WorldWideScience

Sample records for weight cellular structures

  1. Cellular structures with interconnected microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Shaefer, Robert Shahram; Ghoniem, Nasr M.; Williams, Brian

    2018-01-30

    A method for fabricating a cellular tritium breeder component includes obtaining a reticulated carbon foam skeleton comprising a network of interconnected ligaments. The foam skeleton is then melt-infiltrated with a tritium breeder material, for example, lithium zirconate or lithium titanate. The foam skeleton is then removed to define a cellular breeder component having a network of interconnected tritium purge channels. In an embodiment the ligaments of the foam skeleton are enlarged by adding carbon using chemical vapor infiltration (CVI) prior to melt-infiltration. In an embodiment the foam skeleton is coated with a refractory material, for example, tungsten, prior to melt infiltration.

  2. Design Optimization of Irregular Cellular Structure for Additive Manufacturing

    Science.gov (United States)

    Song, Guo-Hua; Jing, Shi-Kai; Zhao, Fang-Lei; Wang, Ye-Dong; Xing, Hao; Zhou, Jing-Tao

    2017-09-01

    Irregularcellular structurehas great potential to be considered in light-weight design field. However, the research on optimizing irregular cellular structures has not yet been reporteddue to the difficulties in their modeling technology. Based on the variable density topology optimization theory, an efficient method for optimizing the topology of irregular cellular structures fabricated through additive manufacturing processes is proposed. The proposed method utilizes tangent circles to automatically generate the main outline of irregular cellular structure. The topological layoutof each cellstructure is optimized using the relative density informationobtained from the proposed modified SIMP method. A mapping relationship between cell structure and relative densityelement is builtto determine the diameter of each cell structure. The results show that the irregular cellular structure can be optimized with the proposed method. The results of simulation and experimental test are similar for irregular cellular structure, which indicate that the maximum deformation value obtained using the modified Solid Isotropic Microstructures with Penalization (SIMP) approach is lower 5.4×10-5 mm than that using the SIMP approach under the same under the same external load. The proposed research provides the instruction to design the other irregular cellular structure.

  3. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  4. Justification identification criterion cellular structures state functions

    Directory of Open Access Journals (Sweden)

    Владимир Георгиевич Куликов

    2017-02-01

    Full Text Available The paper considers the possibility of presenting situations the state of cellular structures functions of the state in the form of regression equations. This allows you to create a replica of an information storage medium on the system status at a given time. The process of system transition from the initial to the final state are invited to formalize a coherent set of regression equations. The regression equations as state functions allow the verbal process of representing the states to replace the system - model. This, in turn, allows the development of parametric methods of management structure formation.

  5. The Cellular Structure of Carbon Detonations

    Science.gov (United States)

    Fryxell, B.; Timmes, F. X.; Zingale, M.; Dursi, L. J.; Ricker, P.; Olson, K.; Calder, A. C.; Tufo, H.; MacNeice, P.; Truran, J. W.; Rosner, R.

    2000-05-01

    We compare two and three-dimensional simulations of the cellular structure of carbon detonations. The initial density of the carbon is taken to be 107 g cm-3. This value has been suggested as the density at which a deflagration to detonation transition may occur in Type Ia supernovae. An initial planar detonation front becomes unstable and develops a complex structure due to the generation of transverse waves. Differences in the amount of asymmetry between the 2D and 3D cases, as well as the relative sizes of individual cells will be discussed. This work was supported in part by the Department of Energy Grant No. B341495 to the Center for Astrophysical Thermonuclear Flashes at the University of Chicago under the ASCI Strategic Alliances Program.

  6. Weighted Branching Simulation Distance for Parametric Weighted Kripke Structures

    DEFF Research Database (Denmark)

    Foshammer, Louise; Larsen, Kim Guldstrand; Mariegaard, Anders

    2016-01-01

    This paper concerns branching simulation for weighted Kripke structures with parametric weights. Concretely, we consider a weighted extension of branching simulation where a single transitions can be matched by a sequence of transitions while preserving the branching behavior. We relax this notion...

  7. On the Cellular Structure of Carbon Detonations

    Science.gov (United States)

    Timmes, F. X.; Zingale, M.; Olson, K.; Fryxell, B.; Ricker, P.; Calder, A. C.; Dursi, L. J.; Tufo, H.; MacNeice, P.; Truran, J. W.; Rosner, R.

    2000-11-01

    We present the results of a numerical study on two-dimensional carbon detonations. For an upstream density of 107 g cm-3 the length-to-width ratio of the detonation cells is about 1.6 and is not strongly dependent on the spatial resolution of the simulation. However, the curvature of the weak incident shocks, strength of the triple points and transverse waves, and sizes of the underreacted and overreacted regions all depend strongly on the spatial resolution of the calculation. These resolution studies help define the minimum resolution required by multidimensional Type Ia supernovae models where the cellular structure of a detonation front is a key feature of the model.

  8. Measurements of cellular structure in spray detonation

    Energy Technology Data Exchange (ETDEWEB)

    Papavassiliou, J.; Makris, A.; Knystautas, R.; Lee, J.H. (McGill Univ., Montreal, PQ (Canada). Dept. of Mechanical Engineering); Westbrook, C.K.; Pitz, W.J. (Lawrence Livermore National Lab., CA (United States))

    1991-10-01

    The cellular structure of heterogeneous detonations in a low vapor pressure fuel (decane) droplet mixture with oxygen and oxygen-nitrogen was studied in the present investigation. The aerosol was generated by an ultrasonic nebulizer and the fuel concentration of the mixture was regulated by monitoring the volume flow rate of oxygen and nitrogen through the nebulizer. The vertical detonation tube is 64 mm in diameter and 3 m long and ignition was by a powerful spark (120 joules stored energy) or a high explosive detonator. Velocity was measured with ionization probes, pressure by a PCB piezoelectric transducer and cell size by a smoked metallic foil inserted into the top end or centre of the detonation tube. The initial pressure of all the experiments was 1 atmosphere. In order to compare the time scales associated with the physical processes of droplet breakup, heat transfer, evaporation, and mixing, experiments were also carried out in the tube heated to 100{degree}C and 185{degree}C, using electrical heating tape, to ensure a homogeneous gas phase mixture of decane-oxygen-nitrogen. Comparison of the cell size for the same mixture in the cold and the heated tube permits one to separate the time scales associated with the physical processes and the chemical kinetic rate processes. The results from the heated tube for the homogeneous vapor phase decane detonations are similar to those for the common gaseous fuels in the alkane group (i.e. ethane, propane, butane). Corresponding results for the heterogeneous case (cold tube) of aerosol decane detonation indicate that the cell size is larger by a factor of about 2, for the present case of 5 {mu}m particle size. The measurements of cellular structure obtained experimentally have been compared to the computed results determined using the ZND chemical kinetic detonation model.

  9. Modeling urban expansion by using variable weights logistic cellular automata

    NARCIS (Netherlands)

    Shu, Bangrong; Bakker, Martha M.; Zhang, Honghui; Li, Yongle; Qin, Wei; Carsjens, Gerrit J.

    2017-01-01

    Simulation models based on cellular automata (CA) are widely used for understanding and simulating complex urban expansion process. Among these models, logistic CA (LCA) is commonly adopted. However, the performance of LCA models is often limited because the fixed coefficients obtained from binary

  10. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  11. Analysis of Closed Social Structure Models using the Cellular Automaton

    OpenAIRE

    安達, 康生; 安高, 真一郎; 植松, 康祐; アダチ, ヤスオ; アタカ, シンイチロウ; ウエマツ, コウユウ; Adachi, Yasuo; Ataka, Shinichiro; Uematsu, Koyu

    2016-01-01

    The cellular automaton was created by John Von Neumann and Stanislaw Marcin Ulam. What Von Neumann was interested in was a machine which could replicate itself and the first such machine in the logical world was the Neumann cellular automaton. Since then, the cellular automaton has been expanded to many fields such as biology, history, and complex systems. This paper suggests closed social structure models with the method based on the cellular automaton. We succeeded in finding some interesti...

  12. Behaviour of cellular structures with fluid fillers under impact loading

    Directory of Open Access Journals (Sweden)

    Matej Vesenjak

    2007-03-01

    Full Text Available The paper investigates the behaviour of closed- and open-cell cellular structures under uniaxial impact loading by means of computational simulations using the explicit nonlinear finite element code LS-DYNA. Simulations also consider the influence of pore fillers and the base material strain rate sensitivity. The behaviour of closed-cell cellular structure has been evaluated with use of the representative volume element, where the influence of residual gas inside the closed pores has been studied. Open- cell cellular structure was modelled as a whole to properly account for considered fluid flow through the cells, which significantly influences macroscopic behaviour of the cellular structure. The fluid has been modelled by applying a meshless Smoothed Particle Hydrodynamics (SPH method. Parametric computational simulations provide grounds for optimization of cellular structures to satisfy different requirements, which makes them very attractive for use in general engineering applications.

  13. Weight loss-induced cellular stress in subcutaneous adipose tissue and the risk for weight regain in overweight and obese adults

    NARCIS (Netherlands)

    Roumans, N.J.T.; Vink, R.G.; Bouwman, F.G.; Fazelzadeh, P.; Baak, van M.A.; Mariman, E.C.M.

    2017-01-01

    Background/objective: Weight loss is often followed by weight regain after the dietary intervention (DI). Cellular stress is increased in adipose tissue of obese individuals. However, the relation between cellular stress and weight regain is unclear. Previously, we observed increased adipose

  14. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    Science.gov (United States)

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Alternative weighting structures for multidimensional poverty assessment

    NARCIS (Netherlands)

    Cavapozzi, Danilo; Han, Wei; Miniaci, Raffaele

    2013-01-01

    A multidimensional poverty assessment requires a weighting scheme to aggregate the well-being dimensions considered. We use Alkire and Foster’s (2011a) framework to discuss the channels through which a change of the weighting structure affects the outcomes of the analysis in terms of overall poverty

  16. Evolution of full phononic band gaps in periodic cellular structures

    Science.gov (United States)

    Wormser, Maximilian; Warmuth, Franziska; Körner, Carolin

    2017-10-01

    Cellular materials not only show interesting static properties, but can also be used to manipulate dynamic mechanical waves. In this contribution, the existence of phononic band gaps in periodic cellular structures is experimentally shown via sonic transmission experiment. Cellular structures with varying numbers of cells are excited by piezoceramic actuators and the transmitted waves are measured by piezoceramic sensors. The minimum number of cells necessary to form a clear band gap is determined. A rotation of the cells does not have an influence on the formation of the gap, indicating a complete phononic band gap. The experimental results are in good agreement with the numerically obtained dispersion relation.

  17. Geometric Structures on Spaces of Weighted Submanifolds

    Directory of Open Access Journals (Sweden)

    Brian Lee

    2009-11-01

    Full Text Available In this paper we use a diffeo-geometric framework based on manifolds that are locally modeled on ''convenient'' vector spaces to study the geometry of some infinite dimensional spaces. Given a finite dimensional symplectic manifold (M,ω, we construct a weak symplectic structure on each leaf I_w of a foliation of the space of compact oriented isotropic submanifolds in M equipped with top degree forms of total measure 1. These forms are called weightings and such manifolds are said to be weighted. We show that this symplectic structure on the particular leaves consisting of weighted Lagrangian submanifolds is equivalent to a heuristic weak symplectic structure of Weinstein [Adv. Math. 82 (1990, 133-159]. When the weightings are positive, these symplectic spaces are symplectomorphic to reductions of a weak symplectic structure of Donaldson [Asian J. Math. 3 (1999, 1-15] on the space of embeddings of a fixed compact oriented manifold into M. When M is compact, by generalizing a moment map of Weinstein we construct a symplectomorphism of each leaf I_w consisting of positive weighted isotropic submanifolds onto a coadjoint orbit of the group of Hamiltonian symplectomorphisms of M equipped with the Kirillov-Kostant-Souriau symplectic structure. After defining notions of Poisson algebras and Poisson manifolds, we prove that each space I_w can also be identified with a symplectic leaf of a Poisson structure. Finally, we discuss a kinematic description of spaces of weighted submanifolds.

  18. LIGHT-WEIGHT LOAD-BEARING STRUCTURE

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure (1) with optimized compression zone (2), where along one or more compression zones (2) in the structure (1) to be cast a core (3) of strong concrete is provided, which core (3) is surrounded by concrete of less strength (4) compared...... to the core (3) of strong concrete. The invention also relates to a method of casting of light-weight load-bearing structures (1) with optimized compression zone (2) where one or more channels, grooves, ducts, pipes and/or hoses (5) formed in the load-bearing structure (1) serves as moulds for moulding one...... or more cores (3) of strong concrete in the light-weight load-bearing structure (1)....

  19. Cellular regulation of the structure and function of aortic valves

    Directory of Open Access Journals (Sweden)

    Ismail El-Hamamsy

    2010-01-01

    Full Text Available The aortic valve was long considered a passive structure that opens and closes in response to changes in transvalvular pressure. Recent evidence suggests that the aortic valve performs highly sophisticated functions as a result of its unique microscopic structure. These functions allow it to adapt to its hemodynamic and mechanical environment. Understanding the cellular and molecular mechanisms involved in normal valve physiology is essential to elucidate the mechanisms behind valve disease. We here review the structure and developmental biology of aortic valves; we examine the role of its cellular parts in regulating its function and describe potential pathophysiological and clinical implications.

  20. Innovative cellular distance structures from polymeric and metallic threads

    Science.gov (United States)

    Wieczorek, F.; Trümper, W.; Cherif, C.

    2017-10-01

    Knitting allows a high individual adaptability of the geometry and properties of flat-knitted spacer fabrics. This offers advantages for the specific adjustment of the mechanical properties of innovative composites based on highly viscous matrix systems such as bone cement, elastomer or foam and cellular reinforcing structures made from e. g. polymeric monofilaments or metallic wires. The prerequisite is the availability of binding solutions for highly productive production of functional, cellular, self-stabilized spacer flat knitted fabrics as supporting and functionalized structures.

  1. Structural Weight Estimation for Launch Vehicles

    Science.gov (United States)

    Cerro, Jeff; Martinovic, Zoran; Su, Philip; Eldred, Lloyd

    2002-01-01

    This paper describes some of the work in progress to develop automated structural weight estimation procedures within the Vehicle Analysis Branch (VAB) of the NASA Langley Research Center. One task of the VAB is to perform system studies at the conceptual and early preliminary design stages on launch vehicles and in-space transportation systems. Some examples of these studies for Earth to Orbit (ETO) systems are the Future Space Transportation System [1], Orbit On Demand Vehicle [2], Venture Star [3], and the Personnel Rescue Vehicle[4]. Structural weight calculation for launch vehicle studies can exist on several levels of fidelity. Typically historically based weight equations are used in a vehicle sizing program. Many of the studies in the vehicle analysis branch have been enhanced in terms of structural weight fraction prediction by utilizing some level of off-line structural analysis to incorporate material property, load intensity, and configuration effects which may not be captured by the historical weight equations. Modification of Mass Estimating Relationships (MER's) to assess design and technology impacts on vehicle performance are necessary to prioritize design and technology development decisions. Modern CAD/CAE software, ever increasing computational power and platform independent computer programming languages such as JAVA provide new means to create greater depth of analysis tools which can be included into the conceptual design phase of launch vehicle development. Commercial framework computing environments provide easy to program techniques which coordinate and implement the flow of data in a distributed heterogeneous computing environment. It is the intent of this paper to present a process in development at NASA LaRC for enhanced structural weight estimation using this state of the art computational power.

  2. Robustness in Weighted Networks with Cluster Structure

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2014-01-01

    Full Text Available The vulnerability of complex systems induced by cascade failures revealed the comprehensive interaction of dynamics with network structure. The effect on cascade failures induced by cluster structure was investigated on three networks, small-world, scale-free, and module networks, of which the clustering coefficient is controllable by the random walk method. After analyzing the shifting process of load, we found that the betweenness centrality and the cluster structure play an important role in cascading model. Focusing on this point, properties of cascading failures were studied on model networks with adjustable clustering coefficient and fixed degree distribution. In the proposed weighting strategy, the path length of an edge is designed as the product of the clustering coefficient of its end nodes, and then the modified betweenness centrality of the edge is calculated and applied in cascade model as its weights. The optimal region of the weighting scheme and the size of the survival components were investigated by simulating the edge removing attack, under the rule of local redistribution based on edge weights. We found that the weighting scheme based on the modified betweenness centrality makes all three networks have better robustness against edge attack than the one based on the original betweenness centrality.

  3. Cellular Automata in Topology Optimization of Continuum Structures ...

    African Journals Online (AJOL)

    In this paper, an optimization algorithm based on cellular automata (CA) is developed for topology optimization of continuum structures with shear and flexural behavior. The design domain is divided into small triangle elements and each cell is considered as a finite element. The stress analysis is performed by the Constant ...

  4. The fractal structure of cellular automata on Abelian groups

    CERN Document Server

    Gütschow, Johannes; Werner, Reinhard F

    2010-01-01

    It is well-known that the spacetime diagrams of some cellular automata have a fractal structure: for instance Pascal's triangle modulo 2 generates a Sierpinski triangle. Explaining the fractal structure of the spacetime diagrams of cellular automata is a much explored topic, but virtually all of the results revolve around a special class of automata, whose typical features include irreversibility, an alphabet with a ring structure, a global evolution that is a ring homomorphism, and a property known as (weakly) p-Fermat. The class of automata that we study in this article has none of these properties. Their cell structure is weaker, as it does not come with a multiplication, and they are far from being p-Fermat, even weakly. However, they do produce fractal spacetime diagrams, and we explain why and how.

  5. Structural basis for substrate specificities of cellular deoxyribonucleoside kinases

    DEFF Research Database (Denmark)

    Johansson, K.; Ramaswamy, S.; Ljungcrantz, C.

    2001-01-01

    Deoxyribonucleoside kinases phosphorylate deoxyribonucleosides and activate a number of medically important nucleoside analogs. Here we report the structure of the Drosophila deoxyribonucleoside kinase with deoxycytidine bound at the nucleoside binding site and that of the human deoxyguanosine ki......; this is apparently due to the presence of Arg 118, which provides favorable hydrogen bonding interactions with the substrate. The two new structures provide an explanation for the substrate specificity of cellular deoxyribonucleoside kinases....

  6. Global self-organization of the cellular metabolic structure.

    Directory of Open Access Journals (Sweden)

    Ildefonso M De La Fuente

    Full Text Available BACKGROUND: Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small catalytic groups. Several studies performed using "metabolic networks models" are helping to understand the degree of functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used "dissipative metabolic networks" (DMNs to show that enzymes can present a self-organized global functional structure, in which several sets of enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this kind of functional structure does, indeed, exist in several microorganisms. METHODOLOGY/PRINCIPAL FINDINGS: Here we have analyzed around 2.500.000 different DMNs in order to investigate the underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of enzymes always in an active state. CONCLUSIONS/SIGNIFICANCE: This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally characterize these enzymatic self-organized global structures.

  7. Building bridges between cellular and molecular structural biology.

    Science.gov (United States)

    Patwardhan, Ardan; Brandt, Robert; Butcher, Sarah J; Collinson, Lucy; Gault, David; Grünewald, Kay; Hecksel, Corey; Huiskonen, Juha T; Iudin, Andrii; Jones, Martin L; Korir, Paul K; Koster, Abraham J; Lagerstedt, Ingvar; Lawson, Catherine L; Mastronarde, David; McCormick, Matthew; Parkinson, Helen; Rosenthal, Peter B; Saalfeld, Stephan; Saibil, Helen R; Sarntivijai, Sirarat; Solanes Valero, Irene; Subramaniam, Sriram; Swedlow, Jason R; Tudose, Ilinca; Winn, Martyn; Kleywegt, Gerard J

    2017-07-06

    The integration of cellular and molecular structural data is key to understanding the function of macromolecular assemblies and complexes in their in vivo context. Here we report on the outcomes of a workshop that discussed how to integrate structural data from a range of public archives. The workshop identified two main priorities: the development of tools and file formats to support segmentation (that is, the decomposition of a three-dimensional volume into regions that can be associated with defined objects), and the development of tools to support the annotation of biological structures.

  8. Global self-regulation of the cellular metabolic structure.

    Directory of Open Access Journals (Sweden)

    Ildefonso M De la Fuente

    Full Text Available BACKGROUND: Different studies have shown that cellular enzymatic activities are able to self-organize spontaneously, forming a metabolic core of reactive processes that remain active under different growth conditions while the rest of the molecular catalytic reactions exhibit structural plasticity. This global cellular metabolic structure appears to be an intrinsic characteristic common to all cellular organisms. Recent work performed with dissipative metabolic networks has shown that the fundamental element for the spontaneous emergence of this global self-organized enzymatic structure could be the number of catalytic elements in the metabolic networks. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate the factors that may affect the catalytic dynamics under a global metabolic structure characterized by the presence of metabolic cores we have studied different transitions in catalytic patterns belonging to a dissipative metabolic network. The data were analyzed using non-linear dynamics tools: power spectra, reconstructed attractors, long-term correlations, maximum Lyapunov exponent and Approximate Entropy; and we have found the emergence of self-regulation phenomena during the transitions in the metabolic activities. CONCLUSIONS/SIGNIFICANCE: The analysis has also shown that the chaotic numerical series analyzed correspond to the fractional Brownian motion and they exhibit long-term correlations and low Approximate Entropy indicating a high level of predictability and information during the self-regulation of the metabolic transitions. The results illustrate some aspects of the mechanisms behind the emergence of the metabolic self-regulation processes, which may constitute an important property of the global structure of the cellular metabolism.

  9. Freeform inkjet printing of cellular structures with bifurcations.

    Science.gov (United States)

    Christensen, Kyle; Xu, Changxue; Chai, Wenxuan; Zhang, Zhengyi; Fu, Jianzhong; Huang, Yong

    2015-05-01

    Organ printing offers a great potential for the freeform layer-by-layer fabrication of three-dimensional (3D) living organs using cellular spheroids or bioinks as building blocks. Vascularization is often identified as a main technological barrier for building 3D organs. As such, the fabrication of 3D biological vascular trees is of great importance for the overall feasibility of the envisioned organ printing approach. In this study, vascular-like cellular structures are fabricated using a liquid support-based inkjet printing approach, which utilizes a calcium chloride solution as both a cross-linking agent and support material. This solution enables the freeform printing of spanning and overhang features by providing a buoyant force. A heuristic approach is implemented to compensate for the axially-varying deformation of horizontal tubular structures to achieve a uniform diameter along their axial directions. Vascular-like structures with both horizontal and vertical bifurcations have been successfully printed from sodium alginate only as well as mouse fibroblast-based alginate bioinks. The post-printing fibroblast cell viability of printed cellular tubes was found to be above 90% even after a 24 h incubation, considering the control effect. © 2014 Wiley Periodicals, Inc.

  10. Periodic Cellular Structure Technology for Shape Memory Alloys

    Science.gov (United States)

    Chen, Edward Y.

    2015-01-01

    Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.

  11. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    DEFF Research Database (Denmark)

    Kragstrup, Tue Wenzel; Kjaer, M; Mackey, A L

    2011-01-01

    The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging...... of the changes in skeletal muscle ECM with aging may be preventable with resistance or weight training, but it is clear that more human studies are needed on the topic........ Structural changes include an increase in the collagen concentration, a change in the elastic fiber system, and an increase in fat infiltration of skeletal muscle. Biochemical changes include a decreased turnover of collagen with potential accumulation of enzymatically mediated collagen cross...

  12. Cellular Electron Cryotomography: Toward Structural Biology In Situ.

    Science.gov (United States)

    Oikonomou, Catherine M; Jensen, Grant J

    2017-06-20

    Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.

  13. Expression weighted cell type enrichments reveal genetic and cellular nature of major brain disorders

    Directory of Open Access Journals (Sweden)

    Nathan Gerald Skene

    2016-01-01

    Full Text Available The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer’s disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer’s and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesised that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer’s disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models.

  14. Using systems and structure biology tools to dissect cellular phenotypes

    Science.gov (United States)

    Floratos, Aris; Honig, Barry; Pe'er, Dana

    2011-01-01

    The Center for the Multiscale Analysis of Genetic Networks (MAGNet, http://magnet.c2b2.columbia.edu) was established in 2005, with the mission of providing the biomedical research community with Structural and Systems Biology algorithms and software tools for the dissection of molecular interactions and for the interaction-based elucidation of cellular phenotypes. Over the last 7 years, MAGNet investigators have developed many novel analysis methodologies, which have led to important biological discoveries, including understanding the role of the DNA shape in protein–DNA binding specificity and the discovery of genes causally related to the presentation of malignant phenotypes, including lymphoma, glioma, and melanoma. Software tools implementing these methodologies have been broadly adopted by the research community and are made freely available through geWorkbench, the Center's integrated analysis platform. Additionally, MAGNet has been instrumental in organizing and developing key conferences and meetings focused on the emerging field of systems biology and regulatory genomics, with special focus on cancer-related research. PMID:22081223

  15. Exercise Decreases Lipogenic Gene Expression in Adipose Tissue and Alters Adipocyte Cellularity during Weight Regain After Weight Loss

    National Research Council Canada - National Science Library

    Giles, Erin D; Steig, Amy J; Jackman, Matthew R; Higgins, Janine A; Johnson, Ginger C; Lindstrom, Rachel C; MacLean, Paul S

    2016-01-01

    ... the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity...

  16. Exercise Decreases Lipogenic Gene Expression in Adipose Tissue and Alters Adipocyte Cellularity during Weight Regain After Weight Loss

    OpenAIRE

    Erin Danielle Giles; Steig, Amy J.; Jackman, Matthew R.; Higgins, Janine A.; Johnson, Ginger C.; Lindstrom, Rachel C.; MacLean, Paul S.

    2016-01-01

    Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose ...

  17. Exercise decreases lipogenic gene expression in adipose tissue and alters adipocyte cellularity during weight regain after weight loss.

    Directory of Open Access Journals (Sweden)

    Erin Danielle Giles

    2016-02-01

    Full Text Available Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX. Rats were weight maintained for 6 weeks, followed by relapse on: a ad libitum low fat diet (LFD, b ad libitum LFD plus EX, or c a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24h retention of dietary- and de novo-derived fat were assessed directly using 14C palmitate/oleate and 3H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP and subcutaneous (SC adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 & LPL, de novo lipogenesis (FAS, ACC1, and triacylglycerol synthesis (MGAT & DGAT in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  18. A New Light Weight Structural Material for Nuclear Structures

    Energy Technology Data Exchange (ETDEWEB)

    Rabiei, Afsaneh [North Carolina State Univ., Raleigh, NC (United States)

    2016-01-14

    Radiation shielding materials are commonly used in nuclear facilities to attenuate the background ionization radiations to a minimum level for creating a safer workplace, meeting regulatory requirements and maintaining high quality performance. The conventional radiation shielding materials have a number of drawbacks: heavy concrete contains a high amount of elements that are not desirable for an effective shielding such as oxygen, silicon, and calcium; a well known limitation of lead is its low machinability and toxicity, which is causing a major environmental concern. Therefore, an effective and environmentally friendly shielding material with increased attenuation and low mass density is desirable. Close-cell composite metal foams (CMFs) and open-cell Al foam with fillers are light-weight candidate materials that we have studied in this project. Close-cell CMFs possess several suitable properties that are unattainable by conventional radiation shielding materials such as low density and high strength for structural applications, high surface area to volume ratio for excellent thermal isolation with an extraordinary energy absorption capability. Open-cell foam is made up of a network of interconnected solid struts, which allows gas or fluid media to pass through it. This unique structure provided a further motive to investigate its application as radiation shields by infiltrating original empty pores with high hydrogen or boron compounds, which are well known for their excellent neutron shielding capability. The resulting open-cell foam with fillers will not only exhibit light weight and high specific surface area, but also possess excellent radiation shielding capability and good processability. In this study, all the foams were investigated for their radiation shielding efficiency in terms of X-ray, gamma ray and neutron. X-ray transmission measurements were carried out on a high-resolution microcomputed tomography (microCT) system. Gamma-emitting sources: 3.0m

  19. Optimized Cellular Core for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Patz Materials and Technologies proposes to develop a unique structural cellular core material to improve mechanical performance, reduce platform weight and lower...

  20. Finite Element Based HWB Centerbody Structural Optimization and Weight Prediction

    Science.gov (United States)

    Gern, Frank H.

    2012-01-01

    This paper describes a scalable structural model suitable for Hybrid Wing Body (HWB) centerbody analysis and optimization. The geometry of the centerbody and primary wing structure is based on a Vehicle Sketch Pad (VSP) surface model of the aircraft and a FLOPS compatible parameterization of the centerbody. Structural analysis, optimization, and weight calculation are based on a Nastran finite element model of the primary HWB structural components, featuring centerbody, mid section, and outboard wing. Different centerbody designs like single bay or multi-bay options are analyzed and weight calculations are compared to current FLOPS results. For proper structural sizing and weight estimation, internal pressure and maneuver flight loads are applied. Results are presented for aerodynamic loads, deformations, and centerbody weight.

  1. Cellular structures using U_q-tilting modules

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina; Tubbenhauer, Daniel

    We use the theory of Uq-tilting modules to construct cellular bases for centralizer algebras. Our methods are quite general and work for any quantum group Uq attached to a Cartan matrix and include the non semi-simple cases for q being a root of unity and ground fields of positive characteristic...

  2. Numerical Simulations of the Cellular Structure of Detonations in Liquid Nitromethane-Regularity of the Cell Structure.

    Science.gov (United States)

    1986-07-31

    31, 1986 Numerical Simulations of the Cellular Structure of Detonations in 0 Liquid Nitromethane-Regularity of the Cell Structure R. GUIRGUIS,* E. S...Numerical Simulations of the Cellular Structure of Detonations in Liquid Nitromethane--Regularity of the Cell Structure 12. PERSONAL AUTHOR(S) R. Guirguis...LIQUID NITROMETHANE-REGULARITY OF THE CELL STRUCTURE INTRODUCTION Detonation waves were treated as steady, one-dimensional phenomena until 1926, when

  3. Interface Pattern Selection Criterion for Cellular Structures in Directional Solidification

    Science.gov (United States)

    Trivedi, R.; Tewari, S. N.; Kurtze, D.

    1999-01-01

    The aim of this investigation is to establish key scientific concepts that govern the selection of cellular and dendritic patterns during the directional solidification of alloys. We shall first address scientific concepts that are crucial in the selection of interface patterns. Next, the results of ground-based experimental studies in the Al-4.0 wt % Cu system will be described. Both experimental studies and theoretical calculations will be presented to establish the need for microgravity experiments.

  4. Estimating the stochastic bifurcation structure of cellular networks.

    Directory of Open Access Journals (Sweden)

    Carl Song

    2010-03-01

    Full Text Available High throughput measurement of gene expression at single-cell resolution, combined with systematic perturbation of environmental or cellular variables, provides information that can be used to generate novel insight into the properties of gene regulatory networks by linking cellular responses to external parameters. In dynamical systems theory, this information is the subject of bifurcation analysis, which establishes how system-level behaviour changes as a function of parameter values within a given deterministic mathematical model. Since cellular networks are inherently noisy, we generalize the traditional bifurcation diagram of deterministic systems theory to stochastic dynamical systems. We demonstrate how statistical methods for density estimation, in particular, mixture density and conditional mixture density estimators, can be employed to establish empirical bifurcation diagrams describing the bistable genetic switch network controlling galactose utilization in yeast Saccharomyces cerevisiae. These approaches allow us to make novel qualitative and quantitative observations about the switching behavior of the galactose network, and provide a framework that might be useful to extract information needed for the development of quantitative network models.

  5. A heuristic approach to optimization of structural topology including self-weight

    Science.gov (United States)

    Tajs-Zielińska, Katarzyna; Bochenek, Bogdan

    2018-01-01

    Topology optimization of structures under a design-dependent self-weight load is investigated in this paper. The problem deserves attention because of its significant importance in the engineering practice, especially nowadays as topology optimization is more often applied when designing large engineering structures, for example, bridges or carrying systems of tall buildings. It is worth noting that well-known approaches of topology optimization which have been successfully applied to structures under fixed loads cannot be directly adapted to the case of design-dependent loads, so that topology generation can be a challenge also for numerical algorithms. The paper presents the application of a simple but efficient non-gradient method to topology optimization of elastic structures under self-weight loading. The algorithm is based on the Cellular Automata concept, the application of which can produce effective solutions with low computational cost.

  6. Sensitivity of Space Shuttle Weight and Cost to Structure Subsystem Weights

    Science.gov (United States)

    Wedge, T. E.; Williamson, R. P.

    1973-01-01

    Quantitative relationships between changes in space shuttle weights and costs with changes in weight of various portions of space shuttle structural subsystems are investigated. These sensitivity relationships, as they apply at each of three points in the development program (preliminary design phase, detail design phase, and test/operational phase) have been established for five typical space shuttle designs, each of which was responsive to the missions in the NASA Shuttle RFP, and one design was that selected by NASA.

  7. Differential Modulation of Cellular Bioenergetics by Poly(L-lysine)s of Different Molecular Weights

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Wu, Lin-Ping; Parhamifar, Ladan

    2015-01-01

    Poly(L-lysine)s (PLLs), and related derivatives, have received considerable attention as nonviral vectors. High molecular weight PLLs (H-PLLs) are superior transfectants compared with low Mw PLLs (L-PLLs), but suggested to be more cytotoxic. Through a pan-integrated metabolomic approach using Sea...

  8. Three-Dimensional Cellular Structures Enhanced By Shape Memory Alloys

    Science.gov (United States)

    Nathal, Michael V.; Krause, David L.; Wilmoth, Nathan G.; Bednarcyk, Brett A.; Baker, Eric H.

    2014-01-01

    This research effort explored lightweight structural concepts married with advanced smart materials to achieve a wide variety of benefits in airframe and engine components. Lattice block structures were cast from an aerospace structural titanium alloy Ti-6Al-4V and a NiTi shape memory alloy (SMA), and preliminary properties have been measured. A finite element-based modeling approach that can rapidly and accurately capture the deformation response of lattice architectures was developed. The Ti-6-4 and SMA material behavior was calibrated via experimental tests of ligaments machined from the lattice. Benchmark testing of complete lattice structures verified the main aspects of the model as well as demonstrated the advantages of the lattice structure. Shape memory behavior of a sample machined from a lattice block was also demonstrated.

  9. Multifunctional Thermal Structures Using Cellular Contact-Aided Complaint Mechanisms

    Science.gov (United States)

    2016-10-31

    structure. Based on a finite element formulation and Solid Isotropic Material with Penalization (SIMP) interpolation for material properties...scheme for seeking specific values of the design variables. The objective function was the global mechanical / thermal compliance of the structure. A...Distribution approved for public release. 23 4.3.5 Topology optimization algorithm This section considers the minimization of the “thermal compliance

  10. Functional and Structural Mimicry of Cellular Protein Kinase A Anchoring Proteins by a Viral Oncoprotein.

    Directory of Open Access Journals (Sweden)

    Cason R King

    2016-05-01

    Full Text Available The oncoproteins of the small DNA tumor viruses interact with a plethora of cellular regulators to commandeer control of the infected cell. During infection, adenovirus E1A deregulates cAMP signalling and repurposes it for activation of viral gene expression. We show that E1A structurally and functionally mimics a cellular A-kinase anchoring protein (AKAP. E1A interacts with and relocalizes protein kinase A (PKA to the nucleus, likely to virus replication centres, via an interaction with the regulatory subunits of PKA. Binding to PKA requires the N-terminus of E1A, which bears striking similarity to the amphipathic α-helical domain present in cellular AKAPs. E1A also targets the same docking-dimerization domain of PKA normally bound by cellular AKAPs. In addition, the AKAP like motif within E1A could restore PKA interaction to a cellular AKAP in which its normal interaction motif was deleted. During infection, E1A successfully competes with endogenous cellular AKAPs for PKA interaction. E1A's role as a viral AKAP contributes to viral transcription, protein expression and progeny production. These data establish HAdV E1A as the first known viral AKAP. This represents a unique example of viral subversion of a crucial cellular regulatory pathway via structural mimicry of the PKA interaction domain of cellular AKAPs.

  11. Weight loss and frequency of body-weight self-monitoring in an online commercial weight management program with and without a cellular-connected 'smart' scale: a randomized pilot study.

    Science.gov (United States)

    Thomas, J G; Raynor, H A; Bond, D S; Luke, A K; Cardoso, C C; Wojtanowski, A C; Vander Veur, S; Tate, D; Wing, R R; Foster, G D

    2017-12-01

    Evaluate the effects of an online commercial weight management program, with and without provision of a 'smart' scale with instructions to weigh daily and weekly tailored feedback, on weight loss and the frequency of body-weight self-monitoring. Participants (N = 92; body mass index 27-40 kg/m2) were randomized to 6 months of no-cost access to the Weight Watchers Online (WWO) platform alone, or enhanced with a cellular-connected 'smart' scale, instructions to weigh daily and weekly pre-scripted email feedback (Weight Watchers Online Enhanced [WWO-E]). The number of days that weight was self-monitored (via 'smart' scale in WWO-E and manually in WWO) was recorded automatically across the 6-month trial. Objective weight was measured at baseline, 3 and 6 months. While both groups achieved statistically significant weight loss, mean ± standard error weight loss did not differ between WWO-E and WWO at 3 months (5.1 ± 0.6 kg vs. 4.0 ± 0.7 kg, respectively; p = 0.257) or 6 months (5.3 ± 0.6 kg vs. 3.9 ± 0.7 kg, respectively; p = 0.116). However, a greater proportion of WWO-E lost ≥5% of initial body weight at 3 months (52.2% vs. 28.3%; p = 0.033), but not 6 months (43.5% vs. 30.4%; p = 0.280), compared with WWO. Mean ± standard deviation days with self-monitored weight was higher in WWO-E (80.5 ± 5.6; 44.7% of days) than WWO (12.0 ± 1.0; 6.7% of days; p weight loss (52% vs. 28%) in an online commercial weight management program. Both WWO and WWO-E produced significant weight loss over 6 months. While mean weight losses were slightly greater in the enhanced group, the difference was not statistically significant in this small sample. This study provides support for the clinical utility of online commercial weight management programs and the potential for supporting technology such as 'smart' scales to improve adherence to body-weight self-monitoring and clinical outcomes.

  12. Localized surface plasmon enhanced cellular imaging using random metallic structures

    Science.gov (United States)

    Son, Taehwang; Lee, Wonju; Kim, Donghyun

    2017-02-01

    We have studied fluorescence cellular imaging with randomly distributed localized near-field induced by silver nano-islands. For the fabrication of nano-islands, a 10-nm silver thin film evaporated on a BK7 glass substrate with an adhesion layer of 2-nm thick chromium. Micrometer sized silver square pattern was defined using e-beam lithography and then the film was annealed at 200°C. Raw images were restored using electric field distribution produced on the surface of random nano-islands. Nano-islands were modeled from SEM images. 488-nm p-polarized light source was set to be incident at 60°. Simulation results show that localized electric fields were created among nano-islands and that their average size was found to be 135 nm. The feasibility was tested using conventional total internal reflection fluorescence microscopy while the angle of incidence was adjusted to maximize field enhancement. Mouse microphage cells were cultured on nano-islands, and actin filaments were selectively stained with FITC-conjugated phalloidin. Acquired images were deconvolved based on linear imaging theory, in which molecular distribution was sampled by randomly distributed localized near-field and blurred by point spread function of far-field optics. The optimum fluorophore distribution was probabilistically estimated by repetitively matching a raw image. The deconvolved images are estimated to have a resolution in the range of 100-150 nm largely determined by the size of localized near-fields. We also discuss and compare the results with images acquired with periodic nano-aperture arrays in various optical configurations to excite localized plasmonic fields and to produce super-resolved molecular images.

  13. Low Density Nanocellular Polymers Based on PMMA Produced by Gas Dissolution Foaming: Fabrication and Cellular Structure Characterization

    Directory of Open Access Journals (Sweden)

    Judith Martín-de León

    2016-07-01

    Full Text Available This paper describes the processing conditions needed to produce low density nanocellular polymers based on polymethylmethacrylate (PMMA with relative densities between 0.45 and 0.25, cell sizes between 200 and 250 nm and cell densities higher than 1014 cells/cm3. To produce these nanocellular polymers, the foaming parameters of the gas dissolution foaming technique using CO2 as blowing agent have been optimized. Taking into account previous works, the amount of CO2 uptake was maintained constant (31% by weight for all the materials. Foaming parameters were modified between 40 °C and 110 °C for the foaming temperature and from 1 to 5 min for the foaming time. Foaming temperatures in the range of 80 to 100 °C and foaming times of 2 min allow for production of nanocellular polymers with relative densities as low as 0.25. Cellular structure has been studied in-depth to obtain the processing-cellular structure relationship. In addition, it has been proved that the glass transition temperature depends on the cellular structure. This effect is associated with a confinement of the polymer in the cell walls, and is one of the key reasons for the improved properties of nanocellular polymers.

  14. Control of Cellular Structural Networks Through Unstructured Protein Domains

    Science.gov (United States)

    2016-07-01

    transport receptor binding avidity triggers a self - healing collapse transition in FG-nucleoporin molecular brushes. Proc Natl Acad Sci U S A 109...L. & Minor, W. Data mining of metal ion environments present in protein structures. J Inorg Biochem 102, 1765-1776 (2008). 2872550 2. Harding...M.M. The architecture of metal coordination groups in proteins. Acta Crystallogr D Biol Crystallogr 60, 849-859 (2004). 3. Ho, Y., Yang, M., Chen, L

  15. Serial production of cellular structures - no additives allowed!

    OpenAIRE

    Hannemann, Christian; Scholz, Steffen

    2014-01-01

    As reported during the last years the Lightweight design department of the Fraunhofer-IWU is collaborating with several foundries. The projects reach from energy management up to product development and include technology research as well. Especially in high pressure die casting most of the products are material minimized till the edge of the castability. The wall thickness is decreased to the possible extreme, holes are integrated and structures created by topology optimization pushing this ...

  16. Light-weight telescope structure optimized by genetic algorithm

    Science.gov (United States)

    Kurita, Mikio; Ohmori, Hiroshi; Kunda, Masashi; Kawamura, Hiroaki; Noda, Noriaki; Seki, Takayuki; Nishimura, Yuji; Yoshida, Michitoshi; Sato, Shuji; Nagata, Tetsuya

    2010-07-01

    We designed the optics supporting structure (OSS) of a 3.8 m segmented mirror telescope by applying genetic algorithm optimization. The telescope is the first segmented mirror telescope in Japan whose primary mirror consists of 18 petal shaped segment mirrors. The whole mirror is supported by 54 actuators (3 actuators per each segment). In order to realize light-weight and stiff telescope structure, we have adopted full truss structure as OSS of the telescope. We optimized its design by a newly developed software program incorporating genetic algorithm. The program automatically generates new OSS design step-by-step by optimizing the OSS parameters for realizing both light-weight structure and homologous deformation of the mirror surface supported by the OSS against the telescope elevation change simultaneously. The program successfully generated an ultra light-weight OSS design whose weight is only 8 tons including the optical elements and actuators (4 tons) with an eigen frequency of 9.5 Hz. The deviations of the 54 nodes from their original configuration of the designed OSS are less than 100 μm in the range of elevation angle 20 - 90 degrees. A real model of the OSS is under test construction. We also report the results of static test and deformation performance of this OSS model.

  17. Enhancement of Heat Transfer in PCM by Cellular Zn-Al Structure

    Directory of Open Access Journals (Sweden)

    Naplocha K.

    2016-12-01

    Full Text Available Development of open cellular metal foam technology based on investment casting applying the polyurethane pattern is discussed. Technological process comprises preparing of the ceramic mold applying PUR foam as the pattern, firing of the mold, pouring of the liquid Zn-Al alloy into the mold and washing out of the ceramic material from cellular casting. Critical parameters such as the temperature of mold and poured metal, design of gating system affected by metalostatic pressure allowed to produce castings with cellular structure characterized by the open porosity.

  18. Noise protection of agricultural workers with cellular structures

    Directory of Open Access Journals (Sweden)

    Aleksandr N. Skvortsov

    2017-06-01

    Full Text Available Introduction: The article concerns occupational health and safety in agriculture of the Russian Federation. Among dangerous and harmful production factors in agriculture determining the injury rates and morbidity is negative impact of high levels of noise on workers. Prolonged exposure to noise leads to an increase in slow wave activity and changes in visual and auditory cortical response. Therefore, the improvement of conditions and labour protection in agriculture by reducing noise is an urgent task of our time. Materials and Methods: The authors’ assessment of the working conditions of employees of milk and meat processing industries showed that the noise level exceeds the standard values. There are some requirements for all the jobs. However, the development of noise-reducing structures demands frequency selective acoustic attenuation, based on the technological process. In the work, the author used methods based on features of the small reverberation chamber. Results: The authors proposed sound absorbent panels with high sanitary and hygienic properties: a biresonant honeycomb soundproof panel was developed for the dairy processing industry; an acoustic mesh panel was proposed for the meat processing lines. The sound absorption coefficient of the developed structures was evaluated by testing in a small reverberation chamber. Discussion and Conclusions: The article has an exploratory nature. The results of these studies graphically demonstrate the advantages of the proposed reduction of the noise level in agriculture.

  19. Tensegrity II. How structural networks influence cellular information processing networks

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  20. Robust Template Decomposition without Weight Restriction for Cellular Neural Networks Implementing Arbitrary Boolean Functions Using Support Vector Classifiers

    Directory of Open Access Journals (Sweden)

    Yih-Lon Lin

    2013-01-01

    Full Text Available If the given Boolean function is linearly separable, a robust uncoupled cellular neural network can be designed as a maximal margin classifier. On the other hand, if the given Boolean function is linearly separable but has a small geometric margin or it is not linearly separable, a popular approach is to find a sequence of robust uncoupled cellular neural networks implementing the given Boolean function. In the past research works using this approach, the control template parameters and thresholds are restricted to assume only a given finite set of integers, and this is certainly unnecessary for the template design. In this study, we try to remove this restriction. Minterm- and maxterm-based decomposition algorithms utilizing the soft margin and maximal margin support vector classifiers are proposed to design a sequence of robust templates implementing an arbitrary Boolean function. Several illustrative examples are simulated to demonstrate the efficiency of the proposed method by comparing our results with those produced by other decomposition methods with restricted weights.

  1. Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme

    KAUST Repository

    Shen, Yang

    2016-11-01

    The three-dimensional premixed H2-O2 detonation propagation in rectangular ducts is simulated using an in-house parallel detonation code based on the second-order space–time conservation element and solution element (CE/SE) scheme. The simulation reproduces three typical cellular structures by setting appropriate cross-sectional size and initial perturbation in square tubes. As the cross-sectional size decreases, critical cellular structures transforming the rectangular or diagonal mode into the spinning mode are obtained and discussed in the perspective of phase variation as well as decreasing of triple point lines. Furthermore, multiple cellular structures are observed through examples with typical aspect ratios. Utilizing the visualization of detailed three-dimensional structures, their formation mechanism is further analyzed.

  2. Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus

    2016-01-01

    Additive manufacturing is rapidly developing and gaining popularity for direct metal fabrication systems like selective laser melting (SLM). The technology has shown significant improvement for high-quality fabrication of lightweight design-efficient structures such as conformal cooling channels...... in injection molding tools and lattice structures. This research examines the effect of cellular lattice structures on the strength of workpieces additively manufactured from ultra high-strength steel powder. Two commercial SLM machines are used to fabricate cellular samples based on four architectures— solid...

  3. The influence of hypoxia-hypercapnia on the structural state of cellular membranes of rat hepatocytes

    Directory of Open Access Journals (Sweden)

    Світлана Володимирівна Хижняк

    2015-10-01

    Full Text Available The structural and dynamic state of cellular membranes of rat hepatocytes under the influence of hypoxia, hypercapnia and hypothermia factors (artificial hypobiosis was investigated using the method of fluorescent probes. The diverse changes of the structure and physical properties of these membranes (especially of inner mitochondrial membrane were shown. The structural reorganization of the membrane surface area, the decrease of the lipid structural orderliness and conformational modification of proteins occur during artificial hypobiosis

  4. Tribological behavior of Ti6Al4V cellular structures produced by Selective Laser Melting.

    Science.gov (United States)

    Bartolomeu, F; Sampaio, M; Carvalho, O; Pinto, E; Alves, N; Gomes, J R; Silva, F S; Miranda, G

    2017-05-01

    Additive manufacturing (AM) technologies enable the fabrication of innovative structures with complex geometries not easily manufactured by traditional processes. Regarding metallic cellular structures with tailored/customized mechanical and wear performance aiming to biomedical applications, Selective Laser Melting (SLM) is a remarkable solution for their production. Focusing on prosthesis and implants, in addition to a suitable Young's modulus it is important to assess the friction response and wear resistance of these cellular structures in a natural environment. In this sense, five cellular Ti6Al4V structures with different open-cell sizes (100-500µm) were designed and produced by SLM. These structures were tribologicaly tested against alumina using a reciprocating sliding ball-on-plate tribometer. Samples were submerged in Phosphate Buffered Saline (PBS) fluid at 37°C, in order to mimic in some extent the human body environment. The results showed that friction and wear performance of Ti6Al4V cellular structures is influenced by the structure open-cell size. The higher wear resistance was obtained for structures with 100µm designed open-cell size due to the higher apparent area of contact to support tribological loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cellular Structure and Oscillating Behavior of PBX Detonations

    Science.gov (United States)

    Plaksin, Igor; Rodrigues, Luis; Mendes, Ricardo; Plaksin, Svyatoslav; Ferreira, Claudia; Fernandes, Eduardo

    2015-06-01

    Efforts are aimed on experimental study of reaction localization/instabilities manifested in detonation reaction zone (DRZ) of PBXs at micro-, meso- and macro-scale. At micro- and meso-scale levels, leading role of kinetic nonequilibrium in reaction localizations onset was established in experiments with single beta-HMX crystals-in-binder subjected to 20 GPa-shock and PBX detonation. Reaction localizations and further ejecta formation were spatially resolved by 96-channel optical analyzer at simultaneous recording reaction light and stress field around crystal. Spatially resolved measurements reveal fundamental role of shear-strain in triggering initiation chemistry. At macro-scale level, formation of the cell-structures and oscillating detonation regimes revealed in HMX- and RDX-based PBXs at wide variation of grain-sizes, wt. % filler/binder, residual micro-voids and binder nature. Emphasizes placed on effect of DRZ-induced radiation upon oscillating regimes of detonation front motion. Work was supported by the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Clifford Bedford and John Zimmerman Program Managers.

  6. Dispersion fraction enhances cellular growth of carbon nanotube and aluminum oxide reinforced ultrahigh molecular weight polyethylene biocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Anup Kumar; Balani, Kantesh, E-mail: kbalani@iitk.ac.in

    2015-01-01

    Ultrahigh molecular weight polyethylene (UHMWPE) is widely used as bone-replacement material for articulating surfaces due to its excellent wear resistance and low coefficient of friction. But, the wear debris, generated during abrasion between mating surfaces, leads to aseptic loosening of implants. Thus, various reinforcing agents are generally utilized, which may alter the surface and biological properties of UHMWPE. In the current work, the cellular response of compression molded UHMWPE upon reinforcement of bioactive multiwalled carbon nanotubes (MWCNTs) and bioinert aluminum oxide (Al{sub 2}O{sub 3}) is investigated. The phase retention and stability were observed using X-ray diffraction, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The reinforcement of MWCNTs and Al{sub 2}O{sub 3} has shown to alter the wettability (from contact angle of ∼ 88° ± 2° to ∼ 118° ± 4°) and surface energy (from ∼ 23.20 to ∼ 17.75 mN/m) of composites with respect to UHMWPE, without eliciting any adverse effect on cytocompatibility for the L929 mouse fibroblast cell line. Interestingly, the cellular growth of the L929 mouse fibroblast cell line is observed to be dominated by the dispersion fraction of surface free energy (SFE). After 48 h of incubation period, a decrease in metabolic activity of MWCNT–Al{sub 2}O{sub 3} reinforced composites is attributed to apatite formation that reduces the dispersion fraction of surface energy. The mineralized apatite during incubation was confirmed and quantified by energy dispersive spectroscopy and X-ray diffraction respectively. Thus, the dispersion fraction of surface free energy can be engineered to play an important role in achieving enhanced metabolic activity of the MWCNT–Al{sub 2}O{sub 3} reinforced UHMWPE biopolymer composites. - Highlights: • The cellular response of UHMWPE upon MWCNT and Al{sub 2}O{sub 3} reinforcement is highlighted. • Wettability decreases with Al{sub 2}O{sub 3} and

  7. Second harmonic generation imaging microscopy of cellular structure and function

    Science.gov (United States)

    Millard, Andrew C.; Jin, Lei; Loew, Leslie M.

    2005-03-01

    Second harmonic generation (SHG) imaging microscopy is an important emerging technique for biological research, with many advantages over existing one- or two-photon fluorescence techniques. A non-linear phenomenon employing mode-locked Ti:sapphire or fiber-based lasers, SHG results in intrinsic optical sectioning without the need for a confocal aperture. Furthermore, as a second-order process SHG is confined to loci lacking a center of symmetry. Many important structural proteins such as collagen and cellulose show intrinsic SHG, thus providing access to sub-resolution information on symmetry. However, we are particularly interested here in "resonance-enhanced" SHG from styryl dyes. In general SHG is a combination of a true second-order process and a third-order process dependent on a static electric field, such that SHG from membrane-bound dyes depends on a cell's trans-membrane potential. With simultaneous patch-clamping and non-linear imaging of cells, we have found that SHG is a sensitive probe of trans-membrane potential with sensitivities that are up to four times better than those obtained under optimal conditions using one-photon fluorescence imaging. With the sensitivity of SHG to local electric fields from other sources such as the membrane dipole potential as well as the quadratic dependence of SHG on concentration, we have found that SHG imaging of styryl dyes is also a powerful technique for the investigation of lipid phases and rafts and for the visualization of the dynamics of membrane-vesicle fusion following fertilization of an ovum.

  8. GTX Reference Vehicle Structural Verification Methods and Weight Summary

    Science.gov (United States)

    Hunter, J. E.; McCurdy, D. R.; Dunn, P. W.

    2002-01-01

    The design of a single-stage-to-orbit air breathing propulsion system requires the simultaneous development of a reference launch vehicle in order to achieve the optimal mission performance. Accordingly, for the GTX study a 300-lb payload reference vehicle was preliminarily sized to a gross liftoff weight (GLOW) of 238,000 lb. A finite element model of the integrated vehicle/propulsion system was subjected to the trajectory environment and subsequently optimized for structural efficiency. This study involved the development of aerodynamic loads mapped to finite element models of the integrated system in order to assess vehicle margins of safety. Commercially available analysis codes were used in the process along with some internally developed spreadsheets and FORTRAN codes specific to the GTX geometry for mapping of thermal and pressure loads. A mass fraction of 0.20 for the integrated system dry weight has been the driver for a vehicle design consisting of state-of-the-art composite materials in order to meet the rigid weight requirements. This paper summarizes the methodology used for preliminary analyses and presents the current status of the weight optimization for the structural components of the integrated system.

  9. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq.

    Science.gov (United States)

    Watters, Kyle E; Abbott, Timothy R; Lucks, Julius B

    2016-01-29

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure-function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA-RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA-RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Dispersion fraction enhances cellular growth of carbon nanotube and aluminum oxide reinforced ultrahigh molecular weight polyethylene biocomposites.

    Science.gov (United States)

    Patel, Anup Kumar; Balani, Kantesh

    2015-01-01

    Ultrahigh molecular weight polyethylene (UHMWPE) is widely used as bone-replacement material for articulating surfaces due to its excellent wear resistance and low coefficient of friction. But, the wear debris, generated during abrasion between mating surfaces, leads to aseptic loosening of implants. Thus, various reinforcing agents are generally utilized, which may alter the surface and biological properties of UHMWPE. In the current work, the cellular response of compression molded UHMWPE upon reinforcement of bioactive multiwalled carbon nanotubes (MWCNTs) and bioinert aluminum oxide (Al2O3) is investigated. The phase retention and stability were observed using X-ray diffraction, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The reinforcement of MWCNTs and Al2O3 has shown to alter the wettability (from contact angle of ~88°±2° to ~118°±4°) and surface energy (from ~23.20 to ~17.75 mN/m) of composites with respect to UHMWPE, without eliciting any adverse effect on cytocompatibility for the L929 mouse fibroblast cell line. Interestingly, the cellular growth of the L929 mouse fibroblast cell line is observed to be dominated by the dispersion fraction of surface free energy (SFE). After 48 h of incubation period, a decrease in metabolic activity of MWCNT-Al2O3 reinforced composites is attributed to apatite formation that reduces the dispersion fraction of surface energy. The mineralized apatite during incubation was confirmed and quantified by energy dispersive spectroscopy and X-ray diffraction respectively. Thus, the dispersion fraction of surface free energy can be engineered to play an important role in achieving enhanced metabolic activity of the MWCNT-Al2O3 reinforced UHMWPE biopolymer composites. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure.

