently cured gels that are able to capture and later on to release dye molecules in phosphate-buffered saline solution within a few hours. Due to the transparency of the materials in the 400–800 nm range, the hydrogels are suitable for the loading and excitation of photoactive molecules. These can be uptaken by and released from the polymer matrix. Therefore, such materials may find applications as cheap and tailored materials in photodynamic therapy (i.e., light-induced treatment of skin infections by bacteria, fungi, and viruses using photoactive drugs.

  17. Dimensionally stable Nafion-polyethylene composite membranes for direct methanol fuel cell applications

    NARCIS (Netherlands)

    Yildirim, M.H.; Stamatialis, Dimitrios; Wessling, Matthias

    2008-01-01

    Nafion ® impregnated Solupor ®, microporous UHMWPE film, (N-PE), Nafion ®117 (N117) and a membrane prepared using a DE2020 Nafion ® dispersion (DE2020) were characterized with respect to their swelling degree (SD), methanol cross-over, proton conductivity and DMFC performance at various methanol

  18. Real-Time Monitoring of Low-Level Mixed-Waste Loading during Polyethylene Microencapsulation using Transient Infrared Spectroscopy

    International Nuclear Information System (INIS)

    Jones, Roger W.; Kalb, Paul D.; McClelland, John F.; Ochiai, Shukichi

    1999-01-01

    In polyethylene microencapsulation, low-level mixed waste (LLMW) is homogenized with molten polyethylene and extruded into containers, resulting in a lighter, lower-volume waste form than cementation and grout methods produce. Additionally, the polyethylene-based waste form solidifies by cooling, with no risk of the waste interfering with cure, as may occur with cementation and grout processes. We have demonstrated real-time monitoring of the polyethylene encapsulation process stream using a noncontact device based on transient infrared spectroscopy (TIRS). TIRS can acquire mid-infrared spectra from solid or viscous liquid process streams, such as the molten, waste-loaded polyethylene stream that exits the microencapsulation extruder. The waste loading in the stream was determined from the TIRS spectra using partial least squares techniques. The monitor has been demonstrated during the polyethylene microencapsulation of nitrate-salt LLMW and its surrogate, molten salt oxidation LLMW and its surrogate, and flyash. The monitor typically achieved a standard error of prediction for the waste loading of about 1% by weight with an analysis time under 1 minute

  19. Laboratory tests on fungal resistance of wood filled polyethylene composites

    Science.gov (United States)

    Craig M. Clemons; Rebecca E. Ibach

    2002-01-01

    A standard method for determining the durability of structural wood was modified for testing the fungal resistance of composites made from high density polyethylene filled with 50% wood flour. Moisture content, mechanical properties, and weight loss were measured over 12 weeks exposure to brown-and white-rot fungi. Mechanical properties were decreased, but irreversible...

  20. Synthesis and characterization of deuterated polyethylene

    International Nuclear Information System (INIS)

    Jia Xianbin; Luo Xuan; Chang Guanjun; Du Kai; Zhang Lin; Xie Zhengwei; Li Xinjuan; Lu Zaijun

    2009-01-01

    Due to its remarkable isotope effects, excellent kinetic stability towards C-D bond break, high degree of deuteration, and being non-radioactive, deuterated polyethylene (d-PE) is widely used in many fields, such as in inertially confined fusion (ICF) as target material, in production of low loss plastic optical fibers, and in study of the compatibility of different polymers. For the necessary of ICF, the d-PE was synthesized by the anionic polymerization and palladium-catalyzed hydrogenation. Furthermore, by the method of FTIR, 1H NMR and GPC, the deuterated ratio and structure of d-PE have been characterized. The results show that the d-PE has the high deuterated ratio and molecular weight, narrow molecular-weight distribution, the polymer material fits the basic necessary of ICF. (authors)

  1. Comparative Results From a National Joint Registry Hip Data Set of a New Cross-Linked Annealed Polyethylene vs Both Conventional Polyethylene and Ceramic Bearings.

    Science.gov (United States)

    Epinette, Jean-Alain; Jolles-Haeberli, Brigitte M

    2016-07-01

    Major concerns in hip arthroplasty concern the fate of bearing surfaces. Highly cross-linked polyethylene materials (HXLPE) currently demonstrate successful in vitro results with new technical procedures of cross-linking the polyethylene material, whereas processing the polyethylene below its melting temperature to produce so-called "annealed HXLPE" would allow retention of important mechanical properties. Data released by the National Joint Registry of England and Wales addressing in 45,877 hips the same Trident uncemented cup, allowed us to compare the performance of a consecutive cohort of patients implanted with the newest generation of annealed HXLPE acetabular bearings (X3: 21,470) vs 2 consecutive nonselected cohorts, one with conventional polyethylene (N2vac: 8225) and one with ceramic-on-ceramic (CoC) hip bearings (AL: 16,182). The main end point in survivorship has been first defined as revision for any cause, then for any cause which could be related to a failure of the bearing couple. At 6-year follow-up, all Trident cups demonstrated encouraging global survival cumulative rates all between 95% and 99%. A first study demonstrated better survivorship with X3-HXLPE liners vs conventional ultrahigh molecular weight polyethylene. On the second parallel study, the cumulative survival rates were better for X3 liners as compared to CoC bearings. Moreover, when ranking the yearly cumulative percent revision rates, again the best results were obtained with X3 liners with small alumina heads (cumulative percent revision rate at 0.298). Within the frame of this Trident study, the use of this X3 highly cross-linked annealed polyethylene could be considered as a reliable alternate solution to CoC bearings. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. IMPORTANT DEGRADATIONS IN POLYETHYLENE TERAPHTALATE EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Şule ALTUN

    2003-01-01

    Full Text Available Polyethylene terephthalate (PET is one of the most used thermo-plastic polymers. The total consumption of PET has been about 30 million tons in the year 2000. Polyester fibers constitute about 60 % of total synthetic fibers consumption. During extrusion, PET polymer is faced to thermal, thermo-oxidative and hydrolytic degradation, which result in severe reduction in its molecular weight, thereby adversely affecting its subsequent melt processability. Therefore, it is essential to understand degradation processes of PET during melt extrusion.

  3. Effect of molecular weight, temperature, and additives on the moisture sorption properties of polyethylene glycol.

    Science.gov (United States)

    Baird, Jared A; Olayo-Valles, Roberto; Rinaldi, Carlos; Taylor, Lynne S

    2010-01-01

    Polyethylene glycol (PEG) is a hygroscopic polymer that undergoes the phenomenon of deliquescence once a critical relative humidity (RH(0)) is reached. The purpose of this study was to test the hypothesis that the deliquescence behavior of PEG will be affected by the polymer molecular weight, temperature, and the presence of additives. The deliquescence relative humidity for single component (RH(0)) and binary mixtures (RH(0,mix)) were measured using an automated gravimetric moisture analyzer at 25 and 40 degrees C. Changes in PEG crystallinity after exposure to moisture were qualitatively assessed using powder X-ray diffraction (PXRD). Optical microscopy was used to visually observe the deliquescence phenomenon. For single component systems, decreasing PEG MW and elevating the temperature resulted in a decrease in the observed RH(0). Physical mixtures of acetaminophen and anhydrous citric acid with both PEG 3350 and PEG 100,000 exhibited deliquescence (RH(0,mix)) at a relative humidity below that of either individual component. Qualitative changes in crystallinity were observed from the X-ray diffractograms for each PEG MW grade at high relative humidities, indicating that phase transformation (deliquescence) of the samples had occurred. In conclusion, it was found that the deliquescence behavior of PEG was affected by the polymer MW, temperature, and the presence of additives. This phenomenon may have important implications for the stability of PEG containing formulations.

  4. Physical and dielectric properties of irradiated polypropylene and poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Kita, H.; Okamoto, K.

    1986-01-01

    The effect of high-energy electron irradiation in air and in nitrogen on the physical and dielectric properties of polypropylene and poly(ethylene terephthalate) has been studied by measurements of electric strength, dielectric constant, dissipation factor, tensile strength, gel fraction and molecular weight distribution. Electric strength of polypropylene was improved by irradiation, while dielectric properties of poly(ethylene terephthalate) were virtually unaffected by irradiation of 1.0-20 Mrad. Possible mechanisms for increasing electric strength are discussed from the point of view of degradation and oxidation taking place simultaneously with crosslinking of polypropylene. The maximum dose level to improve the electric strength of polypropylene is determined to be about 5 Mrad. (author)

  5. Effects of Boron Compounds on the Mechanical and Fire Properties of Wood-chitosan and High-density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Guo-Fu Wu

    2014-05-01

    Full Text Available Wood-plastic composites (WPCs represent a growing class of durable, low-maintenance construction materials whose use can decrease dependence on petroleum. High-density polyethylene (HDPE, chitosan (CS, wood flour (WF, boric acid (BA, and borax (BX, as well as maleic anhydride grafted polyethylene (MAPE and polyethylene wax (PE wax, were used to develop a durable wood-plastic composite (WPC using the extrusion method. The effects of boron compounds (3%, 6%, 9%, or 12% by weight BA/BX on the mechanical and fire properties of the WPCs were investigated. Mechanical testing indicated that as the percentage weight of boron compounds increased, the flexural modulus, flexural strength, and tensile strength significantly decreased. Cone calorimeter tests were used to characterize the fire performance of the WPCs, and these results suggested that adding BA/BX compounds to WPCs modestly improved the fire performance. As the percentage weight of BA/BX increased from 3% to 9%, the time to ignition (TTI, heat release rate (HRR, total heat release rate (HRR-Total, smoke production rate (SPR, and specific extinction area (SEA of the WPCs were all reduced.

  6. Modifications by γ irradiation of polyethylene at very high molecular weight. Tribological behaviour for orthopedic applications

    International Nuclear Information System (INIS)

    Chaix, N.

    2001-07-01

    A new mode of sterilization by vacuum gamma irradiation is studied. This new mode improves significantly the polyethylene behaviour during the study in friction-corrosion against a stainless steel-316L sphere. (N.C.)

  7. Fractionation and characterization of particles simulating wear of total joint replacement (TJR) following ASTM standards.

    Science.gov (United States)

    Saha, Subrata; Musib, Mrinal

    2011-01-01

    Reactions of bone cells to orthopedic wear debris produced by the articulating motion of total joint replacements (TJRs) are largely responsible for the long-term failure of such replacements. Metal and polyethylene (PE) wear particles isolated from fluids from total joint simulators, as well as particles that are fabricated by other methods, are widely used to study such in vitro cellular response. Prior investigations have revealed that cellular response to wear debris depends on the size, shape, and dose of the particles. Hence, to have a better understanding of the wear-mediated osteolytic process it is important that these particles are well characterized and clinically relevant, both qualitatively, and quantitatively. In this study we have fractionated both ultra-high molecular weight polyethylene (UHMWPE) and Ti particles, into micron (1.0-10.0 μm), submicron (0.2-1.0 μm), and nanoparticle (0.01-0.2 μm) fractions, and characterized them based on the following size-shape descriptors as put forth in ASTM F1877: i) equivalent circle diameter (ECD), ii) aspect ratio (AR), iii) elongation (E), iv) roundness (R), and v) form factor (FF). The mean (± SD) ECDs (in μm) for micron, submicron, and nanoparticles of UHMWPE were 1.652 ± 0.553, 0.270 ± 0.180, and 0.061 ± 0.035, respectively, and for Ti were 1.894 ± 0.667, 0.278 ± 0.180, and 0.055 ± 0.029, respectively. The values for other descriptors were similar (no statistically significant difference). The nanofraction particles were found to be more sphere-like (higher R and FF values, and lower E and AR values) as compared to larger particles. Future experiments will involve use of these well characterized particles for in vitro studies.

  8. Method for shaping polyethylene tubing

    Science.gov (United States)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  9. Thermal transport in semicrystalline polyethylene by molecular dynamics simulation

    Science.gov (United States)

    Lu, Tingyu; Kim, Kyunghoon; Li, Xiaobo; Zhou, Jun; Chen, Gang; Liu, Jun

    2018-01-01

    Recent research has highlighted the potential to achieve high-thermal-conductivity polymers by aligning their molecular chains. Combined with other merits, such as low-cost, corrosion resistance, and light weight, such polymers are attractive for heat transfer applications. Due to their quasi-one-dimensional structural nature, the understanding on the thermal transport in those ultra-drawn semicrystalline polymer fibers or films is still lacking. In this paper, we built the ideal repeating units of semicrystalline polyethylene and studied their dependence of thermal conductivity on different crystallinity and interlamellar topology using the molecular dynamics simulations. We found that the conventional models, such as the Choy-Young's model, the series model, and Takayanagi's model, cannot accurately predict the thermal conductivity of the quasi-one-dimensional semicrystalline polyethylene. A modified Takayanagi's model was proposed to explain the dependence of thermal conductivity on the bridge number at intermediate and high crystallinity. We also analyzed the heat transfer pathways and demonstrated the substantial role of interlamellar bridges in the thermal transport in the semicrystalline polyethylene. Our work could contribute to the understanding of the structure-property relationship in semicrystalline polymers and shed some light on the development of plastic heat sinks and thermal management in flexible electronics.

  10. Polyethylene-Based Tadpole Copolymers

    KAUST Repository

    Alkayal, Nazeeha; Zhang, Zhen; Bilalis, Panayiotis; Gnanou, Yves; Hadjichristidis, Nikolaos

    2017-01-01

    Novel well-defined polyethylene-based tadpole copolymers ((c-PE)-b-PS, PE: polyethylene, PS: polystyrene) with ring PE head and linear PS tail are synthesized by combining polyhomologation, atom transfer radical polymerization (ATRP), and Glaser

  11. Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide).

    Science.gov (United States)

    Pereda, Mariana; El Kissi, Nadia; Dufresne, Alain

    2014-06-25

    Polysaccharide nanocrystals with a rodlike shape but with different dimensions and specific surface area were prepared from cotton and capim dourado cellulose, and with a plateletlike morphology from waxy maize starch granules. The rheological behavior of aqueous solutions of poly(ethylene oxide) (PEO) with different molecular weights when adding these nanoparticles was investigated evidencing specific interactions between PEO chains and nanocrystals. Because PEO also bears hydrophobic moieties, it was employed as a compatibilizing agent for the melt processing of polymer nanocomposites. The freeze-dried mixtures were used to prepare nanocomposite materials with a low density polyethylene matrix by extrusion. The thermal and mechanical behavior of ensuing nanocomposites was studied.

  12. Aragonite coating solutions (ACS) based on artificial seawater

    Science.gov (United States)

    Tas, A. Cuneyt

    2015-03-01

    Aragonite (CaCO3, calcium carbonate) is an abundant biomaterial of marine life. It is the dominant inorganic phase of coral reefs, mollusc bivalve shells and the stalactites or stalagmites of geological sediments. Inorganic and initially precipitate-free aragonite coating solutions (ACS) of pH 7.4 were developed in this study to deposit monolayers of aragonite spherules or ooids on biomaterial (e.g., UHMWPE, ultrahigh molecular weight polyethylene) surfaces soaked in ACS at 30 °C. The ACS solutions of this study have been developed for the surface engineering of synthetic biomaterials. The abiotic ACS solutions, enriched with calcium and bicarbonate ions at different concentrations, essentially mimicked the artificial seawater composition and started to deposit aragonite after a long (4 h) incubation period at the tropical sea surface temperature of 30 °C. While numerous techniques for the solution deposition of calcium hydroxyapatite (Ca10(PO4)6(OH)2), of low thermodynamic solubility, on synthetic biomaterials have been demonstrated, procedures related to the solution-based surface deposition of high solubility aragonite remained uncommon. Monolayers of aragonite ooids deposited at 30 °C on UHMWPE substrates soaked in organic-free ACS solutions were found to possess nano-structures similar to the mortar-and-brick-type botryoids observed in biogenic marine shells. Samples were characterized using SEM, XRD, FTIR, ICP-AES and contact angle goniometry.

  13. Characterization and modeling of a highly-oriented thin film for composite forming

    Science.gov (United States)

    White, K. D.; Sherwood, J. A.

    2018-05-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) materials exhibit high impact strength, excellent abrasion resistance and high chemical resistance, making them attractive for a number of impact applications for automotive, marine and medical industries. One format of this class of materials that is being considered for the thermoforming process is a highly-oriented extruded thin film. Parts are made using a two-step manufacturing process that involves first producing a set of preforms and then consolidating these preforms into a final shaped part. To assist in the design of the processing parameters, simulations of the preforming and compression molding steps can be completed using the finite element method. Such simulations require material input data as developed through a comprehensive characterization test program, e.g. shear, tensile and bending, over the range of potential processing temperatures. The current research investigates the challenges associated with the characterization of thin, highly-oriented UHMWPE films. Variations in grip type, sample size and testing rates are explored to achieve convergence of the characterization data. Material characterization results are then used in finite element simulations of the tension test to explore element formulations that work well with the mechanical behavior. Comparisons of the results from the material characterization tests to results of simulations of the same test are performed to validate the finite element method parameters and the credibility of the user-defined material model.

  14. POLYETHYLENE ENCAPSULATION

    International Nuclear Information System (INIS)

    Kalb, P.

    2001-01-01

    Polyethylene microencapsulation physically homogenizes and incorporates mixed waste particles within a molten polymer matrix, forming a solidified final waste form upon cooling. Each individual particle of waste is embedded within the polymer block and is surrounded by a durable, leach-resistant coating. The process has been successfully applied for the treatment of a broad range of mixed wastes, including evaporator concentrate salts, soil, sludges, incinerator ash, off-gas blowdown solutions, decontamination solutions, molten salt oxidation process residuals, ion exchange resins, granular activated carbon, shredded dry active waste, spill clean-up residuals, depleted uranium powders, and failed grout waste forms. For waste streams containing high concentrations of soluble toxic metal contaminants, additives can be used to further reduce leachability, thus improving waste loadings while meeting or exceeding regulatory disposal criteria. In this configuration, contaminants are both chemically stabilized and physically solidified, making the process a true stabilization/solidification (S/S) technology. Unlike conventional hydraulic cement grouts or thermosetting polymers, thermoplastic polymers such as polyethylene require no chemical. reaction for solidification. Thus, a stable, solid, final waste form product is assured on cooling. Variations in waste chemistry over time do not affect processing parameters and do not require reformulation of the recipe. Incorporation of waste particles within the polymer matrix serves as an aggregate and improves the mechanical strength and integrity of the waste form. The compressive strength of polyethylene microencapsulated waste forms varies based on the type and quantity of waste encapsulated, but is typically between 7 and 17.2 MPa (1000 and 2500 psi), well above the minimum strength of 0.4 MPa (160 psi) recommended by the U.S. Nuclear Regulatory Commission (NRC) for low-level radioactive waste forms in support of 10 CFR 61

  15. Hydrophilic segmented block copolymers based on poly(ethylene oxide) and monodisperse amide segments

    NARCIS (Netherlands)

    Husken, D.; Feijen, Jan; Gaymans, R.J.

    2007-01-01

    Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra-amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra-amide segment (T6T6T)

  16. Probabilistic molecular dynamics evaluation of the stress-strain behavior of polyethylene

    International Nuclear Information System (INIS)

    Stowe, J.Q.; Predecki, P.K.; Laz, P.J.; Burks, B.M.; Kumosa, M.

    2009-01-01

    The primary goal of this study was to utilize molecular dynamics to predict the mechanical behavior of polyethylene. In particular, stress-strain relationships, the Young's modulus and Poisson ratio were predicted for low-density polyethylene at several molecular weights and polymer configurations with the number of united CH 2 atoms ranging between 500 and 5000. Probabilistic Monte Carlo methods were also used to identify the extent of uncertainty in mechanical property predictions. In general, asymptotic behavior was observed for stress and the Young's modulus as the molecular weight of the models increased. At the same time, significant variability, of the order of 1000% of the mean, in the stress-strain relationships and the Young's modulus predictions was observed, especially for low molecular weight models. The variability in the Young's modulus predictions ranged from 17.9 to 3.2 GPa for the models ranging from 100 to 5000 CH 2 atom models. However, it was also found that the mean value of the Young's modulus approached a physically possible value of 194 MPa for the 5000 atom model. Poisson ratio predictions also resulted in significant variability, from 200% to 425% of the mean, and ranged from 0.75 to 1.30. The mean value of the Poisson ratios calculated in this study ranged from 0.32 to 0.44 for the 100 to 5000 atom models, respectively.

  17. Oil-Impregnated Polyethylene Films

    Science.gov (United States)

    Mukherjee, Ranit; Habibi, Mohammad; Rashed, Ziad; Berbert, Otacilio; Shi, Shawn; Boreyko, Jonathan

    2017-11-01

    Slippery liquid-infused porous surfaces (SLIPS) minimize the contact angle hysteresis of a wide range of liquids and aqueous food products. Although hydrophobic polymers are often used as the porous substrate for SLIPS, the choice of polymer has been limited to silicone-based or fluorine-based materials. Hydrocarbon-based polymers, such as polyethylene, are cost effective and widely used in food packaging applications where SLIPS would be highly desirable. However, to date there have been no reports on using polyethylene as a SLIPS substrate, as it is considered highly impermeable. Here, we show that thin films of low-density polyethylene can be stably impregnated with carbon-based oils without requiring any surface modification. Wicking tests reveal that oils with sufficient chemical compatibility follow Washburn's equation. The nanometric effective pore size of the polyethylene does result in a very low wicking speed, but by using micro-thin films and a drawdown coater, impregnation can still be completed in under one second. The oil-impregnated polyethylene films promoted ultra-slippery behavior for water, ketchup, and yogurt while remaining durable even after being submerged in ketchup for over one month. This work was supported by Bemis North America (AT-23981).

  18. Molecular Weight and Crystallization Temperature Effects on Poly(ethylene terephthalate (PET Homopolymers, an Isothermal Crystallization Analysis

    Directory of Open Access Journals (Sweden)

    Leonardo A. Baldenegro-Perez

    2014-02-01

    Full Text Available The isothermal crystallization of poly(ethylene terephthalate (PET homopolymers with different molecular weight was studied in a wide temperature range (140–230 °C using different experimental techniques. Three different morphological regions, labeled r1, r2 and r3, were distinguished as a function of crystallization temperature (Tc. In r1 (low Tc crystallized samples were characterized by a low crystalline degree with a small spherulite texture containing thin crystals. In r2 (intermediate Tc samples showed medium size spherulites composed of two distinct crystalline families (thin and thick crystals. In this temperature range, the crystallization exhibited a maximum value and it was associated with a high content of secondary crystals. In r3 (high Tc, samples presented considerable amorphous zones and regions consisting of oversized spherulites containing only thick crystals. Time-resolved wide-angle X-ray diffraction measurements, using synchrotron radiation, indicated a rapid evolution of the crystalline degree within the second region, in contrast with the quite slow evolution observed in the third region. On the other hand, by small-angle X-ray scattering (SAXS and time-resolved SAXS experiment, it was found that the long period (L as well as the lamellar thickness (lc increase as a function of Tc, corroborating the formation of the thickest crystals in the third region. From all these observations, a morphological model was proposed for each region.

  19. Effect of acetabular cup abduction angle on wear of ultrahigh-molecular-weight polyethylene in hip simulator testing.

    Science.gov (United States)

    Korduba, Laryssa A; Essner, Aaron; Pivec, Robert; Lancin, Perry; Mont, Michael A; Wang, Aiguo; Delanois, Ronald E

    2014-10-01

    The effect of acetabular component positioning on the wear rates of metal-on-polyethylene articulations has not been extensively studied. Placement of acetabular cups at abduction angles of more than 40° has been noted as a possible reason for early failure caused by increased wear. We conducted a study to evaluate the effects of different acetabular cup abduction angles on polyethylene wear rate, wear area, contact pressure, and contact area. Our in vitro study used a hip joint simulator and finite element analysis to assess the effects of cup orientation at 4 angles (0°, 40°, 50°, 70°) on wear and contact properties. Polyethylene bearings with 28-mm cobalt-chrome femoral heads were cycled in an environment mimicking in vivo joint fluid to determine the volumetric wear rate after 10 million cycles. Contact pressure and contact area for each cup abduction angle were assessed using finite element analysis. Results were correlated with cup abduction angles to determine if there were any differences among the 4 groups. The inverse relationship between volumetric wear rate and acetabular cup inclination angle demonstrated less wear with steeper cup angles. The largest abduction angle (70°) had the lowest contact area, largest contact pressure, and smallest head coverage. Conversely, the smallest abduction angle (0°) had the most wear and most head coverage. Polyethylene wear after total hip arthroplasty is a major cause of osteolysis and aseptic loosening, which may lead to premature implant failure. Several studies have found that high wear rates for cups oriented at steep angles contributed to their failure. Our data demonstrated that larger cup abduction angles were associated with lower, not higher, wear. However, this potentially "protective" effect is likely counteracted by other complications of steep cup angles, including impingement, instability, and edge loading. These factors may be more relevant in explaining why implants fail at a higher rate if

  20. Polyethylene as a possible hvdc cable insulant

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, W.G.; Body, R.S.; Mason, J.H.

    1966-10-01

    Many cable authorities have expressed the view that polyethylene would be attractive for this application. The dc conductivity of polyethylene is lower than that of impregnated paper, and varies less with temperature and stress. Polyethylene also has higher thermal conductivity and is resistant to moisture and electrochemical deterioration. Furthermore, processing polyethylene cables should ultimately involve lower capital and manufacturing costs. However, polyethylene has a lower limiting short circuit temperature unless it is cross linked.

  1. Catalytic thermal decomposition of polyethylene determined by thermogravimetric treatment

    International Nuclear Information System (INIS)

    Nisar, J.; Khan, M.S.; Khan, M.A.

    2014-01-01

    In this study low density polyethylene (LDPE) has been studied by thermogravimetric analysis (TGA) using commercially available oxides as catalysts. TGA experiments were used to evaluate the activity of different catalysts on low density polyethylene (LDPE) degradation and to study the effect in terms of type and amount of catalyst used. All the catalysts used improved the pyrolysis of LDPE. The reaction rates were found to increase with increase in amount of catalyst. Among the catalysts used, alumina acidic active catalyst performed better at all four fractions. Moreover, alumina acidic active reduced weight loss temperature better than others tested catalysts. The effect of alumina neutral catalyst on the pyrolysis of LDPE is less pronounced due to its small surface area and pore size. The effect of these catalysts showed that surface area, number of acidic sites and pore size were found as the key factors for the energy efficient degradation of polymers. (author)

  2. Crosslinking of oriented polyethylene by electron beam radiation. Influence of morphology induced by drawing

    International Nuclear Information System (INIS)

    Aerle, N.A.J.M. van; Crevecoeur, G.; Lemstra, P.J.

    1988-01-01

    The influence of drawing on the crosslinking efficiency for electron beam radiation is reported for solution-crystallized ultra-high molecular weight polyethylene. A maximum in crosslinking efficiency is found at a draw ratio of approximately five, indicating an optimum morphology for inducing crosslinks during the hot-drawing process. (author)

  3. Response of CR-39 Detector Against Fast Neutron Using D-Polyethylene and H-Polyethylene Radiator

    International Nuclear Information System (INIS)

    Sofyan, Hasnel

    1996-01-01

    The research on the response of detector CR-39 by using D-Polyethylene and H-Polyethylene radiator has been carried out. The optimum number of nuclear tracks was found with the use of 30 % NaOH at 80 + 0,5oC for 80 minutes of etching time. The comparison of CR-39 detector response caused by D-Polyethylene radiator against H-Polyethylene radiator of irradiation in air, were found to be 1.18 and 0.84 for 241Am-Be neutron source and neutron source from reactor respectively. For phantom irradiation, the results were found to be 1.75 for 241Am-Be neutron source, and 0.77 for neutron source from reactor

  4. Solid-phase photocatalytic degradation of polyethylene-goethite composite film under UV-light irradiation

    International Nuclear Information System (INIS)

    Liu, G.L.; Zhu, D.W.; Liao, S.J.; Ren, L.Y.; Cui, J.Z.; Zhou, W.B.

    2009-01-01

    A novel photodegradable polyethylene-goethite (PE-goethite) composite film was prepared by embedding the goethite into the commercial polyethylene. The degradation of PE-goethite composite films was investigated under ultraviolet light irradiation. The photodegradation activity of the PE plastic was determined by monitoring its weight loss, scanning electron microscopic (SEM) analysis and FT-IR spectroscopy. The weight of PE-goethite (1 wt%) sample steadily decreased and led to the total 16% reduction in 300 h under UV-light intensity for 1 mW/cm 2 . Through SEM observation there were some cavities around the goethite powder in the composite films, but there were few changes except some surface chalking phenomenon in pure PE film. The degradation rate could be controlled by changing the concentration of goethite particles in PE plastic. The degradation of composite plastic initiated on PE-goethite interface and then extended into polymer matrix induced by the diffusion of the reactive oxygen species generated on goethite particle surface. The photocatalytic degradation mechanism of the composite films was briefly discussed.

  5. Effect of poly(ethylene oxide) homopolymer and two different poly(ethylene oxide-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers on morphological, optical, and mechanical properties of nanostructured unsaturated polyester.

    Science.gov (United States)

    Builes, Daniel H; Hernández-Ortiz, Juan P; Corcuera, Ma Angeles; Mondragon, Iñaki; Tercjak, Agnieszka

    2014-01-22

    Novel nanostructured unsaturated polyester resin-based thermosets, modified with poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and two poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymers (BCP), were developed and analyzed. The effects of molecular weights, blocks ratio, and curing temperatures on the final morphological, optical, and mechanical properties were reported. The block influence on the BCP miscibility was studied through uncured and cured mixtures of unsaturated polyester (UP) resins with PEO and PPO homopolymers having molecular weights similar to molecular weights of the blocks of BCP. The final morphology of the nanostructured thermosetting systems, containing BCP or homopolymers, was investigated, and multiple mechanisms of nanostructuration were listed and explained. By considering the miscibility of each block before and after curing, it was determined that the formation of the nanostructured matrices followed a self-assembly mechanism or a polymerization-induced phase separation mechanism. The miscibility between PEO or PPO blocks with one of two phases of UP matrix was highlighted due to its importance in the final thermoset properties. Relationships between the final morphology and thermoset optical and mechanical properties were examined. The mechanisms and physics behind the morphologies lead toward the design of highly transparent, nanostructured, and toughened thermosetting UP systems.

  6. Properties of Polyethylene Naphthalate Track Membranes

    CERN Document Server

    Akimenko, S N; Orelovich, O L; Maekawa, J; Ioshida, M; Apel, P Yu

    2002-01-01

    Basic characteristics of track membranes made of polyethylene naphthalate (which is a polyester synthesized from dimethyl naphthalate and ethylene glycol) are studied and presented. Polyethylene naphthalate possesses some properties (mechanical strength, thermal and chemical stability), which make this polymer a promising material for the production of track membranes. Water flow rate and air flow rate characteristics, burst strength, wettability, and amount of extractables are determined. Surface structure and pore structure are examined using scanning electron microscopy. It is found that the pores in the membranes are cylindrical in shape. The measured water and air flow rates follow known theoretical relations for the transport in narrow capillaries. The burst strength of polyethylene naphthalate membranes is found to be similar to that of polyethylene terephthalate track membranes. Polyethylene naphthalate track membranes can be categorized as moderately hydrophilic. Being treated with boiling water, pol...

  7. Radioprotection by polyethylene glycol-protein complexes in mice

    International Nuclear Information System (INIS)

    Gray, B.H.; Stull, R.W.