    Science.gov (United States)

    Peng, Wei; Wang, Jianxin; Zhao, Bihai; Wang, Lusheng

    2015-01-01

    Protein complexes play a significant role in understanding the underlying mechanism of most cellular functions. Recently, many researchers have explored computational methods to identify protein complexes from protein-protein interaction (PPI) networks. One group of researchers focus on detecting local dense subgraphs which correspond to protein complexes by considering local neighbors. The drawback of this kind of approach is that the global information of the networks is ignored. Some methods such as Markov Clustering algorithm (MCL), PageRank-Nibble are proposed to find protein complexes based on random walk technique which can exploit the global structure of networks. However, these methods ignore the inherent core-attachment structure of protein complexes and treat adjacent node equally. In this paper, we design a weighted PageRank-Nibble algorithm which assigns each adjacent node with different probability, and propose a novel method named WPNCA to detect protein complex from PPI networks by using weighted PageRank-Nibble algorithm and core-attachment structure. Firstly, WPNCA partitions the PPI networks into multiple dense clusters by using weighted PageRank-Nibble algorithm. Then the cores of these clusters are detected and the rest of proteins in the clusters will be selected as attachments to form the final predicted protein complexes. The experiments on yeast data show that WPNCA outperforms the existing methods in terms of both accuracy and p-value. The software for WPNCA is available at "http://netlab.csu.edu.cn/bioinfomatics/weipeng/WPNCA/download.html".

  12. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    DEFF Research Database (Denmark)

    Kragstrup, T W; Kjaer, M; Mackey, A L

    2011-01-01

    in skeletal muscle ECM contribute to the increased stiffness and impairment in force generated by the contracting muscle fibers seen with aging. The cellular interactions provide and potentially coordinate an adaptation to mechanical loading and ensure successful regeneration after muscle injury. Some......The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging......-links and a buildup of advanced glycation end-product cross-links. Altered mechanotransduction, poorer activation of satellite cells, poorer chemotactic and delayed inflammatory responses, and a change in modulators of the ECM are important cellular changes. It is possible that the structural and biochemical changes...

  13. Quantitative structure-activity relationships for cellular uptake of surface-modified nanoparticles.

    Science.gov (United States)

    Liu, Rong; Rallo, Robert; Bilal, Muhammad; Cohen, Yoram

    2015-01-01

    Quantitative structure-activity relationships (QSARs) were developed, for cellular uptake of nanoparticles (NPs) of the same iron oxide core but with different surface-modifying organic molecules, based on linear and non-linear (epsilon support vector regression (ε-SVR)). A linear QSAR provided high prediction accuracy of R2=0.751 (coefficient of determination) using 11 descriptors selected from an initial pool of 184 descriptors calculated for the NP surfacemodifying molecules, while a ε-SVR based QSAR with only 6 descriptors improved prediction accuracy to R2=0.806. The linear and ε-SVR based QSARs both demonstrated good robustness and well spanned applicability domains. It is suggested that the approach of evaluating pertinent descriptors and their significance, via QSAR analysis, to cellular NP uptake could support planning and interpretation of toxicity studies as well as provide guidance for the tailor-design NPs with respect to targeted cellular uptake for various applications.

  14. A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton.

    Science.gov (United States)

    Cañadas, Patrick; Laurent, Valerie M; Oddou, Christian; Isabey, Daniel; Wendling, Sylvie

    2002-09-21

    This study describes the viscoelastic properties of a refined cellular-tensegrity model composed of six rigid bars connected to a continuous network of 24 viscoelastic pre-stretched cables (Voigt bodies) in order to analyse the role of the cytoskeleton spatial rearrangement on the viscoelastic response of living adherent cells. This structural contribution was determined from the relationships between the global viscoelastic properties of the tensegrity model, i.e., normalized viscosity modulus (eta(*)), normalized elasticity modulus (E(*)), and the physical properties of the constitutive elements, i.e., their normalized length (L(*)) and normalized initial internal tension (T(*)). We used a numerical method to simulate the deformation of the structure in response to different types of loading, while varying by several orders of magnitude L(*) and T(*). The numerical results obtained reveal that eta(*) remains almost independent of changes in T(*) (eta(*) proportional, variant T(*+0.1)), whereas E(*) increases with approximately the square root of the internal tension T(*) (from E(*) proportional, variant T(*+0.3) to E(*) proportional, variant T(*+0.7)). Moreover, structural viscosity eta(*) and elasticity E(*) are both inversely proportional to the square of the size of the structure (eta(*) proportional, variant L(*-2) and E(*) proportional, variant L(*-2)). These structural properties appear consistent with cytoskeleton (CSK) mechanical properties measured experimentally by various methods which are specific to the CSK micromanipulation in living adherent cells. Present results suggest, for the first time, that the effect of structural rearrangement of CSK elements on global CSK behavior is characterized by a faster cellular mechanical response relatively to the CSK element response, which thus contributes to the solidification process observed in adherent cells. In extending to the viscoelastic properties the analysis of the mechanical response of the cellular

  15. Quaternary structures of recombinant, cellular, and serum forms of Thymidine Kinase 1 from dogs and humans

    Directory of Open Access Journals (Sweden)

    Hanan Sharif

    2012-06-01

    Full Text Available Abstract Background Thymidine kinase 1 (TK1 is a salvage enzyme involved in DNA precursor synthesis, and its expression is proliferation dependent. A serum form of TK1 has been used as a biomarker in human medicine for many years and more recently to monitor canine lymphoma. Canine TK1 has not been cloned and studied. Therefore, dog and human TK1 cDNA were cloned and expressed, and the recombinant enzymes characterized. The serum and cellular forms of canine and human TK1 were studied by size-exclusion chromatography and the level of TK1 protein was determined using polyclonal and monoclonal anti-TK1 antibodies. Results Canine TK1 phosphorylated the thymidine (dThd analog 3'-azido-thymidine (AZT as efficiently as it did dThd, whereas AZT phosphorylation by human TK1 was less efficient than that of dThd. Dog TK1 was also more thermostable and pH tolerant than the human enzyme. Oligomeric forms were observed with both enzymes in addition to the tetrameric and dimeric forms. Cellular TK1 was predominantly seen in dimeric and tetrameric forms, in the case of both dog TK1 from MDCK cells and human TK1 from CEM cells. Active serum TK1 was found mainly in a high molecular weight form, and treatment with a reducing agent shifted the high molecular weight complex to lower molecular weight forms with reduced total activity. Western blot analysis demonstrated a polypeptide of 26 kDa (dog and 25 kDa (human for cellular and serum TK1. There was no direct correlation between serum TK1 activity and protein level. It appears that a substantial fraction of serum TK1 is not enzymatically active. Conclusions These results suggest that the serum TK1 protein differs from cellular or recombinant forms, is more active in high molecular weight complexes, and is sensitive to reducing agents. The results presented here provide important information for the future development and use of serum TK1 as a diagnostic biomarker in human and veterinary medicine.

  16. A cellular automata-based deterministic inversion algorithm for the characterization of linear structural heterogeneities

    Science.gov (United States)

    Fischer, P.; Jardani, A.; Lecoq, N.

    2017-03-01

    Inverse problem permits to map the subsurface properties from a few observed data. The inverse problem can be physically constrained by a priori information on the property distribution in order to limit the nonuniqueness of the solution. The geostatistical information is often chosen as a priori information; however, when the field properties present a spatial locally distributed high variability, the geostatistical approach becomes inefficient. Therefore, we propose a new method adapted for fields presenting linear structures (such as a fractured field). The Cellular Automata-based Deterministic Inversion (CADI) method is, as far as we know when this paper is produced, the first inversion method which permits a deterministic inversion based on a Bayesian approach and using a dynamic optimization to generate different linear structures iteratively. The model is partitioned in cellular automaton subspaces, each one controlling a different zone of the model. A cellular automata subspace structures the properties of the model in two units ("structure" and "background") and control their dispensing direction and their values. The partitioning of the model in subspaces permits to monitor a large-scale structural model with only a few pilot-parameters and to generate linear structures with local direction changes. Thereby, the algorithm can easily handle with large-scale structures, and a sensitivity analysis is possible on these structural pilot-parameters, which permits to considerably accelerate the optimization process in order to find the best structural geometry. The algorithm has been successfully tested on simple, to more complex, theoretical models with different inversion techniques by using seismic and hydraulic data.

  17. From Stochastic Foam to Designed Structure: Balancing Cost and Performance of Cellular Metals.

    Science.gov (United States)

    Lehmhus, Dirk; Vesenjak, Matej; Schampheleire, Sven de; Fiedler, Thomas

    2017-08-08

    Over the past two decades, a large number of metallic foams have been developed. In recent years research on this multi-functional material class has further intensified. However, despite their unique properties only a limited number of large-scale applications have emerged. One important reason for this sluggish uptake is their high cost. Many cellular metals require expensive raw materials, complex manufacturing procedures, or a combination thereof. Some attempts have been made to decrease costs by introducing novel foams based on cheaper components and new manufacturing procedures. However, this has often yielded materials with unreliable properties that inhibit utilization of their full potential. The resulting balance between cost and performance of cellular metals is probed in this editorial, which attempts to consider cost not in absolute figures, but in relation to performance. To approach such a distinction, an alternative classification of cellular metals is suggested which centers on structural aspects and the effort of realizing them. The range thus covered extends from fully stochastic foams to cellular structures designed-to-purpose.

  18. From Stochastic Foam to Designed Structure: Balancing Cost and Performance of Cellular Metals

    Science.gov (United States)

    Lehmhus, Dirk; Vesenjak, Matej

    2017-01-01

    Over the past two decades, a large number of metallic foams have been developed. In recent years research on this multi-functional material class has further intensified. However, despite their unique properties only a limited number of large-scale applications have emerged. One important reason for this sluggish uptake is their high cost. Many cellular metals require expensive raw materials, complex manufacturing procedures, or a combination thereof. Some attempts have been made to decrease costs by introducing novel foams based on cheaper components and new manufacturing procedures. However, this has often yielded materials with unreliable properties that inhibit utilization of their full potential. The resulting balance between cost and performance of cellular metals is probed in this editorial, which attempts to consider cost not in absolute figures, but in relation to performance. To approach such a distinction, an alternative classification of cellular metals is suggested which centers on structural aspects and the effort of realizing them. The range thus covered extends from fully stochastic foams to cellular structures designed-to-purpose. PMID:28786935

  19. Integrating protein structures and precomputed genealogies in the Magnum database: Examples with cellular retinoid binding proteins

    Directory of Open Access Journals (Sweden)

    Bradley Michael E

    2006-02-01

    Full Text Available Abstract Background When accurate models for the divergent evolution of protein sequences are integrated with complementary biological information, such as folded protein structures, analyses of the combined data often lead to new hypotheses about molecular physiology. This represents an excellent example of how bioinformatics can be used to guide experimental research. However, progress in this direction has been slowed by the lack of a publicly available resource suitable for general use. Results The precomputed Magnum database offers a solution to this problem for ca. 1,800 full-length protein families with at least one crystal structure. The Magnum deliverables include 1 multiple sequence alignments, 2 mapping of alignment sites to crystal structure sites, 3 phylogenetic trees, 4 inferred ancestral sequences at internal tree nodes, and 5 amino acid replacements along tree branches. Comprehensive evaluations revealed that the automated procedures used to construct Magnum produced accurate models of how proteins divergently evolve, or genealogies, and correctly integrated these with the structural data. To demonstrate Magnum's capabilities, we asked for amino acid replacements requiring three nucleotide substitutions, located at internal protein structure sites, and occurring on short phylogenetic tree branches. In the cellular retinoid binding protein family a site that potentially modulates ligand binding affinity was discovered. Recruitment of cellular retinol binding protein to function as a lens crystallin in the diurnal gecko afforded another opportunity to showcase the predictive value of a browsable database containing branch replacement patterns integrated with protein structures. Conclusion We integrated two areas of protein science, evolution and structure, on a large scale and created a precomputed database, known as Magnum, which is the first freely available resource of its kind. Magnum provides evolutionary and structural

  20. Nanoparticle–Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes

    Science.gov (United States)

    2015-01-01

    Conspectus The use of nanoparticles (NPs) in biology and medicine requires a molecular-level understanding of how NPs interact with cells in a physiological environment. A critical difference between well-controlled in vitro experiments and in vivo applications is the presence of a complex mixture of extracellular proteins. It has been established that extracellular serum proteins present in blood will adsorb onto the surface of NPs, forming a “protein corona”. Our goal was to understand how this protein layer affected cellular-level events, including NP binding, internalization, and transport. A combination of microscopy, which provides spatial resolution, and spectroscopy, which provides molecular information, is necessary to probe protein–NP–cell interactions. Initial experiments used a model system composed of polystyrene NPs functionalized with either amine or carboxylate groups to provide a cationic or anionic surface, respectively. Serum proteins adsorb onto the surface of both cationic and anionic NPs, forming a net anionic protein–NP complex. Although these protein–NP complexes have similar diameters and effective surface charges, they show the exact opposite behavior in terms of cellular binding. In the presence of bovine serum albumin (BSA), the cellular binding of BSA–NP complexes formed from cationic NPs is enhanced, whereas the cellular binding of BSA–NP complexes formed from anionic NPs is inhibited. These trends are independent of NP diameter or cell type. Similar results were obtained for anionic quantum dots and colloidal gold nanospheres. Using competition assays, we determined that BSA–NP complexes formed from anionic NPs bind to albumin receptors on the cell surface. BSA–NP complexes formed from cationic NPs are redirected to scavenger receptors. The observation that similar NPs with identical protein corona compositions bind to different cellular receptors suggested that a difference in the structure of the adsorbed protein

  1. Simulation Based Optimization of Complex Monolithic Composite Structures Using Cellular Core Technology

    Science.gov (United States)

    Hickmott, Curtis W.

    Cellular core tooling is a new technology which has the capability to manufacture complex integrated monolithic composite structures. This novel tooling method utilizes thermoplastic cellular cores as inner tooling. The semi-rigid nature of the cellular cores makes them convenient for lay-up, and under autoclave temperature and pressure they soften and expand providing uniform compaction on all surfaces including internal features such as ribs and spar tubes. This process has the capability of developing fully optimized aerospace structures by reducing or eliminating assembly using fasteners or bonded joints. The technology is studied in the context of evaluating its capabilities, advantages, and limitations in developing high quality structures. The complex nature of these parts has led to development of a model using the Finite Element Analysis (FEA) software Abaqus and the plug-in COMPRO Common Component Architecture (CCA) provided by Convergent Manufacturing Technologies. This model utilizes a "virtual autoclave" technique to simulate temperature profiles, resin flow paths, and ultimately deformation from residual stress. A model has been developed simulating the temperature profile during curing of composite parts made with the cellular core technology. While modeling of composites has been performed in the past, this project will look to take this existing knowledge and apply it to this new manufacturing method capable of building more complex parts and develop a model designed specifically for building large, complex components with a high degree of accuracy. The model development has been carried out in conjunction with experimental validation. A double box beam structure was chosen for analysis to determine the effects of the technology on internal ribs and joints. Double box beams were manufactured and sectioned into T-joints for characterization. Mechanical behavior of T-joints was performed using the T-joint pull-off test and compared to traditional

  2. Critical Role of Crystalline Anisotropy in the Stability of Cellular Array Structures in Directional Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Kopczynski, P.; Rappel, W.; Karma, A. [Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115 (United States)

    1996-10-01

    We calculate numerically the full Floquet-Bloch stability spectrum of cellular array structures in a symmetric model of directional solidification. Our results demonstrate that crystalline anisotropy critically influences the stability of these structures. Without anisotropy, the stability balloon of cells in the plane of wave number and velocity closes near the onset of morphological instability. With a finite, but even small, amount of anisotropy this balloon remains open and a band of stable solutions persists for higher velocities into a deep cell regime. The width of the balloon depends critically on the anisotropy strength. {copyright} {ital 1996 The American Physical Society.}

  3. The influence of cellular structures on flow stress of high strength components manufactured using SLM

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus

    2016-01-01

    Additive manufacturing has shown significant improvement in material and machines for high-quality solid freeform fabrication processes such as selective laser melting (SLM). In particular, manufacturing lattice structures using the SLM procedure is of interest. This research examines the effect...... of cellular materials on compression strength. The specimens are manufactured additively using industrial 3D printing systems from high-strength alloy. The material has the right mechanical properties for manufacturing tool components. This includes samples with solid and lattice structures. The Compression...

  4. LOCnet and LOCtarget: sub-cellular localization for structural genomics targets

    Science.gov (United States)

    Nair, Rajesh; Rost, Burkhard

    2004-01-01

    LOCtarget is a web server and database that predicts and annotates sub-cellular localization for structural genomics targets; LOCnet is one of the methods used in LOCtarget that can predict sub-cellular localization for all eukaryotic and prokaryotic proteins. Targets are taken from the central registration database for structural genomics, namely, TargetDB. LOCtarget predicts localization through a combination of four different methods: known nuclear localization signals (PredictNLS), homology-based transfer of experimental annotations (LOChom), inference through automatic text analysis of SWISS-PROT keywords (LOCkey) and de novo prediction through a system of neural networks (LOCnet). Additionally, we report predictions from SignalP. The final prediction is based on the method with the highest confidence. The web server can be used to predict sub-cellular localization of proteins from their amino acid sequence. The LOCtarget database currently contains localization predictions for all eukaryotic proteins from TargetDB and is updated every week. The server is available at http://www.rostlab.org/services/LOCtarget/. PMID:15215440

  5. Predictive modeling of multicellular structure formation by using Cellular Particle Dynamics simulations

    Science.gov (United States)

    McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2014-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  6. Characterization of 316L Steel Cellular Dodecahedron Structures Produced by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Konda Gokuldoss Prashanth

    2016-10-01

    Full Text Available The compression behavior of different 316L steel cellular dodecahedron structures with different density values were studied. The 316L steel structures produced using the selective laser melting process has four different geometries: single unit cells with and without the addition of base plates beneath and on top, and sandwich structures with multiple unit cells with different unit cell sizes. The relation between the relative compressive strength and the relative density was compared using different Gibson-Ashby models and with other published reports. The different aspects of the deformation and the mechanical properties were evaluated and the deformation at distinct loading levels was recorded. Finite element method (FEM simulations were carried out with the defined structures and the mechanical testing results were compared. The calculated theory, simulation estimation, and the observed experimental results are in good agreement.

  7. New structural and functional defects in polyphosphate deficient bacteria: A cellular and proteomic study

    Directory of Open Access Journals (Sweden)

    Chávez Francisco P

    2010-01-01

    Full Text Available Abstract Background Inorganic polyphosphate (polyP, a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2 and degraded by exopolyphosphatase (PPX. Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. Results The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. Conclusions The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA cycle, β-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency.

  8. Structural classification of proteins using texture descriptors extracted from the cellular automata image.

    Science.gov (United States)

    Kavianpour, Hamidreza; Vasighi, Mahdi

    2017-02-01

    Nowadays, having knowledge about cellular attributes of proteins has an important role in pharmacy, medical science and molecular biology. These attributes are closely correlated with the function and three-dimensional structure of proteins. Knowledge of protein structural class is used by various methods for better understanding the protein functionality and folding patterns. Computational methods and intelligence systems can have an important role in performing structural classification of proteins. Most of protein sequences are saved in databanks as characters and strings and a numerical representation is essential for applying machine learning methods. In this work, a binary representation of protein sequences is introduced based on reduced amino acids alphabets according to surrounding hydrophobicity index. Many important features which are hidden in these long binary sequences can be clearly displayed through their cellular automata images. The extracted features from these images are used to build a classification model by support vector machine. Comparing to previous studies on the several benchmark datasets, the promising classification rates obtained by tenfold cross-validation imply that the current approach can help in revealing some inherent features deeply hidden in protein sequences and improve the quality of predicting protein structural class.

  9. Formation of basement membrane-like structure terminates the cellular encapsulation of microfilariae in the haemocoel of Anopheles quadrimaculatus.

    Science.gov (United States)

    Liu, C T; Hou, R F; Chen, C C

    1998-06-01

    The encapsulation of microfilariae in the haemocoels of mosquitoes combines both humoral and cellular reactions: the microfilariae are first encased in an acellular layer of melanin, followed by a cellular encapsulation by plasmatocytes. In this study, we demonstrated that cellular encapsulation of Brugia pahangi microfilariae in the haemocoel of the mosquito Anopheles quadrimaculatus was terminated by the formation of a basement membrane-like structure on the outermost surface of the cellular capsule. This structure occurred in the early stage of cellular encapsulation and was evident on the exterior surface of the plasmatocyte, when the active haemocytes were attaching to the already melanized microfilariae. The termination structure appears to be laid down by releasing the vesicle inclusions of haemocytes and has similarities in ultrastructure and cationic colloidal gold staining properties with that of mosquito basement membranes.

  10. Wind induced fatigue of slender light weight structures in structural dynamics

    NARCIS (Netherlands)

    Staalduinen, P.C. van; Courage, W.M.G.

    1996-01-01

    The paper presents a simplified analytical method for calculating the stress ranges in light weight slender structures due to wind loading. The background and assumptions of the method have been explained as well as the derivation of the relevant formula. The application of the simplified method on

  11. Dielectric properties modelling of cellular structures with PDMS for micro-sensor applications

    Science.gov (United States)

    Kachroudi, Achraf; Basrour, Skandar; Rufer, Libor; Sylvestre, Alain; Jomni, Fathi

    2015-12-01

    Electro-active polymers are emerging in the fields of actuators and micro-sensors because their good dielectric and mechanical properties makes them suitable for such applications. In this work, we focus on micro-structured (cellular) polymer materials (referred as piezoelectrets or ferroelectrets) that need prior charging to attain piezoelectric behaviour. The development of such applications requires an in-depth knowledge of the intrinsic dielectric properties of such structures and models to enable the accurate prediction of a given micro-structured material’s dielectric properties. Various polymers including polypropylene, polytetrafluoroethylene, fluoroethylenepropylene, cyclo-olefines and poly(ethylene terephthalate) in a cellular form have been studied by researchers over the last fifteen years. However, there is still a lack of information on the intrinsic dielectric properties of the most recently used dielectric polymer (polydimethylsiloxane, PDMS) over wide frequency and temperature ranges. In this work, we shall propose an exhaustive equivalent electrical circuit model and explain how it can be used to predict the micro-structured PDMS complex permittivity versus frequency and temperature. The results obtained from the model were found to be in good agreement with experimental data for various micro-structured PDMS materials. Typically, for micro-sensor applications, the dielectric constant and dielectric losses are key factors which need to be minimized. We have developed a configuration which enables both to be strongly reduced with a reduction of 16% in the dielectric constant of a micro-structured PDMS compared with the bulk material. In addition, the phenomena responsible for dielectric losses variations with frequency and temperature are discussed and correlated with the theoretical model. Our model is thus proved to be a powerful tool for the control of the dielectric properties of micro-structured PDMS material for micro-sensor applications.

  12. Correlation of Emulsion Structure with Cellular Uptake Behavior of Encapsulated Bioactive Nutrients: Influence of Droplet Size and Interfacial Structure.

    Science.gov (United States)

    Lu, Wei; Kelly, Alan L; Maguire, Pierce; Zhang, Hongzhou; Stanton, Catherine; Miao, Song

    2016-11-16

    In this study, an in vitro Caco-2 cell culture assay was employed to evaluate the correlation between emulsion structure and cellular uptake of encapsulated β-carotene. After 4 h of incubation, an emulsion stabilized with whey protein isolate showed the highest intracellular accumulation of β-carotene (1.06 μg), followed by that stabilized with sodium caseinate (0.60 μg) and Tween 80 (0.20 μg), which are 13-, 7.5-, and 2.5-fold higher than that of free β-carotene (0.08 μg), respectively. Emulsions with small droplet size (239 ± 5 nm) showed a higher cellular uptake of β-carotene (1.56 μg) than emulsiond with large droplet size (489 ± 9 nm) (0.93 μg) (p emulsion significantly improved the cellular uptake of β-carotene and thus potentially its bioavailability; uptake was closely correlated with the interfacial composition and droplet size of emulsions. The findings support the potential for achieving optimal controlled and targeted delivery of bioactive nutrients by structuring emulsions.

  13. Cardiac troponin and tropomyosin: structural and cellular perspectives to unveil the Hypertrophic Cardiomyopathy phenotype

    Directory of Open Access Journals (Sweden)

    Mayra de A. Marques

    2016-09-01

    Full Text Available Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1,400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the disease of the sarcomere. The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53, seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We

  14. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype

    Science.gov (United States)

    Marques, Mayra de A.; de Oliveira, Guilherme A. P.

    2016-01-01

    Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the

  15. [Effect of electroacupuncture on cellular structure of hippocampus in splenic asthenia pedo-rats].

    Science.gov (United States)

    Yang, Zhuo-xin; Zhuo, Yuan-yuan; Yu, Hai-bo; Wang, Ning

    2010-02-01

    To observe the effect of electroacupuncture (EA) on hippocampal structure in splenic asthenia pedo-rats. A total of 15 SD male rats were randomly assigned to normal control group (n=5), model group (n=5) and EA group (n=5). Splenic asthenic syndrome model was established by intragastric administration of rhubarb and intraperitoneal injection of Reserpine for 14 d. EA (1 mA, 3 Hz/iS Hz) was applied to bilateral "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) for 20 mm, once a day for 14 days. The cellular structure of hippocampus was observed by light microscope and transmission electron microscope. Optical microscopic observation showed that in normal control group, the cellular nucleus was distinct, and the granular cell layer well-arranged and tight. In model group, the intracellular space was widened, and the granular cell layer was out of order in the arrangement. In EA group, the celluldr nucleus and the granular cell layer were nearly normal. Results of the electronic microscope showed that cells in model group had a karyopyknosis with irregular appearance and clear incisure, and some of them presented dissolving and necrotic phenomena; and those in EA group were milder in injury, had nearly-normal nucleus with visible nucleoli and relatively-intact nuclear membrane. Regarding the cellular plasma, in comparison with rich normal organelles of control group, the mitochondria in model group were swelling, with vague, dissolved and broken cristae, while in EA group, majority of the organelles were well-kept, and slightly dissolved mitochondrial cristae found. In regard to the synaptic structure, in comparison with control group, synaptic apomorphosis and swelling mitochondria were found in model group While in EA group, milder swelling and hydropic degeneration were seen. Different from the distinct pre- and post-synaptic membrane and synaptic vesicles of control group, while those in EA group were nearly-normal. electroacupunture can effectively relieve splenasthenic

  16. Bulky Macroporous TiO2 Photocatalyst with Cellular Structure via Facile Wood-Template Method

    Directory of Open Access Journals (Sweden)

    Qingfeng Sun

    2013-01-01

    Full Text Available We report a bulky macroporous TiO2 particles with cellular structure prepared in the presence of wood slices as template. Firstly, TiO2 sol was coated onto the wood slices by repeated dip-coating process. Then, after calcinations at 550°C, the wood template could be removed, and the bulky TiO2 structure was obtained. The prepared samples were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, energy dispersive spectroscopy (EDS, and transmission electron microscope (TEM techniques. XRD pattern confirmed the crystalline phase of the wood-templated TiO2 is anatase phase. And interestingly, from the observation of SEM image, the wood-templated TiO2 inherited the initial cellular structures of birch lumber (B. albosinensis Burk, and numerous macropores were observed in the sample. Meanwhile, the wood-templated TiO2 presented a superior photocatalytic ability to decompose Rhodamine B (RhB under ultraviolet irradiation.

  17. [Structure and cellular organization of the osphradium of Limnea stagnalis L].

    Science.gov (United States)

    Kamardin, N N

    1976-08-01

    Light microscopy was used to study the structure and cellular organization of the osphradial organ of the pulmonary mollusque L. stagnalis. The osphradium unites the epithelial canal and the ganglion consisting of two cell populations. On the internal surface of the V-shaped osphradial canal there are three zones of cells: secretory, villous and epithelial. The villous zone of the canal is related with sensory bipolar and multipolar neurons of the ganglion. The irritation percepted by these cells seems to be transferred through numerous zones of neuropile to large unipolar neurons of the ganglion cortical layer.

  18. A Three-Layer Full Adder/Subtractor Structure in Quantum-Dot Cellular Automata

    Science.gov (United States)

    Barughi, Yashar Zirak; Heikalabad, Saeed Rasouli

    2017-09-01

    Nowadays, quantum-dot cellular automata (QCA) is one of the paramount modern technologies for designing logical structures at the nano-scale. This technology is being used in molecular levels and it is based on QCA cells. High speed data transfer and low consumable power are the advantages of this technology. In this paper, we are designing and simulating a fulladder/subtractor with minimum number of cells and complexities in three layers. QCA designer software has been used to simulate the proposed design.

  19. The Crystal Structure of CREG, a secreted Glycoprotein Involved in Cellular Growth and Differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Sacher,M.; Di Bacco, A.; Lunin, V.; Ye, Z.; Wagner, J.; Gill, G.; Cygler, M.

    2005-01-01

    The cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein that inhibits proliferation and enhances differentiation of human embryonal carcinoma cells. CREG binds to the cation-independent mannose 6-phosphate (M6P)/insulin-like growth factor II (IGF2) receptor (IGF2R) (M6P/IGF2R), and this receptor has been shown to be required for CREG-induced growth suppression. To better understand CREG function in cellular growth and differentiation, we solved the 3D crystal structure of this protein to 1.9-Angstrom resolution. CREG forms a tight homodimeric complex, and CREG monomers display a {beta}-barrel fold. The three potential glycosylation sites on CREG map to a confined patch opposite the dimer interface. Thus, dimerization of glycosylated CREG likely presents a bivalent ligand for the M6P/IGF2R. Closely related structural homologs of CREG are FMN-binding split-barrel fold proteins that bind flavin mononucleotide. Our structure shows that the putative flavin mononucleotide-binding pocket in CREG is sterically blocked by a loop and several key bulky residues. A mutant of CREG lacking a part of this loop maintained overall structure and dimerization, as well as M6P/IGF2R binding, but lost the growth suppression activity of WT CREG. Thus, analysis of a structure-based mutant of CREG revealed that binding to M6P/IGF2R, while necessary, is not sufficient for CREG-induced growth suppression. These findings indicate that CREG utilizes a known fold.

  20. Structure and Cellular Roles of the RMI Core Complex from the Bloom Syndrome Dissolvasome

    Energy Technology Data Exchange (ETDEWEB)

    Hoadley, Kelly A.; Xu, Dongyi; Xue, Yutong; Satyshur, Kenneth A.; Wang, Weidong; Keck, James L. (NIH); (UW-MED)

    2010-11-11

    BLM, the protein product of the gene mutated in Bloom syndrome, is one of five human RecQ helicases. It functions to separate double Holliday junction DNA without genetic exchange as a component of the dissolvasome, which also includes topoisomerase III{alpha} and the RMI (RecQ-mediated genome instability) subcomplex (RMI1 and RMI2). We describe the crystal structure of the RMI core complex, comprising RMI2 and the C-terminal OB domain of RMI1. The overall RMI core structure strongly resembles two-thirds of the trimerization core of the eukaryotic single-stranded DNA-binding protein, Replication Protein A. Immunoprecipitation experiments with RMI2 variants confirm key interactions that stabilize the RMI core interface. Disruption of this interface leads to a dramatic increase in cellular sister chromatid exchange events similar to that seen in BLM-deficient cells. The RMI core interface is therefore crucial for BLM dissolvasome assembly and may have additional cellular roles as a docking hub for other proteins.

  1. Structure and cellular roles of the RMI core complex from the bloom syndrome dissolvasome.

    Science.gov (United States)

    Hoadley, Kelly A; Xu, Dongyi; Xue, Yutong; Satyshur, Kenneth A; Wang, Weidong; Keck, James L

    2010-09-08

    BLM, the protein product of the gene mutated in Bloom syndrome, is one of five human RecQ helicases. It functions to separate double Holliday junction DNA without genetic exchange as a component of the "dissolvasome," which also includes topoisomerase IIIα and the RMI (RecQ-mediated genome instability) subcomplex (RMI1 and RMI2). We describe the crystal structure of the RMI core complex, comprising RMI2 and the C-terminal OB domain of RMI1. The overall RMI core structure strongly resembles two-thirds of the trimerization core of the eukaryotic single-stranded DNA-binding protein, Replication Protein A. Immunoprecipitation experiments with RMI2 variants confirm key interactions that stabilize the RMI core interface. Disruption of this interface leads to a dramatic increase in cellular sister chromatid exchange events similar to that seen in BLM-deficient cells. The RMI core interface is therefore crucial for BLM dissolvasome assembly and may have additional cellular roles as a docking hub for other proteins. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Asymmetric segregation of damaged cellular components in spatially structured multicellular organisms.

    Directory of Open Access Journals (Sweden)

    Charlotte Strandkvist

    Full Text Available The asymmetric distribution of damaged cellular components has been observed in species ranging from fission yeast to humans. To study the potential advantages of damage segregation, we have developed a mathematical model describing ageing mammalian tissue, that is, a multicellular system of somatic cells that do not rejuvenate at cell division. To illustrate the applicability of the model, we specifically consider damage incurred by mutations to mitochondrial DNA, which are thought to be implicated in the mammalian ageing process. We show analytically that the asymmetric distribution of damaged cellular components reduces the overall damage level and increases the longevity of the cell population. Motivated by the experimental reports of damage segregation in human embryonic stem cells, dividing symmetrically with respect to cell-fate, we extend the model to consider spatially structured systems of cells. Imposing spatial structure reduces, but does not eliminate, the advantage of asymmetric division over symmetric division. The results suggest that damage partitioning could be a common strategy for reducing the accumulation of damage in a wider range of cell types than previously thought.

  3. Cuttlebone-like V2O5 Nanofibre Scaffolds - Advances in Structuring Cellular Solids

    Science.gov (United States)

    Knöller, Andrea; Runčevski, Tomče; Dinnebier, Robert E.; Bill, Joachim; Burghard, Zaklina

    2017-02-01

    The synthesis of ceramic materials combining high porosity and permeability with good mechanical stability is challenging, as optimising the latter requires compromises regarding the first two properties. Nonetheless, significant progress can be made in this direction by taking advantage of the structural design principles evolved by nature. Natural cellular solids achieve good mechanical stability via a defined hierarchical organisation of the building blocks they are composed of. Here, we report the first synthetic, ceramic-based scaffold whose architecture closely mimics that of cuttlebone -a structural biomaterial whose porosity exceeds that of most other natural cellular solids, whilst preserving an excellent mechanical strength. The nanostructured, single-component scaffold, obtained by ice-templated assembly of V2O5 nanofibres, features a highly sophisticated and elaborate architecture of equally spaced lamellas, which are regularly connected by pillars as lamella support. It displays an unprecedented porosity of 99.8 %, complemented by an enhanced mechanical stability. This novel bioinspired, functional material not only displays mechanical characteristics similar to natural cuttlebone, but the multifunctionality of the V2O5 nanofibres also renders possible applications, including catalysts, sensors and electrodes for energy storage.

  4. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon

    Energy Technology Data Exchange (ETDEWEB)

    Cardona-Felix, Cesar S.; Lara-Gonzalez, Samuel; Brieba, Luis G. (LNLS)

    2012-02-08

    Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeast and parasitic protozoa.

  5. A structural basis for cellular uptake of GST-fold proteins.

    Directory of Open Access Journals (Sweden)

    Melanie J Morris

    Full Text Available It has recently emerged that glutathione transferase enzymes (GSTs and other structurally related molecules can be translocated from the external medium into many different cell types. In this study we aim to explore in detail, the structural features that govern cell translocation and by dissecting the human GST enzyme GSTM2-2 we quantatively demonstrate that the α-helical C-terminal domain (GST-C is responsible for this property. Attempts to further examine the constituent helices within GST-C resulted in a reduction in cell translocation efficiency, indicating that the intrinsic GST-C domain structure is necessary for maximal cell translocation capacity. In particular, it was noted that the α-6 helix of GST-C plays a stabilising role in the fold of this domain. By destabilising the conformation of GST-C, an increase in cell translocation efficiency of up to ∼2-fold was observed. The structural stability profiles of these protein constructs have been investigated by circular dichroism and differential scanning fluorimetry measurements and found to impact upon their cell translocation efficiency. These experiments suggest that the globular, helical domain in the 'GST-fold' structural motif plays a role in influencing cellular uptake, and that changes that affect the conformational stability of GST-C can significantly influence cell translocation efficiency.

  6. Powder Removal from Ti-6Al-4V Cellular Structures Fabricated via Electron Beam Melting

    Science.gov (United States)

    Hasib, Hazman; Harrysson, Ola L. A.; West, Harvey A.

    2015-03-01

    Direct metal fabrication systems like electron beam melting (EBM) and direct metal laser sintering (also called selective laser melting) are gaining popularity. One reason is the design and fabrication freedom that these technologies offer over traditional processes. One specific feature that is of interest is mesh or lattice structures that can be produced using these powder-bed systems. One issue with the EBM process is that the powder trapped within the structure during the fabrication process is sintered and can be hard to remove as the mesh density increases. This is usually not an issue for the laser-based systems since most of them work at a low temperature and the sintering of the powder is less of an issue. Within the scope of this project, a chemical etching process was evaluated for sintered powder removal using three different cellular structures with varying mesh densities. All meshes were fabricated via EBM using Ti6Al4V powder. The results are promising, but the larger the structures, the more difficult it is to completely remove the sintered powder without affecting the integrity of the mesh structure.

  7. Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images

    Directory of Open Access Journals (Sweden)

    Paul Grégory

    2010-07-01

    Full Text Available Abstract Background Sub-cellular structures interact in numerous direct and indirect ways in order to fulfill cellular functions. While direct molecular interactions crucially depend on spatial proximity, other interactions typically result in spatial correlations between the interacting structures. Such correlations are the target of microscopy-based co-localization analysis, which can provide hints of potential interactions. Two complementary approaches to co-localization analysis can be distinguished: intensity correlation methods capitalize on pattern discovery, whereas object-based methods emphasize detection power. Results We first reinvestigate the classical co-localization measure in the context of spatial point pattern analysis. This allows us to unravel the set of implicit assumptions inherent to this measure and to identify potential confounding factors commonly ignored. We generalize object-based co-localization analysis to a statistical framework involving spatial point processes. In this framework, interactions are understood as position co-dependencies in the observed localization patterns. The framework is based on a model of effective pairwise interaction potentials and the specification of a null hypothesis for the expected pattern in the absence of interaction. Inferred interaction potentials thus reflect all significant effects that are not explained by the null hypothesis. Our model enables the use of a wealth of well-known statistical methods for analyzing experimental data, as demonstrated on synthetic data and in a case study considering virus entry into live cells. We show that the classical co-localization measure typically under-exploits the information contained in our data. Conclusions We establish a connection between co-localization and spatial interaction of sub-cellular structures by formulating the object-based interaction analysis problem in a spatial statistics framework based on nearest-neighbor distance

  8. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures

    Science.gov (United States)

    Splinter, Daniël; Razafsky, David S.; Schlager, Max A.; Serra-Marques, Andrea; Grigoriev, Ilya; Demmers, Jeroen; Keijzer, Nanda; Jiang, Kai; Poser, Ina; Hyman, Anthony A.; Hoogenraad, Casper C.; King, Stephen J.; Akhmanova, Anna

    2012-01-01

    Cytoplasmic dynein is the major microtubule minus-end–directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein–dynactin interaction are poorly understood. In this study, we focus on dynein–dynactin recruitment to cargo by the conserved motor adaptor Bicaudal D2 (BICD2). We show that dynein and dynactin depend on each other for BICD2-mediated targeting to cargo and that BICD2 N-terminus (BICD2-N) strongly promotes stable interaction between dynein and dynactin both in vitro and in vivo. Direct visualization of dynein in live cells indicates that by itself the triple BICD2-N–dynein–dynactin complex is unable to interact with either cargo or microtubules. However, tethering of BICD2-N to different membranes promotes their microtubule minus-end–directed motility. We further show that LIS1 is required for dynein-mediated transport induced by membrane tethering of BICD2-N and that LIS1 contributes to dynein accumulation at microtubule plus ends and BICD2-positive cellular structures. Our results demonstrate that dynein recruitment to cargo requires concerted action of multiple dynein cofactors. PMID:22956769

  9. The integrative role of cryo electron microscopy in molecular and cellular structural biology.

    Science.gov (United States)

    Orlov, Igor; Myasnikov, Alexander G; Andronov, Leonid; Natchiar, S Kundhavai; Khatter, Heena; Beinsteiner, Brice; Ménétret, Jean-François; Hazemann, Isabelle; Mohideen, Kareem; Tazibt, Karima; Tabaroni, Rachel; Kratzat, Hanna; Djabeur, Nadia; Bruxelles, Tatiana; Raivoniaina, Finaritra; Pompeo, Lorenza di; Torchy, Morgan; Billas, Isabelle; Urzhumtsev, Alexandre; Klaholz, Bruno P

    2017-02-01

    After gradually moving away from preparation methods prone to artefacts such as plastic embedding and negative staining for cell sections and single particles, the field of cryo electron microscopy (cryo-EM) is now heading off at unprecedented speed towards high-resolution analysis of biological objects of various sizes. This 'revolution in resolution' is happening largely thanks to new developments of new-generation cameras used for recording the images in the cryo electron microscope which have much increased sensitivity being based on complementary metal oxide semiconductor devices. Combined with advanced image processing and 3D reconstruction, the cryo-EM analysis of nucleoprotein complexes can provide unprecedented insights at molecular and atomic levels and address regulatory mechanisms in the cell. These advances reinforce the integrative role of cryo-EM in synergy with other methods such as X-ray crystallography, fluorescence imaging or focussed-ion beam milling as exemplified here by some recent studies from our laboratory on ribosomes, viruses, chromatin and nuclear receptors. Such multi-scale and multi-resolution approaches allow integrating molecular and cellular levels when applied to purified or in situ macromolecular complexes, thus illustrating the trend of the field towards cellular structural biology. © 2016 The Authors. Biology of the Cell published by Wiley-VCH Verlag GmbH & Co. KGaA on behalf of Société Française des Microscopies and Société de Biologie Cellulaire de France.

  10. Automatic Aircraft Structural Topology Generation for Multidisciplinary Optimization and Weight Estimation

    Science.gov (United States)

    Sensmeier, Mark D.; Samareh, Jamshid A.

    2005-01-01

    An approach is proposed for the application of rapid generation of moderate-fidelity structural finite element models of air vehicle structures to allow more accurate weight estimation earlier in the vehicle design process. This should help to rapidly assess many structural layouts before the start of the preliminary design phase and eliminate weight penalties imposed when actual structure weights exceed those estimated during conceptual design. By defining the structural topology in a fully parametric manner, the structure can be mapped to arbitrary vehicle configurations being considered during conceptual design optimization. A demonstration of this process is shown for two sample aircraft wing designs.

  11. Ligand binding PAS domains in a genomic, cellular, and structural context

    Science.gov (United States)

    Henry, Jonathan T.; Crosson, Sean

    2012-01-01

    Per-Arnt-Sim (PAS) domains occur in proteins from all kingdoms of life. In the bacterial kingdom, PAS domains are commonly positioned at the amino terminus of signaling proteins such as sensor histidine kinases, cyclic-di-GMP synthases/hydrolases, and methyl-accepting chemotaxis proteins. Although these domains are highly divergent at the primary sequence level, the structures of dozens of PAS domains across a broad section of sequence space have been solved, revealing a conserved three-dimensional architecture. An all-versus-all alignment of 63 PAS structures demonstrates that the PAS domain family forms structural clades on the basis of two principal variables: (a) topological location inside or outside the plasma membrane and (b) the class of small molecule that they bind. The binding of a chemically diverse range of small-molecule metabolites is a hallmark of the PAS domain family. PAS ligand binding either functions as a primary cue to initiate a cellular signaling response or provides the domain with the capacity to respond to secondary physical or chemical signals such as gas molecules, redox potential, or photons. This review synthesizes the current state of knowledge of the structural foundations and evolution of ligand recognition and binding by PAS domains. PMID:21663441

  12. Ligand-binding PAS domains in a genomic, cellular, and structural context.

    Science.gov (United States)

    Henry, Jonathan T; Crosson, Sean

    2011-01-01

    Per-Arnt-Sim (PAS) domains occur in proteins from all kingdoms of life. In the bacterial kingdom, PAS domains are commonly positioned at the amino terminus of signaling proteins such as sensor histidine kinases, cyclic-di-GMP synthases/hydrolases, and methyl-accepting chemotaxis proteins. Although these domains are highly divergent at the primary sequence level, the structures of dozens of PAS domains across a broad section of sequence space have been solved, revealing a conserved three-dimensional architecture. An all-versus-all alignment of 63 PAS structures demonstrates that the PAS domain family forms structural clades on the basis of two principal variables: (a) topological location inside or outside the plasma membrane and (b) the class of small molecule that they bind. The binding of a chemically diverse range of small-molecule metabolites is a hallmark of the PAS domain family. PAS ligand binding either functions as a primary cue to initiate a cellular signaling response or provides the domain with the capacity to respond to secondary physical or chemical signals such as gas molecules, redox potential, or photons. This review synthesizes the current state of knowledge of the structural foundations and evolution of ligand recognition and binding by PAS domains.

  13. Click chemistry for the conservation of cellular structures and fluorescent proteins: ClickOx.

    Science.gov (United States)

    Löschberger, Anna; Niehörster, Thomas; Sauer, Markus

    2014-05-01

    Reactive oxygen species (ROS), including hydrogen peroxide, are known to cause structural damage not only in living, but also in fixed, cells. Copper-catalyzed azide-alkyne cycloaddition (click chemistry) is known to produce ROS. Therefore, fluorescence imaging of cellular structures, such as the actin cytoskeleton, remains challenging when combined with click chemistry protocols. In addition, the production of ROS substantially weakens the fluorescence signal of fluorescent proteins. This led us to develop ClickOx, which is a new click chemistry protocol for improved conservation of the actin structure and better conservation of the fluorescence signal of green fluorescent protein (GFP)-fusion proteins. Herein we demonstrate that efficient oxygen removal by addition of an enzymatic oxygen scavenger system (ClickOx) considerably reduces ROS-associated damage during labeling of nascent DNA with ATTO 488 azide by Cu(I)-catalyzed click chemistry. Standard confocal and super-resolution fluorescence images of phalloidin-labeled actin filaments and GFP/yellow fluorescent protein-labeled cells verify the conservation of the cytoskeleton microstructure and fluorescence intensity, respectively. Thus, ClickOx can be used advantageously for structure preservation in conventional and most notably in super-resolution microscopy methods. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. At the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence

    Directory of Open Access Journals (Sweden)

    Ryosuke eOhsawa

    2013-07-01

    Full Text Available It is well accepted that non-coding RNAs play a critical role in regulating gene expression. Recent paradigm-setting studies are now revealing that non-coding RNAs, other than microRNAs, also play intriguing roles in the maintenance of chromatin structure, in the DNA damage response, and in adult human stem cell aging. In this review, we will discuss the complex inter-dependent relationships among non-coding RNA transcription, maintenance of genomic stability, chromatin structure and adult stem cell senescence. DNA damage-induced non-coding RNAs transcribed in the vicinity of the DNA break regulate recruitment of the DNA damage machinery and DNA repair efficiency. We will discuss the correlation between non-coding RNAs and DNA damage repair efficiency and the potential role of changing chromatin structures around double-strand break sites. On the other hand, induction of non-coding RNA transcription from the repetitive Alu elements occurs during human stem cell aging and hinders efficient DNA repair causing entry into senescence. We will discuss how this fine balance between transcription and genomic instability may be regulated by the dramatic changes to chromatin structure that accompany cellular senescence.

  15. A cellular automaton model for the ventricular myocardium considering the layer structure

    Science.gov (United States)

    Deng, Min-Yi; Dai, Jing-Yu; Zhang, Xue-Liang

    2015-09-01

    A cellular automaton model for the ventricular myocardium considering the layer structure has been established. The three types of cells in this model differ principally in the repolarization characteristics. For the normal travelling waves in this model, the computer simulation results show the R, S, and T waves and they are qualitatively in agreement with the standard electrocardiograph. Phenomena such as the potential decline of point J and segment ST and the rise of the potential line after the T wave appear when the ischemia occurs in the endocardium. The spiral wave has also been simulated, and the corresponding potential has a lower amplitude, higher frequency, and wider R wave, which accords with the distinguishing feature of the clinical electrocardiograph. Mechanisms underlying the above phenomena are analyzed briefly. Project supported by the National Natural Science Foundation of China (Grant Nos. 11365003 and 11165004).

  16. Structure and Reversibility of 2D von Neumann Cellular Automata Over Triangular Lattice

    Science.gov (United States)

    Uguz, Selman; Redjepov, Shovkat; Acar, Ecem; Akin, Hasan

    2017-06-01

    Even though the fundamental main structure of cellular automata (CA) is a discrete special model, the global behaviors at many iterative times and on big scales could be a close, nearly a continuous, model system. CA theory is a very rich and useful phenomena of dynamical model that focuses on the local information being relayed to the neighboring cells to produce CA global behaviors. The mathematical points of the basic model imply the computable values of the mathematical structure of CA. After modeling the CA structure, an important problem is to be able to move forwards and backwards on CA to understand their behaviors in more elegant ways. A possible case is when CA is to be a reversible one. In this paper, we investigate the structure and the reversibility of two-dimensional (2D) finite, linear, triangular von Neumann CA with null boundary case. It is considered on ternary field ℤ3 (i.e. 3-state). We obtain their transition rule matrices for each special case. For given special triangular information (transition) rule matrices, we prove which triangular linear 2D von Neumann CAs are reversible or not. It is known that the reversibility cases of 2D CA are generally a much challenged problem. In the present study, the reversibility problem of 2D triangular, linear von Neumann CA with null boundary is resolved completely over ternary field. As far as we know, there is no structure and reversibility study of von Neumann 2D linear CA on triangular lattice in the literature. Due to the main CA structures being sufficiently simple to investigate in mathematical ways, and also very complex to obtain in chaotic systems, it is believed that the present construction can be applied to many areas related to these CA using any other transition rules.

  17. Critical evaluation on structural stiffness of porous cellular structure of cobalt chromium alloy

    Science.gov (United States)

    Abd Malek, N. M. S.; Mohamed, S. R.; Che Ghani, S. A.; Harun, W. S. Wan

    2015-12-01

    In order to improve the stiffness characteristics of orthopedic devices implants that mimic the mechanical behavior of bone need to be considered. With the capability of Additive layer manufacturing processes to produce orthopedic implants with tailored mechanical properties are needed. This paper discusses finite element (FE) analysis and mechanical characterization of porous medical grade cobalt chromium (CoCr) alloy in cubical structures with volume based porosity ranging between 60% to 80% produced using direct metal laser sintering (DMLS) process. ANSYS 14.0 FE modelling software was used to predict the effective elastic modulus of the samples and comparisons were made with the experimental data. The effective mechanical properties of porous samples that were determined by uniaxial compression testing show exponential decreasing trend with the increase in porosity. Finite element model shows good agreement with experimentally obtained stress-strain curve in the elastic regions. The models prove that numerical analysis of actual prosthesis implant can be computed particularly in load bearing condition

  18. Structural changes in the knee during weight loss maintenance after a significant weight loss in obese patients with osteoarthritis

    DEFF Research Database (Denmark)

    Henriksen, M; Christensen, R; Hunter, D J

    2014-01-01

    OBJECTIVE: To compare structural knee joint changes in obese patients with knee osteoarthritis (OA) that after an intensive weight loss therapy were randomized to continuous dietetic support, a specialized knee exercise program, or 'no attention' for 1 year. METHODS: 192 obese individuals with knee...... (difference: -0.21 [95%CI -0.40:-0.03]) and "no attention" (difference: -0.26 [95%CI -0.44:-0.07]) groups. CONCLUSION: In this 1 year follow-up after weight-loss in obese knee OA patients, we found a potentially increased number of BMLs in the exercise group compared to the diet and no attention groups...... OA underwent an intensive 16-week weight loss program with subsequent randomization to one of the three treatment groups. Changes in cartilage loss, bone marrow lesions (BMLs), synovitis, and effusion were assessed using semi quantitative assessments of magnetic resonance imaging (MRI) obtained...

  19. The Relation Between Thermodynamic and Structural Properties and Cellular Uptake of Peptides Containing Tryptophan and Arginine

    Directory of Open Access Journals (Sweden)

    Ali Shirani

    2015-06-01

    Full Text Available Purpose: Cell-penetrating peptides (CPPs are used for delivering drugs and other macromolecular cargo into living cells. In this paper, we investigated the relationship between the structural/physicochemical properties of four new synthetic peptides containing arginine-tryptophan in terms of their cell membrane penetration efficiency. Methods: The peptides were prepared using solid phase synthesis procedure using FMOC protected amino acids. Fluorescence-activated cell sorting and fluorescence imaging were used to evaluate uptake efficiency. Prediction of the peptide secondary structure and estimation of physicochemical properties was performed using the GOR V method and MPEx 3.2 software (Wimley-White scale, helical wheel projection and total hydrophobic moment. Results: Our data showed that the uptake efficiency of peptides with two tryptophans at the Cand N-terminus were significantly higher (about 4-fold than that of peptides containing three tryptophans at both ends. The distribution of arginine at both ends also increased the uptake efficiency 2.52- and 7.18-fold, compared with arginine distribution at the middle of peptides. Conclusion: According to the obtained results the value of transfer free energies of peptides from the aqueous phase to membrane bilayer could be a good predictor for the cellular uptake efficiency of CPPs.

  20. Structural Characteristics of Low Molecular Weight Laminarin Prepared by Ionizing Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-il [Chonnam National University, Gwangju (Korea, Republic of)

    2013-12-15

    Recently, it has been reported that low molecular weight laminarin had the enhanced biological activities. In this study, molecular structure of low molecular weight laminarin prepared by ionizing irradiation was studied. Low molecular weight laminarin samples of 13.5, 8.5, 7, and 6 kDa were obtained from 15 kDa laminarin by irradiation. From gel permeation chromatography data, low molecular weight laminarin was shown to have low polydispersity. To define the changes of functional groups in laminarin with different molecular weights, Fourier-transform infrared analysis was carried out. There was found no significant changes of functional groups in low molecular weight laminarin, except the increase of carbonyl group. The granular fissures from scanning electron microscopy showed the breakage of glycosidic bond in low molecular weight laminarin. These results could be utilized for the investigation of the enhanced biological activities of low molecular weight polysaccharides including laminarin.

  1. Higher Strength, Lighter Weight Aluminum Spacecraft Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I program proposes to develop a bulk processing technology for producing ultra fine grain (UFG) aluminum alloy structures. The goal is to demonstrate...

  2. The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties.

    Science.gov (United States)

    Di Lorenzo, Flaviana; Silipo, Alba; Molinaro, Antonio; Parrilli, Michelangelo; Schiraldi, Chiara; D'Agostino, Antonella; Izzo, Elisabetta; Rizza, Luisa; Bonina, Andrea; Bonina, Francesco; Lanzetta, Rosa

    2017-02-10

    The Opuntia ficus-indica multiple properties are reflected in the increasing interest of chemists in the identification of its natural components having pharmaceutical and/or cosmetical applications. Here we report the structural elucidation of Opuntia ficus-indica mucilage that highlighted the presence of components differing for their chemical nature and the molecular weight distribution. The high molecular weight components were identified as a linear galactan polymer and a highly branched xyloarabinan. The low molecular weight components were identified as lactic acid, D-mannitol, piscidic, eucomic and 2-hydroxy-4-(4'-hydroxyphenyl)-butanoic acids. A wound healing assay was performed in order to test the cicatrizing properties of the various components, highlighting the ability of these latter to fasten dermal regeneration using a simplified in vitro cellular model based on a scratched keratinocytes monolayer. The results showed that the whole Opuntia mucilage and the low molecular weight components are active in the wound repair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effects of Ionizing Radiation on Cellular Structures, Induced Instability, and Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Resat, Marianne S.; Arthurs, Benjamin J.; Estes, Brian J.; Morgan, William F.

    2006-03-01

    According to the American Cancer Society, the United States can expect 1,368,030 new cases of cancer in 2004 [1]. Among the many carcinogens Americans are exposed to, ionizing radiation will contribute to this statistic. Humans live in a radiation environment. Ionizing radiation is in the air we breathe, the earth we live on, and the food we eat. Man-made radiation adds to this naturally occurring radiation level thereby increasing the chance for human exposure. For many decades the scientific community, governmental regulatory bodies, and concerned citizens have struggled to estimate health risks associated with radiation exposures, particularly at low doses. While cancer induction is the primary concern and the most important somatic effect of exposure to ionizing radiation, potential health risks do not involve neoplastic diseases exclusively but also include somatic mutations that might contribute to birth defects and ocular maladies, and heritable mutations that might impact on disease risks in future generations. Consequently it is important we understand the effect of ionizingradiation on cellular structures and the subsequent long-term health risks associated with exposure to ionizing radiation.