    1983-01-01

    Polyethylene glycol of about 5000 D was activated with cyanuric chloride, and the activated compound was complexed to each of three proteins. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase were each radioprotectants when administered prophylactically to female B6CBF1 mice before irradiation. The dose reduction factor for these mice was 1.2 when 5000 units of polyethylene glycol-catalase was administered before 60 Co irradiation. Female B6CBF1 mice administered prophylactic intravenous injections of catalase, polyethylene glycol-albumin, or heat-denatured polyethylene glycol-catalase had survival rates similar to phosphate-buffered saline-injected control mice following 60 Co irradiation. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase have radioprotective activity in B6CBF1 mice, which appears to depend in part on enzymatic activities of the complex. However, no radioprotective effect was observed in male C57BL/6 mice injected with each polyethylene glycol-protein complex at either 3 or 24 hr before irradiation. The mechanism for radioprotection by these complexes may depend in part on other factors

  8. Modification induced by laser irradiation on physical features of plastics materials filled with nanoparticles

    Directory of Open Access Journals (Sweden)

    Scolaro Cristina

    2018-01-01

    Full Text Available The Thermal Laser Welding (TLW process involves localized heating at the interface of two pieces of plastic that will be joined. Polymeric materials of Ultra High Molecular Weight Polyethylene (UHMWPE, both pure and containing nanostructures at different concentrations (titanium and silver nanoparticles, were prepared as thin foils in order to produce an interface between a substrate transparent to the infrared laser wavelength and an highly absorbent substrate, in order to be welded by the laser irradiation. The used diode laser operates at 970 nm wavelength, in continuum, with a maximum energy of 100 mJ, for times of the order of 1 -60 s, with a spot of 300 μm of diameter. The properties of the polymers and of nanocomposite sheets, before and after the laser welding process, were measured in terms of optical characteristics, wetting ability, surface roughness and surface morphology.

  9. Tribological investigations of surface treated Ti6Al4V

    International Nuclear Information System (INIS)

    Rueck, D.M.; Schminke, A.; Schmidt, H.; Soltani-Farshi, M.; Baumann, H.; Fink, U.; Richter, E.

    1998-05-01

    The tribological couple of the titanium alloy Ti6Al4V and ultrahigh molecular weight polyethylene (UHMWPE) is used for hip and knee joint prostheses. It is known that surface treatment of the titanium alloy Ti6Al4V by ion implantation of various elements can improve the wear behavior of such prostheses. The results of tribological tests, performed in Ringer solution with a ring-on-disc tester, show that oxygen in the implanted near surface region has a pronounced influence on the wear performance. Oxygen can be introduced into the surface by different mechanisms: either by direct implantation of oxygen ions or by indiffusion during the implantation of other elements like nitrogen or carbon at higher temperatures. The influence of the oxygen content in the near surface region of implanted and nonimplanted Ti6Al4V on the tribological performance is discussed in detail. (orig.)

  10. Synthesis of cobalt stearate as oxidant additive for oxo-biodegradable polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Asriza, Ristika O.; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132 (Indonesia)

    2015-09-30

    Cobalt stearate is an oxidant additives that can initiate a process of degradation in high density polyethylene (HDPE). To determine the effect of cobalt stearate in HDPE, oxo-biodegradable polyethylene film was given an irradiation with UV light or heating at various temperature. After given a heating, the FTIR spectra showed a new absorption peak at wave number 1712 cm{sup −1} indicating the presence of carbonyl groups in polymers, whereas after irradiation with UV light is not visible the presence of this absorption peak. The increase concentration of cobalt stearate added in HDPE and the higher heating temperature, the intensity of the absorption peak of the carbonyl group increased. The increasing intensity of the carbonyl group absorption is caused the presence of damage in the film surface after heating, and this result is supported by analysis the surface properties of the film with using SEM. Biodegradation tests were performed on oxo-biodegradable polyethylene film which has been given heating or UV light with using activated sludge under optimal conditions the growth of microorganisms. After biodegradation, the maximum weight decreased by 23% in the oxo-biodegradable polyethylene film with a cobalt stearate concentration of 0.2% and after heating at a temperature of 75 °C for 10 days, and only 0.69% in the same film after irradiation UV light for 10 days. Based on the results above, cobalt stearate additive is more effective to initiate the oxidative degradation of HDPE when it is initiated by heating compared to irradiation with UV light.

  11. Synthesis of cobalt stearate as oxidant additive for oxo-biodegradable polyethylene

    Science.gov (United States)

    Asriza, Ristika O.; Arcana, I. Made

    2015-09-01

    Cobalt stearate is an oxidant additives that can initiate a process of degradation in high density polyethylene (HDPE). To determine the effect of cobalt stearate in HDPE, oxo-biodegradable polyethylene film was given an irradiation with UV light or heating at various temperature. After given a heating, the FTIR spectra showed a new absorption peak at wave number 1712 cm-1 indicating the presence of carbonyl groups in polymers, whereas after irradiation with UV light is not visible the presence of this absorption peak. The increase concentration of cobalt stearate added in HDPE and the higher heating temperature, the intensity of the absorption peak of the carbonyl group increased. The increasing intensity of the carbonyl group absorption is caused the presence of damage in the film surface after heating, and this result is supported by analysis the surface properties of the film with using SEM. Biodegradation tests were performed on oxo-biodegradable polyethylene film which has been given heating or UV light with using activated sludge under optimal conditions the growth of microorganisms. After biodegradation, the maximum weight decreased by 23% in the oxo-biodegradable polyethylene film with a cobalt stearate concentration of 0.2% and after heating at a temperature of 75 °C for 10 days, and only 0.69% in the same film after irradiation UV light for 10 days. Based on the results above, cobalt stearate additive is more effective to initiate the oxidative degradation of HDPE when it is initiated by heating compared to irradiation with UV light.

  12. Wear of PEEK-OPTIMA® and PEEK-OPTIMA®-Wear Performance articulating against highly cross-linked polyethylene.

    Science.gov (United States)

    East, Rebecca H; Briscoe, Adam; Unsworth, Anthony

    2015-03-01

    The idea of all polymer artificial joints, particularly for the knee and finger, has been raised several times in the past 20 years. This is partly because of weight but also to reduce stress shielding in the bone when stiffer materials such as metals or ceramics are used. With this in mind, pin-on-plate studies of various polyetheretherketone preparations against highly cross-linked polyethylene were conducted to investigate the possibility of using such a combination in the design of a new generation of artificial joints. PEEK-OPTIMA(®) (no fibre) against highly cross-linked polyethylene gave very low wear factors of 0.0384 × 10(-6) mm(3)/N m for the polyetheretherketone pins and -0.025 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates. The carbon-fibre-reinforced polyetheretherketone (PEEK-OPTIMA(®)-Wear Performance) also produced very low wear rates in the polyetheretherketone pins but produced very high wear in the highly cross-linked polyethylene, as might have been predicted since the carbon fibres are quite abrasive. When the fibres were predominantly tangential to the sliding plane, the mean wear factor was 0.052 × 10(-6) mm(3)/N m for the pins and 49.3 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates; a half of that when the fibres ran axially in the pins (0.138 × 10(-6) mm(3)/N m for the pins and 97.5 × 10(-6) mm/ N m for the cross-linked polyethylene plates). PEEK-OPTIMA(®) against highly cross-linked polyethylene merits further investigation. © IMechE 2015.

  13. Process for molding improved polyethylene

    International Nuclear Information System (INIS)

    Kanai, Masanori; Aine, Norio; Nakada, Shinsaku.

    1962-01-01

    Various configurations in size and shape of polyethylene are molded by: (a) irradiating powders of polyethylene with ionizing radiations in the presence of oxygen to the extent of producing substantially no cross-linking among the molecules of polyethylene, and thereafter (b) molding the thus irradiated powders of polyethylene at 100-250 0 C to cross-link the molding. In this process, a uniform and desirable degree of cross-linking and any desirable configuration are provided for the polyethylene molding. Any extruder and any molding machine producing heat can be employed in this process. In embodiments, the radiation dose units may preferably be 1x10 6 to 1.5x10 7 roentgen. The ionizing radiations may be X-rays, gamma-rays or electron beams, but preferably gamma-rays. The preheating prior to molding may be effected in vacuum, in inert gas, or in oxygen at 100-250 0 C, but preferably in oxygen at 100 0 C. In an example, a polyethylene powder of 100 mesh was irradiated with gamma-rays from a Co-60 source with a dose of 3.1x10 6 r at a dose rate of 5.5x10 4 r/hr in air, then preheated in air at 80 0 C for 1 hr, and finally extruded to form a rod of 5 mm phi at 200 0 C. max. The degree of product cross-linking was 0% after irradiation in step (a), and 38% after heating in step (b). (Iwakiri, K.)

  14. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty.

    Science.gov (United States)

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-02-11

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of this articulation is variable. We reviewed the advantages and disadvantages of ceramicon- polyethylene articulation in THA, hip simulator study and retrieval study for polyethylene wear, in vivo clinical results of THA using alumina ceramic-on-polyethylene bearing surfaces in the literature, and new trial alumina ceramic-onhighly cross linked polyethylene bearing surfaces.

  15. Finite element analysis of the high strain rate testing of polymeric materials

    International Nuclear Information System (INIS)

    Gorwade, C V; Ashcroft, I A; Silberschmidt, V V; Alghamdi, A S; Song, M

    2012-01-01

    Advanced polymer materials are finding an increasing range of industrial and defence applications. Ultra-high molecular weight polymers (UHMWPE) are already used in lightweight body armour because of their good impact resistance with light weight. However, a broader use of such materials is limited by the complexity of the manufacturing processes and the lack of experimental data on their behaviour and failure evolution under high-strain rate loading conditions. The current study deals with an investigation of the internal heat generation during tensile of UHMWPE. A 3D finite element (FE) model of the tensile test is developed and validated the with experimental work. An elastic-plastic material model is used with adiabatic heat generation. The temperature and stresses obtained with FE analysis are found to be in a good agreement with the experimental results. The model can be used as a simple and cost effective tool to predict the thermo-mechanical behaviour of UHMWPE part under various loading conditions.

  16. Finite element analysis of the high strain rate testing of polymeric materials

    Science.gov (United States)

    Gorwade, C. V.; Alghamdi, A. S.; Ashcroft, I. A.; Silberschmidt, V. V.; Song, M.

    2012-08-01

    Advanced polymer materials are finding an increasing range of industrial and defence applications. Ultra-high molecular weight polymers (UHMWPE) are already used in lightweight body armour because of their good impact resistance with light weight. However, a broader use of such materials is limited by the complexity of the manufacturing processes and the lack of experimental data on their behaviour and failure evolution under high-strain rate loading conditions. The current study deals with an investigation of the internal heat generation during tensile of UHMWPE. A 3D finite element (FE) model of the tensile test is developed and validated the with experimental work. An elastic-plastic material model is used with adiabatic heat generation. The temperature and stresses obtained with FE analysis are found to be in a good agreement with the experimental results. The model can be used as a simple and cost effective tool to predict the thermo-mechanical behaviour of UHMWPE part under various loading conditions.

  17. Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media.

    Science.gov (United States)

    Kloser, Elisabeth; Gray, Derek G

    2010-08-17

    Aqueous suspensions of poly(ethylene oxide)-grafted nanocrystalline cellulose (PEO-grafted NCC) were prepared in order to achieve steric instead of electrostatic stabilization. A two-step process was employed: in the first step NCC suspensions prepared by sulfuric acid hydrolysis were desulfated with sodium hydroxide, and in the second step the surfaces of the crystals were functionalized with epoxy-terminated poly(ethylene oxide) (PEO epoxide) under alkaline conditions. The PEO-grafted samples were analyzed by conductometric titration, ATR-IR, solid-state NMR, MALDI-TOF MS, SEC MALLS, and AFM. The covalent nature of the linkage was confirmed by weight increase and MALDI-TOF analysis. The PEO-grafted cellulose nanocrystals (CNCs) formed a stable colloidal suspension that remained well dispersed, while the desulfated nanoparticles aggregated and precipitated. Upon concentration of the PEO-grafted aqueous NCC suspension, a chiral nematic phase was observed.

  18. Osmotic effects of polyethylene glycol.

    Science.gov (United States)

    Schiller, L R; Emmett, M; Santa Ana, C A; Fordtran, J S

    1988-04-01

    Polyethylene glycol (PEG) has been used to increase the osmotic pressure of fluids used to cleanse the gastrointestinal tract. However, little is known about its osmotic activity. To investigate this activity systematically, solutions of PEG of differing molecular weights were made and subjected to measurement of osmolality by both freezing point depression and vapor pressure osmometry. Measured osmolality was increasingly greater than predicted from average molecular weight as PEG concentration increased. Measurement of sodium activity in NaCl/PEG solutions by means of an ion-selective electrode suggested that the higher than expected osmolality could be due in part to interactions that, in effect, sequestered water from the solution. Osmolality was consistently greater by freezing point osmometry than by vapor pressure osmometry. To determine which osmometry method reflected biologically relevant osmolality, normal subjects underwent steady-state total gut perfusion with an electrolyte solution containing 105 g/L of PEG 3350. This produced rectal effluent that was hypertonic by freezing point osmometry but isotonic by vapor pressure osmometry. Assuming that luminal fluid reaches osmotic equilibrium with plasma during total gut perfusion, this result suggests that the vapor pressure osmometer accurately reflects the biologically relevant osmolality of intestinal contents. We conclude that PEG exerts more of an osmotic effect than would be predicted from its molecular weight. This phenomenon may reflect interactions between PEG and water molecules that alter the physical chemistry of the solution and sequester water from the solution.

  19. Modulatory effect of high molecular weight polyethylene glycols on ...

    African Journals Online (AJOL)

    ADOWIE PERE

    (MW 4000 and 6000) on drug release from ibuprofen sustained release formulation. Different batches of .... tapped density that is the ratio of the weight of the granules and the ..... conferring less resistance to tablet fracture and abrasion.

  20. Higher molecular weight polyethylene glycol increases cell proliferation while improving barrier function in an in vitro colon cancer model.

    Science.gov (United States)

    Bharadwaj, Shruthi; Vishnubhotla, Ramana; Shan, Sun; Chauhan, Chinmay; Cho, Michael; Glover, Sarah C

    2011-01-01

    Polyethylene glycol (PEG) has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.

  1. Higher Molecular Weight Polyethylene Glycol Increases Cell Proliferation While Improving Barrier Function in an In Vitro Colon Cancer Model

    Directory of Open Access Journals (Sweden)

    Shruthi Bharadwaj

    2011-01-01

    Full Text Available Polyethylene glycol (PEG has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.

  2. Radiation-induced linking reactions in polyethylene

    International Nuclear Information System (INIS)

    Zoepfl, F.J.

    1983-01-01

    Three types of measurements are reported relating to chemical reactions in polyethylene induced by ionizing radiation: 1) viscometric and low-angle laser light scattering measurements to determine the effect of a radical scavenger on the yield of links; 2) calorimetric measurements to determine the effect of radiation-induced linking on the melting behavior of polyethylene; and 3) high-resolution solution carbon 13 nuclear magnetic resonance (NMR) spectrometry measurements to determine the nature of the links and the method of their formation. The NMR results present the first direct detection of radiation-induced long-chain branching (Y links) in polyethylene, and place an apparent upper limit on the yield of H-shaped crosslinks that are formed when polyethylene is irradiated to low absorbed doses. The effect of radiation-induced linking on the melting behavior of polyethylene was examined using differential scanning calorimetry (DSC). It was found that radiation-induced links do not change the heat of fusion of polythylene crystals, but decrease the melt entropy and increase the fold surface free energy per unit area of the crystals. The carbon 13 NMR results demonstrate that long-chain branches (Y links) are formed much more frequently than H-shaped crosslinks at low absorbed doses. The Y links are produced by reactions of alkyl free radicals with terminal vinyl groups in polyethylene

  3. Polyethylene/hydrophilic polymer blends for biomedical applications.

    Science.gov (United States)

    Brynda, E; Houska, M; Novikova, S P; Dobrova, N B

    1987-01-01

    Polyethylene blends with poly(2-hydroxyethyl methacrylate) [poly(HEMA)] or poly(2,3-dihydroxypropyl methacrylate) [poly(DHPMA)] were prepared by swelling polyethylene with HEMA or 2,3-epoxypropyl methacrylate (EPMA) and by polymerization of the respective monomers. Poly(EPMA) in blends was hydrolysed to poly(DHPMA) with acetic acid. The blends had similar surface and bulk compositions. Swelling with water and surface wettability were proportional to the content of the hydrophilic component; at the same content the polyethylene/poly(DHPMA) blends appeared more hydrophilic than those of polyethylene/poly(HEMA). Thrombus formation in contact with blood examined ex vivo and in vivo was considerably slower on the blends than on unmodified polyethylene. The tests indicated optima in composition; the best biological response was achieved with the blends containing about 14% poly(HEMA) or 16% poly(DHPMA).

  4. Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte

    International Nuclear Information System (INIS)

    Moreno, Mabel; Quijada, Raúl; Santa Ana, María A.; Benavente, Eglantina; Gomez-Romero, Pedro; González, Guillermo

    2011-01-01

    Highlights: ► Poly(ethylene oxide)/intercalated clay nanocomposite as filler in solid poly(ethylene oxide) electrolytes. ► Nanocomposite filler improves mechanical properties, transparency, and conductivity of poly(ethylene oxide) electrolyte films. ► Nanocomposite is more effective than unmodified clay in improving polymer electrolyte properties. ► Low Li/polymer ratio avoids crystalline Li complexes, so effects mainly arise from the polymer. ► High nanocomposite/poly(ethylene oxide)-matrix affinity enhances microhomogeneity in the polyelectrolyte. - Abstract: Solvent-free solid polymer electrolytes (SPEs) based on two different poly(ethylene oxide), PEO Mw 600,000 and 4,000,000 and intercalated clays are reported. The inorganic additives used were lithiated bentonite and the nanocomposite PEO-bentonite with the same polymer used as matrix. SPE films, obtained in the scale of grams by mixing the components in a Brabender-type batch mixer and molding at 130 °C, were characterized by X-ray diffraction analysis, UV–vis spectroscopy, and thermal analysis. During the preparation of the films, the unmodified clay got intercalated in situ. Comparative analysis of ionic conductivity and mechanical properties of the films show that the conductivity increases with the inclusion of fillers, especially for the polymer with low molecular weight. This effect is more pronounced when using PEO-bentonite as additive. Under selected work conditions, avoiding the presence of crystalline lithium complexes, observed effects are mainly centered on the polymer. An explanation, considering the higher affinity between the modified clay and PEO matrix which leads to differences in the micro homogeneity degree between both types of polymer electrolytes is proposed.

  5. Thermomechanical method for evaluation of the crosslinking parameters in irradiated polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Gal, O; Stannett, V T; Charlesby, A

    1989-01-01

    The measurement of penetration deformation above the melting point was used for determination of viscoelastic parameters, compliance and retardation time, in ..gamma..-irradiated polyethylene systems. The time-dependent penetration deformation was followed over two creep and recovery cycles. The five-element mechanical model equation was used for calculation of amplitudes, time factors and remained deformations. The modulus of elasticity, derived from the equilibrium compliance was used to obtain M/sub e/ the value of the average molecular weight between crosslinks.

  6. COMPOSITE POLYMERICADDITIVESDESIGNATED FORCONCRETEMIXES BASED ONPOLYACRYLATES, PRODUCTS OF THERMAL DECOMPOSITION OF POLYAMIDE-6 AND LOW-MOLECULAR POLYETHYLENE

    Directory of Open Access Journals (Sweden)

    Polyakov Vyacheslav Sergeevich

    2012-07-01

    4 the optimal composite additive that increases the time period of stiffening of the cement grout , improves the water resistance and the compressive strength of concrete, represents the composition of polyacrylates and polymethacrylates, products of thermal decomposition of polyamide-6 and low-molecular polyethylene in the weight ratio of 1:1:0.5.

  7. Mathematical model of polyethylene pipe bending stress state

    Science.gov (United States)

    Serebrennikov, Anatoly; Serebrennikov, Daniil

    2018-03-01

    Introduction of new machines and new technologies of polyethylene pipeline installation is usually based on the polyethylene pipe flexibility. It is necessary that existing bending stresses do not lead to an irreversible polyethylene pipe deformation and to violation of its strength characteristics. Derivation of the mathematical model which allows calculating analytically the bending stress level of polyethylene pipes with consideration of nonlinear characteristics is presented below. All analytical calculations made with the mathematical model are experimentally proved and confirmed.

  8. On the Structure of Holographic Polymer-dispersed Polyethylene Glycol

    International Nuclear Information System (INIS)

    Birnkrant, M.; McWilliams, H.; Li, C.; Natarajan, L.; Tondiglia, V.; Sutherland, R.; Lloyd, P.; Bunning, T.

    2006-01-01

    Holographic polymerization (H-P) has been used to fabricate polymer-dispersed liquid crystals and pattern inert nanoparticles. In this article, one-dimensional grating structures of Norland resin and polyethylene glycol (PEG) were achieved using the H-P technique. Both reflection and transmission grating structures were fabricated. The optical properties of the reflection grating structures (also known as Bragg reflectors, BRs) are thermosensitive, which is attributed to the formation and crystallization of PEG crystals. The thermal switching temperature of the BR can be tuned by using different molecular weight PEG samples. The hierarchical structure and morphology of the BR were studied using synchrotron X-ray, polarized light microscopy and transmission electron microscopy. PEG crystals were found to be confined in ∼60 nm thick layers in the BR. Upon crystallization, the PEG lamellae were parallel to the BR surfaces and PEG chains were parallel to the BR normal, resembling the confined crystallization behavior of polyethylene oxide (PEO) in PEO-block-polystyrene (PEO-b-PS) block copolymers. This observation suggests that the tethering effect in the block copolymer systems does not play a major role in PEG chain orientation in the confined nanoenvironment

  9. Experimental Study of CO2 Solubility in Ionic Liquids and Polyethylene Glycols

    OpenAIRE

    Huang, Huang

    2015-01-01

    The parameter of density, viscosity are tested and fitted with the result of solubility measurement. With series of experiments, this chemical blend is considered with a good effect. The mixture of 50% tetrabutylphosphonium glycine with 50% polyethylene glycol (molecular weight: 400) is the suggested blend, and the most suitable temperature is absorption in 120C and desorption in 60C. But the solubility reduced rapidly from the second cycle of experiment, thus recycled use is not recommended.

  10. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform

    OpenAIRE

    Lundberg, Pontus; Lee, Bongjae F.; van den Berg, Sebastiaan A.; Pressly, Eric D.; Lee, Annabelle; Hawker, Craig J.; Lynd, Nathaniel A.

    2012-01-01

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxi...

  11. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    OpenAIRE

    Ammar F. Abbas

    2016-01-01

    Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production.PET plastic waste conversion to terephthalic acid by depolymerization process was examined. The effect ...

  12. A comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements.

    Science.gov (United States)

    Abdelgaied, A; Fisher, J; Jennings, L M

    2018-02-01

    A more robust pre-clinical wear simulation framework is required in order to simulate wider and higher ranges of activities, observed in different patient populations such as younger more active patients. Such a framework will help to understand and address the reported higher failure rates for younger and more active patients (National_Joint_Registry, 2016). The current study has developed and validated a comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements (TKR). The input mechanical (elastic modulus and Poisson's ratio) and wear parameters of the moderately cross-linked ultra-high molecular weight polyethylene (UHMWPE) bearing material were independently measured from experimental studies under realistic test conditions, similar to the loading conditions found in the total knee replacements. The wear predictions from the computational wear simulation were validated against the direct experimental wear measurements for size 3 Sigma curved total knee replacements (DePuy, UK) in an independent experimental wear simulation study under three different daily activities; walking, deep squat, and stairs ascending kinematic conditions. The measured compressive mechanical properties of the moderately cross-linked UHMWPE material were more than 20% lower than that reported in the literature under tensile test conditions. The pin-on-plate wear coefficient of moderately cross-linked UHMWPE was significantly dependant of the contact stress and the degree of cross-shear at the articulating surfaces. The computational wear predictions for the TKR from the current framework were consistent and in a good agreement with the independent full TKR experimental wear simulation measurements, with 0.94 coefficient of determination of the framework. In addition, the comprehensive combined experimental and computational framework was able to explain the complex experimental wear trends from the three different daily

  13. The characterisation of two different degradable polyethylene (PE) sacks

    International Nuclear Information System (INIS)

    Davis, G.

    2006-01-01

    The compostability of two different polyethylene (PE) products on the UK market under open-windrow composting conditions is explored within this paper. Chemical analysis of the PE bags has established their constituents in order to examine how the PE bags have an increased degradability depending on additives. Weight loss of the two different PE products within open-windrow composting conditions was recorded in order to establish the percentage weight loss as an indication of the degradability of the two products and their relative suitability for open-windrow composting. Scanning electron microscopy (SEM) of the PE products over the composting duration established the degradation processes for the PE products within the compost. These analyses concluded that one of the PE product mixes was more degradable than the other. However, neither product completed degraded within the timeframe of 12-14 weeks generally accepted for open-windrow composting in the UK

  14. Polyethylene glycol: a game-changer laxative for children.

    Science.gov (United States)

    Alper, Arik; Pashankar, Dinesh S

    2013-08-01

    Constipation is a common problem in children worldwide. It can also be a chronic problem persisting for many months to years. Successful treatment of constipation requires long-term use of laxatives. Commonly used laxatives in children include milk of magnesia, lactulose, mineral oil, and polyethylene glycol. Compared with other laxatives, polyethylene glycol (with and without electrolytes) is a relatively new laxative used during the last decade. Recent studies report excellent efficacy and safety of polyethylene glycol for the long-term treatment of constipation in children. Because of excellent patient acceptance, polyethylene glycol has become a preferred choice of laxative for many practitioners. This article reviews the recently published pediatric literature on biochemistry, efficacy, safety, patient acceptance, and pharmacoeconomics of polyethylene glycol.

  15. Fermentative Degradation of Polyethylene Glycol by a Strictly Anaerobic, Gram-Negative, Nonsporeforming Bacterium, Pelobacter venetianus sp. nov

    OpenAIRE

    1983-01-01

    The synthetic polyether polyethylene glycol (PEG) with a molecular weight of 20,000 was anaerobically degraded in enrichment cultures inoculated with mud of limnic and marine origins. Three strains (Gra PEG 1, Gra PEG 2, and Ko PEG 2) of rod-shaped, gram-negative, nonsporeforming, strictly anaerobic bacteria were isolated in mineral medium with PEG as the sole source of carbon and energy. All strains degraded dimers, oligomers, and polymers of PEG up to a molecular weight of 20,000 completely...

  16. Effect of Aspergillus versicolor strain JASS1 on low density polyethylene degradation

    Science.gov (United States)

    Gajendiran, A.; Subramani, S.; Abraham, J.

    2017-11-01

    Low density polyethylene (LDPE) waste disposal remains one of the major environmental concerns faced by the world today. In past decades, major focus has been given to enhance the biodegradation of LDPE by microbial species. In this present study, Aspergillus versicolor with the ability to degrade LDPE was isolated from municipal landfill area using enrichment technique. Based on 18S rRNA gene sequencing confirmed its identity as Aspergillus versicolor. The biodegradation study was carried out for 90 d in M1 medium. The degradation behaviour of LDPE films by Aspergillus versicolor strain JASS1 were confirmed by weight loss, CO2 evolution, Scanning electron microscopy (SEM) analysis, Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) technique. From current investigation, it can be concluded that our isolated strain JASS1 had the potential to degrade LDPE films and it can be useful in solving the problem caused by polyethylene in the environment.

  17. Solid-State Polymerization of Poly(ethylene furanoate Biobased Polyester, I: Effect of Catalyst Type on Molecular Weight Increase

    Directory of Open Access Journals (Sweden)

    Nejib Kasmi

    2017-11-01

    Full Text Available In this work, we report the synthesis of poly(ethylene furanoate (PEF, catalyzed by three different catalysts, namely, titanium (IV isopropoxide (TIS, tetrabutyltitanate (TBT, and dibutyltin (IV oxide (DBTO, via the two-stage melt polycondensation method. Solid-state polymerization (SSP was conducted at different reaction times (1, 2, 3.5, and 5 h and temperatures 190, 200, and 205 °C, under vacuum. The resultant polymers were analyzed according to their intrinsic viscosity (IV, end groups (–COOH, and thermal properties, via differential scanning calorimetry. DSC results showed that the post polymerization process was favorable to enhance the melting point of the prepared PEF samples. As was expected, the intrinsic viscosity and the average molecular weight of PEF increased with the SSP time and temperature, whereas the number of carboxyl end-groups was decreased. A simple kinetic model was also developed and used to predict the time evolution of polymers IV, as well as the carboxyl and hydroxyl content of PEF during the SSP. From both the experimental measurements and the theoretical simulation results it was proved that the presence of the TIS catalyst resulted in higher transesterification kinetic rate constants and higher reaction rates. The activation energies were not much affected by the presence of different catalysts. Finally, using DBTO as a catalyst, the polyesters produced have higher crystallinity, and as a consequence, higher number of inactive carboxyl and hydroxyl groups.

  18. 21 CFR 172.260 - Oxidized polyethylene.

    Science.gov (United States)

    2010-04-01

    ... to 19. (b) The additive is used or intended for use as a protective coating or component of protective coatings for fresh avocados, bananas, beets, coconuts, eggplant, garlic, grapefruit, lemons, limes... Coatings, Films and Related Substances § 172.260 Oxidized polyethylene. Oxidized polyethylene may be safely...

  19. Effects of working gas pressure on zirconium dioxide thin film prepared by pulsed plasma deposition: roughness, wettability, friction and wear characteristics.

    Science.gov (United States)

    Berni, M; Marchiori, G; Gambardella, A; Boi, M; Bianchi, M; Russo, A; Visani, A; Marcacci, M; Pavan, P G; Lopomo, N F

    2017-08-01

    In joint arthroplasty one of the main issues related to the failure of prosthetic implants is due to the wear of the ultra-high molecular weight polyethylene (UHMWPE) component. Surface treatments and coatings have been recognized as enhancing methods, able to improve the tribological properties of the implants. Therefore, the main objective of this work was to investigate the possibility to fabricate yttria-stabilized zirconia (YSZ) coatings on a metal (AISI 316-L) substrate by means of Pulsed Electron Deposition, in order to improve the tribological behavior of the polymer-metal coupling, by reducing the initial wear of the UHMWPE component. In order to optimize the coating characteristics, the effects of working gas pressure on both its morphological and tribological properties were analyzed. Morphological characterization of the films was evaluated by Atomic Force Microscopy (AFM). Coating wettability was also estimated by contact angle (CA) measurement. Tribological performance (coupling friction and wear of UHMWPE) was evaluated by using a ball-on-disc tribometer during highly-stressing tests in dry and lubricated (i.e. NaCl and serum) conditions; friction and wear were specifically evaluated at the initial sliding distances - to highlight the main effect of coating morphology - and after 100m - where the influence of the intrinsic materials properties prevails. AFM analysis highlighted that the working pressure heavily affected the morphological characteristics of the realized films. The wettability of the coating at the highest and lowest deposition pressures (CA ~ 60°, closed to substrate value) decreased for intermediate pressures, reaching a maximum CA of ~ 90°. Regarding tribological tests, a strong correlation was found in the initial steps between friction coefficient and wettability, which decreased as the distance increased. Concerning UHMWPE wear associated to coated counterpart, at 100m a reduction rate of about 7% in dry, 12% in NaCl and 5% in

  20. Irradiation of polyethylene in the presence of antioxidants

    Science.gov (United States)

    Jaworska, E.; Kałuska, I.; Strzelczak-Burlińska, G.; Michalik, J.

    The radiation induced reactions in LDPE in the presence of phenolic type antioxidants have been studied. It was shown that various antioxidants can influence the polyethylene network formation and the radical yield in different ways. The dependence of network structure on absorbed doses was determined by gel analysis, hot-set test and extraction of antioxidants for samples irradiated with accelerated electrons. It was found that the antioxidants eluated from polyethylene in higher percentage influence polymer crosslinking to a smaller degree. The ESR studies of γ-irradiated blends of polyethylene with antioxidant indicate the presence of alkyl and phenoxyl radicals. The role of antioxidant molecules on radiation induced reactions in polyethylene-antioxidant systems is considered. The correlation between the network structure and the type of additive in polyethylene is also discussed.

  1. Simple colorimetric methods for determination of sub-milligram amounts of ultra-high molecular weight polyethylene wear particles

    Czech Academy of Sciences Publication Activity Database

    Veselý, F.; Zolotarevova, E.; Špundová, M.; Kaftan, Filip; Šlouf, Miroslav; Entlicher, G.

    2012-01-01

    Roč. 8, č. 5 (2012), s. 1935-1938 ISSN 1742-7061 R&D Projects: GA MŠk 2B06096; GA MZd NT12229 Grant - others:GA ČR(CZ) GAP503/11/0163 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40500505 Keywords : joint replacement * polyethylene wear particles * wear particles determination * colorimetric methods Subject RIV: CC - Organic Chemistry Impact factor: 5.093, year: 2012

  2. The thermomechanical method for evaluation of the crosslinking parameters in irradiated polyethylene

    International Nuclear Information System (INIS)

    Novakovic, Lj.; Gal, O.; Stannett, V.T.; Charlesby, A.

    1989-01-01

    The measurement of penetration deformation above the melting point was used for determination of viscoelastic parameters, compliance and retardation time, in γ-irradiated polyethylene systems. The time-dependent penetration deformation was followed over two creep and recovery cycles. The five-element mechanical model equation was used for calculation of amplitudes, time factors and remained deformations. The modulus of elasticity, derived from the equilibrium compliance was used to obtain M e the value of the average molecular weight between crosslinks. (author)

  3. Enzyme-Catalyzed Modifications of Polysaccharides and Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    H. N. Cheng

    2012-06-01

    Full Text Available Polysaccharides are used extensively in various industrial applications, such as food, adhesives, coatings, construction, paper, pharmaceuticals, and personal care. Many polysaccharide structures need to be modified in order to improve their end-use properties; this is mostly done through chemical reactions. In the past 20 years many enzyme-catalyzed modifications have been developed to supplement chemical derivatization methods. Typical reactions include enzymatic oxidation, ester formation, amidation, glycosylation, and molecular weight reduction. These reactions are reviewed in this paper, with emphasis placed on the work done by the authors. The polymers covered in this review include cellulosic derivatives, starch, guar, pectin, and poly(ethylene glycol.

  4. Additional of polyethylene glycol on the preparation of LaPO4:Eu3+ phosphor

    Science.gov (United States)

    Panatarani, Camellia; Joni, I. Made

    2013-09-01

    Solution phase method was used to synthesis nanocrystal LaPO4:Eu3+. Polyethylene glycol with vary molecular weight (MW) was added to allow an exothermic reaction to get a high crystalinity of LaPO4:Eu3+. The x-ray pattern of as prepared LaPO4 was obtained by using an X'pert PANalytical diffractometer with CuKα radiation (λ = 1.5406 Å) and the photoluminescent measurement spectra is obtained by using Fluorescence Spectrometer LS55, Perkin Elmer. The additional of various MW of polyethylene glycol into the precursor solution of LaPO4:Eu3+ affected the crystal structure and luminescent properties. Higher MW of PEG depressing the luminescent spectra. The emission origin from 5D0-7F4 transition vanished by additional 500,000 and 2,000,000 MW of PEG.

  5. Optical absorption in recycled waste plastic polyethylene

    Science.gov (United States)

    Aji, M. P.; Rahmawati, I.; Priyanto, A.; Karunawan, J.; Wati, A. L.; Aryani, N. P.; Susanto; Wibowo, E.; Sulhadi

    2018-03-01

    We investigated the optical properties of UV spectrum absorption in recycled waste plastic from polyethylene polymer type. Waste plastic polyethylene showed an optical spectrum absorption after it’s recycling process. Spectrum absorption is determined using spectrophotometer UV-Nir Ocean Optics type USB 4000. Recycling method has been processed using heating treatment around the melting point temperature of the polyethylene polymer that are 200°C, 220°C, 240°C, 260°C, and 280°C. In addition, the recycling process was carried out with time variations as well, which are 1h, 1.5h, 2h, and 2.5h. The result of this experiment shows that recycled waste plastic polyethylene has a spectrum absorption in the ∼ 340-550 nm wavelength range. The absorbance spectrum obtained from UV light which is absorbed in the orbital n → π* and the orbital π → π*. This process indicates the existence of electron transition phenomena. This mechanism is affected by the temperature and the heating time where the intensity of absorption increases and widens with the increase of temperature and heating time. Furthermore this study resulted that the higher temperature affected the enhancement of the band gap energy of waste plastic polyethylene. These results show that recycled waste plastic polyethylene has a huge potential to be absorber materials for solar cell.

  6. A comparative study on low-velocity impact response of fabric composite laminates

    International Nuclear Information System (INIS)

    Zhang, Diantang; Sun, Ying; Chen, Li; Pan, Ning

    2013-01-01

    Highlights: • We examine the low-velocity behavior of single-ply 3D orthogonal woven fabric composites. • Three-coordinate measuring device was used to acquire the 3D topographies. • Single-ply 3D orthogonal woven fabric composites show better impact performance. • Impact properties will increase if in-plane yarns and Z-yarns of single-ply 3D orthogonal woven fabric are optimized. - Abstract: Impact behaviors at low velocity of composite laminates reinforced with fabrics of different architectures are investigated. Unidirectional prepreg, 2D woven and 3D orthogonal fabrics, all formed of Ultrahigh Molecular Weight Polyethylene (UHMWPE) filaments, were selected as reinforcements to form composite laminates using hot pressing technology. Low velocity impact tests were conducted using a drop-weight impact equipment at the energy level of 35 J. A three-coordinate measuring device was employed to determine the volume of plastic deformation and surface dent diameter. The results show that the composite laminates of single-ply 3D orthogonal woven fabric exhibit better energy absorbed capacity and impact damage resistance as compared to those of unidirectional and 2D plain-woven fabric

  7. Quantification of branching in model three-arm star polyethylene

    KAUST Repository

    Ramachandran, Ramnath; Beaucage, Gregory B.; Rai, Durgesh K.; Lohse, David J.; Sun, Thomas; Tsou, Andy; Norman, Alexander Iain; Hadjichristidis, Nikolaos

    2012-01-01

    The versatility of a novel scaling approach in quantifying the structure of model well-defined 3-arm star polyethylene molecules is presented. Many commercial polyethylenes have long side branches, and the nature and quantity of these branches varies widely among the various forms. For instance, low-density polyethylene (LDPE) is typically a highly branched structure with broad distributions in branch content, branch lengths and branch generation (in hyperbranched structures). This makes it difficult to accurately quantify the structure and the inherent structure-property relationships. To overcome this drawback, model well-defined hydrogenated polybutadiene (HPB) structures have been synthesized via anionic polymerization and hydrogenation to serve as model analogues to long-chain branched polyethylene. In this article, model 3-arm star polyethylene molecules are quantified using the scaling approach. Along with the long-chain branch content in polyethylene, the approach also provides unique measurements of long-chain branch length and hyperbranch content. Such detailed description facilitates better understanding of the effect of branching on the physical properties of polyethylene. © 2012 American Chemical Society.

  8. Quantification of branching in model three-arm star polyethylene

    KAUST Repository

    Ramachandran, Ramnath

    2012-01-24

    The versatility of a novel scaling approach in quantifying the structure of model well-defined 3-arm star polyethylene molecules is presented. Many commercial polyethylenes have long side branches, and the nature and quantity of these branches varies widely among the various forms. For instance, low-density polyethylene (LDPE) is typically a highly branched structure with broad distributions in branch content, branch lengths and branch generation (in hyperbranched structures). This makes it difficult to accurately quantify the structure and the inherent structure-property relationships. To overcome this drawback, model well-defined hydrogenated polybutadiene (HPB) structures have been synthesized via anionic polymerization and hydrogenation to serve as model analogues to long-chain branched polyethylene. In this article, model 3-arm star polyethylene molecules are quantified using the scaling approach. Along with the long-chain branch content in polyethylene, the approach also provides unique measurements of long-chain branch length and hyperbranch content. Such detailed description facilitates better understanding of the effect of branching on the physical properties of polyethylene. © 2012 American Chemical Society.

  9. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing

    2013-10-02

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide) dimethyl ether, CH3O(CH 2CH2O)nCH3 (PEO for short) is a widely applied physical solvent that forms the major organic constituent of a class of novel nanoparticle-based absorbents. Good predictions were obtained for pressure-composition-density relations for CO2 + PEO oligomers (2 ≤ n ≤ 12), using the Potoff force field for PEO [J. Chem. Phys. 136, 044514 (2012)] together with the TraPPE model for CO2 [AIChE J. 47, 1676 (2001)]. Water effects on Henrys constant of CO2 in PEO have also been investigated. Addition of modest amounts of water in PEO produces a relatively small increase in Henrys constant. Dependence of the calculated Henrys constant on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. © 2013 Taylor & Francis.

  10. Biodegradation of low density polyethylene by the action of a microbial consortium isolated from a landfill, Lima, Peru

    Directory of Open Access Journals (Sweden)

    Diego Uribe

    2011-05-01

    Full Text Available In this paper, we describe the isolation and biodegradation activity of microorganisms on low density polyethylene. The microorganisms were collected from plastic materials with evidence of deterioration from a landfill. The samples were filtered and selected in a mineral salts medium at pH 5.5 and 7 for bacteria and fungi respectively. Six strains were isolated, identified as Pseudomonas sp. Hyalodendron sp., Penicillium sp. and Rhodotorula sp. Microbial activity was evidenced by changes in the infrared spectrum of polyethylene with respect to the polymer without treatment. Reduction of carbonyl index (83.89% at pH 7 and 4.08% at pH 5.5 and double bonds index (19.77% at pH 7 and 6.47% at pH 5.5 were observed. Finally we determined the percentage of weight lost by the polyethylene subjected to activity of the strains, with a decrease of 5.4% at pH 7 and 4.8% at pH5, 5.

  11. Modifications by {gamma} irradiation of polyethylene at very high molecular weight. Tribological behaviour for orthopedic applications; Modifications par irradiation {gamma} du polyethylene a tres haut poids moleculaire. Comportement tribologique pour des applications orthopediques

    Energy Technology Data Exchange (ETDEWEB)

    Chaix, N

    2001-07-01

    A new mode of sterilization by vacuum gamma irradiation is studied. This new mode improves significantly the polyethylene behaviour during the study in friction-corrosion against a stainless steel-316L sphere. (N.C.)

  12. Comparison of novel ultra-high molecular weight polyethylene tape versus conventional metal wire for sublaminar segmental fixation in the treatment of adolescent idiopathic scoliosis.

    Science.gov (United States)

    Takahata, Masahiko; Ito, Manabu; Abumi, Kuniyoshi; Kotani, Yoshihisa; Sudo, Hideki; Ohshima, Shigeki; Minami, Akio

    2007-08-01

    Retrospective study. To compare the surgical outcomes of posterior translational correction and fusion using hybrid instrumentation systems with either sublaminar Nesplon tape or sublaminar metal wire to treat adolescent idiopathic scoliosis (AIS). Nesplon tape, which consists of a thread of ultra-high molecular weight polyethylene fibers, has advantages over metal wire: (1) its soft and flexible properties avoid neural damage and (2) its flat configuration avoids focal distribution of the stresses to lamina; however, the efficacy of Nesplon tape in the correction of spinal deformity is as yet, still unclear. Thirty AIS patients at a single institution underwent posterior correction and fusion using hybrid instrumentation containing hook, pedicle screw, and either sublaminar polyethylene taping (15) or sublaminar metal wiring (15). Patients were evaluated preoperatively, immediately after surgery, and at a 2-year follow-up according to the radiographic changes in curve correction, operating time, intraoperative blood loss, complications, and the Scoliosis Research Society patient questionnaire (SRS-24) score. The average correction rate was 63.0% in the Nesplon tape group and 59.9% in the metal wire group immediately after surgery (P = 0.62). Fusion was obtained in all the patients without significant correction loss in both groups. There was no significant difference in operative time, intraoperative blood loss, and postoperative SRS-24 scores between the 2 groups. Complications were superficial skin infection in a single patient in the Nesplon tape group, and transient sensory disturbance in 1 patient and temporal superior mesenteric artery syndrome in another patient in the metal wire group. The efficacy of Nesplon tape in correction of deformity is equivalent to that of metal wire, and fusion was completed without significant correction loss. The soft and flexible properties and flat configuration of Nesplon tape make this a safe application for the treatment

  13. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty

    OpenAIRE

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-01-01

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of th...

  14. Process for irradiation of polyethylene

    International Nuclear Information System (INIS)

    White, George.

    1983-01-01

    Irradiation of polyethylene affects its processabiltiy in the fabrication of products and affects the properties of products already fabricated. The present invention relates to a process for the irradiation of polyethylene, and especially to a process for the irradiation of homopolymers of ethylene and copolymers of ethylene and higher α-olefins, in the form of granules, with low levels of electron or gamma irradiation in the presence of an atomsphere of steam

  15. Development of controlled release formulations of azadirachtin-A employing poly(ethylene glycol) based amphiphilic copolymers.

    Science.gov (United States)

    Kumar, Jitendra; Shakil, Najam A; Singh, Manish K; Singh, Mukesh K; Pandey, Alka; Pandey, Ravi P

    2010-05-01

    Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol-based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t(1/2)) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.

  16. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    International Nuclear Information System (INIS)

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce; Tihminlioglu, Funda; Oks, Efim; Nikolaev, Alexey; Ila, Daryush

    2009-01-01

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.

  17. Development of nanocomposites employing high-density polyethylene and organo clay

    International Nuclear Information System (INIS)

    Lessa, Tathiane C. Rodrigues F.; Tavares, Maria Ines B.; Pita, Vitor J.R.R.

    2009-01-01

    The purpose of this study was to prepare nanocomposites of high-density polyethylene and montmorillonite organoclay by polymer melt intercalation, employing different processing parameters. Effective clay incorporation into polyethylene matrix was observed. The nanocomposites were structurally characterized. Intercalated nanocomposites were obtained from different process parameters, employing polyethylene resin and montmorillonite organoclays. The XRD results and other analysis showed that the processing parameters affect the organoclay delamination. The polyethylene nanocomposite presented the better performance using twin screw extruder, at 90 rpm. The purpose of characterization of polyethylene/organoclay nanocomposite by low-field NMR showed that this technique was important to understand changes in the molecular mobility of polyethylene when organoclay was incorporated. (author)

  18. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin - An In Vitro Study.

    Science.gov (United States)

    Murthy, H B Mallikarjuna; Shaik, Sharaz; Sachdeva, Harleen; Khare, Sumit; Haralur, Satheesh B; Roopa, K T

    2015-06-01

    The impact strength of denture base resin is of great concern and many approaches have been made to strengthen acrylic resin dentures. The objective of this study was to compare the impact strength of the denture base resin with and without reinforcement and to evaluate the impact strength of denture base resin when reinforced with stainless steel mesh, glass fiber, and polyethylene fibers in the woven form. The specimens (maxillary denture bases) were fabricated using a standard polyvinylsiloxane mold with conventional heat cured polymethyl methacrylate resin. The specimens were divided into four groups (n = 10). Group I specimens or control group were not reinforced. Group II specimens were reinforced with stainless steel mesh and Group III and Group IV specimens were reinforced with three percent by weight of glass fibers and polyethylene fibers in weave form respectively. All the specimens were immersed in water for 1-week before testing. The impact strength was measured with falling weight impact testing machine. One-way analysis of variance and Tukey's post-hoc test were used for statistical analysis. Highest impact strength values were exhibited by the specimens reinforced with polyethylene fibers followed by glass fibers, stainless steel mesh, and control group. Reinforcement of maxillary complete dentures showed a significant increase in impact strength when compared to unreinforced dentures. Polyethylene fibers exhibit better impact strength followed by glass fibers and stainless steel mesh. By using pre-impregnated glass and polyethylene fibers in woven form (prepregs) the impact strength of the denture bases can be increased effectively.

  19. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    Directory of Open Access Journals (Sweden)

    Ammar F. Abbas

    2016-02-01

    Full Text Available Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production.PET plastic waste conversion to terephthalic acid by depolymerization process was examined. The effect of ethylene glycol amount, reaction time (up to 90 minutes and reaction temperature (from 70 to 170° C on the polyethylene terephthalate conversion was obtained.The kinetic study shows that the ordination of the depolymerization reaction of PET is first order irreversible reaction with 31103.5 J/mole activation energy.A 97.9 % terephthalic acid purity has been obtained by purification with N, N-dimethylformamide.

  20. Investigation of photo-biodegradation of starch-filled polyethylene films under the environment conditions of Tehran

    International Nuclear Information System (INIS)

    Naeimian, F.; Khoylou, F.; Sheikh, N.; Akhavan, A.; Hassanpour, S.; Sohrabpour, M.

    2006-01-01

    In this work biodegradable polymers have been formulated for packaging purposes and with a view to reduce the environmental accumulation of plastic waste. Degradation of the polymers under the specific weathering conditions of Tehran was studied. In this work low-density polyethylene was formulated with two wheat starch concentrations, maleic anhydride, glycerol as well as a pro-oxidant system of oleic acid, benzoyl peroxide and ferric stearate. The formulated master batches were mixed by using a laboratory two-roll mill at 190 d ig C prepared master batches were mixed with the commercial low-density polyethylene to prepare compounds 1 and 2 containing 1.2 and 6.4 percents wheat starch. The low-density polyethylene control films as well as the formulated compounds were compression moulded in a hot press at 130 d ig C films were subjected to three general conditions of atmospheric exposure, buried in soil and combined conditions of soil burial/ atmospheric exposure. The three environmental conditions impact upon the formulated and control films were investigated through tensile strength, elongation-at-break, carbonyl index, water absorption, weight loss as well as SEM analysis. The microbial investigation was followed by growing the Penicillium Asymmetrica, which had the main population in microbial flora of the soil, on formulated and control films. The studies revealed that the incorporation of this pro-oxidant system with the addition of 6.4% wheat starch enhance the degradation rate of commercial low-density polyethylene films to a significant degree

  1. Polyethylene Glycol 3350

    Science.gov (United States)

    ... 3350 is in a class of medications called osmotic laxatives. It works by causing water to be ... experience either of them, call your doctor immediately: diarrhea hives Polyethylene glycol 3350 may cause other side ...

  2. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, A.; Valle, L.; Franco, L. del [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Sarasua, J.R. [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain); Estrany, F. [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, J., E-mail: Jordi.Puiggali@upc.es [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain)

    2014-09-01

    Lactide and trimethylene carbonate copolymers were successfully grafted with polyethylene glycol via previous functionalization with maleic anhydride and using N,N′-diisopropylcarbodiimide as condensing agent. Maleinization led to moderate polymer degradation. Specifically, the weight average molecular weight decreased from 36,200 to 30,200 g/mol for the copolymer having 20 mol% of trimethylene carbonate units. Copolymers were characterized by differential scanning calorimetry, thermogravimetry and X-ray diffraction. Morphology of spherulites and lamellar crystals was evaluated with optical and atomic force microscopies, respectively. The studied copolymers were able to crystallize despite the randomness caused by the trimethylene carbonate units and the lateral groups. Contact angle measurements indicated that PEG grafted copolymers were more hydrophilic than parent copolymers. This feature justified that enzymatic degradation in lipase medium and proliferation of both epithelial-like and fibroblast-like cells were enhanced. Grafted copolymers were appropriate to prepare regular drug loaded microspheres by the oil-in-water emulsion method. Triclosan release from loaded microspheres was evaluated in two media. - Highlights: • Pegylated copolymers of lactide and trimethylene carbonate have been synthesized. • Grafting with polyethylene glycol was able via maleic anhydride functionalization. • Drug-loaded microspheres could be prepared from new pegylated copolymers. • Hydrophilicity of lactide/trimethylene carbonate copolymers increased by pegylation. • New pegylated copolymers supported cell adhesion and proliferation.

  3. Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species.

    Science.gov (United States)

    Lee, B; Pometto, A L; Fratzke, A; Bailey, T B

    1991-03-01

    The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placing a sheet of plastic into a drying oven at 70 degrees C under atmospheric pressure and air for 0, 4, 8, 12, 16, or 20 days. The effect of 2-, 4-, and 8-week longwave UV irradiation at 365 nm on plastic biodegradability was also investigated. For shake flask cultures, plastics were chemically disinfected and incubated-shaken at 125 rpm at 37 degrees C in 0.6% yeast extract medium (pH 7.1) for Streptomyces spp. and at 30 degrees C for the fungus in 3% malt extract medium (pH 4.5) for 4 weeks along with an uninoculated control for each treatment. Weight loss data were inconclusive because of cell mass accumulation. For almost every 70 degrees C heat-treated film, the Streptomyces spp. demonstrated a further reduction in percent elongation and polyethylene molecular weight average when compared with the corresponding uninoculated control. Significant (P < 0.05) reductions were demonstrated for the 4- and 8-day heat-treated films by all three bacteria. Heat-treated films incubated with P. chrysosporium consistently demonstrated higher percent elongation and molecular weight average than the corresponding uninoculated controls, but were lower than the corresponding zero controls (heat-treated films without 4-week incubation). The 2- and 4-week UV-treated films showed the greatest biodegradation by all three bacteria. Virtually no degradation by the fungus was observed. To our knowledge, this is the first report demonstrating bacterial degradation of these oxidized polyethylenes in

  4. Quantification of Wear and Deformation in Different Configurations of Polyethylene Acetabular Cups Using Micro X-ray Computed Tomography

    Directory of Open Access Journals (Sweden)

    Saverio Affatato

    2017-03-01

    Full Text Available Wear is currently quantified as mass loss of the bearing materials measured using gravimetric methods. However, this method does not provide other information, such as volumetric loss or surface deviation. In this work, we validated a technique to quantify polyethylene wear in three different batches of ultrahigh-molecular-polyethylene acetabular cups used for hip implants using nondestructive microcomputed tomography. Three different configurations of polyethylene acetabular cups, previously tested under the ISO 14242 parameters, were tested on a hip simulator for an additional 2 million cycles using a modified ISO 14242 load waveform. In this context, a new approach was proposed in order to simulate, on a hip joint simulator, high-demand activities. In addition, the effects of these activities were analyzed in terms of wear and deformations of those polyethylenes by means of gravimetric method and micro X-ray computed tomography. In particular, while the gravimetric method was used for weight loss assessment, microcomputed tomography allowed for acquisition of additional quantitative information about the evolution of local wear and deformation through three-dimensional surface deviation maps for the entire cups’ surface. Experimental results showed that the wear and deformation behavior of these materials change according to different mechanical simulations.

  5. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends.

    Science.gov (United States)

    Ahmed, Khalil

    2015-11-01

    Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (M L) and maximum torque (M H) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.

  6. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends

    Directory of Open Access Journals (Sweden)

    Khalil Ahmed

    2015-11-01

    Full Text Available Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE compatibilized by Chloroprene rubber (CR were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (ML and maximum torque (MH of blends increased with increasing weight ratio of HDPE while scorch time (ts2 cure time (tc90, compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.

  7. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    Directory of Open Access Journals (Sweden)

    Ammar S. Abbas

    2016-02-01

    Full Text Available Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production. PET plastic waste converting to terephthalic acid by depolymerization process was examined. The effect of ethylene glycol amount, reaction time (up to 90 minutes and reaction temperature (from 70 to 170° C on the polyethylene terephthalate conversion was obtained. The kinetic study shows that the ordination of the depolymerization reaction of PET is first order irreversible reaction with 31103.5 J/mole activation energy. A 97.9 % terephthalic acid purity has been obtained by purification with N, N-dimethylformamide. Normal 0 false false false EN-US X-NONE AR-SA

  8. Polyethylene-Based Tadpole Copolymers

    KAUST Repository

    Alkayal, Nazeeha

    2017-02-15

    Novel well-defined polyethylene-based tadpole copolymers ((c-PE)-b-PS, PE: polyethylene, PS: polystyrene) with ring PE head and linear PS tail are synthesized by combining polyhomologation, atom transfer radical polymerization (ATRP), and Glaser coupling reaction. The -OH groups of the 3-miktoarm star copolymers (PE-OH)-b-PS, synthesized by polyhomologation and ATRP, are transformed to alkyne groups by esterification with propiolic acid, followed by Glaser cyclization and removal of the unreacted linear with Merrifield\\'s resin-azide. The characterization results of intermediates and final products by high-temperature size exclusion chromatography, H NMR spectroscopy, and differential scanning calorimetry confirm the tadpole topology.

  9. Protein diffusion in photopolymerized poly(ethylene glycol) hydrogel networks

    International Nuclear Information System (INIS)

    Engberg, Kristin; Frank, Curtis W

    2011-01-01

    In this study, protein diffusion through swollen hydrogel networks prepared from end-linked poly(ethylene glycol)-diacrylate (PEG-DA) was investigated. Hydrogels were prepared via photopolymerization from PEG-DA macromonomer solutions of two molecular weights, 4600 Da and 8000 Da, with three initial solid contents: 20, 33 and 50 wt/wt% PEG. Diffusion coefficients for myoglobin traveling across the hydrogel membrane were determined for all PEG network compositions. The diffusion coefficient depended on PEG molecular weight and initial solid content, with the slowest diffusion occurring through lower molecular weight, high-solid-content networks (D gel = 0.16 ± 0.02 x 10 -8 cm 2 s -1 ) and the fastest diffusion occurring through higher molecular weight, low-solid-content networks (D gel = 11.05 ± 0.43 x 10 -8 cm 2 s -1 ). Myoglobin diffusion coefficients increased linearly with the increase of water content within the hydrogels. The permeability of three larger model proteins (horseradish peroxidase, bovine serum albumin and immunoglobulin G) through PEG(8000) hydrogel membranes was also examined, with the observation that globular molecules as large as 10.7 nm in hydrodynamic diameter can diffuse through the PEG network. Protein diffusion coefficients within the PEG hydrogels ranged from one to two orders of magnitude lower than the diffusion coefficients in free water. Network defects were determined to be a significant contributing factor to the observed protein diffusion.

  10. Electron spin resonance study of radicals in irradiated polyethylene

    International Nuclear Information System (INIS)

    Fujimura, Takashi

    1979-02-01

    In order to elucidate radiation effect in polyethylene, the nature and behavior of radicals produced in polyethylene and the model compound of polyethylene irradiated at 77 0 K were studied by using electron spin resonance. The structure of radical pairs, which are composed of two radicals produced very closely each other, was investigated in drawn polyethylene and the single crystal of n-eicosane. The radical pairs of intrachain type and interchain type were found in polyethylene and n-eicosane respectively. It was suggested that these two types of radical pairs are the precursors of double bonds and crosslinks respectively. The thermal decay reactions of radicals themselves produced in irradiated polyethylene were investigated. It was made clear that the short range distances between two radicals play an important role in the decay reaction of alkyl radicals at low temperatures. The trapping regions of radicals were studied and it was clarified that allyl radicals, which are produced by the reaction of alkyl radicals with double bonds, are trapped both in the crystalline and non-crystalline regions. (author)

  11. Use of borated polyethylene to improve low energy response of a prompt gamma based neutron dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Priyada, P.; Ashwini, U.; Sarkar, P.K., E-mail: pradip.sarkar@manipal.edu

    2016-05-21

    The feasibility of using a combined sample of borated polyethylene and normal polyethylene to estimate neutron ambient dose equivalent from measured prompt gamma emissions is investigated theoretically to demonstrate improvements in low energy neutron dose response compared to only polyethylene. Monte Carlo simulations have been carried out using the FLUKA code to calculate the response of boron, hydrogen and carbon prompt gamma emissions to mono energetic neutrons. The weighted least square method is employed to arrive at the best linear combination of these responses that approximates the ICRP fluence to dose conversion coefficients well in the energy range of 10{sup −8} MeV to 14 MeV. The configuration of the combined system is optimized through FLUKA simulations. The proposed method is validated theoretically with five different workplace neutron spectra with satisfactory outcome. - Highlights: • An improved method is proposed for estimating H⁎(10) using prompt gamma emissions. • A combination of BHDPE and HDPE cylinders is used as a sample. • Linear combination of prompt gamma intensities approximates ICRP-DCC closely. • Feasibility of the method was tested theoretically using workplace neutron spectra.

  12. Reuse of polyethylene waste in road construction.

    Science.gov (United States)

    Raju, S S S V Gopala; Murali, M; Rengaraju, V R

    2007-01-01

    The cost of construction of flexible pavements depends on thickness of the pavement layers. The thickness of pavement mainly depends on the strength of the subgrade. By suitable improvement to the strength of the subgrade, considerable saving in the scarce resources and economy can be achieved. Because of their lightweight, easy handling, non-breakable and corrosion free nature, polyethylene have surpassed all other materials in utility. But polyethylene waste has been a matter of concern to environmentalists as it is non-biodegradable. In this investigation, an attempt has been made to study the improvement of California Bearing Ratio (CBR) value of soils stabilized with waste polyethylene bags. This alternative material is mixed in different proportions to the gravel and clay to determine the improvement ofCBR value. Use of the waste polyethylene bags observed to have a significant impact on the strength and economy in pavement construction, when these are available locally in large quantities.

  13. A Comparative Study on Magnetostructural Properties of Barium Hexaferrite Powders Prepared by Polyethylene Glycol

    OpenAIRE

    Zehra Durmus

    2014-01-01

    Nanocrystalline particles of barium hexaferrite were synthesized by a sol-gel combustion route using nitrate-citrate gels prepared from metal nitrates and citric acid solutions with Fe/Ba molar ratio 12. The present paper aims to study the effect of addition of polyethylene glycol (PEG) solutions with different molecular weights (MW: 400, 2000, and 10.000 g/mol) on magnetostructural properties of barium hexaferrite. The formation of the barium hexaferrite was inspected using X-ray diffractio...

  14. Degradation of polyethylene glycol by the integration of chemical and biological treatment; Degradacion de polietilenglicos 10.000 mediante tratamiento integrado quimico-biologico

    Energy Technology Data Exchange (ETDEWEB)

    Otal, E.; Mantzavinos, D.; Lebrato, J. [Universidad de Sevilla (Spain)

    2001-07-01

    Biodegradation of polyethylene glycol 10.000 molecular weight or higher presented problems, therefore suggesting that integration of chemical and biological treatments, to achieve complete degradation from these sizes of polyethylene glycol may be advisable. Integration of wet air oxidation and aerobic biological treatments of polyethylene glycol 10.000 was investigated. The organic compound, used as the sole carbon and energy source, was partially oxidized in a high pressure reactor achieving a 7% of total organic carbon removal. Enhanced biodegradability was assessed by comparing total organic carbon removal using an Aerobic Continuous-flow Stirred Reactor fed with untreated original organic or previously oxidized samples. the reactor operated at steady-state at loading rates of total organic carbon of 69 mg L-1 d-1 for untreated polyethylene glycol 10.000, and 520 mg L-1 d-1 for wet air oxidation-treated polyethylene glycol 10.000, reaching yields of 68 % and 82% of total organic carbon removal, respective. Even using a retention time 8-fold shorter, total organic carbon removal from the wet air oxidation-treated sample was higher than that from the untreated one. therefore, previous wet air oxidation treatment may improve efficiency of conventional biological treatment of industrial wastewaters containing this organic compound. (Author) 18 refs.

  15. Thermal stability of radiation-modified polyethylene

    International Nuclear Information System (INIS)

    Vinogradova, T.B.; Sirota, A.G.; Bal'tenas, R.A.; Stanyavichus, V.I.; Knebel'man, A.M.; Sil'chenko, S.A.