  4. Reference Models for Structural Technology Assessment and Weight Estimation

    Science.gov (United States)

    Cerro, Jeff; Martinovic, Zoran; Eldred, Lloyd

    2005-01-01

    Previously the Exploration Concepts Branch of NASA Langley Research Center has developed techniques for automating the preliminary design level of launch vehicle airframe structural analysis for purposes of enhancing historical regression based mass estimating relationships. This past work was useful and greatly reduced design time, however its application area was very narrow in terms of being able to handle a large variety in structural and vehicle general arrangement alternatives. Implementation of the analysis approach presented herein also incorporates some newly developed computer programs. Loft is a program developed to create analysis meshes and simultaneously define structural element design regions. A simple component defining ASCII file is read by Loft to begin the design process. HSLoad is a Visual Basic implementation of the HyperSizer Application Programming Interface, which automates the structural element design process. Details of these two programs and their use are explained in this paper. A feature which falls naturally out of the above analysis paradigm is the concept of "reference models". The flexibility of the FEA based JAVA processing procedures and associated process control classes coupled with the general utility of Loft and HSLoad make it possible to create generic program template files for analysis of components ranging from something as simple as a stiffened flat panel, to curved panels, fuselage and cryogenic tank components, flight control surfaces, wings, through full air and space vehicle general arrangements.

  5. Analysis by numerical calculations of the depth and dynamics of the penetration of ordered cellular structure made by casting from AlSi10Mg eutectic alloy

    Directory of Open Access Journals (Sweden)

    M. Małysza

    2011-07-01

    Full Text Available Owing to high plastic deformability while maintaining stress values constant and relatively low, ordered cellular structures arecharacterised by excellent properties and the ability to dissipate the impact energy. Due to the low weight, structures of this type can beused, among others, for different parts of motor vehicles. For tests, a trapezoidal ordered cellular structure of 50.8 x 50.8 x 25.4 (mmoverall dimensions was selected. It was made as an investment casting from AlSi9Mg eutectic alloy by the method of Rapid Prototyping(RP. During FEM computations using an Abaqus programme, it was assumed that the material is isotropic and exhibits the features of anelastic – plastic body, introducing to calculations the, listed in a table, values of the stress-strain curve obtained in tensile tests performedon a MTS testing machine (10T. The computations used Johnson - Cook model, which is usually sufficiently accurate when modelling thephenomena of penetration of an element by an object of high initial velocity. The performed numerical calculations allowed identification

  6. Rapid Assessment of Aircraft Structural Topologies for Multidisciplinary Optimization and Weight Estimation

    Science.gov (United States)

    Samareh, Jamshid A.; Sensmeier, mark D.; Stewart, Bret A.

    2006-01-01

    Algorithms for rapid generation of moderate-fidelity structural finite element models of air vehicle structures to allow more accurate weight estimation earlier in the vehicle design process have been developed. Application of these algorithms should help to rapidly assess many structural layouts before the start of the preliminary design phase and eliminate weight penalties imposed when actual structure weights exceed those estimated during conceptual design. By defining the structural topology in a fully parametric manner, the structure can be mapped to arbitrary vehicle configurations being considered during conceptual design optimization. Recent enhancements to this approach include the porting of the algorithms to a platform-independent software language Python, and modifications to specifically consider morphing aircraft-type configurations. Two sample cases which illustrate these recent developments are presented.

  7. Simulation of Corrosion Process for Structure with the Cellular Automata Method

    Science.gov (United States)

    Chen, M. C.; Wen, Q. Q.

    2017-06-01

    In this paper, from the mesoscopic point of view, under the assumption of metal corrosion damage evolution being a diffusive process, the cellular automata (CA) method was proposed to simulate numerically the uniform corrosion damage evolution of outer steel tube of concrete filled steel tubular columns subjected to corrosive environment, and the effects of corrosive agent concentration, dissolution probability and elapsed etching time on the corrosion damage evolution were also investigated. It was shown that corrosion damage increases nonlinearly with increasing elapsed etching time, and the longer the etching time, the more serious the corrosion damage; different concentration of corrosive agents had different impacts on the corrosion damage degree of the outer steel tube, but the difference between the impacts was very small; the heavier the concentration, the more serious the influence. The greater the dissolution probability, the more serious the corrosion damage of the outer steel tube, but with the increase of dissolution probability, the difference between its impacts on the corrosion damage became smaller and smaller. To validate present method, corrosion damage measurements for concrete filled square steel tubular columns (CFSSTCs) sealed at both their ends and immersed fully in a simulating acid rain solution were conducted, and Faraday’s law was used to predict their theoretical values. Meanwhile, the proposed CA mode was applied for the simulation of corrosion damage evolution of the CFSSTCs. It was shown by the comparisons of results from the three methods aforementioned that they were in good agreement, implying that the proposed method used for the simulation of corrosion damage evolution of concrete filled steel tubular columns is feasible and effective. It will open a new approach to study and evaluate further the corrosion damage, loading capacity and lifetime prediction of concrete filled steel tubular structures.

  8. Overnight weight loss: relationship with sleep structure and heart rate variability

    OpenAIRE

    Walter Moraes; Dalva Poyares; Christian Guilleminault; Agostinho Rosa; Marco Tulio de Mello; Adriana Rueda; Sergio Tufik

    2008-01-01

    Background: Weight loss can be caused by a loss of body mass due to metabolism and by water loss as unsensible water loss, sweating, or excretion in feces and urine. Although weight loss during sleep is a well-known phenomenon, it has not yet been studied in relation to sleep structure or autonomic tonus during sleep. Our study is proposed to be a first step in assessing the relationship between overnight weight loss, sleep structure, and HRV (heart rate variability) parameters.Methods: Twent...

  9. A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Naji Asfestani, Mazaher; Rasouli Heikalabad, Saeed, E-mail: s.rasouli@iaut.ac.ir

    2017-05-01

    Quantum-dot cellular automata (QCA) is the advent of technology and suitable replacement for semiconductor transistor technology. In this paper, a unique structure for the 2:1 multiplexer is presented in QCA. The structure of this component is simple, ultra-efficient and very useful to implement the various logical functions. The proposed structure does not follow any Boolean function. It takes advantage of the inherent characteristics of quantum technology to produce the desired output. Based on these principles, we design the new and efficient structures for the 4:1 multiplexer and 8:1 multiplexer in the QCA technology. These structures are designed with QCADesigner simulator and simulation results are examined. Investigation results indicate the amazing performance of proposed structure compared to existing structures in terms of area, complexity, power consumption and latency.

  10. STRUCTURES OF NON-CELLULAR TISSUES OF THE BODY AND THEIR IMPORTANCE IN OTORHINOLARYNGOLOGY

    Directory of Open Access Journals (Sweden)

    S. N. Shatokhina

    2016-01-01

    Full Text Available We present  the  results of our studies  in various pathological   conditions   in  otorhinolaryngology performed  with  a diagnostic  technology  of functional morphology  of non-cellular tissue structures  (mouth  fluid, surgical wound  exudation, blood  serum, and  others. With the  use of methods of cuniform and  marginal dehydration of biological fluids, the possibility of developing essentially novel criteria was shown, such as:• prediction  of complicated  course of post-operative wound  healing in subjects with a lamellar morphotype in the  wound  exudation  resulting from cholesterol residues due to massive cell death;• prediction  of a polypous  rhinosinusitis  relapse in subjects with an increase in the proliferation marker, anisotropic  parallels lines in the  dehydrated  serum  obtained from the  blood  taken from the inferior nasal turbinate;• diagnostics   of  the  middle  ear  cholesteatoma in children by combination of cuniform and marginal  dehydration of the  mouth  fluid. The singularity of the  technique  is based  on triple sampling  of the  fluid:  first sample  was  taken immediately  after awakening, the  second  one, after a few minutes  of active swallowing movements  and  the  third one,  after trans-tympanicair pumping.  Detection  of the  structural  signs of congestive effusion and the lamellar morphotype as a destruction marker in the third sample suggested the presence  of cholesteatoma;• assessment  of  treatment  efficacy  in  patients with chronic tonsillitis and of the indications to tonsillectomy in patients  with persisting pathological  characteristics   of  the  exudation   from the palatal tonsil lacunes throughout the whole course of conservative treatment;• determination of the grade of activity / absence of activity of laryngeal cancer by identification of a basic spherolith with various degrees  of anisotropy

  11. Modelling microphysical and meteorological controls on precipitation and cloud cellular structures in Southeast Pacific stratocumulus

    Directory of Open Access Journals (Sweden)

    H. Wang

    2010-07-01

    Full Text Available Microphysical and meteorological controls on the formation of open and closed cellular structures in the Southeast Pacific are explored using model simulations based on aircraft observations during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx. The effectiveness of factors such as boundary-layer moisture and temperature perturbations, surface heat and moisture fluxes, large-scale vertical motion and solar heating in promoting drizzle and open cell formation for prescribed aerosol number concentrations is explored. For the case considered, drizzle and subsequent open cell formation over a broad region are more sensitive to the observed boundary-layer moisture and temperature perturbations (+0.9 g kg−1; −1 K than to a five-fold decrease in aerosol number concentration (150 vs. 30 mg−1. When embedding the perturbations in closed cells, local drizzle and pockets of open cell (POC formation respond faster to the aerosol reduction than to the moisture increase, but the latter generates stronger and more persistent drizzle. A local negative perturbation in temperature drives a mesoscale circulation that prevents local drizzle formation but promotes it in a remote area where lower-level horizontal transport of moisture is blocked and converges to enhance liquid water path. This represents a potential mechanism for POC formation in the Southeast Pacific stratocumulus region whereby the circulation is triggered by strong precipitation in adjacent broad regions of open cells. A simulation that attempts to mimic the influence of a coastally induced upsidence wave results in an increase in cloud water but this alone is insufficient to initiate drizzle. An increase of surface sensible heat flux is also effective in triggering local drizzle and POC formation.

    Both open and closed cells simulated with observed initial conditions exhibit distinct diurnal variations in cloud properties. A

  12. Precipitation and cloud cellular structures in marine stratocumulus over the southeast pacific: model simulations

    Science.gov (United States)

    Wang, H.; Feingold, G.; Wood, R.; Kazil, J.

    2010-03-01

    Microphysical and meteorological controls on the formation of open and closed cellular structures in the Southeast Pacific are explored using model simulations based on aircraft observations during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx). The effectiveness of factors such as boundary-layer moisture and temperature perturbations, surface heat and moisture fluxes, large-scale vertical motion and solar heating in promoting drizzle and open cell formation for prescribed aerosol number concentrations is explored. For the case considered, drizzle and subsequent open cell formation over a broad region are more sensitive to the observed boundary-layer moisture and temperature perturbations (=0.9 g kg-1; -1 K) than to a five-fold decrease in aerosol number concentrations (150 vs. 30 mg-1). When embedding the perturbations in closed cells, local drizzle and pockets of open cells (POCs) formation respond faster to the aerosol reduction than to the moisture increase, but the latter generate stronger and more persistent drizzle. The local negative perturbation in temperature drives a mesoscale circulation that prevents local drizzle formation but promotes it in a remote area where lower-level horizontal transport of moisture is blocked and converges to enhance liquid water path. This represents a potential mechanism for POC formation in the Southeast Pacific stratocumulus region whereby the circulation is triggered by strong precipitation in adjacent broad regions of open cells. A simulation that attempts to mimic the influence of a coastally induced upsidence wave results in an increase in cloud water but this alone is insufficient to initiate drizzle. An increase of surface sensible heat flux is also effective in triggering local drizzle and POC formation. Both open and closed cells simulated with observed initial conditions exhibit distinct diurnal variations in cloud properties. A stratocumulus deck that breaks up due solely to solar

  13. Modelling microphysical and meteorological controls on precipitation and cloud cellular structures in Southeast Pacific stratocumulus

    Science.gov (United States)

    Wang, H.; Feingold, G.; Wood, R.; Kazil, J.

    2010-07-01

    Microphysical and meteorological controls on the formation of open and closed cellular structures in the Southeast Pacific are explored using model simulations based on aircraft observations during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx). The effectiveness of factors such as boundary-layer moisture and temperature perturbations, surface heat and moisture fluxes, large-scale vertical motion and solar heating in promoting drizzle and open cell formation for prescribed aerosol number concentrations is explored. For the case considered, drizzle and subsequent open cell formation over a broad region are more sensitive to the observed boundary-layer moisture and temperature perturbations (+0.9 g kg-1; -1 K) than to a five-fold decrease in aerosol number concentration (150 vs. 30 mg-1). When embedding the perturbations in closed cells, local drizzle and pockets of open cell (POC) formation respond faster to the aerosol reduction than to the moisture increase, but the latter generates stronger and more persistent drizzle. A local negative perturbation in temperature drives a mesoscale circulation that prevents local drizzle formation but promotes it in a remote area where lower-level horizontal transport of moisture is blocked and converges to enhance liquid water path. This represents a potential mechanism for POC formation in the Southeast Pacific stratocumulus region whereby the circulation is triggered by strong precipitation in adjacent broad regions of open cells. A simulation that attempts to mimic the influence of a coastally induced upsidence wave results in an increase in cloud water but this alone is insufficient to initiate drizzle. An increase of surface sensible heat flux is also effective in triggering local drizzle and POC formation. Both open and closed cells simulated with observed initial conditions exhibit distinct diurnal variations in cloud properties. A stratocumulus deck that breaks up due solely to solar heating

  14. Apolipoprotein J/Clusterin is a novel structural component of human erythrocytes and a biomarker of cellular stress and senescence.

    Directory of Open Access Journals (Sweden)

    Marianna H Antonelou

    Full Text Available BACKGROUND: Secretory Apolipoprotein J/Clusterin (sCLU is a ubiquitously expressed chaperone that has been functionally implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role of sCLU in red blood cells (RBCs remained largely unknown. In the current study we identified sCLU as a component of human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as well as during physiological in vivo cellular senescence. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of molecular, biochemical and high resolution microscopical methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute stress (e.g. smoking, in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases, sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation. CONCLUSIONS/SIGNIFICANCE: We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.

  15. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures

    NARCIS (Netherlands)

    D. Splinter (Daniël); D.S. Razafsky (David); M.A. Schlager (Max); A. Serra-Marques (Andrea); I. Grigoriev (Ilya); J.A.A. Demmers (Jeroen); N. Keijzer (Nanda); K. Jiang (Kai); S. Poser; A. Hyman (Anthony); C.C. Hoogenraad (Casper); S.J. King (Stephen); A.S. Akhmanova (Anna)

    2012-01-01

    textabstractCytoplasmic dynein is the major microtubule minus-end-directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein-dynactin interaction are poorly understood. In this study, we focus on dynein-dynactin recruitment to cargo by the

  16. Effects of cellular structure and cell wall components on water holding capacity of mushrooms

    NARCIS (Netherlands)

    Paudel, Ekaraj; Boom, Remko M.; Haaren, van Els; Siccama, Joanne; Sman, van der Ruud G.M.

    2016-01-01

    In a sequel of papers we have investigated effects of different physical contributions to the water holding capacity of foods by considering the common white button mushroom (Agaricus bisporus). In the current paper of our sequel, we consider individual contributions of the cellular phase to

  17. The effects of design details on cost and weight of fuselage structures

    Science.gov (United States)

    Swanson, G. D.; Metschan, S. L.; Morris, M. R.; Kassapoglou, C.

    1993-01-01

    Crown panel design studies showing the relationship between panel size, cost, weight, and aircraft configuration are compared to aluminum design configurations. The effects of a stiffened sandwich design concept are also discussed. This paper summarizes the effect of a design cost model in assessing the cost and weight relationships for fuselage crown panel designs. Studies were performed using data from existing aircraft to assess the effects of different design variables on the cost and weight of transport fuselage crown panel design. Results show a strong influence of load levels, panel size, and material choices on the cost and weight of specific designs. A design tool being developed under the NASA ACT program is used in the study to assess these issues. The effects of panel configuration comparing postbuckled and buckle resistant stiffened laminated structure is compared to a stiffened sandwich concept. Results suggest some potential economy with stiffened sandwich designs for compression dominated structure with relatively high load levels.

  18. Application of a design-build-team approach to low cost and weight composite fuselage structure

    Science.gov (United States)

    Ilcewicz, L. B.; Walker, T. H.; Willden, K. S.; Swanson, G. D.; Truslove, G.; Metschan, S. L.; Pfahl, C. L.

    1991-01-01

    Relationships between manufacturing costs and design details must be understood to promote the application of advanced composite technologies to transport fuselage structures. A team approach, integrating the disciplines responsible for aircraft structural design and manufacturing, was developed to perform cost and weight trade studies for a twenty-foot diameter aft fuselage section. Baseline composite design and manufacturing concepts were selected for large quadrant panels in crown, side, and keel areas of the fuselage section. The associated technical issues were also identified. Detailed evaluation of crown panels indicated the potential for large weight savings and costs competitive with aluminum technology in the 1995 timeframe. Different processes and material forms were selected for the various elements that comprise the fuselage structure. Additional cost and weight savings potential was estimated for future advancements.

  19. Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer

    KAUST Repository

    Hayes, Sophia C.

    2016-09-27

    Resonance Raman Spectroscopy (RRS) is employed in this study to examine the influence of molecular weight on the optical response of a diketopyrrolopyrrole polymer (DPP-TT-T) in solution. The vibronic structure observed for the ground state absorption of this polymer is found to vary with molecular weight and solvent. Resonance Raman Intensity Analysis (RRIA) revealed that the absorption spectra can be described by at least two dipole-allowed transitions and the vibronic structure variation is due to differing contributions from linear and curved segments of the polymer.

  20. The role of cellular structure on increasing the detonability limits of three-step chain-branching detonations

    Energy Technology Data Exchange (ETDEWEB)

    Short, Mark [Los Alamos National Laboratory; Kiyanda, Charles B [Los Alamos National Laboratory; Quirk, James J [Los Alamos National Laboratory; Sharpe, Gary J [UNIV OF LEEDS, UK

    2011-01-27

    In [1], the dynamics of a pulsating three-step chain-branching detonation were studied. The reaction model consists of, sequentially, chain-initiation, chain-branching and chain-termination steps. The chain-initiation and chain-branching steps are taken to be thermally neutral, with chemical energy release occuring in the chain-termination stage. The purpose of the present study is to examine whether cellular detonation structure can increase the value of the chain-branching cross-over temperature T{sub b} at which fully coupled detonation solutions are observed over those in 1 D. The basic concept is straightforward and has been discussed in [1] and [3]; if T{sub s} drops below T{sub b} at the lead shock, the passage of a transverse shock can increase both the lead shock temperature and the temperature behind the transverse wave back above T{sub b}, thus sustaining an unstable cellular detonation for values of T{sub b} for which a one-dimensional pulsating detonation will fail. Experiments potentially supporting this hypothesis with irregular detonations have been shown in [3] in a shock tube with acoustically absorbing walls. Removal of the transverse waves results in detonation failure, giving way to a decoupled shock-flame complex. A number of questions remain to be addressed regarding the possibility of such a mechanism, and, if so, about the precise mechanisms driving the cellular structure for large T{sub b}. For instance, one might ask what sets the cell size in a chain-branching detonation, particularly could the characteristic cell size be set by the chain-branching cross-over temperature T{sub b}: after a transverse wave shock collision, the strength of the transverse wave weakens as it propagates along the front. If the spacing between shock collisions is too large (cell size), then the transverse shocks may weaken to the extent that the lead shock temperature or that behind the transverse waves is not raised above T{sub b}, losing chemical energy to

  1. A Structure-Based Coarse-Fine Approach for Diversity Tuning in Cellular GAs

    Directory of Open Access Journals (Sweden)

    MORALES-REYES, A.

    2012-08-01

    Full Text Available This article empirically assesses a coarse-fine approach for diversity tuning in cellular Genetic Algorithms (cGAs. The coarse tuning is performed through the constant reconfiguration of the grid while the fine tuning is locally achieved through dynamic anisotropic selection which considers individuals' locations in the local neighborhood. Benchmark problems including continuous, real-world and combinatorial problems are evaluated. The experimental results show an improvement in cGAs performance when compared to having a fixed topology configuration or to independently applying dynamic lattice reconfiguration or dynamic anisotropic.

  2. Unique Concept for a Low Cost, Light Weight Space Deployable Antenna Structure

    Science.gov (United States)

    Freeland, Robert E.; Bilyeu, Gayle D.; Veal, Gordon R.

    1993-01-01

    Large space deployable antennas are needed for a variety of applications that include Mobile Communications, Radiometry, Active Microwave Sensing, Very Long Baseline Interferometry and DoD Space Based Radar. These user requirements identify the need for structures up to tens of meters in size for operation from 1 to 90 GHz, based on different aperture configurations. However, the one thing the users have in common is a concept selection criteria for low cost, light weight and highly reliable deployable structures. Fortunately, a unique class of space structures has recently emerged that have tremendous potential for satisfying these criteria. They are referred to as inflatable deployable structures.

  3. Brain structural correlates of reward sensitivity and impulsivity in adolescents with normal and excess weight.

    Directory of Open Access Journals (Sweden)

    Laura Moreno-López

    Full Text Available INTRODUCTION: Neuroscience evidence suggests that adolescent obesity is linked to brain dysfunctions associated with enhanced reward and somatosensory processing and reduced impulse control during food processing. Comparatively less is known about the role of more stable brain structural measures and their link to personality traits and neuropsychological factors on the presentation of adolescent obesity. Here we aimed to investigate regional brain anatomy in adolescents with excess weight vs. lean controls. We also aimed to contrast the associations between brain structure and personality and cognitive measures in both groups. METHODS: Fifty-two adolescents (16 with normal weight and 36 with excess weight were scanned using magnetic resonance imaging and completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ, the UPPS-P scale, and the Stroop task. Voxel-based morphometry (VBM was used to assess possible between-group differences in regional gray matter (GM and to measure the putative differences in the way reward and punishment sensitivity, impulsivity and inhibitory control relate to regional GM volumes, which were analyzed using both region of interest (ROI and whole brain analyses. The ROIs included areas involved in reward/somatosensory processing (striatum, somatosensory cortices and motivation/impulse control (hippocampus, prefrontal cortex. RESULTS: Excess weight adolescents showed increased GM volume in the right hippocampus. Voxel-wise volumes of the second somatosensory cortex (SII were correlated with reward sensitivity and positive urgency in lean controls, but this association was missed in excess weight adolescents. Moreover, Stroop performance correlated with dorsolateral prefrontal cortex volumes in controls but not in excess weight adolescents. CONCLUSION: Adolescents with excess weight have structural abnormalities in brain regions associated with somatosensory processing and motivation.

  4. Label-free cellular structure imaging with 82 nm lateral resolution using an electron-beam excitation-assisted optical microscope.

    Science.gov (United States)

    Fukuta, Masahiro; Masuda, Yuriko; Inami, Wataru; Kawata, Yoshimasa

    2016-07-25

    We present label-free and high spatial-resolution imaging for specific cellular structures using an electron-beam excitation-assisted optical microscope (EXA microscope). Images of the actin filament and mitochondria of stained HeLa cells, obtained by fluorescence and EXA microscopy, were compared to identify cellular structures. Based on these results, we demonstrated the feasibility of identifying label-free cellular structures at a spatial resolution of 82 nm. Using numerical analysis, we calculated the imaging depth region and determined the spot size of a cathodoluminescent (CL) light source to be 83 nm at the membrane surface.

  5. Electrohydrodynamic jet process for pore-structure-controlled 3D fibrous architecture as a tissue regenerative material: fabrication and cellular activities.

    Science.gov (United States)

    Kim, Min Seong; Kim, GeunHyung

    2014-07-22

    In this study, we propose a new scaffold fabrication method, "direct electro-hydrodynamic jet process," using the initial jet of an electrospinning process and ethanol media as a target. The fabricated three-dimensional (3D) fibrous structure was configured with multilayered microsized struts consisting of randomly entangled micro/nanofibrous architecture, similar to that of native extracellular matrixes. The fabrication of the structure was highly dependent on various processing parameters, such as the surface tension of the target media, and the flow rate and weight fraction of the polymer solution. As a tissue regenerative material, the 3D fibrous scaffold was cultured with preosteoblasts to observe the initial cellular activities in comparison with a solid-freeform fabricated 3D scaffold sharing a similar structural geometry. The cell-culture results showed that the newly developed scaffold provided outstanding microcellular environmental conditions to the seeded cells (about 3.5-fold better initial cell attachment and 2.1-fold better cell proliferation).

  6. Weight optimization of large span steel truss structures with genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Mojolic, Cristian; Hulea, Radu; Pârv, Bianca Roxana [Technical University of Cluj-Napoca, Faculty of Civil Engineering, Department of Structural Mechanics, Str. Constantin Daicoviciu nr. 15, Cluj-Napoca (Romania)

    2015-03-10

    The paper presents the weight optimization process of the main steel truss that supports the Slatina Sport Hall roof. The structure was loaded with self-weight, dead loads, live loads, snow, wind and temperature, grouped in eleven load cases. The optimization of the structure was made using genetic algorithms implemented in a Matlab code. A total number of four different cases were taken into consideration when trying to determine the lowest weight of the structure, depending on the types of connections with the concrete structure ( types of supports, bearing modes), and the possibility of the lower truss chord nodes to change their vertical position. A number of restrictions for tension, maximum displacement and buckling were enforced on the elements, and the cross sections are chosen by the program from a user data base. The results in each of the four cases were analyzed in terms of weight, element tension, element section and displacement. The paper presents the optimization process and the conclusions drawn.

  7. Activation of Actuating Hydrogels with WS2 Nanosheets for Biomimetic Cellular Structures and Steerable Prompt Deformation.

    Science.gov (United States)

    Zong, Lu; Li, Xiankai; Han, Xiangsheng; Lv, Lili; Li, Mingjie; You, Jun; Wu, Xiaochen; Li, Chaoxu

    2017-09-20

    Macroscopic soft actuation is intrinsic to living organisms in nature, including slow deformation (e.g., contraction, bending, twisting, and curling) of plants motivated by microscopic swelling and shrinking of cells, and rapid motion of animals (e.g., deformation of jellyfish) motivated by cooperative nanoscale movement of motor proteins. These actuation behaviors, with an exceptional combination of tunable speed and programmable deformation direction, inspire us to design artificial soft actuators for broad applications in artificial muscles, nanofabrication, chemical valves, microlenses, soft robotics, etc. However, so far artificial soft actuators have been typically produced on the basis of poly(N-isopropylacrylamide) (PNiPAM), whose deformation is motived by volumetric shrinkage and swelling in analogue to plant cells, and exhibits sluggish actuation kinetics. In this study, alginate-exfoliated WS2 nanosheets were incorporated into ice-template-polymerized PNiPAM hydrogels with the cellular microstructures which mimic plant cells, yet the prompt steerable actuation of animals. Because of the nanosheet-reinforced pore walls formed in situ in freezing polymerization and reasonable hierarchical water channels, this cellular hybrid hydrogel achieves super deformation speed (on the order of magnitude of 10° s), controllable deformation direction, and high near-infrared light responsiveness, offering an unprecedented platform of artificial muscles for various soft robotics and devices (e.g., rotator, microvalve, aquatic swimmer, and water-lifting filter).

  8. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    Directory of Open Access Journals (Sweden)

    Su-Myat Khine K

    2010-06-01

    Full Text Available Abstract Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD, Alzheimer's disease (AD, and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4 and plasmalogen sufficient (HEK293 cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA-containing ethanolamine plasmalogen (PlsEtn present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1 levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.

  9. Pronounced alterations of cellular metabolism and structure due to hyper- or hypo-osmosis.

    Science.gov (United States)

    Mao, Lei; Hartl, Daniela; Nolden, Tobias; Koppelstätter, Andrea; Klose, Joachim; Himmelbauer, Heinz; Zabel, Claus

    2008-09-01

    Cell volume alteration represents an important factor contributing to the pathology of late-onset diseases. Previously, it was reported that protein biosynthesis and degradation are inversely (trans) regulated during cell volume regulation. Upon cell shrinkage, protein biosynthesis was up-regulated and protein degradation down-regulated. Cell swelling showed opposite regulation. Recent evidence suggests a decrease of protein biodegradation activity in many neurodegenerative diseases and even during aging; both also show prominent cell shrinkage. To clarify the effect of cell volume regulation on the overall protein turnover dynamics, we investigated mouse embryonic stem cells under hyper- and hypotonic osmotic conditions using a 2-D gel based proteomics approach. These conditions cause cell swelling and shrinkage, respectively. Our results demonstrate that the adaption to altered osmotic conditions and therefore cell volume alterations affects a broad spectrum of cellular pathways, including stress response, cytoskeleton remodeling and importantly, cellular metabolism and protein degradation. Interestingly, protein synthesis and degradation appears to be cis-regulated (same direction) on a global level. Our findings also support the hypothesis that protein alterations due to osmotic stress contribute to the pathology of neurodegenerative diseases due to a 60% expression overlap with proteins found altered in Alzheimer's, Huntington's, or Parkinson's disease. Eighteen percent of the proteins altered are even shared with all three disorders.

  10. Resolving Anatomical and Functional Structure in Human Brain Organization: Identifying Mesoscale Organization in Weighted Network Representations

    Science.gov (United States)

    Lohse, Christian; Bassett, Danielle S.; Lim, Kelvin O.; Carlson, Jean M.

    2014-01-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease. PMID:25275860

  11. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    Directory of Open Access Journals (Sweden)

    Christian Lohse

    2014-10-01

    Full Text Available Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  12. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    Science.gov (United States)

    Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M

    2014-10-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  13. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins

    Directory of Open Access Journals (Sweden)

    Natalie Heffernan

    2015-01-01

    Full Text Available Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis. Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW phlorotannins were found to have a molecular weight range equivalent to 4–12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs. These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds.

  14. Ocean acidification affects competition for space: projections of community structure using cellular automata.

    Science.gov (United States)

    McCoy, Sophie J; Allesina, Stefano; Pfister, Catherine A

    2016-03-16

    Historical ecological datasets from a coastal marine community of crustose coralline algae (CCA) enabled the documentation of ecological changes in this community over 30 years in the Northeast Pacific. Data on competitive interactions obtained from field surveys showed concordance between the 1980s and 2013, yet also revealed a reduction in how strongly species interact. Here, we extend these empirical findings with a cellular automaton model to forecast ecological dynamics. Our model suggests the emergence of a new dominant competitor in a global change scenario, with a reduced role of herbivory pressure, or trophic control, in regulating competition among CCA. Ocean acidification, due to its energetic demands, may now instead play this role in mediating competitive interactions and thereby promote species diversity within this guild. © 2016 The Author(s).

  15. Imaging cellular and subcellular structure of human brain tissue using micro computed tomography

    Science.gov (United States)

    Khimchenko, Anna; Bikis, Christos; Schweighauser, Gabriel; Hench, Jürgen; Joita-Pacureanu, Alexandra-Teodora; Thalmann, Peter; Deyhle, Hans; Osmani, Bekim; Chicherova, Natalia; Hieber, Simone E.; Cloetens, Peter; Müller-Gerbl, Magdalena; Schulz, Georg; Müller, Bert

    2017-09-01

    Brain tissues have been an attractive subject for investigations in neuropathology, neuroscience, and neurobiol- ogy. Nevertheless, existing imaging methodologies have intrinsic limitations in three-dimensional (3D) label-free visualisation of extended tissue samples down to (sub)cellular level. For a long time, these morphological features were visualised by electron or light microscopies. In addition to being time-consuming, microscopic investigation includes specimen fixation, embedding, sectioning, staining, and imaging with the associated artefacts. More- over, optical microscopy remains hampered by a fundamental limit in the spatial resolution that is imposed by the diffraction of visible light wavefront. In contrast, various tomography approaches do not require a complex specimen preparation and can now reach a true (sub)cellular resolution. Even laboratory-based micro computed tomography in the absorption-contrast mode of formalin-fixed paraffin-embedded (FFPE) human cerebellum yields an image contrast comparable to conventional histological sections. Data of a superior image quality was obtained by means of synchrotron radiation-based single-distance X-ray phase-contrast tomography enabling the visualisation of non-stained Purkinje cells down to the subcellular level and automated cell counting. The question arises, whether the data quality of the hard X-ray tomography can be superior to optical microscopy. Herein, we discuss the label-free investigation of the human brain ultramorphology be means of synchrotron radiation-based hard X-ray magnified phase-contrast in-line tomography at the nano-imaging beamline ID16A (ESRF, Grenoble, France). As an example, we present images of FFPE human cerebellum block. Hard X-ray tomography can provide detailed information on human tissues in health and disease with a spatial resolution below the optical limit, improving understanding of the neuro-degenerative diseases.

  16. Hebbian Wiring Plasticity Generates Efficient Network Structures for Robust Inference with Synaptic Weight Plasticity.

    Science.gov (United States)

    Hiratani, Naoki; Fukai, Tomoki

    2016-01-01

    In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, and the resultant synaptic connection structure is highly nonrandom, even in local circuits. However, it remains unknown whether a particular synaptic connection structure is functionally advantageous in local circuits, and why creation and elimination of synaptic connections is necessary in addition to rich synaptic weight plasticity. To answer these questions, we studied an inference task model through theoretical and numerical analyses. We demonstrate that a robustly beneficial network structure naturally emerges by combining Hebbian-type synaptic weight plasticity and wiring plasticity. Especially in a sparsely connected network, wiring plasticity achieves reliable computation by enabling efficient information transmission. Furthermore, the proposed rule reproduces experimental observed correlation between spine dynamics and task performance.

  17. Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes.

    Science.gov (United States)

    Hennig, Simon; van de Linde, Sebastian; Lummer, Martina; Simonis, Matthias; Huser, Thomas; Sauer, Markus

    2015-02-11

    Labeling internal structures within living cells with standard fluorescent probes is a challenging problem. Here, we introduce a novel intracellular staining method that enables us to carefully control the labeling process and provides instant access to the inner structures of living cells. Using a hollow glass capillary with a diameter of cell-permeable and nonpermeable fluorescent probes to cells.

  18. Brain structure alterations associated with weight changes in young females with anorexia nervosa: a case series.

    Science.gov (United States)

    Fuglset, Tone Seim; Endestad, Tor; Landrø, Nils Inge; Rø, Øyvind

    2015-01-01

    Structural brain changes associated with starvation and clinical measurements were explored in four females with anorexia nervosa with different clinical course, at baseline and 1-year follow-up, after receiving intensive inpatient treatment at a specialized eating disorder unit. Global volume alterations were associated with weight changes. Regional volume alterations were also associated with weight changes, with the largest changes occurring in the nucleus accumbens, amygdala, pallidum, and putamen. Largest changes in cortical thickness occurred in the frontal and temporal lobes. The results are preliminary; however, they show that fluctuations in weight are associated with brain volume alterations, especially gray matter. We suggest that these parts of the brain are vulnerable to starvation and malnutrition, and could be a part of the pathophysiology of AN.

  19. Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds.

    Science.gov (United States)

    Laukkanen, Hanna; Rautiainen, Lea; Taulavuori, Erja; Hohtola, Anja

    2000-04-01

    Visible browning is a typical feature of callus cultures derived from shoot tips of mature Scots pine (Pinus sylvestris L.). Because the ability of callus to regenerate is low, we determined the effect of browning on growth and changes in cellular structure during culture. Striking alterations in cellular structure were detected by LM (light microscopy), EM (electron microscopy) and SEM (scanning electron microscopy). Accumulation of phenolic substances was shown by histochemical staining. Staining for beta-glucosidase activity of soluble proteins that had been subjected to polyacrylamide gel electrophoresis indicated lignification of cells. The measured growth rate of callus was low compared with a hypothetical growth curve. Peroxidase activity increased rapidly soon after the start of the culture period, but especially between the second and third weeks of culture. At this time, the degradation of cell membranes and browning began coincident with the loss of chlorophyll. We conclude that browning is associated with cell disorganization and eventual cell death, making tissue culture of mature pine especially difficult.

  20. Adolescent Weight Status: Associations With Structural and Functional Dimensions of Social Relations.

    Science.gov (United States)

    Kjelgaard, Heidi Hjort; Holstein, Bjørn Evald; Due, Pernille; Brixval, Carina Sjöberg; Rasmussen, Mette

    2017-04-01

    To examine the associations between weight status and structural and functional dimensions of social relations among 11- to 15-year-old girls and boys. Analyses were based on cross-sectional data from the Danish contribution to the international Health Behavior in School-aged Children study 2010. The study population (n = 4,922) included students in the fifth, seventh, and ninth grade from a representative sample of Danish schools. Multinomial logistic regression analyses were used to study the associations between weight status and social relations, supported by a conceptual framework for the study of social relations. Among girls, overweight/obese weight status was associated with spending less time with friends after school compared to normal-weight status (0 days/week: odds ratio: 6.25, 95% confidence interval: 2.18-17.95, 1 day/week: 2.81, 1.02-7.77, 2 days/week: 3.27, 1.25-8.56, 3 days/week: 3.32, 1.28-8.61, and 4 days/week: 3.23, 1.17-8.92, respectively vs. 5 days/week). Among girls, overweight/obese weight status was associated with being bullied (2.62, 1.55-4.43). Among boys, overweight/obese weight status was associated with infrequent (1 to 2 days vs. every day) communication with friends through cellphones, SMS messages, or Internet (1.66, 1.03-2.67). In the full population, overweight/obese weight status was associated with not perceiving best friend as a confidant (1.59, 1.11-2.28). No associations were found between weight status and number of close same-sex and opposite-sex friends, mother/father as confidant, and perceived classmate acceptance. This study shows that overweight/obese adolescents have higher odds of numerous poor social relations than their normal-weight peers both in terms of structural and functional dimensions of social relations. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  1. Effect of Barbell Weight on the Structure of the Flat Bench Press.

    Science.gov (United States)

    Król, Henryk; Gołaś, Artur

    2017-05-01

    Król, H and Gołaś, A. Effect of barbell weight on the structure of the flat bench press. J Strength Cond Res 31(5): 1321-1337, 2017-In this study, we have used the multimodular measuring system SMART. The system consisted of 6 infrared cameras and a wireless module to measure muscle bioelectric activity. In addition, the path of the barbell was measured with a special device called the pantograph. Our study concerns the change in the structure of the flat bench press when the weight of the barbell is increased. The research on the bench press technique included both the causes of the motion: the internal structure of the movement and the external kinematic structure showing the effects of the motion, i.e., all the characteristics of the movement. Twenty healthy, male recreational weight trainers with at least 1 year of lifting experience (the mean ± SD = 3.3 ± 1.6 years) were recruited for this study. The subjects had a mean body mass of 80.2 ± 8.6 kg, an average height of 1.77 ± 0.08 m, and their average age was 24.7 ± 0.9 years. In the measuring session, the participants performed consecutive sets of a single repetition of bench pressing with an increasing load (about 70, 80, 90, and 100% of their 1 repetition maximum [1RM]). The results showed a significant change in the phase structure of the bench press, as the barbell weight was increased. While doing the bench press at a 100% 1RM load, the pectoralis major changes from being the prime mover to being the supportive prime mover. At the same time, the role of the prime mover is taken on by the deltoideus anterior. The triceps brachii, in particular, clearly shows a greater involvement.

  2. Structural social support predicts functional social support in an online weight loss programme.

    Science.gov (United States)

    Hwang, Kevin O; Etchegaray, Jason M; Sciamanna, Christopher N; Bernstam, Elmer V; Thomas, Eric J

    2014-06-01

    Online weight loss programmes allow members to use social media tools to give and receive social support for weight loss. However, little is known about the relationship between the use of social media tools and the perception of specific types of support. To test the hypothesis that the frequency of using social media tools (structural support) is directly related to perceptions of Encouragement, Information and Shared Experiences support (functional support). Online survey. Members of an online weight loss programme. The outcome was the perception of Encouragement (motivation, congratulations), Information (advice, tips) and Shared Experiences (belonging to a group) social support. The predictor was a social media scale based on the frequency of using forums and blogs within the online weight loss programme (alpha = 0.91). The relationship between predictor and outcomes was evaluated with structural equation modelling (SEM) and logistic regression, adjusted for sociodemographic characteristics, BMI and duration of website membership. The 187 participants were mostly female (95%) and white (91%), with mean (SD) age 37 (12) years and mean (SD) BMI 31 (8). SEM produced a model in which social media use predicted Encouragement support, but not Information or Shared Experiences support. Participants who used the social media tools at least weekly were almost five times as likely to experience Encouragement support compared to those who used the features less frequently [adjusted OR 4.8 (95% CI 1.8-12.8)]. Using the social media tools of an online weight loss programme at least once per week is strongly associated with receiving Encouragement for weight loss behaviours. © 2011 John Wiley & Sons Ltd.

  3. Cellular fine structures and histochemical reactions in the tissue of a cypress twig preserved in Baltic amber

    Science.gov (United States)

    Koller, Barbara; Schmitt, Jürgen M.; Tischendorf, Gilbert

    2005-01-01

    A twig of a cypress plant preserved for ca. 45Myr in Baltic amber was analysed by light and electron microscopy. Cross-sections of the whole plant showed an almost intact tissue of the entire stem and leaves, revealing, to our knowledge, the oldest and most highly preserved tissue from an amber inclusion reported so far. The preparations are based on a new technique of internal imbedding, whereby the hollow spaces within the inclusion are filled with synthetic resin which stabilizes the cellular structures during the sectioning procedure. Cytological stains applied to the sections reacted with cell walls and nuclei. A strong green auto-fluorescence of the cuticle and the resin canals in the leaves was observed. Transmission electron micrographs revealed highly preserved fine structures of cell walls, membranes and organelles. The results were compared with taxonomically related recent Glyptostrobus and Juniperus plants. PMID:15695201

  4. Characterization of 316L Steel Cellular Dodecahedron Structures Produced by Selective Laser Melting

    National Research Council Canada - National Science Library

    Prashanth, Konda; Löber, Lukas; Klauss, Hans-Jörg; Kühn, Uta; Eckert, Jürgen

    2016-01-01

    .... Finite element method (FEM) simulations were carried out with the defined structures and the mechanical testing results were compared. The calculated theory, simulation estimation, and the observed experimental results are in good agreement.

  5. Cellular automata-based modelling and simulation of biofilm structure on multi-core computers.

    Science.gov (United States)

    Skoneczny, Szymon

    2015-01-01

    The article presents a mathematical model of biofilm growth for aerobic biodegradation of a toxic carbonaceous substrate. Modelling of biofilm growth has fundamental significance in numerous processes of biotechnology and mathematical modelling of bioreactors. The process following double-substrate kinetics with substrate inhibition proceeding in a biofilm has not been modelled so far by means of cellular automata. Each process in the model proposed, i.e. diffusion of substrates, uptake of substrates, growth and decay of microorganisms and biofilm detachment, is simulated in a discrete manner. It was shown that for flat biofilm of constant thickness, the results of the presented model agree with those of a continuous model. The primary outcome of the study was to propose a mathematical model of biofilm growth; however a considerable amount of focus was also placed on the development of efficient algorithms for its solution. Two parallel algorithms were created, differing in the way computations are distributed. Computer programs were created using OpenMP Application Programming Interface for C++ programming language. Simulations of biofilm growth were performed on three high-performance computers. Speed-up coefficients of computer programs were compared. Both algorithms enabled a significant reduction of computation time. It is important, inter alia, in modelling and simulation of bioreactor dynamics.

  6. Comparative analysis of different weight matrices in subspace system identification for structural health monitoring

    Science.gov (United States)

    Shokravi, H.; Bakhary, NH

    2017-11-01

    Subspace System Identification (SSI) is considered as one of the most reliable tools for identification of system parameters. Performance of a SSI scheme is considerably affected by the structure of the associated identification algorithm. Weight matrix is a variable in SSI that is used to reduce the dimensionality of the state-space equation. Generally one of the weight matrices of Principle Component (PC), Unweighted Principle Component (UPC) and Canonical Variate Analysis (CVA) are used in the structure of a SSI algorithm. An increasing number of studies in the field of structural health monitoring are using SSI for damage identification. However, studies that evaluate the performance of the weight matrices particularly in association with accuracy, noise resistance, and time complexity properties are very limited. In this study, the accuracy, noise-robustness, and time-efficiency of the weight matrices are compared using different qualitative and quantitative metrics. Three evaluation metrics of pole analysis, fit values and elapsed time are used in the assessment process. A numerical model of a mass-spring-dashpot and operational data is used in this research paper. It is observed that the principal components obtained using PC algorithms are more robust against noise uncertainty and give more stable results for the pole distribution. Furthermore, higher estimation accuracy is achieved using UPC algorithm. CVA had the worst performance for pole analysis and time efficiency analysis. The superior performance of the UPC algorithm in the elapsed time is attributed to using unit weight matrices. The obtained results demonstrated that the process of reducing dimensionality in CVA and PC has not enhanced the time efficiency but yield an improved modal identification in PC.

  7. Transcriptome analysis of Deinagkistrodon acutus venomous gland focusing on cellular structure and functional aspects using expressed sequence tags

    Directory of Open Access Journals (Sweden)

    Qiu Pengxin

    2006-06-01

    Full Text Available Abstract Background The snake venom gland is a specialized organ, which synthesizes and secretes the complex and abundant toxin proteins. Though gene expression in the snake venom gland has been extensively studied, the focus has been on the components of the venom. As far as the molecular mechanism of toxin secretion and metabolism is concerned, we still knew a little. Therefore, a fundamental question being arisen is what genes are expressed in the snake venom glands besides many toxin components? Results To examine extensively the transcripts expressed in the venom gland of Deinagkistrodon acutus and unveil the potential of its products on cellular structure and functional aspects, we generated 8696 expressed sequence tags (ESTs from a non-normalized cDNA library. All ESTs were clustered into 3416 clusters, of which 40.16% of total ESTs belong to recognized toxin-coding sequences; 39.85% are similar to cellular transcripts; and 20.00% have no significant similarity to any known sequences. By analyzing cellular functional transcripts, we found high expression of some venom related genes and gland-specific genes, such as calglandulin EF-hand protein gene and protein disulfide isomerase gene. The transcripts of creatine kinase and NADH dehydrogenase were also identified at high level. Moreover, abundant cellular structural proteins similar to mammalian muscle tissues were also identified. The phylogenetic analysis of two snake venom toxin families of group III metalloproteinase and serine protease in suborder Colubroidea showed an early single recruitment event in the viperids evolutionary process. Conclusion Gene cataloguing and profiling of the venom gland of Deinagkistrodon acutus is an essential requisite to provide molecular reagents for functional genomic studies needed for elucidating mechanisms of action of toxins and surveying physiological events taking place in the very specialized secretory tissue. So this study provides a first

  8. Weight optimization of offshore supply vessel based on structural analysis using finite element meth

    Directory of Open Access Journals (Sweden)

    Ahmed M.H. Elhewy

    2016-06-01

    Full Text Available Ship design process usually relies on statistics and comparisons with existing ships, rather than analytical approaches and optimization techniques. Designers found this way as the best to fulfil the owner’s requirements, but better solutions, for both the shipyard and the owner may exist. Assessing ship life cycle cost is one of the most attractive tasks for shipyard during early design stage. Structural optimization can be used to achieve that task. In this paper, a comprehensive study on the structural optimization of an offshore supply vessel (OSV, as a case study, is presented. Detailed structural modeling of the vessel is created. Various environmental loads acting on the ship hull such as still water loads and wave induced loads are briefly explained. Different loading conditions and corresponding structural responses have been investigated to assign the most severe one on the vessel. The basic concept of structural optimization and optimization characteristics is highlighted. Blind search optimization technique is applied and approximately forty-two percent weight and cost savings are found by comparing the weight of various design scenarios together without showing any structural inadequacy.

  9. A comparison between track-structure, condensed-history Monte Carlo simulations and MIRD cellular S-values

    Science.gov (United States)

    Tajik-Mansoury, M. A.; Rajabi, H.; Mazdarani, H.

    2017-03-01

    The S-value is a standard measure in cellular dosimetry. S-values are calculated by applying analytical methods or by Monte Carlo simulation. In Monte Carlo simulation, particles are either tracked individually event-by-event or close events are condensed and processed collectively in different steps. Both of these methods have been employed for estimation of cellular S-values, but there is no consistency between the published results. In the present paper, we used the Geant4-DNA track-structure physics model as the reference to estimate the cellular S-values. We compared the results with the corresponding values obtained from the following three condensed-history physics models of Geant4: Penelope, Livermore and standard. The geometry and source were exactly the same in all the simulations. We utilized mono-energetic electrons with an initial kinetic energy in the range 1-700 keV as the source of radiation. We also compared our results with the MIRD S-values. We first drew an overall comparison between different data series and then compared the dependence of results on the energy of particles and the size of scoring compartments. The overall comparison indicated a very good linear correlation (R 2  >  91%) and small bias (3%) between the results of the track-structure model and the condensed-history physics model. The bias between MIRD and the results of Monte Carlo track-structure simulation was considerable (-8%). However, the point-by-point comparison revealed differences of up to 28% between the condensed-history and the track-structure MC codes for self-absorption S-values in the 10-50 keV energy range. For the cross-absorption S-values, the difference was up to 34%. In this energy range, the difference between the MIRD S-values and the Geant4-DNA results was up to 68%. Our findings suggest that the consistency/inconsistency of the results obtained with different MC simulations depends on the size of the scoring volumes, the energy of the

  10. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures.

    Science.gov (United States)

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C

    2017-03-01

    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  11. Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets.

    Science.gov (United States)

    Gruber, Susan; Logan, Roger W; Jarrín, Inmaculada; Monge, Susana; Hernán, Miguel A

    2015-01-15

    Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V-fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Auxetic shape memory alloy cellular structures for deployable satellite antennas: design, manufacture and testing

    Directory of Open Access Journals (Sweden)

    Di Maio D.

    2010-06-01

    Full Text Available We describe the production development and experimental tests related to an hybrid honeycomb-truss made of shape memory alloy (Ni48Ti46Cu6, and used as a demonstrator for a deployable antenna in deep-space missions. Specific emphasis is placed on the modal analysis techniques used to test the lightweight SMA structure.

  13. Auxetic shape memory alloy cellular structures for deployable satellite antennas: design, manufacture and testing

    OpenAIRE

    Di Maio D.; Toso M.; Coconnier C.; Jacobs S.; Scarpa F.

    2010-01-01

    We describe the production development and experimental tests related to an hybrid honeycomb-truss made of shape memory alloy (Ni48Ti46Cu6), and used as a demonstrator for a deployable antenna in deep-space missions. Specific emphasis is placed on the modal analysis techniques used to test the lightweight SMA structure.

  14. Auxetic shape memory alloy cellular structures for deployable satellite antennas: design, manufacture and testing

    Science.gov (United States)

    Scarpa, F.; Jacobs, S.; Coconnier, C.; Toso, M.; di Maio, D.

    2010-06-01

    We describe the production development and experimental tests related to an hybrid honeycomb-truss made of shape memory alloy (Ni48Ti46Cu6), and used as a demonstrator for a deployable antenna in deep-space missions. Specific emphasis is placed on the modal analysis techniques used to test the lightweight SMA structure.

  15. Structure and Cellular Dynamics of Deinococcus radiodurans Single-stranded DNA (ssDNA)-binding Protein (SSB)-DNA Complexes*

    Science.gov (United States)

    George, Nicholas P.; Ngo, Khanh V.; Chitteni-Pattu, Sindhu; Norais, Cédric A.; Battista, John R.; Cox, Michael M.; Keck, James L.

    2012-01-01

    The single-stranded DNA (ssDNA)-binding protein from the radiation-resistant bacterium Deinococcus radiodurans (DrSSB) functions as a homodimer in which each monomer contains two oligonucleotide-binding (OB) domains. This arrangement is exceedingly rare among bacterial SSBs, which typically form homotetramers of single-OB domain subunits. To better understand how this unusual structure influences the DNA binding and biological functions of DrSSB in D. radiodurans radiation resistance, we have examined the structure of DrSSB in complex with ssDNA and the DNA damage-dependent cellular dynamics of DrSSB. The x-ray crystal structure of the DrSSB-ssDNA complex shows that ssDNA binds to surfaces of DrSSB that are analogous to those mapped in homotetrameric SSBs, although there are distinct contacts in DrSSB that mediate species-specific ssDNA binding. Observations by electron microscopy reveal two salt-dependent ssDNA-binding modes for DrSSB that strongly resemble those of the homotetrameric Escherichia coli SSB, further supporting a shared overall DNA binding mechanism between the two classes of bacterial SSBs. In vivo, DrSSB levels are heavily induced following exposure to ionizing radiation. This accumulation is accompanied by dramatic time-dependent DrSSB cellular dynamics in which a single nucleoid-centric focus of DrSSB is observed within 1 h of irradiation but is dispersed by 3 h after irradiation. These kinetics parallel those of D. radiodurans postirradiation genome reconstitution, suggesting that DrSSB dynamics could play important organizational roles in DNA repair. PMID:22570477

  16. Structural Characterization of the Low-Molecular-Weight Heparin Dalteparin by Combining Different Analytical Strategies

    Directory of Open Access Journals (Sweden)

    Antonella Bisio

    2017-06-01

    Full Text Available A number of low molecular weight heparin (LMWH products are available for clinical use and although all share a similar mechanism of action, they are classified as distinct drugs because of the different depolymerisation processes of the native heparin resulting in substantial pharmacokinetic and pharmacodynamics differences. While enoxaparin has been extensively investigated, little information is available regarding the LMWH dalteparin. The present study is focused on the detailed structural characterization of Fragmin® by LC-MS and NMR applied both to the whole drug and to its enzymatic products. For a more in-depth approach, size homogeneous octasaccharide and decasaccharide components together with their fractions endowed with high or no affinity toward antithrombin were also isolated and their structural profiles characterized. The combination of different analytical strategies here described represents a useful tool for the assessment of batch-to-batch structural variability and for comparative evaluation of structural features of biosimilar products.

  17. Analyzing the structure of macromolecules in their native cellular environment using hydroxyl radical footprinting.

    Science.gov (United States)

    Chea, Emily E; Jones, Lisa M

    2018-02-12

    Hydroxyl radical footprinting (HRF) has been successfully used to study the structure of both nucleic acids and proteins. The method utilizes hydroxyl radicals to oxidize solvent accessible sites in macromolecules. In recent years, the method has shown some utility for live cell analysis. In this review, we will survey the current state of the field for footprinting macromolecules in living cells. The field is relatively new, particularly for protein studies, with only a few publications on the development and application of HRF on live cells. DNA-protein interaction sites and information on the secondary and tertiary structure of RNA has been characterized. In addition, the conformational changes of membrane-spanning channels upon opening and activation have also been studied by in-cell HRF. In this review, we highlight examples of these applications.

  18. The effect of collagen ageing on its structure and cellular behaviour

    Science.gov (United States)

    Wilson, Samantha L.; Guilbert, Marie; Sulé-Suso, Josep; Torbet, James; Jeannesson, Pierre; Sockalingum, Ganesh D.; Yang, Ying

    2012-03-01

    Collagen is the most important component in extracellular matrix (ECM) and plays a pivotal role in individual tissue function in mammals. During ageing, collagen structure changes, which can detrimentally affect its biophysical and biomechanical properties due to an accumulation of advanced glycation end-products (AGEs). AGEs have been linked to non-enzymatic cross-linking of proteins resulting in the alteration of mechanical properties of the tissue. In this study we investigate the influence of different aged collagens on the mechanical and contractile properties of reconstituted hydrogel constructs seeded with corneal stromal fibroblasts. A non-destructive indentation technique and optical coherence tomography (OCT) are used to determine the elastic modulus and dimensional changes respectively. It is revealed that the youngest collagen constructs have a higher elastic modulus and increased contraction compared to the older collagen. These results provide new insights into the relationship between collagen molecular structures and their biomechanical properties.

  19. Effects of aspirin on clot structure and fibrinolysis using a novel in vitro cellular system.

    Science.gov (United States)

    Ajjan, R A; Standeven, K F; Khanbhai, M; Phoenix, F; Gersh, K C; Weisel, J W; Kearney, M T; Ariëns, R A S; Grant, P J

    2009-05-01

    The purpose of this study was to investigate the direct effects of aspirin on fibrin structure/function. Chinese Hamster Ovary cell lines stably transfected with fibrinogen were grown in the absence (0) and presence of increasing concentrations of aspirin. Fibrinogen was purified from the media using affinity chromatography, and clots were made from recombinant protein. Mean final turbidity [OD(+/-SEM)] was 0.083(+/-0.03), 0.093(+/-0.002), 0.101(+/-0.005), and 0.125(+/-0.003) in clots made from 0, 1, 10, and 100 mg/L aspirin-treated fibrinogen, respectively (Paspirin respectively (Pstructure and increased fiber thickness of clots made from aspirin-treated fibrinogen, whereas rheometer studies showed a significant 30% reduction in clot rigidity. Fibrinolysis was quicker in clots made from aspirin-treated fibrinogen. Ex vivo studies in 3 normal volunteers given 150 mg aspirin daily for 1 week demonstrated similar changes in clot structure/function. Aspirin directly altered clot structure resulting in the formation of clots with thicker fibers and bigger pores, which are easier to lyse. This study clearly demonstrates an alternative mode of action for aspirin, which should be considered in studies evaluating the biochemical efficacy of this agent.