    1989-01-01

    In the work reported here, the authors investigated the thermooxidative resistance, at temperatures from 373 to 473 K, of polyethylene that had been cross-linked by exposure to radiation and formulated with various heat stabilizers. Thus, these studies of the thermooxidative resistance of polyethylene-based compositions that have been cross-linked by the radiation-chemical method have shown that, in this particular series of heat-stabilizers, the greatest effect at temperatures of 373-473 K is given by the FAU-13. The DTPhDMI has the greatest heat-stabilizing effect in the temperature interval 448-473 K, whereas the heat resistance of materials containing Diaphen NN or Phenozan-23 is higher at 373-423 K. These comparative results are in agreement with data for unirradiated and chemically cross-linked polyethylene

  16. Protective properties of radiation-modified polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Surnina, N.N.; Saltykova, L.A.; Strochkova, E.M.; Tatarenko, O.F.

    1986-09-01

    A study was made of the mass transfer of corrosive liquids and gases through polyethylene films modified by radiation surface grafting. Studies were performed on an unstabilized type A film with graft adhesion-active layer based on polymethacrylic acid. The protective properties of the polymer coating in corrosive fluids with low vapor tension were estimated by impedance measurements. Steel specimens with a protective coating of radiation-modified polyethylene film were exposed to 10% sulfuric acid at room temperature. The results indicated that the acid did not penetrate through to the metal surface. The films retain their protective properties and protect the metal from the acid. Radiation modification significantly improves the adhesion of polyethylene to metals without reducing physical and mechanical properties of the polymers. 50 references, 1 figure.

  17. Monoblock versus modular polyethylene insert in uncemented total knee arthroplasty

    DEFF Research Database (Denmark)

    Andersen, Mikkel Rathsach; Winther, Nikolaj; Lind, Thomas

    2016-01-01

    Background and purpose - Backside wear of the polyethylene insert in total knee arthroplasty (TKA) can produce clinically significant levels of polyethylene debris, which can lead to loosening of the tibial component. Loosening due to polyethylene debris could theoretically be reduced in tibial...

  18. Transferability of ASTM/NIST alanine-polyethylene recipe at ISS. American Society for Testing and Materials/National Institute for Standards and Technology. Istituto Superiore de Sanita

    Science.gov (United States)

    De Angelis C; Fattibene; Onori; Petetti; Bartolotta; Sansone Santamaria A

    2000-05-01

    Alanine-polyethylene solid state dosimeters were prepared at Istituto Superiore di Sanita (ISS) following the recipe proposed by National Institute of Standards and Technology (NIST) with the goal of testing its transferability. Dosimeters were prepared using 95% alanine and 5% polyethylene, by weight. They are rugged and of increased sensitivity, repeatability and reproducibility as respect to the ISS alanine-paraffin pellets. Reproducibility of about 1% was obtained at 10 Gy and at 3 Gy if one single pellet or a stack of five dosimeters were used, respectively.

  19. Bearing surfaces in total hip replacements: state of the art and future developments.

    Science.gov (United States)

    McKellop, H A

    2001-01-01

    Because the UHMWPE components fabricated by the historic process of gamma-sterilization in air are no longer marketed, a surgeon who wishes to continue performing joint replacement surgery must choose among the new polyethylenes, or he or she may choose a modern metal-metal or ceramic-ceramic bearing, each of which has its potential advantages and disadvantages (Table 4). Ultimately, it is the responsibility of the surgeon to assess the risk-benefit ratios of each of the new bearing combinations and make an informed and wise choice among them.

  20. Water-soluble building blocks for terpyridine-containing supramolecular polymers : synthesis, complexation, and pH stability studies of poly(ethylene oxide) moieties

    NARCIS (Netherlands)

    Lohmeijer, B.G.G.; Schubert, U.S.

    2003-01-01

    Poly(ethylene oxide) of various molecular weights ([bar M ]n = 3 000, 5 200, 10 000, 16 500 g · mol-1) has been modified with terpyridine end groups as building blocks for water-soluble metallo-supramolecular polymers. Metallo-supramolecular A-A homopolymers have been prepared and characterized by

  1. Biodegradation of Degradable Plastic Polyethylene by Phanerochaete and Streptomyces Species †

    Science.gov (United States)

    Lee, Byungtae; Pometto, Anthony L.; Fratzke, Alfred; Bailey, Theodore B.

    1991-01-01

    The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placing a sheet of plastic into a drying oven at 70°C under atmospheric pressure and air for 0, 4, 8, 12, 16, or 20 days. The effect of 2-, 4-, and 8-week longwave UV irradiation at 365 nm on plastic biodegradability was also investigated. For shake flask cultures, plastics were chemically disinfected and incubated-shaken at 125 rpm at 37°C in 0.6% yeast extract medium (pH 7.1) for Streptomyces spp. and at 30°C for the fungus in 3% malt extract medium (pH 4.5) for 4 weeks along with an uninoculated control for each treatment. Weight loss data were inconclusive because of cell mass accumulation. For almost every 70°C heat-treated film, the Streptomyces spp. demonstrated a further reduction in percent elongation and polyethylene molecular weight average when compared with the corresponding uninoculated control. Significant (P < 0.05) reductions were demonstrated for the 4- and 8-day heat-treated films by all three bacteria. Heat-treated films incubated with P. chrysosporium consistently demonstrated higher percent elongation and molecular weight average than the corresponding uninoculated controls, but were lower than the corresponding zero controls (heat-treated films without 4-week incubation). The 2- and 4-week UV-treated films showed the greatest biodegradation by all three bacteria. Virtually no degradation by the fungus was observed. To our knowledge, this is the first report demonstrating bacterial degradation of these oxidized polyethylenes in pure culture. PMID:16348434

  2. Potential migration of organic pollutants in pipes of polyethylene. Study in pipelines of distribution net of drinkable water; Migracion potential de contaminantes organicos en tubos de polietileno. Estudio en tuberias de red de distribuciond e agua potable

    Energy Technology Data Exchange (ETDEWEB)

    Ballel, X.; Ciurana de, C.; Caixach, J.; Cortina, M.; Om, M.

    2002-07-01

    Polyethylene pipes and connections are being widely used in treated water distribution services. Migration of low molecular weight compounds from the polyethylene into the water can change its final quality. This paper is about the concentrations and identification of the migration compounds found in treated water after staying in contact with low and high-density polyethylene. Identification and quantification were carried out using CLSA (Closed Loop Stripping Analysis) extraction technique and gas chromatography coupled to mass spectrometry (HRGC/HRMS). (Author) 12 refs.

  3. Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization.

    Science.gov (United States)

    Cowieson, D; Piletska, E; Moczko, E; Piletsky, S

    2013-08-01

    An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.

  4. Studies of osmotic diarrhea induced in normal subjects by ingestion of polyethylene glycol and lactulose.

    OpenAIRE

    Hammer, H F; Santa Ana, C A; Schiller, L R; Fordtran, J S

    1989-01-01

    The purpose of these studies was to gain insight into the pathophysiology of pure osmotic diarrhea and the osmotic diarrhea caused by carbohydrate malabsorption. Diarrhea was induced in normal volunteers by ingestion of polyethylene glycol (PEG), which is nonabsorbable, not metabolized by colonic bacteria, and carries no electrical charge. In PEG-induced diarrhea, (a) stool weight was directly correlated with the total mass of PEG ingested; (b) PEG contributed 40-60% of the osmolality of the ...

  5. Molecular weight​/branching distribution modeling of low-​density-​polyethylene accounting for topological scission and combination termination in continuous stirred tank reactor

    NARCIS (Netherlands)

    Yaghini, N.; Iedema, P.D.

    2014-01-01

    We present a comprehensive model to predict the molecular weight distribution (MWD),(1) and branching distribution of low-density polyethylene (IdPE),(2) for free radical polymerization system in a continuous stirred tank reactor (CSTR).(3) The model accounts for branching, by branching moment or

  6. Photografting of perfluoroalkanes onto polyethylene surfaces via azide/nitrene chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Siegmann, Konstantin, E-mail: konstantin.siegmann@zhaw.ch [Institute of Materials and Process Engineering (IMPE), School of Engineering (SoE), Zurich University of Applied Sciences - ZHAW, Technikumstrasse 9, CH-8401 Winterthur (Switzerland); Inauen, Jan, E-mail: jan.inauen@zhaw.ch [Institute of Materials and Process Engineering (IMPE), School of Engineering (SoE), Zurich University of Applied Sciences - ZHAW, Technikumstrasse 9, CH-8401 Winterthur (Switzerland); Villamaina, Diego, E-mail: diego.villamaina@gmail.com [Visiting scientist at IMPE, Permanent address: Rapidplatz 3, CH-8953 Dietikon (Switzerland); Winkler, Martin, E-mail: martin.winkler@zhaw.ch [Institute of Materials and Process Engineering (IMPE), School of Engineering (SoE), Zurich University of Applied Sciences - ZHAW, Technikumstrasse 9, CH-8401 Winterthur (Switzerland)

    2017-02-28

    The purpose of this study is to render polyethylene surfaces strongly and permanently hydrophobic. Polyethylene is a common plastic and, because of its inertness, difficult to graft. We chose polyethylene as example because of its ubiquity and model character. As graft chains linear perfluoroalkyl residues (−C{sub 4}F{sub 9}, −C{sub 6}F{sub 13}, −C{sub 8}F{sub 17} and −C{sub 10}F{sub 21}) were chosen, and photografting was selected as grafting method. Photolytically generated nitrenes can insert into carbon–hydrogen bonds and are therefore suited for binding to polyethylene. Hydrophobic photo reactive surface modifiers based on azide/nitrene chemistry are designed, synthesized in high yield and characterized. Four new molecules are described. Water contact angles exceeding 110° were achieved on grafted polyethylene. One problem is to demonstrate that the photografted surface modifiers are bound covalently to the polyethylene. Abrasion tests show that all new molecules, when photografted to polyethylene, have a higher abrasion resistance than a polyethylene surface coated with a long-chain perfluoroalkane. Relative abrasion resitances of 1.4, 2.0, 2.1 and 2.5 compared to the fluoroalkane coating were obtained for the four compounds. An abrasion model using ice is developed. Although all four compounds have the same λ{sub max} of 266 nm in acetonitrile solution, their molar extincition coefficients increase from 1.6·10{sup 4} to 2.2·10{sup 4} with increasing length of the fluorotelomer chain. Exitonic coupling of the chromophores of the surface modifiers is observed for specific molecules in the neat state. A linear correlation of water contact angle with fluorine surface content, as measured by photoelectron spectroscopy, in grafted polyethylene surfaces is established.

  7. Thermogravimetric studies of the thermo-oxidative stability of irradiated and unirradiated polyethylene

    International Nuclear Information System (INIS)

    Novakovic, L.; Gal, O.; Markovic, V.; Stannett, V.T.

    1985-01-01

    In part one of this series the effects of a phenolic, an amine and a thioester antioxidant on the thermo-oxidative stability of irradiated and unirradiated low-density polyethylene was reported. In this paper the effects of combined phenolic and thioester stabilizers are described. Isothermal thermogravimetric analysis was used to study the systems. Pronounced synergism was observed with the induction periods, the time when the initial weight loss begins and the 5% weight loss. At about 50% of each stabilizer increases greater than twofold were observed both with the unirradiated and irradiated polymers. The rate constants for oxygen uptake were decreased. However, the rates of degradation at 5% weight loss fell between the values of the two pure stabilizers with no pronounced synergism in either case. In the absence of oxygen little effect of either antioxidant or their mixtures was observed. The corresponding activation energies were somewhat higher, however, with the irradiated samples containing antioxidants. Dynamic thermogravimetry was used for this study. A kinetic analysis indicated that there were somewhat different modes of degradation at lower- and higher-temperature ranges. (author)

  8. Measurement of radon permeability through polyethylene membrane using scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ashry, A.H.; Abou-Leila, M. [Department of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt); Abdalla, A.M., E-mail: aymanabdalla62@hotmail.co [Department of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt); Department of Physics, Faculty of Sciences and Arts, Najran University, Najran, P.O. Box. 11001 (Saudi Arabia); Advanced Materials and Nano-Engineering Laboratory (AMNEL), Centre for Advanced Materials and Nano-Engineering (CAMNE), Najran University, Najran, P.O. Box. 11001 (Saudi Arabia)

    2011-01-15

    The permeability of Radon 222 through polyethylene membranes has been studied using activated charcoal technique. The permeability constant of Radon 222 through low-density polyethylene, linear low-density Polyethylene and high density polyethylene samples has been measured. There is a considerable agreement between the values obtained by our method and the method suggested by W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211], and SSNTD technique suggested by A. Hafez and G. Somogyi [1986. Determination of radon and thoron permeability through some plastics by track technique. Int. J. Radiat. Appl. Instrum. Nucl. Track Radiat. Meas. 12 (1-6), 697-700]. In this work Radon permeability through different polyethylene membranes has been measured using three different methods, i.e. solid state nuclear track technique, W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211]method and our proposed method. In addition to this, in this study, the diffusion coefficient of radon in charcoal as well as solubility of Radon in polyethylene membrane has been taken into consideration.

  9. Measurement of radon permeability through polyethylene membrane using scintillation detector

    International Nuclear Information System (INIS)

    Ashry, A.H.; Abou-Leila, M.; Abdalla, A.M.

    2011-01-01

    The permeability of Radon 222 through polyethylene membranes has been studied using activated charcoal technique. The permeability constant of Radon 222 through low-density polyethylene, linear low-density Polyethylene and high density polyethylene samples has been measured. There is a considerable agreement between the values obtained by our method and the method suggested by W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211], and SSNTD technique suggested by A. Hafez and G. Somogyi [1986. Determination of radon and thoron permeability through some plastics by track technique. Int. J. Radiat. Appl. Instrum. Nucl. Track Radiat. Meas. 12 (1-6), 697-700]. In this work Radon permeability through different polyethylene membranes has been measured using three different methods, i.e. solid state nuclear track technique, W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211] method and our proposed method. In addition to this, in this study, the diffusion coefficient of radon in charcoal as well as solubility of Radon in polyethylene membrane has been taken into consideration.

  10. Aragonite coating solutions (ACS) based on artificial seawater

    International Nuclear Information System (INIS)

    Tas, A. Cuneyt

    2015-01-01

    Graphical abstract: - Highlights: • Developed completely inorganic solutions for the deposition of monolayers of aragonite spherules (or ooids). • Solutions mimicked the artificial seawater. • Biomimetic crystallization was performed at the tropical sea surface temperature of 30 °C. - Abstract: Aragonite (CaCO 3 , calcium carbonate) is an abundant biomaterial of marine life. It is the dominant inorganic phase of coral reefs, mollusc bivalve shells and the stalactites or stalagmites of geological sediments. Inorganic and initially precipitate-free aragonite coating solutions (ACS) of pH 7.4 were developed in this study to deposit monolayers of aragonite spherules or ooids on biomaterial (e.g., UHMWPE, ultrahigh molecular weight polyethylene) surfaces soaked in ACS at 30 °C. The ACS solutions of this study have been developed for the surface engineering of synthetic biomaterials. The abiotic ACS solutions, enriched with calcium and bicarbonate ions at different concentrations, essentially mimicked the artificial seawater composition and started to deposit aragonite after a long (4 h) incubation period at the tropical sea surface temperature of 30 °C. While numerous techniques for the solution deposition of calcium hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ), of low thermodynamic solubility, on synthetic biomaterials have been demonstrated, procedures related to the solution-based surface deposition of high solubility aragonite remained uncommon. Monolayers of aragonite ooids deposited at 30 °C on UHMWPE substrates soaked in organic-free ACS solutions were found to possess nano-structures similar to the mortar-and-brick-type botryoids observed in biogenic marine shells. Samples were characterized using SEM, XRD, FTIR, ICP-AES and contact angle goniometry

  11. Aragonite coating solutions (ACS) based on artificial seawater

    Energy Technology Data Exchange (ETDEWEB)

    Tas, A. Cuneyt, E-mail: c_tas@hotmail.com

    2015-03-01

    Graphical abstract: - Highlights: • Developed completely inorganic solutions for the deposition of monolayers of aragonite spherules (or ooids). • Solutions mimicked the artificial seawater. • Biomimetic crystallization was performed at the tropical sea surface temperature of 30 °C. - Abstract: Aragonite (CaCO{sub 3}, calcium carbonate) is an abundant biomaterial of marine life. It is the dominant inorganic phase of coral reefs, mollusc bivalve shells and the stalactites or stalagmites of geological sediments. Inorganic and initially precipitate-free aragonite coating solutions (ACS) of pH 7.4 were developed in this study to deposit monolayers of aragonite spherules or ooids on biomaterial (e.g., UHMWPE, ultrahigh molecular weight polyethylene) surfaces soaked in ACS at 30 °C. The ACS solutions of this study have been developed for the surface engineering of synthetic biomaterials. The abiotic ACS solutions, enriched with calcium and bicarbonate ions at different concentrations, essentially mimicked the artificial seawater composition and started to deposit aragonite after a long (4 h) incubation period at the tropical sea surface temperature of 30 °C. While numerous techniques for the solution deposition of calcium hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}), of low thermodynamic solubility, on synthetic biomaterials have been demonstrated, procedures related to the solution-based surface deposition of high solubility aragonite remained uncommon. Monolayers of aragonite ooids deposited at 30 °C on UHMWPE substrates soaked in organic-free ACS solutions were found to possess nano-structures similar to the mortar-and-brick-type botryoids observed in biogenic marine shells. Samples were characterized using SEM, XRD, FTIR, ICP-AES and contact angle goniometry.

  12. Poly(ethylene glycol) and cyclodextrin-grafted chitosan: from methodologies to preparation and potential biotechnological applications

    Science.gov (United States)

    Campos, Estefânia V. R.; Oliveira, Jhones L.; Fraceto, Leonardo F.

    2017-11-01

    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field.

  13. THERMAL DEGRADATION OF THERMOTROPIC LIQUID CRYSTALLINE TERPOLYESTERS BASED ON VANILLIC ACID, p-HYDROXYBENZOIC ACID AND POLY(ETHYLENE TEREPHTHALATE)

    Institute of Scientific and Technical Information of China (English)

    LI Xingui; HUANG Meirong; GUAN Guihe; SUN Tong

    1993-01-01

    Nine thermotropic liquid crystalline terpolyesters based on vanillic acid(V), p-hydroxybenzoic acid(H) and poly(ethylene terephthalate)(E) were investigated by thermogravimetry to ascertain their thermostability and the kinetic parameters for thermal degradation. Overall activation energy data of the degradation had been calculated over the range 5~70% weight loss. The temperatures and the activation energy of the degradation lie in the ranges of 384~394 ℃ at a heating rate of 1 ℃/min and 176~205 KJ/mol at the weight loss of 5%, respectively, which suggests that the terpolyesters have good thermostability.

  14. The mechanical properties of brick containing recycled concrete aggregate and polyethylene terephthalate waste as sand replacement

    Science.gov (United States)

    Sheikh Khalid, Faisal; Bazilah Azmi, Nurul; Natasya Mazenan, Puteri; Shahidan, Shahiron; Ali, Noorwirdawati

    2018-03-01

    This research focuses on the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. This study aims to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate (RCA) and polyethylene terephthalate (PET) waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 0.5%, 1.0% and 1.5% by weight of natural sand. Based on the results of compressive strength, only RCA 25% with 0.5% PET achieve lower strength than normal bricks while others showed a high strength. However, all design mix reaches strength more than 7N/mm2 as expected. Besides that, the most favorable mix design that achieves high compressive strength is 75% of RCA with 0.5% PET.

  15. Thermogravimetric studies on electron beam initiated grafting of triallyl cyanurate onto polyethylene

    International Nuclear Information System (INIS)

    Chaki, T.K.; Bhowmik, A.K.; Mukunda, P.G.; Majali, A.B.; Tikku, V.K.

    1993-01-01

    Low density polyethylene (LDPE) containing different levels of triallyl cyanurate (TAC) have been prepared in a Brabender Plasticorder at 120 degC. The moulded samples in the form of rectangular compression sheet were irradiated under electron beam accelerator with different irradiation doses. Thermogravimetric and derivative thermogravimetric analyses of the irradiated samples grafted with TAC have been carried out in order to explore the decomposition behaviour and kinetics of decomposition under nitrogen atmosphere. Initial decomposition temperature (Ti), temperature at which 50% weight loss takes place (T50), final decomposition temperature (Tf) and the kinetic parameters evaluated from TGA traces of samples at different radiation doses (constant TAC level) and at different levels of TAC (constant radiation dose) have been reported. The effect of radiation dose and TAC level on the grafting of TAC onto polyethylene have been explained on the basis of degradation characteristics of irradiated samples. Kinetic studies show that the degradation of the irradiated samples follow first order reaction kinetics. Activation energies of degradation have been determined using McCarty and Green's method. Activation energy of the irradiated samples increases with the increasing radiation dose and also with increasing level of TAC. (author). 3 tabs

  16. Radiation effects on polyethylenes

    International Nuclear Information System (INIS)

    Suzuki, T.; Oki, Y.; Numajiri, M.; Miura, T.; Kondo, K.; Tanabe, Y.; Ishiyama, M.; Ito, Y.

    1992-01-01

    Radiation effects on four kinds of polyethylenes were studied from the viewpoints of mechanical properties, free radicals and free volumes. The samples were irradiated using a cobalt 60 gamma source to give doses up to 3MGy. The degradation of mechanical strength due to gamma-irradiation was evaluated by the elongation at break and its tensile strength. Radiation induced free radicals were measured by ESR. Free volumes observed by the o-Ps component of the positron annihilation spectrum are normally the large ones located in the amorphous regions and after irradiation these are created in crystalline regions, too. The sizes and the relative numbers of free volumes were evaluated by lifetimes and intensities of a long-lived component of positronium, respectively. Using these data, the properties of polyethylenes before and after irradiation are discussed. (author)

  17. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform.

    Science.gov (United States)

    Lundberg, Pontus; Lee, Bongjae F; van den Berg, Sebastiaan A; Pressly, Eric D; Lee, Annabelle; Hawker, Craig J; Lynd, Nathaniel A

    2012-11-20

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxide)] was pH-sensitive, with degradation at pH 5 being significantly faster than at pH 7.4 at 37 °C in PBS buffer while long-term stability could be obtained in either the solid-state or at pH 7.4 at 6 °C.

  18. Polyethylene-waste tire dust composites via in situ polymerization

    International Nuclear Information System (INIS)

    Reyes A, Y. K.; Narro C, R. I.; Ramos A, M. E.; Neira V, M. G.; Diaz E, J.; Enriquez M, F.; Valencia L, L. A.; Saade C, H.; Diaz de L, R.

    2014-01-01

    Polyethylene/waste tire dust (WTD) composites were obtained by an in situ polymerization technique. The surface of the WTD was modified with deposition of polyethylene by using plasma polymerization. Ethylene polymerization was carried out using bis(cyclopentadienyl) titanium dichloride (Cp 2 TiCl 2 ) as homogeneous metallocenes catalyst, while diethylaluminum chloride (DEAC), ethyl aluminum sesquichloride (EASC) and methyl alumino xane (Mao) were used as co-catalysts at two different [Al]/[Ti] molar ratio. The main characteristics of the obtained polyethylenes were determined by size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction. The results showed that by using EASC and Mao the highest catalytic activities were presented at a [Al]/[Ti] molar ratio of 9.17 and 18.33 respectively. Even though it was possible to obtain polyethylene using WTD (modified or unmodified) the catalytic activity was lower than in the case in which no WTD was added in ethylene polymerization. Scanning transmission electronic microscopy images evidenced that the original morphology of the polyethylenes was not modified by the presence of WTD. (Author)

  19. Polyethylene-waste tire dust composites via in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Reyes A, Y. K.; Narro C, R. I.; Ramos A, M. E. [Universidad Autonoma de Coahuila, Facultad de Ciencias Quimicas, Blvd. Venustiano Carranza s/n, 25280 Saltillo, Coahuila (Mexico); Neira V, M. G.; Diaz E, J.; Enriquez M, F.; Valencia L, L. A.; Saade C, H.; Diaz de L, R., E-mail: ramon.diazdeleon@ciqa.edu.mx [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna Hermosillo No. 40, Col. San Jose de los Cerritos, 25293 Saltillo, Coahuila (Mexico)

    2014-10-01

    Polyethylene/waste tire dust (WTD) composites were obtained by an in situ polymerization technique. The surface of the WTD was modified with deposition of polyethylene by using plasma polymerization. Ethylene polymerization was carried out using bis(cyclopentadienyl) titanium dichloride (Cp{sub 2}TiCl{sub 2}) as homogeneous metallocenes catalyst, while diethylaluminum chloride (DEAC), ethyl aluminum sesquichloride (EASC) and methyl alumino xane (Mao) were used as co-catalysts at two different [Al]/[Ti] molar ratio. The main characteristics of the obtained polyethylenes were determined by size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction. The results showed that by using EASC and Mao the highest catalytic activities were presented at a [Al]/[Ti] molar ratio of 9.17 and 18.33 respectively. Even though it was possible to obtain polyethylene using WTD (modified or unmodified) the catalytic activity was lower than in the case in which no WTD was added in ethylene polymerization. Scanning transmission electronic microscopy images evidenced that the original morphology of the polyethylenes was not modified by the presence of WTD. (Author)

  20. Solid-State Polymerization of Poly(Ethylene Furanoate Biobased Polyester, II: An Efficient and Facile Method to Synthesize High Molecular Weight Polyester Appropriate for Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Nejib Kasmi

    2018-04-01

    Full Text Available The goal of this study was to synthesize, through a facile strategy, high molecular weight poly(ethylene furanoate (PEF, which could be applicable in food packaging applications. The efficient method to generate PEF with high molecular weight consists of carrying out a first solid-state polycondensation under vacuum for 6 h reaction time at 205 °C for the resulting polymer from two-step melt polycondensation process, which is catalyzed by tetrabutyl titanate (TBT. A remelting step was thereafter applied for 15 min at 250 °C for the obtained polyester. Thus, the PEF sample was ground into powder, and was then crystallized for 6 h at 170 °C. This polyester is then submitted to a second solid-state polycondensation (SSP carried out at different reaction times (1, 2, 3.5, and 5 h and temperatures 190, 200, and 205 °C, under vacuum. Ultimately, a significant increase in intrinsic viscosity is observed with only 5 h reaction time at 205 °C during the second SSP being needed to obtain very high molecular weight PEF polymer greater than 1 dL/g, which sufficient for manufacturing purposes. Intrinsic viscosity (IV, carboxyl end-group content (–COOH, and thermal properties, via differential scanning calorimetry (DSC, were measured for all resultant polyesters. Thanks to the post-polymerization process, DSC results showed that the melting temperatures of the prepared PEF samples were steadily enhanced in an obvious way as a function of reaction time and temperature increase. It was revealed, as was expected for all SSP samples, that the intrinsic viscosity and the average molecular weight of PEF polyester increased with increasing SSP time and temperature, whereas the number of carboxyl end-group concentration was decreased. A simple kinetic model was also developed and used to predict the time evolution of polyesters IV, as well as the carboxyl and hydroxyl end-groups of PEF during the SSP.

  1. Tensile mechanical response of polyethylene – clay nanocomposites.

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available In this work we report on the microstructural and the mechanical characteristics of high density polyethylene (HDPE-clay nanocomposites, with particular attention to the creep behaviour. The samples were prepared through melt compounding, using two high-density polyethylenes with different melt flow rate (MFR, two different organo-modified clays, and changing the relative amount of a polyethylene grafted with maleic anhydride (PEgMA compatibilizer. The intercalation process is more effective as the matrix melt viscosity decreases (higher MFR, while the clay interlamellar spacing increases as the compatibilizer amount increases. The relative stiffness of the nanocomposites increases with the addition of clay, with a limited enhancement of the relative yield stress. The better intercalation obtained by the addition of the compatibilizer is not accompanied by a concurrent improvement of the tensile mechanical properties. The creep resistance is enhanced by the introduction of clay, with an appreciable dependence on both the polyethylene and the clay type.

  2. Ultravysokomolekulární polyethylen pro kloubní náhrady se zvýšenou životností

    Czech Academy of Sciences Publication Activity Database

    Šlouf, Miroslav; Vacková, Taťana; Nevoralová, Martina; Mikešová, Jana; Dybal, Jiří; Pilař, Jan; Zhigunov, Alexander; Kotek, Jiří; Kredatusová, Jana; Fulín, P.

    2013-01-01

    Roč. 107, č. 10 (2013), s. 783-790 ISSN 0009-2770 R&D Projects: GA TA ČR TA01011406; GA MZd NT12229 Institutional support: RVO:61389013 Keywords : ultrahigh molecular weight polyethylene * total joint replacements * wear Subject RIV: FI - Traumatology, Orthopedics Impact factor: 0.196, year: 2013 http://www.chemicke-listy.cz/common/article-vol_107-issue_10-page_783.html

  3. Direct Synthesis of Telechelic Polyethylene by Selective Insertion Polymerization

    KAUST Repository

    Jian, Zhongbao; Falivene, Laura; Boffa, Giusi; Sá nchez, Sheila Ortega; Caporaso, Lucia; Grassi, Alfonso; Mecking, Stefan

    2016-01-01

    A single-step route to telechelic polyethylene (PE) is enabled by selective insertion polymerization. PdII-catalyzed copolymerization of ethylene and 2-vinylfuran (VF) generates α,ω-di-furan telechelic polyethylene. Orthogonally reactive exclusively

  4. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP)

    International Nuclear Information System (INIS)

    Achilias, D.S.; Roupakias, C.; Megalokonomos, P.; Lappas, A.A.; Antonakou, E.V.

    2007-01-01

    The recycling of either model polymers or waste products based on low-density polyethylene (LDPE), high-density polyethylene (HDPE) or polypropylene (PP) is examined using the dissolution/reprecipitation method, as well as pyrolysis. In the first technique, different solvents/non-solvents were examined at different weight percent amounts and temperatures using as raw material both model polymers and commercial products (packaging film, bags, pipes, food-retail outlets). The recovery of polymer in every case was greater than 90%. FT-IR spectra and tensile mechanical properties of the samples before and after recycling were measured. Furthermore, catalytic pyrolysis was carried out in a laboratory fixed bed reactor with an FCC catalyst using again model polymers and waste products as raw materials. Analysis of the derived gases and oils showed that pyrolysis gave a mainly aliphatic composition consisting of a series of hydrocarbons (alkanes and alkenes), with a great potential to be recycled back into the petrochemical industry as a feedstock for the production of new plastics or refined fuels

  5. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP).

    Science.gov (United States)

    Achilias, D S; Roupakias, C; Megalokonomos, P; Lappas, A A; Antonakou, Epsilon V

    2007-11-19

    The recycling of either model polymers or waste products based on low-density polyethylene (LDPE), high-density polyethylene (HDPE) or polypropylene (PP) is examined using the dissolution/reprecipitation method, as well as pyrolysis. In the first technique, different solvents/non-solvents were examined at different weight percent amounts and temperatures using as raw material both model polymers and commercial products (packaging film, bags, pipes, food-retail outlets). The recovery of polymer in every case was greater than 90%. FT-IR spectra and tensile mechanical properties of the samples before and after recycling were measured. Furthermore, catalytic pyrolysis was carried out in a laboratory fixed bed reactor with an FCC catalyst using again model polymers and waste products as raw materials. Analysis of the derived gases and oils showed that pyrolysis gave a mainly aliphatic composition consisting of a series of hydrocarbons (alkanes and alkenes), with a great potential to be recycled back into the petrochemical industry as a feedstock for the production of new plastics or refined fuels.

  6. Radiation effect on polyethylene tube operational properties

    International Nuclear Information System (INIS)

    Kagan, D.F.; Kantor, L.A.; Sokolov, I.A.; Pogrebetskij, G.E.; Perlova, N.A.; Chumakov, V.V.

    1975-01-01

    The operational properties (stability on prolonged usage and creeping) were determined for pressure pipes made of high-density and low-density polyethylene subjected to γ-radiation. The dependence of the period up to the breaking point on the radiation dosage was extreme in character, with a maximum being near 25 Mrad. With an increase in the irradiation dosage the character of the breaking changes from plastic (at 0-15 Mrad) to brittle (at higher dosages). The plots of creepage, indepent from the amount of radiation, can be described by logarithmic equation epsilon=epsilonsub(0)+K lgt (where, epsilon-deformation of creepage, %; epsilonsub(0)- and K - creepage constants). Therefore creepage can be considered as a criterion determining the carrying capacity of the γ-irradiated polyethylene. It was established that only radiation-grafted high-density polyethylene is suitable for hot water supply pipes

  7. Structure and thermal performance of poly(ethylene glycol) alkyl ether (Brij)/porous silica (MCM-41) composites as shape-stabilized phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingjian; Shi, Haifeng, E-mail: haifeng.shi@gmail.com; Li, Weiwei; Han, Xu; Zhang, Xingxiang, E-mail: zhangpolyu@gmail.com

    2013-10-20

    Graphical abstract: The maximum 50 wt% Brij58 is loaded into the porous MCM-41 networks, and a new peak at 18.8° in XRD patterns confirmed the changes of crystallization behavior of Brij58 against the bulk one. - Highlights: • Poly(ethylene glycol) hexadecyl ether and poly(ethylene glycol) octadecyl ether have the good thermal storage ability. • New peak at 18.8° proved the coexisted confined crystallization and nucleation-induced crystallization. • Poly(ethylene glycol) alkyl ether/MCM-41 PCMs exhibits the good thermal stability. - Abstract: A series of shape-stabilized phase change materials (PCMs), composed of poly(ethylene glycol) hexadecyl ether (Brij58) or poly(ethylene glycol) octadecyl ether (Brij76) and porous silica (MCM-41), were prepared by the physical mixing method. The structure, thermal stability, energy storage ability and crystallization behavior of these composites are deeply investigated and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD) and thermogravimetric analysis (TGA). Obvious phase transition behavior and energy storage capability are observed for these Brij/MCM-41 composites, and the heat storage efficiency increased with the weight of Brij component. New peak at 18.8° demonstrated that the pore size and the surface adsorption ability of MCM-41 affect the crystallization behavior of Brij molecule. The crystalline structure and energy storage ability of these Brij/MCM-41 composites are discussed based on the crystallization process.

  8. The improvement of polyethylene prostheses through radiation crosslinking

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Grobbelaar, C.J.; Marais, F.

    1977-01-01

    During the past decade, remarkable progress has been made in the utilization of high-density polyethylene (HDPE) as a material for the manufacture of prostheses used in orthopaedic operations. This polymer contributes largely to the success of total hip replacement. In the case of total knee replacement it was considered imperative that a more hard-wearing polymer should be developed if at all possible, because not only are the cold-flow characteristics of ordinary high-density polyethylene at high pressures a limiting factor, but particle formation from friction can furthermore lead to physiological side-effects which adversely affect the efficacy of joints made from this material, especially so in the case of knee-joints. Bearing in mind the excellent improvements to be obtained through the radiation crosslinking of polyethylene film, the radiation crosslinking of high-density polyethylene prostheses seemed to be a logical avenue to investigate. Experimental details are presented. Gamma radiation was used. Impact strength and tensile strength measurements were made on specimens irradiated over a dose range of 0 to 80 Mrad. The results are discussed. (U.K.)

  9. Kinetics of the esterification of active pharmaceutical ingredients containing carboxylic Acid functionality in polyethylene glycol

    DEFF Research Database (Denmark)

    Schou-Pedersen, Anne Marie V; Hansen, Steen Honoré; Moesgaard, Birthe

    2014-01-01

    Polyethylene glycols (PEGs) are attractive as excipients in the manufacture of drug products because they are water soluble and poorly immunogenic. They are used in various pharmaceutical preparations. However, because of their terminal hydroxyl groups, PEGs can participate in esterification reac......, it is important to be aware of this drug-excipient interaction, as it can reduce the shelf-life of a low-average molecular weight PEG formulation considerably. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:2424-2433, 2014....

  10. Polyethylene solidification of low-level wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1985-02-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive waste in polyethylene. Waste streams selected for this study included those which result from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Four types of commercially available low-density polyethylenes were employed which encompass a range of processing and property characteristics. Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste and polyethylene type. Property evaluation testing was performed on laboratory-scale specimens to assess the potential behavior of actual waste forms in a disposal environment. Waste form property tests included water immersion, deformation under compressive load, thermal cycling and radionuclide leaching. Recommended waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash, and 30 wt % ion exchange resins, which are based on process control and waste form performance considerations are reported. 37 refs., 33 figs., 22 tabs

  11. Polyethylene vials for liquid scintillation counters produced by the National Materials Research Institute

    International Nuclear Information System (INIS)

    Fiser, B.; Lukas, D.

    1984-01-01

    The properties were tested of polyethylene vials for liquid scintillation counters manufactured by the National Materials Research Institute. Liquid scintillation counter ISOCAP 300 by Nuclear Chicago was used for measuring. For unquenched samples, channel A was set up to 0.5-3.6 keV and channel B to 0.5-18 keV. The scintillation solution was prepared of toluene, 4 g PPO, 0.15 g POPOP per 1 l of toluene. CCl 4 was used as the quenching agent. Radioactive samples were prepared from 20 μl of standard solution of [ 3 H]-toluene with specific activity of 349 Bq/g. All measurements were made using a 7 ml scintillation solution into which radioactivity and possibly quenching agents were added. Potassium-free glass vials by SKLO UNION Teplice and thin-walled polyethylene vials by Nuclear Chicago were used for comparison. The background was measured, as were the time dependences of weight losses of the scintillation solution and carbon tetrachloride from the counting vials, changes in efficiency in channel B with time, changes in SCR with time and changes in the quenching curve with time. (E.S.)

  12. Effects of a vanadium post-metallocene catalyst-induced polymer backbone inhomogeneity on UV oxidative degradation of the resulting polyethylene film

    KAUST Repository

    Atiqullah, M.

    2012-07-01

    A Group 5 post-metallocene precatalyst, (ONO)VCl(THF) 2 (ONO = a bis(phenolate)pyridine LX 2 pincer ligand), activated with modified methylaluminoxane (MMAO-3A) produced a linear ethylene homopolymer (nm-HomoPE)and an unusual inhomogeneous copolymer (nm-CopolyPE) with 1-hexene having very low backbone unsaturation. The nm-CopolyPE inhomogeneity was reflected in the distributions of short chain branches, 1-hexene composition, and methylene sequence length. The 1-hexene incorporation into the polyethylene backbone strongly depended on the molecular weight of the growing polymer chain. (ONO)VCl(THF) 2, because of site diversity and easier removal of a tertiary (vs. a secondary) hydrogen, produced a skewed short chain branching (SCB) profile, incorporating 1-hexene more efficiently in the low molecular weight region than in the high molecular weight region. The significant decrease in molecular weight by 1-hexene showed that the (ONO)VCl(THF) 2 catalytic sites were also highly responsive to chain-transfer directly to 1-hexene itself, producing vinyl and trans-vinylene termini. Subsequently, the effect of backbone inhomogeneity on the UV oxidative degradation of films made from both polyethylenes was investigated. The major functional group accumulated in the branched nm-CopolyPE film was carbonyl followed by carboxyl, then vinyl/ester, whereas that in the linear nm-HomoPE film was carboxyl. However, (carbonyl, carboxyl, vinyl, and ester) nm-CopolyPE film >> (carboxyl) nm-HomoPE film). The distributions of the tertiary C-H sites and methylene sequence length in the branched nm-CopolyPE film enhanced abstraction of H, decomposition of hydroperoxide group ROOH, and generation of carbonyl compounds as compared with those in the linear nm-HomoPE film. This clearly establishes the role played by the backbone inhomogeneity. The effect of short chain branches and sequence length distributions on peak melting temperature T pm, and most probably lamellar thickness L o, was

  13. Polyethylene glycol without electrolytes for children with constipation and encopresis.

    Science.gov (United States)

    Loening-Baucke, Vera

    2002-04-01

    Children with functional constipation and encopresis benefit from behavior modification and from long-term laxative medication. Polyethylene glycol without electrolytes has become the first option for many pediatric gastroenterologists. Twenty-eight children treated with polyethylene glycol without electrolytes were compared with 21 children treated with milk of magnesia to evaluate the efficiency, acceptability, side effects, and treatment dosage of polyethylene glycol in long-term treatment of functional constipation and encopresis. Children were rated as "doing well," "improved," or "not doing well," depending on resolution of constipation and encopresis. At the 1-, 3-, 6-, and 12-month follow-ups, bowel movement frequency increased and soiling frequency decreased significantly in both groups. At the 1-month follow-up, children on polyethylene glycol were soiling more frequently (P encopresis.

  14. NF-κB decoy oligodeoxynucleotide mitigates wear particle-associated bone loss in the murine continuous infusion model.

    Science.gov (United States)

    Lin, Tzu-Hua; Pajarinen, Jukka; Sato, Taishi; Loi, Florence; Fan, Changchun; Córdova, Luis A; Nabeshima, Akira; Gibon, Emmanuel; Zhang, Ruth; Yao, Zhenyu; Goodman, Stuart B

    2016-09-01

    Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Wear particle-induced chronic inflammation is associated with the development of periprosthetic osteolysis. Modulation of NF-κB signaling in macrophages, osteoclasts, and mesenchymal stem cells could potentially mitigate this disease. In the current study, we examined the effects of local delivery of decoy NF-κB oligo-deoxynucleotide (ODN) on wear particle-induced bone loss in a murine continuous femoral particle infusion model. Ultra-high molecular weight polyethylene particles (UHMWPE) with or without lipopolysaccharide (LPS) were infused via osmotic pumps into hollow titanium rods placed in the distal femur of mice for 4weeks. Particle-induced bone loss was evaluated by μCT, and immunohistochemical analysis of sections from the femur. Particle infusion alone resulted in reduced bone mineral density and trabecular bone volume fraction in the distal femur. The decoy ODN reversed the particle-associated bone volume fraction loss around the implant, irrespective of the presence of LPS. Particle-infusion with LPS increased bone mineral density in the distal femur compared with particle-infusion alone. NF-κB decoy ODN reversed or further increased the bone mineral density in the femur (3-6mm from the distal end) exposed to particles alone or particles plus LPS. NF-κB decoy ODN also inhibited macrophage infiltration and osteoclast number, but had no significant effects on osteoblast numbers in femurs exposed to wear particles and LPS. Our study suggests that targeting NF-κB activity via local delivery of decoy ODN has great potential to mitigate wear particle-induced osteolysis. Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Chronic inflammation is crucial for the development of wear particle-associated bone loss. Modulation of NF-κB signaling in macrophages (pro-inflammatory cells), osteoclasts (bone

  15. Heating tubes of cross-linked polyethylene

    International Nuclear Information System (INIS)

    Knoeppler, H.; Hoffmann, M.

    1981-01-01

    Oxygen permeability of plastic tubes for floor heating systems was measured as a function of the reduced oxygen content of water in plastic tubes at a flow rate of 0.5 m/s and a temperature of 30 0 C and as a function of oxygen uptake of low-oxygen water in floor heating tubes. Pipes of VEP, periodically cross-linked polyethylene (Engels process), polypropylene copolymeride, and polybutene were compared. The permeability of periodically cross-linked polyethylene is twice as high as that of VEP. Measurements, results, and consequences for floor heating systems are discussed. (KH) [de

  16. Degradation of polyethylene induced by plasma in oxidizing atmospheres

    International Nuclear Information System (INIS)

    Colin, E.; Olayo, M.G.; Cruz, G.J.

    2002-01-01

    The garbage of polyethylene is not easily degradable in normal environmental conditions . The indiscriminate use of this polymer and the enormous quantity of garbage which is generated carries a damage to the environment due to its long life as waste. The objective of this work is to study the conditions in which can be carried out the degradation of polyethylene. A form of accelerating the degradation is exposing it to plasma with reactive atmospheres. In this work a study of surface modification of polyethylene by plasmas with discharges of direct current of oxygen and nitrogen is presented. (Author)

  17. Study on Ballistic Absorbing Energy Character of High Performance Polyethylene Needle Felt

    Science.gov (United States)

    Kailiang, Zhu; Jianqiao, Fu

    2017-11-01

    The ballistic performance of polyethylene needle felt is tested and the failure morphology after test is also observed. The results showed that when the non-dimensionally non-stressed fibers in polyethylene needles are subjected to high-speed projectile, secondary movement such as stretching and twisting occurs first. This secondary movement is very full, it is the main way of ballistic absorbing energy of the polyethylene needle felt which can avoid the polyethylene fiber short-term rapid heating-up and destroyed. Analysis results show that under normal temperature and humidity conditions, the V50 of 6-layer forded polyethylene needle felt sample is 250m/s. At (450 ± 50) m/s speed range of the target missile, the mean value of the penetrative specific energy absorption for 3-layer forded polyethylene needle felt anti-1.1g simulated projectiles (tapered column) reaches 24.1J·m2/kg.

  18. Cross-linked compared with historical polyethylene in THA: an 8-year clinical study.

    Science.gov (United States)

    Geerdink, Carel H; Grimm, Bernd; Vencken, Wendy; Heyligers, Ide C; Tonino, Alphons J

    2009-04-01

    Wear particle-induced osteolysis is a major cause of aseptic loosening in THA. Increasing wear resistance of polyethylene (PE) occurs by increasing the cross-link density and early reports document low wear rates with such implants. To confirm longer-term reductions in wear we compared cross-linked polyethylene (irradiation in nitrogen, annealing) with historical polyethylene (irradiation in air) in a prospective, randomized clinical study involving 48 patients who underwent THAs with a minimum followup of 7 years (mean, 8 years; range, 7-9 years). The insert material was the only variable. The Harris hip score, radiographic signs of osteolysis, and polyethylene wear were recorded annually. Twenty-three historical and 17 moderately cross-linked polyethylene inserts were analyzed (five patients died, three were lost to followup). At 8 years, the wear rate was lower for cross-linked polyethylene (0.088 +/- 0.03 mm/year) than for the historical polyethylene (0.142 +/- 0.07 mm/year). This reduction (38%) did not diminish with time (33% at 5 years). Acetabular cyst formation was less frequent (39% versus 12%), affected fewer DeLee and Charnley zones (17% versus 4%), and was less severe for the cross-linked polyethylene. The only revision was for an aseptically loose cup in the historical polyethylene group. Moderately cross-linked polyethylene maintained its wear advantage with time and produced less osteolysis, showing no signs of aging at mid-term followup. Level I, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  19. Experimental study of co-pyrolysis of polyethylene/sawdust mixtures

    Directory of Open Access Journals (Sweden)

    Berrueco Cesar

    2004-01-01

    Full Text Available A study of the behavior of the thermal decomposition of mixtures of biomass and thermoplastics, such as polyethylene, is of interest for processes for the thermal recovery of industrial and urban wastes such as pyrolysis or gasification. No solid residue is formed during the thermal degradation of pure polyethylene. However, the addition of biomass, which generates char can vary the product distribution and increase the heating value of the gas obtained. A study of the thermal degradation of pine sawdust, polyethylene and mixtures of polyethylene and pine sawdust has been carried out in a fluidized bed reactor. Experiments were carried out at five different temperatures: 640, 685, 730, 780, and 850 ºC. The yields and composition of the derived oil, wax, and gas were determined. The addition of polyethylene increases the gas production and decreases the production of waxes and liquids for the different temperatures tested. The main gases produced from the co-pyrolysis process were, at low temperatures, carbon monoxide ethylene, carbon dioxide, propylene, butadiene, methane and pentadiene while at high temperatures the gas composition changed drastically, the main components being carbon monoxide (more than 33 wt.%, ethylene, methane benzene and hydrogen. The analysis of the liquid fraction shows a decrease of the concentration of oxygenated and aliphatic compounds.

  20. Development of new cross-linked polyethylene for atomic energy

    International Nuclear Information System (INIS)

    Fujimura, Shun-ichi; Ohya, Shingo; Kubo, Masaji; Tsutsumi, Yukihiro; Seguchi, Tadao.

    1988-01-01

    Cross-linked polyethylene is the material which is used most as the insulating material for electric wires and cables, but for the cables for nuclear power stations and the wiring materials within machinery and equipment, the cross-linked polyethylene which is hard to burn by mixing burning-retarding agent is frequently used as the disaster-preventing countermeasures. As the burning-retarding agent for cross-linked polyethylene, bromine system agent that gives high burning retardation, chlorine system agent that can prevent melting and dripping at the time of burning and so on have been used so as to meet the objective. However by the addition of burning-retarding agents, the electrical and mechanical characteristics of cross-linked polyethylene lower, therefore consideration must be given to the use. In this paper, the results of the examination on the application of condensed acenaphthylene bromide as a new burning-retarding agent to cross-linked polyethylene are reported. White lead was effective for catching HBr. It was confirmed that more than 30 parts of this agent ensured burning retardation. By mixing this agent, the tensile strength increased, but the elongation lowered. It was found that the good radiation resistance was obtained by adding this agent. (K.I.)

  1. Correlation between free-volume parameters and physical properties of polyethylene-nitrile rubber blend

    Science.gov (United States)

    Gomaa, E.; Mostafa, N.; Mohsen, M.; Mohammed, M.

    2004-10-01

    Positron annihilation lifetime spectroscopy (PALS) was used to study the immiscibility of a polar nitrile rubber (NBR) that had been blended with pure and waste, low- and high-density polyethylene (PE). The effect of the weight percent of the rubber added to the PE was also investigated. It was found that a complicated variation (positive and negative) in both free-volume parameters (τ3 and I 3) from the values of the initial polymers forms an immiscible blend. These results are supported by a significant broadening in the free-volume hole size distributions. This has been interpreted in terms of interfacial spaces created between the boundaries of the two phases. Furthermore, a correlation was established between the free-volume parameters (τ3 and I 3) and the electrical and mechanical properties of the before mentioned polymer blends as a function of the weight percent of waste PE.

  2. Reinforcement of the Gas Barrier Properties of Polyethylene and Polyamide Through the Nanocomposite Approach: Key Factors and Limitations

    Directory of Open Access Journals (Sweden)

    Picard E.

    2015-02-01

    Full Text Available In this study, polyamide 6 (PA6 and polyethylene (PE nanocomposites were prepared from melt blending and a detailed characterization of the nanocomposite morphology and gas barrier properties was performed. The choice of the organoclay was adapted to each polymer matrix. Exfoliated morphology and improved gas transport properties were obtained by melt mixing the polar PA6 matrix and the organoclay, whereas a microcomposite with poor barrier properties was formed from the binary PE/organomodified clay mixture. Different modified polyethylenes were examined as compatibilizers for the polyethylene/organoclay system. The effect of compatibilizer molar mass, polarity and content was investigated on the clay dispersion and on the gas barrier properties. The optimal compatibilizer to clay weight ratio was found to be equal to 4 whatever the compatibilizer. However, a high degree of clay delamination was obtained with the high molar mass compatibilizer whereas highly swollen clay aggregates resulted from the incorporation of the low molar mass interfacial agents. Contrary to the PA based system, the barrier properties of PE nanocomposites were not directly related to the clay dispersion state but resulted also from the matrix/clay interfacial interactions. Oxidized wax was identified as a very promising interfacial agent and a step by step study was performed to optimize the gas transport properties of the systems based on PE, oxidized wax and organoclay. In particular, an interesting combination of oxidized wax and high molar mass maleic anhydride grafted polyethylene allowing dividing the gas permeability by a factor 2 in comparison with neat PE was proposed.

  3. Aqueous polyethylene oxide solutions

    International Nuclear Information System (INIS)

    Breen, J.

    1987-01-01

    A number of aspects concerning the reorientation of polymer, water and ion hydration complexes have been studied in aqueous solution of polyethylene oxide (PEO). The polymer dynamics are investigated by 1 H-PEO and 13 C-PEO nuclear relaxation experiments. 162 refs.; 30 figs.; 19 tabs

  4. Degradation behavior of linear low density polyethylene by ultraviolet radiation exposition for agricultural applications

    Energy Technology Data Exchange (ETDEWEB)

    Poveda, Patricia N.S.; Silva, Leonardo G.A., E-mail: lgasilva@ipen.br, E-mail: patricianegrini@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ciro, Rosemeire, E-mail: rosemeireciro@msn.com [Faculdades Oswaldo Cruz (FOC), Sao Paulo, SP (Brazil); Viana, Hamilton M., E-mail: hmviana@gmail.com [Centro Universitario Fundacao de Santo Andre (FSA/FAENG), Santo Andre, SP (Brazil)

    2013-07-01

    Polyethylene is the most important polymer used in agricultural applications. Polymers are susceptible to changes in their chemical structures that affect their mechanical properties under weather condition. In Polyethylene, photo-oxidation can occur because of impurities or chromophore groups (catalytic residue, mineral fillers, some commercial additives as stabilizers, lubricants, plasticizers, etc.). The critical ageing factors for greenhouse built with LDPE film are: total solar radiation, air temperature, relative humidity, mechanical stress, agrochemicals, air pollution, and combinations of these factors. Exposure of plastics to UV radiation causes a loss in their mechanical properties and/or change in appearance, including reduced ductility, color changes, yellowing and cracking. Additives are added to plastics to enhance the durability of the final product. Today, there are several additive systems (light stabilizers) developed to work according to resin, final application, type of cultivation, and other characteristics. The main types of light stabilizers are: UV absorbers, quenchers and free radicals scavengers. In addition to the conventional organic additives, some inorganic additives were obtained recently with the development of nanotechnology. This study evaluates the different additive systems (HALS, NPCC, nZnO and nTiO{sub 2}), applied 0.25% (in weight) in LLDPE. The samples were mixed by high rotation homogenizer and extrusion. Later, the samples were molded by injection and aged in QUV-B simulating 6 months of exposure to weather. Tests of FT-IR and tensile strength comparing to the non-aged samples were carried out in order to evaluate the performance of several additive systems concerning the degradation behavior of linear low density polyethylene. (author)

  5. Degradation behavior of linear low density polyethylene by ultraviolet radiation exposition for agricultural applications

    International Nuclear Information System (INIS)

    Poveda, Patricia N.S.; Silva, Leonardo G.A.; Ciro, Rosemeire; Viana, Hamilton M.

    2013-01-01

    Polyethylene is the most important polymer used in agricultural applications. Polymers are susceptible to changes in their chemical structures that affect their mechanical properties under weather condition. In Polyethylene, photo-oxidation can occur because of impurities or chromophore groups (catalytic residue, mineral fillers, some commercial additives as stabilizers, lubricants, plasticizers, etc.). The critical ageing factors for greenhouse built with LDPE film are: total solar radiation, air temperature, relative humidity, mechanical stress, agrochemicals, air pollution, and combinations of these factors. Exposure of plastics to UV radiation causes a loss in their mechanical properties and/or change in appearance, including reduced ductility, color changes, yellowing and cracking. Additives are added to plastics to enhance the durability of the final product. Today, there are several additive systems (light stabilizers) developed to work according to resin, final application, type of cultivation, and other characteristics. The main types of light stabilizers are: UV absorbers, quenchers and free radicals scavengers. In addition to the conventional organic additives, some inorganic additives were obtained recently with the development of nanotechnology. This study evaluates the different additive systems (HALS, NPCC, nZnO and nTiO 2 ), applied 0.25% (in weight) in LLDPE. The samples were mixed by high rotation homogenizer and extrusion. Later, the samples were molded by injection and aged in QUV-B simulating 6 months of exposure to weather. Tests of FT-IR and tensile strength comparing to the non-aged samples were carried out in order to evaluate the performance of several additive systems concerning the degradation behavior of linear low density polyethylene. (author)

  6. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Xian-bin Kong

    2017-01-01

    Full Text Available Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compelling findings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1 polyethylene glycol as an adjustable biomolecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2 Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3 Polyethylene glycol hydrogels have been used as supporting substrates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury

  7. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Xian-bin Kong; Qiu-yan Tang; Xu-yi Chen; Yue Tu; Shi-zhong Sun; Zhong-lei Sun

    2017-01-01

    Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compellingfindings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1) polyethylene glycol as an adjustable bio-molecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2) Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3) Polyethylene glycol hydrogels have been used as supporting sub-strates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury.

  8. Phase behaviour of polyethylene knotted ring chains

    International Nuclear Information System (INIS)

    Wen Xiao-Hui; Xia A-Gen; Chen Hong-Ping; Zhang Lin-Xi

    2011-01-01

    The phase behaviour of polyethylene knotted ring chains is investigated by using molecular dynamics simulations. In this paper, we focus on the collapse of the polyethylene knotted ring chain, and also present the results of linear and ring chains for comparison. At high temperatures, a fully extensive knot structure is observed. The mean-square radius of gyration per bond (S 2 )/(Nb 2 ) and the shape factor (δ*) depend on not only the chain length but also the knot type. With temperature decreasing, chain collapse is observed, and the collapse temperature decreases with the chain length increasing. The actual collapse transition can be determined by the specific heat capacity C v , and the knotted ring chain undergoes gas—liquid—solid-like transition directly. The phase transition of a knotted ring chain is only one-stage collapse, which is different from the polyethylene linear and ring chains. This investigation can provide some insights into the statistical properties of knotted polymer chains. (condensed matter: structural, mechanical, and thermal properties)

  9. Gamma irradiation effects in low density polyethylene

    International Nuclear Information System (INIS)

    Ono, Lilian S.; Scagliusi, Sandra R.; Cardoso, Elisabeth E.L.; Lugao, Ademar B.

    2011-01-01

    Low density polyethylene (LDPE) is obtained from ethylene gas polymerization, being one of the most commercialized polymers due to its versatility and low cost. It's a semi-crystalline polymer, usually inactive at room temperature, capable to attain temperatures within a 80 deg C - 100 deg C range, without changing its physical-chemical properties. LDPE has more resistance when compared to its equivalent High Density Polyethylene (HDPE). LDPE most common applications consist in manufacturing of laboratory materials, general containers, pipes, plastic bags, etc. Gamma radiation is used on polymers in order to modify mechanical and physical-chemical features according to utility purposes. This work aims to the study of gamma (γ) radiation interaction with low density polyethylene to evaluate changes in its physical-chemical properties. Polymer samples were exposed to 5, 10, 15, 20 and 30kGy doses, at room temperature. Samples characterization employed Thermal Analysis, Melt Flow Index, Infrared Spectroscopy and Swelling tests. (author)

  10. Crosslinking of commercial polyethylenes by 10 MeV electrons

    International Nuclear Information System (INIS)

    Singh, A.; Lopata, V.J.; Kremers, W.; Sze, Yu-keung

    1995-08-01

    Commercial polyethylenes were irradiated with 10 MeV electrons to induce crosslinking. The gel fraction data measured as a function of total dose suggests that crosslinking proceeds on irradiation, as expected. A number of the properties of the irradiated polyethylenes, such as the degree of oxidation, crystallinity and thermal degradation, were studied by Fourier transform infrared/photo acoustic spectroscopy, X-ray diffraction, and a pyrolysis technique coupled with gas chromatography and mass spectrometry. The results of this study suggest that commercial polyethylenes can be crosslinked to a gel fraction of ∼70%, required for wire and cable applications, by 10 MeV electrons. (author). 35 refs., 6 figs

  11. Elaboration of recycled polyethylene foams reticulated by radiation

    International Nuclear Information System (INIS)

    Galicia M, M.

    2000-01-01

    In this work some obtained results are presented to make irradiation tests on recycled polymeric material (polyethylene) as well as mixtures of this with certain additive classes (foaming and reticulating agents) which will be used for the foams elaboration, objective of this work. Two types of foaming basically exist which are elaborated with low density polyethylene base. They are: a) the extruded and, b) the reticulated through ionizing radiation and chemically. Some of the properties that the expanded or foamed polyethylene are: flexibility, resistance, thermal stability, inter medium mechanical properties between the highly flexible foams and rigid among others. All of them determined by the cell type which conform them. Also was carried out the characterization of the obtained material contributing of this manner to diminish the quantity of solid wastes generated. (Author)

  12. Dispersion Relation for Skeletal Vibrations in Deuterated Polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Feldkamp, L. A.; Venkataraman, G.; King, J. S. [Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI (United States)

    1968-09-15

    The low frequency vibrations in polyethylene have been studied previously, utilizing the incoherent scattering technique which yields an amplitude-weighted density of states. In the present work the dispersion relations have been obtained directly by observing the coherent scattering from a deuterated sample. This represents the first such measurement on a crystalline polymer. A target in which the molecular chain axes were approximately parallel was prepared by stretching polycrystalline material. The FWHM of the rocking curve for the (002) reflection was measured to be 9 Degree-Sign . Constant-Q and constant-E scans were made on the University of Michigan triple-axis spectrometer at room temperature to observe phonons propagating along the chain direction. The resulting dispersion curve for the v{sub 5} mode follows generally the calculated curve of Tasumi and Krimm with systematically lower frequencies. The maximum frequency of 1.36 x 10{sup 13} Hz agrees with the cut-off frequency determined previously from the incoherent scattering spectrum. (author)

  13. Radiolysis effects on polyethylene terephtalate

    International Nuclear Information System (INIS)

    Zaharescu, Traian; Ciuprina, Florin

    2005-01-01

    The effects of high energy exposure of polyethylene terephtalate, the main electrical insulator for the conduction bars in alternative current generators, is presented. For comparison γ-irradiation was performed in distilled water and air at various doses, up to about 200 kGy. The dependencies of current on time for radiation processed PET sheets allow to depict the variation in the resistivity values as a measure of chemical changes in polyethylene terephtalate macromolecules. The comparison between the evolution of currents in irradiated specimens and spectral analysis bring about a light on the accumulation of radiolysis product in PET matrix. The high energy exposure of PET in air causes an increase of final value of current, while similar experiments in water produces a contrary effect. Some considerations of degradation mechanism are presented

  14. Thermogravimetric studies of the thermooxidative stability of irradiated and unirradiated polyethylene

    International Nuclear Information System (INIS)

    Gal, O.; Novakovic, Lj.; Stannett, V.T.

    1983-01-01

    The addition of antioxidants to polymers increases their thermooxidative stability as indicated by a delay and/or a retardation of degradation. The present paper considers the influence of the nature of the antioxidant (hindered phenols, aromatic amines, and organic compounds containing sulphur atoms) on the thermooxidative behaviour of a low density polyethylene at 200 deg C. The following characteristics have been measured in polymer samples with zero; 0.1; 0.5; and 1.0 wt% content of antioxidant: the induction time of the oxidation process, rate of autoxidation and rate of polymer degradation (up to about 20% weight loss). The difference in thermal stability in radiation crosslinked material and comparative retardation of the thermooxidative degradation is observed up to an absorbed dose of 200 kGy. (author)

  15. Colored polyethylene soil covers and grafting effects on cucumber flowering and yield

    Directory of Open Access Journals (Sweden)

    Fonseca Inês Cristina de Batista

    2003-01-01

    Full Text Available Cucumber (Cucumis sativus L. is one of the most cultivated vegetable crops in plastic greenhouses in Brazil because of the short cycle and its high economic value in off-season harvests. To better understand this management technique the effect of different colored polyethylene soil covers was evaluated in relation to flowering and yield of the hybrid cucumber 'Yoshinari' grafted or not on the hybrid squash 'Ikky'. The polyethylene cover colors were black, white on black and green plus a control without cover. Covered but not grafted crops had a more uniform flowering distribution. The number of flowers was greater for the white/black grafted treatment. All the polyethylene covers favored flowering for the non grafted plants. Grafting reduced flowering for the black or green polyethylene covers treatments. The fruit set increased with the use of polyethylene cover but was not influenced by grafting. The uniform distribution of flowering remained during fruiting only for grafted plants and soil covered with black or green polyethylene. Both polyethylene cover and grafting favored early harvesting. The 'Yoshinari'/'Ikky' graft caused taller plants but fruit were thicker and smaller and did not meet the commercial standard. The best quality fruit and highest yields were obtained in the black and white/black treatments, without grafting.