  20. A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata

    Science.gov (United States)

    Naji Asfestani, Mazaher; Rasouli Heikalabad, Saeed

    2017-09-01

    Quantum-dot cellular automata (QCA) is a new technology in scale of nano and perfect replacement for CMOS circuits in the future. Memory is one of the basic components in any digital system, so designing the random access memory (RAM) with high speed and optimal in QCA is important. In this paper, by employing the structure of multiplexer, a novel RAM cell architecture is proposed. The proposed architecture is implemented without the coplanar crossover approach. The proposed architecture is simulated using the QCADesigner version 2.0.3 and QCAPro. The simulation results demonstrate that the proposed QCA RAM architecture has the best performance in terms of delay, circuit complexity, area, cell count and energy consumption in comparison with other QCA RAM architectures.

  1. Cellular Structural Changes in Candida albicans Caused by the Hydroalcoholic Extract from Sapindus saponaria L.

    Directory of Open Access Journals (Sweden)

    Cristiane S. Shinobu-Mesquita

    2015-05-01

    Full Text Available Vulvovaginal candidiasis (VVC is a disease caused by the abnormal growth of yeast-like fungi in the mucosa of the female genital tract. Candida albicans is the principal etiological agent involved in VVC, but reports have shown an increase in the prevalence of Candida non-C. albicans (CNCA cases, which complicates VVC treatment because CNCA does not respond well to antifungal therapy. Our group has reported the in vitro antifungal activity of extracts from Sapindus saponaria L. The present study used scanning electron microscopy and transmission electron microscopy to further evaluate the antifungal activity of hydroalcoholic extract from S. saponaria (HE against yeast obtained from VVC and structural changes induced by HE. We observed the antifungal activity of HE against 125 vaginal yeasts that belonged to four different species of the Candida genus and S. cerevisae. The results suggest that saponins that are present in HE act on the cell wall or membrane of yeast at the first moments after contact, causing damage to these structures and cell lysis.

  2. Cellular Structural Changes in Candida albicans Caused by the Hydroalcoholic Extract from Sapindus saponaria L.

    Science.gov (United States)

    Shinobu-Mesquita, Cristiane S; Bonfim-Mendonça, Patricia S; Moreira, Amanda L; Ferreira, Izabel C P; Donatti, Lucelia; Fiorini, Adriana; Svidzinski, Terezinha I E

    2015-05-22

    Vulvovaginal candidiasis (VVC) is a disease caused by the abnormal growth of yeast-like fungi in the mucosa of the female genital tract. Candida albicans is the principal etiological agent involved in VVC, but reports have shown an increase in the prevalence of Candida non-C. albicans (CNCA) cases, which complicates VVC treatment because CNCA does not respond well to antifungal therapy. Our group has reported the in vitro antifungal activity of extracts from Sapindus saponaria L. The present study used scanning electron microscopy and transmission electron microscopy to further evaluate the antifungal activity of hydroalcoholic extract from S. saponaria (HE) against yeast obtained from VVC and structural changes induced by HE. We observed the antifungal activity of HE against 125 vaginal yeasts that belonged to four different species of the Candida genus and S. cerevisae. The results suggest that saponins that are present in HE act on the cell wall or membrane of yeast at the first moments after contact, causing damage to these structures and cell lysis.

  3. Optically patternable polymer films as model interfaces to study cellular behaviour on topographically structured materials.

    Science.gov (United States)

    Minelli, Caterina; Yamamoto, Akiko; Kim, Mi-Jeong

    2011-01-01

    We assessed blood interaction with different micrometer-scale topographies under flow conditions using a micro-fluidic array system. The channels of the micro-fluidic array chip were coated with azobenzene polymer films, which were then topographically structured using a one-step non-contact optical technique. A set of surfaces with different topographies was produced varying laser irradiation duration. These surfaces were then exposed to blood flow. The blood flow rate was measured with a micro-channel array flow analyzer. The measured blood flow rates decreased with time for all the samples, indicating formation of platelet clots which obstruct the channels during flow. This effect appeared enhanced on polymer surfaces having a sinusoidal profile with 200-nm-high ridges and 1.2-μm-grating spacing. The morphology of platelets that adhered on the polymer films was studied by scanning electron microscopy. Platelets adhered on azobenzene surfaces with flat topographies, typically exhibiting filopodia. Platelets adhered on optically structured surfaces also exhibited lamellipodia and appeared flattened on surfaces with the highest ridges. We conclude that surface topography influences blood behaviour on azobenzene polymer films.

  4. The cellular basis of platelet secretion: Emerging structure/function relationships.

    Science.gov (United States)

    Yadav, Shilpi; Storrie, Brian

    2017-03-01

    Platelet activation has long been known to be accompanied by secretion from at least three types of compartments. These include dense granules, the major source of small molecules; α-granules, the major protein storage organelle; and lysosomes, the site of acid hydrolase storage. Despite ~60 years of research, there are still many unanswered questions about the cell biology of platelet secretion: for example, how are these secretory organelles organized to support cargo release and what are the key routes of cargo release, granule to plasma membrane or granule to canalicular system. Moreover, in recent years, increasing evidence points to the platelet being organized for secretion of the contents from other organelles, namely the dense tubular system (endoplasmic reticulum) and the Golgi apparatus. Conceivably, protein secretion is a widespread property of the platelet and its organelles. In this review, we concentrate on the cell biology of the α-granule and its structure/function relationships. We both review the literature and discuss the wide array of 3-dimensional, high-resolution structural approaches that have emerged in the last few years. These have begun to reveal new and unanticipated outcomes and some of these are discussed. We are hopeful that the next several years will bring rapid advances to this field that will resolve past controversies and be clinically relevant.

  5. Contrast enhancement by combining T1- and T2-weighted structural brain MR Images.

    Science.gov (United States)

    Misaki, Masaya; Savitz, Jonathan; Zotev, Vadim; Phillips, Raquel; Yuan, Han; Young, Kymberly D; Drevets, Wayne C; Bodurka, Jerzy

    2015-12-01

    In order to more precisely differentiate cerebral structures in neuroimaging studies, a novel technique for enhancing the tissue contrast based on a combination of T1-weighted (T1w) and T2-weighted (T2w) MRI images was developed. The combined image (CI) was calculated as CI = (T1w - sT2w)/(T1w + sT2w), where sT2w is the scaled T2-weighted image. The scaling factor was calculated to adjust the gray- matter (GM) voxel intensities in the T2w image so that their median value equaled that of the GM voxel intensities in the T1w image. The image intensity homogeneity within a tissue and the discriminability between tissues in the CI versus the separate T1w and T2w images were evaluated using the segmentation by the FMRIB Software Library (FSL) and FreeSurfer (Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General Hospital, Boston, MA) software. The combined image significantly improved homogeneity in the white matter (WM) and GM compared to the T1w images alone. The discriminability between WM and GM also improved significantly by applying the CI approach. Significant enhancements to the homogeneity and discriminability also were achieved in most subcortical nuclei tested, with the exception of the amygdala and the thalamus. The tissue discriminability enhancement offered by the CI potentially enables more accurate neuromorphometric analyses of brain structures. © 2014 Wiley Periodicals, Inc.

  6. Structural relations of harmonic sums and Mellin transforms up to weight w=5

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes

    2009-01-15

    We derive the structural relations between the Mellin transforms of weighted Nielsen integrals emerging in the calculation of massless or massive single-scale quantities in QED and QCD, such as anomalous dimensions and Wilson coefficients, and other hard scattering cross sections depending on a single scale. The set of all multiple harmonic sums up to weight five cover the sums needed in the calculation of the 3-loop anomalous dimensions. The relations extend the set resulting from the quasi-shuffle product between harmonic sums studied earlier. Unlike the shuffle relations, they depend on the value of the quantities considered. Up to weight w=5, 242 nested harmonic sums contribute. In the present physical applications it is sufficient to consider the sub-set of harmonic sums not containing an index i=-1, which consists out of 69 sums. The algebraic relations reduce this set to 30 sums. Due to the structural relations a final reduction of the number of harmonic sums to 15 basic functions is obtained. These functions can be represented in terms of factorial series, supplemented by harmonic sums which are algebraically reducible. Complete analytic representations are given for these 15 meromorphic functions in the complex plane deriving their asymptotic- and recursion relations. A general outline is presented on the way nested harmonic sums and multiple zeta values emerge in higher order calculations of zero- and single scale quantities. (orig.)

  7. Statistically Generated Weighted Curve Fit of Residual Functions for Modal Analysis of Structures

    Directory of Open Access Journals (Sweden)

    Paul Stanley Bookout

    1997-01-01

    Full Text Available A statistically generated weighting function for a second-order polynomial curve fit of residual functions has been developed. The residual flexibility test method, from which a residual function is generated, is a procedure to modal test large structures in a free-free environment to measure the effects of higher order modes and stiffness at distinct degree of freedom interfaces. Due to the present damping estimate limitations in the modal parameter evaluation (natural frequencies and mode shapes of test data, the residual function has regions of irregular data, which should be a smooth curve in a second-order polynomial form. A weighting function of the data is generated by examining the variances between neighboring data points. From a weighted second-order polynomial curve fit, an accurate residual flexibility value can be obtained. The residual flexibility value and free-free modes from testing are used to improve a mathematical model of the structure, which is used to predict constrained mode shapes.

  8. Integrating aerodynamics and structures in the minimum weight design of a supersonic transport wing

    Science.gov (United States)

    Barthelemy, Jean-Francois M.; Wrenn, Gregory A.; Dovi, Augustine R.; Coen, Peter G.; Hall, Laura E.

    1992-01-01

    An approach is presented for determining the minimum weight design of aircraft wing models which takes into consideration aerodynamics-structure coupling when calculating both zeroth order information needed for analysis and first order information needed for optimization. When performing sensitivity analysis, coupling is accounted for by using a generalized sensitivity formulation. The results presented show that the aeroelastic effects are calculated properly and noticeably reduce constraint approximation errors. However, for the particular example selected, the error introduced by ignoring aeroelastic effects are not sufficient to significantly affect the convergence of the optimization process. Trade studies are reported that consider different structural materials, internal spar layouts, and panel buckling lengths. For the formulation, model and materials used in this study, an advanced aluminum material produced the lightest design while satisfying the problem constraints. Also, shorter panel buckling lengths resulted in lower weights by permitting smaller panel thicknesses and generally, by unloading the wing skins and loading the spar caps. Finally, straight spars required slightly lower wing weights than angled spars.

  9. Cellular organization of Bacillus subtilis: sodium dodecyl sulfate-induced cell partitioning into zebra structures.

    Science.gov (United States)

    Mendelson, N H; Haag, S M; Cole, R M

    1976-06-01

    Cells of Bacillus subtilis heated in high concentrations of sodium dodecyl sulfate (5%) and then washed free of detergent with a hot salt solution (80 C) become structurally reorganized into regions of densely compacted cytoplasm (termed zebras) and regions of sparsely filled material (termed spaces). Size distribution studies of zebras indicate that division-suppressed mutants and wild-type cells both yield zebras of comparable length. Similarly the lengths of zebras found in populations emerging from spores are uniform in one-, two-, three-, and four-zebra-containing cells. In contrast, the length of spaces is slightly larger than that of zebras and is unusually large in two-zebra-containing cells. The locations of zebras and spaces along cell length have been studied in spore out-growth populations. A statistical procedure developed previously in genome location investigations was used to analyze the location of zebras along cell length. The data indicate that as cells elongate, new sites arise where the cell contents are strongly bound to the cell surface. Within filament populations produced by division-suppressed mutants there is a linear relationship of mean filament length and zebra number per filament. These data indicate that cytoplasm in filaments with no obvious structural compartmentalizations may be organized into units associated with particular regions of cell surface. The attachment of cell contents to the cell surface may involve deoxyribonucleic acid. Zebra-containing cells digested with proteolytic enzyme and ribonuclease are converted to cells that contain a crystalline-like granule fixed at the location of each zebra. Exposure to deoxyribonuclease mobilizes these granules within the cell wall.

  10. Low cost electrostatic vibration energy harvesters based on negatively-charged polypropylene cellular films with a folded structure

    Science.gov (United States)

    Ma, Xingchen; Zhang, Xiaoqing

    2017-08-01

    Low cost electrostatic vibration energy harvesters based on negatively-charged polypropylene cellular films with a folded structure were designed in this study. Strips of such energy harvesters were excited by applying mechanical stress in length direction. A current in a terminating resistor was generated due to the capacitance variation of the samples. For a typical double-periodic folded-structure electrostatic vibration energy harvester sample whose effective length and width were 30 mm and 10 mm, respectively, the generated power across a matching resistor at a resonance frequency of 36 Hz amounts to 641 μW for a seismic mass of 4 g and an acceleration of 1 g (g is the gravity of the Earth). Similar structures which were designed and fabricated in this study were also tested for energy harvesting and high output power in the order of a few hundred microwatt was gained. Following the presentation of a theoretical model allowing for the calculation of the power generated in a load resistance at the resonance frequency of the harvesters, experimental results are shown and compared to theoretical prediction. It turns out that the experiment results accord well with the theoretical predictions.

  11. Interplay between cellular activity and three-dimensional scaffold-cell constructs with different foam structure processed by electron beam melting.

    Science.gov (United States)

    Nune, Krishna C; Misra, R Devesh K; Gaytan, Sara M; Murr, Lawrence E

    2015-05-01

    The cellular activity, biological response, and consequent integration of scaffold-cell construct in the physiological system are governed by the ability of cells to adhere, proliferate, and biomineralize. In this regard, we combine cellular biology and materials science and engineering to fundamentally elucidate the interplay between cellular activity and interconnected three-dimensional foamed architecture obtained by a novel process of electron beam melting and computational tools. Furthermore, the organization of key proteins, notably, actin, vinclulin, and fibronectin, involved in cellular activity and biological functions and relationship with the structure was explored. The interconnected foamed structure with ligaments was favorable to cellular activity that includes cell attachment, proliferation, and differentiation. The primary rationale for favorable modulation of cellular functions is that the foamed structure provided a channel for migration and communication between cells leading to highly mineralized extracellular matrix (ECM) by the differentiating osteoblasts. The filopodial interaction amongst cells on the ligaments was a governing factor in the secretion of ECM, with consequent influence on maturation and mineralization. © 2014 Wiley Periodicals, Inc.

  12. Association between echocardiographic structural parameters and body weight in Wistar rats.

    Science.gov (United States)

    Oliveira-Junior, Silvio A; Martinez, Paula F; Fan, William Y C; Nakatani, Bruno T; Pagan, Luana U; Padovani, Carlos R; Cicogna, Antonio C; Okoshi, Marina P; Okoshi, Katashi

    2017-04-18

    The association between echocardiographic structural parameters and body weight (BW) during rat development has been poorly addressed. We evaluated echocardiographic variables: left ventricular (LV) end-diastolic (LVDD) and end-systolic (LVSD) diameters, LV diastolic posterior wall thickness (PWT), left atrial diameter (LA), and aortic diameter (AO) in function of BW during development.Results/Materials and Methods: Male Wistar rats (n = 328, BW: 302-702 g) were retrospectively used to construct regression models and 95% confidence intervals relating to cardiac structural parameters and BW. Adjusted indexes were significant to all relationships; the regression model for predicting LVDD (R2 = 0.678; p cardiac structures is associated with BW gain during rat growth. LA and AO can be correctly predicted using regression models; prediction of PWT and LV diameters is not accurate.

  13. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments.

    Science.gov (United States)

    Shah, Furqan A

    2016-01-01

    Bioactive glasses (BGs) are known to bond to both hard and soft tissues. Upon exposure to an aqueous environment, BG undergoes ion exchange, hydrolysis, selective dissolution and precipitation of an apatite layer on their surface, which elicits an interfacial biological response resulting in bioactive fixation, inhibiting further dissolution of the glass, and preventing complete resorption of the material. Fluorine is considered one of the most effective in-vivo bone anabolic factors. In low concentrations, fluoride ions (F(-)) increase bone mass and mineral density, improve the resistance of the apatite structure to acid attack, and have well documented antibacterial properties. F(-) ions may be incorporated into the glass in the form of calcium fluoride (CaF2) either by part-substitution of network modifier oxides, or by maintaining the ratios of the other constituents relatively constant. Fluoride-containing bioactive glasses (FBGs) enhance and control osteoblast proliferation, differentiation and mineralisation. And with their ability to release fluoride locally, FBGs make interesting candidates for various clinical applications, dentinal tubule occlusion in the treatment of dentin hypersensitivity. This paper reviews the chemistry of FBGs and the influence of F(-) incorporation on the thermal properties, bioactivity, and cytotoxicity; and novel glass compositions for improved mechanical properties, processing, and bioactive potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Structural and functional alterations of cellular components as revealed by electron microscopy.

    Science.gov (United States)

    Condello, Maria; Caraglia, Michele; Castellano, Maria; Arancia, Giuseppe; Meschini, Stefania

    2013-10-01

    Scanning (SEM) and transmission electron microscopy (TEM) are two fundamental microscopic techniques widely applied in biological research for the study of ultrastructural cell components. With these methods, especially TEM, it is possible to detect and quantify the morphological and ultrastructural parameters of intracellular organelles (mitochondria, Golgi apparatus, lysosomes, peroxisomes, endosomes, endoplasmic reticulum, cytoskeleton, nucleus, etc.) in normal and pathological conditions. The study of intracellular vesicle compartmentalization is raising even more interest in the light of the importance of intracellular localization of mediators of the signaling in eliciting different biological responses. The study of the morphology of some intracellular organelles can supply information on the bio-energetic status of the cells. TEM has also a pivotal role in the determination of different types of programmed cell death. In fact, the visualization of autophagosomes and autophagolysosomes is essential to determine the occurrence of autophagy (and also to discriminate micro-autophagy from macro-autophagy), while the presence of fragmented nuclei and surface blebbing is characteristic of apoptosis. SEM is particularly useful for the study of the morphological features of the cells and, therefore, can shed light, for instance, on cell-cell interactions. After a brief introduction on the basic principles of the main electron microscopy methods, the article describes some cell components with the aim to demonstrate the huge role of the ultrastructural analysis played in the knowledge of the relationship between function and structure of the biological objects. Copyright © 2013 Wiley Periodicals, Inc.

  15. Contrast-enhanced digital holographic imaging of cellular structures by manipulating the intracellular refractive index.

    Science.gov (United States)

    Rommel, Christina E; Dierker, Christian; Schmidt, Lisa; Przibilla, Sabine; von Bally, Gert; Kemper, Björn; Schnekenburger, Jürgen

    2010-01-01

    The understanding of biological reactions and evaluation of the significance for living cells strongly depends on the ability to visualize and quantify these processes. Digital holographic microscopy (DHM) enables quantitative phase contrast imaging for high resolution and minimal invasive live cell analysis without the need of labeling or complex sample preparation. However, due to the rather homogeneous intracellular refractive index, the phase contrast of subcellular structures is limited and often low. We analyze the impact of the specific manipulation of the intracellular refractive index by microinjection on the DHM phase contrast. Glycerol is chosen as osmolyte, which combines high solubility in aqueous solutions and biological compatibility. We show that the intracellular injection of glycerol causes a contrast enhancement that can be explained by a decrease of the cytosolic refractive index due to a water influx. The underlying principle is proven by experiments inducing cell shrinkage and with fixated cells. The integrity of the cell membrane is considered as a prerequisite and allows a reversible cell swelling and shrinking within a certain limit. The presented approach to control the intracellular phase contrast demonstrated for the example of DHM opens prospects for applications with other quantitative phase contrast imaging methods.

  16. An approach for characterising cellular polymeric foam structures using computed tomography

    Science.gov (United States)

    Chen, Youming; Das, Raj; Battley, Mark

    2018-02-01

    Global properties of foams depend on foam base materials and microstructures. Characterisation of foam microstructures is important for developing numerical foam models. In this study, the microstructures of four polymeric structural foams were imaged using a micro-CT scanner. Image processing and analysis methods were proposed to quantify the relative density, cell wall thickness and cell size of these foams from the captured CT images. Overall, the cells in these foams are fairly isotropic, and cell walls are rather straight. The measured average relative densities are in good agreement with the actual values. Relative density, cell size and cell wall thickness in these foams are found to vary along the thickness of foam panel direction. Cell walls in two of these foams are found to be filled with secondary pores. In addition, it is found that the average cell wall thickness measured from 2D images is around 1.4 times of that measured from 3D images, and the average cell size measured from 3D images is 1.16 times of that measured from 2D images. The distributions of cell wall thickness and cell size measured from 2D images exhibit lager dispersion in comparison to those measured from 3D images.

  17. Factors affecting the rheological properties of a structured cellular solid used as a fat mimetic.

    Science.gov (United States)

    Blake, Alexia I; Marangoni, Alejandro G

    2015-08-01

    The effects of water content, monoglyceride chain length and concentration, oil type, and the addition of oil-phase and water-phase additives on the elastic modulus and yield stress of a structured oil in water were evaluated. The goal was to increase the elastic modulus of the original emulsion from 8.42×10(3)±11.3Pa to 1.55×10(6)±2.1×10(5)Pa, and the yield stress from 112±2.31Pa to 835±227Pa. The addition of wax at greater than 10% (w/w), the use of palm oil or the gelation of the liquid oil phase with 5-7.5% rice bran wax, the use of C-18 saturated monoglyceride at 6%(w/w), and 4% (w/w) for C-22 saturated monoglyceride molecules were effective modifications capable of improving the mechanical behavior of the emulsion so that it can be used as a zero trans and reduced saturated fat laminating shortening substitute for puff pastry products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Native aggregation as a cause of origin of temporary cellular structures needed for all forms of cellular activity, signaling and transformations

    Directory of Open Access Journals (Sweden)

    Matveev Vladimir V

    2010-06-01

    Full Text Available Abstract According to the hypothesis explored in this paper, native aggregation is genetically controlled (programmed reversible aggregation that occurs when interacting proteins form new temporary structures through highly specific interactions. It is assumed that Anfinsen's dogma may be extended to protein aggregation: composition and amino acid sequence determine not only the secondary and tertiary structure of single protein, but also the structure of protein aggregates (associates. Cell function is considered as a transition between two states (two states model, the resting state and state of activity (this applies to the cell as a whole and to its individual structures. In the resting state, the key proteins are found in the following inactive forms: natively unfolded and globular. When the cell is activated, secondary structures appear in natively unfolded proteins (including unfolded regions in other proteins, and globular proteins begin to melt and their secondary structures become available for interaction with the secondary structures of other proteins. These temporary secondary structures provide a means for highly specific interactions between proteins. As a result, native aggregation creates temporary structures necessary for cell activity. "One of the principal objects of theoretical research in any department of knowledge is to find the point of view from which the subject appears in its greatest simplicity." Josiah Willard Gibbs (1839-1903

  19. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Furqan A., E-mail: furqan.ali.shah@biomaterials.gu.se

    2016-01-01

    Bioactive glasses (BGs) are known to bond to both hard and soft tissues. Upon exposure to an aqueous environment, BG undergoes ion exchange, hydrolysis, selective dissolution and precipitation of an apatite layer on their surface, which elicits an interfacial biological response resulting in bioactive fixation, inhibiting further dissolution of the glass, and preventing complete resorption of the material. Fluorine is considered one of the most effective in-vivo bone anabolic factors. In low concentrations, fluoride ions (F{sup −}) increase bone mass and mineral density, improve the resistance of the apatite structure to acid attack, and have well documented antibacterial properties. F{sup −} ions may be incorporated into the glass in the form of calcium fluoride (CaF{sub 2}) either by part-substitution of network modifier oxides, or by maintaining the ratios of the other constituents relatively constant. Fluoride-containing bioactive glasses (FBGs) enhance and control osteoblast proliferation, differentiation and mineralisation. And with their ability to release fluoride locally, FBGs make interesting candidates for various clinical applications, dentinal tubule occlusion in the treatment of dentin hypersensitivity. This paper reviews the chemistry of FBGs and the influence of F{sup −} incorporation on the thermal properties, bioactivity, and cytotoxicity; and novel glass compositions for improved mechanical properties, processing, and bioactive potential. - Highlights: • Fluoride ions form charged CaF{sup +} species rather than Si–F bonds. • Fluoride incorporation lowers glass transition and crystallisation temperatures. • Oxynitride and oxyfluoronitride glasses with superior mechanical properties • Mixed-alkali and alkali-free compositions with better processing characteristics.

  20. High-resolution adaptive optics retinal imaging of cellular structure in choroideremia.

    Science.gov (United States)

    Morgan, Jessica I W; Han, Grace; Klinman, Eva; Maguire, William M; Chung, Daniel C; Maguire, Albert M; Bennett, Jean

    2014-09-04

    We characterized retinal structure in patients and carriers of choroideremia using adaptive optics and other high resolution modalities. A total of 57 patients and 18 carriers of choroideremia were imaged using adaptive optics scanning light ophthalmoscopy (AOSLO), optical coherence tomography (OCT), autofluorescence (AF), and scanning light ophthalmoscopy (SLO). Cone density was measured in 59 eyes of 34 patients where the full cone mosaic was observed. The SLO imaging revealed scalloped edges of RPE atrophy and large choroidal vessels. The AF imaging showed hypo-AF in areas of degeneration, while central AF remained present. OCT images showed outer retinal tubulations and thinned RPE/interdigitation layers. The AOSLO imaging revealed the cone mosaic in central relatively intact retina, and cone density was either reduced or normal at 0.5 mm eccentricity. The border of RPE atrophy showed abrupt loss of the cone mosaic at the same location. The AF imaging in comparison with AOSLO showed RPE health may be compromised before cone degeneration. Other disease features, including visualization of choroidal vessels, hyper-reflective clumps of cones, and unique retinal findings, were tabulated to show the frequency of occurrence and model disease progression. The data support the RPE being one primary site of degeneration in patients with choroideremia. Photoreceptors also may degenerate independently. High resolution imaging, particularly AOSLO in combination with OCT, allows single cell analysis of disease in choroideremia. These modalities promise to be useful in monitoring disease progression, and in documenting the efficacy of gene and cell-based therapies for choroideremia and other diseases as these therapies emerge. (ClinicalTrials.gov number, NCT01866371.). Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  1. Ancient cellular structures and modern humans: change of survival strategies before prolonged low solar activity period

    Science.gov (United States)

    Ragulskaya, Mariya; Rudenchik, Evgeniy; Gromozova, Elena; Voychuk, Sergei; Kachur, Tatiana

    The study of biotropic effects of modern space weather carries the information about the rhythms and features of adaptation of early biological systems to the outer space influence. The influence of cosmic rays, ultraviolet waves and geomagnetic field on early life has its signs in modern biosphere processes. These phenomena could be experimentally studied on present-day biological objects. Particularly inorganic polyphosphates, so-called "fossil molecules", attracts special attention as the most ancient molecules which arose in inanimate nature and have been accompanying biological objects at all stages of evolution. Polyphosphates-containing graves of yeast's cells of Saccharomyces cerevisiae strain Y-517, , from the Ukrainian Collection of Microorganisms was studied by daily measurements during 2000-2013 years. The IZMIRAN daily data base of physiological parameters dynamics during 2000-2013 years were analyzed simultaneously (25 people). The analysis showed significant simultaneous changes of the statistical parameters of the studied biological systems in 2004 -2006. The similarity of simultaneous changes of adaptation strategies of human organism and the cell structures of Saccharomyces cerevisiae during the 23-24 cycles of solar activity are discussed. This phenomenon could be due to a replacement of bio-effective parameters of space weather during the change from 23rd to 24th solar activity cycle and nonstandard geophysical peculiarities of the 24th solar activity cycle. It could be suggested that the observed similarity arose as the optimization of evolution selection of the living systems in expectation of probable prolonged period of low solar activity (4-6 cycles of solar activity).

  2. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function.

    Directory of Open Access Journals (Sweden)

    Lia R Edmunds

    Full Text Available The c-Myc (Myc oncoprotein and AMP-activated protein kinase (AMPK regulate glycolysis and oxidative phosphorylation (Oxphos although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT and ampk-/- (KO murine embryo fibroblasts (MEFs. KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions.

  3. Impact Response of Aluminum Foam Sandwiches for Light-Weight Ship Structures

    Directory of Open Access Journals (Sweden)

    Eugenio Guglielmino

    2011-12-01

    Full Text Available The structures realized using sandwich technologies combine low weight with high energy absorbing capacity, so they are suitable for applications in the transport industry (automotive, aerospace, shipbuilding industry where the “lightweight design” philosophy and the safety of vehicles are very important aspects. While sandwich structures with polymeric foams have been applied for many years, currently there is a considerable and growing interest in the use of sandwiches with aluminum foam core. The aim of this paper was the analysis of low-velocity impact response of AFS (aluminum foam sandwiches panels and the investigation of their collapse modes. Low velocity impact tests were carried out by a drop test machine and a theoretical approach, based on the energy balance model, has been applied to investigate their impact behavior. The failure mode and the internal damage of the impacted AFS have also been investigated by a Computed Tomography (CT system.

  4. Structure and activity of a new low-molecular-weight heparin produced by enzymatic ultrafiltration.

    Science.gov (United States)

    Fu, Li; Zhang, Fuming; Li, Guoyun; Onishi, Akihiro; Bhaskar, Ujjwal; Sun, Peilong; Linhardt, Robert J

    2014-05-01

    The standard process for preparing the low-molecular-weight heparin (LMWH) tinzaparin, through the partial enzymatic depolymerization of heparin, results in a reduced yield because of the formation of a high content of undesired disaccharides and tetrasaccharides. An enzymatic ultrafiltration reactor for LMWH preparation was developed to overcome this problem. The behavior, of the heparin oligosaccharides and polysaccharides using various membranes and conditions, was investigated to optimize this reactor. A novel product, LMWH-II, was produced from the controlled depolymerization of heparin using heparin lyase II in this optimized ultrafiltration reactor. Enzymatic ultrafiltration provides easy control and high yields (>80%) of LMWH-II. The molecular weight properties of LMWH-II were similar to other commercial LMWHs. The structure of LMWH-II closely matched heparin's core structural features. Most of the common process artifacts, present in many commercial LWMHs, were eliminated as demonstrated by 1D and 2D nuclear magnetic resonance spectroscopy. The antithrombin III and platelet factor-4 binding affinity of LMWH-II were comparable to commercial LMWHs, as was its in vitro anticoagulant activity. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Novel Ni-Ce-Zr/Al2O3 Cellular Structure for the Oxidative Dehydrogenation of Ethane

    Directory of Open Access Journals (Sweden)

    Juan Pablo Bortolozzi

    2017-11-01

    Full Text Available A novel γ-alumina-supported Ni-Ce-Zr catalyst with cellular structure was developed for oxidative dehydrogenation of ethane (ODHE. First, powdered samples were synthesized to study the effect of both the total metal content and the Ce/Zr ratio on the physicochemical properties and performance of these catalysts. All synthesized powdered samples were highly active and selective for ODHE with a maximum ethylene productivity of 6.94 µmolethylene gact cat−1 s−1. According to the results, cerium addition increased the most reducible nickel species population, which would benefit ethane conversion, whereas zirconium incorporation would enhance ethylene selectivity through the generation of higher amounts of the least reducible nickel species. Therefore, the modification of active site properties by addition of both promoters synergistically increases the productivity of the Ni-based catalysts. The most efficient formulation, in terms of ethylene productivity per active phase amount, contained 15 wt% of the mixed oxide with Ni0.85Ce0.075Zr0.075 composition. This formulation was selected to synthesize a Ni-Ce-Zr/Al2O3 structured body by deposition of the active phase onto a homemade γ-alumina monolith. The structured support was manufactured by extrusion of boehmite-containing dough. The main properties of the Ni0.85Ce0.075Zr0.075 powder were successfully preserved after the shaping procedure. In addition, the catalytic performance of the monolithic sample was comparable in terms of ethylene productivity to that of the powdered counterpart.

  6. Structure of modified [epsilon]-polylysine micelles and their application in improving cellular antioxidant activity of curcuminoids

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hailong; Li, Ji; Shi, Ke; Huang, Qingrong (Rutgers)

    2015-10-15

    The micelle structure of octenyl succinic anhydride modified {var_epsilon}-polylysine (M-EPL), an anti-microbial surfactant prepared from natural peptide {var_epsilon}-polylysine in aqueous solution has been studied using synchrotron small-angle X-ray scattering (SAXS). Our results revealed that M-EPLs formed spherical micelles with individual size of 24-26 {angstrom} in aqueous solution which could further aggregate to form a larger dimension with averaged radius of 268-308 {angstrom}. Furthermore, M-EPL micelle was able to encapsulate curcuminoids, a group of poorly-soluble bioactive compounds from turmeric with poor oral bioavailability, and improve their water solubility. Three loading methods, including solvent evaporation, dialysis, and high-speed homogenization were compared. The results indicated that the dialysis method generated the highest loading capacity and curcuminoids water solubility. The micelle encapsulation was confirmed as there were no free curcuminoid crystals detected in the differential scanning calorimetry analysis. It was also demonstrated that M-EPL encapsulation stabilized curcuminoids against hydrolysis at pH 7.4 and the encapsulated curcuminoids showed elevated cellular antioxidant activity compared with free curcuminoids. This work suggested that M-EPL could be used as new biopolymer micelles for delivering poorly soluble drugs/phytochemicals and improving their bioactivities.

  7. Improving Stiffness-to-weight Ratio of Spot-welded Structures based upon Nonlinear Finite Element Modelling

    Science.gov (United States)

    Zhang, Shengyong

    2017-07-01

    Spot welding has been widely used for vehicle body construction due to its advantages of high speed and adaptability for automation. An effort to increase the stiffness-to-weight ratio of spot-welded structures is investigated based upon nonlinear finite element analysis. Topology optimization is conducted for reducing weight in the overlapping regions by choosing an appropriate topology. Three spot-welded models (lap, doubt-hat and T-shape) that approximate “typical” vehicle body components are studied for validating and illustrating the proposed method. It is concluded that removing underutilized material from overlapping regions can result in a significant increase in structural stiffness-to-weight ratio.

  8. Hepatic cytochromes P450: structural degrons and barcodes, posttranslational modifications and cellular adapters in the ERAD-endgame.

    Science.gov (United States)

    Kim, Sung-Mi; Wang, YongQiang; Nabavi, Noushin; Liu, Yi; Correia, Maria Almira

    2016-08-01

    The endoplasmic reticulum (ER)-anchored hepatic cytochromes P450 (P450s) are enzymes that metabolize endo- and xenobiotics i.e. drugs, carcinogens, toxins, natural and chemical products. These agents modulate liver P450 content through increased synthesis or reduction via inactivation and/or proteolytic degradation, resulting in clinically significant drug-drug interactions. P450 proteolytic degradation occurs via ER-associated degradation (ERAD) involving either of two distinct routes: Ubiquitin (Ub)-dependent 26S proteasomal degradation (ERAD/UPD) or autophagic lysosomal degradation (ERAD/ALD). CYP3A4, the major human liver/intestinal P450, and the fast-turnover CYP2E1 species are degraded via ERAD/UPD entailing multisite protein phosphorylation and subsequent ubiquitination by gp78 and CHIP E3 Ub-ligases. We are gaining insight into the nature of the structural determinants involved in CYP3A4 and CYP2E1 molecular recognition in ERAD/UPD [i.e. K48-linked polyUb chains and linear and/or "conformational" phosphodegrons consisting either of consecutive sequences on surface loops and/or disordered regions, or structurally-assembled surface clusters of negatively charged acidic (Asp/Glu) and phosphorylated (Ser/Thr) residues, within or vicinal to which, Lys-residues are targeted for ubiquitination]. Structural inspection of select human liver P450s reveals that such linear or conformational phosphodegrons may indeed be a common P450-ERAD/UPD feature. By contrast, although many P450s such as the slow-turnover CYP2E1 species and rat liver CYP2B1 and CYP2C11 are degraded via ERAD/ALD, little is known about the mechanism of their ALD-targeting. On the basis of our current knowledge of ALD-substrate targeting, we propose a tripartite conjunction of K63-linked Ub-chains, P450 structural "LIR" motifs and selective cellular "cargo receptors" as plausible P450-ALD determinants.

  9. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  10. The Weight Influenced Self-Esteem Questionnaire (WISE-Q): factor structure and psychometric properties.

    Science.gov (United States)

    Trottier, Kathryn; McFarlane, Traci; Olmsted, Marion P; McCabe, Randi E

    2013-01-01

    Weight-based self-esteem (WBSE) is hypothesized to be the core cognitive feature of eating disorders. The Weight Influenced Self-Esteem Questionnaire (WISE-Q) was designed to measure the influence of a negatively perceived body image on multiple dimensions of self-esteem, which we believe to be one aspect of WBSE. Study 1 sought to determine the factor structure of the WISE-Q as well as to examine the reliability and concurrent validity of WISE-Q scores among eating disorder and undergraduate student participants. In Study 2, validity was further investigated by examining changes in WISE-Q scores with treatment. The WISE-Q has two factors representing generalized and expected WBSE. Evidence of internal and test-retest reliability was found. Also, the pattern of correlations between WISE-Q scores and other constructs was in line with predictions. As expected, WISE-Q scores improved with treatment yet remained high. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Molecular Weight and Structural Properties of Biodegradable PLA Synthesized with Different Catalysts by Direct Melt Polycondensation

    Directory of Open Access Journals (Sweden)

    Hyung Woo Lee

    2015-09-01

    Full Text Available Production of biodegradable polylactic acid (PLA from biomassbased lactic acid is widely studied for substituting petro-based plastics or polymers. This study investigated PLA production from commercial lactic acid in a batch reactor by applying a direct melt polycondensation method with two kinds of catalyst, γ-aluminium(III oxide (γ-Al2O3 or zinc oxide (ZnO, in reduced pressure. The molecular weight of the synthesized PLA was determined by capillary viscometry and its structural properties were analyzed by functional group analysis using FT-IR. The yields of polymer production with respect to the theoretical conversion were 47% for γ-Al2O3 and 35% for ZnO. However, the PLA from ZnO had a higher molecular weight (150,600 g/mol than that from γ-Al2O3 (81,400 g/mol. The IR spectra of the synthesized PLA from both catalysts using polycondensation show the same behavior of absorption peaks at wave numbers from 4,500 cm-1 to 500 cm-1, whereas the PLA produced by two other polymerization methods – polycondensation and ring opening polymerization –showed a significant difference in % transmittance intensity pattern as well as peak area absorption at a wave number of 3,500 cm-1 as –OH vibration peak and at 1,750 cm-1 as –C=O carbonyl vibrational peak.

  12. Twice-weighted multiple interval estimation of a marginal structural model to analyze cost-effectiveness.

    Science.gov (United States)

    Goldfeld, K S

    2014-03-30

    Cost-effectiveness analysis is an important tool that can be applied to the evaluation of a health treatment or policy. When the observed costs and outcomes result from a nonrandomized treatment, making causal inference about the effects of the treatment requires special care. The challenges are compounded when the observation period is truncated for some of the study subjects. This paper presents a method of unbiased estimation of cost-effectiveness using observational study data that is not fully observed. The method-twice-weighted multiple interval estimation of a marginal structural model-was developed in order to analyze the cost-effectiveness of treatment protocols for advanced dementia residents living nursing homes when they become acutely ill. A key feature of this estimation approach is that it facilitates a sensitivity analysis that identifies the potential effects of unmeasured confounding on the conclusions concerning cost-effectiveness. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Applying Monte Carlo Concept and Linear Programming in Modern Portfolio Theory to Obtain Best Weighting Structure

    Directory of Open Access Journals (Sweden)

    Tumpal Sihombing

    2013-01-01

    Full Text Available The world is entering the era of recession when the trend is bearish and market is not so favorable. The capital markets in every major country were experiencing great amount of loss and people suffered in their investment. The Jakarta Composite Index (JCI has shown a great downturn for the past one year but the trend bearish year of the JCI. Therefore, rational investors should consider restructuring their portfolio to set bigger proportion in bonds and cash instead of stocks. Investors can apply modern portfolio theory by Harry Markowitz to find the optimum asset allocation for their portfolio. Higher return is always associated with higher risk. This study shows investors how to find out the lowest risk of a portfolio investment by providing them with several structures of portfolio weighting. By this way, investor can compare and make the decision based on risk-return consideration and opportunity cost as well. Keywords: Modern portfolio theory, Monte Carlo, linear programming

  14. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability.

    Science.gov (United States)

    Mieszala, Maxime; Hasegawa, Madoka; Guillonneau, Gaylord; Bauer, Jens; Raghavan, Rejin; Frantz, Cédric; Kraft, Oliver; Mischler, Stefano; Michler, Johann; Philippe, Laetitia

    2017-02-01

    By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Factor Structure of Sizing Me Up, a Self-Reported Weight-Related Quality of Life Instrument, in Community Children across Weight Status.

    Science.gov (United States)

    Strong, Carol; Lin, Yi-Ching; Tsai, Meng-Che; Lin, Chung-Ying

    2017-04-01

    To further understand the psychometric properties of the Sizing Me Up-a newly developed quality of life (QoL) instrument related to weight status. We extended the target population to a community sample, including obese, overweight, normal-weight, and underweight children. Based on the data of 497 students in third to sixth grades, we used the following approaches: analysis of variance to detect the QoL scores among groups; confirmatory factor analysis (CFA) to examine the original structure; and Rasch analysis to test the misfit items, disordered response descriptors, and differential item functioning (DIF) items. Obese children had the lowest QoL total score; overweight children had lower QoL total score than normal-weight children; and underweight children had lower QoL in social avoidance than normal-weight children (all p Me Up can be applied to underweight children in the community and it can yield valid and reliable scores. Future studies are needed to explore the issues of disordered response descriptors and DIF items. Additional revisions for the Sizing Me Up may be warranted.

  16. Evolution of the structure of near-surface ultrahigh molecular weight polyethylene nanolayers during orientational drawing

    Science.gov (United States)

    Lebedev, D. V.; Ivan'kova, E. M.; Marikhin, V. A.; Myasnikova, L. P.; Radovanova, E. I.; Boiko, Yu. M.; Shtil'man, M. V.

    2014-06-01

    A comparative investigation of the surface structure of ultrahigh molecular weight polyethylene film filaments obtained with different draw ratios from xerogels prepared from 1.5 wt % polymer solutions in decaline and mineral oil has been performed using a SUPRA-55V scanning electron microscope and a nanoluminograph for recording thermoluminescence of ultrathin near-surface layers of solids. It has been found that, with an increase in the draw ratio, the luminescence intensity decreases, and the peaks responsible for the segmental mobility are shifted toward higher temperatures. It has been assumed that this is associated with the improvement of the structure of near-surface layers of the polymer (with a decrease in the number of microcavities and segments of molecules with a high degree of coiling). It has also been revealed that the peaks observed in glow curves of the oriented gel samples from polymer solutions in decaline are shifted more significantly than those of the gel samples from polymer solutions in mineral oil, and the extremely oriented films are characterized by a large discretization of kinetic units of motion.

  17. Manufacturing processes of cellular concrete products for the construction

    Directory of Open Access Journals (Sweden)

    Fakhratov Мuhammet

    2017-01-01

    Full Text Available Cellular concrete takes the lead in the world of construction as a structural insulation material used in the construction and reconstruction of buildings and constructions of various purposes. In this artificial stone building material, pores are distributed relatively evenly and occupy from 20 to 90% of the concrete volume, ensuring good thermal qualities, which allows cellular concrete houses to keep warmth well. For production of cellular concrete, Portland cement, “burnt lime”, and fine-pulverized blast furnace slags, with a hardening activator are used as binders. As silica components, quartz sand or “fly ash” obtained by combustion of pulverized fuel in power plants as well as secondary products of different ore dressing treatments are used. The low density and high thermal insulation properties of cellular concrete enables 3 times lighter wall weight than the weight of brick walls and 1.7 times lighter than the walls of ceramsite concrete. Thermal insulation and mechanical properties of cellular concrete make possible to construct of it single-layer protecting structures with the desired thermal resistance. Cellular concrete is divided into aerated concretes and foam concretes, whose physical/mechanical and operational performance is, ceteris paribus, almost identical. By the method of hydrothermal treatment cellular concretes are divided into two groups: concrete of autoclave and non-autoclave curing.

  18. Dietary prescription adherence and non-structured physical activity following weight loss with and without aerobic exercise.

    Science.gov (United States)

    Serra, M C; Treuth, M S; Ryan, A S

    2014-12-01

    To compare the effects of weight loss with and without exercise on 1) dietary prescription adherence and 2) non-structured activity in postmenopausal women. Longitudinal study. Clinical research setting with facility based exercise and nutrition education. Overweight and obese women, 45-76 years old. 6 months of weight loss alone (WL; N=38) or with aerobic exercise (AEX+WL; N=41). Cardiorespiratory fitness (VO2max), resting metabolic rate (RMR), seven day food intake, and physical activity (by Actical accelerometers worn in a subset subgroup: WL: N=10; AEX+WL: N=15) were assessed before and after the interventions. Both interventions resulted in similar weight loss (~9%) and no significant changes in RMR, while only the AEX+WL group improved VO2max (~10%). At baseline, the AEX+WL group consumed slightly more protein than the WL group (Pexercise to prevent the decline in non-structured activity observed following weight loss alone.

  19. Topological Structures of Derivative Weighted Composition Operators on the Bergman Space

    Directory of Open Access Journals (Sweden)

    Ce-Zhong Tong

    2015-01-01

    Full Text Available We characterize the difference of derivative weighted composition operators on the Bergman space in the unit disk and determine when linear-fractional derivative weighted composition operators belong to the same component of the space of derivative weighted composition operators on the Bergman space under the operator norm topology.

  20. A correlational method to concurrently measure envelope and temporal fine structure weights: effects of age, cochlear pathology, and spectral shaping.

    Science.gov (United States)

    Fogerty, Daniel; Humes, Larry E

    2012-09-01

    The speech signal may be divided into spectral frequency-bands, each band containing temporal properties of the envelope and fine structure. This study measured the perceptual weights for the envelope and fine structure in each of three frequency bands for sentence materials in young normal-hearing listeners, older normal-hearing listeners, aided older hearing-impaired listeners, and spectrally matched young normal-hearing listeners. The availability of each acoustic property was independently varied through noisy signal extraction. Thus, the full speech stimulus was presented with noise used to mask six different auditory channels. Perceptual weights were determined by correlating a listener's performance with the signal-to-noise ratio of each acoustic property on a trial-by-trial basis. Results demonstrate that temporal fine structure perceptual weights remain stable across the four listener groups. However, a different weighting typography was observed across the listener groups for envelope cues. Results suggest that spectral shaping used to preserve the audibility of the speech stimulus may alter the allocation of perceptual resources. The relative perceptual weighting of envelope cues may also change with age. Concurrent testing of sentences repeated once on a previous day demonstrated that weighting strategies for all listener groups can change, suggesting an initial stabilization period or susceptibility to auditory training.

  1. An emerging method for rapid characterization of feed structures and feed component matrix at a cellular level and relation to feed quality and nutritive value.

    Science.gov (United States)

    Yu, Peiqiang

    2006-06-01

    Feed quality, feed characteristics, nutrient utilization and digestive behaviour are closely related to: (i) total feed composition, (ii) feed intrinsic structures, and (iii) biological component matrix (such as protein to starch matrix, protein to carbohydrate matrix). Conventional "wet" chemical analysis can determine total chemical composition, but fails to detect the feed intrinsic structures and biological component matrix due to destruction of feed samples during the processing for chemical analysis and the "wet" chemical analysis cannot link structural information to chemical information within intact feed tissue. Recently, advanced synchrotron-based Fourier transform infrared (FTIR) microspectroscopy has been developed as a non-destructive and non-invasive structural-chemical analytical technique. This technique can link chemical information to structural information of biological samples within intact tissue within cellular dimensions. It can provide four kinds of information simultaneously: tissue composition, tissue structure, tissue chemistry and tissue environment. However, this novel technique has been found mainly for medical science research, extremely rare for feed science and nutrition research. The objective of this review article was to illustrate synchrotron-based FTIR microspectroscopy as a novel research tool for rapid characterization of feed structures at a cellular level and for detection of chemical features and molecular chemical make-up of feed biological component matrix and nutrient interaction. The emphasis of this article was to show that feed structural-chemical features at a cellular level are closely related to feed characteristics, feed quality and nutritive value in animals. The synchrotron-based technology will provide us with a greater understanding of the plant-animal interface.

  2. Structural elucidation of Argonne premium coals: Molecular weights, heteroatom distributions and linkages between clusters

    Energy Technology Data Exchange (ETDEWEB)

    Winans, R.E.,; Kim, Y.; Hunt, J.E.; McBeth, R.L.

    1995-12-31

    The objective of this study is to create a statistically accurate picture of important structural features for a group of coals representing a broad rank range. Mass spectrometric techniques are used to study coals, coal extracts and chemically modified coals and extracts. Laser desorption mass spectrometry is used to determine molecular weight distributions. Desorption chemical ionization high resolution mass spectrometry provides detailed molecular information on compound classes of molecules is obtained using tandem mass spectrometry. These results are correlated with other direct studies on these samples such as solid NMR, XPS and X-ray absorption spectroscopy. From the complex sets of data, several general trends are emerging especially for heteroatom containing species. From a statistical point of view, heteroatoms must play important roles in the reactivity of all coals. Direct characterization of sulfur containing species in the Argonne coals has been reported from XANES analysis. Indirect methods used include: TG-FTIR and HRMS which rely on thermal desorption and pyrolysis to vaporize the samples. Both XANES and XPS data on nitrogen has been reported, but at this time, the XPS information is probably more reliable. Results from HRMS are discussed in this paper. Most other information on nitrogen is limited to analysis of liquefaction products. However, nitrogen can be important in influencing characteristics of coal liquids and as a source of NO{sub x}`s in coal combustion.

  3. Structural and biochemical characterization of the C3?C4 intermediate Brassica gravinae and relatives, with particular reference to cellular distribution of Rubisco

    OpenAIRE

    Ueno, Osamu

    2011-01-01

    On the basis of its CO2 compensation concentration, Brassica gravinae Ten. has been reported to be a C3?C4 intermediate. This study investigated the structural and biochemical features of photosynthetic metabolism in B. gravinae. The cellular distribution of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) was also examined in B. gravinae, B. napus L. (C3), Raphanus sativus L. (C3), and Diplotaxis tenuifolia (L.) DC. (C3?C4) by immunogold electron microscopy to elucidate Rubisco expr...

  4. A numerical investigation into the influence of the properties of cobalt chrome cellular structures on the load transfer to the periprosthetic femur following total hip arthroplasty.

    Science.gov (United States)

    Hazlehurst, Kevin Brian; Wang, Chang Jiang; Stanford, Mark

    2014-04-01

    Stress shielding of the periprosthetic femur following total hip arthroplasty is a problem that can promote the premature loosening of femoral stems. In order to reduce the need for revision surgery it is thought that more flexible implant designs need to be considered. In this work, the mechanical properties of laser melted square pore cobalt chrome molybdenum cellular structures have been incorporated into the design of a traditional monoblock femoral stem. The influence of incorporating the properties of cellular structures on the load transfer to the periprosthetic femur was investigated using a three dimensional finite element model. Eleven different stiffness configurations were investigated by using fully porous and functionally graded approaches. This investigation confirms that the periprosthetic stress values depend on the stiffness configuration of the stem. The numerical results showed that stress shielding is reduced in the periprosthetic Gruen zones when the mechanical properties of cobalt chrome molybdenum cellular structures are used. This work identifies that monoblock femoral stems manufactured using a laser melting process, which are designed for reduced stiffness, have the potential to contribute towards reducing stress shielding. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. 'Laba' garlic processed by dense phase carbon dioxide: the relation between green colour generation and cellular structure, alliin consumption and alliinase activity.

    Science.gov (United States)

    Tao, Dandan; Zhou, Bing; Zhang, Luyao; Hu, Xiaosong; Liao, Xiaojun; Zhang, Yan

    2016-07-01

    'Laba' garlic is usually processed by soaking garlic in vinegar for more than 1 week during winter. It is popular for its unique green colour and tasty flavour. Greening is desirable and required for this product as its characteristic. Dense phase carbon dioxide (DPCD) had a significant effect on the greening of intact garlic (Allium sativum L.) cloves. The relation between green colour generation and alliin consumption, alliinase activity and the cellular structure of garlic, respectively, were investigated in this work. The effects of treatment time, pressure and temperature of DPCD were also analysed and discussed. DPCD had a significant effect on the cellular structure of garlic cells. Garlic protoplast underwent greater morphological change after DPCD treatments at higher temperatures while the amount of precipitate increased with greater treatment time and temperature. Common trends on garlic greening and alliin consumption were observed except for DPCD treatment at 10 MPa and 65 °C. The alliinase activity decreased with increasing treatment time, pressure and temperature. It reached the lowest level at 13 MPa and 55 °C. The formation of the green colour was a comprehensive result of DPCD on changing cellular structure, alliin consumption and alliinase activity. DPCD treatment at 10 MPa and 55 °C was the optimum condition for the greening of 'Laba' garlic. This work further facilitated the application of DPCD in the industrial production of 'Laba' garlic. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. Improving the Reliability of Network Metrics in Structural Brain Networks by Integrating Different Network Weighting Strategies into a Single Graph

    Directory of Open Access Journals (Sweden)

    Stavros I. Dimitriadis

    2017-12-01

    Full Text Available Structural brain networks estimated from diffusion MRI (dMRI via tractography have been widely studied in healthy controls and patients with neurological and psychiatric diseases. However, few studies have addressed the reliability of derived network metrics both node-specific and network-wide. Different network weighting strategies (NWS can be adopted to weight the strength of connection between two nodes yielding structural brain networks that are almost fully-weighted. Here, we scanned five healthy participants five times each, using a diffusion-weighted MRI protocol and computed edges between 90 regions of interest (ROI from the Automated Anatomical Labeling (AAL template. The edges were weighted according to nine different methods. We propose a linear combination of these nine NWS into a single graph using an appropriate diffusion distance metric. We refer to the resulting weighted graph as an Integrated Weighted Structural Brain Network (ISWBN. Additionally, we consider a topological filtering scheme that maximizes the information flow in the brain network under the constraint of the overall cost of the surviving connections. We compared each of the nine NWS and the ISWBN based on the improvement of: (a intra-class correlation coefficient (ICC of well-known network metrics, both node-wise and per network level; and (b the recognition accuracy of each subject compared to the remainder of the cohort, as an attempt to access the uniqueness of the structural brain network for each subject, after first applying our proposed topological filtering scheme. Based on a threshold where the network level ICC should be >0.90, our findings revealed that six out of nine NWS lead to unreliable results at the network level, while all nine NWS were unreliable at the node level. In comparison, our proposed ISWBN performed as well as the best performing individual NWS at the network level, and the ICC was higher compared to all individual NWS at the node

  7. A 100-kW wind turbine blade dynamics analysis, weight-balance, and structural test results

    Science.gov (United States)

    Anderson, W. D.

    1975-01-01

    The results of dynamic analyses, weight and balance tests, static stiffness tests, and structural vibration tests on the 60-foot-long metal blades for the ERDA-NASA 100-kW wind turbine are presented. The metal blades are shown to be free from structural or dynamic resonance at the wind turbine design speed. Aeroelastic instabilities are unlikely to occur within the normal operating range of the wind turbine.

  8. A cellular glass substrate solar concentrator

    Science.gov (United States)

    Bedard, R.; Bell, D.

    1980-01-01

    The design of a second generation point focusing solar concentration is discussed. The design is based on reflective gores fabricated of thin glass mirror bonded continuously to a contoured substrate of cellular glass. The concentrator aperture and structural stiffness was optimized for minimum concentrator cost given the performance requirement of delivering 56 kWth to a 22 cm diameter receiver aperture with a direct normal insolation of 845 watts sq m and an operating wind of 50 kmph. The reflective panel, support structure, drives, foundation and instrumentation and control subsystem designs, optimized for minimum cost, are summarized. The use of cellular glass as a reflective panel substrate material is shown to offer significant weight and cost advantages compared to existing technology materials.

  9. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions.