  16. Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate.

    Science.gov (United States)

    Guzik, Maciej W; Kenny, Shane T; Duane, Gearoid F; Casey, Eoin; Woods, Trevor; Babu, Ramesh P; Nikodinovic-Runic, Jasmina; Murray, Michael; O'Connor, Kevin E

    2014-05-01

    A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer.

  17. A molecular dynamics study of the structure and inter-particle interactions of polyethylene glycol-conjugated PAMAM dendrimers

    OpenAIRE

    Lee, Hwankyu; Larson, Ronald G.

    2009-01-01

    We performed molecular dynamics (MD) simulations of one or two copies of polyethylene glycol of molecular weight 550 (PEG550) and 5000 (PEG5000) Daltons, conjugated to generation 3 (G3) to 5 (G5) polyamidoamine (PAMAM) dendrimers with explicit water using a coarse-grained model. We found the radii of gyration of these dendrimer-PEG molecules to be close to those measured in experiments by Hedden and Bauer (Macromolecules 2003, 36, 1829). Densely grafted PEG ligands (>50% of the dendrimer surf...

  18. Acromioclavicular joint reconstruction using a tendon graft: a biomechanical study comparing a novel “sutured throughout” tendon graft to a standard tendon graft

    Directory of Open Access Journals (Sweden)

    Naziri Qais

    2016-01-01

    Full Text Available Background: With a recurrence rate of over 30%, techniques that offer stronger acromioclavicular (AC joint reconstruction through increased graft strength may provide longevity. The purpose of our study was to determine the biomechanical strength of a novel tendon graft sutured throughout compared to a native tendon graft in Grade 3 anatomical AC joint reconstruction. Methods: For this in vitro experiment, nine paired (n = 18 embalmed cadaveric AC joints of three males and six females (age 86 years, range 51–94 years were harvested. Anatomic repair with fresh bovine Achilles tendon grafts without bone block was simulated. Specimens were divided into two groups; with group 1 using grafts with ultra-high molecular-weight polyethylene (UHMWPE suture ran throughout the entire length. In group 2, reconstruction with only native allografts was performed. The distal scapula and humerus were casted in epoxy compound and mounted on the mechanical testing machine. Tensile tests were performed using a mechanical testing machine at the rate of 50 mm/min. Maximum load and displacement to failure were collected. Results: The average load to failure was significantly higher for group 1 compared to group 2, with mean values of 437.5 N ± 160.7 N and 94.4 N ± 43.6 N, (p = 0.001. The average displacement to failure was not significantly different, with 29.7 mm ± 10.6 mm in group 1 and 25 mm ± 9.1 mm in group 2 (p = 0.25. Conclusion: We conclude that a UHMWPE suture reinforced graft can provide a 3.6 times stronger AC joint reconstruction compared to a native graft.

  19. Ergonomic assessment of enhanced protection under body armour combat shirt neck collars.

    Science.gov (United States)

    Breeze, John; Granger, C J; Pearkes, T D; Clasper, J C

    2014-03-01

    Combat neck injury due to explosively propelled fragments is a significant cause of mortality and long-term morbidity in UK soldiers deployed on current operations. Reinforcing the collar of the existing under body armour combat shirt (UBACS) has been suggested as a potential method for reducing the incidence of combat neck injury. 20 soldiers serving in Afghanistan objectively compared three designs of enhanced protection UBACS (EP-UBACS) using 10 representative military tasks against a baseline of a standard UBACS. Each EP-UBACS design was trialled using three constituent materials: two layers of para-aramid felt, one layer of ultra high molecule weight polyethylene (UHMWPE) felt or two layers of a silk fabric. Subjective assessment of these nine configurations in terms of comfort, heat dissipation and overall acceptability were compared with the standard UBACS using a χ² test. All military tasks could be performed with all nine configurations of EP-UBACS. Although silk was the most comfortable material, it was not functionally practical in any of the three designs. Crossover collars incorporating UHMWPE or para-aramid were the only two of the nine configurations to demonstrate similar user acceptability to a standard UBACS. The EP-UBACS has the potential to provide neck protection without reducing performance incorporating materials analogous to either of the felts assessed in this study. The collar should provide stand-off from the skin to improve heat dissipation and comfort, which can be maximised by changing the current UBACS collar shape to one that crosses over at the front. Should a zip be desired, it should be moved to one side of the midline to reduce rubbing on the chin and be covered with ballistic protective material. Additional semi-circles of silk beneath the collar at the front and back would improve protection without affecting comfort.

  20. THERMOPLASTIC MATRIX SELECTION FOR FIBRE METAL LAMINATE USING FUZZY VIKOR AND ENTROPY MEASURE FOR OBJECTIVE WEIGHTING

    Directory of Open Access Journals (Sweden)

    N. M. ISHAK

    2017-10-01

    Full Text Available The purpose of this study is to define the suitable thermoplastic matrix for fibre metal laminate for automotive front hood utilisation. To achieve the accurate and reliable results, the decision making process involved subjective and objective weighting where the combination of Fuzzy VIKOR and entropy method have been applied. Fuzzy VIKOR is used for ranking purpose and entropy method is used to determine the objective weighting. The result shows that polypropylene is the best thermoplastic matrix for fibre metal laminate by satisfying two compromise solutions with validation using least VIKOR index value scored 0.00, compared to low density polyethylene, high density polyethylene and polystyrene. Through a combination of Fuzzy VIKOR and entropy, it is proved that this method gives a higher degree of confidence to the decision maker especially for fibre metal laminate thermoplastic matrix selection due to its systematic and scientific selection method involving MCDM.

  1. An Investigation on Rheology of Peroxide Cross-linking of Low Density Polyethylene

    DEFF Research Database (Denmark)

    Ghasemi, Ismaeil; Rasmussen, Henrik K.; Szabo, Peter

    2005-01-01

    One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross-linking on th......One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross......-linking on the rheological behaviour of low density polyethylene was investigated by using a combination of creep test and differential scanning calorimeter (DSC) in isotherm condition. The used peroxide was di-cumyl peroxide and its concentration was 2 wt%. The experiments were carried out at 150,160, and 170 degrees C...

  2. Study The Properties and Weight Loss Degradation of The Blend LDPE/Cellulose in Soil Environment

    Directory of Open Access Journals (Sweden)

    Zuhair Jabbar Abdul Ameer

    2017-05-01

    Full Text Available Wider applications of polyethylene (PE in packaging and agriculture have raised serious issue of waste disposal and pollution. Therefore, it is necessary to raise its biodegradability by additives.In this study, we will add cellulose to low density polyethylene to prepare polymer blend have ability to degradation in soil environment.The samples were prepared by using twin screw extruder.LDPE and CELL have been mixing with different weight proportions, and studied their properties in order to determine its compliance with the required specifications to be able to be used biodegradable polymers. To improve the viability of decomposition PEG has been added to the resulting blend. Several tests were applied to identify those properties such as tensile,hardness, density and creep test. FTIR, digital microscope and SEM test acheved in order to determine the miscibility and blend morphology befor and after degradation.The results show that,the blend weight loss increase with increasing CELL percent.

  3. Temperature dependence of radiation effects in polyethylene

    International Nuclear Information System (INIS)

    Wu, G; Katsumura, Y.; Kudoh, H.; Morita, Y.; Seguchi, T.

    2000-01-01

    Temperature dependence of crosslinking and gas evolution under γ-irradiation was studied for high-density and low-density polyethylene samples in the 30-360degC range. It was found that crosslinking was the predominant process up to 300degC and the gel point decreased with increasing temperature. At above 300degC, however, the gel fraction at a given dose decreased rapidly with temperature and the action of radiation turned to enhance polyethylene degradation. Yields of H 2 and hydrocarbon gases increased with temperature and the compositions of hydrocarbons were dose dependent. (author)

  4. All-Polyethylene Tibial Components: An Analysis of Long-Term Outcomes and Infection.

    Science.gov (United States)

    Houdek, Matthew T; Wagner, Eric R; Wyles, Cody C; Watts, Chad D; Cass, Joseph R; Trousdale, Robert T

    2016-07-01

    There is debate regarding tibial component modularity and composition in total knee arthroplasty (TKA). Biomechanical studies have suggested improved stress distribution in metal-backed tibias; however, these results have not translated clinically. The purpose of this study was to analyze the outcomes of all-polyethylene components and to compare the results to those with metal-backed components. We reviewed 31,939 patients undergoing a primary TKA over a 43-year period (1970-2013). There were 28,224 (88%) metal-backed and 3715 (12%) all-polyethylene tibial components. The metal-backed and all-polyethylene groups had comparable demographics with respect to gender, age and body mass index (BMI). Mean follow-up was 7 years. The mean survival for all primary TKAs at the 5-, 10-, 20- and 30-year time points was 95%, 89%, 73%, and 57%, respectively. All-polyethylene tibial components were found to have a significantly improved (P tibial components were also found to have a significantly lower rate of infection, instability, tibial component loosening, and periprosthetic fracture. The all-polyethylene group had improved survival rates in all age groups, except in patients 85 years old or greater, where there was no significant difference. All-polyethylene tibial components had improved survival for all BMI groups except in the morbidly obese (BMI ≥ 40) where there was no significant difference. All-polyethylene tibial components had significantly improved implant survival, reduced rates of postoperative infection, fracture, and tibial component loosening. All polyethylene should be considered for most of the patients, regardless of age and BMI. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The relationship between sol fraction and radiation dose in radiation crosslinking of low-density polyethylene (LDPE)/ethylenevinylacetate copolymer (EVA) blend

    International Nuclear Information System (INIS)

    Zhang, W.X.; Liu, Y.T.; Sun, J.Z.

    1990-01-01

    In this paper, two different methods were used to prepare the blend of low-density polyethylene (LDPE) and ethylene vinyl acetate copolymer (EVA). One of them was mechanical blending, and the other was solution blending. The relationship between sol fraction and radiation dose of different weight ratio polymer blends has been studied. The method to calculate the β b value of polymer blend system (LDPE/EVA) has been established. (author)

  6. Performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate with different mix design ratio

    Science.gov (United States)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Mazenan, P. N.; Zahir, Z.; Shahidan, S.

    2018-04-01

    This study is focuses to the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. The objective is to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate and polyethylene terephthalate waste and to determine the optimum mix ratio of bricks containing recycled concrete aggregate and polyethylene terephthalate waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 1.0%, 1.5%, 2.0% and 2.5% by weight of natural sand. Based on the results of compressive strength, it indicates that the replacement of RCA shows an increasing strength as the strength starts to increase from 25% to 50% for both mix design ratio. The strength for RCA 75% volume of replacement started to decrease as the volume of PET increase. However, the result of water absorption with 50% RCA and 1.0% PET show less permeable compared to control brick at both mix design ratio. Thus, one would expect the density of brick decrease and the water absorption to increase as the RCA and PET content is increased.

  7. Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate)

    DEFF Research Database (Denmark)

    Bohr, Adam; Wang, Yingya; Harmankaya, Necati

    2017-01-01

    .7 macrophages) and in vivo (subcutaneous implantation in rats). All investigated samples degraded by means of surface erosion (mass loss, but constant molecular weight), which was accompanied by a predictable, erosion-controlled drug release pattern. Accordingly, the obtained in vitro degradation half......Poly(ethylene carbonate) (PEC) is a unique biomaterial showing significant potential for controlled drug delivery applications. The current study investigated the impact of the molecular weight on the biological performance of drug-loaded PEC films. Following the preparation and thorough...... to control the spatial and temporal on-demand degradation and drug release from the employed delivery system....

  8. From polyethylene waxes to HDPE using an α,α'-bis(arylimino)-2,3:5,6-bis(pentamethylene)pyridyl-chromium(iii) chloride pre-catalyst in ethylene polymerisation.

    Science.gov (United States)

    Huang, Chuanbing; Du, Shizhen; Solan, Gregory A; Sun, Yang; Sun, Wen-Hua

    2017-05-30

    Five examples of α,α'-bis(arylimino)-2,3:5,6-bis(pentamethylene)pyridyl-chromium(iii) chlorides (aryl = 2,6-Me 2 Ph Cr1, 2,6-Et 2 Ph Cr2, 2,6-i-Pr 2 Ph Cr3, 2,4,6-Me 3 Ph Cr4, 2,6-Et 2 -4-MePh Cr5) have been synthesized by the one-pot template reaction of α,α'-dioxo-2,3:5,6-bis(pentamethylene)pyridine, CrCl 3 ·6H 2 O and the corresponding aniline. The molecular structures of Cr1 and Cr4 reveal distorted octahedral geometries with the N,N,N-ligand adopting a mer-configuration. On activation with an aluminium alkyl co-catalyst, Cr1-Cr5 exhibited high catalytic activities in ethylene polymerization and showed outstanding thermal stability operating effectively at 80 °C with activities up to 1.49 × 10 7 g of PE (mol of Cr) -1 h -1 . Significantly, the nature of the co-catalyst employed had a dramatic effect on the molecular weight of the polymeric material obtained. For example, using diethylaluminium chloride (Et 2 AlCl) in combination with Cr4 gave high density/high molecular weight polyethylene with broad molecular weight distributions (30.9-39.3). By contrast, using modified methylaluminoxane (MMAO), strictly linear polyethylene waxes of lower molecular weight and narrow molecular weight distribution (1.6-2.0) were obtained with vinyl end-groups.

  9. High-efficiency synthesis of dendrimer-like poly(ethylene oxide) via “arm-first” approach

    KAUST Repository

    Zhu, Saisai

    2017-04-14

    In this study, a dendrimer-like polymer based on poly(ethylene oxide) (PEO) was synthesized through a combination of anionic ring-opening polymerization (AROP) and click reaction via arm-first method. Firstly, the polymeric arm, a linear PEO with one alkynyl group and two bromo groups, was synthesized by AROP of ethylene oxide followed by functionalization with propargyl bromide and esterified with 2-bromopropionic bromide. Second, a star PEO carrying three azide groups was synthesized though AROP of ethylene oxide used 1,1,1-tris(hydrosymethyl) ethane as initiator followed esterificated with 2-bromopropionic acid and azidation. By azide–alkyne click reactions between the azide-terminated PEO star polymer and linear PEO with functionalization alkynyl group, a three generation dendrimer-like PEO, G3-PEO-24Br, was successfully synthesized. The resulting polymers were observed to have precisely controlled molecular weights and compositions with narrow molecular weight distributions.

  10. Solid polymer electrolyte on the basis of polyethylene carbonate-lithium perchlorate system

    International Nuclear Information System (INIS)

    Dukhanin, G.P.; Dumler, S.A.; Sablin, A.N.; Novakov, I.A.

    2009-01-01

    Reaction in the system polyethylene carbonate-lithium perchlorate was investigated by IR spectroscopy, differential thermal and X-ray structural analyses. Specific electric conductivity of the prepared composition has been measured. Solid polymer electrolytes on the basis of polyethylene carbonate have conducting properties as electrolytes on the basis of unmodified polyethylene oxide. Compositions of polyethylene carbonate : LiClO 4 =10 : 1Al 2 O 3 -ZrO 2 possess maximum value of electrical conductivity. Activation energies of the process is calculated for all investigated compositions, and dependence of these values from concentration of lithium perchlorate is established

  11. Structural changes in the polyethylene after ion implantation

    International Nuclear Information System (INIS)

    Proskova, K.; Svorcik, V.

    1999-01-01

    This work deals with the study of structural changes of the polyethylene after ion implantation. There were used the polyethylene film with thickness 15 μm, and Ar + ions with energy 63 keV and Xe + ions with energy 156 keV with doses 1·10 13 - 3·10 15 cm -2 for experiments. For the study of structural changes of polymer were used methods UV-VIS spectrometry, ESR, Rutherford back scattering

  12. Development of anionic membranes produced by radiation-grafting for alkaline fuel cell applications

    International Nuclear Information System (INIS)

    Pereira, Clotilde Coppini

    2017-01-01

    Anion Exchange Membranes (AEMs) are a promising alternative to the development of more efficient electrolytes for alkaline fuel cells. In general, the AEMs are ionomeric membranes able to conduct hydroxide ions (OH - ) due to the quaternary ammonium groups, which confer high pH equivalent to the AEM. In order to develop alkaline membranes with high chemical and thermal stability, besides satisfactory ionic conductivity for alkaline fuel cells, membranes based on low density polyethylene (LDPE), ultrahigh weight molecular weight polyethylene (UHWHPE), poly(ethylene-co-tetrafluoroethylene) (PETFE) and poly(hexafluoropropylene-co-tetrafluoroethylene) (PFEP) previously irradiated by using 60 Co gamma and electron beam sources, have been synthesized by styrene-grafting, and functionalized with trimethylamine to introduced quaternary ammonium groups. The resulting membranes were characterized by electron paramagnetic resonance (EPR), Raman spectroscopy, thermogravimetry (TG) and electrochemical impedance spectroscopy (EIS). The determination of the grafting degree and water uptake were conducted by gravimetry and ion exchange capacity, by titration. The membranes synthesized with PELD and PEUHMW polymers pre-irradiated at 70 kGy and stored at low temperature (-70 deg C), up to 10 months, showed ionic conductivity results, in hydroxide form (OH - ), of 29 mS.cm -1 and 14 mS.cm -1 at 65 deg C, respectively. The PFEP polymers irradiated by the simultaneous process showed insufficient grating levels for the membrane synthesis, requiring more studies to improve the irradiation and grafting process. The styrene-grafted PETFE membranes, pre-irradiated at 70 kGy and stored at low temperature (-70 deg C), up to 10 months, showed ionic conductivity results, in hydroxide form (OH - ), of 90 mS.cm -1 to 165 mS.cm -1 , in the temperature range 30 to 60 deg C. Such results have demonstrated that LDPE, UHMWPE and PETFE based AEMs are promising electrolytes for alkaline fuel cell

  13. OBT analysis method using polyethylene beads for limited quantities of animal tissue

    International Nuclear Information System (INIS)

    Kim, S.B.; Stuart, M.

    2015-01-01

    This study presents a polyethylene beads method for OBT determination in animal tissues and animal products for cases where the amount of water recovered by combustion is limited by sample size or quantity. In the method, the amount of water recovered after combustion is enhanced by adding tritium-free polyethylene beads to the sample prior to combustion in an oxygen bomb. The method reduces process time by allowing the combustion water to be easily collected with a pipette. Sufficient water recovery was achieved using the polyethylene beads method when 2 g of dry animal tissue or animal product were combusted with 2 g of polyethylene beads. Correction factors, which account for the dilution due to the combustion water of the beads, are provided for beef, chicken, pork, fish and clams, as well as egg, milk and cheese. The method was tested by comparing its OBT results with those of the conventional method using animal samples collected on the Chalk River Laboratories (CRL) site. The results determined that the polyethylene beads method added no more than 25% uncertainty when appropriate correction factors are used. - Highlights: • Polyethylene beads method for OBT determination in animal tissues and animal products were determined. • The method reduces process time. • The polyethylene beads method added no more than 25% uncertainty when appropriate correction factors are used

  14. Influence of flavour absorption by food-packaging materials (low-density polyethylene, polycarbonate and polyethylene terephthalate) on taste perception of a model solution and orange juice

    NARCIS (Netherlands)

    Willige, van R.W.G.; Linssen, J.P.H.; Legger, A.; Voragen, A.G.J.

    2003-01-01

    The influence of flavour absorption by low-density polyethylene (LDPE), polycarbonate (PC) and polyethylene terephthalate (PET) on taste perception of a model solution containing seven flavour compounds and orange juice in glass bottles was studied with and without pieces of the respective plastic

  15. Well-Defined Bilayered Molecular Cobrushes with Internal Polyethylene Blocks and ω-Hydroxyl-Functionalized Polyethylene Homobrushes

    KAUST Repository

    Zhang, Hefeng

    2016-02-15

    Novel well-defined bilayered molecular cobrushes with internal polyethylene blocks, P(PEcore-b-PScorona) (PE: polyethylene; PS: polystyrene), and ω-hydroxyl-functionalized polyethylene homobrushes, P(PE-OH), were synthesized through the macromonomer strategy. Two main steps were involved in the synthesis of the P(PEcore-b-PScorona) bilayered cobrushes: (i) formation of norbornyl-terminated macromonomer (Nor-PE-b-PS) by esterification of PS-b-PE-OH (combination of anionic polymerization, hydroboration, and polyhomologation) with 5-norbornene-2-carboxylic acid and (ii) ring-opening metathesis polymerization (ROMP) of Nor-PE-b-PS. The synthesis of P(PE-OH) was achieved by (i) hydroboration of tert-butyldimethylsilyl-protected allyl alcohol, followed by polyhomologation of dimethylsulfoxoniun methylide with the formed tri[3-(tert-butyldimethylsilyloxyl)propyl]borane initiator, oxidation/hydrolysis, and esterification of the TBDMS-O-PE-OH with 5-norbornene-2-carboxylic acid to afford the macromonomer TBDMS-O-PE-Nor, and (ii) ROMP of TBDMS-O-PE-Nor, followed by deprotection. Nuclear magnetic resonance spectroscopy (1H and 13C NMR) and high temperature gel permeation chromatography (HT-GPC) were used to characterize all macromonomers/molecular brushes and differential scanning calorimetry (DSC) to study the thermal properties. The molecular brush P(PE-b-PS) showed lower melting point (Tm) and better solubility in toluene than the corresponding macromonomer PS-b-PE-Nor. In the case of homobrushes, the thermal properties were strongly affected by the presence of the PE end-groups. © 2016 American Chemical Society.

  16. Well-Defined Bilayered Molecular Cobrushes with Internal Polyethylene Blocks and ω-Hydroxyl-Functionalized Polyethylene Homobrushes

    KAUST Repository

    Zhang, Hefeng; Hadjichristidis, Nikolaos

    2016-01-01

    Novel well-defined bilayered molecular cobrushes with internal polyethylene blocks, P(PEcore-b-PScorona) (PE: polyethylene; PS: polystyrene), and ω-hydroxyl-functionalized polyethylene homobrushes, P(PE-OH), were synthesized through the macromonomer strategy. Two main steps were involved in the synthesis of the P(PEcore-b-PScorona) bilayered cobrushes: (i) formation of norbornyl-terminated macromonomer (Nor-PE-b-PS) by esterification of PS-b-PE-OH (combination of anionic polymerization, hydroboration, and polyhomologation) with 5-norbornene-2-carboxylic acid and (ii) ring-opening metathesis polymerization (ROMP) of Nor-PE-b-PS. The synthesis of P(PE-OH) was achieved by (i) hydroboration of tert-butyldimethylsilyl-protected allyl alcohol, followed by polyhomologation of dimethylsulfoxoniun methylide with the formed tri[3-(tert-butyldimethylsilyloxyl)propyl]borane initiator, oxidation/hydrolysis, and esterification of the TBDMS-O-PE-OH with 5-norbornene-2-carboxylic acid to afford the macromonomer TBDMS-O-PE-Nor, and (ii) ROMP of TBDMS-O-PE-Nor, followed by deprotection. Nuclear magnetic resonance spectroscopy (1H and 13C NMR) and high temperature gel permeation chromatography (HT-GPC) were used to characterize all macromonomers/molecular brushes and differential scanning calorimetry (DSC) to study the thermal properties. The molecular brush P(PE-b-PS) showed lower melting point (Tm) and better solubility in toluene than the corresponding macromonomer PS-b-PE-Nor. In the case of homobrushes, the thermal properties were strongly affected by the presence of the PE end-groups. © 2016 American Chemical Society.

  17. Release mechanisms of acetaminophen from polyethylene oxide/polyethylene glycol matrix tablets utilizing magnetic resonance imaging.

    Science.gov (United States)

    Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Suzuki, Masazumi; Yamanashi, Shigeyuki; Ozaki, Yukihiro; Kitamura, Satoshi

    2010-08-16

    Release mechanism of acetaminophen (AAP) from extended-release tablets of hydrogel polymer matrices containing polyethylene oxide (PEO) and polyethylene glycol (PEG) were achieved using flow-through cell with magnetic resonance imaging (MRI). The hydrogel forming abilities are observed characteristically and the layer thickness which is corresponding to the diffusion length of AAP has a good correlation with the drug release profiles. In addition, polymeric erosion contribution to AAP releasing from hydrogel matrix tablets was directly quantified using size-exclusion chromatography (SEC). The matrix erosion profile indicates that the PEG erosion kinetic depends primarily on the composition ratio of PEG to PEO. The present study has confirmed that the combination of in situ MRI and SEC should be well suited to investigate the drug release mechanisms of hydrogel matrix such as PEO/PEG. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Adhesion force of staphylococcus aureus on various biomaterial surfaces.

    Science.gov (United States)

    Alam, Fahad; Balani, Kantesh

    2017-01-01

    Staphylococcus comprises of more than half of all pathogens in orthopedic implant infections and they can cause major bone infection which can result in destruction of joint and bone. In the current study, adhesion force of bacteria on the surface of various biomaterial surfaces is measured using atomic force microscope (AFM). Staphylococcus aureus was immobilized on an AFM tipless cantilever as a force probe to measure the adhesion force between bacteria and biomaterials (viz. ultra-high molecular weight poly ethylene (UHMWPE), stainless steel (SS), Ti-6Al-4V alloy, hydroxyapatite (HA)). At the contact time of 10s, UHMWPE shows weak adhesion force (~4nN) whereas SS showed strong adhesion force (~15nN) due to their surface energy and surface roughness. Bacterial retention and viability experiment (3M™ petrifilm test, agar plate) dictates that hydroxyapatite shows the lowest vaibility of bacteria, whereas lowest bacterial retention is observed on UHMWPE surface. Similar results were obtained from live/dead staining test, where HA shows 65% viability, whereas on UHMWPE, SS and Ti-6Al-4V, the bacterial viability is 78%, 94% and 97%, respectively. Lower adhesion forces, constrained pull-off distance (of bacterial) and high antibacterial resistance of bioactive-HA makes it a potential biomaterial for bone-replacement arthroplasty. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Radiation graft post-polymerization of sodium styrene sulfonate onto polyethylene

    International Nuclear Information System (INIS)

    Kitaeva, N.K.; Duflot, V.R.; Ilicheva, N.S.

    2013-01-01

    Post-irradiation grafting of sodium styrene sulfonate (SSS) in the presence of acrylic acid (AA) has been investigated on polyethylene (PE) pre-exposed to gamma radiation at room temperature in the air. Special attention was paid to the effect of low molecular weight salt additives on the kinetics of graft copolymerization of SSS and AA. The presence of SSS links in the grafted PE copolymers was detected by the methods of UV and FTIR spectroscopy. Based on the FTIR spectroscopy and element analysis data, a mechanism was proposed for graft copolymerization of SSS and AA onto PE. The mechanical properties of the graft copolymers were studied. It was established that PE copolymers grafted with sulfonic acid and carboxyl groups have higher strength characteristics (16.3 MPa) compared to the samples containing only carboxyl groups (11 MPa). (author)

  20. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2013-01-01

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide

  1. A directional entrapment modification on the polyethylene surface by the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether

    Science.gov (United States)

    Lu, Qiang; Chen, Yi; Huang, Juexin; Huang, Jian; Wang, Xiaolin; Yao, Jiaying

    2018-05-01

    A novel entrapment modification method involving directional implantation of the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether (AEO) into the high-density polyethylene (HDPE) surface is proposed. This modification technique allows the AEO modifier to be able to spontaneously attain and subsequently penetrate into the swollen HDPE surface with its hydrophobic stearyl segment, while its hydrophilic poly(ethylene oxide) (PEO) segment spontaneously points to water. The AEO modifier with a HLB number below 8.7 was proved appropriate for the directional entrapment, Nevertheless, AEOs with larger HLB numbers were also effective modifiers in the presence of salt additives. In addition, a larger and hydrophobic micelle, induced respectively by the AEO concentration above 1.3 × 10-2 mol/L and the entrapping temperature above the cloud point of AEO, could lead to a sharp contact angle decline of the modified surface. Finally, a hydrophilic HDPE surface with the modifier coverage of 38.9% was reached by the directional entrapment method, which is far larger than that of 19.2% by the traditional entrapment method.

  2. Fluence behavior of polyethylene films irradiated with high energy electrons

    International Nuclear Information System (INIS)

    Pino, Eddy Segura; Silva, Leonardo G. Andrade e

    1999-01-01

    Polymers are viscoelastic materials at all temperatures, so that mechanical loads induce time dependable deformations. The recovery of these deformations, on load release, take some time and it is not always recovered completely. The main objective of this work was to analyse the creep behavior of electron irradiated polyethylene films. From the experimental results, it was sated that polyethylene creeps less with an increase on irradiation dose and also that creep recovery in this material increases with doses but it is not complete. This behavior can be attributed to the crosslinking effect witch stabilize elements of the molecular structure of the polyethylene, thus reducing their mobility and so inhibiting the creep mechanism. The partial creep recovery could be also attributed to the reticulation effect and to the polyethylene plastic behavior. Additional information on the creep behavior was obtained by fitting the experimental data with exponential functions and evaluating the mathematical parameters with a modified Kelvin-Voigt mechanical model. (author)

  3. On the mechanism of charge transport in low density polyethylene

    Science.gov (United States)

    Upadhyay, Avnish K.; Reddy, C. C.

    2017-08-01

    Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.

  4. Thiolated polyethylene oxide as a non-fouling element for nano-patterned bio-devices

    International Nuclear Information System (INIS)

    Lisboa, Patricia; Valsesia, Andrea; Colpo, Pascal; Gilliland, Douglas; Ceccone, Giacomo; Papadopoulou-Bouraoui, Andri; Rauscher, Hubert; Reniero, Fabiano; Guillou, Claude; Rossi, Francois

    2007-01-01

    This work describes the synthesis of a thiolated polyethylene oxide that self-assembles on gold to create a non-fouling surface. Thiolated polyethylene oxide was synthesised by reacting 16-mercaptohexadecanoic acid with polyethylene glycol mono methyl ether. The coverage of the thiolated polyethylene oxide on gold was studied by cyclic voltammetry, and the modified surfaces were characterised by X-ray photoelectron spectroscopy and ellipsometry. Protein resistance was assessed using quartz crystal microbalance. Results showed a non-fouling character produced by the thiolated polyethylene oxide. The synthesised product was used as the passivation layer on nano-patterned surfaces consisting of arrayed nano-spots, fabricated by plasma based colloidal lithography. The specific adsorption of anti-bovine serum albumin in the mercaptohexadecanoic acid spots was verified by atomic force microscopy

  5. Solid-phase photocatalytic degradation of polyethylene film with manganese oxide OMS-2

    Science.gov (United States)

    Liu, Guanglong; Liao, Shuijiao; Zhu, Duanwei; Cui, Jingzhen; Zhou, Wenbing

    2011-01-01

    Solid-phase photocatalytic degradation of polyethylene (PE) film with cryptomelane-type manganese oxide (OMS-2) as photocatalyst was investigated in the ambient air under ultraviolet and visible light irradiation. The properties of the composite films were compared with those of the pure PE film through performing weight loss monitoring, IR spectroscopy, scanning electron microscopic (SEM) and X-ray photoelectron spectroscopy (XPS). The photoinduced degradation of PE-OMS-2 composite films was higher than that of the pure films, while there has been little change under the visible light irradiation. The weight loss of PE-OMS-2 (1.0 wt%) composite films steadily decreased and reached 16.5% in 288 h under UV light irradiation. Through SEM observation there were some cavities on the surface of composite films, but few change except some surface chalking phenomenon occurred in pure PE film. The degradation rate with ultraviolet irradiation is controllable by adjusting the content of OMS-2 particles in PE plastic. Finally, the mechanism of photocatalytic degradation of the composite films was briefly discussed.

  6. Thermogravimetric studies of the thermo-oxidative stability of irradiated and unirradiated polyethylene. 2. Combined antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, L; Gal, O; Markovic, V; Stannett, V T

    1985-01-01

    In part one of this series the effects of a phenolic, an amine and a thioester antioxidant on the thermo-oxidative stability of irradiated and unirradiated low-density polyethylene was reported. In this paper the effects of combined phenolic and thioester stabilizers are described. Isothermal thermogravimetric analysis was used to study the systems. Pronounced synergism was observed with the induction periods, the time when the initial weight loss begins and the 5% weight loss. At about 50% of each stabilizer increases greater than twofold were observed both with the unirradiated and irradiated polymers. The rate constants for oxygen uptake were decreased. However, the rates of degradation at 5% weight loss fell between the values of the two pure stabilizers with no pronounced synergism in either case. In the absence of oxygen little effect of either antioxidant or their mixtures was observed. The corresponding activation energies were somewhat higher, however, with the irradiated samples containing antioxidants. Dynamic thermogravimetry was used for this study. A kinetic analysis indicated that there were somewhat different modes of degradation at lower- and higher-temperature ranges. (author).

  7. Highly Enriched Uranium Metal Annuli and Cylinders with Polyethylene Reflectors and/or Internal Polyethylene Moderator

    International Nuclear Information System (INIS)

    Tyler Sumner; J. Blair Briggs; Leland Montierth

    2007-01-01

    A variety of critical experiments were constructed of enriched uranium metal during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, experiments of uranium metal annuli with and without polyethylene reflectors and with the central void region either empty or filled with polyethylene were evaluated under ICSBEP Identifier HEU-MET-FAST-076. The outer diameter of the uranium annuli varied from 9 to 15 inches in two-inch increments. In addition, there were uranium metal cylinders with diameters varying from 7 to 15 inches with complete reflection and reflection on one flat surface to simulate floor reflection. Most of the experiments were performed between February 1964 and April 1964. Five partially reflected (reflected on the top only) experiments were assembled in November 1967, but are judged by the evaluators not to be of benchmark quality. Twenty-four of the twenty-five experiments have been determined to have fast spectra. The only exception has a mixed spectrum. Analyses were performed in which uncertainty associated with five different parameters associated with the uranium parts and three associated with the polyethylene parts was evaluated. Included were uranium mass, height, diameter, isotopic content, and impurity content and polyethylene mass, diameter, and impurity content. There were additional uncertainties associated with assembly alignment, support structure, and the value

  8. Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics

    NARCIS (Netherlands)

    Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de

    1997-01-01

    The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.

  9. A Comparative Study on Magnetostructural Properties of Barium Hexaferrite Powders Prepared by Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    Zehra Durmus

    2014-01-01

    Full Text Available Nanocrystalline particles of barium hexaferrite were synthesized by a sol-gel combustion route using nitrate-citrate gels prepared from metal nitrates and citric acid solutions with Fe/Ba molar ratio 12. The present paper aims to study the effect of addition of polyethylene glycol (PEG solutions with different molecular weights (MW: 400, 2000, and 10.000 g/mol on magnetostructural properties of barium hexaferrite. The formation of the barium hexaferrite was inspected using X-ray diffraction (XRD analysis, Fourier transform infrared (FT-IR analysis, thermogravimetric (TGA analysis, scanning electron microscopy (SEM analysis and vibrating sample magnetometer (VSM analysis for magnetic measurements.

  10. Posterior Surgery for Adolescent Idiopathic Scoliosis With Pedicle Screws and Ultrahigh-Molecular Weight Polyethylene Tape: Achieving the Ideal Thoracic Kyphosis.

    Science.gov (United States)

    Imagama, Shiro; Ito, Zenya; Wakao, Norimitsu; Ando, Kei; Hirano, Kenichi; Tauchi, Ryoji; Muramoto, Akio; Matsui, Hiroki; Matsumoto, Tomohiro; Sakai, Yoshihito; Katayama, Yoshito; Matsuyama, Yukihiro; Ishiguro, Naoki

    2016-10-01

    Prospective clinical case series. To describe our surgical procedure and results for posterior correction and fusion with a hybrid approach using pedicle screws, hooks, and ultrahigh-molecular weight polyethylene tape with direct vertebral rotation (DVR) (the PSTH-DVR procedure) for treatment of adolescent idiopathic scoliosis (AIS) with satisfactory correction in the coronal and sagittal planes. Introduction of segmental pedicle screws in posterior surgery for AIS has facilitated good correction and fusion. However, procedures using only pedicle screws have risks during screw insertion, higher costs, and decreased postoperative thoracic kyphosis. We have obtained good outcomes compared with segmental pedicle screw fixation in surgery for AIS using a relatively simple operative procedure (PSTH-DVR) that uses fewer pedicle screws. The subjects were 30 consecutive patients with AIS who underwent the PSTH-DVR procedure and were followed for a minimum of 2 years. Preoperative flexibility, preoperative and postoperative Cobb angles, correction rates, loss of correction, thoracic kyphotic angles (T5-T12), coronal balance, sagittal balance, and shoulder balance were measured on plain radiographs. Rib hump, operation time, estimated blood loss, spinal cord monitoring findings, complications, and scoliosis research society (SRS)-22 scores were also examined. The mean preoperative curve of 58.0 degrees (range, 40-96 degrees) was corrected to a mean of 9.9 degrees postoperatively, and the correction rate was 83.6%. Fusion was obtained in all patients without loss of correction. In 10 cases with preoperative kyphosis angles (T5-T12) correction of deformity with PSTH-DVR is equivalent to that of all-pedicle screw constructs. The procedure gives favorable correction, is advantageous for kyphosis compared with segmental screw fixation, and uses the minimum number of pedicle screws. Therefore, the PSTH-DVR procedure may be useful for treatment of idiopathic scoliosis.

  11. Hydroxynortriptyline of Empty Fruit Bunches Fibre using Polyethylene glycol (PEG)

    International Nuclear Information System (INIS)

    Noreen, F.M.Z.; Sarani Zakaria

    2013-01-01

    The aim of this study was to investigate the reaction of oil palm empty fruit bunches fibre (EFBF) via chemical modification and hydroxynortriptyline method using polyethylene glycol (PEG). The first stage was the modification of EFB fibre using NaOH and isopropanol. The next stage was the preparation of hydroxypropylated-empty fruit bunches fibre (HP-EFBF), using different molecular weight of PEG (6,000, 8,000 and 10,000). The characterisation involved in this study were conducted by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), determination of kinetic activation energy (E a ), X-ray diffraction (XRD), cellulose crystallinity index (CrI) and weight increment of the HP-EFB fibre. SEM results showed the surface of HP-EFBF swelled and craters formed along the surface of the fibre. IR spectrum also showed OH stretching band in EFB without treatment is 3402 cm -1 , but after hydroxynortriptyline process, the OH stretching band in HP-EFBF (10000, 8000 and 6000) slightly shifted to 3392, 3384 and 3370 cm -1 , respectively. TGA showed the thermal stability of HP-EFBF 6,000 was lower than HP-EFBF 8,000 and 10,000. After chemical modification, the activation energy, E a increased from 32.4 to 51.9 kJ/ mol more than EFB without treatment, 12.5 kJ/ mol. XRD showed that diffraction peak (002) shifted to the smaller 2θ angle and the peaks (101, 10I) disappeared after hydroxynortriptyline process. Crystallinity index, of EFB without treatment decreased from 27 % to 25 % after chemical modification. The higher the molecular weight of the PEG, the greater the weight increment of the HP-EFBF. (author)

  12. Manipulating interactions between functional colloidal particles and polyethylene surfaces using interfacial engineering.

    Science.gov (United States)

    Ziani, Khalid; Barish, Jeffrey A; McClements, David Julian; Goddard, Julie M

    2011-08-01

    The purpose of this study was to examine the interaction between lipid droplets and polyethylene surfaces, representative of those commonly used in food packaging. Lipid droplets with various surface charges were prepared by homogenizing corn oil and water in the presence of surfactants with different electrical characteristics: non-ionic (Tween 80, T80), cationic (lauric arginate, LAE), and/or anionic (sodium dodecyl sulfate, SDS). The ionic properties of polyethylene surfaces were modified by UV-treatment. Stable emulsions containing small droplets (demulsions. Scanning electronic microscopy (SEM), confocal fluorescence microscopy, and ATR-FTIR showed that the number of droplets attached to the polyethylene surfaces depended on the droplet charge and the polyethylene surface characteristics. The greatest degree of droplet adsorption was observed for the cationic droplets to the UV-ozone treated polyethylene surfaces, which was attributed to electrostatic attraction. These results are important for understanding the behavior of encapsulated lipophilic components in food containers. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Justification of indirect methods of bending stresses polyethylene pipes evaluation

    Science.gov (United States)

    Serebrennikov, A. A.; Serebrennikov, D. A.; Hakimov, Z. R.

    2017-10-01

    The world and Russian companies have a long experience of the polyethylene pipeline installation and operation. At the same time, the significant attention is paid to the improvement of the relevant machines and the production technology. The polyethylene pipeline installation experience proves that its operation properties (reliability and durability) depend on physical and mechanical characteristics of polyethylene, which should be saved during its installation. Defects can occur, including in cases when the pipe is subjected to the significant bending stresses during installation. To evaluate these stresses, including when exposed to cold weather conditions, an indirect method based on the relationship between strength characteristics and occurred deformations is proposed.

  14. Thermomechanical behaviour of stabilized polyethylene irradiated with gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Markovic, V; Gal, O; Stannett, V T

    1986-01-01

    The moduli of elasticity at 150/sup 0/C for irradiated linear low density and low density polyethylenes, pure and with 0.5% antioxidants were determined using the penetration technique. Simultaneously, on similar samples, the gel content was measured. Analysing the radiation parameters and comparing data derived from the two methods the efficiency of radiation crosslinking of different polyethylenes and the effect of antioxidants is discussed.

  15. Thermomechanical behaviour of stabilized polyethylene irradiated with gamma rays

    International Nuclear Information System (INIS)

    Novakovic, Lj.; Markovic, V.; Gal, O.; Stannett, V.T.

    1986-01-01

    The moduli of elasticity at 150 C for irradiated linear low density and low density polyethylenes, pure and with 0.5% antioxidants were determined using the penetration technique. Simultaneously, on similar samples, the gel content was measured. Analysing the radiation parameters and comparing data derived from the two methods the efficiency of radiation crosslinking of different polyethylenes and the effect of antioxidants is discussed. (author)

  16. MALDI-TOF mass spectrometry imaging reveals molecular level changes in ultrahigh molecular weight polyethylene joint implants in correlation with lipid adsorption.

    Science.gov (United States)

    Fröhlich, Sophie M; Archodoulaki, Vasiliki-Maria; Allmaier, Günter; Marchetti-Deschmann, Martina

    2014-10-07

    Ultrahigh molecular weight polyethylene (PE-UHMW), a material with high biocompatibility and excellent mechanical properties, is among the most commonly used materials for acetabular cup replacement in artificial joint systems. It is assumed that the interaction with synovial fluid in the biocompartment leads to significant changes relevant to material failure. In addition to hyaluronic acid, lipids are particularly relevant for lubrication in an articulating process. This study investigates synovial lipid adsorption on two different PE-UHMW materials (GUR-1050 and vitamin E-doped) in an in vitro model system by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry imaging (MSI). Lipids were identified by high performance thin layer chromatography (HP-TLC) and tandem mass spectrometry (MS/MS) analysis, with an analytical focus on phospholipids and cholesterol, both being species of high importance for lubrication. Scanning electron microscopy (SEM) analysis was applied in the study to correlate molecular information with PE-UHMW material qualities. It is demonstrated that lipid adsorption preferentially occurs in rough or oxidized polymer regions. Polymer modifications were colocalized with adsorbed lipids and found with high density in regions identified by SEM. Explanted, the in vivo polymer material showed comparable and even more obvious polymer damage and lipid adsorption when compared with the static in vitro model. A three-dimensional reconstruction of MSI data from consecutive PE-UHMW slices reveals detailed information about the diffusion process of lipids in the acetabular cup and provides, for the first time, a promising starting point for future studies correlating molecular information with commonly used techniques for material analysis (e.g., Fourier-transform infrared spectroscopy, nanoindentation).

  17. Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites.

    Science.gov (United States)

    Arrigo, Rossella; Teresi, Rosalia; Gambarotti, Cristian; Parisi, Filippo; Lazzara, Giuseppe; Dintcheva, Nadka Tzankova

    2018-03-05

    The aim of this work is the investigation of the effect of ultrasound treatment on the structural characteristics of carbon nanotubes (CNTs) and the consequent influence that the shortening induced by sonication exerts on the morphology, rheological behaviour and thermo-oxidative resistance of ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites. First, CNTs have been subjected to sonication for different time intervals and the performed spectroscopic and morphological analyses reveal that a dramatic decrease of the CNT's original length occurs with increased sonication time. The reduction of the initial length of CNTs strongly affects the nanocomposite rheological behaviour, which progressively changes from solid-like to liquid-like as the CNT sonication time increases. The study of the thermo-oxidative behaviour of the investigated nanocomposites reveals that the CNT sonication has a detrimental effect on the thermo-oxidative stability of nanocomposites, especially for long exposure times. The worsening of the thermo-oxidative resistance of sonicated CNT-containing nanocomposites could be attributed to the lower thermal conductivity of low-aspect-ratio CNTs, which causes the increase of the local temperature at the polymer/nanofillers interphase, with the consequent acceleration of the degradative phenomena.

  18. Digital Cellular Solid Pressure Vessels: A Novel Approach for Human Habitation in Space

    Science.gov (United States)

    Cellucci, Daniel; Jenett, Benjamin; Cheung, Kenneth C.

    2017-01-01

    It is widely assumed that human exploration beyond Earth's orbit will require vehicles capable of providing long duration habitats that simulate an Earth-like environment - consistent artificial gravity, breathable atmosphere, and sufficient living space- while requiring the minimum possible launch mass. This paper examines how the qualities of digital cellular solids - high-performance, repairability, reconfigurability, tunable mechanical response - allow the accomplishment of long-duration habitat objectives at a fraction of the mass required for traditional structural technologies. To illustrate the impact digital cellular solids could make as a replacement to conventional habitat subsystems, we compare recent proposed deep space habitat structural systems with a digital cellular solids pressure vessel design that consists of a carbon fiber reinforced polymer (CFRP) digital cellular solid cylindrical framework that is lined with an ultra-high molecular weight polyethylene (UHMWPE) skin. We use the analytical treatment of a linear specific modulus scaling cellular solid to find the minimum mass pressure vessel for a structure and find that, for equivalent habitable volume and appropriate safety factors, the use of digital cellular solids provides clear methods for producing structures that are not only repairable and reconfigurable, but also higher performance than their conventionally manufactured counterparts.

  19. Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites

    Science.gov (United States)

    Teresi, Rosalia; Gambarotti, Cristian; Dintcheva, Nadka Tzankova

    2018-01-01

    The aim of this work is the investigation of the effect of ultrasound treatment on the structural characteristics of carbon nanotubes (CNTs) and the consequent influence that the shortening induced by sonication exerts on the morphology, rheological behaviour and thermo-oxidative resistance of ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites. First, CNTs have been subjected to sonication for different time intervals and the performed spectroscopic and morphological analyses reveal that a dramatic decrease of the CNT’s original length occurs with increased sonication time. The reduction of the initial length of CNTs strongly affects the nanocomposite rheological behaviour, which progressively changes from solid-like to liquid-like as the CNT sonication time increases. The study of the thermo-oxidative behaviour of the investigated nanocomposites reveals that the CNT sonication has a detrimental effect on the thermo-oxidative stability of nanocomposites, especially for long exposure times. The worsening of the thermo-oxidative resistance of sonicated CNT-containing nanocomposites could be attributed to the lower thermal conductivity of low-aspect-ratio CNTs, which causes the increase of the local temperature at the polymer/nanofillers interphase, with the consequent acceleration of the degradative phenomena. PMID:29510595

  20. A custom-made temporomandibular joint prosthesis for fabrication by selective laser melting: Finite element analysis.

    Science.gov (United States)

    Xu, Xiangliang; Luo, Danmei; Guo, Chuanbin; Rong, Qiguo

    2017-08-01

    A novel and custom-made selective laser melting (SLM) 3D-printed alloplastic temporomandibular joint (TMJ) prosthesis is proposed. The titanium-6aluminium-4vanadium (Ti-6Al-4V) condyle component and ultra-high molecular weight polyethylene (UHMWPE) fossa component comprised the total alloplastic TMJ replacement prosthesis. For the condyle component, an optimized tetrahedral open-porous scaffold with combined connection structures, i.e. an inlay rod and an onlay plate, between the prosthesis and remaining mandible was designed. The trajectory of movement of the intact condyle was assessed via kinematic analysis to facilitate the design of the fossa component. The behaviours of the intact mandible and mandible with the prosthesis were compared. The biomechanical behaviour was analysed by assessing the stress distribution on the prosthesis and strain distribution on the mandible. After muscle force was applied, the magnitude of the compressive strain on the condyle neck of the mandible with the prosthesis was lower than that on the condyle neck of the intact mandible, with the exception of the area about the screws; additionally, the magnitude of the strain at the scaffold-bone interface was relatively high. Copyright © 2017. Published by Elsevier Ltd.

  1. Influence of fast neutrons on thermophysical properties of pure and borated low density polyethylene

    International Nuclear Information System (INIS)

    El-Khatib, A. M.; Kassem, M.

    1990-01-01

    The impact of radiation crosslinking on the mechanical, thermomechanical and electrical conductivity properties of LDPE and borated polyethylene have been studied and evaluated. The 8% borated polyethylene samples have added a new advantage where the tensile strength has increased to the maximum and then it became constant at higher crosslink density. Moreover, the electrical conductivity of 8% borated polyethylene is much higher than pure and 4% borated polyethylene. (author). 16 refs., 8 figs

  2. Green tea extract with polyethylene glycol-3350 reduces body weight and improves glucose tolerance in db/db and high-fat diet mice.

    Science.gov (United States)

    Park, Jae-Hyung; Choi, Yoon Jung; Kim, Yong Woon; Kim, Sang Pyo; Cho, Ho-Chan; Ahn, Shinbyoung; Bae, Ki-Cheor; Im, Seung-Soon; Bae, Jae-Hoon; Song, Dae-Kyu

    2013-08-01

    Green tea extract (GTE) is regarded to be effective against obesity and type 2 diabetes, but definitive evidences have not been proven. Based on the assumption that the gallated catechins (GCs) in GTE attenuate intestinal glucose and lipid absorption, while enhancing insulin resistance when GCs are present in the circulation through inhibiting cellular glucose uptake in various tissues, this study attempted to block the intestinal absorption of GCs and prolong their residence time in the lumen. We then observed whether GTE containing the nonabsorbable GCs could ameliorate body weight (BW) gain and glucose intolerance in db/db and high-fat diet mice. Inhibition of the intestinal absorption of GCs was accomplished by co-administering the nontoxic polymer polyethylene glycol-3350 (PEG). C57BLKS/J db/db and high-fat diet C57BL/6 mice were treated for 4 weeks with drugs as follows: GTE, PEG, GTE+PEG, voglibose, or pioglitazone. GTE mixed with meals did not have any ameliorating effects on BW gain and glucose intolerance. However, the administration of GTE plus PEG significantly reduced BW gain, insulin resistance, and glucose intolerance, without affecting food intake and appetite. The effect was comparable to the effects of an α-glucosidase inhibitor and a peroxisome proliferator-activated receptor-γ/α agonist. These results indicate that prolonging the action of GCs of GTE in the intestinal lumen and blocking their entry into the circulation may allow GTE to be used as a prevention and treatment for both obesity and obesity-induced type 2 diabetes.

  3. High-density polyethylene dosimetry by transvinylene FTIR analysis

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Silverman, J.; Al-Sheikhly, M.

    1999-01-01

    and electrons. The useful dose range of 0.053 cm thick high-density polyethylene film (rho = 0.961 g cm(-3); melt index = 0.8 dg min(-1)), for irradiations by (60)Co gamma radiation and 2.0 and 0.4 MeV electron beams in deaerated atmosphere (Na gas), is about 50-10(3) kGy for FTIR transvinylene......The formation of transvinylene unsaturation, -CH=CH-, due to free-radical or cationic-initiated dehydrogenation by irradiation, is a basic reaction in polyethylene and is useful for dosimetry at high absorbed doses. The radiation-enhanced infrared absorption having a maximum at nu = 965 cm......(-l) (lambda = 10.36 mu m) is stable in air and can be measured by Fourier-transform infrared (FTIR) spectrophotometry. The quantitative analysis is a useful means of product end-point dosimetry for radiation processing with gamma rays and electrons, where polyethylene is a component of the processed product...

  4. 78 FR 76567 - Tall Oil, Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs...

    Science.gov (United States)

    2013-12-18

    ..., Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs.; Tolerance Exemption... an exemption from the requirement of a tolerance for residues of tall oil, polymer with polyethylene..., polymer with polyethylene glycol and succinic anhydride monopolyisobutylene derivs. on food or feed...

  5. Study of gamma irradiated polyethylenes by temperature modulated differential scanning calorimetry

    International Nuclear Information System (INIS)

    Secerov, B.; Galovic, S.; Trifunovic, S.; Milicevic, D.; Suljovrujic, E.

    2011-01-01

    Complete text of publication follows. The various polyethylenes (PEs) and effects of high energy radiation on theirs structures were widely studied in the past using conventional Differential Scanning Calorimetry (DSC) measurements. In this work, we applied the Temperature Modulated Differential Scanning Calorimetry (TMDSC) technique in order to obtain more information about the influence of initial structural differences and gamma radiation on the evolution in structure and thermal properties of different polyethylenes. For this reason, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) samples were exposed to gamma radiation, in air, to a wide range of absorbed doses (up to 2400 kGy). The separation of the total heat flow TMDSC signal into a reversing and nonreversing part enabled to observed the low temperature enthalpy relaxation (related to the existence of the 'rigid amorphous phase') and recrystallization processes as well as to follow their and/or radiation-induced evolution of melting in a more revealing manner compared to the case of the conventional DSC. Consequently, our results indicate that TMDSC could improve the understanding of radiation-induced effects in polymers.

  6. Comblike poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers as anti-infection surface modifying agents.

    Science.gov (United States)

    Mai-ngam, Katanchalee

    2006-05-01

    A series of structurally well-defined poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers that undergo surface induced self assembly on hydrophobic biomaterial surfaces were synthesized and characterized. The surfactant polymers consist of low molecular weight (Mw) chitosan backbone with hydrophilic poly(ethylene oxide) (PEO) and hydrophobic hexyl pendant groups. Chitosan was depolymerized by nitrous acid deaminative cleavage. Hexanal and aldehyde-terminated PEO chains were simultaneously attached to low Mw chitosan hydrochloride via reductive amination. The surfactant polymers were prepared with various ratios of the two side chains. The molecular composition of the surfactant polymers was determined by FT-IR and 1H NMR. Surface active properties at the air-water interface were determined by Langmuir film balance measurements. The surfactant polymers with PEO/hexyl ratios of 1:3.0 and 1:14.4 were used as surface modifying agents to investigate their anti-infection properties. E. coli adhesion on Silastic surface was decreased significantly by the surfactant polymer with PEO/hexyl 1:3.0. Surface growth of adherent E. coli was effectively suppressed by both tested surfactant polymers.

  7. Grafting functional antioxidants on highly crosslinked polyethylene

    Science.gov (United States)

    Al-Malaika, S.; Riasat, S.; Lewucha, C.

    2016-05-01

    The problem of interference of antioxidants, such as hindered phenols, with peroxide-initiated crosslinking of polyethylene was addressed through the use of functional (reactive) graftable antioxidants (g-AO). Reactive derivatives of hindered phenol and hindered amine antioxidants were synthesised, characterised and used to investigate their grafting reactions in high density polyethylene; both non-crosslinked (PE) and highly peroxide-crosslinked (PEXa). Assessment of the extent of in-situ grafting of the antioxidants, their retention after exhaustive solvent extraction in PE and PEXa, and the stabilising performance of the grafted antioxidants (g-AO) in the polymer were examined and benchmarked against conventionally stabilised crosslinked & non-crosslinked polyethylene. It was shown that the functional antioxidants graft to a high extent in PEXa, and that the level of interference of the g-AOs with the polymer crosslinking process was minimal compared to that of conventional antioxidants which bear the same antioxidant function. The much higher level of retention of the g-AOs in PEXa after exhaustive solvent extraction, compared to that of the corresponding conventional antioxidants, accounts for their superior long-term thermal stabilising performance under severe extractive conditions.

  8. Use of polyethylene glycol in functional constipation and fecal impaction.

    Science.gov (United States)

    Mínguez, Miguel; López Higueras, Antonio; Júdez, Javier

    2016-12-01

    The objective of this study was to evaluate in an analytical and descriptive manner the evidence published so far on the use of polyethylene glycol (PEG), with or without electrolytes, in the management of functional constipation and the treatment of fecal impaction. Search on MEDLINE, EMBASE and Cochrane databases until May 2016 of all publications adjusted to the following terms: constipation AND/OR fecal impaction AND (PEG OR polyethylene glycol OR macrogol OR movicol OR idralax OR miralax OR transipeg OR forlax OR golytely OR isocolan OR mulytely) NOT colonoscopy. Critical reading of selected articles (English or Spanish), sorting their description according to group age (adult/pediatric age) and within those, in accordance with study features (efficacy evaluation versus placebo, doses query, safety, comparison with other laxatives, observational studies and monographic review articles of polyethylene glycol or meta-analysis). Fifty-eight publications have been chosen for descriptive analysis; of them, 41 are clinical trials, eight are observational studies and nine are systematic reviews or meta-analysis. Twelve clinical trials evaluate PEG efficacy versus placebo, eight versus lactulose, six are dose studies, five compare polyethylene glycol with and without electrolytes, two compare its efficacy with respect to milk of magnesia, and the rest of the trials evaluate polyethylene glycol with enemas (two), psyllium (one), tegaserod (one), prucalopride (one), paraffin oil (one), fiber combinations (one) and Descurainia sophia (one). Polyethylene glycol with or without electrolytes is more efficacious than placebo for the treatment of functional constipation, either in adults or in pediatric patients, with great safety and tolerability. These preparations constitute the most efficacious osmotic laxatives (more than lactulose) and are the first-line treatment for functional constipation in the short and long-term. They are as efficacious as enemas in fecal

  9. Well-Defined Polyethylene-Based Random, Block, and Bilayered Molecular Cobrushes

    KAUST Repository

    Zhang, Hefeng

    2015-06-09

    Novel well-defined polyethylene-based random, block, and bilayered molecular cobrushes were synthesized through the macromonomer strategy. Two steps were involved in this approach: (i) synthesis of norbornyl-terminated macromonomers of polyethylene (PE), polycaprolactone (PCL), poly(ethylene oxide) (PEO), and polystyrene (PS), as well as polyethylene-b-polycaprolactone (PE-b-PCL), by esterification of the hydroxyl-terminated precursors (PE, PCL, PEO, PS, and PE-b-PCL) with 5-norbornene-2-carboxylic acid and (ii) ring-opening metathesis (co)polymerization of the resulting macromonomers to afford the PE-based molecular cobrushes. The PE-macromonomers were synthesized by polyhomologation of dimethylsulfoxonium methylide, while the others by anionic polymerization. Proton nuclear magnetic resonance spectroscopy (1H NMR) and high-temperature gel permeation chromatography (HT-GPC) were used to imprint the molecular characteristics of all macromonomers and molecular brushes and differential scanning calorimetry (DSC) for the thermal properties. The bilayered molecular cobrushes of P(PE-b-PCL) adopt a wormlike morphology on silica wafer as visualized by atomic force microscopy (AFM). © 2015 American Chemical Society.

  10. Static liquid permeation cell method for determining the migration parameters of low molecular weight organic compounds in polyethylene terephthalate.

    Science.gov (United States)

    Song, Yoon S; Koontz, John L; Juskelis, Rima O; Zhao, Yang

    2013-01-01

    The migration of low molecular weight organic compounds through polyethylene terephthalate (PET) films was determined by using a custom permeation cell assembly. Fatty food simulant (Miglyol 812) was added to the receptor chamber, while the donor chamber was filled with 1% and 10% (v/v) migrant compounds spiked in simulant. The permeation cell was maintained at 40°C, 66°C, 100°C or 121°C for up to 25 days of polymer film exposure time. Migrants in Miglyol were directly quantified without a liquid-liquid extraction step by headspace-GC-MS analysis. Experimental diffusion coefficients (DP) of toluene, benzyl alcohol, ethyl butyrate and methyl salicylate through PET film were determined. Results from Limm's diffusion model showed that the predicted DP values for PET were all greater than the experimental values. DP values predicted by Piringer's diffusion model were also greater than those determined experimentally at 66°C, 100°C and 121°C. However, Piringer's model led to the underestimation of benzyl alcohol (Áp = 3.7) and methyl salicylate (Áp = 4.0) diffusion at 40°C with its revised "upper-bound" Áp value of 3.1 at temperatures below the glass transition temperature (Tg) of PET (<70°C). This implies that input parameters of Piringer's model may need to be revised to ensure a margin of safety for consumers. On the other hand, at temperatures greater than the Tg, both models appear too conservative and unrealistic. The highest estimated Áp value from Piringer's model was 2.6 for methyl salicylate, which was much lower than the "upper-bound" Áp value of 6.4 for PET. Therefore, it may be necessary further to refine "upper-bound" Áp values for PET such that Piringer's model does not significantly underestimate or overestimate the migration of organic compounds dependent upon the temperature condition of the food contact material.

  11. Radiation effects on polyethylene foam of open cell type

    International Nuclear Information System (INIS)

    Tang Beilin; Kanako Kaji; Iwao Yoshizawa; Choji Kohara; Motoyoshi Hatada

    1991-01-01

    The effects of electron beam irradiation on polyethylene foam of open cell type have been studied. Experiments for determining of gel fraction and physical-mechanical properties of irradiated polyethylene foam of open cell type as a function of dose, respectively, were carried out. The dimensional stability of irradiated specimens at elevated temperatures was measured. It was found that tensile strength did not change and gel fraction increased when the specimen was irradiated in nitrogen atmosphere with increasing dose up to 300 kGy. The result shows that dimensional stability of polyethylene foam of open cell type after being kept in an oven at 70 deg C and 110 deg C for 22 h is improved by irradiation in nitrogen atmosphere. The similar results of irradiated EVA foam of open cell type irradiated foam of open cell type were obtained

  12. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India.