    Science.gov (United States)

    Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla

    2016-03-15

    The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Revised cloud storage structure for light-weight data archiving in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Hideya, E-mail: nakanisi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Masaki, Ohsuna; Mamoru, Kojima; Setsuo, Imazu; Miki, Nonomura; Masahiko, Emoto; Takashi, Yamamoto; Yoshio, Nagayama [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Takahisa, Ozeki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Noriyoshi, Nakajima; Katsumi, Ida; Osamu, Kaneko [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan)

    2014-05-15

    Highlights: • GlusterFS is adopted to replace IznaStor cloud storage in LHD. • GlusterFS and OpenStack/Swift are compared. • SSD-based GlusterFS distributed replicated volume is separated from normal RAID storage. • LABCOM system changes the storage technology every 4 years for cost efficiency. - Abstract: The LHD data archiving system has newly selected GlusterFS distributed filesystem for the replacement of the present cloud storage software named “IznaStor/dSS”. Even though the prior software provided many favorable functionalities of hot plug and play node insertion, internal auto-replication of data files, and symmetric load balancing between all member nodes, it revealed a poor feature in recovering from an accidental malfunction of a storage node. Once a failure happened, the recovering process usually took at least several days or sometimes more than a week with a heavy cpu load. In some cases they fell into the so-called “split-brain” or “amnesia” condition, not to get recovered from it. Since the recovery time tightly depends on the capacity size of the fault node, individual HDD management is more desirable than large volumes of HDD arrays. In addition, the dynamic mutual awareness of data location information may be removed if some other static data distribution method can be applied. In this study, the candidate middleware of “OpenStack/Swift” and “GlusterFS” has been tested by using the real mass of LHD data for more than half a year, and finally GlusterFS has been selected to replace the present IznaStor. It has implemented very limited functionalities of cloud storage but a simplified RAID10-like structure, which may consequently provide lighter-weight read/write ability. Since the LABCOM data system is implemented to be independent of the storage structure, it is easy to plug off the IznaStor and on the new GlusterFS. The effective I/O speed is also confirmed to be on the same level as the estimated one from raw

  11. Directed weighted network structure analysis of complex impedance measurements for characterizing oil-in-water bubbly flow

    Science.gov (United States)

    Gao, Zhong-Ke; Dang, Wei-Dong; Xue, Le; Zhang, Shan-Shan

    2017-03-01

    Characterizing the flow structure underlying the evolution of oil-in-water bubbly flow remains a contemporary challenge of great interests and complexity. In particular, the oil droplets dispersing in a water continuum with diverse size make the study of oil-in-water bubbly flow really difficult. To study this issue, we first design a novel complex impedance sensor and systematically conduct vertical oil-water flow experiments. Based on the multivariate complex impedance measurements, we define modalities associated with the spatial transient flow structures and construct modality transition-based network for each flow condition to study the evolution of flow structures. In order to reveal the unique flow structures underlying the oil-in-water bubbly flow, we filter the inferred modality transition-based network by removing the edges with small weight and resulting isolated nodes. Then, the weighted clustering coefficient entropy and weighted average path length are employed for quantitatively assessing the original network and filtered network. The differences in network measures enable to efficiently characterize the evolution of the oil-in-water bubbly flow structures.

  12. LIGHT-WEIGHT LOAD-BEARING STRUCTURES REINFORCED BY CORE ELEMENTS MADE OF SEGMENTS AND A METHOD OF CASTING SUCH STRUCTURES

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure, reinforced by core elements (2) of a strong material constituting one or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2......), where the core (2) is constructed from segments (1) of core elements (2) assembled by means of one or more prestressing elements (4). The invention further relates to a method of casting of light-weight load-bearing structures, reinforced by core elements (2) of a strong material constituting one...... or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2), where the core (2) is constructed from segments (1) of core elements (2) assembled and hold together by means of one or more prestressing...

  13. Cellular structure of the healthy and keratoconic human cornea imaged in-vivo with sub-micrometer axial resolution OCT(Conference Presentation)

    Science.gov (United States)

    Bizheva, Kostadinka; Tan, Bingyao; Mason, Erik; Carter, Kirsten; Haines, Lacey; Sorbara, Luigina

    2017-02-01

    Keratoconus causes progressive morphological changes in the corneal epithelium (EPI), Bowman's membrane (BM) and anterior stroma. However, it is still not well understood if KC originates in the corneal epithelium and propagates to the anterior stroma through disruptions of the BM, or vice versa. In this study we used a sub-micrometer axial resolution OCT system to image in-vivo the cellular structure of the EPI layer and the fibrous structure of the BM and the anterior stroma in mild to advanced keratoconics, as well as healthy subjects. The imaging study was approved by the University of Waterloo Human Research Ethics Committee. The OCT system operates in the 800 nm spectral region at 34 kHz image acquisition rate and provides 0.95 um axial and < 2 um lateral resolution in corneal tissue, which is sufficient to visualize the cellular structure of the corneal epithelium and the fibrous structure of the BM. In some subjects, localized thinning and thickening of the EPI layer was observed, while there was no visible damage to the BM or anterior stroma. In other subjects, localized breakage of the stromal collagen fibrils was observed with no significant morphological changes of the corneal EPI.

  14. Structure and transcription of the cellular homolog (c-myb) of the avian myeloblastosis virus transforming gene (v-myb).

    OpenAIRE

    Gonda, T J; Bishop, J M

    1983-01-01

    We isolated and characterized molecular clones containing the chicken cellular homolog (c-myb) of the avian myeloblastosis virus oncogene (v-myb). Mapping of the c-myb clones using restriction endonucleases and hybridization to radiolabeled v-myb probes revealed that the sequences homologous to v-myb are contained within four separate regions, which have since been shown by nucleotide sequencing (Klempnauer et al., Cell 31:453-463, 1982) to carry seven exons. Analysis of c-myb transcripts sho...

  15. Improving package structure of object-oriented software using multi-objective optimization and weighted class connections

    Directory of Open Access Journals (Sweden)

    Amarjeet

    2017-07-01

    Full Text Available The software maintenance activities performed without following the original design decisions about the package structure usually deteriorate the quality of software modularization, leading to decay of the quality of the system. One of the main reasons for such structural deterioration is inappropriate grouping of source code classes in software packages. To improve such grouping/modular-structure, previous researchers formulated the software remodularization problem as an optimization problem and solved it using search-based meta-heuristic techniques. These optimization approaches aimed at improving the quality metrics values of the structure without considering the original package design decisions, often resulting into a totally new software modularization. The entirely changed software modularization becomes costly to realize as well as difficult to understand for the developers/maintainers. To alleviate this issue, we propose a multi-objective optimization approach to improve the modularization quality of an object-oriented system with minimum possible movement of classes between existing packages of original software modularization. The optimization is performed using NSGA-II, a widely-accepted multi-objective evolutionary algorithm. In order to ensure minimum modification of original package structure, a new approach of computing class relations using weighted strengths has been proposed here. The weights of relations among different classes are computed on the basis of the original package structure. A new objective function has been formulated using these weighted class relations. This objective function drives the optimization process toward better modularization quality simultaneously ensuring preservation of original structure. To evaluate the results of the proposed approach, a series of experiments are conducted over four real-worlds and two random software applications. The experimental results clearly indicate the effectiveness

  16. Recycling of inorganic waste in monolithic and cellular glass‐based materials for structural and functional applications

    Science.gov (United States)

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna

    2016-01-01

    Abstract The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass‐based materials, in the form of monolithic and cellular glass‐ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica‐rich waste favours the obtainment of glass, iron‐rich wastes affect the functionalities, influencing the porosity in cellular glass‐based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste‐derived glasses into glass‐ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low‐cost alternative for glass‐ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up‐to‐date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste‐derived, glass‐based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:27818564

  17. Structural Design and Analysis of a Light-Weight Laminated Composite Heat Sink for Spaceflight PWBs

    Science.gov (United States)

    Fan, Mark S.; Niemeyer, W. Lee

    1997-01-01

    In order to reduce the overall weight in spaceborne electronic systems, a conventional metallic heat sink typically used for double-sided printed wiring boards was suggested to be replaced by light-weight and high-strength laminated composite materials. Through technology validation assurance (TVA) approach, it has been successfully demonstrated that using laminated composite heat sink can not only reduce the weight of the heat sink by nearly 50%, but also significantly lower the internal thermally-induced stresses that are largely responsible for potential delamination under cyclic temperature variations. With composite heat sink, both thermal and dynamic performance of the double-sided printed wiring board (PWB) exceeds that of its counterpart with metallic heat sink. Also included in this work is the original contribution to the understanding of creep behavior of the worst-case leadless chip carrier (LCC) surface mount solder joint. This was identified as the interconnection most susceptible to thermal fatigue damage in the PWB assembly.

  18. Quantitative spectral comparison by weighted spectral difference for protein higher order structure confirmation.

    Science.gov (United States)

    Dinh, Nikita N; Winn, Bradley C; Arthur, Kelly K; Gabrielson, John P

    2014-11-01

    Previously, different approaches of spectral comparison were evaluated, and the spectral difference (SD) method was shown to be valuable for its linearity with spectral changes and its independence on data spacing (Anal. Biochem. 434 (2013) 153-165). In this note, we present an enhancement of the SD calculation, referred to as the "weighted spectral difference" (WSD), by implementing a weighting function based on relative signal magnitude. While maintaining the advantages of the SD method, WSD improves the method sensitivity to spectral changes and tolerance for baseline inclusion. Furthermore, a generalized formula is presented to unify further development of approaches to quantify spectral difference. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Structural and functional changes in left and right ventricles after major weight loss following bariatric surgery for morbid obesity.

    Science.gov (United States)

    Garza, Carolina A; Pellikka, Patricia A; Somers, Virend K; Sarr, Michael G; Collazo-Clavell, Maria L; Korenfeld, Yoel; Lopez-Jimenez, Francisco

    2010-02-15

    Obesity and bariatric surgery have been associated with changes in ventricular function and structure. The aim of the present study was to assess the long-term changes in left ventricular (LV) and right ventricular (RV) function and structure in patients with morbid obesity-body mass index >or=40 kg/m(2) or >or=35 kg/m(2) with co-morbidities-who had lost weight after bariatric surgery compared to nonsurgical controls. We reviewed 57 patients with morbid obesity who had undergone gastric bypass surgery and who had undergone echocardiography before and after surgery. A reference group (n = 57) was frequency matched for body mass index (+/-2 kg/m(2)), gender, age (+/-2 years), and follow-up duration (+/-6 months). After a mean follow-up of 3.6 years, the LV mass and LV mass indexed by height had decreased in the patients who had undergone bariatric surgery and had lost weight. In contrast, these measurements had increased in the patients who had not undergone bariatric surgery. The difference between these 2 groups remained significant after adjusting for potential confounders. At follow-up, neither the patients nor controls showed a significant change in ejection fraction, LV myocardial performance index, or RV myocardial performance index. In the study population as a whole, multivariate analysis showed a positive correlation between the change in body weight and ventricular septum thickness (R = 0.33), posterior wall thickness (R = 0.31), LV mass (R = 0.38), RV end-diastolic area (R = 0.22), and estimated RV systolic pressure (R = 0.39), all with p values weight changes in patients with morbid obesity were associated with changes in LV structure independent of improvement in obesity-related co-morbidities, including obstructive sleep apnea. Weight loss improved the RV end-diastolic area and might prevent progression to RV dysfunction. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Weighted spiking neural P systems with structural plasticity working in sequential mode based on maximum spike number

    Science.gov (United States)

    Sun, Mingming; Qu, Jianhua

    2017-10-01

    Spiking neural P systems (SNP systems, in short) are a group of parallel and distributed computing devices inspired by the function and structure of spiking neurons. Recently, a new variant of SNP systems, called SNP systems with structural plasticity (SNPSP systems, in short) was proposed. In SNPSP systems, neuron can use plasticity ru les to create and delete synapses. In this work, we consider many restrictions sequentiality on SNPSP systems: (1) neuron with the maximum number of spikes is chosen to fire; (2) we use the weighted synapses. Specifically, we investigate the computational power of weighted SNPSP systems working in the sequential mode based on maximum spike number (WSNPSPM systems, in short) and we proved that SNPSP systems with these new restrictions are universal as generating devices.

  1. Structure and weights optimisation of a modified Elman network emotion classifier using hybrid computational intelligence algorithms: a comparative study

    Science.gov (United States)

    Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood

    2015-10-01

    Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.

  2. How Does Sequence Structure Affect the Judgment of Time? Exploring a Weighted Sum of Segments Model

    Science.gov (United States)

    Matthews, William J.

    2013-01-01

    This paper examines the judgment of segmented temporal intervals, using short tone sequences as a convenient test case. In four experiments, we investigate how the relative lengths, arrangement, and pitches of the tones in a sequence affect judgments of sequence duration, and ask whether the data can be described by a simple weighted sum of…

  3. Effects of error covariance structure on estimation of model averaging weights and predictive performance

    Science.gov (United States)

    Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.

    2013-01-01

    When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cekresolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek

  4. An improved analysis/synthesis capability based on dual methods - ACCESS 3. [for minimum weight design of structures

    Science.gov (United States)

    Schmit, L. A.; Fleury, C.

    1979-01-01

    Approximation concepts and dual method algorithms are combined to create a new method for minimum weight design of structural systems. Approximation concepts convert the basic mathematical programming statement of the structural synthesis problem into a sequence of explicit primal problems of separable form. These problems are solved by constructing explicit dual functions, which are maximized subject to nonnegativity constraints. The dual method is successfully extended to deal with pure discrete and mixed continuous-discrete design variable problems. The power of the method presented is illustrated with numerical results for example problems, including a thin delta wing with fiber composite skins.

  5. Sulfolobus Turreted Icosahedral Virus c92 Protein Responsible for the Formation of Pyramid-Like Cellular Lysis Structures

    DEFF Research Database (Denmark)

    Snyder, Jamie C; Brumfield, Susan K; Peng, Nan

    2011-01-01

    Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system...

  6. Growth and setting of gas bubbles in a viscoelastic matrix imaged by X-ray microtomography: the evolution of cellular structures in fermenting wheat flour dough.

    Science.gov (United States)

    Turbin-Orger, A; Babin, P; Boller, E; Chaunier, L; Chiron, H; Della Valle, G; Dendievel, R; Réguerre, A L; Salvo, L

    2015-05-07

    X-ray tomography is a relevant technique for the dynamic follow-up of gas bubbles in an opaque viscoelastic matrix, especially using image analysis. It has been applied here to pieces of fermenting wheat flour dough of various compositions, at two different voxel sizes (15 and 5 μm). The resulting evolution of the main cellular features shows that the creation of cellular structures follows two regimes that are defined by a characteristic time of connectivity, tc [30 and 80 min]: first (t ≤ tc), bubbles grow freely and then (t ≥ tc) they become connected since the percolation of the gas phase is limited by liquid films. During the first regime, bubbles can be tracked and the local strain rate can be measured. Its values (10(-4)-5 × 10(-4) s(-1)) are in agreement with those computed from dough viscosity and internal gas pressure, both of which depend on the composition. For higher porosity, P = 0.64 in our case, and thus occurring in the second regime, different cellular structures are obtained and XRT images show deformed gas cells that display complex shapes. The comparison of these images with confocal laser scanning microscopy images suggests the presence of liquid films that separate these cells. The dough can therefore be seen as a three-phase medium: viscoelastic matrix/gas cell/liquid phase. The contributions of the different levels of matter organization can be integrated by defining a capillary number (C = 0.1-1) that makes it possible to predict the macroscopic dough behavior.

  7. Skeletal muscle structural lipids improve during weight-maintenance after a very low calorie dietary intervention

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Vaag, Allan; Mu, Huiling

    2009-01-01

    BACKGROUND: The objective was to investigate in a group of obese subjects the course in skeletal muscle phospholipid (SMPL) fatty acids (FA) during a 24-weeks weight maintenance program, which was preceded by a successful very low calorie dietary intervention (VLCD). Special focus was addressed...... to SMPL omega-3 FA, which is a lipid entity that influences insulin action. METHODS: Nine obese subjects (BMI = 35.7 +/- 1.0 kg/m(2)), who had completed an 8 weeks VLCD (weight-loss = -9.7 +/- 1.6 kg, P ...-maintenance program five subjects received the pancreas lipase inhibitor Orlistat 120 mg t.i.d. versus placebo. RESULTS: HOMA-IR and HbA1c stabilized and SMPL total omega-3 FA, docosahexaenoic acid and ratio of n-3/n-6 polyunsaturated FA increased by 24% (P

  8. Influence of Nutrient Availability and Quorum Sensing on the Formation of Metabolically Inactive Microcolonies Within Structurally Heterogeneous Bacterial Biofilms: An Individual-Based 3D Cellular Automata Model.

    Science.gov (United States)

    Machineni, Lakshmi; Rajapantul, Anil; Nandamuri, Vandana; Pawar, Parag D

    2017-03-01

    The resistance of bacterial biofilms to antibiotic treatment has been attributed to the emergence of structurally heterogeneous microenvironments containing metabolically inactive cell populations. In this study, we use a three-dimensional individual-based cellular automata model to investigate the influence of nutrient availability and quorum sensing on microbial heterogeneity in growing biofilms. Mature biofilms exhibited at least three structurally distinct strata: a high-volume, homogeneous region sandwiched between two compact sections of high heterogeneity. Cell death occurred preferentially in layers in close proximity to the substratum, resulting in increased heterogeneity in this section of the biofilm; the thickness and heterogeneity of this lowermost layer increased with time, ultimately leading to sloughing. The model predicted the formation of metabolically dormant cellular microniches embedded within faster-growing cell clusters. Biofilms utilizing quorum sensing were more heterogeneous compared to their non-quorum sensing counterparts, and resisted sloughing, featuring a cell-devoid layer of EPS atop the substratum upon which the remainder of the biofilm developed. Overall, our study provides a computational framework to analyze metabolic diversity and heterogeneity of biofilm-associated microorganisms and may pave the way toward gaining further insights into the biophysical mechanisms of antibiotic resistance.

  9. Pulmonary and cardiac function in asymptomatic obese subjects and changes following a structured weight reduction program: a prospective observational study.

    Directory of Open Access Journals (Sweden)

    Matthias Held

    Full Text Available BACKGROUND: The prevalence of obesity is rising. Obesity can lead to cardiovascular and ventilatory complications through multiple mechanisms. Cardiac and pulmonary function in asymptomatic subjects and the effect of structured dietary programs on cardiac and pulmonary function is unclear. OBJECTIVE: To determine lung and cardiac function in asymptomatic obese adults and to evaluate whether weight loss positively affects functional parameters. METHODS: We prospectively evaluated bodyplethysmographic and echocardiographic data in asymptomatic subjects undergoing a structured one-year weight reduction program. RESULTS: 74 subjects (32 male, 42 female; mean age 42±12 years with an average BMI 42.5±7.9, body weight 123.7±24.9 kg were enrolled. Body weight correlated negatively with vital capacity (R = -0.42, p<0.001, FEV1 (R = -0.497, p<0.001 and positively with P 0.1 (R = 0.32, p = 0.02 and myocardial mass (R = 0.419, p = 0.002. After 4 months the study subjects had significantly reduced their body weight (-26.0±11.8 kg and BMI (-8.9±3.8 associated with a significant improvement of lung function (absolute changes: vital capacity +5.5±7.5% pred., p<0.001; FEV1+9.8±8.3% pred., p<0.001, ITGV+16.4±16.0% pred., p<0.001, SR tot -17.4±41.5% pred., p<0.01. Moreover, P0.1/Pimax decreased to 47.7% (p<0.01 indicating a decreased respiratory load. The change of FEV1 correlated significantly with the change of body weight (R = -0.31, p = 0.03. Echocardiography demonstrated reduced myocardial wall thickness (-0.08±0.2 cm, p = 0.02 and improved left ventricular myocardial performance index (-0.16±0.35, p = 0.02. Mitral annular plane systolic excursion (+0.14, p = 0.03 and pulmonary outflow acceleration time (AT +26.65±41.3 ms, p = 0.001 increased. CONCLUSION: Even in asymptomatic individuals obesity is associated with abnormalities in pulmonary and cardiac function and increased myocardial mass. All the

  10. Structures and short linear motif of disordered transcription factor regions provide clues to the interactome of the cellular hub radical-induced cell death1

    DEFF Research Database (Denmark)

    O'Shea, Charlotte; Staby, Lasse; Bendsen, Sidsel Krogh

    2017-01-01

    Intrinsically disordered protein regions (IDRs) lack a well-defined three-dimensional structure, but often facilitate key protein functions. Some interactions between IDRs and folded protein domains rely on short linear motifs (SLiMs). These motifs are challenging to identify, but once found can...... point to larger networks of interactions, such as with proteins that serve as hubs for essential cellular functions. The stress-associated plant protein Radical-Induced Cell Death1 (RCD1) is one such hub, interacting with many transcription factors via their flexible IDRs. To identify the SLiM bound......046 formed different structures or were fuzzy in the complexes. These findings allow us to present a model of the stress-associated RCD1-transcription factor interactome and to contribute to the emerging understanding of the interactions between folded hubs and their intrinsically disordered partners....

  11. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    Science.gov (United States)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  12. Fullerene nanowires: self-assembled structures of a low-molecular-weight organogelator fabricated by the Langmuir-Blodgett method.

    Science.gov (United States)

    Tsunashima, Ryo; Noro, Shin-ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi; Kawakami, Hiroko; Toma, Kazunori

    2008-01-01

    Fullerene derivative C60TT, which is substituted with the low-molecular-weight organogelator tris(dodecyloxy)benzamide, formed nanowire structures on application of the Langmuir-Blodgett (LB) method. The surface morphology of the C60TT LB film was dependent on the holding time before deposition at a surface pressure of 5 mN m(-1); it changed from a homogeneous monolayer to a bilayer fibrous structure via a fibrous monolayer structure, which was estimated to have dimensions of 1.2 nm in height, 8 nm in width, and 5-10 microm in length. From the structural and spectroscopic data, it is inferred that close packing of the fullerene moiety occurs along with intermolecular hydrogen bonding within the monolayer fibrous structure. The morphological changes in the LB film are explained kinetically by the Avrami theory, based on the decrease in the surface area of the monolayer at the air/water interface. The growth of the quasi-one-dimensional fibrous monolayer structures at holding times from 0 to 0.2 h is considered to be an interface-controlled process, whereas the growth of the quasi-one-dimensional bilayer fibrous structures from 0.2 to 18 h is thought to be a diffusion-controlled process.

  13. Myofibroblasts electrotonically coupled to cardiomyocytes alter conduction: insights at the cellular level from a detailed in silico tissue structure model

    Directory of Open Access Journals (Sweden)

    Florian Jousset

    2016-10-01

    Full Text Available Fibrotic myocardial remodeling is typically accompanied by the appearance of myofibroblasts (MFBs. In vitro, MFBs were shown to slow conduction and precipitate ectopic activity following gap junctional coupling to cardiomyocytes (CMCs. To gain further mechanistic insights into this arrhythmogenic MFB-CMC crosstalk, we performed numerical simulations in cell-based high-resolution two-dimensional tissue models that replicated experimental conditions. Cell dimensions were determined using confocal microscopy of single and co-cultured neonatal rat ventricular CMCs and MFBs. Conduction was investigated as a function of MFB density in three distinct cellular tissue architectures: CMC strands with endogenous MFBs, CMC strands with coating MFBs of two different sizes, and CMC strands with MFB inserts. Simulations were performed to identify individual contributions of heterocellular gap junctional coupling and of the specific electrical phenotype of MFBs. With increasing MFB density, both endogenous and coating MFBs slowed conduction. At MFB densities of 5-30%, conduction slowing was most pronounced in strands with endogenous MFBs due to the MFB-dependent increase in axial resistance. At MFB densities >40%, very slow conduction and spontaneous activity was primarily due to MFB-induced CMC depolarization. Coating MFBs caused non-uniformities of resting membrane potential, which were more prominent with large than with small MFBs. In simulations of MFB inserts connecting two CMC strands conduction delays increased with increasing insert lengths and block appeared for inserts >1.2 mm. Thus, electrophysiological properties of engineered CMC-MFB co-cultures depend on MFB density, MFB size and their specific positioning in respect to CMCs. These factors may influence conduction characteristics in the heterocellular myocardium.

  14. Myofibroblasts Electrotonically Coupled to Cardiomyocytes Alter Conduction: Insights at the Cellular Level from a Detailed In silico Tissue Structure Model

    Science.gov (United States)

    Jousset, Florian; Maguy, Ange; Rohr, Stephan; Kucera, Jan P.

    2016-01-01

    Fibrotic myocardial remodeling is typically accompanied by the appearance of myofibroblasts (MFBs). In vitro, MFBs were shown to slow conduction and precipitate ectopic activity following gap junctional coupling to cardiomyocytes (CMCs). To gain further mechanistic insights into this arrhythmogenic MFB-CMC crosstalk, we performed numerical simulations in cell-based high-resolution two-dimensional tissue models that replicated experimental conditions. Cell dimensions were determined using confocal microscopy of single and co-cultured neonatal rat ventricular CMCs and MFBs. Conduction was investigated as a function of MFB density in three distinct cellular tissue architectures: CMC strands with endogenous MFBs, CMC strands with coating MFBs of two different sizes, and CMC strands with MFB inserts. Simulations were performed to identify individual contributions of heterocellular gap junctional coupling and of the specific electrical phenotype of MFBs. With increasing MFB density, both endogenous and coating MFBs slowed conduction. At MFB densities of 5–30%, conduction slowing was most pronounced in strands with endogenous MFBs due to the MFB-dependent increase in axial resistance. At MFB densities >40%, very slow conduction and spontaneous activity was primarily due to MFB-induced CMC depolarization. Coating MFBs caused non-uniformities of resting membrane potential, which were more prominent with large than with small MFBs. In simulations of MFB inserts connecting two CMC strands, conduction delays increased with increasing insert lengths and block appeared for inserts >1.2 mm. Thus, electrophysiological properties of engineered CMC-MFB co-cultures depend on MFB density, MFB size and their specific positioning in respect to CMCs. These factors may influence conduction characteristics in the heterocellular myocardium. PMID:27833567

  15. Designing dairy desserts for weight management: Structure, physical properties and in vitro gastric digestion.

    Science.gov (United States)

    Borreani, Jennifer; Llorca, Empar; Quiles, Amparo; Hernando, Isabel

    2017-04-01

    The first aim of this study was to observe the effect of adding dairy proteins and reducing the cream content in order to obtain healthier dairy desserts for use in weight management. The extra-whey protein low-cream sample had the densest, firmest matrix, which is related to increased satiety. The second aim was to investigate the in vitro gastric digestion behavior of whey and casein proteins in a heat-treated semisolid real food. The extra-casein protein sample matrix broke down more slowly than the others because the caseins clotted at the gastric pH. Despite being heated, the whey proteins in the panna cottas were more resistant to pepsin digestion than caseins; this is related with a higher satiety capacity. These findings suggest that the combination of reducing fat content (to obtain a reduced energy density product) and adding whey protein (to increase satiety capacity) allows obtaining dairy desserts for weight management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Innovative Structural and Material Concepts for Low-Weight Low-Drag Aircraft Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this multi-phase project is to explore, develop, integrate, and test several innovative structural design concepts and new material...

  17. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments

    DEFF Research Database (Denmark)

    Ravenschlag, K.; Sahm, K.; Knoblauch, C.

    2000-01-01

    The community structure of sulfate-reducing bacteria (SRB) of a marine Arctic sediment (Smeerenburg-fjorden, Svalbard) a-as characterized by both fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization by using group- and genus-specific 16S rRNA-targeted oligonucleotide probes...

  18. Designing rules and probabilistic weighting for fast materials discovery in the Perovskite structure

    Science.gov (United States)

    Castelli, I. E.; Jacobsen, K. W.

    2014-07-01

    High-throughput electronic-structure calculations are becoming increasingly popular in materials science and in the design of new compounds. Electronic-structure theory, for example, in the form of density-functional theory, can be used to calculate stabilities and electronic properties as bandgaps of new compounds. However, in practice, the methods are often limited to rather small atomic-scale systems or periodic crystals with only a limited number of atoms in the unit cell. It is therefore of interest to be able to derive generally useful information from simple systems to be applied in other, more complex, crystals. Here, we consider a large database of calculated stabilities and bandgaps of oxides and oxynitrides in the perovskite structure. We use the database as a testing ground for existing ideas about the behavior of these types of compounds and we derive some new simple chemical-based rules which combine structural information, like the ionic radii of the chemical elements, with electronic data, like the number of electrons and the valences of the pure elements. The rules extracted from the ABO3 cubic perovskite are then tested using the ABO2N and A2BO4 stoichiometry in the cubic and layered perovskite structure, respectively. These rules allow a saving in computer time of around 80%.

  19. Optimizing weights of protein energy function to improve ab initio protein structure prediction

    CERN Document Server

    Wang, Chao; Liu, Juntao; Zhang, Haicang; Ling, Bin; Li, Shuai Cheng; Zheng, Wei-Mou; Bu, Dongbo

    2013-01-01

    Predicting protein 3D structure from amino acid sequence remains as a challenge in the field of computational biology. If protein structure homologues are not found, one has to construct 3D structural conformations from the very beginning by the so-called ab initio approach, using some empirical energy functions. A successful algorithm in this category, Rosetta, creates an ensemble of decoy conformations by assembling selected best short fragments of known protein structures and then recognizes the native state as the highly populated one with a very low energy. Typically, an energy function is a combination of a variety of terms characterizing different structural features, say hydrophobic interactions, van der Waals force, hydrogen bonding, etc. It is critical for an energy function to be capable to distinguish native-like conformations from non-native ones and to drive most initial conformations assembled from fragments to a native-like one in a conformation search process. In this paper we propose a linea...

  20. Structural and biochemical characterization of the C3–C4 intermediate Brassica gravinae and relatives, with particular reference to cellular distribution of Rubisco

    Science.gov (United States)

    Ueno, Osamu

    2011-01-01

    On the basis of its CO2 compensation concentration, Brassica gravinae Ten. has been reported to be a C3–C4 intermediate. This study investigated the structural and biochemical features of photosynthetic metabolism in B. gravinae. The cellular distribution of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) was also examined in B. gravinae, B. napus L. (C3), Raphanus sativus L. (C3), and Diplotaxis tenuifolia (L.) DC. (C3–C4) by immunogold electron microscopy to elucidate Rubisco expression during the evolution from C3 to C3–C4 intermediate plants. The bundle sheath (BS) cells of B. gravinae contained centrifugally located chloroplasts as well as centripetally located chloroplasts and mitochondria. Glycine decarboxylase P-protein was localized in the BS mitochondria. Brassica gravinae had low C4 enzyme activities and high activities of Rubisco and photorespiratory enzymes, suggesting that it reduces photorespiratory CO2 loss by the glycine shuttle. In B. gravinae, the labelling density of Rubisco was higher in the mesophyll chloroplasts than in the BS chloroplasts. A similar cellular pattern was found in other Brassicaceae species. These data demonstrate that, during the evolution from C3 to C3–C4 intermediate plants, the intercellular pattern of Rubisco expression did not change greatly, although the amount of chloroplasts in the BS cells increased. It also appears that intracellular variation in Rubisco distribution may occur within the BS cells of B. gravinae. PMID:21825284

  1. STRUCTURAL ADAPTATIONS OF CELLULAR WALLS OF AQUATIC PLANTS TO THE ACTION OF IONS OF ZINC AND LEAD

    Directory of Open Access Journals (Sweden)

    Grubinko V.V.

    2012-11-01

    Full Text Available Main specific and nonspecific cells responses and membrane structures participation in formation of cells resistance in stress conditions, caused by heavy metals (chlorella, waterweed, duckweed in toxic concentrations are analyzed. The cell membranes participation in adaptation to toxicants (formation of growths, multiplication, fluidization, forming of aquaporin, apoptosis, which are first exposed to stressors, is discussed. Found specific and nonspecific reactions in membrane formation are proposed to use as biomarkers of toxicity.

  2. Structure and Potential Cellular Targets of HAMLET-like Anti-Cancer Compounds made from Milk Components.

    Science.gov (United States)

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Vacher, Catherine S; Liu, Guo Jun; Knott, Robert B; Church, William Bret

    2015-01-01

    The HAMLET family of compounds (Human Alpha-lactalbumin Made Lethal to Tumours) was discovered during studies on the properties of human milk, and is a class of protein-lipid complexes having broad spectrum anti-cancer, and some specific anti-bacterial properties. The structure of HAMLET-like compounds consists of an aggregation of partially unfolded protein making up the majority of the compound's mass, with fatty acid molecules bound in the hydrophobic core. This is a novel protein-lipid structure and has only recently been derived by small-angle X-ray scattering analysis. The structure is the basis of a novel cytotoxicity mechanism responsible for anti-cancer activity to all of the around 50 different cancer cell types for which the HAMLET family has been trialled. Multiple cytotoxic mechanisms have been hypothesised for the HAMLET-like compounds, but it is not yet clear which of those are the initiating cytotoxic mechanism(s) and which are subsequent activities triggered by the initiating mechanism(s). In addition to the studies into the structure of these compounds, this review presents the state of knowledge of the anti-cancer aspects of HAMLET-like compounds, the HAMLET-induced cytotoxic activities to cancer and non-cancer cells, and the several prospective cell membrane and intracellular targets of the HAMLET family. The emerging picture is that HAMLET-like compounds initiate their cytotoxic effects on what may be a cancer-specific target in the cell membrane that has yet to be identified. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  3. Loss of progesterone receptor-mediated actions induce preterm cellular and structural remodeling of the cervix and premature birth.

    Science.gov (United States)

    Yellon, Steven M; Dobyns, Abigail E; Beck, Hailey L; Kurtzman, James T; Garfield, Robert E; Kirby, Michael A

    2013-01-01

    A decline in serum progesterone or antagonism of progesterone receptor function results in preterm labor and birth. Whether characteristics of premature remodeling of the cervix after antiprogestins or ovariectomy are similar to that at term was the focus of the present study. Groups of pregnant rats were treated with vehicle, a progesterone receptor antagonist (onapristone or mifepristone), or ovariectomized on day 17 postbreeding. As expected, controls given vehicle delivered at term while rats delivered preterm after progesterone receptor antagonist treatment or ovariectomy. Similar to the cervix before term, the preterm cervix of progesterone receptor antagonist-treated rats was characterized by reduced cell nuclei density, decreased collagen content and structure, as well as a greater presence of macrophages per unit area. Thus, loss of nuclear progesterone receptor-mediated actions promoted structural remodeling of the cervix, increased census of resident macrophages, and preterm birth much like that found in the cervix at term. In contrast to the progesterone receptor antagonist-induced advance in characteristics associated with remodeling, ovariectomy-induced loss of systemic progesterone did not affect hypertrophy, extracellular collagen, or macrophage numbers in the cervix. Thus, the structure and macrophage census in the cervix appear sufficient for premature ripening and birth to occur well before term. With progesterone receptors predominantly localized on cells other than macrophages, the findings suggest that interactions between cells may facilitate the loss of progesterone receptor-mediated actions as part of a final common mechanism that remodels the cervix in certain etiologies of preterm and with parturition at term.

  4. Piezoelectric line moment actuator for active radiation control from light-weight structures

    Science.gov (United States)

    Jandak, Vojtech; Svec, Petr; Jiricek, Ondrej; Brothanek, Marek

    2017-11-01

    This article outlines the design of a piezoelectric line moment actuator used for active structural acoustic control. Actuators produce a dynamic bending moment that appears in the controlled structure resulting from the inertial forces when the attached piezoelectric stripe actuators start to oscillate. The article provides a detailed theoretical analysis necessary for the practical realization of these actuators, including considerations concerning their placement, a crucial factor in the overall system performance. Approximate formulas describing the dependency of the moment amplitude on the frequency and the required electric voltage are derived. Recommendations applicable for the system's design based on both theoretical and empirical results are provided.

  5. Designing rules and probabilistic weighting for fast materials discovery in the Perovskite structure

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Jacobsen, Karsten Wedel

    2014-01-01

    , more complex, crystals. Here, we consider a large database of calculated stabilities and bandgaps of oxides and oxynitrides in the perovskite structure. We use the database as a testing ground for existing ideas about the behavior of these types of compounds and we derive some new simple chemical......-based rules which combine structural information, like the ionic radii of the chemical elements, with electronic data, like the number of electrons and the valences of the pure elements. The rules extracted from the ABO3 cubic perovskite are then tested using the ABO2N and A2BO4 stoichiometry in the cubic...

  6. Mapping pathological changes in brain structure by combining T1- and T2-weighted MR imaging data

    Energy Technology Data Exchange (ETDEWEB)

    Ganzetti, Marco; Mantini, Dante [ETH Zurich, Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Zurich (Switzerland); University of Oxford, Department of Experimental Psychology, Oxford (United Kingdom); Wenderoth, Nicole [ETH Zurich, Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Zurich (Switzerland); KU Leuven, Laboratory of Movement Control and Neuroplasticity, Faculty of Kinesiology and Rehabilitation Sciences, Leuven (Belgium)

    2015-09-15

    A workflow based on the ratio between standardized T1-weighted (T1-w) and T2-weighted (T2-w) MR images has been proposed as a new tool to study brain structure. This approach was previously used to map structural properties in the healthy brain. Here, we evaluate whether the T1-w/T2-w approach can support the assessment of structural impairments in the diseased brain. We use schizophrenia data to demonstrate the potential clinical utility of the technique. We analyzed T1-w and T2-w images of 36 schizophrenic patients and 35 age-matched controls. These were collected for the Function Biomedical Informatics Research Network (fBIRN) collaborative project, which had an IRB approval and followed the HIPAA guidelines. We computed T1-w/T2-w images for each individual and compared intensities in schizophrenic and control groups on a voxel-wise basis, as well as in regions of interest (ROIs). Our results revealed that the T1-w/T2-w image permits to discriminate brain regions showing group-level differences between patients and controls with greater accuracy than conventional T1-w and T2-w images. Both the ROIs and the voxel-wise analysis showed globally reduced gray and white matter values in patients compared to controls. Significantly reduced values were found in regions such as insula, primary auditory cortex, hippocampus, inferior longitudinal fasciculus, and inferior fronto-occipital fasciculus. Our findings were consistent with previous meta-analyses in schizophrenia corroborating the hypothesis of a potential ''disconnection'' syndrome in conjunction with structural alterations in local gray matter regions. Overall, our study suggested that the T1-w/T2-w technique permits to reliably map structural differences between the brains of patients and healthy individuals. (orig.)

  7. Location, Timing, and Social Structure Patterns Related to Physical Activity Participation in Weight Loss Programs

    Science.gov (United States)

    Gay, Jennifer L.; Trevarthen, Grace

    2013-01-01

    Less than half of the adults in the United States meet national guidelines for physical activity. Physical activity programs can induce short-term improvements in physical activity. To develop effective interventions, researchers and practitioners should consider the timing, location, and social structure patterns of participants. Using a pretest,…

  8. Physics-Based Models of Brain Structure Connectivity Informed by Diffusion-Weighted Imaging

    Science.gov (United States)

    2012-02-01

    can cause a complex pattern of acceleration and deceleration of cortical and subcortical structures in the brain. Basic physics defines acceleration ...and Shull, W.H., 2003: Diffuse axonal injury in head trauma, J Head Trauma Rehabilitation, 18, 307-316. Sporns, O., Tononi, J., and Kotter , R

  9. Loss of progesterone receptor-mediated actions induce preterm cellular and structural remodeling of the cervix and premature birth.

    Directory of Open Access Journals (Sweden)

    Steven M Yellon

    Full Text Available A decline in serum progesterone or antagonism of progesterone receptor function results in preterm labor and birth. Whether characteristics of premature remodeling of the cervix after antiprogestins or ovariectomy are similar to that at term was the focus of the present study. Groups of pregnant rats were treated with vehicle, a progesterone receptor antagonist (onapristone or mifepristone, or ovariectomized on day 17 postbreeding. As expected, controls given vehicle delivered at term while rats delivered preterm after progesterone receptor antagonist treatment or ovariectomy. Similar to the cervix before term, the preterm cervix of progesterone receptor antagonist-treated rats was characterized by reduced cell nuclei density, decreased collagen content and structure, as well as a greater presence of macrophages per unit area. Thus, loss of nuclear progesterone receptor-mediated actions promoted structural remodeling of the cervix, increased census of resident macrophages, and preterm birth much like that found in the cervix at term. In contrast to the progesterone receptor antagonist-induced advance in characteristics associated with remodeling, ovariectomy-induced loss of systemic progesterone did not affect hypertrophy, extracellular collagen, or macrophage numbers in the cervix. Thus, the structure and macrophage census in the cervix appear sufficient for premature ripening and birth to occur well before term. With progesterone receptors predominantly localized on cells other than macrophages, the findings suggest that interactions between cells may facilitate the loss of progesterone receptor-mediated actions as part of a final common mechanism that remodels the cervix in certain etiologies of preterm and with parturition at term.

  10. A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models.

    Science.gov (United States)

    Wood, Scott T; Dean, Brian C; Dean, Delphine

    2013-04-01

    This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A Structural Weight Estimation Program (SWEEP) for Aircraft. Volume 1 - Executive Summary

    Science.gov (United States)

    1974-06-01

    Figure 3. Column general stability, lc;nl web, flange, and sheet crippling requirements are analyzed within specified constraints so that strength and...checked include: 1. Two-point level: a. Maximum vertical load b. Spin-up c. Springback 2. Drift landing 3. Braked roll 4. Unsymmetrical braking...structural mathematical model of the method assumes a spanwise box beam lying along the elastic axis of an aerodynamic surface. The beam is divided into

  12. Molecular chemistry of plant protein structure at a cellular level by synchrotron-based FTIR spectroscopy: Comparison of yellow ( Brassica rapa) and Brown ( Brassica napus) canola seed tissues

    Science.gov (United States)

    Yu, Peiqiang

    2008-05-01

    The objective of this study was to use synchrotron light sourced FTIR microspectroscopy as a novel approach to characterize protein molecular structure of plant tissue: compared yellow and brown Brassica canola seed within cellular dimensions. Differences in the molecular chemistry and the structural-chemical characteristics were identified between two type of plant tissues. The yellow canola seeds contained a relatively lower (P < 0.05) percentage of model-fitted α-helices (33 vs. 37), a higher (P < 0.05) relative percentage of model-fitted β-sheets (27 vs. 21) and a lower (P < 0.05) ratio of α-helices to β-sheets (1.3 vs. 1.9) than the brown seeds. These results may indicate that the protein value of the yellow canola seeds as food or feed was different from that of the brown canola seeds. The cluster analysis and principal component analysis did not show clear differences between the yellow and brown canola seed tissues in terms of protein amide I structures, indicating they are related to each other. Both yellow and brown canola seeds contain the same proteins but in different ratios.

  13. Hybrid alginate-polyester bimodal network hydrogel for tissue engineering--Influence of structured water on long-term cellular growth.

    Science.gov (United States)

    Finosh, G T; Jayabalan, M; Vandana, S; Raghu, K G

    2015-11-01

    The development of biodegradable scaffolds (which promote cell-binding, proliferation, long-term cell viability and required biomechanical stability) for cardiac tissue engineering is a challenge. In this study, biosynthetic amphiphilic hybrid hydrogels were prepared using a graft comacromer of natural polysaccharide alginate and synthetic polyester polypropylene fumarate (PPF). Monomodal network hydrogel (HPAS-NO) and bimodal network hydrogel (HPAS-AA) were prepared. Between the two hydrogels, HPAS-AA hydrogel excels over the HPAS-NO hydrogel. HPAS-AA hydrogel is mechanically more stable in the culture medium and undergoes gradual degradation in vitro in PBS (phosphate buffered saline). HPAS-AA contains nano-porous structure and acquires structured water (non-freezing-bound water) (53.457%) along with free water (11.773%). It absorbs more plasma proteins and prevents platelet adsorption and hemolysis when contacted with blood. HPAS-AA hydrogel is cytocompatible and promote 3D cell growth (≈ 70%) of L929 fibroblast even after 18 days and H9C2 cardiomyoblasts. The enhanced and long-term cellular growth of HPAS-AA hydrogel is attributed to the cell responsive features of structured water. HPAS-AA hydrogel can be a better candidate for cardiac tissue engineering applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Molecular dynamics studies of simple membrane-water interfaces: Structure and functions in the beginnings of cellular life

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    1995-01-01

    Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Born barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience 'interfacial resistance' to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.

  15. Stochastic models of cellular circadian rhythms in plants help to understand the impact of noise on robustness and clock structure

    Directory of Open Access Journals (Sweden)

    Maria Luisa eGuerriero

    2014-10-01

    Full Text Available Rhythmic behavior is essential for plants; for example, daily (circadian rhythms control photosynthesis and seasonal rhythms regulate their life cycle. The core of the circadian clock is a genetic network that coordinates the expression of specific clock genes in a circadian rhythm reflecting the 24-hour day/night cycle.Circadian clocks exhibit stochastic noise due to the low copy numbers of clock genes and the consequent cell-to-cell variation: this intrinsic noise plays a major role in circadian clocks by inducing more robust oscillatory behavior. Another source of noise is the environment, which causes variation in temperature and light intensity: this extrinsic noise is part of the requirement for the structural complexity of clock networks.Advances in experimental techniques now permit single-cell measurements and the development of single-cell models. Here we present some modeling studies showing the importance of considering both types of noise in understanding how plants adapt to regular and irregular light variations. Stochastic models have proven useful for understanding the effect of regular variations. By contrast, the impact of irregular variations and the interaction of different noise sources are less studied.

  16. New Insights in Thrombin Inhibition Structure-Activity Relationships by Characterization of Octadecasaccharides from Low Molecular Weight Heparin.

    Science.gov (United States)

    Mourier, Pierre A J; Guichard, Olivier Y; Herman, Fréderic; Sizun, Philippe; Viskov, Christian

    2017-03-08

    Low Molecular Weight Heparins (LMWH) are complex anticoagulant drugs that mainly inhibit the blood coagulation cascade through indirect interaction with antithrombin. While inhibition of the factor Xa is well described, little is known about the polysaccharide structure inhibiting thrombin. In fact, a minimal chain length of 18 saccharides units, including an antithrombin (AT) binding pentasaccharide, is mandatory to form the active ternary complex for LMWH obtained by alkaline β-elimination (e.g., enoxaparin). However, the relationship between structure of octadecasaccharides and their thrombin inhibition has not been yet assessed on natural compounds due to technical hurdles to isolate sufficiently pure material. We report the preparation of five octadecasaccharides by using orthogonal separation methods including size exclusion, AT affinity, ion pairing and strong anion exchange chromatography. Each of these octadecasaccharides possesses two AT binding pentasaccharide sequences located at various positions. After structural elucidation using enzymatic sequencing and NMR, in vitro aFXa and aFIIa were determined. The biological activities reveal the critical role of each pentasaccharide sequence position within the octadecasaccharides and structural requirements to inhibit thrombin. Significant differences in potency, such as the twenty-fold magnitude difference observed between two regioisomers, further highlights the importance of depolymerisation process conditions on LMWH biological activity.

  17. A novel imaging technique for measuring kinematics of light-weight flexible structures

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Mohamed Y., E-mail: zakaria@vt.edu [Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA and Department of Aerospace Engineering, Military Technical College, Cairo 11241 (Egypt); Eliethy, Ahmed S. [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Canfield, Robert A. [Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Hajj, Muhammad R. [Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    2016-07-15

    A new imaging algorithm is proposed to capture the kinematics of flexible, thin, light structures including frequencies and motion amplitudes for real time analysis. The studied case is a thin flexible beam that is preset at different angles of attack in a wind tunnel. As the angle of attack is increased beyond a critical value, the beam was observed to undergo a static deflection that is ensued by limit cycle oscillations. Imaging analysis of the beam vibrations shows that the motion consists of a superposition of the bending and torsion modes. The proposed algorithm was able to capture the oscillation amplitudes as well as the frequencies of both bending and torsion modes. The analysis results are validated through comparison with measurements from a piezoelectric sensor that is attached to the beam at its root.

  18. Structural Verification of the Space Shuttle's External Tank Super LightWeight Design: A Lesson in Innovation

    Science.gov (United States)

    Otte, Neil

    1997-01-01

    The Super LightWeight Tank (SLWT) team was tasked with a daunting challenge from the outset: boost the payload capability of the Shuttle System by safely removing 7500 lbs. from the existing 65,400 lb. External Tank (ET). Tools they had to work with included a promising new Aluminum Lithium alloy, the concept of a more efficient structural configuration for the Liquid Hydrogen (LH2) tank, and a highly successful, mature Light Weight Tank (LWT) program. The 44 month schedule which the SLWT team was given for the task was ambitious by any measure. During this time the team had to not only design, build, and verify the new tank, but they also had to move a material from the early stages of development to maturity. The aluminum lithium alloy showed great promise, with an approximately 29% increase in yield strength, 15% increase in ultimate strength, 5 deg/O increase in modulus and 5 deg/O decrease in density when compared to the current 2219 alloy. But processes had to be developed and brought under control, manufacturing techniques perfected, properties characterized, and design allowable generated. Because of the schedule constraint, this material development activity had to occur in parallel with design and manufacturing. Initial design was performed using design allowable believed to be achievable with the Aluminum Lithium alloy system, but based on limited test data. Preliminary structural development tests were performed with material still in the process of iteration. This parallel path approach posed obvious challenges and risks, but also allowed a unique opportunity for interaction between the structures and materials disciplines in the formulation of the material.

  19. Characterization of the microchemical structure of seed endosperm within a cellular dimension among six barley varieties with distinct degradation kinetics, using ultraspatially resolved synchrotron-based infrared microspectroscopy.

    Science.gov (United States)

    Liu, Na; Yu, Peiqiang

    2010-07-14

    barley grain, although significant differences in biodegradation kinetics were observed. In conclusion, the studies demonstrated the potential of ultraspatially resolved synchrotron based technology (SFTIRM) to reveal the structural and chemical makeup within cellular and subcellular dimensions without destruction of the inherent structure of cereal grain tissue.

  20. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities

    Energy Technology Data Exchange (ETDEWEB)

    Edelbrock, Michael A., E-mail: Edelbrock@findlay.edu [The University of Findlay, 1000 North Main Street, Findlay, OH 45840 (United States); Kaliyaperumal, Saravanan, E-mail: Saravanan.Kaliyaperumal@hms.harvard.edu [Division of Comparative Medicine and Pathology, New England Primate Research Center, One Pine Hill Drive, Southborough, MA 01772 (United States); Williams, Kandace J., E-mail: Kandace.williams@utoledo.edu [University of Toledo College of Medicine and Life Sciences, Department of Biochemistry and Cancer Biology, 3000 Transverse Dr., Toledo, OH 43614 (United States)

    2013-03-15

    The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O{sup 6}meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6.

  1. Hydrophilic interaction liquid chromatography-tandem mass spectrometry quantitative method for the cellular analysis of varying structures of gemini surfactants designed as nanomaterial drug carriers.

    Science.gov (United States)

    Donkuru, McDonald; Michel, Deborah; Awad, Hanan; Katselis, George; El-Aneed, Anas

    2016-05-13

    Diquaternary gemini surfactants have successfully been used to form lipid-based nanoparticles that are able to compact, protect, and deliver genetic materials into cells. However, what happens to the gemini surfactants after they have released their therapeutic cargo is unknown. Such knowledge is critical to assess the quality, safety, and efficacy of gemini surfactant nanoparticles. We have developed a simple and rapid liquid chromatography electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the quantitative determination of various structures of gemini surfactants in cells. Hydrophilic interaction liquid chromatography (HILIC) was employed allowing for a short simple isocratic run of only 4min. The lower limit of detection (LLOD) was 3ng/mL. The method was valid to 18 structures of gemini surfactants belonging to two different structural families. A full method validation was performed for two lead compounds according to USFDA guidelines. The HILIC-MS/MS method was compatible with the physicochemical properties of gemini surfactants that bear a permanent positive charge with both hydrophilic and hydrophobic elements within their molecular structure. In addition, an effective liquid-liquid extraction method (98% recovery) was employed surpassing previously used extraction methods. The analysis of nanoparticle-treated cells showed an initial rise in the analyte intracellular concentration followed by a maximum and a somewhat more gradual decrease of the intracellular concentration. The observed intracellular depletion of the gemini surfactants may be attributable to their bio-transformation into metabolites and exocytosis from the host cells. Obtained cellular data showed a pattern that grants additional investigations, evaluating metabolite formation and assessing the subcellular distribution of tested compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Low-Molecular-Weight Metabolites from Diatoms: Structures, Biological Roles and Biosynthesis

    Directory of Open Access Journals (Sweden)

    Valentin Stonik

    2015-06-01

    Full Text Available Diatoms are abundant and important biological components of the marine environment that biosynthesize diverse natural products. These microalgae are rich in various lipids, carotenoids, sterols and isoprenoids, some of them containing toxins and other metabolites. Several groups of diatom natural products have attracted great interest due to their potential practical application as energy sources (biofuel, valuable food constituents, and prospective materials for nanotechnology. In addition, hydrocarbons, which are used in climate reconstruction, polyamines which participate in biomineralization, new apoptotic agents against tumor cells, attractants and deterrents that regulate the biochemical communications between marine species in seawaters have also been isolated from diatoms. However, chemical studies on these microalgae are complicated by difficulties, connected with obtaining their biomass, and the influence of nutrients and contaminators in their environment as well as by seasonal and climatic factors on the biosynthesis of the corresponding natural products. Overall, the number of chemically studied diatoms is lower than that of other algae, but further studies, particularly those connected with improvements in the isolation and structure elucidation technique as well as the genomics of diatoms, promise both to increase the number of studied species with isolated biologically active natural products and to provide a clearer perception of their biosynthesis.

  3. Simultaneous structure-activity studies and arming of natural products by C-H amination reveal cellular targets of eupalmerin acetate

    Science.gov (United States)

    Li, Jing; Cisar, Justin S.; Zhou, Cong-Ying; Vera, Brunilda; Williams, Howard; Rodríguez, Abimael D.; Cravatt, Benjamin F.; Romo, Daniel

    2013-06-01

    Natural products have a venerable history of, and enduring potential for the discovery of useful biological activity. To fully exploit this, the development of chemical methodology that can functionalize unique sites within these complex structures is highly desirable. Here, we describe the use of rhodium(II)-catalysed C-H amination reactions developed by Du Bois to carry out simultaneous structure-activity relationship studies and arming (alkynylation) of natural products at ‘unfunctionalized’ positions. Allylic and benzylic C-H bonds in the natural products undergo amination while olefins undergo aziridination, and tertiary amine-containing natural products are converted to amidines by a C-H amination-oxidation sequence or to hydrazine sulfamate zwitterions by an unusual N-amination. The alkynylated derivatives are ready for conversion into cellular probes that can be used for mechanism-of-action studies. Chemo- and site-selectivity was studied with a diverse library of natural products. For one of these—the marine-derived anticancer diterpene, eupalmerin acetate—quantitative proteome profiling led to the identification of several protein targets in HL-60 cells, suggesting a polypharmacological mode of action.

  4. Complexity of weighted graph: A new technique to investigate structural complexity of brain activities with applications to aging and autism.