    Science.gov (United States)

    Balasubramanian, V; Natarajan, K; Hemambika, B; Ramesh, N; Sumathi, C S; Kottaimuthu, R; Rajesh Kannan, V

    2010-08-01

    Assessment of high-density polyethylene (HDPE)-degrading bacteria isolated from plastic waste dumpsites of Gulf of Mannar. Rationally, 15 bacteria (GMB1-GMB15) were isolated by enrichment technique. GMB5 and GMB7 were selected for further studies based on their efficiency to degrade the HDPE and identified as Arthrobacter sp. and Pseudomonas sp., respectively. Assessed weight loss of HDPE after 30 days of incubation was nearly 12% for Arthrobacter sp. and 15% for Pseudomonas sp. The bacterial adhesion to hydrocarbon (BATH) assay showed that the cell surface hydrophobicity of Pseudomonas sp. was higher than Arthrobacter sp. Both fluorescein diacetate hydrolysis and protein content of the biofilm were used to test the viability and protein density of the biomass. Acute peak elevation was observed between 2 and 5 days of inoculation for both bacteria. Fourier transform infrared (FT-IR) spectrum showed that keto carbonyl bond index (KCBI), Ester carbonyl bond index (ECBI) and Vinyl bond index (VBI) were increased indicating changes in functional group(s) and/or side chain modification confirming the biodegradation. The results pose us to suggest that both Pseudomonas sp. and Arthrobacter sp. were proven efficient to degrade HDPE, albeit the former was more efficacious, yet the ability of latter cannot be neglected. Recent alarm on ecological threats to marine system is dumping plastic waste in the marine ecosystem and coastal arena by anthropogenic activity. In maintenance phase of the plastic-derived polyethylene waste, the microbial degradation plays a major role; the information accomplished in this work will be the initiating point for the degradation of polyethylene by indigenous bacterial population in the marine ecosystem and provides a novel eco-friendly solution in eco-management.

  13. Polyethylene versus cotton cap as an adjunct to body wrap in preterm infants.

    Science.gov (United States)

    Shafie, Hashim; Syed Zakaria, Syed Zulkifli; Adli, Ali; Shareena, Ishak; Rohana, Jaafar

    2017-07-01

    Occlusive body wrap using polyethylene plastic applied immediately after birth had been shown to reduce hypothermia among preterm infants. Various adjunct methods have been studied in an attempt to further reduce the incidence of hypothermia. This study was conducted to determine whether polyethylene cap is more effective than cotton cap as an adjunct to polyethylene occlusive body wrap in reducing hypothermia in preterm infants. The subjects consisted of preterm infants 24-34 weeks' gestation born at Universiti Kebangsaan Malaysia Medical Centre. Infants were randomly assigned to NeoCap or control groups. Infants in both groups were wrapped in polyethylene sheets from the neck downwards immediately after birth without prior drying. Infants in the control group had their heads dried and subsequently covered with cotton caps while infants in the NeoCap group had polyethylene caps put on without drying. Axillary temperature was measured on admission to the neonatal intensive care unit (NICU), and after having been stabilized in the incubator. Among the 80 infants recruited, admission hypothermia (axillary temperature <36.5°C) was present in 37 (92.5%) and in 40 (100%) in the NeoCap and control groups, respectively. There was no significant difference in mean temperature on NICU admission between the two groups (35.3 vs 35.1°C, P = 0.36). Mean post-stabilization temperature, however, was significantly higher in the NeoCap group (36.0 vs 35.5°C, P = 0.01). Combined use of polyethylene body wrap and polyethylene cap was associated with a significantly higher mean post-stabilization temperature compared with polyethylene body wrap and cotton cap. © 2017 Japan Pediatric Society.

  14. EFFECT OF ACCELERATED WEATHERING ON TENSILE PROPERTIES OF KENAF REINFORCED HIGH-DENSITY POLYETHYLENE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Umar A.H.

    2012-06-01

    Full Text Available Umar A.H1, Zainudin E.S1,2 and Sapuan S.M.1,21Department of Mechanical and Manufacturing EngineeringFaculty of Engineering, Universiti Putra MalaysiaSelangor, Malaysia.2Biocomposite LaboratoryInstitute of Tropical Forestry and Forest Product (INTROPUniversiti Putra Malaysia, Selangor, Malaysia.Email: umarhanan@yahoo.com ABSTRACTIn this study, a high-density polyethylene composite reinforced with kenaf (Hibiscus Cannabinus L. bast fibres (K-HDPE was fabricated and tested for durability with regard to weather elements. The material consists of 40% (by weight fibres and 60% matrix. Other additives, such as ultraviolet (UV stabiliser and maleic anhydride grafted polyethylene (MaPE as a coupling agent were added to the composite material. The biocomposite was subjected to 1000 hours (h of accelerated weathering tests, which consisted of heat, moisture and UV light, intended to imitate the outdoor environment. The tensile properties of the K-HDPE composite were recorded after 0, 200, 400, 600, 800 and 1000 h of exposure to the accelerated weathering. Compared with neat high-density polyethylene (HDPE, the K-HDPE composite has 22.7% lower tensile strength when produced but displays a less rapid rate of strength deterioration under weathering (After 1000 h of exposure the tensile strength of K-HDPE drops 29.4%, whereas, for neat HDPE, it falls rapidly by 36%. Due to better stiffness, the Young’s modulus of the K-HDPE composite is much higher than that of neat HDPE. The fibres on the surface of the K-HDPE composite gradually start to whiten after 200 h of exposure and become completely white after 600 h of exposure. For neat HDPE, micro-cracking on the surface can be observed after 200 h of exposure and the stress-strain curve obtained from the tensile test indicates its increase in brittleness proportional to the amount of weathering time.

  15. Healing of interfaces of high and ultra-high-molecular- weight polystyrene below the bulk glass transition temperature

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    into contact to themselves below the glass transition temperature T-g of the bulk Tg-bulk, in a lap-shear joint geometry, at a constant healing temperature T-h for a healing time t(h) of 10 min to 24 h. The lap-shear strength sigma of the symmetric HMWPS-HMWPS and UHMWPS-URMWPS interfaces has been measured...

  16. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial

    NARCIS (Netherlands)

    Bekkali, Noor L. H.; Hoekman, Daniël R.; Liem, Olivia; Bongers, Marloes E. J.; van Wijk, Michiel P.; Zegers, Bas; Pelleboer, Rolf A.; Verwijs, Wim; Koot, Bart G. P.; Voropaiev, Maksym; Benninga, Marc A.

    2018-01-01

    The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes

  17. Correlation of Polymerization Conditions with Thermal and Mechanical Properties of Polyethylenes Made with Ziegler-Natta Catalysts

    Directory of Open Access Journals (Sweden)

    M. Anwar Parvez

    2014-01-01

    Full Text Available In this study, the synthesis of polyethylenes has been carried out with titanium-magnesium supported Ziegler-Natta catalysts in laboratory-scale reactors. A correlation of different polymerization conditions with thermal and mechanical properties of polyethylenes has been established. It is seen that there is lowering of molecular weight (Mw, polymer yield, and catalyst activity at high hydrogen pressure and high temperature. The Mw, polymer yield, and catalyst activity are improved with the increase in ethylene pressure. Dynamic mechanical analysis (DMA results show that the increase in temperature and hydrogen pressure decreases storage modulus. The samples with higher Mw showed high activation energy. The melting point decreases with the increase in hydrogen pressure but increases slightly with the increase in ethylene pressure. It is seen that the increase in reaction temperature, ethylene pressure, and hydrogen pressure leads to an increase in crystallinity. The tensile modulus increases with the increase in hydrogen pressure and can be correlated with the crystallinity of polymer. The Mw has a major influence on the flow activation energy and tensile strength. But the other mechanical and thermal properties depend on Mw as well as other parameters.

  18. Immediate-type hypersensitivity to polyethylene glycols

    DEFF Research Database (Denmark)

    Wenande, E; Garvey, L H

    2016-01-01

    Polyethylene glycols (PEGs) or macrogols are polyether compounds widely used in medical and household products. Although generally considered biologically inert, cases of mild to life-threatening immediate-type PEG hypersensitivity are reported with increasing frequency. Nevertheless, awareness...

  19. Introduction of various amine groups onto polyethylene bead prepared by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Kim, M.S.; Choi, S.H.; Lee, K.P.

    2002-01-01

    Complete text of publication follows. Radiation-induced graft polymerization is a good method for modification of chemical and physical properties of polymeric materials because it can endow properties such as membrane quality, ion exchange, blood compatibility, dyeability, protein adsorption, and immobilization of bioactive materials. Polyethylene microbead is very useful material due to the following advantages; low price, simple purchase, high sensitivity, and simple analysis. On the other hand, the epoxy group of the glycidyl methacrylate (GMA) can easily be converted to the various functional groups such as amines, alcohols, phosphoric acid, sulfonic acid, and amino acid, etc. Cyclodextrin have been applied universally in various industries such as foods, cosmetics, pharmaceutical industry, analytical chemistry, and chemical industry. In order to obtain cyclodextrins, polyethylene microbead with the epoxy group were prepared by radiation-induced graft polymerization of GMA onto polyethylene microbead. The physical and chemical properties of the GMA-induced polyethylene microbeads were investigated by IR, thermal analysis (TGA/DSC), and SEM, respectively. Subsequently, the various amine groups such as diethylamine. diethylenetriamine, triethylamine, triethylenetetramine, and 1,6-hexanediamine were induced onto the epoxy group in polyethylene microbead. Finally, cyclodextrin glucanotransferase were immobilized onto polyethylene microbead with various amines under the various experimental conditions, such as pH, amin content, immobilization time, and etc. The activity of CGTase-immobilized polyethylene microbead was determined by Phenolphthein method. The production of the cyclodextrins from starch is in progress

  20. Observations of radiation damage effects in paraffin and polyethylene crystals

    International Nuclear Information System (INIS)

    Petermann, J.; Gleiter, H.; Bochum Univ.

    1973-01-01

    A report is given on electron microscopic observations on n-paraffin and polyethylene monocrystals after irradiating with electrons. The observations show that the cross-links in n-paraffin monocrystals form agglomerates which preferably occur in the neighbourhood of lattice defects. In polyethylene monocrystals, the cross-links line up in long rows parallel to the [100] or [010] direction. (orig./LH) [de

  1. Design, Synthesis and Characterization of Polyethylene-Based Macromolecular Architectures by Combining Polyhomologation with Powerful Linking Chemistry

    KAUST Repository

    Alkayal, Nazeeha

    2016-09-05

    Polyhomologation is a powerful method to prepare polyethylene-based materials with controlled molecular weight, topology and composition. This dissertation focuses on the discovery of new synthetic routes to prepare polyethylene-based macromolecular architectures by combining polyhomologation with highly orthogonal and efficient linking reactions such as Diels Alder, copper-catalyzed azide-alkyne cycloaddition (CuAAC), and Glaser. Taking advantage of functionalized polyhomologation initiators, as well as of the efficient coupling chemistry, we were able to synthesize various types of polymethylene (polyethylene)-based materials with complex architectures including linear co/terpolymers, graft terpolymers, and tadpole copolymers. In the first project, a facile synthetic route towards well-defined polymethylene-based co/terpolymers, by combining the anthracene/maleimide Diels–Alder reaction with polyhomologation, is presented. For the synthesis of diblock copolymers the following approach was applied: (a) synthesis of α-anthracene-ω-hydroxy-polymethylene by polyhomologation using tri (9 anthracene-methyl propyl ether) borane as the initiator, (b) synthesis of furan-protected-maleimide-terminated poly(ε-caprolactone) or polyethylene glycol and (c) Diels–Alder reaction between anthracene and maleimide-terminated polymers. In the case of triblock terpolymers, the α-anthracene-ω-hydroxy polymethylene was used as a macroinitiator for the ring-opening polymerization of D, L-lactide to afford an anthracene-terminated PM-b-PLA copolymer, followed by the Diels–Alder reaction with furan-protected maleimide-terminated poly (ε-caprolactone) or polyethylene glycol to give the triblock terpolymers. The synthetic methodology is general and potentially applicable to a range of polymers. The coupling reaction applied in the second project of this dissertation was copper-catalyzed “click” cycloaddition of azides and alkynes (CuAAC). Novel well-defined polyethylene

  2. Residual stress in polyethylene pipes

    Czech Academy of Sciences Publication Activity Database

    Poduška, Jan; Hutař, Pavel; Kučera, J.; Frank, A.; Sadílek, J.; Pinter, G.; Náhlík, Luboš

    2016-01-01

    Roč. 54, SEP (2016), s. 288-295 ISSN 0142-9418 R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : polyethylene pipe * residual stress * ring slitting method * lifetime estimation Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.464, year: 2016

  3. Formation of protein complex with the aid of polyethylene glycol for deproteinized natural rubber latex

    Science.gov (United States)

    Wei, Lim Keuw; Ing, Wong Kwee; Badri, Khairiah Haji; Ban, Wong Chong

    2013-11-01

    The effect of polyethylene glycol (PEG) as a deproteinizing agent in commercial natural rubber latex (NRL) onto the physicochemical properties of the NRL was investigated. Three types of PEG were used namely PEG200, PEG4000 and PEG20000 (molecular weight of 200, 4000 and 20000 g/mol respectively). The optimum amount of PEG in NRL was determined from viscosity changes, protein content and Fourier Transform Infrared spectroscopy. Level of protein reduction was affected by molecular weight of PEG. The addition of PEG in NRL reduced the protein content of NRL (3.30 %) to the lowest (2.01 %) at 0.40 phr of PEG200 due to more attractive hydrophobic interactions between short chains PEG compared to PEG4000 (2.24%) and PEG20000 (2.15%). This was verified through FTIR spectroscopy analysis by observing the primary and secondary amide peak where PEG4000 has lesser absorption at the region compared to with PEG20000.

  4. A Polyethylene Moderator Design for Auxiliary Ex-core Neutron Detector

    International Nuclear Information System (INIS)

    Lee, Hwan Soo; Shin, Ho Cheol; Bae, Seong Man

    2012-01-01

    The moderator of detector assembly in ENFMS (Excore Neutron Flux Monitoring System) plays a key role for slowing down from fast neutron to thermal neutron at outside of reactor vessel. Since neutron monitoring detector such as BF3, fission chamber detectors mostly responds to thermal neutron, moderator should be included to neutron detector assembly to detect more efficiently. Generally, resin has been used for moderator of detector in ENFMS of OPR1000 and APR1400, because resin has stable thermal resistance, availability and high neutron moderation characteristics due to the light atomic materials. In case of an auxiliary ex-core neutron detector, the polyethylene is suggested that polyethylene has a better moderator rather than resin, then, the amounts of moderator are reduced. This is important thing for auxiliary ex-core detector equipment at reactor, because the auxiliary equipment should affect minimally to another system. In this study, polyethylene moderator is designed for auxiliary ex-core neutron detector. To find out the optimal thickness of polyethylene moderator, preliminary simulation and experiments are performed. And sensitivity simulation for detector moderator at actual reactor is performed by DORT code

  5. Comparison between poly(ethylene naphthalate) and poly(ethylene terephthalate) in terms of gamma-ray irradiation on their dielectric properties

    Science.gov (United States)

    Miyamoto, Maki; Ohki, Yoshimichi

    2017-06-01

    The effects of gamma-rays on the complex permittivity (\\varepsilon '\\text{r} and \\varepsilon ''\\text{r}) and electrical conductivity were compared between poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET). Although both \\varepsilon '\\text{r} and \\varepsilon ''\\text{r} increase in PET with an increase in the total dose of gamma irradiation, such increases are hardly observed in PEN. The conductivity is always smaller in PEN than in PET. Therefore, it has been confirmed that charge transport is less activated by gamma irradiation in PEN than in PET. Together with experimental results obtained by ultraviolet-visible absorption spectroscopy and thermogravimetric analysis, it can be concluded that PEN has a superior anti-gamma-ray dielectric property to PET.

  6. Solubilization of poorly soluble photosensitizer hypericin by polymeric micelles and polyethylene glycol.

    Science.gov (United States)

    Búzová, Diana; Kasák, Peter; Miškovský, Pavol; Jancura, Daniel

    2013-06-01

    Hypericin (Hyp) is a promising photosensitizer for photodiagnostic and photodynamic therapy of cancer. However, Hyp has a large conjugated system and in aqueous solutions forms insoluble aggregates which do not possess biological activity. This makes intravenous injection of Hyp problematic and restricts its medical applications. To overcome this problem, Hyp is incorporated into drug delivery systems which can increase its solubility and bioavailability. One of the possibilities is utilization of polymeric micelles. The most used hydrophilic block for preparation of polymeric micelles is polyethylen glycol (PEG). PEG is a polymer which for its lack of immunogenicity, antigenicity and toxicity obtained approval for use in human medicine. In this work we have studied the solubilization of Hyp aggregates in the presence of PEG-PE and PEG-cholesterol micelles. The concentration of polymeric micelles which allows total monomerization of Hyp corresponds to the critical micellar concentration of these micelles (~10(-6) M). We have also investigated the effect of the molecular weight and concentration of PEG on the transition of aggregated Hyp to its monomeric form. PEGs with low molecular weight ( 2000 g/mol efficiently transform Hyp aggregates to the monomeric state of this photosensitizer.

  7. A study of gamma-irradiated polyethylenes by temperature modulated differential scanning calorimetry

    Science.gov (United States)

    Galovic, S.; Secerov, B.; Trifunovic, S.; Milicevic, D.; Suljovrujic, E.

    2012-09-01

    Various polyethylenes (PEs) and the effects of high-energy radiation on their structures were widely studied in the past using conventional Differential Scanning Calorimetry (DSC) measurements. In this work, we used the Temperature Modulated Differential Scanning Calorimetry (TMDSC) technique in order to obtain more information about the influence of the initial structural differences and gamma radiation on the evolution in structure and thermal properties of different polyethylenes. For this reason, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) samples were exposed to gamma radiation, in air, to a wide range of absorbed doses (up to 2400 kGy). The separation of the total heat flow TMDSC signal into a reversing and non-reversing part enabled us to observe the low-temperature enthalpy relaxation (related to the existence of the "rigid amorphous phase") and recrystallisation processes, as well as to follow their radiation-induced evolution and/or that of melting in a more revealing manner compared to the case of the conventional DSC. Consequently, our results indicate that TMDSC could improve the understanding of radiation-induced effects in polymers.

  8. Use of polyethylene glycol in functional constipation and fecal impaction

    Directory of Open Access Journals (Sweden)

    Miguel Mínguez

    Full Text Available Objective: The objective of this study was to evaluate in an analytical and descriptive manner the evidence published so far on the use of polyethylene glycol (PEG, with or without electrolytes, in the management of functional constipation and the treatment of fecal impaction. Methodology: Search on MEDLINE, EMBASE and Cochrane databases until May 2016 of all publications adjusted to the following terms: constipation AND/OR fecal impaction AND (PEG OR polyethylene glycol OR macrogol OR movicol OR idralax OR miralax OR transipeg OR forlax OR golytely OR isocolan OR mulytely NOT colonoscopy. Critical reading of selected articles (English or Spanish, sorting their description according to group age (adult/pediatric age and within those, in accordance with study features (efficacy evaluation versus placebo, doses query, safety, comparison with other laxatives, observational studies and monographic review articles of polyethylene glycol or meta-analysis. Results: Fifty-eight publications have been chosen for descriptive analysis; of them, 41 are clinical trials, eight are observational studies and nine are systematic reviews or meta-analysis. Twelve clinical trials evaluate PEG efficacy versus placebo, eight versus lactulose, six are dose studies, five compare polyethylene glycol with and without electrolytes, two compare its efficacy with respect to milk of magnesia, and the rest of the trials evaluate polyethylene glycol with enemas (two, psyllium (one, tegaserod (one, prucalopride (one, paraffin oil (one, fiber combinations (one and Descurainia sophia (one. Conclusions: Polyethylene glycol with or without electrolytes is more efficacious than placebo for the treatment of functional constipation, either in adults or in pediatric patients, with great safety and tolerability. These preparations constitute the most efficacious osmotic laxatives (more than lactulose and are the first-line treatment for functional constipation in the short and long

  9. Germinaton performance of selected local soybean (Glycine max (L.) Merrills) cultivars during drought stress induced by Polyethylene Glycol (PEG)

    Science.gov (United States)

    Pane, R. F.; Damanik, R. I.; Khardinata, E. H.

    2018-02-01

    Drought stress is one of the factors that can decreased growth and production, so that required a variety that has the ability to sustain cellular metabolism, and growth during the stress. This research was aimed to investigated the involvement of germination performance invitro of five local soybean cultivars, Grobogan, Kaba, Anjasmoro, Argomulyo, and Dering to drought stress induced by polyethylene glycol (PEG) 6000 (0%, 2%, 4%, and 6%). The measurable seedling traits as the day appearance of shoots and roots, total of leaves, shoot length, root length, fresh plant weight, dry plant weight, fresh root weight, and dry root weight under control as well as water stress condition were recorded. The experiment units were arranged in factorial completely randomized design with four replications. The result showed that the value for most parameters was recorded highest for Argomulyo cultivar compared with Dering cultivar which is known to be tolerant to drought. In terms of roots performance, Grobogan and Argomulyo cultivars produced the longest and heaviest of roots, while Grobogan cultivar had no significant different for root length compared with control. In conclusion, the root length and fresh weight root parameters can be used as quick criteria for drought tolerance.

  10. Poly(ethylene oxide) surfactant polymers.

    Science.gov (United States)

    Vacheethasanee, Katanchalee; Wang, Shuwu; Qiu, Yongxing; Marchant, Roger E

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly(ethylene oxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO:hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces.

  11. Preparation and Characterization of Modified Soda Lignin with Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    Fangda Zhang

    2016-10-01

    Full Text Available Soda lignin does not have thermal flowing characteristics and it is impossible for it to be further thermally molded. To achieve the fusibility of soda lignin for fiber preparation by melt-spinning, an effective method for soda lignin modification was conducted by cooking it with polyethylene glycol (PEG 400 at various ratios. The higher the ratio of PEG that was used, the more PEG molecular chains were grafted at the alpha carbon of the soda lignin through ether bonds, resulting in lower thermal transition temperatures and more excellent fusibility. The modified soda lignin with a weight ratio of lignin to PEG of 1:4 exhibited a relative thermal stability of molten viscosity at selected temperatures. Thereafter, the resultant fusible soda lignin was successfully melt-spun into filaments with an average diameter of 33 ± 5 μm, which is smaller than that of some industrial lignins. Accordingly, it is possible to utilize soda lignin to produce fibrous carbonaceous materials.

  12. Influence of different factors on the destruction of films based on polylactic acid and oxidized polyethylene

    Science.gov (United States)

    Podzorova, M. V.; Tertyshnaya, Yu. V.; Pantyukhov, P. V.; Shibryaeva, L. S.; Popov, A. A.; Nikolaeva, S.

    2016-11-01

    Influence of different environmental factors on the degradation of film samples based on polylactic acid and low density polyethylene with the addition of oxidized polyethylene was studied in this work. Different methods were used to find the relationship between degradation and ultraviolet, moisture, oxygen. It was found that the addition of oxidized polyethylene, used as a model of recycled polyethylene, promotes the degradation of blends.

  13. Polyethylene glycols (PEG) and related structures

    DEFF Research Database (Denmark)

    Wenande, Emily; Kroigaard, Mogens; Mosbech, Holger

    2015-01-01

    We describe hypersensitivity to polyethylene glycols (PEGs), with cross-reactivity to a structural analog, polysorbate 80, in a 69-year-old patient with perioperative anaphylaxis and subsequent, severe anaphylactic reactions to unrelated medical products. PEGs and PEG analogs are prevalent in the...

  14. The Influence of Polyethylene Glycol Solution on the Dissolution Rate of Sustained Release Morphine.

    Science.gov (United States)

    Hodgman, Michael; Holland, Michael G; Englich, Ulrich; Wojcik, Susan M; Grant, William D; Leitner, Erich

    2016-12-01

    Whole bowel irrigation (WBI) is a management option for overdose of medications poorly adsorbed to activated charcoal, with modified release properties, or for body packers. Polyethylene glycol (PEG) is a mixture of ethylene oxide polymers of varying molecular weight. PEG with an average molecular weight of 3350 g/mol is used for WBI. PEG electrolyte lavage solution has been shown in vitro to hasten the dissolution of acetaminophen. The impact of PEG on the pharmacokinetics of extended release pharmaceuticals is unknown. Lower average molecular weight PEG mixtures are used as solvents and excipients. We sought to investigate the impact of PEG on the release of morphine from several extended release morphine formulations. An in vitro gastric model was developed. To test the validity of our model, we first investigated the previously described interaction of ethanol and Avinza®. Once demonstrated, we then investigated the effect of PEG with several extended release morphine formulations. In the validation portion of our study, we confirmed an ethanol Avinza® interaction. Subsequently, we did not observe accelerated release of morphine from Avinza® or generic extended release morphine in the presence of PEG. The use of PEG for gastric decontamination following ingestion of these extended release morphine formulations is unlikely to accelerate morphine release and aggravate intoxication.

  15. Raman structural study of melt-mixed blends of isotactic polypropylene with polyethylene of various densities

    Science.gov (United States)

    Prokhorov, K. A.; Nikolaeva, G. Yu; Sagitova, E. A.; Pashinin, P. P.; Guseva, M. A.; Shklyaruk, B. F.; Gerasin, V. A.

    2018-04-01

    We report a Raman structural study of melt-mixed blends of isotactic polypropylene with two grades of polyethylene: linear high-density and branched low-density polyethylenes. Raman methods, which had been suggested for the analysis of neat polyethylene and isotactic polypropylene, were modified in this study for quantitative analysis of polyethylene/polypropylene blends. We revealed the dependence of the degree of crystallinity and conformational composition of macromolecules in the blends on relative content of the blend components and preparation conditions (quenching or annealing). We suggested a simple Raman method for evaluation of the relative content of the components in polyethylene/polypropylene blends. The degree of crystallinity of our samples, evaluated by Raman spectroscopy, is in good agreement with the results of analysis by differential scanning calorimetry.

  16. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials

    International Nuclear Information System (INIS)

    Alkan, Cemil; Günther, Eva; Hiebler, Stefan; Himpel, Michael

    2012-01-01

    Highlights: ► Complexing groups to PEGs in a polymer could stabilize PEG at different molecular weights. ► Shape stabilized PEGs for thermal energy storage are prepared using compounds with interacting groups. ► Phase change temperature of PEGs could be changed using a complexing copolymer with acid groups. - Abstract: Blends of poly(ethylene glycol) (PEG) at 1000, 6000, and 10,000 g/mole average molecular weights and poly(acrylic acid) (PAA) or poly(ethylene-co-acrylic acid) (EcoA) have been prepared by solution blending and accounted for thermal energy storage properties as shape stabilized polymer blends. The blends have been analyzed using Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) techniques. Total thermal energy values of the complexes have been determined by the method of Mehling et al. As a result of the investigation it is found that polymers with acid groups form interpolymer complexes (IPCs) and miscible and immiscible IPC–PEG blends when blended with PEGs. PEGs formed IPCs with PAA and EcoA polymers in solutions and reach to saturation and turns to be blends of IPC and PEG polymer. PEGs in this work bleed out of the blends when its compositions reach to a degree of immiscibility. In the first range where blends are IPCs and in the third range where bleeding of PEG occurs, blends are not feasible for thermal energy storage applications. However, in the second range, the blends are potential materials for passive thermal energy storage applications.

  17. Experimental characterisation of Polyethylene Terephthalate (PET) bottle Eco-bricks

    International Nuclear Information System (INIS)

    Taaffe, Jonathan; O’Sullivan, Seán; Rahman, Muhammad Ekhlasur; Pakrashi, Vikram

    2014-01-01

    Highlights: • Characterisation of a novel “Eco-brick” by recycling PET bottles and plastic waste. • Eco-bricks have properties for possible uses in construction. • Consistent manufacturing of Eco-bricks demonstrated to be possible. • Weight of Eco-bricks has a nearly linear relationship with mechanical strength. • Light passage and sound reduction potential of Eco-bricks shown to be good. - Abstract: This paper addresses the issue of recycling waste plastic by considering the feasibility of use of Eco-bricks for constructional purposes. The Eco-bricks are formed by packing plastic within Polyethylene Terephthalate (PET) bottles. Guidelines were provided for the construction of Eco-bricks. Experiments were carried out to characterise some of the properties of these bricks. Compression test, sound insulation assessment and light transmission were considered in this regard and compared with traditional construction materials and conditions. Possible applications of Eco-bricks were discussed. The paper presents the first attempt to characterise these bricks and the results encourage future use of them to a significantly wider extent and for various purposes

  18. Product analysis for polyethylene degradation by radiation and thermal ageing

    International Nuclear Information System (INIS)

    Sugimoto, Masaki; Shimada, Akihiko; Kudoh, Hisaaki; Tamura, Kiyotoshi; Seguchi, Tadao

    2013-01-01

    The oxidation products in crosslinked polyethylene for cable insulation formed during thermal and radiation ageing were analyzed by FTIR-ATR. The products were composed of carboxylic acid, carboxylic ester, and carboxylic anhydride for all ageing conditions. The relative yields of carboxylic ester and carboxylic anhydride increased with an increase of temperature for radiation and thermal ageing. The carboxylic acid was the primary oxidation product and the ester and anhydride were secondary products formed by the thermally induced reactions of the carboxylic acids. The carboxylic acid could be produced by chain scission at any temperature followed by the oxidation of the free radicals formed in the polyethylene. The results of the analysis led to formulation of a new oxidation mechanism which was different from the chain reactions via peroxy radicals and peroxides. - Highlights: ► Products analysis of polyethylene degradation by radiation and thermal ageing. ► Components of carbonyl compounds produced in polyethylene by thermal and radiation oxidation were determined by FTIR. ► Carbonyl compounds comprised carboxylic acid, carboxylic ester, and carboxylic anhydride. ► Carboxylic acid was the primary oxidation product of chain scission at any oxidation temperature. ► Carboxylic ester and carboxylic anhydride are secondary products formed from carboxylic acid at higher temperature.

  19. Considering the use of polyethylene vapour barriers in temperate climates

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, M.D. [Morrison Hershfield Ltd., Vancouver, BC (Canada); Brown, W.C. [Morrison Hershfield Ltd., Ottawa, ON (Canada)

    2003-07-01

    Most building envelope assemblies in Canada must include a vapour barrier in order to comply with Canadian building codes. The installation of sheet polyethylene between the studs and the interior sheathing has been the most common method because it provides more diffusion resistance than necessary to control condensation within a building envelope assembly. It has been suggested that the presence of a polyethylene vapour barrier on the warm-in-winter side of the insulation may actually cause moisture problems because a very low permeance material increases average moisture levels. This paper examined the theory that a vapour barrier at this location restricts drying of moisture that enters the building from outside. Pacific coastal regions of Canada and the United States were presented as examples. Other ways that a polyethylene vapour barrier affects wall performance were also presented. The advanced hygrothermal model HygIRC, developed by Canada's National Research Council, was used to simulate the performance of a wall assembly. Results indicate that eliminating the low permeance polyethylene vapour barrier does not necessarily reduce the risk of moisture problems. Removal of the vapour barrier may have some negative effects, such as increased risk of periodic moisture accumulation and mold growth on paper-faced gypsum board. 7 refs., 2 tabs., 7 figs.

  20. Polyethylene/synthetic boehmite alumina nanocomposites: Structure, thermal and rheological properties

    Directory of Open Access Journals (Sweden)

    2010-05-01

    Full Text Available Synthetic boehmite alumina (BA has been incorporated up to 8 wt% in low density polyethylene (LDPE and high density polyethylene (HDPE, respectively, by melt compounding. The primary nominal particle size of these two BA grades was 40 and 60 nm, respectively. The dispersion of the BA in polyethylene (PE matrices was investigated by scanning and transmission electron microscopy techniques (SEM and TEM. The thermal (melting and crystallization, thermooxidative (oxidation induction temperature and time, and rheological behaviors of the nanocomposites were determined. It was found that BA is nanoscale dispersed in both LDPE and HDPE without any surface treatment and additional polymeric compatibilizer. BA practically did not influence the thermal (melting and crystallization and rheological properties of the parent PEs. On the other hand, BA worked as a powerful thermooxidative stabilizer for LDPE, and especially for HDPE nanocomposites.