    Science.gov (United States)

    Ahmadlou, Mehran; Adeli, Hojjat

    2017-05-22

    In recent years complexity of the brain structure in healthy and disordered subjects has been studied increasingly. But to the best of the authors' knowledge, researchers so far have investigated the structural complexity only in the context of two restricted networks known as Small-World and Scale-free networks; whereas other aspects of the structural complexity of brain activities may be affected by aging and neurodegenerative disorders such as the Alzheimer's disease and autism spectrum disorder. In this study, two general complexity metrics of graphs, Graph Index Complexity and Offdiagonal Complexity are proposed as general measures of complexity, not restricted to SWN only. They are adopted to measure the structural complexity of the weighted graphs instead of the common binary graphs. Fuzzy Synchronization Likelihood is applied to the EEGs and their sub-bands, as a functional connectivity metric of the brain, to construct the functional connectivity graphs. Two applications are used to evaluate the efficacy of the complexity measures: diagnosis of autism and aging, both based on EEG. It was discovered that the Graph Index Complexity of gamma band is discriminative in distinguishing autistic children from non-autistic children. Also, Offdiagonal Complexity of theta band in young subjects was observed to be significantly different than old subjects. This study shows that changes in the structure of functional connectivity of brain in disorders and different healthy states can be revealed by unrestricted metrics of graph complexity. While the applications presented in this paper are based on EEG, the approach is general and can be used with other modalities such as fMRI, MEG, etc. Further, it can be used to study every other neurological and psychiatric disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. High-Throughput Combinatorial Development of High-Entropy Alloys For Light-Weight Structural Applications

    Energy Technology Data Exchange (ETDEWEB)

    Van Duren, Jeroen K; Koch, Carl; Luo, Alan; Sample, Vivek; Sachdev, Anil

    2017-12-29

    The primary limitation of today’s lightweight structural alloys is that specific yield strengths (SYS) higher than 200MPa x cc/g (typical value for titanium alloys) are extremely difficult to achieve. This holds true especially at a cost lower than 5dollars/kg (typical value for magnesium alloys). Recently, high-entropy alloys (HEA) have shown promising SYS, yet the large composition space of HEA makes screening compositions complex and time-consuming. Over the course of this 2-year project we started from 150 billion compositions and reduced the number of potential low-density (<5g/cc), low-cost (<5dollars/kg) high-entropy alloy (LDHEA) candidates that are single-phase, disordered, solid-solution (SPSS) to a few thousand compositions. This was accomplished by means of machine learning to guide design for SPSS LDHEA based on a combination of recursive partitioning, an extensive, experimental HEA database compiled from 24 literature sources, and 91 calculated parameters serving as phenomenological selection rules. Machine learning shows an accuracy of 82% in identifying which compositions of a separate, smaller, experimental HEA database are SPSS HEA. Calculation of Phase Diagrams (CALPHAD) shows an accuracy of 71-77% for the alloys supported by the CALPHAD database, where 30% of the compiled HEA database is not supported by CALPHAD. In addition to machine learning, and CALPHAD, a third tool was developed to aid design of SPSS LDHEA. Phase diagrams were calculated by constructing the Gibbs-free energy convex hull based on easily accessible enthalpy and entropy terms. Surprisingly, accuracy was 78%. Pursuing these LDHEA candidates by high-throughput experimental methods resulted in SPSS LDHEA composed of transition metals (e.g. Cr, Mn, Fe, Ni, Cu) alloyed with Al, yet the high concentration of Al, necessary to bring the mass density below 5.0g/cc, makes these materials hard and brittle, body-centered-cubic (BCC) alloys. A related, yet multi-phase BCC alloy, based

  6. Weight Optimum Arch Structures

    Science.gov (United States)

    1991-12-01

    presicion ............... CALL DOWNSCALE (NDOF,BU,U) ELSE C .... solve the system of equations ..................... CALL L2ARG (NDOF,GK,P4,F,1,U,FAC,IPVT...Sectional Shapes," The Royal Institute of Technology , S-10044 Stockholm, Sweden, p. 707, 22 October 1985. 7. DOT Users Manual, Version 2.04, VMA Engineering

  7. Co-analysis of brain structure and function using fMRI and diffusion-weighted imaging.

    Science.gov (United States)

    Phillips, Jeffrey S; Greenberg, Adam S; Pyles, John A; Pathak, Sudhir K; Behrmann, Marlene; Schneider, Walter; Tarr, Michael J

    2012-11-08

    The study of complex computational systems is facilitated by network maps, such as circuit diagrams. Such mapping is particularly informative when studying the brain, as the functional role that a brain area fulfills may be largely defined by its connections to other brain areas. In this report, we describe a novel, non-invasive approach for relating brain structure and function using magnetic resonance imaging (MRI). This approach, a combination of structural imaging of long-range fiber connections and functional imaging data, is illustrated in two distinct cognitive domains, visual attention and face perception. Structural imaging is performed with diffusion-weighted imaging (DWI) and fiber tractography, which track the diffusion of water molecules along white-matter fiber tracts in the brain (Figure 1). By visualizing these fiber tracts, we are able to investigate the long-range connective architecture of the brain. The results compare favorably with one of the most widely-used techniques in DWI, diffusion tensor imaging (DTI). DTI is unable to resolve complex configurations of fiber tracts, limiting its utility for constructing detailed, anatomically-informed models of brain function. In contrast, our analyses reproduce known neuroanatomy with precision and accuracy. This advantage is partly due to data acquisition procedures: while many DTI protocols measure diffusion in a small number of directions (e.g., 6 or 12), we employ a diffusion spectrum imaging (DSI)(1, 2) protocol which assesses diffusion in 257 directions and at a range of magnetic gradient strengths. Moreover, DSI data allow us to use more sophisticated methods for reconstructing acquired data. In two experiments (visual attention and face perception), tractography reveals that co-active areas of the human brain are anatomically connected, supporting extant hypotheses that they form functional networks. DWI allows us to create a "circuit diagram" and reproduce it on an individual-subject basis

  8. Digital Cellular Solid Pressure Vessels: A Novel Approach for Human Habitation in Space

    Science.gov (United States)

    Cellucci, Daniel; Jenett, Benjamin; Cheung, Kenneth C.

    2017-01-01

    It is widely assumed that human exploration beyond Earth's orbit will require vehicles capable of providing long duration habitats that simulate an Earth-like environment - consistent artificial gravity, breathable atmosphere, and sufficient living space- while requiring the minimum possible launch mass. This paper examines how the qualities of digital cellular solids - high-performance, repairability, reconfigurability, tunable mechanical response - allow the accomplishment of long-duration habitat objectives at a fraction of the mass required for traditional structural technologies. To illustrate the impact digital cellular solids could make as a replacement to conventional habitat subsystems, we compare recent proposed deep space habitat structural systems with a digital cellular solids pressure vessel design that consists of a carbon fiber reinforced polymer (CFRP) digital cellular solid cylindrical framework that is lined with an ultra-high molecular weight polyethylene (UHMWPE) skin. We use the analytical treatment of a linear specific modulus scaling cellular solid to find the minimum mass pressure vessel for a structure and find that, for equivalent habitable volume and appropriate safety factors, the use of digital cellular solids provides clear methods for producing structures that are not only repairable and reconfigurable, but also higher performance than their conventionally manufactured counterparts.

  9. Molecular Weight Cut-Off and Structural Analysis of Vacuum-Assisted Titania Membranes for Water Processing

    Directory of Open Access Journals (Sweden)

    Siti Nurehan Abd Jalil

    2016-11-01

    Full Text Available This work investigates the structural formation and analyses of titania membranes (TM prepared using different vacuum exposure times for molecular weight (MW cut-off performance and oil/water separation. Titania membranes were synthesized via a sol-gel method and coated on macroporous alumina tubes followed by exposure to a vacuum between 30 and 1200 s and then calcined at 400 °C. X-ray diffraction and nitrogen adsorption analyses showed that the crystallite size and particle size of titania increased as a function of vacuum time. All the TM membranes were mesoporous with an average pore diameter of ~3.6 nm with an anatase crystal morphology. Water, glucose, sucrose, and polyvinylpyrrolidone with 40 and 360 kDa (PVP-40 kDa and PVP-360 kDa were used as feed solutions for MW cut-off and hexadecane solution for oil filtration investigation. The TM membranes were not able to separate glucose and sucrose, thus indicating the membrane pore sizes are larger than the kinetic diameter of sucrose of 0.9 nm, irrespective of vacuum exposure time. They also showed only moderate rejection (20% of the smaller PVP-40 kDa, however, all the membranes were able to obtain an excellent rejection of near 100% for the larger PVP-360 kDa molecule. Furthermore, the TM membranes were tested for the separation of oil emulsions with a high concentration of oil (3000 ppm, reaching high oil rejections of more than 90% of oil. In general, the water fluxes increased with the vacuum exposure time indicating a pore structural tailoring effect. It is therefore proposed that a mechanism of pore size tailoring was formed by an interconnected network of Ti–O–Ti nanoparticles with inter-particle voids, which increased as TiO2 nanoparticle size increased as a function of vacuum exposure time, and thus reduced the water transport resistance through the TM membranes.

  10. Time-varying effect moderation using the structural nested mean model: estimation using inverse-weighted regression with residuals

    Science.gov (United States)

    Almirall, Daniel; Griffin, Beth Ann; McCaffrey, Daniel F.; Ramchand, Rajeev; Yuen, Robert A.; Murphy, Susan A.

    2014-01-01

    This article considers the problem of examining time-varying causal effect moderation using observational, longitudinal data in which treatment, candidate moderators, and possible confounders are time varying. The structural nested mean model (SNMM) is used to specify the moderated time-varying causal effects of interest in a conditional mean model for a continuous response given time-varying treatments and moderators. We present an easy-to-use estimator of the SNMM that combines an existing regression-with-residuals (RR) approach with an inverse-probability-of-treatment weighting (IPTW) strategy. The RR approach has been shown to identify the moderated time-varying causal effects if the time-varying moderators are also the sole time-varying confounders. The proposed IPTW+RR approach provides estimators of the moderated time-varying causal effects in the SNMM in the presence of an additional, auxiliary set of known and measured time-varying confounders. We use a small simulation experiment to compare IPTW+RR versus the traditional regression approach and to compare small and large sample properties of asymptotic versus bootstrap estimators of the standard errors for the IPTW+RR approach. This article clarifies the distinction between time-varying moderators and time-varying confounders. We illustrate the methodology in a case study to assess if time-varying substance use moderates treatment effects on future substance use. PMID:23873437

  11. On the brain structure heterogeneity of autism: Parsing out acquisition site effects with significance‐weighted principal component analysis

    Science.gov (United States)

    Martinez‐Murcia, Francisco Jesús; Lai, Meng‐Chuan; Ramírez, Javier; Young, Adam M. H.; Deoni, Sean C. L.; Ecker, Christine; Lombardo, Michael V.; Baron‐Cohen, Simon; Murphy, Declan G. M.; Bullmore, Edward T.; Suckling, John

    2016-01-01

    Abstract Neuroimaging studies have reported structural and physiological differences that could help understand the causes and development of Autism Spectrum Disorder (ASD). Many of them rely on multisite designs, with the recruitment of larger samples increasing statistical power. However, recent large‐scale studies have put some findings into question, considering the results to be strongly dependent on the database used, and demonstrating the substantial heterogeneity within this clinically defined category. One major source of variance may be the acquisition of the data in multiple centres. In this work we analysed the differences found in the multisite, multi‐modal neuroimaging database from the UK Medical Research Council Autism Imaging Multicentre Study (MRC AIMS) in terms of both diagnosis and acquisition sites. Since the dissimilarities between sites were higher than between diagnostic groups, we developed a technique called Significance Weighted Principal Component Analysis (SWPCA) to reduce the undesired intensity variance due to acquisition site and to increase the statistical power in detecting group differences. After eliminating site‐related variance, statistically significant group differences were found, including Broca's area and the temporo‐parietal junction. However, discriminative power was not sufficient to classify diagnostic groups, yielding accuracies results close to random. Our work supports recent claims that ASD is a highly heterogeneous condition that is difficult to globally characterize by neuroimaging, and therefore different (and more homogenous) subgroups should be defined to obtain a deeper understanding of ASD. Hum Brain Mapp 38:1208–1223, 2017. © 2016 Wiley Periodicals, Inc. PMID:27774713

  12. Histochemical and structural characterization of egg extra-cellular matrix in bufonid toads, Bufo bufo and Bufotes balearicus: molecular diversity versus morphological uniformity.

    Science.gov (United States)

    Mentino, Donatella; Mastrodonato, Maria; Rossi, Roberta; Scillitani, Giovanni

    2014-11-01

    The extra-cellular matrix of fertilized eggs in the bufonid toads Bufo bufo and Bufotes balearicus was studied to clear the relationships between structural and molecular diversity. Histochemical (PAS, AB pH 2.5 and pH 1.0, Beta-elimination PAS) and lectin-histochemical (Con A, WGA, Succinyl-WGA, PNA, RCA-1, DBA, SBA, AAA, UEA-I, LTA) techniques were used and the observations were made under light and electron microscopy. Both species present a fertilization envelope (FE) and two jelly layers (J1 and J2). The fibers of J2 are shared among the eggs of a clutch in a jelly ribbon. The FE of both species presents neutral glycoproteins, mostly N-linked. In B. bufo there are also residuals of mannose and/or glucose and N-acetylglucosamine. In the FE fibers run parallel to egg's surface or are in bundles or looser hanks with no clear orientation. The J1 layer of both species presents sialosulfoglycoproteins, mostly O-linked, with lactosaminylated, galactosaminylated, glycosaminylated, and fucosylated residuals. A lower amount of galactosaminylated residuals is observed in B. balearicus in respect to B. bufo, whereas the opposite is seen in the amount of fucosylated residuals. The J2 layer is similar in composition to J1 but in B. balearicus there are no glucosaminylated residuals. J layers present fibers and granules that reduce towards J2 . Several microorganisms, in particular blue algae, are observed in the J2 layer of both species. In respect to other species, B. bufo and B. balearicus have a lower number of jelly layers, but a comparable number of glycan types. © 2014 Wiley Periodicals, Inc.

  13. Glycopattern analysis and structure of the egg extra-cellular matrix in the Apennine yellow-bellied toad, Bombina pachypus (Anura: Bombinatoridae

    Directory of Open Access Journals (Sweden)

    Maria Mastrodonato

    2011-07-01

    Full Text Available We studied the glycopatterns and ultrastructure of the extra-cellular matrix (ECM of the egg of the Apennine yellow-bellied toad Bombina pachypus, by light and electron microscopy in order to determine structure, chemical composition and function. Histochemical techniques in light microscopy included PAS and Alcian Blue pH 2.5 and 1.0, performed also after b-elimination. Lectin-binding was tested with nine lectins (AAA, ConA, DBA, HPA, LTA, PNA, SBA, UEA-I, WGA. An inner fertilization envelope (FE and five jelly layers (J1–J5 were observed, differing in histochemical staining, lectin binding and ultrastructure. Most glycans were O-linked, with many glucosamylated and fucosylated residues. The fertilization envelope presented a perivitelline space and a fertilization layer, with mostly neutral glycans. The jelly layers consisted of fibers and granules, whose number and orientation differed between layers. Fibers were densely packed in J1 and J4 layers, whereas a looser arrangement was observed in the other layers. Jelly-layer glycans were mostly acidic and particularly abundant in the J1 and J4 layers. In the J1, J2 and J5 layers, neutral, N-linked glycans were also observed. Mannosylated and/or glucosylated as well as galactosyl/galactosaminylated residues were more abundant in the outer layers. Many microorganisms were observed in the J5 layer. We believe that, apart from their functions in the fertilization process, acidic and fucosylated glycans could act as a barrier against pathogen penetration. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 2, pp. 306–316

  14. Impact of electromagnetic radiation emitted by monitors on changes in the cellular membrane structure and protective antioxidant effect of vitamin A – In vitro study

    Directory of Open Access Journals (Sweden)

    Małgorzata Lewicka

    2017-10-01

    Full Text Available Objectives: The increasing number of devices emitting electromagnetic radiation (EMR in people’s everyday life attracted the attention of researchers because of possible adverse effects of this factor on living organisms. One of the EMR effect may be peroxidation of lipid membranes formed as a result of free radical process. The article presents the results of in vitro studies aimed at identifying changes in malondialdehyde (MDA concentration – a marker of lipid peroxidation and antioxidant role of vitamin A during the exposure of blood platelets to electromagnetic radiation generated by liquid-crystal-display (LCD monitors. Material and Methods: Electromagnetic radiation emitted by LCD monitors is characterized by parameters: 1 kHz frequency and 220 V/m intensity (15 cm from display screen. The time of exposure was 30 and 60 min. The study was conducted on porcine blood platelets. The samples were divided into 6 groups: unexposed to radiation, unexposed + vitamin A, exposed for 30 min, exposed for 30 min + vitamin A, exposed for 60 min, exposed for 60 min + vitamin A. Results: The MDA concentration in blood platelets increases significantly as compared to control values after 60 min of exposure to EMR. A significant decrease in MDA concentration after the addition of vitamin A was noticed. In the blood samples exposed to EMR for 30 and 60 min the MDA concentration was significantly increased by addition of vitamin A. Conclusions: The results show the possibly negative effect of electromagnetic radiation on the cellular membrane structure manifested by changes in malondialdehyde concentration and indicate a possible protective role of vitamin A in this process. Int J Occup Med Environ Health 2017;30(5:695–703

  15. Impact of electromagnetic radiation emitted by monitors on changes in the cellular membrane structure and protective antioxidant effect of vitamin A - In vitro study.

    Science.gov (United States)

    Lewicka, Małgorzata; Henrykowska, Gabriela; Zawadzka, Magdalena; Rutkowski, Maciej; Pacholski, Krzysztof; Buczyński, Andrzej

    2017-07-14

    The increasing number of devices emitting electromagnetic radiation (EMR) in people's everyday life attracted the attention of researchers because of possible adverse effects of this factor on living organisms. One of the EMR effect may be peroxidation of lipid membranes formed as a result of free radical process. The article presents the results of in vitro studies aimed at identifying changes in malondialdehyde (MDA) concentration - a marker of lipid peroxidation and antioxidant role of vitamin A during the exposure of blood platelets to electromagnetic radiation generated by liquid-crystal-display (LCD) monitors. Electromagnetic radiation emitted by LCD monitors is characterized by parameters: 1 kHz frequency and 220 V/m intensity (15 cm from display screen). The time of exposure was 30 and 60 min. The study was conducted on porcine blood platelets. The samples were divided into 6 groups: unexposed to radiation, unexposed + vitamin A, exposed for 30 min, exposed for 30 min + vitamin A, exposed for 60 min, exposed for 60 min + vitamin A. The MDA concentration in blood platelets increases significantly as compared to control values after 60 min of exposure to EMR. A significant decrease in MDA concentration after the addition of vitamin A was noticed. In the blood samples exposed to EMR for 30 and 60 min the MDA concentration was significantly increased by addition of vitamin A. The results show the possibly negative effect of electromagnetic radiation on the cellular membrane structure manifested by changes in malondialdehyde concentration and indicate a possible protective role of vitamin A in this process. Int J Occup Med Environ Health 2017;30(5):695-703.

  16. The influence of the binding of low molecular weight surfactants on the thermal stability and secondary structure of IgG

    NARCIS (Netherlands)

    Vermeer, AWP; Norde, W

    2000-01-01

    The effect of low molecular weight surfactants on the thermal stability of immunoglobulin G is studied by differential scanning calorimetry. The corresponding change in the secondary structure is investigated using circular dichroism spectroscopy and the rate of aggregate formation, both in the

  17. Testing and evaluation of a slot and tab construction technique for light-weight wood-fiber-based structural panels under bending

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2015-01-01

    This paper presented construction and strain distributions for light-weight wood-fiber-based structural panels with tri-grid core made from phenolic impregnated laminated paper composites under bending. A new fastening configuration of slots in the faces and tabs on the core was applied to the face/core interfaces of the sandwich panel in addition to epoxy resin. Both...

  18. Genetic diversity and population structure in lines of chickens divergently selected for high and low 8-week body weight.

    Science.gov (United States)

    Márquez, G C; Siegel, P B; Lewis, R M

    2010-12-01

    A long-term selection experiment for high or low 8-wk BW in White Plymouth Rock chickens was conducted to study effects of selection on BW and correlated characters. Two lines [high (HWS), low (LWS) weight] were established and have undergone 48 generations of selection. The lines were managed to curtail inbreeding and to maintain similar population structures; such is necessary for equitable comparison of selection response between lines. Our objective was to test the success of that breeding strategy by characterizing genetic diversity and inbreeding in these lines. A pedigree of 5,998 individuals was assembled, with 68 founders, 2,962 HWS chickens, and 2,968 LWS chickens. Inbreeding coefficients (F) were calculated for each line. Maximum F was 0.53 and 0.61, mean F was 0.26 (SD 0.15) and 0.30 (SD 0.17), and change in F was 1.3 and 1.6% per generation in LWS and HWS lines, respectively. The effective population size was 38.3 in LWS and 32.1 in HWS lines. The effective number of founders was 15.7 in both lines, and the effective number of ancestors was 17.5 and 15.5 in LWS and HWS lines, respectively. Thirty ancestors accounted for 90% of the genetic makeup of both lines. Seven male and eight female founders still contributed to both lines at generation 48, although some contributed more to one line than the other. Family sizes were similar for males and females of each line, with males having larger family sizes with greater variance. Accumulated inbreeding was high and effective population size was low, as expected in closed lines. Effective number of founders was relatively low compared with actual number of founders, indicating some contributed more than others to the last generation. Family size statistics indicated that fewer males than females were used, leading to the observed levels of inbreeding. Given their similarity in genetic diversity and family size, it can be concluded that breeding decisions throughout the project resulted in similar population

  19. Cellularity of certain quantum endomorphism algebras

    DEFF Research Database (Denmark)

    of endomorphism algebras, and another which relates the multiplicities of indecomposable summands to the dimensions of simple modules for an endomorphism algebra. Our cellularity result then allows us to prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above...... is equivalent to knowledge of the weight multiplicities of the tilting modules for $\\U_{\\zeta}(\\fsl_2)$. In the final section we independently determine the weight multiplicities of indecomposable tilting modules for $U_\\zeta(\\fsl_2)$ and the decomposition numbers of the endomorphism algebras. We indicate how...

  20. Cellular multiplets in directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Kopczynski, P.; Rappel, W.; Karma, A. [Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115 (United States)

    1997-02-01

    We report the existence of new branches of steady state cellular structures in directional solidification. These structures consist of repeating cellular subunits, or multiplets, each containing a set of distinct cells separated by unequal grooves. A detailed numerical study of the symmetric model of directional solidification reveals that all multiplets bifurcate off the main singlet solution branch in two sets. Two points on the main branch, one corresponding to the onset of the Eckhaus instability at small cell spacing and the other to a fold of this branch at large spacing, are argued to be separate accumulation points for each set of multiplets. The set of structures bifurcating near the fold are morphologically similar to experimentally observed multiplets. In contrast, those bifurcating near the Eckhaus instability do not resemble experimental shapes. Furthermore, they are argued to be generically unstable. {copyright} {ital 1997} {ital The American Physical Society}

  1. Stages of change in obesity and weight management: factorial structure of the Italian version of the University of Rhode Island Change Assessment Scale.

    Science.gov (United States)

    Pietrabissa, Giada; Sorgente, Angela; Rossi, Alessandro; Simpson, Susan; Riva, Giuseppe; Manzoni, Gian Mauro; Prochaska, James O; Prochaska, Janice M; Cattivelli, Roberto; Castelnuovo, Gianluca

    2017-06-01

    To examine the factorial structure of the University of Rhode Island Change Assessment Scale (IT-URICA) for weight management in a sample of Italian overweight and obese patients enrolled in a nutritional rehabilitation program. 334 inpatients completed the translated and adjusted version of the IT-URICA at admission to the hospital. Psychometric testing included confirmatory factor analysis and internal consistency (Cronbach's α). The IT-URICA for weight management was successfully translated into Italian, and the factorial analysis confirmed the four-factor solution of the commonly accepted version of the measure. High levels of RTC are considered critical to the long-term success of weight management, and the IT-URICA may be an appropriate measure of motivational readiness for use among Italian overweight and obese patients. Its use is, therefore, recommended for clinical and research purposes.

  2. Treatment with a GLP-1R agonist over four weeks promotes weight loss-moderated changes in frontal-striatal brain structures in individuals with mood disorders

    DEFF Research Database (Denmark)

    Mansur, Rodrigo B; Zugman, Andre; Ahmed, Juhie

    2017-01-01

    Cognitive deficits are a core feature across psychiatric disorders. Emerging evidence indicates that metabolic pathways are highly relevant for the substrates and phenomenology of the cognitive domain. Herein, we aimed to determine the effects of liraglutide, a GLP-1R agonist, on brain structural...... with changes in body mass index (BMI), indicating the weight loss was associated with volume increase in most regions (e.g. r=-0.561, p=0.042 in the left superior frontal area). After adjusting for intracranial volume, age, gender, and BMI, we observed significant changes from baseline to endpoint in multiple......, with corresponding improvement in cognitive function; changes in cognitive function were partially moderated by changes in brain morphometry, underscoring the interrelationship between weight and brain structure/function....

  3. Wireless Cellular Mobile Communications

    OpenAIRE

    V. Zalud

    2002-01-01

    In this article is briefly reviewed the history of wireless cellular mobile communications, examined the progress in current second generation (2G) cellular standards and discussed their migration to the third generation (3G). The European 2G cellular standard GSM and its evolution phases GPRS and EDGE are described somewhat in detail. The third generation standard UMTS taking up on GSM/GPRS core network and equipped with a new advanced access network on the basis of code division multiple ac...

  4. On Collision Resistance of Generalized Cellular Automata

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2014-01-01

    Full Text Available The author had previously developed the principles for creating the symmetric cryptoalgorithms based on the generalized cellular automata. In hardware implementation these cryptoalgorithms are of high efficiency. This work continues studies in this field. It investigates collisions arising during the operation of generalized cellular automata.The main objective of the work is to develop a method for creating the generalized cellular automata to be resistant to a certain type of collisions.Two various initial fillings of the generalized cellular machine gun differing in w categories and giving identical fillings after t steps shall be called a t-step collision of weight w. We notice that any t-step collision at the same time is also a step collision (t+u.It is obvious that collisions existing in generalized cellular automata, provided that there are efficient algorithms to detect them, sharply worsen cryptographic properties of the cryptoalgorithms based on it. Therefore methods for synthesis of generalized cellular automata, which are resistant to collisions are very important. This work studies resistance to the single-step collisions of weight 1.The work shows that for a lack of single-step collisions of weight 1 it is enough that any other cell is linearly dependent on each cell of the cellular automata. For this, it is sufficient that the knumbered edges with regard to any tops form, together with these tops, a 2-factor of the graph of the generalized cellular automata while a local function of relation has to be linear in k- numbered argument.Existence conditions of 2-factor are given. The method to find the 2-factor in this graph is given. It is based on the search algorithm of the maximum bipartite matching.Thus, the article develops a theory of the generalized cellular automata, free from single-step collisions of weight 1. Such automata are important for cryptographic applications. The method is developed to create such cellular

  5. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  6. Structural changes in the knee during weight loss maintenance after a significant weight loss in obese patients with osteoarthritis: a report of secondary outcome analyses from a randomized controlled trial.

    Science.gov (United States)

    Henriksen, M; Christensen, R; Hunter, D J; Gudbergsen, H; Boesen, M; Lohmander, L S; Bliddal, H

    2014-05-01

    To compare structural knee joint changes in obese patients with knee osteoarthritis (OA) that after an intensive weight loss therapy were randomized to continuous dietetic support, a specialized knee exercise program, or 'no attention' for 1 year. 192 obese individuals with knee OA underwent an intensive 16-week weight loss program with subsequent randomization to one of the three treatment groups. Changes in cartilage loss, bone marrow lesions (BMLs), synovitis, and effusion were assessed using semi quantitative assessments of magnetic resonance imaging (MRI) obtained at weeks 0 and 68 applying the BLOKS score. During the 52 weeks maintenance period the continuous dietary maintenance group support on average gained 1.1 kg (95% CI: -0.3:2.5) body mass, the exercise group gained 6.6 kg (95% CI 5.4:7.8) and the no-attention group gained 4.8 kg (95% CI: 2.9:6.7). There were no statistically significant between-group differences in changes in cartilage loss, synovitis or effusion at the follow-up (analysis of covariance; ANCOVA, P > 0.16), while there was an increased number of medial tibiofemoral BMLs in the exercise group (ANCOVA, P = 0.015) compared to both diet (difference: -0.21 [95%CI -0.40:-0.03]) and "no attention" (difference: -0.26 [95%CI -0.44:-0.07]) groups. In this 1 year follow-up after weight-loss in obese knee OA patients, we found a potentially increased number of BMLs in the exercise group compared to the diet and no attention groups, with no between-group differences in changes in cartilage loss, synovitis or effusion. These findings should be interpreted with caution for exercise compliance, MRI methodology and follow-up time. (ClinicalTrials.gov identifier: NCT00655941). Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. Experimental and Numerical Evaluation of the Mechanical Behavior of Strongly Anisotropic Light-Weight Metallic Fiber Structures under Static and Dynamic Compressive Loading

    Directory of Open Access Journals (Sweden)

    Olaf Andersen

    2016-05-01

    Full Text Available Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.

  8. Healthy Weight

    Science.gov (United States)

    ... Weight Gain Losing Weight Getting Started Improving Your Eating Habits Keeping It Off Healthy Eating for a Healthy ... or "program". It's about lifestyle changes in daily eating and exercise habits. Success Stories They did it. So can you! ...

  9. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  10. Applications of fiber optics sensors in weigh-in-motion (WIM) systems for monitoring truck weights on pavements and structures.

    Science.gov (United States)

    2003-04-01

    The main objective of this project was to investigate emerging technologies and to establish criteria for evaluating fiber optic sensors used to measure actual dynamic loads on pavements and structures. The dynamic load of particular interest for thi...

  11. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  12. Nominal Cellular Automata

    Directory of Open Access Journals (Sweden)

    Tommaso Bolognesi

    2016-08-01

    Full Text Available The emerging field of Nominal Computation Theory is concerned with the theory of Nominal Sets and its applications to Computer Science. We investigate here the impact of nominal sets on the definition of Cellular Automata and on their computational capabilities, with a special focus on the emergent behavioural properties of this new model and their significance in the context of computation-oriented interpretations of physical phenomena. A preliminary investigation of the relations between Nominal Cellular Automata and Wolfram's Elementary Cellular Automata is also carried out.

  13. CELLULAR INTERACTIONS MEDIATED BY GLYCONECTIDS

    Directory of Open Access Journals (Sweden)

    O.Popescu

    1999-01-01

    Full Text Available Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of isolated and purified glyconectins revealed the presence of specific carbohydrate structures, acidic glycans, different from classical glycosaminoglycans. Such acidic glycans of high molecular weight containing fucose, glucuronic or galacturonic acids, and sulfate groups, originally found in sponges and sea urchin embryos, may represent a new class of carbohydrate carcino-embryonal antigens in mice and humans. Such interactions between biological macromolecules are usually investigated by kinetic binding studies, calorimetric methods, X-ray diffraction, nuclear magnetic resonance, and other spectroscopic analyses. However, these methods do not supply a direct estimation of the intermolecular binding forces that are fundamental for the function of the ligand-receptor association. Recently, we have introduced atomic force microscopy to quantify the binding strength between cell adhesion proteoglycans. Measurement of binding forces intrinsic to cell adhesion proteoglycans is necessary to assess their contribution to the maintenance of the anatomical integrity of multicellular organisms. As a model, we selected the glyconectin 1, a cell adhesion proteoglycan isolated from the marine sponge Microciona prolifera. This glyconectin mediates in vivo cell recognition and aggregation via homophilic, species-specific, polyvalent, and calcium ion-dependent carbohydrate-carbohydrate interactions. Under physiological conditions, an adhesive force of up to 400 piconewtons

  14. Reversibly assembled cellular composite materials.

    Science.gov (United States)

    Cheung, Kenneth C; Gershenfeld, Neil

    2013-09-13

    We introduce composite materials made by reversibly assembling a three-dimensional lattice of mass-produced carbon fiber-reinforced polymer composite parts with integrated mechanical interlocking connections. The resulting cellular composite materials can respond as an elastic solid with an extremely large measured modulus for an ultralight material (12.3 megapascals at a density of 7.2 milligrams per cubic centimeter). These materials offer a hierarchical decomposition in modeling, with bulk properties that can be predicted from component measurements and deformation modes that can be determined by the placement of part types. Because site locations are locally constrained, structures can be produced in a relative assembly process that merges desirable features of fiber composites, cellular materials, and additive manufacturing.

  15. Convenient preparation of high molecular weight poly(dimethylsiloxane using thermally latent NHC-catalysis: a structure-activity correlation

    Directory of Open Access Journals (Sweden)

    Stefan Naumann

    2015-11-01

    Full Text Available The polymerization of octamethylcyclotetrasiloxane (D4 is investigated using several five-, six- and seven-membered N-heterocyclic carbenes (NHCs. The catalysts are delivered in situ from thermally susceptible CO2 adducts. It is demonstrated that the polymerization can be triggered from a latent state by mild heating, using the highly nucleophilic 1,3,4,5-tetramethylimidazol-2-ylidene as organocatalyst. This way, high molecular weight PDMS is prepared (up to >400 000 g/mol, 1.6 ÐM 95%, using low catalyst loadings (0.2–0.1 mol %. Furthermore, the results suggest that a nucleophilic, zwitterionic mechanism is in operation, in preference to purely anionic polymerization.

  16. Microstructural effects in drug release by solid and cellular polymeric dosage forms: A comparative study.

    Science.gov (United States)

    Blaesi, Aron H; Saka, Nannaji

    2017-11-01

    In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug

  17. Cellular magnesium homeostasis.

    Science.gov (United States)

    Romani, Andrea M P

    2011-08-01

    Magnesium, the second most abundant cellular cation after potassium, is essential to regulate numerous cellular functions and enzymes, including ion channels, metabolic cycles, and signaling pathways, as attested by more than 1000 entries in the literature. Despite significant recent progress, however, our understanding of how cells regulate Mg(2+) homeostasis and transport still remains incomplete. For example, the occurrence of major fluxes of Mg(2+) in either direction across the plasma membrane of mammalian cells following metabolic or hormonal stimuli has been extensively documented. Yet, the mechanisms ultimately responsible for magnesium extrusion across the cell membrane have not been cloned. Even less is known about the regulation in cellular organelles. The present review is aimed at providing the reader with a comprehensive and up-to-date understanding of the mechanisms enacted by eukaryotic cells to regulate cellular Mg(2+) homeostasis and how these mechanisms are altered under specific pathological conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Hijacking cellular garbage cans.

    Science.gov (United States)

    Welsch, Sonja; Locker, Jacomine Krijnse

    2010-06-25

    Viruses are perfect opportunists that have evolved to modify numerous cellular processes in order to complete their replication cycle in the host cell. An article by Reggiori and coworkers in this issue of Cell Host & Microbe reveals how coronaviruses can divert a cellular quality control pathway that normally functions in degradation of mis-folded proteins to replicate the viral genome. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  19. Modeling cellular systems

    CERN Document Server

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  20. Effect of Coarse Aggregate and Slag Type on the Mechanical Behavior of High and Normal Weight Concrete Used at Barrage Structure

    Directory of Open Access Journals (Sweden)

    Muhammad Sanaullah

    2017-04-01

    Full Text Available Present study is an effort to assess the composite effect of limestone aggregate and blast furnace slag on the mechanical characteristics of normal and high weight concrete at various structural units (barrage girders, main weir and block apron of New Khanki Barrage Project, Punjab. Mix designs for different concrete classes falling under the domain of high and normal weight concrete were prepared after aggregate quality testing. On attaining satisfactory results of quality testing nine concrete mixes were designed (three for each class: A1, A and B by absolute volume method (ACI- 211.1. The required compressive strength of normal and high strength was set at 6200, 5200 and 4200 Psi for the concrete types A1, A and B respectively after 28 days (ACI -318. For compressive strength assessment, a total 27 concrete cylinders were casted (9-cylinders for each mix and were water cured. The achieved average UCS of cylinder concrete specimens at 3, 7 and 28 days are 5170, 6338 and 7320 Psi for A1 – type, 3210, 4187 and 5602 Psi for A-type and 2650, 3360 and 4408 Psi for B- type mix. It has been found that all concrete mixes for suggested classes attained target strength at age of 7-days. The coarse aggregate (Margala Hill limestone and fine aggregates (from Lawrancepur /Qibla Bandi quarries used in all concrete mix designs have demonstrated a sound mechanical suitability for high and normal weight concrete.

  1. Cellular chain formation in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2009-01-01

    In this study we report on a novel structural phenotype in Escherichia coli biofilms: cellular chain formation. Biofilm chaining in E. coli K-12 was found to occur primarily by clonal expansion, but was not due to filamentous growth. Rather, chain formation was the result of intercellular......; type I fimbriae expression significantly reduced cellular chain formation, presumably by steric hindrance. Cellular chain formation did not appear to be specific to E coli K-12. Although many urinary tract infection (UTI) isolates were found to form rather homogeneous, flat biofilms, three isolates...

  2. Weighted LCS

    Science.gov (United States)

    Amir, Amihood; Gotthilf, Zvi; Shalom, B. Riva

    The Longest Common Subsequence (LCS) of two strings A and B is a well studied problem having a wide range of applications. When each symbol of the input strings is assigned a positive weight the problem becomes the Heaviest Common Subsequence (HCS) problem. In this paper we consider a different version of weighted LCS on Position Weight Matrices (PWM). The Position Weight Matrix was introduced as a tool to handle a set of sequences that are not identical, yet, have many local similarities. Such a weighted sequence is a 'statistical image' of this set where we are given the probability of every symbol's occurrence at every text location. We consider two possible definitions of LCS on PWM. For the first, we solve the weighted LCS problem of z sequences in time O(zn z + 1). For the second, we prove \\cal{NP}-hardness and provide an approximation algorithm.

  3. Transient inter-cellular polymeric linker.

    Science.gov (United States)

    Ong, Siew-Min; He, Lijuan; Thuy Linh, Nguyen Thi; Tee, Yee-Han; Arooz, Talha; Tang, Guping; Tan, Choon-Hong; Yu, Hanry

    2007-09-01

    Three-dimensional (3D) tissue-engineered constructs with bio-mimicry cell-cell and cell-matrix interactions are useful in regenerative medicine. In cell-dense and matrix-poor tissues of the internal organs, cells support one another via cell-cell interactions, supplemented by small amount of the extra-cellular matrices (ECM) secreted by the cells. Here we connect HepG2 cells directly but transiently with inter-cellular polymeric linker to facilitate cell-cell interaction and aggregation. The linker consists of a non-toxic low molecular-weight polyethyleneimine (PEI) backbone conjugated with multiple hydrazide groups that can aggregate cells within 30 min by reacting with the aldehyde handles on the chemically modified cell-surface glycoproteins. The cells in the cellular aggregates proliferated; and maintained the cortical actin distribution of the 3D cell morphology while non-aggregated cells died over 7 days of suspension culture. The aggregates lost distinguishable cell-cell boundaries within 3 days; and the ECM fibers became visible around cells from day 3 onwards while the inter-cellular polymeric linker disappeared from the cell surfaces over time. The transient inter-cellular polymeric linker can be useful for forming 3D cellular and tissue constructs without bulk biomaterials or extensive network of engineered ECM for various applications.

  4. Tuning Material and Component Properties to Reduce Weight and Increase Blastworthiness of a Notional V-Hull Structure

    Science.gov (United States)

    2015-04-24

    for designing blast-resistant structures [16]. The failure mechanisms in unidirectional fiber -reinforced composites of delamination, fiber -matrix...debonding, matrix cracking, and fiber breakage have been considered for creating blast mitigation configurations [17]. For similar purposes...characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid,” Journal of Materials Science, 2003. 16. Hoo Fatt, M.S., and

  5. Robustness of weighted networks

    Science.gov (United States)

    Bellingeri, Michele; Cassi, Davide

    2018-01-01

    Complex network response to node loss is a central question in different fields of network science because node failure can cause the fragmentation of the network, thus compromising the system functioning. Previous studies considered binary networks where the intensity (weight) of the links is not accounted for, i.e. a link is either present or absent. However, in real-world networks the weights of connections, and thus their importance for network functioning, can be widely different. Here, we analyzed the response of real-world and model networks to node loss accounting for link intensity and the weighted structure of the network. We used both classic binary node properties and network functioning measure, introduced a weighted rank for node importance (node strength), and used a measure for network functioning that accounts for the weight of the links (weighted efficiency). We find that: (i) the efficiency of the attack strategies changed using binary or weighted network functioning measures, both for real-world or model networks; (ii) in some cases, removing nodes according to weighted rank produced the highest damage when functioning was measured by the weighted efficiency; (iii) adopting weighted measure for the network damage changed the efficacy of the attack strategy with respect the binary analyses. Our results show that if the weighted structure of complex networks is not taken into account, this may produce misleading models to forecast the system response to node failure, i.e. consider binary links may not unveil the real damage induced in the system. Last, once weighted measures are introduced, in order to discover the best attack strategy, it is important to analyze the network response to node loss using nodes rank accounting the intensity of the links to the node.

  6. Dispersion of iron oxide particles in industrial waters. The influence of polymer structure, ionic charge, and molecular weight

    Energy Technology Data Exchange (ETDEWEB)

    Amjad, Z. [Goodrich (B.F.) Co., Brecksville, OH (United States)

    1999-01-01

    This paper deals with studies on the influence of polymeric and non-polymeric materials on the dispersion of iron oxide particles in aqueous system. The aim of the work was to evaluate the performance of a variety of additives as iron oxide dispersants. The polymers investigated include homopolymers of acrylamide, vinylpyrrolidone, actylic acid, maleic acid, 2-acrylamido-2-methylpropane sulfonic acid, and acrylic acid based copolymers containing a variety of functional groups. It has been found that the addition of low levels of copolymers to the iron oxide suspension has a marked effect in dispersing iron oxide particles. The dispersancy data of several polymers indicate that the performance of the polymer depends upon the functional group, molecular weight, composition, and the ionic charge of the polymer. The results on non-polymeric materials such as polyphosphates, phosphonates, and surfactants show that these additives, compared to copolymers are ineffective as iron oxide dispersants. (orig.) [Deutsch] In dieser Arbeit wird der Einfluss von polymeren und nichtpolymeren Stoffen auf die Dispergierung von Eisenoxidpartikeln in waessrigen Systemen untersucht. Ziel dieser Arbeit war es, die Wirkung verschiedener Additive als Eisenoxiddispergatoren zu bewerten. Die untersuchten Polymere waren homopolymeres Acrylamid, Vinylpyrrolidon, Acrylsaeure, Maleinsaeure, 2-Acrylamido-2-Methylpropansulfonsaeure und Copolymere auf Acrylsaeurebasis mit verschiedenen fuktionellen Gruppen. Die Zugabe von geringen Mengen Copolymeren zur Eisenoxidsuspension hat einen deutlichen Einfluss auf die Dispergierung dieser Partikel. Die Daten zum Dispergierverhalten einiger Polymere zeigen, dass die Wirkung eines Polymers von der fuktionellen Gruppe, dem Molgewicht, der Zusammensetzung und der Ionenladung des Polymers abhaengt. Ergebnisse, die mit nichtpolymeren Substanzen wie Polyphosphaten, Phosphonaten und Tensiden erhalten wurden, zeigen, dass sich diese Additive nicht so gut als

  7. In-plane structuring of proton exchange membrane fuel cell cathodes: Effect of ionomer equivalent weight structuring on performance and current density distribution

    Science.gov (United States)

    Herden, Susanne; Riewald, Felix; Hirschfeld, Julian A.; Perchthaler, Markus

    2017-07-01

    Within the active area of a fuel cell inhomogeneous operating conditions occur, however, state of the art electrodes are homogenous over the complete active area. This study uses current density distribution measurements to analyze which ionomer equivalent weight (EW) shows locally the highest current densities. With this information a segmented cathode electrode is manufactured by decal transfer. The segmented electrode shows better performance especially at high current densities compared to homogenous electrodes. Furthermore this segmented catalyst coated membrane (CCM) performs optimal in wet as well as dry conditions, both operating conditions arise in automotive fuel cell applications. Thus, cathode electrodes with an optimized ionomer EW distribution might have a significant impact on future automotive fuel cell development.

  8. Deoxyribonucleoprotein structure and radiation injury - Cellular radiosensitivity is determined by LET-infinity-dependent DNA damage in hydrated deoxyribonucleoproteins and the extent of its repair

    Science.gov (United States)

    Lett, J. T.; Peters, E. L.

    1992-01-01

    Until recently, OH radicals formed in bulk nuclear water were believed to be the major causes of DNA damage that results in cell death, especially for sparsely ionizing radiations. That hypothesis has now been challenged, if not refuted. Lethal genomic DNA damage is determined mainly by energy deposition in deoxyribonucleoproteins, and their hydration shells, and charge (energy) transfer processes within those structures.

  9. Human biology of weight maintenance after weight loss.

    Science.gov (United States)

    Mariman, Edwin C M

    2012-01-01

    One year after losing weight, most people have regained a significant part of the lost weight. As such, weight regain after weight loss has a negative impact on human health. The risk for weight regain is determined by psychosocial and behavioral factors as well as by various physiological and molecular parameters. Here, the latter intrinsic factors are reviewed and assembled into four functional modules, two related to the energy balance and two related to resistance against weight loss. Reported genetic factors do not reveal additional functional processes. The modules form nodes in a network describing the complex interactions of intrinsically determined weight maintenance. This network indicates that after an initial weight loss persons with a high baseline fat mass will most easily succeed in maintaining weight, because they can lose fat without raising stress in adipocytes and at the same time spare fat-free mass. However, continued weight loss and weight maintenance requires extra measures like increased physical activity, limited energy intake and a fat-free sparing composition of the diet. Eventually, this network may help to design novel therapeutic measures based on preventing the return effect of specific plasma factors or by preventing the accumulation of adipocyte cellular stress. Copyright © 2012 S. Karger AG, Basel.

  10. Cellular dynamics and embryonic morphogenesis

    Science.gov (United States)

    Zallen, Jennifer

    2007-11-01

    The elongated body axis is a characteristic feature of many multicellular animals. Axis elongation occurs largely through cell rearrangements that are coordinated across a large cell population and driven by an asymmetric distribution of cytoskeletal and junctional proteins [1]. To visualize cellular dynamics during this process, we performed time-lapse confocal imaging of cell behavior in the Drosophila embryo. These studies revealed that rearranging cells display a steady increase in topological disorder that is accompanied by the formation of transient structures where 5-11 cells meet [2,3]. These multicellular rosettes form and resolve in a directional fashion to produce a local change in the aspect ratio of the cellular assembly, contributing to an overall change in tissue structure. We propose that higher-order rosette structures link local cell interactions to global tissue reorganization during morphogenesis. [1] J. Zallen and E. Wieschaus, Developmental Cell 6, 343 (2004). [2] J. Zallen and R. Zallen, J. Phys.: Condens. Matter 16, S5073 (2004). [3] J. Blankenship et al., Developmental Cell 11, 459 (2006).

  11. Epigenetics and Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  12. Molecular and cellular actions of a structural domain of human growth hormone (AOD9401) on lipid metabolism in Zucker fatty rats.

    Science.gov (United States)

    Ng, F M; Jiang, W J; Gianello, R; Pitt, S; Roupas, P

    2000-12-01

    A lipolytic domain (AOD9401) of human growth hormone (hGH) which resides in the carboxyl terminus of the molecule and contains the amino acid residues 177-191, has been synthesized using solid-phase peptide synthesis techniques. AOD9401 stimulated hormone-sensitive lipase and inhibited acetyl coenzyme A carboxylase (acetyl CoA carboxylase) in isolated rat adipose tissues, in a similar manner to the actions of the intact hGH molecule. The synthetic lipolytic domain mimicked the effect of the intact growth hormone on diacylglycerol release in adipocytes. Chronic treatment of obese Zucker rats with AOD9401 for 20 days reduced the body weight gain of the animals, and the average cell size of the adipocytes of the treated animals decreased from 110 to 80 microm in diameter. Unlike hGH, synthetic AOD9401 did not induce insulin resistance or glucose intolerance in the laboratory animals after chronic treatment. The results suggest that AOD9401 has the potential to be developed into a therapeutic agent for the control of obesity.

  13. Wireless Cellular Mobile Communications

    Directory of Open Access Journals (Sweden)

    V. Zalud

    2002-12-01

    Full Text Available In this article is briefly reviewed the history of wireless cellularmobile communications, examined the progress in current secondgeneration (2G cellular standards and discussed their migration to thethird generation (3G. The European 2G cellular standard GSM and itsevolution phases GPRS and EDGE are described somewhat in detail. Thethird generation standard UMTS taking up on GSM/GPRS core network andequipped with a new advanced access network on the basis of codedivision multiple access (CDMA is investigated too. A sketch of theperspective of mobile communication beyond 3G concludes this article.

  14. Structures of Human Cyctochrome P450 2E1: Insights Into the Binding of Inhibitors And Both Small Molecular Weight And Fatty Acid Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Porubsky, P.R.; Meneely, K.M.; Scott, E.E.

    2009-05-21

    Human microsomal cytochrome P-450 2E1 (CYP2E1) monooxygenates >70 low molecular weight xenobiotic compounds, as well as much larger endogenous fatty acid signaling molecules such as arachidonic acid. In the process, CYP2E1 can generate toxic or carcinogenic compounds, as occurs with acetaminophen overdose, nitrosamines in cigarette smoke, and reactive oxygen species from uncoupled catalysis. Thus, the diverse roles that CYP2E1 has in normal physiology, toxicity, and drug metabolism are related to its ability to metabolize diverse classes of ligands, but the structural basis for this was previously unknown. Structures of human CYP2E1 have been solved to 2.2 {angstrom} for an indazole complex and 2.6 {angstrom} for a 4-methylpyrazole complex. Both inhibitors bind to the heme iron and hydrogen bond to Thr{sup 303} within the active site. Complementing its small molecular weight substrates, the hydrophobic CYP2E1 active site is the smallest yet observed for a human cytochrome P-450. The CYP2E1 active site also has two adjacent voids: one enclosed above the I helix and the other forming a channel to the protein surface. Minor repositioning of the Phe{sup 478} aromatic ring that separates the active site and access channel would allow the carboxylate of fatty acid substrates to interact with conserved {sup 216}QXXNN{sup 220} residues in the access channel while positioning the hydrocarbon terminus in the active site, consistent with experimentally observed {omega}-1 hydroxylation of saturated fatty acids. Thus, these structures provide insights into the ability of CYP2E1 to effectively bind and metabolize both small molecule substrates and fatty acids.

  15. Transition from somatic embryo to friable embryogenic callus in cassava: Dynamic changes in cellular structure, physiological status, and gene expression profiles

    Directory of Open Access Journals (Sweden)

    Qiuxiang eMa

    2015-10-01

    Full Text Available Friable embryogenic callus (FEC is considered as the most suitable material for efficient genetic transformation of cassava. Heavy genotype dependence of FEC induction and amenability to somaclonal variation limits the production and maintenance of reliable FEC. Identifying key elements involved in biological processes from somatic embryos (SEs to FEC at different stages provides critical insights for FEC improvement. Cytological observation showed a dramatic change of subcellular structures among SEs, fresh FEC (FFEC, and old FEC (OFEC. Decrease of sucrose and increase of fructose and glucose were detected in OFEC. A total of 6871 differentially expressed genes (DEGs were identified from SEs, FFEC, and OFEC by RNA-seq. Analysis of the DEGs showed that FEC induction was accompanied by the process of dedifferentiation, whereas the epigenetics modification occurred during the continuous subculturing process. The cell structure was reconstructed, mainly including the GO terms of cell periphery and external encapsulating structure; in parallel, the internal mechanisms changed correspondingly, including the biological process of glycolysis and metabolisms of alanine, aspartate, and glutamate. The significant reduction of genomic DNA methylation in OFEC indicated altered gene expression via chromatin modification. These results indicate that the induction and long-term subculture of FEC is a complicated biological process involving changes of genome modification, gene expression, and subcellular reconstruction. The findings will be useful for improving FEC induction and maintenance from farmer-preferred cassava cultivars recalcitrant to genetic transformation, hence improving cassava through genetic engineering.

  16. Structure-activity relationships of oligoguanidines-influence of counterion, diamine, and average molecular weight on biocidal activities.

    Science.gov (United States)

    Albert, Martin; Feiertag, Petra; Hayn, Gertraud; Saf, Robert; Hönig, Helmut

    2003-01-01

    A series of different oligomeric guanidines was prepared by polycondensation of guanidinium salts and four different diamines under varying conditions. The antimicrobial activities were evaluated against two to four microorganisms. MALDI-TOF-MS was used to analyze the different oligomers. It was found that in each case three major product type series are dominating. These series are linear and terminated with one guanidine and one amino group (type A), two amino groups (type B), or two guanidine groups (type C), respectively. By using 1,2-bis(2-aminoethoxy)ethane as the amino component, a considerable amount of two additional product series, consisting of cyclic structures, was detected (type D and E). It turned out that an average molecular mass of about 800 Da is necessary for an efficient antimicrobial activity. Lower Mw's result in a rapid decrease of activity. By using guanidinium carbonate as the starting material, oligomers with low biocidal activity were obtained, which was caused by incorporation of urea groups during the polycondensation. The diamine determines the distance between two guanidinium groups. It was shown that both 1,2-bis(2-aminoethoxy)ethane and hexamethylenediamine give oligomers with high biocidal activity. By increasing the chain length of the diamine, the biocidal activity drops again.

  17. The effect of low calorie structured lipid palm mid fraction, virgin coconut oil and canola oil blend on rats body weight and plasma profile

    Science.gov (United States)

    Bakar, Aftar Mizan Abu; Ayob, Mohd Khan; Maskat, Mohamad Yusof

    2016-11-01

    This study was carried out to evaluate the effect of low calorie cocoa butter substitutes, the structured lipids (SLs) on rats' body weight and plasma lipid levels. The SLs were developed from a ternary blending of palm mid fraction (PMF), virgin coconut oil (VCO) and canola oil (CO). The optimized blends were then underwent enzymatic acidolysisusing sn-1,3-specific lipase. This process produced A12, a SL which hasa solid fat content almost comparable to cocoa butter but has low calories. Therefore, it has a high potential to be used for cocoa butter substitute with great nutritional values. Fourty two Sprague Dawley rats were divided into 6 groups and were force feed for a period of 2 months (56 days) and the group were Control 1(rodent chow), Control 2(cocoa butter), Control 3(PMF:VCO:CO 90:5:5 - S3 blend), High doseSL (A12:C8+S3), Medium dose SL (A12:C8+S3) and Low dose SL (A12:C8+S3). The body weight of each rat was recorded once daily. The plasma profile of treated and control rats, which comprised of total cholesterol, HDL cholesterol, LDL cholesterol and triglyceride was measured on day 0 (baseline) and day 56 (post-treatment). Low calorie structured lipid (SL) was synthesized through acidolysis reaction using sn 1-3-specific lipase of ThermomycesLanuginos (TLIM) among 25 samples with optimum parameter obtained from the RSM. Blood samples for plasma separation were collected using cardiac puncture and requiring anesthesia via tail vein(Anesthetics for rats: Ketamine/Xylazine) for day 0 and day 56. Results of the study showed that rats in group 1 and group 2 has gained weight by 1.66 g and 4.75 g respectively and showed significant difference (p0.05) between G3 on day 0 and 56 days for total cholesterol. Meanwhile, total plasma HDLcholesterol content of rats fed with C8:0 was significantly higher (p<0.05) than the baseline (day 0) and the total plasma LDL cholesterol levels of rats in G4, G5 and G6 were significantly lower (p<0.05) than the baseline (day 0

  18. Cellularity of certain quantum endomorphism algebras

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Lehrer, Gus; Zhang, Ruibin

    2015-01-01

    of the specialisation Δζ(d)⊗r at q↦ζ of ΔA˜(d)⊗r. As an application of these results, we prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above is equivalent to knowledge of the weight multiplicities of the tilting modules for Uζ(sl2). As an example, in the final section...

  19. The New Cellular Immunology

    Science.gov (United States)

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  20. Estimating 4D-CBCT from prior information and extremely limited angle projections using structural PCA and weighted free-form deformation for lung radiotherapy.

    Science.gov (United States)

    Harris, Wendy; Zhang, You; Yin, Fang-Fang; Ren, Lei

    2017-03-01

    To investigate the feasibility of using structural-based principal component analysis (PCA) motion-modeling and weighted free-form deformation to estimate on-board 4D-CBCT using prior information and extremely limited angle projections for potential 4D target verification of lung radiotherapy. A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In the previous method, each phase of the 4D-CBCT was generated by deforming a prior CT volume. The DFM was solved by a motion model extracted by a global PCA and free-form deformation (GMM-FD) technique, using a data fidelity constraint and deformation energy minimization. In this study, a new structural PCA method was developed to build a structural motion model (SMM) by accounting for potential relative motion pattern changes between different anatomical structures from simulation to treatment. The motion model extracted from planning 4DCT was divided into two structures: tumor and body excluding tumor, and the parameters of both structures were optimized together. Weighted free-form deformation (WFD) was employed afterwards to introduce flexibility in adjusting the weightings of different structures in the data fidelity constraint based on clinical interests. XCAT (computerized patient model) simulation with a 30 mm diameter lesion was simulated with various anatomical and respiratory changes from planning 4D-CT to on-board volume to evaluate the method. The estimation accuracy was evaluated by the volume percent difference (VPD)/center-of-mass-shift (COMS) between lesions in the estimated and "ground-truth" on-board 4D-CBCT. Different on-board projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy. The method was also evaluated against three lung patients. The SMM-WFD method achieved substantially better accuracy than the GMM-FD method for CBCT estimation using extremely

  1. The Eating Disorder Inventory-2 Perfectionism scale: factor structure and associations with dietary restraint and weight and shape concern in eating disorders.

    Science.gov (United States)

    Lampard, Amy M; Byrne, Susan M; McLean, Neil; Fursland, Anthea

    2012-01-01

    The Eating Disorder Inventory-2 Perfectionism subscale (EDI-P) was originally construed as a unidimensional measure of perfectionism. However, research in non-clinical samples suggests that the EDI-P measures two dimensions of perfectionism: self-oriented and socially prescribed perfectionism. This study aimed to investigate the factor structure of the EDI-P in a transdiagnostic sample of females seeking treatment for an eating disorder, and to determine the unique association between EDI-P dimensions, weight and shape concern, and dietary restraint in anorexia nervosa (AN), bulimia nervosa (BN), and eating disorder not otherwise specified. Two hundred and ninety nine females seeking treatment for an eating disorder at an outpatient eating disorder service completed the Eating Disorder Examination and the EDI-P. Confirmatory factor analysis supported a two-factor model of the EDI-P comprising self-oriented and socially prescribed perfectionism. Self-oriented perfectionism, but not socially prescribed perfectionism, accounted for unique variance in weight and shape concern and dietary restraint in both AN and BN. Results highlight the potential importance of self-oriented perfectionism in eating disorders and support the argument that self-imposed standards are central to perfectionism in eating disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Link prediction in weighted networks

    DEFF Research Database (Denmark)

    Wind, David Kofoed; Mørup, Morten

    2012-01-01

    Many complex networks feature relations with weight information. Some models utilize this information while other ignore the weight information when inferring the structure. In this paper we investigate if edge-weights when modeling real networks, carry important information about the network...

  3. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae.

    Science.gov (United States)

    Bengtson, Stefan; Sallstedt, Therese; Belivanova, Veneta; Whitehouse, Martin

    2017-03-01

    The ~1.6 Ga Tirohan Dolomite of the Lower Vindhyan in central India contains phosphatized stromatolitic microbialites. We report from there uniquely well-preserved fossils interpreted as probable crown-group rhodophytes (red algae). The filamentous form Rafatazmia chitrakootensis n. gen, n. sp. has uniserial rows of large cells and grows through diffusely distributed septation. Each cell has a centrally suspended, conspicuous rhomboidal disk interpreted as a pyrenoid. The septa between the cells have central structures that may represent pit connections and pit plugs. Another filamentous form, Denaricion mendax n. gen., n. sp., has coin-like cells reminiscent of those in large sulfur-oxidizing bacteria but much more recalcitrant than the liquid-vacuole-filled cells of the latter. There are also resemblances with oscillatoriacean cyanobacteria, although cell volumes in the latter are much smaller. The wider affinities of Denaricion are uncertain. Ramathallus lobatus n. gen., n. sp. is a lobate sessile alga with pseudoparenchymatous thallus, "cell fountains," and apical growth, suggesting florideophycean affinity. If these inferences are correct, Rafatazmia and Ramathallus represent crown-group multicellular rhodophytes, antedating the oldest previously accepted red alga in the fossil record by about 400 million years.

  4. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae

    Science.gov (United States)

    Bengtson, Stefan; Sallstedt, Therese; Belivanova, Veneta; Whitehouse, Martin

    2017-01-01

    The ~1.6 Ga Tirohan Dolomite of the Lower Vindhyan in central India contains phosphatized stromatolitic microbialites. We report from there uniquely well-preserved fossils interpreted as probable crown-group rhodophytes (red algae). The filamentous form Rafatazmia chitrakootensis n. gen, n. sp. has uniserial rows of large cells and grows through diffusely distributed septation. Each cell has a centrally suspended, conspicuous rhomboidal disk interpreted as a pyrenoid. The septa between the cells have central structures that may represent pit connections and pit plugs. Another filamentous form, Denaricion mendax n. gen., n. sp., has coin-like cells reminiscent of those in large sulfur-oxidizing bacteria but much more recalcitrant than the liquid-vacuole-filled cells of the latter. There are also resemblances with oscillatoriacean cyanobacteria, although cell volumes in the latter are much smaller. The wider affinities of Denaricion are uncertain. Ramathallus lobatus n. gen., n. sp. is a lobate sessile alga with pseudoparenchymatous thallus, “cell fountains,” and apical growth, suggesting florideophycean affinity. If these inferences are correct, Rafatazmia and Ramathallus represent crown-group multicellular rhodophytes, antedating the oldest previously accepted red alga in the fossil record by about 400 million years. PMID:28291791

  5. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  6. Probabilistic cellular automata.

    Science.gov (United States)

    Agapie, Alexandru; Andreica, Anca; Giuclea, Marius

    2014-09-01

    Cellular automata are binary lattices used for modeling complex dynamical systems. The automaton evolves iteratively from one configuration to another, using some local transition rule based on the number of ones in the neighborhood of each cell. With respect to the number of cells allowed to change per iteration, we speak of either synchronous or asynchronous automata. If randomness is involved to some degree in the transition rule, we speak of probabilistic automata, otherwise they are called deterministic. With either type of cellular automaton we are dealing with, the main theoretical challenge stays the same: starting from an arbitrary initial configuration, predict (with highest accuracy) the end configuration. If the automaton is deterministic, the outcome simplifies to one of two configurations, all zeros or all ones. If the automaton is probabilistic, the whole process is modeled by a finite homogeneous Markov chain, and the outcome is the corresponding stationary distribution. Based on our previous results for the asynchronous case-connecting the probability of a configuration in the stationary distribution to its number of zero-one borders-the article offers both numerical and theoretical insight into the long-term behavior of synchronous cellular automata.

  7. Predictability in cellular automata.

    Science.gov (United States)

    Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius

    2014-01-01

    Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case.

  8. Cellular automata and follicle recognition problem and possibilities of using cellular automata for image recognition purposes.

    Science.gov (United States)

    Viher, B; Dobnikar, A; Zazula, D

    1998-04-01

    Cellular automata are discrete dynamical systems whose behaviour is completely specified in terms of a local relation. Guided by a suitable recipe, they can simulate a whole hierarchy of structures and phenomena. While investigating the problem of follicle recognition in ultrasonic images of women's ovaries, we became increasingly interested in using cellular automata for this purpose. We were very successful, which encouraged us to further investigate the use of cellular automata for image recognition purposes in general. This paper presents the results of our research in this area, along with the details of how we solved the follicle recognition problem.

  9. Linear signal hyperintensity adjacent to the subchondral bone plate at the knee on T2-weighted fat-saturated sequences: imaging aspects and association with structural lesions

    Energy Technology Data Exchange (ETDEWEB)

    Gondim Teixeira, Pedro Augusto; Balaj, Clemence [CHU Hopital Central, Service D' Imagerie Guilloz, Nancy (France); Universite de Lorraine, IADI, UMR S 947, Nancy (France); Marie, Beatrice [CHU Hopital Central, Service d' Anatomo-Pathologie, Nancy (France); Lecocq, Sophie; Louis, Matthias; Blum, Alain [CHU Hopital Central, Service D' Imagerie Guilloz, Nancy (France); Braun, Marc [CHU Hopital Central, Service de Neuroradiologie, Nancy (France)

    2014-11-15

    To describe the association between linear T2 signal abnormalities in the subchondral bone and structural knee lesions. MR studies of patients referred for the evaluation of knee pain were retrospectively evaluated and 133 of these patients presented bone marrow edema pattern (BMEP) (study group) and while 61 did not (control group). The presence of linear anomalies of the subchondral bone on T2-weighted fat-saturated sequences was evaluated. The findings were correlated to the presence of structural knee lesions and to the duration of the patient's symptoms. Histologic analysis of a cadaveric specimen was used for anatomic correlation. Linear T2 hyperintensities at the subchondral bone were present in 41 % of patients with BMEP. None of the patients in the control group presented this sign. When a subchondral linear hyperintensity was present, the prevalence of radial or root tears was high and that of horizontal tears was low (71.4 and 4.8 %, respectively). Sixty-nine percent of the patients with a subchondral insufficiency fracture presented a subchondral linear hyperintensity. It was significantly more prevalent in patients with acute or sub-acute symptoms (p < 0.0001). The studied linear T2 hyperintensity is located at the subchondral spongiosa and can be secondary to local or distant joint injuries. Its presence should evoke acute and sub-acute knee injuries. This sign is closely related to subchondral insufficiency fractures and meniscal tears with a compromise in meniscal function. (orig.)

  10. Structure to utilize interventionists' implementation experiences of a family-based behavioral weight management program to enhance the dissemination of the standardized intervention: The TODAY study.

    Science.gov (United States)

    Chadwick, Jennifer Q; Van Buren, Dorothy J; Morales, Elisa; Timpson, Alexandra; Abrams, Ericka L; Syme, Amy; Preske, Jeff; Mireles, Gerardo; Anderson, Barbara; Grover, Nisha; Laffel, Lori

    2017-08-01

    Background For a 2- to 6-year period, interventionists for the TODAY (Treatment Options for type 2 Diabetes in Adolescents and Youth) randomized clinical trial delivered a family-based, behavioral weight-loss program (the TODAY Lifestyle Program) to 234 youth with type 2 diabetes. Interventionists held at least a bachelor's degree in psychology, social work, education, or health-related field and had experience working with children and families, especially from diverse ethnic and socioeconomic backgrounds. This article describes the administrative and organizational structure of the lifestyle program and how the structure facilitated collaboration among study leadership and lifestyle interventionists on the tailoring of the program to best suit the needs of the trial's diverse patient population. Methods During the pilot phase and throughout the duration of the trial, the interventionists' experiences in delivering the intervention were collected in a variety of ways including membership on study committees, survey responses, session audio recordings, and feedback during in-person trainings. Results The experiences of interventionists conveyed to study leadership through these channels resulted in decisions to tailor the lifestyle intervention's delivery location and ways to supplement the standardized educational materials to better address the needs of a diverse patient population. Conclusion The methods used within the TODAY study to encourage and utilize interventionists' experiences while implementing the lifestyle program may be useful to the design of future multi-site, clinical trials seeking to tailor behavioral interventions in a standardized, and culturally and developmentally sensitive manner.

  11. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  12. Weighted approximation with varying weight

    CERN Document Server

    Totik, Vilmos

    1994-01-01

    A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.

  13. Cosserat modeling of cellular solids

    NARCIS (Netherlands)

    Onck, P.R.

    2002-01-01

    Cellular solids inherit their macroscopic mechanical properties directly from the cellular microstructure. However, the characteristic material length scale is often not small compared to macroscopic dimensions, which limits the applicability of classical continuum-type constitutive models. Cosserat

  14. Cellular communication through light.

    Directory of Open Access Journals (Sweden)

    Daniel Fels

    Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  15. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  16. Review of cellular mechanotransduction

    Science.gov (United States)

    Wang, Ning

    2017-06-01

    Living cells and tissues experience physical forces and chemical stimuli in the human body. The process of converting mechanical forces into biochemical activities and gene expression is mechanochemical transduction or mechanotransduction. Significant advances have been made in understanding mechanotransduction at the cellular and molecular levels over the last two decades. However, major challenges remain in elucidating how a living cell integrates signals from mechanotransduction with chemical signals to regulate gene expression and to generate coherent biological responses in living tissues in physiological conditions and diseases.

  17. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation.......Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...

  18. Thermomechanical characterisation of cellular rubber

    Science.gov (United States)

    Seibert, H.; Scheffer, T.; Diebels, S.

    2016-09-01

    This contribution discusses an experimental possibility to characterise a cellular rubber in terms of the influence of multiaxiality, rate dependency under environmental temperature and its behaviour under hydrostatic pressure. In this context, a mixed open and closed cell rubber based on an ethylene propylene diene monomer is investigated exemplarily. The present article intends to give a general idea of the characterisation method and the considerable effects of this special type of material. The main focus lies on the experimental procedure and the used testing devices in combination with the analysis methods such as true three-dimensional digital image correlation. The structural compressibility is taken into account by an approach for a material model using the Theory of Porous Media with additional temperature dependence.

  19. Novel Materials for Cellular Nanosensors

    DEFF Research Database (Denmark)

    Sasso, Luigi

    without or with poor surface conductivity, providing a patternable conducting polymer deposition technique integrated with standard microfabrication techniques. Electropolymerization of pyrrole on planar interdigitated electrodes resulted in the creation of doped conducting polymer films. Different....... An in vivo investigation also gave evidence of how the peptide nanowires can be used as surface modification in implantable electrodes for neurological measurements. Conducting polymers were utilized in electrode modifications for electrochemical sensor surfaces. Both chemical and electrochemical deposition...... methods were used to optimize the polymer film with respect to sensitivity towards cellular analytes, each method chosen accordingly to specific electrode geometry and shape. Chemical polymerization of pyrrole was used to achieve conductive polymer film coatings for out-of-plane electrode structures...

  20. An ultrasonic investigation of the effect of voids on the mechanical properties of bread dough and the role of gas cells in determining the cellular structure of freeze- dried breadcrumb

    Science.gov (United States)

    Elmehdi, Hussein Mohamed

    This thesis is an analysis of voids in the breadmaking process, more specifically the effect of gas cells entrapped in the dough during mixing, their expansion during fermentation, and their relationship to the breadcrumb structure in the final product. This is important to food scientists because the voids ultimately influence the structural integrity of bread and hence its quality. Understanding how voids affect the viscoelastic properties of dough is also a challenging problem in soft condensed matter physics. Longitudinal ultrasonic velocity and attenuation measurements, performed at 54 kHz, investigated changes in the mechanical properties of dough and bread as void concentration was varied. In the first part of the thesis, the effect of voids on the properties of unyeasted dough at the end of mixing was investigated. As φ is increased, the attenuation coefficient increased linearly with φ hence the change in attenuation is proportional to the number of voids, allowing the combined effects of scattering and absorption by single voids to be directly determined. By contrast, the ultrasonic velocity decreased dramatically with increasing φ in the range 0.0 12 freeze-dried breadcrumb structure was investigated. To change the size of the air cells, the dough was proofed for various times. Ultrasonic velocity and amplitude decrease with increasing φ. The experimental data were found to be in reasonable agreement with theoretical models for the elasticity of isotropic cellular foams and tortuosity. The effects of anisotropy in breadcrumb structure were studied by compressing samples uniaxially, thereby transforming the shape of the air cells from approximately spherical to elongated ellipsoids. Ultrasonic measurements were taken in the directions parallel and perpendicular to the strain. These results indicated that the path by which sound propagates is critical. The data were interpreted using the same two theoretical models, taking into account anisotropy

  1. Cell biology of the future: Nanometer-scale cellular cartography.

    Science.gov (United States)

    Taraska, Justin W

    2015-10-26

    Understanding cellular structure is key to understanding cellular regulation. New developments in super-resolution fluorescence imaging, electron microscopy, and quantitative image analysis methods are now providing some of the first three-dimensional dynamic maps of biomolecules at the nanometer scale. These new maps--comprehensive nanometer-scale cellular cartographies--will reveal how the molecular organization of cells influences their diverse and changeable activities. Copyright © 2015 Taraska.

  2. Weighted Hypernetworks

    CERN Document Server

    Zhu, Xin-Yun

    2014-01-01

    Complex network theory has been used to study complex systems. However, many real life systems involve multiple kinds of objects . They can't be described by simple graphs. In order to provide complete information of these systems, we extend the concept of evolving models of complex networks to hypernetworks. In this work, we firstly propose a non-uniform hypernetwork model with attractiveness, and obtain the stationary average hyperdegree distribution of the non-uniform hypernetwork. Furthermore, we develop a model for weighted hypernetworks that couples the establishment of new hyperedges and nodes and the weights' dynamical evolution. We obtain the stationary average hyperdegree distribution by using the hyperdegree distribution of the hypernetwork model with attractiveness. In particular, the model yields a nontrivial time evolution of nodes' properties and scale-free behavior for the hyperdegree distribution. It is expected that our work may give help to the study of the hypernetworks in real-world syste...

  3. Multi-Stable Morphing Cellular Structures

    Science.gov (United States)

    2015-05-14

    pinned at their endpoints. Gjeslvik and Bodner (1962), Fung and Kaplan (1952), and Cheung and Babock (1970) all conducted knife -edge loading...behavior closely matched the target behavior. During this process, only commercial off-the-shelf springs were considered. Linear miniature slide bearings

  4. Structural Characterization and Antioxidative Activity of Low-Molecular-Weights Beta-1,3-Glucan from the Residue of Extracted Ganoderma lucidum Fruiting Bodies

    Directory of Open Access Journals (Sweden)

    Pai-Feng Kao

    2012-01-01

    Full Text Available The major cell wall constituent of Ganoderma lucidum (G. lucidum is β-1,3-glucan. This study examined the polysaccharide from the residues of alkaline-extracted fruiting bodies using high-performance anion-exchange chromatography (HPAEC, and it employed nuclear magnetic resonance (NMR and mass spectrometry (MS to confirm the structures. We have successfully isolated low-molecular-weight β-1,3-glucan (LMG, in high yields, from the waste residue of extracted fruiting bodies of G. lucidum. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay evaluated the capability of LMG to suppress H2O2-induced cell death in RAW264.7 cells, identifying that LMG protected cells from H2O2-induced damage. LMG treatment decreased H2O2-induced intracellular reactive oxygen species (ROS production. LMG also influenced sphingomyelinase (SMase activity, stimulated by cell death to induce ceramide formation, and then increase cell ROS production. Estimation of the activities of neutral and acid SMases in vitro showed that LMG suppressed the activities of both neutral and acid SMases in a concentration-dependent manner. These results suggest that LMG, a water-soluble β-1,3-glucan recycled from extracted residue of G. lucidum, possesses antioxidant capability against H2O2-induced cell death by attenuating intracellular ROS and inhibiting SMase activity.

  5. Cyclic cellular automata in 3D

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Clifford A., E-mail: reiterc@lafayette.edu [Department of Mathematics, Lafayette College, Easton, PA 18042 (United States)

    2011-09-15

    Highlights: > We explore the self-organization of cyclic cellular automata in 3D. > Von Neumann, Moore and two types of intermediate neighborhoods are investigated. > Random neighborhoods self organize through phases into complex nested structures. > Demons are seen to have many alternatives in 3D. - Abstract: Cyclic cellular automata in two dimensions have long been intriguing because they self organize into spirals and that behavior can be analyzed. The form for the patterns that develop is highly dependent upon the form of the neighborhood. We extend this work to three dimensional cyclic cellular automata and observe self organization dependent upon the neighborhood type. This includes neighborhood types intermediate between Von Neumann and Moore neighborhoods. We also observe that the patterns include nested shells with the appropriate forms but that the nesting is far more complex than the spirals that occur in two dimensions.

  6. Proteomic analysis of hearts from frataxin knockout mice: marked rearrangement of energy metabolism, a response to cellular stress and altered expression of proteins involved in cell structure, motility and metabolism.

    Science.gov (United States)

    Sutak, Robert; Xu, Xiangcong; Whitnall, Megan; Kashem, Mohammed Abul; Vyoral, Daniel; Richardson, Des R

    2008-04-01

    A frequent cause of death in Friedreich's ataxia patients is cardiomyopathy, but the molecular alterations underlying this condition are unknown. We performed 2-DE to characterize the changes in protein expression of hearts using the muscle creatine kinase frataxin conditional knockout (KO) mouse. Pronounced changes in protein expression profile were observed in 9 week-old KO mice with severe cardiomyopathy. In contrast, only several proteins showed altered expression in asymptomatic 4 week-old KO mice. In hearts from frataxin KO mice, components of the iron-dependent complex-I and -II of the mitochondrial electron transport chain and enzymes involved in ATP homeostasis (creatine kinase, adenylate kinase) displayed decreased expression. Interestingly, the KO hearts exhibited increased expression of enzymes involved in the citric acid cycle, catabolism of branched-chain amino acids, ketone body utilization and pyruvate decarboxylation. This constitutes evidence of metabolic compensation due to decreased expression of electron transport proteins. There was also pronounced up-regulation of proteins involved in stress protection, such as a variety of chaperones, as well as altered expression of proteins involved in cellular structure, motility and general metabolism. This is the first report of the molecular changes at the protein level which could be involved in the cardiomyopathy of the frataxin KO mouse.

  7. A general approach to prepare conjugated polymer dot embedded silica nanoparticles with a SiO2@CP@SiO2 structure for targeted HER2-positive cellular imaging.

    Science.gov (United States)

    Geng, Junlong; Liu, Jie; Liang, Jing; Shi, Haibin; Liu, Bin

    2013-09-21

    We report on a one-step synthesis of conjugated polymer (CP) embedded silica nanoparticles (NPs) with a SiO2@CP@SiO2 structure by combination of a precipitation method and a modified Stöber approach. Four types of CPs are employed to demonstrate the versatility of the developed strategy, yielding fluorescent silica NPs with emission across the visible spectrum. Field emission transmission electron microscopy investigation reveals that the entanglement between hydrophobic CPs and the aminopropyl groups of 3-aminopropyl triethoxysilane contributes to the successful encapsulation of CPs into a silica matrix. The synthesized NPs exhibit excellent physical stability and good photostability. In addition, they have amine groups on surfaces, which benefit further conjugation for biological applications. Through reaction with a peptide (GGHAHFG) that is specific to the HER2 receptor, the synthesized NPs have been successfully applied for targeted cellular imaging of HER2-overexpressed SKBR-3 breast cancer cells. Along with its high quantum yield and benign biocompatibility, the developed CP embedded silica NPs have great potential for applications in biological imaging.

  8. Integrated cellular systems

    Science.gov (United States)

    Harper, Jason C.

    The generation of new three-dimensional (3D) matrices that enable integration of biomolecular components and whole cells into device architectures, without adversely altering their morphology or activity, continues to be an expanding and challenging field of research. This research is driven by the promise that encapsulated biomolecules and cells can significantly impact areas as diverse as biocatalysis, controlled delivery of therapeutics, environmental and industrial process monitoring, early warning of warfare agents, bioelectronics, photonics, smart prosthetics, advanced physiological sensors, portable medical diagnostic devices, and tissue/organ replacement. This work focuses on the development of a fundamental understanding of the biochemical and nanomaterial mechanisms that govern the cell directed assembly and integration process. It was shown that this integration process relies on the ability of cells to actively develop a pH gradient in response to evaporation induced osmotic stress, which catalyzes silica condensation within a thin 3D volume surrounding the cells, creating a functional bio/nano interface. The mechanism responsible for introducing functional foreign membrane-bound proteins via proteoliposome addition to the silica-lipid-cell matrix was also determined. Utilizing this new understanding, 3D cellular immobilization capabilities were extended using sol-gel matrices endowed with glycerol, trehalose, and media components. The effects of these additives, and the metabolic phase of encapsulated S. cerivisiase cells, on long-term viability and the rate of inducible gene expression was studied. This enabled the entrapment of cells within a novel microfluidic platform capable of simultaneous colorimetric, fluorescent, and electrochemical detection of a single analyte, significantly improving confidence in the biosensor output. As a complementary approach, multiphoton protein lithography was utilized to engineer 3D protein matrices in which to

  9. [Senescence and cellular immortality].

    Science.gov (United States)

    Trentesaux, C; Riou, J-F

    2010-11-01

    Senescence was originally described from the observation of the limited ability of normal cells to grow in culture, and may be generated by telomere erosion, accumulation of DNA damages, oxidative stress and modulation of oncogenes or tumor suppressor genes. Senescence corresponds to a cellular response aiming to control tumor progression by limiting cell proliferation and thus constitutes an anticancer barrier. Senescence is observed in pre-malignant tumor stages and disappears from malignant tumors. Agents used in standard chemotherapy also have the potential to induce senescence, which may partly explain their therapeutic activities. It is possible to restore senescence in tumors using targeted therapies that triggers telomere dysfunction or reactivates suppressor genes functions, which are essential for the onset of senescence.

  10. Cellular image classification

    CERN Document Server

    Xu, Xiang; Lin, Feng

    2017-01-01

    This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical...

  11. Développement d'une approche couplée Automates Cellulaires – Eléments Finis pour la modélisation du développement des structures de grains en soudage TIG A coupled Cellular Automaton – Finite Element approach for the modelling of grain structure development in TIG welding

    Directory of Open Access Journals (Sweden)

    Chen Shijia

    2013-11-01

    Full Text Available Dans le domaine du soudage, les propriétés finales du cordon sont fortement liées à la structure de grains développée au cours des procédés de fusion / resolidification. La maîtrise des propriétés de l'assemblage final passe ainsi par une amélioration de la connaissance de sa structure de ce domaine. Dans cet objectif, un modèle couplé Automates Cellulaires – Eléments Finis est proposé pour simuler le développement, en volume, de cette structure, dans le cadre du soudage TIG. Ce modèle est appliqué au soudage d'acier Duplex 2202 et l'évolution de la structure de grains selon les paramètres procédés est discutée. In the welding area, the final properties of the weld bead are mainly induced by the grain structure developed during the melting and solidification steps. The mastery of the properties of the joining will be achieved with a better knowledge of the developed grain structure. A 3D coupled Cellular Automaton – Finite Element model is proposed in order to simulate the grains development in TIG process. This model is applied to the welding of a duplex stainless steel grade. The grain structure evolution is discussed for the various process parameters.

  12. Phase separation and the formation of cellular bodies

    Science.gov (United States)

    Xu, Bin; Broedersz, Chase P.; Meir, Yigal; Wingreen, Ned S.

    Cellular bodies in eukaryotic cells spontaneously assemble to form cellular compartments. Among other functions, these bodies carry out essential biochemical reactions. Cellular bodies form micron-sized structures, which, unlike canonical cell organelles, are not surrounded by membranes. A recent in vitro experiment has shown that phase separation of polymers in solution can explain the formation of cellular bodies. We constructed a lattice-polymer model to capture the essential mechanism leading to this phase separation. We used both analytical and numerical tools to predict the phase diagram of a system of two interacting polymers, including the concentration of each polymer type in the condensed and dilute phase.

  13. Low-molecular-weight metabolite systems chemistry

    Directory of Open Access Journals (Sweden)

    Franz eHadacek

    2015-03-01

    Full Text Available Low-molecular-weight metabolites (LMWMs comprise primary or central and a plethora of intermediary or secondary metabolites, all of which are characterized by a molecular weight below 900 Dalton. The latter are especially prominent in sessile higher organisms, such as plants, corals, sponges and fungi, but are produced by all types of microbial organisms too. Common to all of these carbon molecules are oxygen, nitrogen and, to a lesser extent, sulfur, as heteroatoms. The latter can contribute as electron donators or acceptors to cellular redox chemistry and define the potential of the molecule to enter charge-transfer complexes. Furthermore, they allow LMWMs to serve as organic ligands in coordination complexes of various inorganic metals as central atoms. Especially the transition metals Fe, Cu and Mn can catalyze one electron reduction of molecular oxygen, which results in formation of free radical species and reactive follow-up reaction products. As antioxidants LMWMs can scavenge free radicals. Depending on the chemical environment, the same LMWMs can act as pro-oxidants by reducing molecular oxygen. The cellular regulation of redox homeostasis, a balance between oxidation and reduction, is still far from being understood. Charge-transfer and coordination complex formation with metals shapes LMWMs into gel-like matrices in the cytosol. The quasi-polymer structure is lost usually during the isolation procedure. In the gel state, LMWMs possess semiconductor properties. Also proteins and membranes are semiconductors. Together they can represent biotransistor components that can be part of a chemoelectrical signaling system that coordinates systems chemistry by initiating cell differentiation or tissue homeostasis, the activated and the resting cell state, when it is required. This concept is not new and dates back to Albert Szent-Györgyi.

  14. SU-F-BRD-14: Dose Weighted Linear Energy Transfer Analysis of Critical Structures in Proton Therapy of Pediatric Brain Tumor Patients

    Energy Technology Data Exchange (ETDEWEB)

    Pirlepesov, F.; Shin, J.; Moskvin, V. P.; Gray, J.; Hua, C.; Gajjar, A.; Krasin, M. J.; Merchant, T. E.; Farr, J. B. [St. Jude Children’s Research Hospital, Memphis, TN (United States); Li, Z. [University of Florida Proton Therapy Institute, Jacksonville, FL (United States)

    2015-06-15

    Purpose: Dose weighted Linear Energy Transfer (LETd) analysis of critical structures may be useful in understanding the side effects of the proton therapy. The objective is to analyze the differences between LETd and dose distributions in brain tumor patients receiving double scattering proton therapy, to quantify LETd variation in critical organs, and to identify beam arrangements contributing to high LETd in critical organs. Methods: Monte Carlo simulations of 9 pediatric brain tumor patients were performed. The treatment plans were reconstructed with the TOPAS Monte Carlo code to calculate LETd and dose. The beam data were reconstructed proximal to the aperture of the double scattering nozzle. The dose and LETd to target and critical organs including brain stem, optic chiasm, lens, optic nerve, pituitary gland, and hypothalamus were computed for each beam. Results: Greater variability in LETd compared to dose was observed in the brainstem for patients with a variety of tumor types including 5 patients with tumors located in the posterior fossa. Approximately 20%–44% brainstem volume received LETd of 5kev/µm or greater from beams within gantry angles 180°±30° for 5 patients treated with a 3 beam arrangement. Critical organs received higher LETd when located in the vicinity of the beam distal edge. Conclusion: This study presents a novel strategy in the evaluation of the proton treatment impact on critical organs. While the dose to critical organs is confined below the required limits, the LETd may have significant variation. Critical organs in the vicinity of beam distal edge receive higher LETd and depended on beam arrangement, e.g. in posterior fossa tumor treatment, brainstem receive higher LETd from posterior-anterior beams. This study shows importance of the LETd analysis of the radiation impact on the critical organs in proton therapy and may be used to explain clinical imaging observations after therapy.

  15. Cellular solid-state Nuclear Magnetic Resonance spectroscopy

    NARCIS (Netherlands)

    Renault, M.A.M.; Tommassen-van Boxtel, H.A.M.; Bos, M.P.; Post, J.A.; Tommassen, J.P.M.; Baldus, M.

    2012-01-01

    Decrypting the structure, function, and molecular interactions of complex molecular machines in their cellular context and at atomic resolution is of prime importance for understanding fundamental physiological processes. Nuclear magnetic resonance is a wellestablished imaging method that can

  16. Weight-loss medicines

    Science.gov (United States)

    Prescription weight loss drugs; Diabetes - weight loss drugs; Obesity - weight loss drugs; Overweight - weight loss drugs ... are not approved by the FDA to treat weight-loss. So you should not take them if you do not have diabetes.

  17. Characteristics of cellular composition of periodontal pockets

    OpenAIRE

    Hasiuk, Petro; Hasiuk, Nataliya; Kindiy, Dmytro; Ivanchyshyn, Victoriya; Kalashnikov, Dmytro; Zubchenko, Sergiy

    2016-01-01

    Purpose The development of inflammatory periodontal disease in young people is an urgent problem of today's periodontology, and requires a development of new methods that would give an opportunity not only to diagnose but also for prognosis of periodontitis course in a given patients contingent. Results Cellular structure of periodontal pockets is presented by hematogenous and epithelial cells. Our results are confirmed by previous studies, and show that the penetration of periodontal pathoge...

  18. Novel Immune Modulating Cellular Vaccine for Prostate Cancer Immunotherapy

    Science.gov (United States)

    2016-10-01

    cellular vaccine product. 15. SUBJECT TERMS dendritic cell vaccine, dendritic cells electroporated with RNA, immune checkpoint blockade, local CTLA-4...dendritic cell vaccine, dendritic cells electroporated with RNA, immune checkpoint blockade, local CTLA4 modulation, prostate cancer...7: Monitor tumor burden (time to palpable tumor) and monitor survival. Harvest prostate complex/tumor and analyze tumor weight , tumor grade

  19. Free fall and cellular automata

    Directory of Open Access Journals (Sweden)

    Pablo Arrighi

    2016-03-01

    Full Text Available Three reasonable hypotheses lead to the thesis that physical phenomena can be described and simulated with cellular automata. In this work, we attempt to describe the motion of a particle upon which a constant force is applied, with a cellular automaton, in Newtonian physics, in Special Relativity, and in General Relativity. The results are very different for these three theories.

  20. Cellular Basis of Mechanotransduction

    Science.gov (United States)

    Ingber, Donald E.

    1996-01-01

    Physical forces, such as those due to gravity are fundamental regulators of tissue development. To influence morphogenesis, mechanical forces must alter growth and function. Yet little is known about how cells convert mechanical signals into a chemical response. This presentation attempts to place the potential molecular mediators of mechanotransduction within the context of the structural complexity of living cells.

  1. Closed form unsupervised registration of multi-temporal structure from motion-multiview stereo data using non-linearly weighted image features

    Science.gov (United States)

    Seers, T. D.; Hodgetts, D.

    2013-12-01

    Seers, T. D. & Hodgetts, D. School of Earth, Atmospheric and Environmental Sciences, University of Manchester, UK. M13 9PL. The detection of topological change at the Earth's surface is of considerable scholarly interest, allowing the quantification of the rates of geomorphic processes whilst providing lucid insights into the underlying mechanisms driving landscape evolution. In this regard, the past decade has witnessed the ever increasing proliferation of studies employing multi-temporal topographic data in within the geosciences, bolstered by continuing technical advancements in the acquisition and processing of prerequisite datasets. Provided by workers within the field of Computer Vision, multiview stereo (MVS) dense surface reconstructions, primed by structure-from-motion (SfM) based camera pose estimation represents one such development. Providing a cost effective, operationally efficient data capture medium, the modest requirement of a consumer grade camera for data collection coupled with the minimal user intervention required during post-processing makes SfM-MVS an attractive alternative to terrestrial laser scanners for collecting multi-temporal topographic datasets. However, in similitude to terrestrial scanner derived data, the co-registration of spatially coincident or partially overlapping scans produced by SfM-MVS presents a major technical challenge, particularly in the case of semi non-rigid scenes produced during topographic change detection studies. Moreover, the arbitrary scaling resulting from SfM ambiguity requires that a scale matrix must be estimated during the transformation, introducing further complexity into its formulation. Here, we present a novel, fully unsupervised algorithm which utilises non-linearly weighted image features for the solving the similarity transform (scale, translation rotation) between partially overlapping scans produced by SfM-MVS image processing. With the only initialization condition being partial intersection

  2. Cellular automata analysis and applications

    CERN Document Server

    Hadeler, Karl-Peter

    2017-01-01

    This book focuses on a coherent representation of the main approaches to analyze the dynamics of cellular automata. Cellular automata are an inevitable tool in mathematical modeling. In contrast to classical modeling approaches as partial differential equations, cellular automata are straightforward to simulate but hard to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction of cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of different topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kůrka classification). These classifications suggest to cluster cel...

  3. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  4. MSAT and cellular hybrid networking

    Science.gov (United States)

    Baranowsky, Patrick W., II

    Westinghouse Electric Corporation is developing both the Communications Ground Segment and the Series 1000 Mobile Phone for American Mobile Satellite Corporation's (AMSC's) Mobile Satellite (MSAT) system. The success of the voice services portion of this system depends, to some extent, upon the interoperability of the cellular network and the satellite communication circuit switched communication channels. This paper will describe the set of user-selectable cellular interoperable modes (cellular first/satellite second, etc.) provided by the Mobile Phone and described how they are implemented with the ground segment. Topics including roaming registration and cellular-to-satellite 'seamless' call handoff will be discussed, along with the relevant Interim Standard IS-41 Revision B Cellular Radiotelecommunications Intersystem Operations and IOS-553 Mobile Station - Land Station Compatibility Specification.

  5. The weighted random graph model

    Science.gov (United States)

    Garlaschelli, Diego

    2009-07-01

    We introduce the weighted random graph (WRG) model, which represents the weighted counterpart of the Erdos-Renyi random graph and provides fundamental insights into more complicated weighted networks. We find analytically that the WRG is characterized by a geometric weight distribution, a binomial degree distribution and a negative binomial strength distribution. We also characterize exactly the percolation phase transitions associated with edge removal and with the appearance of weighted subgraphs of any order and intensity. We find that even this completely null model displays a percolation behaviour similar to what is observed in real weighted networks, implying that edge removal cannot be used to detect community structure empirically. By contrast, the analysis of clustering successfully reveals different patterns between the WRG and real networks.

  6. Overweight, Obesity, and Weight Loss

    Science.gov (United States)

    ... Back to section menu Healthy Weight Weight and obesity Underweight Weight, fertility, and pregnancy Weight loss and ... section Home Healthy Weight Healthy Weight Weight and obesity Underweight Weight, fertility, and pregnancy Weight loss and ...

  7. Solubilisation des hydrocarbures dans les solutions micellaires Influence de la structure et de la masse moléculaire Solubilization of Hydrocarbons in Micellar Solutions Influence of Structure and Molecular Weight

    Directory of Open Access Journals (Sweden)

    Baviere M.

    2006-11-01

    oil. Such research must result in the adapting of procedures, in searching for solutions and in setting limits to the process from this standpoint. This article describes the methodology and preliminary results leading to the comparing of the phase behavior of mixtures containing model hydrocarbons having different structures, normal alkanes and alkylbenzenes or stock-tank crudes. The methodology is based on the correlations worked out by Reed and Healy [1] between the, existence of low interfacial tensions and the obtaining of a phase diagram having a specific configuration said to be of the Winsor Type III [7]. In this configuration, the multiphase zone contains, in particular, a three-phase domain in which an intermediate micellar phase is in equilibrium with an aqueous phase and a hydrocarbon phase. When the affinity of the surfactant for the water and the hydrocarbon is the same, the micellar phase contains equal amounts of water and hydrocarbon. The system is then considered, by convention to be an optimal one. In mixtures of water, amphiphilic compounds (surfactant and alcohol and hydrocarbons having different molecular weights and structures, the solubilizing power is measured at the reference point obtained by adjusting the molecular weight of the surfactant. However, all optimal systems are not equivalent. Solubilization is all the greater and hence the lowering of the interfacial tension is all the more marked as the energies of cohesion between the surfactant and the water and hydrocarbon are strong. This approach is fruitful for interpreting performance variations when some parameters of the system are modified, such as the molecular weight and structure of the hydrocarbon or the salinity of the water. During this study, we show that the optimal molecular weight of the surfactant varies linearly with that of the pure hydrocarbon (alkane or alkylbenzene, at least within the range of molecular weights examined here. Solubilization also varies linearly. This

  8. Is the Counterweight Program a feasible and acceptable option for structured weight management delivered by practice nurses in Australia? A mixed-methods study.

    Science.gov (United States)

    Gray, Jodi; Hoon, Elizabeth A; Afzali, Hossein Haji Ali; Spooner, Catherine; Harris, Mark F; Karnon, Jonathan

    2017-05-11

    Nurse-led weight management programs, like the Counterweight Program in the United Kingdom, may offer a way for Australian general practices to provide weight management support to adults who are overweight or obese. During Counterweight, nurses provide patients with six fortnightly education sessions and three follow-up sessions to support weight maintenance. This study examined the feasibility, acceptability and perceived value of the Counterweight Program in the Australian primary care setting using a mixed-methods approach. Six practice nurses, from three general practices, were trained and subsidised to deliver the program. Of the 65 patients enrolled, 75% (n=49) completed the six education sessions. General practitioners and practice nurses reported that the training and resource materials were useful, the program fitted into general practices with minimal disruption and the additional workload was manageable. Patients reported that the program created a sense of accountability and provided a safe space to learn about weight management. Overall, Counterweight was perceived as feasible, acceptable and valuable by Australian practice staff and patients. The key challenge for future implementation will be identifying adequate and sustainable funding. An application to publically fund Counterweight under the Medicare Benefits Schedule would require stronger evidence of effectiveness and cost-effectiveness in Australia.

  9. The effect of combined colloidal nano silver-hydrothermal treatment on weight changes and chemical structure of beech wood (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    مریم قربانی

    2015-05-01

    Full Text Available Synthesis of colloidal silver nano-particles, as well as the effect of combined colloidal nano-silver and hydrothermal modification, on weight and chemical changes of wood particles through spectroscopic FTIR were investigated. Treatment levels were divided in 4 groups namely, control, nano- impregnated, hydrothermal and nano-hydrothermal. Hydrothermal and nano-hydrothermal treatments were separated in two temperatures (150 and 170 °C and two times (30 and 45 min with total of 10 treatment levels. Colloidal Nano silver with 100 ppm concentration was prepared. The scanning electron microscope images proved the presence, size and appropriate distribution of colloidal nanoparticles silver in wood particles clearly. With regard to the results, increasing time and temperature hydrothermal treatment had significant effect on weight changes. Also, colloidal nano silver intensified weight loss, that maximum weight loss was measured at 170°C. The FTIR spectra indicated that increase in the temperature and time of hydrothermal treatment, declined absorbance intensities in wave numbers of 3422.25, 2922.38, 1740.55, 1330.50, 1243.39 and 1053.05cm-1 due to breakdown of acetyl groups in hemicelluloses and decrease in hydrophilic sites. These reduction in nano hydrothermal treatment were more obvious than those for hydrothermal.

  10. Route to instability in cellular detonations

    Science.gov (United States)

    Radulescu, Matei I.; Sharpe, Gary J.; Quirk, James J.

    2007-11-01

    Through highly resolved direct numerical simulations of detonation cellular structures performed on large domains, we show that with increasing sensitivity of the reaction rates, the cellular front transits from a regular pattern to a highly irregular one, characterized by transverse wave merging and formation of new triple points on the front. We formulate a new method to study the distribution of the spacings between triple points of the same family and correlate their distribution with the sensitivity of the reaction rates. It is found that past a critical value of activation energy, a period doubling bifurcation occurs, with the preferred cell size having twice its original value. Simultaneously, higher frequency oscillations appear through a period halving bifurcation, hence significantly broadening the range of characteristic cell sizes of the front. The non-linear mechanisms responsible for the generation of these higher modes is discussed.

  11. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  12. Systems biology of cellular rhythms.

    Science.gov (United States)

    Goldbeter, A; Gérard, C; Gonze, D; Leloup, J-C; Dupont, G

    2012-08-31

    Rhythms abound in biological systems, particularly at the cellular level where they originate from the feedback loops present in regulatory networks. Cellular rhythms can be investigated both by experimental and modeling approaches, and thus represent a prototypic field of research for systems biology. They have also become a major topic in synthetic biology. We review advances in the study of cellular rhythms of biochemical rather than electrical origin by considering a variety of oscillatory processes such as Ca++ oscillations, circadian rhythms, the segmentation clock, oscillations in p53 and NF-κB, synthetic oscillators, and the oscillatory dynamics of cyclin-dependent kinases driving the cell cycle. Finally we discuss the coupling between cellular rhythms and their robustness with respect to molecular noise.

  13. A Course in Cellular Bioengineering.

    Science.gov (United States)

    Lauffenburger, Douglas A.

    1989-01-01

    Gives an overview of a course in chemical engineering entitled "Cellular Bioengineering," dealing with how chemical engineering principles can be applied to molecular cell biology. Topics used are listed and some key references are discussed. Listed are 85 references. (YP)

  14. When are cellular automata random?

    Science.gov (United States)

    Coe, J. B.; Ahnert, S. E.; Fink, T. M. A.

    2008-12-01

    A random cellular automaton is one in which a cell's behaviour is independent of its previous states. We derive analytical conditions which must be satisfied by random cellular automata and find deterministic and probabilistic cellular automata that satisfy these conditions. Many random cellular automata are seen to have a flow as they are updated through time. We define a correlation current that describes this flow and develop an analytical expression for its size. We compare results from this analytical expression with those from simulation. The randomness in a cell comes from randomness in adjacent cells or from the stochastic nature of update rules. We give an expression for how much randomness comes from each of these two sources.

  15. Procefual Non Uniform Cellular Noise

    OpenAIRE

    Jonchier, Théo; Salvati, Marc; Derouet-Jourdan, Alexandre

    2016-01-01

    Procedural cellular textures have been widely used in movie production to reproduce various natural and organic looks. The advantage of procedural texture is to trade memory for computer power and obtain potentially unlimited resolution. In this paper, we propose to compute non-uniform density cellular noise by using a procedural quad-tree. We will explain how to efficiently traverse the tree recursively (CPU) and iteratively (CPU and GPU).

  16. Molecular and Cellular Aspects of Rhabdovirus Entry

    Directory of Open Access Journals (Sweden)

    Yves Gaudin

    2012-01-01

    Full Text Available Rhabdoviruses enter the cell via the endocytic pathway and subsequently fuse with a cellular membrane within the acidic environment of the endosome. Both receptor recognition and membrane fusion are mediated by a single transmembrane viral glycoprotein (G. Fusion is triggered via a low-pH induced structural rearrangement. G is an atypical fusion protein as there is a pH-dependent equilibrium between its pre- and post-fusion conformations. The elucidation of the atomic structures of these two conformations for the vesicular stomatitis virus (VSV G has revealed that it is different from the previously characterized class I and class II fusion proteins. In this review, the pre- and post-fusion VSV G structures are presented in detail demonstrating that G combines the features of the class I and class II fusion proteins. In addition to these similarities, these G structures also reveal some particularities that expand our understanding of the working of fusion machineries. Combined with data from recent studies that revealed the cellular aspects of the initial stages of rhabdovirus infection, all these data give an integrated view of the entry pathway of rhabdoviruses into their host cell.

  17. Structure-to-Property Relationships in Addition Cured Polymers. 4. Correlations between Thermo-Oxidative Weight Losses of Norbornenyl Cured Polyimide Resins and Their Composites

    Science.gov (United States)

    1992-04-01

    composite and the 42.3 g. 4,4’-DABP composite. To simplify Figure 4, seven weight loss curves were not shown as follows: (1) a FMW = 1500 DAFO and a...and Polymers. 7 DIAMINES H2 N-(-& NH2 PPDA H 2N)g lNH 2 where X -CH 2 & Y-NIL (DAF), X-S02 & Y - NO BOND (3,3’-DDS), X - C-0 & YNIL ( DAFO ), X - C-O

  18. The effect of combined colloidal nano silver-hydrothermal treatment on weight changes and chemical structure of beech wood (Fagus orientalis)

    OpenAIRE

    مریم قربانی; rahim aghayi; poriya biparva

    2015-01-01

    Synthesis of colloidal silver nano-particles, as well as the effect of combined colloidal nano-silver and hydrothermal modification, on weight and chemical changes of wood particles through spectroscopic FTIR were investigated. Treatment levels were divided in 4 groups namely, control, nano- impregnated, hydrothermal and nano-hydrothermal. Hydrothermal and nano-hydrothermal treatments were separated in two temperatures (150 and 170 °C) and two times (30 and 45 min) with total of 10 treatment ...

  19. Nonparametric weighted stochastic block models

    Science.gov (United States)

    Peixoto, Tiago P.

    2018-01-01

    We present a Bayesian formulation of weighted stochastic block models that can be used to infer the large-scale modular structure of weighted networks, including their hierarchical organization. Our method is nonparametric, and thus does not require the prior knowledge of the number of groups or other dimensions of the model, which are instead inferred from data. We give a comprehensive treatment of different kinds of edge weights (i.e., continuous or discrete, signed or unsigned, bounded or unbounded), as well as arbitrary weight transformations, and describe an unsupervised model selection approach to choose the best network description. We illustrate the application of our method to a variety of empirical weighted networks, such as global migrations, voting patterns in congress, and neural connections in the human brain.

  20. Lightweight 3D cellular composites inspired by balsa.

    Science.gov (United States)

    Malek, Sardar; Raney, Jordan R; Lewis, Jennifer A; Gibson, Lorna J

    2017-03-17

    Additive manufacturing technologies offer new ways to fabricate cellular materials with composite cell walls, mimicking the structure and mechanical properties of woods. However, materials limitations and a lack of design tools have confined the usefulness of 3D printed cellular materials. We develop new carbon fiber reinforced, epoxy inks for 3D printing which result in printed materials with longitudinal Young's modulus up to 57 GPa (exceeding the longitudinal modulus of wood cell wall material). To guide the design of hierarchical cellular materials, we developed a parameterized, multi-scale, finite element model. Computational homogenization based on finite element simulations at multiple length scales is employed to obtain the elastic properties of the material at multiple length scales. Parameters affecting the elastic response of cellular composites, such as the volume fraction, orientation distribution, and aspect ratio of fibers within the cell walls as well as the cell geometry and relative density are included in the model. To validate the model, experiments are conducted on both solid carbon fiber/epoxy composites and cellular structures made from them, showing excellent agreement with computational multi-scale model predictions, both at the cell-wall and at the cellular-structure levels. Using the model, cellular structures are designed and experimentally shown to achieve a specific stiffness nearly as high as that observed in balsa wood. The good agreement between the multi-scale model predictions and experimental data provides confidence in the practical utility of this model as a tool for designing novel 3D cellular composites with unprecedented specific elastic properties.

  1. Minimal model for complex dynamics in cellular processes

    Science.gov (United States)

    Suguna, C.; Chowdhury, Kanchan K.; Sinha, Somdatta

    1999-11-01

    Cellular functions are controlled and coordinated by the complex circuitry of biochemical pathways regulated by genetic and metabolic feedback processes. This paper aims to show, with the help of a minimal model of a regulated biochemical pathway, that the common nonlinearities and control structures present in biomolecular interactions are capable of eliciting a variety of functional dynamics, such as homeostasis, periodic, complex, and chaotic oscillations, including transients, that are observed in various cellular processes.

  2. Path Minima Queries in Dynamic Weighted Trees

    DEFF Research Database (Denmark)

    Davoodi, Pooya; Brodal, Gerth Stølting; Satti, Srinivasa Rao

    2011-01-01

    In the path minima problem on a tree, each edge is assigned a weight and a query asks for the edge with minimum weight on a path between two nodes. For the dynamic version of the problem, where the edge weights can be updated, we give data structures that achieve optimal query time\\todo{what about...

  3. RNA structure determination by solid-state NMR spectroscopy.

    Science.gov (United States)

    Marchanka, Alexander; Simon, Bernd; Althoff-Ospelt, Gerhard; Carlomagno, Teresa

    2015-05-11

    Knowledge of the RNA three-dimensional structure, either in isolation or as part of RNP complexes, is fundamental to understand the mechanism of numerous cellular processes. Because of its flexibility, RNA represents a challenge for crystallization, while the large size of cellular complexes brings solution-state NMR to its limits. Here, we demonstrate an alternative approach on the basis of solid-state NMR spectroscopy. We develop a suite of experiments and RNA labeling schemes and demonstrate for the first time that ssNMR can yield a RNA structure at high-resolution. This methodology allows structural analysis of segmentally labelled RNA stretches in high-molecular weight cellular machines—independent of their ability to crystallize—and opens the way to mechanistic studies of currently difficult-to-access RNA-protein assemblies.

  4. HDACi: cellular effects, opportunities for restorative dentistry.

    LENUS (Irish Health Repository)

    Duncan, H F

    2011-12-01

    Acetylation of histone and non-histone proteins alters gene expression and induces a host of cellular effects. The acetylation process is homeostatically balanced by two groups of cellular enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HAT activity relaxes the structure of the human chromatin, rendering it transcriptionally active, thereby increasing gene expression. In contrast, HDAC activity leads to gene silencing. The enzymatic balance can be \\'tipped\\' by histone deacetylase inhibitors (HDACi), leading to an accumulation of acetylated proteins, which subsequently modify cellular processes including stem cell differentiation, cell cycle, apoptosis, gene expression, and angiogenesis. There is a variety of natural and synthetic HDACi available, and their pleiotropic effects have contributed to diverse clinical applications, not only in cancer but also in non-cancer areas, such as chronic inflammatory disease, bone engineering, and neurodegenerative disease. Indeed, it appears that HDACi-modulated effects may differ between \\'normal\\' and transformed cells, particularly with regard to reactive oxygen species accumulation, apoptosis, proliferation, and cell cycle arrest. The potential beneficial effects of HDACi for health, resulting from their ability to regulate global gene expression by epigenetic modification of DNA-associated proteins, also offer potential for application within restorative dentistry, where they may promote dental tissue regeneration following pulpal damage.

  5. The origins of cellular life.

    Science.gov (United States)

    Koonin, Eugene V

    2014-07-01

    All life on earth can be naturally classified into cellular life forms and virus-like selfish elements, the latter being fully dependent on the former for their reproduction. Cells are reproducers that not only replicate their genome but also reproduce the cellular organization that depends on semipermeable, energy-transforming membranes and cannot be recovered from the genome alone, under the famous dictum of Rudolf Virchow, Omnis cellula e cellula. In contrast, simple selfish elements are replicators that can complete their life cycles within the host cell starting from genomic RNA or DNA alone. The origin of the cellular organization is the central and perhaps the hardest problem of evolutionary biology. I argue that the origin of cells can be understood only in conjunction with the origin and evolution of selfish genetic elements. A scenario of precellular evolution is presented that involves cohesion of the genomes of the emerging cellular life forms from primordial pools of small genetic elements that eventually segregated into hosts and parasites. I further present a model of the coevolution of primordial membranes and membrane proteins, discuss protocellular and non-cellular models of early evolution, and examine the habitats on the primordial earth that could have been conducive to precellular evolution and the origin of cells.

  6. Continuum representations of cellular solids

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, M.K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  7. Provision of Amniotic Fluid During Parenteral Nutrition Increases Weight Gain With Limited Effects on Gut Structure, Function, Immunity, and Microbiology in Newborn Preterm Pigs

    DEFF Research Database (Denmark)

    Østergaard, Mette Viberg; Liang Shen, Rene; Støy, Ann Cathrine Findal

    2016-01-01

    inhibitory peptide and glucagon-like peptide 2, changed gut microbiota, and reduced intestinal permeability. There were no effects on GI weight, percentage mucosa, villus height, plasma citrulline, hexose absorptive capacity, and digestive enzymes. Intestinal interleukin (IL)-1β levels and expression of IL1B......Background: Small enteral boluses with human milk may reduce the risk of subsequent feeding intolerance and necrotizing enterocolitis in preterm infants receiving parenteral nutrition (PN). We hypothesized that feeding amniotic fluid, the natural enteral diet of the mammalian fetus, will have...

  8. Aging, Cellular Senescence, and Cancer

    Science.gov (United States)

    Campisi, Judith

    2014-01-01

    For most species, aging promotes a host of degenerative pathologies that are characterized by debilitating losses of tissue or cellular function. However, especially among vertebrates, aging also promotes hyperplastic pathologies, the most deadly of which is cancer. In contrast to the loss of function that characterizes degenerating cells and tissues, malignant (cancerous) cells must acquire new (albeit aberrant) functions that allow them to develop into a lethal tumor. This review discusses the idea that, despite seemingly opposite characteristics, the degenerative and hyperplastic pathologies of aging are at least partly linked by a common biological phenomenon: a cellular stress response known as cellular senescence. The senescence response is widely recognized as a potent tumor suppressive mechanism. However, recent evidence strengthens the idea that it also drives both degenerative and hyper-plastic pathologies, most likely by promoting chronic inflammation. Thus, the senescence response may be the result of antagonistically pleiotropic gene action. PMID:23140366

  9. Intrapartum sonographic weight estimation.

    Science.gov (United States)

    Faschingbauer, F; Dammer, U; Raabe, E; Schneider, M; Faschingbauer, C; Schmid, M; Schild, R L; Beckmann, M W; Kehl, S; Mayr, A

    2015-10-01

    To evaluate the accuracy of intrapartum sonographic weight estimation (WE). This retrospective, cross-sectional study included 1958 singleton pregnancies. Inclusion criteria were singleton pregnancy with cephalic presentation, vaginal delivery and ultrasound examination with complete biometric parameters performed on the day of delivery during the latent or active phase of labor, and absence of chromosomal or structural anomalies. The accuracy of intrapartum WE was compared to a control group of fetuses delivered by primary cesarean section at our perinatal center and an ultrasound examination with complete biometric parameters performed within 3 days before delivery (n = 392). Otherwise, the same inclusion criteria as in the study group were applied. The accuracy of WE was compared between five commonly applied formulas using means of percentage errors (MPE), medians of absolute percentage errors (MAPE), and proportions of estimates within 10 % of actual birth weight. In the whole study group, all equations showed a systematic underestimation of fetal weight (negative MPEs). Overall, best MAPE and MPE values were found with the Hadlock II formula, using BPD, AC and FL as biometric parameters (Hadlock II, MPE: -1.28; MAPE: 6.52). MPEs differed significantly between WE in the study and control group for all evaluated formulas: in the control group, either no systematic error (Hadlock III, IV and V) or a significant overestimation (Hadlock I, II) was found. Regarding MAPEs, application of the Hadlock III (HC, AC, FL) and V (AC) formula resulted in significant lower values in the control group (Hadlock III, MAPE: 7.48 vs. 5.95, p = 0.0008 and Hadlock V, MAPE: 8.79 vs. 7.52, p = 0.0085). No significant differences were found for the other equations. A systematic underestimation of fetal weight has to be taken into account in sonographic WE performed intrapartum. Overall, the best results can be achieved with WE formulas using the BPD as the only head

  10. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN......(-) and H2O, respectively), were included as control samples. The results indicated that B12 derivatives delivered cisplatin to both cellular cytosol and nuclei with an efficiency of one third compared to the uptake of free cisplatin cis-[Pt(II)Cl2(NH3)2]. In addition, uptake of charged B12 derivatives...

  11. Reduced labor and condensed schedules with cellular concrete solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lavis, D. [CEMATRIX Inc., Calgary, AB (Canada)

    2008-07-01

    This paper discussed the use of cellular concrete materials in oil sands tank base foundation systems, shallow buried utility insulation systems, roadways, slabs, and buried modules. The concrete is formed from Portland cement, water, specialized pre-formed foaming agents, and air mixed in controlled proportions. Fly ash and polypropylene or glass fibers can also be used as additions. Cellular concrete can often be used to speed up construction and minimize labour requirements. Cellular concrete can be cast-in-place, and has soil-stabilizing and self-compacting features. The concrete can be produced and placed on-site at rates exceeding 120 cubic meters per hour. Cellular concrete can be pumped into place over long distances through flexible hoses. A case study comparing the cellular concrete to traditional plastic foam insulation was used to demonstrate the equivalency and adequacy of insulation, structural properties and installation costs. The study showed that although the cellular concrete had a high installation cost, greater compressive strength was gained. The concrete was self-levelling and did not require compaction or vibration. The use of the cellular concrete resulted in an accelerated construction schedule. 6 refs., 2 tabs., 6 figs.

  12. Weight Gain during Pregnancy

    Science.gov (United States)

    ... Global Map Premature Birth Report Cards Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal ... fitness > Weight gain during pregnancy Weight gain during pregnancy E-mail to a friend Please fill in ...

  13. Thermo-fluid behaviour of periodic cellular metals

    CERN Document Server

    Lu, Tian Jian; Wen, Ting

    2013-01-01

    Thermo-Fluid Behaviour of Periodic Cellular Metals introduces the study of coupled thermo-fluid behaviour of cellular metals with periodic structure in response to thermal loads, which is an interdisciplinary research area that requires a concurrent-engineering approach.  The book, for the first time, systematically adopts experimental, numerical, and analytical approaches, presents the fluid flow and heat transfer in periodic cellular metals under forced convection conditions, aiming to establish structure-property relationships for tailoring material structures to achieve properties and performance levels that are customized for defined multifunctional applications. The book, as a textbook and reference book, is intended for both academic and industrial people, including graduate students, researchers and engineers. Dr. Tian Jian Lu is a professor at the School of Aerospace, Xi’an Jiaotong University, Xi’an, China. Dr. Feng Xu is a professor at the Key Laboratory of Biomedical Information Engineering o...

  14. Cellular scaling rules of insectivore brains

    Directory of Open Access Journals (Sweden)

    Diana K Sarko

    2009-06-01

    Full Text Available Insectivores represent extremes in mammalian body size and brain size, retaining various “primitive” morphological characteristics, and some species of Insectivora are thought to share similarities with small-bodied ancestral eutherians. This raises the possibility that insectivore brains differ from other taxa, including rodents and primates, in cellular scaling properties. Here we examine the cellular scaling rules for insectivore brains and demonstrate that insectivore scaling rules overlap somewhat with those for rodents and primates such that the insectivore cortex shares scaling rules with rodents (increasing faster in size than in numbers of neurons, but the insectivore cerebellum shares scaling rules with primates (increasing isometrically. Brain structures pooled as “remaining areas” appear to scale similarly across all three mammalian orders with respect to numbers of neurons, and the numbers of non-neurons appear to scale similarly across all brain structures for all three orders. Therefore, common scaling rules exist, to different extents, between insectivore, rodent and primate brain regions, and it is hypothesized that insectivores represent the common aspects of each order. The olfactory bulbs of insectivores, however, offer a noteworthy exception in that neuronal density increases linearly with increasing structure mass. This implies that the average neuronal cell size decreases with increasing olfactory bulb mass in order to accommodate greater neuronal density, and represents the first documentation of a brain structure gaining neurons at a greater rate than mass. This might allow insectivore brains to concentrate more neurons within the olfactory bulbs without a prohibitively large and metabolically costly increase in structure mass.

  15. Implementation of the Scanning Laser Doppler Vibrometer Combined with a Light-Weight Pneumatic Artificial Muscle Actuator for the Modal Analysis of a Civil Structure

    Directory of Open Access Journals (Sweden)

    K. Deckers

    2012-01-01

    Full Text Available The identification of the modal parameters of bridges and other large civil constructions has become an important research issue. Different approaches have been proposed depending on the excitation used: ambient excitations (due to wind, traffic, … or artificial excitations (e.g. impact test with heavy drop weights. In practice it turns out that not all modes are well excited by the ambient forces. Hence the application of an artificial actuator is advisable. The problem is that larger constructions often require large and heavy excitation devices, which are hard to manipulate. Another difficulty encountered in performing a modal analysis on large civil constructions is the necessity for a large number of high sensitivity sensors. Consequently a large number of cables has to be installed resulting in a large setup time.

  16. Ionomer equivalent weight structuring in the cathode catalyst layer of automotive fuel cells: Effect on performance, current density distribution and electrochemical impedance spectra

    Science.gov (United States)

    Herden, Susanne; Hirschfeld, Julian A.; Lohri, Cyrill; Perchthaler, Markus; Haase, Stefan

    2017-10-01

    To improve the performance of proton exchange membrane fuel cells, membrane electrode assemblies (MEAs) with segmented cathode electrodes have been manufactured. Electrodes with a higher and lower ionomer equivalent weight (EW) were used and analyzed using current density and temperature distribution, polarization curve, temperature sweep and electrochemical impedance spectroscopy measurements. These were performed using automotive metallic bipolar plates and operating conditions. Measurement data were used to manufacture an optimized segmented cathode electrode. We were able to show that our results are transferable from a small scale hardware to automotive application and that an ionomer EW segmentation of the cathode leads to performance improvement in a broad spectrum of operating conditions. Furthermore, we confirmed our results by using in-situ electrochemical impedance spectroscopy.

  17. Cellular Automata and the Humanities.

    Science.gov (United States)

    Gallo, Ernest

    1994-01-01

    The use of cellular automata to analyze several pre-Socratic hypotheses about the evolution of the physical world is discussed. These hypotheses combine characteristics of both rigorous and metaphoric language. Since the computer demands explicit instructions for each step in the evolution of the automaton, such models can reveal conceptual…

  18. Auxin and Cellular Elongation1

    Science.gov (United States)

    Velasquez, Silvia Melina; Barbez, Elke

    2016-01-01

    Auxin is a crucial growth regulator in plants. However, a comprehensive understanding of how auxin induces cell expansion is perplexing, because auxin acts in a concentration- and cell type-dependent manner. Consequently, it is desirable to focus on certain cell types to exemplify the underlying growth mechanisms. On the other hand, plant tissues display supracellular growth (beyond the level of single cells); hence, other cell types might compromise the growth of a certain tissue. Tip-growing cells do not display neighbor-induced growth constraints and, therefore, are a valuable source of information for growth-controlling mechanisms. Here, we focus on auxin-induced cellular elongation in root hairs, exposing a mechanistic view of plant growth regulation. We highlight a complex interplay between auxin metabolism and transport, steering root hair development in response to internal and external triggers. Auxin signaling modules and downstream cascades of transcription factors define a developmental program that appears rate limiting for cellular growth. With this knowledge in mind, the root hair cell is a very suitable model system in which to dissect cellular effectors required for cellular expansion. PMID:26787325

  19. Analysis of cellular manufacturing systems

    NARCIS (Netherlands)

    Heragu, Sunderesh; Zijm, Willem H.M.; Meng, Gang; Heragu, S.S.; van Ommeren, Jan C.W.; van Houtum, Geert-Jan

    2001-01-01

    In this paper, we present an open queuing network modeling approach to estimate performance measures of a cellular manufacturing layout. It is assumed a layout and production data for a planning period of specified length are available. The production data takes into account, processing and handling

  20. A Cellular Automata Models of Evolution of Transportation Networks

    Directory of Open Access Journals (Sweden)

    Mariusz Paszkowski

    2002-01-01

    Full Text Available We present a new approach to modelling of transportation networks. Supply of resources and their influence on the evolution of the consuming environment is a princqral problem considered. ne present two concepts, which are based on cellular automata paradigm. In the first model SCAM4N (Simple Cellular Automata Model of Anastomosing Network, the system is represented by a 2D mesh of elementary cells. The rules of interaction between them are introduced for modelling ofthe water flow and other phenomena connected with anastomosing river: Due to limitations of SCAMAN model, we introduce a supplementary model. The MANGraCA (Model of Anastomosing Network with Graph of Cellular Automata model beside the classical mesh of automata, introduces an additional structure: the graph of cellular automata, which represents the network pattern. Finally we discuss the prospective applications ofthe models. The concepts of juture implementation are also presented.

  1. Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis.

    Science.gov (United States)

    Olson, D K; Fröhlich, F; Farese, R V; Walther, T C

    2016-08-01

    Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2015. Published by Elsevier B.V.

  2. Quantifying the global cellular thiol-disulfide status

    DEFF Research Database (Denmark)

    Hansen, Rosa E; Roth, Doris; Winther, Jakob R

    2009-01-01

    It is widely accepted that the redox status of protein thiols is of central importance to protein structure and folding and that glutathione is an important low-molecular-mass redox regulator. However, the total cellular pools of thiols and disulfides and their relative abundance have never been...... determined. In this study, we have assembled a global picture of the cellular thiol-disulfide status in cultured mammalian cells. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated protein (PSSG) in all cellular protein, including membrane proteins. These data...... cell types. However, when cells are exposed to a sublethal dose of the thiol-specific oxidant diamide, PSSG levels increase to >15% of all protein cysteine. Glutathione is typically characterized as the "cellular redox buffer"; nevertheless, our data show that protein thiols represent a larger active...

  3. Cellular Commitment in the Developing Cerebellum

    Directory of Open Access Journals (Sweden)

    Hassan eMarzban

    2015-01-01

    Full Text Available The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we then discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum.

  4. Information theory based approaches to cellular signaling.

    Science.gov (United States)

    Waltermann, Christian; Klipp, Edda

    2011-10-01

    Cells interact with their environment and they have to react adequately to internal and external changes such changes in nutrient composition, physical properties like temperature or osmolarity and other stresses. More specifically, they must be able to evaluate whether the external change is significant or just in the range of noise. Based on multiple external parameters they have to compute an optimal response. Cellular signaling pathways are considered as the major means of information perception and transmission in cells. Here, we review different attempts to quantify information processing on the level of individual cells. We refer to Shannon entropy, mutual information, and informal measures of signaling pathway cross-talk and specificity. Information theory in systems biology has been successfully applied to identification of optimal pathway structures, mutual information and entropy as system response in sensitivity analysis, and quantification of input and output information. While the study of information transmission within the framework of information theory in technical systems is an advanced field with high impact in engineering and telecommunication, its application to biological objects and processes is still restricted to specific fields such as neuroscience, structural and molecular biology. However, in systems biology dealing with a holistic understanding of biochemical systems and cellular signaling only recently a number of examples for the application of information theory have emerged. This article is part of a Special Issue entitled Systems Biology of Microorganisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Cellular commitment in the developing cerebellum

    Science.gov (United States)

    Marzban, Hassan; Del Bigio, Marc R.; Alizadeh, Javad; Ghavami, Saeid; Zachariah, Robby M.; Rastegar, Mojgan

    2014-01-01

    The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum. PMID:25628535

  6. Primary structure of bovine calpactin I heavy chain (p36), a major cellular substrate for retroviral protein-tyrosine kinases: homology with the human phospholipase A2 inhibitor lipocortin

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Sarin, C J; Hunter, T

    1986-01-01

    peptide sequences generated during the course of these studies. The largest p36 cDNA insert (p36/6 of 1.6 kilobase pairs) was fully sequenced by the dideoxy method. The DNA sequence of this insert had an open reading frame of 1014 base pairs and coded for a protein with a molecular weight of 38 481...

  7. Is central dogma a global property of cellular information flow?

    Science.gov (United States)

    Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar

    2012-01-01

    The central dogma of molecular biology has come under scrutiny in recent years. Here, we reviewed high-throughput mRNA and protein expression data of Escherichia coli, Saccharomyces cerevisiae, and several mammalian cells. At both single cell and population scales, the statistical comparisons between the entire transcriptomes and proteomes show clear correlation structures. In contrast, the pair-wise correlations of single transcripts to proteins show nullity. These data suggest that the organizing structure guiding cellular processes is observed at omics-wide scale, and not at single molecule level. The central dogma, thus, globally emerges as an average integrated flow of cellular information.

  8. Is central dogma a global property of cellular information flow?

    Directory of Open Access Journals (Sweden)

    Vincent ePiras

    2012-11-01

    Full Text Available The central dogma of molecular biology has come under scrutiny in recent years. Here, we reviewed high-throughput mRNA and protein expression data of Escherichia coli, Saccharomyces cerevisiae, and several mammalian cells. At both single cell and population scales, the statistical comparisons between the entire transcriptomes and proteomes show clear correlation structures. In contrast, the pair-wise correlations of single transcript to protein show nullity. These data suggest that the organizing structure guiding cellular processes is observed at omics-wide scale and not at single molecule level. The central dogma, thus, globally emerges as an average integrated flow of cellular information.

  9. Colonization of bone matrices by cellular components

    Science.gov (United States)

    Shchelkunova, E. I.; Voropaeva, A. A.; Korel, A. V.; Mayer, D. A.; Podorognaya, V. T.; Kirilova, I. A.

    2017-09-01

    Practical surgery, traumatology, orthopedics, and oncology require bioengineered constructs suitable for replacement of large-area bone defects. Only rigid/elastic matrix containing recipient's bone cells capable of mitosis, differentiation, and synthesizing extracellular matrix that supports cell viability can comply with these requirements. Therefore, the development of the techniques to produce structural and functional substitutes, whose three-dimensional structure corresponds to the recipient's damaged tissues, is the main objective of tissue engineering. This is achieved by developing tissue-engineering constructs represented by cells placed on the matrices. Low effectiveness of carrier matrix colonization with cells and their uneven distribution is one of the major problems in cell culture on various matrixes. In vitro studies of the interactions between cells and material, as well as the development of new techniques for scaffold colonization by cellular components are required to solve this problem.

  10. The cellular history of the glomerulus.

    Science.gov (United States)

    George, Charles R P

    2003-01-01

    Knowledge about the structure and functions of the cells of the glomeruli has accumulated slowly over the past 350 years. Marcello Malpighi originated the work, but it failed to progress far until Schleiden and Schwann developed their cellular theory in 1839. William Bowman linked the glomeruli to the tubules, described the parietal epithelial cells, the basement membranes, and (with Robert Todd) apparently first identified endothelial cells. Electron microscopy contributed especially to an understanding of epithelial and endothelial cell structure. Axel Key first described mesangial cells, but acceptance of these fell into abeyance for many years until Yamada incontrovertibly demonstrated their existence. Techniques such as tissue culture and molecular biological investigations have, more recently, provided much information about glomerular cell function. Progress has, throughout, depended upon the discovery of ever more powerful methods of microscopy, the development of ancillary experimental methods, the formulation of persuasive explanations for observations, and the suggestion of succinct terminology to describe the features observed.

  11. Evaluation of structure and bioprotective activity of key high molecular weight acylated anthocyanin compounds isolated from the purple sweet potato (Ipomoea batatas L. cultivar Eshu No.8).

    Science.gov (United States)

    Luo, Chun-Li; Zhou, Qing; Yang, Zi-Wei; Wang, Rui-Dan; Zhang, Jiu-Liang

    2018-02-15

    In order to figure out the key acylated anthocyanin compounds accounting for the bioprotective activity of purple sweet potato (Ipomoea batatas L.), ODS packing column, semi-preparative HPLC method, activity evaluation assays, and ultra-high-performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS) assays were employed. Additionally, our study revealed that the structures of two acylated monomeric anthocyanins, cyanidin 3-caffeoyl-feruloyl sophoroside-5-glucoside and peonidin 3-dicaffeoyl sophoroside-5-glucoside were found to have the strongest bioprotective activity, which was identified to be closely related with the ortho-dihydroxybenzene structure, suggesting the more the special structures of catechol moieties, such as caffeoyl and cyanidin, the stronger the bioprotective activity will be. Besides, the aglycon of cyanidin had higher antioxidant capacity than the peonidin, and the acylated residues strengthened the capacity which followed the order of caffeoyl>feruloyl>p-hydroxybenzoyl. These results will lay the groundwork for further researching the structure-activity relationships of acylated monomeric anthocyanins from purple sweet potato. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Phase Space Invertible Asynchronous Cellular Automata

    Directory of Open Access Journals (Sweden)

    Simon Wacker

    2012-08-01

    Full Text Available While for synchronous deterministic cellular automata there is an accepted definition of reversibility, the situation is less clear for asynchronous cellular automata. We first discuss a few possibilities and then investigate what we call phase space invertible asynchronous cellular automata in more detail. We will show that for each Turing machine there is such a cellular automaton simulating it, and that it is decidable whether an asynchronous cellular automaton has this property or not, even in higher dimensions.

  13. Gestational weight gain and subsequent postpartum weight loss among young, low-income, ethnic minority women.

    Science.gov (United States)

    Gould Rothberg, Bonnie E; Magriples, Urania; Kershaw, Trace S; Rising, Sharon Schindler; Ickovics, Jeannette R

    2011-01-01

    Document weight change trajectories that lead to gestational weight gain or postpartum weight loss outside clinical recommendations established by the Institute of Medicine. Women aged 14-25 receiving prenatal care and delivering singleton infants at term (n = 427). Medical record review and 4 structured interviews conducted: second and third trimester, 6- and 12-months postpartum. Longitudinal mixed modeling to evaluate weight change trajectories. Only 22% of participants gained gestational weight within Institute of Medicine guidelines. There were 62% that exceeded maximum recommendations-more common among those overweight/obese (body mass index ≥25.0; P weight gain and retention documented among smokers and women with pregnancy-induced hypertension; breastfeeding promoted postpartum weight loss (all P weight gain and inadequate postpartum weight loss are highly prevalent among young low-income ethnic minority women. Pregnancy and postpartum are critical junctures for weight management interventions. Copyright © 2011 Mosby, Inc. All rights reserved.

  14. Influence of high-molecular-weight glutenin subunit composition at Glu-A1 and Glu-D1 loci on secondary and micro structures of gluten in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Li, Xuejun; Liu, Tianhong; Song, Lijun; Zhang, Heng; Li, Liqun; Gao, Xin

    2016-12-15

    As one of critical gluten proteins, high-molecular-weight glutenin subunits (HMW-GS) mainly affect the rheological behaviour of wheat dough. The influence of HMW-GS variations at the Glu-A1 and Glu-D1 loci on both secondary and micro structures of gluten and rheological properties of wheat dough was investigated in this study. Results showed that the Amide I bands of the three near-isogenic lines (NILs) shifted slightly, but the secondary structures differed significantly. The micro structure of gluten in NIL 4 (Ax null) showed bigger apertures and less connection, compared to that in Xinong 1330 (Ax1). The micro structure of gluten in NIL 5 (Dx5+Dy10) showed more compact than that in Xinong 1330 (Dx2+Dy12). Correlation analysis demonstrated that the content of β-sheets and disulfide bonds in gluten has a significant relationship with dough properties. The secondary structures of native gluten are suggested to be used as predictors of wheat quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Fake weighted projective spaces

    OpenAIRE

    Buczynska, Weronika

    2008-01-01

    We define fake weighted projective spaces as a generalisation of weighted projective spaces. We introduce the notions of fundamental group in codimension 1 and of universal covering in codimension 1. We prove that for every fake weighted projective space its universal cover in codimension 1 is a weighted projective space.

  16. Weight Loss Surgery

    Science.gov (United States)

    Weight loss surgery helps people with extreme obesity to lose weight. It may be an option if you cannot lose weight through diet and exercise or have serious health problems caused by obesity. There are different types of weight loss surgery. They often limit the amount of food ...

  17. Proven Weight Loss Methods

    Science.gov (United States)

    Fact Sheet Proven Weight Loss Methods What can weight loss do for you? Losing weight can improve your health in a number of ways. ... you feel better. There are proven ways to lose weight. You can find what works for you. Research ...

  18. Retention prediction of low molecular weight anions in ion chromatography based on quantitative structure-retention relationships applied to the linear solvent strength model.

    Science.gov (United States)

    Park, Soo Hyun; Haddad, Paul R; Talebi, Mohammad; Tyteca, Eva; Amos, Ruth I J; Szucs, Roman; Dolan, John W; Pohl, Christopher A

    2017-02-24

    Quantitative Structure-Retention Relationships (QSRRs) represent a popular technique to predict the retention times of analytes, based on molecular descriptors encoding the chemical structures of the analytes. The linear solvent strength (LSS) model relating the retention factor, k to the eluent concentration (log k=a-blog [eluent]), is a well-known and accurate retention model in ion chromatography (IC). In this work, QSRRs for inorganic and small organic anions were used to predict the regression parameters a and b in the LSS model (and hence retention times) for these analytes under a wide range of eluent conditions, based solely on their chemical structures. This approach was performed on retention data of inorganic and small organic anions from the "Virtual Column" software (Thermo Fisher Scientific). These retention data were recalibrated via a "porting" methodology on three columns (AS20, AS19, and AS11HC), prior to the QSRR modeling. This provided retention data more applicable on recently produced columns which may exhibit changes of column behavior due to batch-to-batch variability. Molecular descriptors for the analytes were calculated with Dragon software using the geometry-optimized molecular structures, employing the AM1 semi-empirical method. An optimal subset of molecular descriptors was then selected using an evolutionary algorithm (EA). Finally, the QSRR models were generated by multiple linear regression (MLR). As a result, six QSRR models with good predictive performance were successfully derived for a- and b-values on three columns (R(2)>0.98 and RMSE0.7 and RMSEP<0.4). Moreover, it was demonstrated that the obtained QSRR models for the a- and b-values can predict the retention times for new analytes with good accuracy and predictability (R(2) of 0.98, RMSE of 0.89min, Qext(F3)(2) of 0.96 and RMSEP of 1.18min). Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Cellular IRES-mediated translation

    Science.gov (United States)

    2011-01-01

    Translation of cellular mRNAs via initiation at internal ribosome entry sites (IRESs) has received increased attention during recent years due to its emerging significance for many physiological and pathological stress conditions in eukaryotic cells. Expression of genes bearing IRES elements in their mRNAs is controlled by multiple molecular mechanisms, with IRES-mediated translation favored under conditions when cap-dependent translation is compromised. In this review, we discuss recent advances in the field and future directions that may bring us closer to understanding the complex mechanisms that guide cellular IRES-mediated expression. We present examples in which the competitive action of IRES-transacting factors (ITAFs) plays a pivotal role in IRES-mediated translation and thereby controls cell-fate decisions leading to either pro-survival stress adaptation or cell death. PMID:21220943

  20. Xtoys: Cellular automata on xwindows

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M. [Brookhaven National Lab., Upton, NY (United States). Physics Dept.

    1995-08-15

    Xtoys is a collection of xwindow programs for demonstrating simulations of various statistical models. Included are xising, for the two dimensional Ising model, xpotts, for the q-state Potts model, xautomalab, for a fairly general class of totalistic cellular automata, xsand, for the Bak-Tang-Wiesenfield model of self organized criticality, and xfires, a simple forest fire simulation. The programs should compile on any machine supporting xwindows.

  1. Melanoma Screening with Cellular Phones

    OpenAIRE

    Massone, Cesare; Hofmann-Wellenhof, Rainer; Ahlgrimm-Siess, Verena; Gabler, Gerald; Ebner, Christoph; Peter Soyer, H.

    2007-01-01

    BACKGROUND: Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in p...

  2. Aging, Cellular Senescence, and Cancer

    OpenAIRE

    Campisi, Judith

    2012-01-01

    For most species, aging promotes a host of degenerative pathologies that are characterized by debilitating losses of tissue or cellular function. However, especially among vertebrates, aging also promotes hyperplastic pathologies, the most deadly of which is cancer. In contrast to the loss of function that characterizes degenerating cells and tissues, malignant (cancerous) cells must acquire new (albeit aberrant) functions that allow them to develop into a lethal tumor. This review discusses ...

  3. Cellular Senescence: A Translational Perspective

    OpenAIRE

    Kirkland, James L.; Tamara Tchkonia

    2017-01-01

    Cellular senescence entails essentially irreversible replicative arrest, apoptosis resistance, and frequently acquisition of a pro-inflammatory, tissue-destructive senescence-associated secretory phenotype (SASP). Senescent cells accumulate in various tissues with aging and at sites of pathogenesis in many chronic diseases and conditions. The SASP can contribute to senescence-related inflammation, metabolic dysregulation, stem cell dysfunction, aging phenotypes, chronic diseases, geriatric sy...

  4. Cellular automata : dynamics, simulations, traces

    OpenAIRE

    Guillon, Pierre

    2008-01-01

    A cellular automaton is a discrete dynamical system which can model objects that evolve parallelly and asynchronously : the space is divided into cells, each of which has a state evolving according to some single local rule and a finite number of neighboring cells. Though this system can easily be formalized, very complex behaviors can appear ; it turns out to be a powerful computational model. That complexity can be studied with respect to various theories : topology, measure, decidability, ...

  5. Cellular detonations in nano-sized aluminum particle gas suspensions

    Science.gov (United States)

    Khmel, TA

    2017-10-01

    Formation of cellular detonation structures in monodisperse nano-sized aluminum particle – oxygen suspensions is studied by methods of numerical simulations of two-dimensional detonation flows. The detonation combustion are described within the semi-empirical model developed earlier which takes into account transition of the regime of aluminum particle combustion from diffusion to kinetic for micro-sized and nano-sized particles. The free-molecular effects are considered in the processes of heat and velocity relaxation of the phases. The specific features of the cellular detonation of nanoparticle suspensions comparing with micron-sized suspensions are irregular cellular structures, much higher pick pressure values, and relatively larger detonation cells. This is due to high value of activation energy of reduced chemical reaction of aluminum particle combustion in kinetic regime.

  6. Shock enhancement of cellular materials subjected to intensive pulse loading

    Science.gov (United States)

    Zhang, J.; Fan, J.; Wang, Z.; Zhao, L.; Li, Z.

    2017-06-01

    Cellular materials can dissipate a large amount of energy due to their considerable stress plateau, which contributes to their extensive applications in structural design for crashworthiness. However, in some experiments with specimens subjected to intense impact loads, transmitted stress enhancement has been observed, leading to severe damage to the objects protected. Transmitted stress through two-dimensional Voronoi cellular materials as a protective device is qualitatively studied in this paper. Dimensionless parameters of material properties and loading parameters are defined to give critical conditions for shock enhancement and clarify the correlation between the deformations and stress enhancement. The effect of relative density on this amplifying phenomenon is investigated as well. In addition, local strain fields are calculated by using the optimal local deformation gradient, which gives a clear presentation of deformations and possible local non-uniformity in the crushing process. This research provides valuable insight into the reliability of cellular materials as protective structures.

  7. Improving predictions of protein-protein interfaces by combining amino acid-specific classifiers based on structural and physicochemical descriptors with their weighted neighbor averages.

    Science.gov (United States)

    de Moraes, Fábio R; Neshich, Izabella A P; Mazoni, Ivan; Yano, Inácio H; Pereira, José G C; Salim, José A; Jardine, José G; Neshich, Goran

    2014-01-01

    Protein-protein interactions are involved in nearly all regulatory processes in the cell and are considered one of the most important issues in molecular biology and pharmaceutical sciences but are still not fully understood. Structural and computational biology contributed greatly to the elucidation of the mechanism of protein interactions. In this paper, we present a collection of the physicochemical and structural characteristics that distinguish interface-forming residues (IFR) from free surface residues (FSR). We formulated a linear discriminative analysis (LDA) classifier to assess whether chosen descriptors from the BlueStar STING database (http://www.cbi.cnptia.embrapa.br/SMS/) are suitable for such a task. Receiver operating characteristic (ROC) analysis indicates that the particular physicochemical and structural descriptors used for building the linear classifier perform much better than a random classifier and in fact, successfully outperform some of the previously published procedures, whose performance indicators were recently compared by other research groups. The results presented here show that the selected set of descriptors can be utilized to predict IFRs, even when homologue proteins are missing (particularly important for orphan proteins where no homologue is available for comparative analysis/indication) or, when certain conformational changes accompany interface formation. The development of amino acid type specific classifiers is shown to increase IFR classification performance. Also, we found that the addition of an amino acid conservation attribute did not improve the classification prediction. This result indicates that the increase in predictive power associated with amino acid conservation is exhausted by adequate use of an extensive list of independent physicochemical and structural parameters that, by themselves, fully describe the nano-environment at protein-protein interfaces. The IFR classifier developed in this study is now

  8. The Topological Weighted Centroid (TWC): A topological approach to the time-space structure of epidemic and pseudo-epidemic processes

    Science.gov (United States)

    Buscema, Massimo; Massini, Giulia; Sacco, Pier Luigi

    2018-02-01

    This paper offers the first systematic presentation of the topological approach to the analysis of epidemic and pseudo-epidemic spatial processes. We introduce the basic concepts and proofs, at test the approach on a diverse collection of case studies of historically documented epidemic and pseudo-epidemic processes. The approach is found to consistently provide reliable estimates of the structural features of epidemic processes, and to provide useful analytical insights and interpretations of fragmentary pseudo-epidemic processes. Although this analysis has to be regarded as preliminary, we find that the approach's basic tenets are strongly corroborated by this first test and warrant future research in this vein.

  9. The bid to lose weight: impact of social media on weight perceptions, weight control and diabetes.

    Science.gov (United States)

    Das, Leah; Mohan, Ranjini; Makaya, Tafadzwa

    2014-01-01

    Over the last decade the internet has come to permeate every aspect of our lives. With huge leaps in accessibility of the internet via mobile personal devices such as smart cellular phones and tablets, individuals are connected to the internet virtually all the time. It is no surprise therefore that social media now dominates the lives of many people within society. The authors take a look at how social media is influencing diabetes with particular focus on weight perception, weight management and eating behaviours. The authors explore the concept of how the advertising of Size 0 models and photo-shopping of images which are easily available on line and via social media is causing an increase in the number of young people with distorted body images. This has led to an increased number of people resorting to sometimes drastic weight loss programmes. We focus on the bid for 'low-fat' consumption and highlight how this could actually be leading to an increased risk for developing diabetes or worsening the complications of diabetes. We also discuss the increase of eating disorder in diabetes related to this distorted body image.

  10. Pickering Emulsion-Based Marbles for Cellular Capsules

    Directory of Open Access Journals (Sweden)

    Guangzhao Zhang

    2016-07-01

    Full Text Available The biodegradable cellular capsule, being prepared from simple vaporization of liquid marbles, is an ideal vehicle for the potential application of drug encapsulation and release. This paper reports the fabrication of cellular capsules via facile vaporization of Pickering emulsion marbles in an ambient atmosphere. Stable Pickering emulsion (water in oil was prepared while utilizing dichloromethane (containing poly(l-lactic acid and partially hydrophobic silica particles as oil phase and stabilizing agents respectively. Then, the Pickering emulsion marbles were formed by dropping emulsion into a petri dish containing silica particles with a syringe followed by rolling. The cellular capsules were finally obtained after the complete vaporization of both oil and water phases. The technique of scanning electron microscope (SEM was employed to research the microstructure and surface morphology of the prepared capsules and the results showed the cellular structure as expected. An in vitro drug release test was implemented which showed a sustained release property of the prepared cellular capsules. In addition, the use of biodegradable poly(l-lactic acid and the biocompatible silica particles also made the fabricated cellular capsules of great potential in the application of sustained drug release.

  11. Dynamic properties of cellular neural networks

    Directory of Open Access Journals (Sweden)

    Angela Slavova

    1993-01-01

    Full Text Available Dynamic behavior of a new class of information-processing systems called Cellular Neural Networks is investigated. In this paper we introduce a small parameter in the state equation of a cellular neural network and we seek for periodic phenomena. New approach is used for proving stability of a cellular neural network by constructing Lyapunov's majorizing equations. This algorithm is helpful for finding a map from initial continuous state space of a cellular neural network into discrete output. A comparison between cellular neural networks and cellular automata is made.

  12. Cellular communications a comprehensive and practical guide

    CERN Document Server

    Tripathi, Nishith

    2014-01-01

    Even as newer cellular technologies and standards emerge, many of the fundamental principles and the components of the cellular network remain the same. Presenting a simple yet comprehensive view of cellular communications technologies, Cellular Communications provides an end-to-end perspective of cellular operations, ranging from physical layer details to call set-up and from the radio network to the core network. This self-contained source forpractitioners and students represents a comprehensive survey of the fundamentals of cellular communications and the landscape of commercially deployed

  13. Characteristics of cellular composition of periodontal pockets.

    Science.gov (United States)

    Hasiuk, Petro; Hasiuk, Nataliya; Kindiy, Dmytro; Ivanchyshyn, Victoriya; Kalashnikov, Dmytro; Zubchenko, Sergiy

    2016-12-01

    The development of inflammatory periodontal disease in young people is an urgent problem of today's periodontology, and requires a development of new methods that would give an opportunity not only to diagnose but also for prognosis of periodontitis course in a given patients contingent. Cellular structure of periodontal pockets is presented by hematogenous and epithelial cells. Our results are confirmed by previous studies, and show that the penetration of periodontal pathogens leads to formation in periodontal tissue of a highly active complex compounds-cytokines that are able to modify the activity of neutrophils and reduce their specific antibacterial properties. Cytokines not only adversely affect the periodontal tissues, but also cause further activation of cells that synthesized them, and inhibit tissue repair and process of resynthesis of connective tissue by fibroblasts. Neutrophilic granulocytes present in each of the types of smear types, but their functional status and quantitative composition is different. The results of our cytological study confirmed the results of immunohistochemical studies, and show that in generalized periodontitis, an inflammatory cellular elements with disorganized epithelial cells and connective tissue of the gums and periodontium, and bacteria form specific types of infiltration in periodontal tissues.

  14. Photochemotherapy: Molecular And Cellular Processes Involved

    Science.gov (United States)

    Spikes, John D.

    1989-03-01

    In photochemotherapy, as exemplified by the photodynamic therapy of tumors, a photosensitizing drug is administered to the patient; then, after a period of time to permit the most effective anatomical distribution of the drug, the diseased area is illuminated using an appropriate source of light of wavelengths absorbed by the sensitizer. In the tumor case, this results in the photochemical alteration of critical kinds of biornolecules in the diseased tissue, which interferes with the normal activities of certain cell organelles. This, in turn, leads to the injury or death of diseased cells in the treated area. This paper briefly reviews the reactive chemical species that can be formed in biological systems by illuminated sensitizers (triplet states of sensitizer molecules, free radicals of sensitizers and cellular components, singlet oxygen, superoxide, hydrogen peroxide, hydroxyl radical) and the kinds of biochemical changes they produce in essential cellular molecules (nucleic acids, proteins, unsaturated lipids, etc.). Also reviewed are the effects of these molecular changes on the structure and function of mammalian cell organelles (membranes, mitochondria, nuclear components, etc.) and the mechanisms of the resulting injury or killing of the cells.

  15. Effect of clothing weight on body weight.

    Science.gov (United States)

    Whigham, L D; Schoeller, D A; Johnson, L K; Atkinson, R L

    2013-01-01

    In clinical settings, it is common to measure weight of clothed patients and estimate a correction for the weight of clothing, but we can find no papers in the medical literature regarding the variability in clothing weight of adults with weather, season and gender. Fifty adults (35 women) were weighed four times during a 12-month period with and without clothing. Clothing weights were determined and regressed against minimum, maximum and average daily outdoor temperature. The average clothing weight (±s.d.) throughout the year was significantly greater in men than in women (1.2±0.3 vs 0.8±0.3 kg, Pclothing weights across the year were 0.9±0.2 and 1.5±0.4 kg for men, and 0.5±0.2 and 1.1±0.4 kg for women, respectively. The within-person s.d. in clothing weight was 0.3 kg for both men and women. Over the 55 °C range in the lowest to the highest outdoor temperatures, the regressions predicted a maximal change in clothing weight of only 0.4 kg in women and 0.6 kg in men. The clothing weight of men is significantly greater than that of women, but there is little variability throughout the year. Therefore, a clothing adjustment of approximately 0.8 kg for women and 1.2 kg for men is appropriate regardless of outdoor temperature.

  16. A mechanisms of influence on medical drug Epadol on specialty trained of high-skilled weight-lifters

    Directory of Open Access Journals (Sweden)

    Gunina L.M.

    2012-09-01

    Full Text Available The results to the features of Ukrainian medical drug Epadol influence on the basis of polyunsaturated fatty acids on the parameters of special trained of high-skilled weight-lifters in last 21-day directly to the competition in this research are presented. 14 sportsmen at 20,0±1,5 years divided into basic and control groups, determination at intensive physical activities of changes under influence of Epadol of the structural-functional state of cellular membranes indexes also are conducted. A multivariable cross-correlation analysis between indexes reflecting special trained of weight-lifters and parameters of the structural-functional state of cellular membranes is conducted. It is shown that course application of preparation in composition the standard chart of the pharmacological providing of training activity in last 21-day directly to the competition assists the increase of height of standing broad jump and height of getting up of barbell in a jerk with simultaneous reduction of time of implementation of exercises. It is mediated by the improvement of prooxidative-antioxidative balance in cellular membranes and improvement of their functional state, that it by the results of multivariable cross-correlation analysis is confirmed.

  17. Constructing a User Interface for Cellular Phones Using Equipment and its Relations

    Directory of Open Access Journals (Sweden)

    Misayo Kitamura

    2003-04-01

    Full Text Available In a domain of SCADA (Supervisory Control And Data Acquisition systems, it is necessary to obtain information about plants such as water plants in remote places using a cellular phone in order to ascertain plant status in case of emergency.T o utilize the small screen of a cellular phone and to eliminate the engineering cost of creating de.nition data to show plant status, a method of constructing user interface using equipment in the plant and its relations is proposed. In this method, some equipment is selected from all supervised equipment using the relations between the equipment, and then the content to be displayed is generated dynamically using the selected equipment. The equipment in plants is organized as a graph structure, which involves the equipment and the relations between the equipment.T he relations adopted in this method are both the physical connections between the equipment and the conceptual relationships.The result of the selection depends on the relations and their parameter values called the context dependent weight, which changes dynamically by viewpoints.

  18. Cellular host responses to gliomas.

    Directory of Open Access Journals (Sweden)

    Joseph Najbauer

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts. Marker-specific, anatomical and morphological analyses revealed a robust influx of host cells into the main tumor bed and tumor satellites. METHODOLOGY/PRINCIPAL FINDINGS: Human glioma cell lines and glioma spheroid orthotopic implants were used in rodents. In both models, the xenografts recruited large numbers of host nestin-expressing cells, which formed a 'network' with glioma. The host nestin-expressing cells appeared to originate in the subventricular zone ipsilateral to the tumor, and were clearly distinguishable from pericytes that expressed smooth muscle actin. These distinct cell populations established close physical contact in a 'pair-wise' manner and migrated together to the deeper layers of tumor satellites and gave rise to tumor vasculature. The GBM biopsy xenografts displayed two different phenotypes: (a low-generation tumors (first in vivo passage in rats were highly invasive and non-angiogenic, and host nestin-positive cells that infiltrated into these tumors displayed astrocytic or elongated bipolar morphology; (b high-generation xenografts (fifth passage had pronounced cellularity, were angiogenic with 'glomerulus-like' microvascular proliferations that contained host nestin-positive cells. Stromal cell-derived factor-1 and its receptor CXCR4 were highly expressed in and around glioma xenografts, suggesting their role in glioma progression and invasion. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a robust migration of nestin-expressing host cells to glioma, which

  19. Symmetry analysis of cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    García-Morales, V., E-mail: vmorales@ph.tum.de [Institute for Advanced Study – Technische Universität München, Lichtenbergstr. 2a, D-85748 Garching (Germany)

    2013-01-03

    By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.

  20. Repaglinide at a cellular level

    DEFF Research Database (Denmark)

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M

    2002-01-01

    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in rat...... pancreatic alpha-cells and somatotrophs. We found a pharmacological dissociation between the actions on KATP channels and exocytosis and suggest that compounds that, unlike repaglinide, have direct stimulatory effects on exocytosis in somatotrophs and alpha- and beta-cells, such as sulphonylureas...

  1. Game of Life Cellular Automata

    CERN Document Server

    Adamatzky, Andrew

    2010-01-01

    In the late 1960s, British mathematician John Conway invented a virtual mathematical machine that operates on a two-dimensional array of square cell. Each cell takes two states, live and dead. The cells' states are updated simultaneously and in discrete time. A dead cell comes to life if it has exactly three live neighbours. A live cell remains alive if two or three of its neighbours are alive, otherwise the cell dies. Conway's Game of Life became the most programmed solitary game and the most known cellular automaton. The book brings together results of forty years of study into computational

  2. Cellular automata a parallel model

    CERN Document Server

    Mazoyer, J

    1999-01-01

    Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.

  3. Lengthening primary cilia enhances cellular mechanosensitivity.

    Science.gov (United States)

    Spasic, M; Jacobs, C R

    2017-02-20

    The primary cilium is a mechanosensor in a variety of mammalian cell types, initiating and directing intracellular signalling cascades in response to external stimuli. When primary cilia formation is disrupted, cells have diminished mechanosensitivity and an abrogated response to mechanical stimulation. Due to this important role, we hypothesised that increasing primary cilia length would enhance the downstream response and therefore, mechanosensitivity. To test this hypothesis, we increased osteocyte primary cilia length with fenoldopam and lithium and found that cells with longer primary cilia were more mechanosensitive. Furthermore, fenoldopam treatment potentiated adenylyl cyclase activity and was able to recover primary cilia form and sensitivity in cells with impaired cilia. This work demonstrates that modulating the structure of the primary cilium directly impacts cellular mechanosensitivity. Our results implicate cilium length as a potential therapeutic target for combating numerous conditions characterised by impaired cilia function.

  4. Cellular and Molecular Targets of Menthol Actions

    Directory of Open Access Journals (Sweden)

    Murat Oz

    2017-07-01

    Full Text Available Menthol belongs to monoterpene class of a structurally diverse group of phytochemicals found in plant-derived essential oils. Menthol is widely used in pharmaceuticals, confectionary, oral hygiene products, pesticides, cosmetics, and as a flavoring agent. In addition, menthol is known to have antioxidant, anti-inflammatory, and analgesic effects. Recently, there has been renewed awareness in comprehending the biological and pharmacological effects of menthol. TRP channels have been demonstrated to mediate the cooling actions of menthol. There has been new evidence demonstrating that menthol can significantly influence the functional characteristics of a number of different kinds of ligand and voltage-gated ion channels, indicating that at least some of the biological and pharmacological effects of menthol can be mediated by alterations in cellular excitability. In this article, we examine the results of earlier studies on the actions of menthol with voltage and ligand-gated ion channels.

  5. Multipartite cellular automata and the superposition principle

    Science.gov (United States)

    Elze, Hans-Thomas

    2016-05-01

    Cellular automata (CA) can show well known features of quantum mechanics (QM), such as a linear updating rule that resembles a discretized form of the Schrödinger equation together with its conservation laws. Surprisingly, a whole class of “natural” Hamiltonian CA, which are based entirely on integer-valued variables and couplings and derived from an action principle, can be mapped reversibly to continuum models with the help of sampling theory. This results in “deformed” quantum mechanical models with a finite discreteness scale l, which for l→0 reproduce the familiar continuum limit. Presently, we show, in particular, how such automata can form “multipartite” systems consistently with the tensor product structures of non-relativistic many-body QM, while maintaining the linearity of dynamics. Consequently, the superposition principle is fully operative already on the level of these primordial discrete deterministic automata, including the essential quantum effects of interference and entanglement.

  6. Weight Loss & Acute Porphyria

    Science.gov (United States)

    ... APF You are here Home Diet and Nutrition Weight loss & acute Porphyria Being overweight is a particular problem ... of carbohydrate and energy in an effort to lose weight can worsen these diseases. Severe acute attacks have ...

  7. Role of Cellular Elements in Thrombus Formation and Dissolution

    OpenAIRE

    Wohner, N.

    2008-01-01

    Although fibrin forms the core matrix of thrombi, their structure depends also on the cellular elements embedded in its meshwork. Platelets are essential in the initial stages of thrombus formation, because they adhere and aggregate at sites of blood vessel wall injury and then serve as a surface for coagulation reactions, the overall rate of which determines the final structure of fibrin. In addition, platelets affect fibrinolysis through their proteins and phospholipids, which modulate plas...

  8. Protein accounting in the cellular economy.

    Science.gov (United States)

    Vázquez-Laslop, Nora; Mankin, Alexander S

    2014-04-24

    Knowing the copy number of cellular proteins is critical for understanding cell physiology. By being able to measure the absolute synthesis rates of the majority of cellular proteins, Li et al. gain insights into key aspects of translation regulation and fundamental principles of cellular strategies to adjust protein synthesis according to the functional needs. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Distributed Velocity-Dependent Protocol for Multihop Cellular Sensor Networks

    OpenAIRE

    Deepthi Chander; Bhushan Jagyasi; Desai, U. B.; Merchant, S N

    2009-01-01

    Abstract Cell phones are embedded with sensors form a Cellular Sensor Network which can be used to localize a moving event. The inherent mobility of the application and of the cell phone users warrants distributed structure-free data aggregation and on-the-fly routing. We propose a Distributed Velocity-Dependent (DVD) protocol to localize a moving event using a Multihop Cellular Sensor Network (MCSN). DVD is based on a novel form of connectivity determined by the waiting time of nodes for a R...

  10. Nonsynchronous updating in the multiverse of cellular automata.

    Science.gov (United States)

    Reia, Sandro M; Kinouchi, Osame

    2015-04-01

    In this paper we study updating effects on cellular automata rule space. We consider a subset of 6144 order-3 automata from the space of 262144 bidimensional outer-totalistic rules. We compare synchronous to asynchronous and sequential updatings. Focusing on two automata, we discuss how update changes destroy typical structures of these rules. Besides, we show that the first-order phase transition in the multiverse of synchronous cellular automata, revealed with the use of a recently introduced control parameter, seems to be robust not only to changes in update schema but also to different initial densities.

  11. Universal map for cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    García-Morales, V., E-mail: vmorales@ph.tum.de [Institute for Advanced Study – Technische Universität München, Lichtenbergstr. 2a, D-85748 Garching (Germany)

    2012-08-20

    A universal map is derived for all deterministic 1D cellular automata (CAs) containing no freely adjustable parameters and valid for any alphabet size and any neighborhood range (including non-symmetrical neighborhoods). The map can be extended to an arbitrary number of dimensions and topologies and to arbitrary order in time. Specific CA maps for the famous Conway's Game of Life and Wolfram's 256 elementary CAs are given. An induction method for CAs, based in the universal map, allows mathematical expressions for the orbits of a wide variety of elementary CAs to be systematically derived. -- Highlights: ► A universal map is derived for all deterministic 1D cellular automata (CA). ► The map is generalized to 2D for Von Neumann, Moore and hexagonal neighborhoods. ► A map for all Wolfram's 256 elementary CAs is derived. ► A map for Conway's “Game of Life” is obtained.

  12. Melanoma screening with cellular phones.

    Directory of Open Access Journals (Sweden)

    Cesare Massone

    Full Text Available BACKGROUND: Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in pigmented skin lesions. 18 patients were selected consecutively in the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz, Graz (Austria. Clinical and dermoscopic images were acquired using a Sony Ericsson with a built-in two-megapixel camera. Two teleconsultants reviewed the images on a specific web application (http://www.dermahandy.net/default.asp where images had been uploaded in JPEG format. Compared to the face-to-face diagnoses, the two teleconsultants obtained a score of correct telediagnoses of 89% and of 91.5% reporting the clinical and dermoscopic images, respectively. CONCLUSIONS/SIGNIFICANCE: The present work is the first study performing mobile teledermoscopy using cellular phones. Mobile teledermatology has the potential to become an easy applicable tool for everyone and a new approach for enhanced self-monitoring for skin cancer screening in the spirit of the eHealth program of the European Commission Information for Society and Media.

  13. Melanoma screening with cellular phones.

    Science.gov (United States)

    Massone, Cesare; Hofmann-Wellenhof, Rainer; Ahlgrimm-Siess, Verena; Gabler, Gerald; Ebner, Christoph; Soyer, H Peter

    2007-05-30

    Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in pigmented skin lesions. 18 patients were selected consecutively in the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz, Graz (Austria). Clinical and dermoscopic images were acquired using a Sony Ericsson with a built-in two-megapixel camera. Two teleconsultants reviewed the images on a specific web application (http://www.dermahandy.net/default.asp) where images had been uploaded in JPEG format. Compared to the face-to-face diagnoses, the two teleconsultants obtained a score of correct telediagnoses of 89% and of 91.5% reporting the clinical and dermoscopic images, respectively. The present work is the first study performing mobile teledermoscopy using cellular phones. Mobile teledermatology has the potential to become an easy applicable tool for everyone and a new approach for enhanced self-monitoring for skin cancer screening in the spirit of the eHealth program of the European Commission Information for Society and Media.

  14. Cellular Therapy for Heart Failure

    Science.gov (United States)

    Psaltis, Peter J.; Schwarz, Nisha; Toledo-Flores, Deborah; Nicholls, Stephen J.

    2016-01-01

    The pathogenesis of cardiomyopathy and heart failure (HF) is underpinned by complex changes at subcellular, cellular and extracellular levels in the ventricular myocardium. For all of the gains that conventional treatments for HF have brought to mortality and morbidity, they do not adequately address the loss of cardiomyocyte numbers in the remodeling ventricle. Originally conceived to address this problem, cellular transplantation for HF has already gone through several stages of evolution over the past two decades. Various cell types and delivery routes have been implemented to positive effect in preclinical models of ischemic and nonischemic cardiomyopathy, with pleiotropic benefits observed in terms of myocardial remodeling, systolic and diastolic performance, perfusion, fibrosis, inflammation, metabolism and electrophysiology. To a large extent, these salubrious effects are now attributed to the indirect, paracrine capacity of transplanted stem cells to facilitate endogenous cardiac repair processes. Promising results have also followed in early phase human studies, although these have been relatively modest and somewhat inconsistent. This review details the preclinical and clinical evidence currently available regarding the use of pluripotent stem cells and adult-derived progenitor cells for cardiomyopathy and HF. It outlines the important lessons that have been learned to this point in time, and balances the promise of this exciting field against the key challenges and questions that still need to be addressed at all levels of research, to ensure that cell therapy realizes its full potential by adding to the armamentarium of HF management. PMID:27280304

  15. Genetically targeted fluorogenic macromolecules for subcellular imaging and cellular perturbation.

    Science.gov (United States)

    Magenau, Andrew J D; Saurabh, Saumya; Andreko, Susan K; Telmer, Cheryl A; Schmidt, Brigitte F; Waggoner, Alan S; Bruchez, Marcel P

    2015-10-01

    The alteration of cellular functions by anchoring macromolecules to specified organelles may reveal a new area of therapeutic potential and clinical treatment. In this work, a unique phenotype was evoked by influencing cellular behavior through the modification of subcellular structures with genetically targetable macromolecules. These fluorogen-functionalized polymers, prepared via controlled radical polymerization, were capable of exclusively decorating actin, cytoplasmic, or nuclear compartments of living cells expressing localized fluorgen-activating proteins. The macromolecular fluorogens were optimized by establishing critical polymer architecture-biophysical property relationships which impacted binding rates, binding affinities, and the level of internalization. Specific labeling of subcellular structures was realized at nanomolar concentrations of polymer, in the absence of membrane permeabilization or transduction domains, and fluorogen-modified polymers were found to bind to protein intact after delivery to the cytosol. Cellular motility was found to be dependent on binding of macromolecular fluorogens to actin structures causing rapid cellular ruffling without migration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Cascaded failures in weighted networks

    Science.gov (United States)

    Mirzasoleiman, Baharan; Babaei, Mahmoudreza; Jalili, Mahdi; Safari, Mohammadali

    2011-10-01

    Many technological networks can experience random and/or systematic failures in their components. More destructive situations can happen if the components have limited capacity, where the failure in one of them might lead to a cascade of failures in other components, and consequently break down the structure of the network. In this paper, the tolerance of cascaded failures was investigated in weighted networks. Three weighting strategies were considered including the betweenness centrality of the edges, the product of the degrees of the end nodes, and the product of their betweenness centralities. Then, the effect of the cascaded attack was investigated by considering the local weighted flow redistribution rule. The capacity of the edges was considered to be proportional to their initial weight distribution. The size of the survived part of the attacked network was determined in model networks as well as in a number of real-world networks including the power grid, the internet in the level of autonomous system, the railway network of Europe, and the United States airports network. We found that the networks in which the weight of each edge is the multiplication of the betweenness centrality of the end nodes had the best robustness against cascaded failures. In other words, the case where the load of the links is considered to be the product of the betweenness centrality of the end nodes is favored for the robustness of the network against cascaded failures.

  17. Extracellular matrix-mediated cellular communication in the heart

    Science.gov (United States)

    Valiente-Alandi, Iñigo; Schafer, Allison E.; Blaxall, Burns C.

    2016-01-01

    The extracellular matrix (ECM) is a complex and dynamic scaffold that maintains tissue structure and dynamics. However, the view of the ECM as an inert architectural support has been increasingly challenged. The ECM is a vibrant meshwork, a crucial organizer of cellular microenvironments. It plays a direct role in cellular interactions regulating cell growth, survival, spreading, proliferation, differentiation and migration through the intricate relationship among cellular and acellular tissue components. This complex interrelationship preserves cardiac function during homeostasis; however it is also responsible for pathologic remodeling following myocardial injury. Therefore, enhancing our understanding of this cross-talk may provide mechanistic insights into the pathogenesis of heart failure and suggest new approaches to novel, targeted pharmacologic therapies. This review explores the implications of ECM-cell interactions in myocardial cell behavior and cardiac function at baseline and following myocardial injury. PMID:26778458

  18. Pathogenesis of pulmonary emphysema – cellular and molecular events

    Directory of Open Access Journals (Sweden)

    Antonio Di Petta

    2010-06-01

    Full Text Available Pulmonary emphysema is a chronic obstructive disease, resulting fromimportant alterations in the whole distal structure of terminal bronchioles, either by enlargement of air spaces or by destruction of the alveolar wall, leading to loss of respiratory surface, decreased elastic recoil and lung hyperinflation. For many years, the hypothesis of protease-antiprotease unbalance prevailed as the central theme in the pathogenesis of pulmonary emphysema. According to this hypothesis, the release of active proteolytic enzymes, produced mainly by neutrophils and macrophages, degrades the extracellular matrix, affecting the integrity of its components, especially collagen and elastic fibers. However, new concepts involving cellular and molecular events were proposed, including oxidative stress, cell apoptosis, cellular senescence and failed lung tissue repair. The aim of this review paper was to evaluate the cellular and molecular mechanisms seen in the pathogenesis of pulmonary emphysema.

  19. Localization of the disulfide bonds in the NH2-terminal domain of the cellular receptor for human urokinase-type plasminogen activator. A domain structure belonging to a novel superfamily of glycolipid-anchored membrane proteins

    DEFF Research Database (Denmark)

    Ploug, M; Kjalke, M.; Rønne, E

    1993-01-01

    with chymotrypsin. The four disulfide bonds present within this domain were assigned by a combination of plasma desorption mass spectrometry, amino acid composition, and sequence analyses of peptides generated by trypsin, endoproteinase Asp-N, and thermolysin. The following disulfide bond structure was determined...

  20. Yogurt and weight management.

    Science.gov (United States)

    Jacques, Paul F; Wang, Huifen

    2014-05-01

    A large body of observational studies and randomized controlled trials (RCTs) has examined the role of dairy products in weight loss and maintenance of healthy weight. Yogurt is a dairy product that is generally very similar to milk, but it also has some unique properties that may enhance its possible role in weight maintenance. This review summarizes the human RCT and prospective observational evidence on the relation of yogurt consumption to the management and maintenance of body weight and composition. The RCT evidence is limited to 2 small, short-term, energy-restricted trials. They both showed greater weight losses with yogurt interventions, but the difference between the yogurt intervention and the control diet was only significant in one of these trials. There are 5 prospective observational studies that have examined the association between yogurt and weight gain. The results of these studies are equivocal. Two of these studies reported that individuals with higher yogurt consumption gained less weight over time. One of these same studies also considered changes in waist circumference (WC) and showed that higher yogurt consumption was associated with smaller increases in WC. A third study was inconclusive because of low statistical power. A fourth study observed no association between changes in yogurt intake and weight gain, but the results suggested that those with the largest increases in yogurt intake during the study also had the highest increase in WC. The final study examined weight and WC change separately by sex and baseline weight status and showed benefits for both weight and WC changes for higher yogurt consumption in overweight men, but it also found that higher yogurt consumption in normal-weight women was associated with a greater increase in weight over follow-up. Potential underlying mechanisms for the action of yogurt on weight are briefly discussed.

  1. The cellular mastermind(?) – Mechanotransduction and the nucleus

    Science.gov (United States)

    Kaminski, Ashley; Fedorchak, Gregory R.; Lammerding, Jan

    2015-01-01

    Cells respond to mechanical stimulation by activation of specific signaling pathways and genes that allow the cell to adapt to its dynamic physical environment. How cells sense the various mechanical inputs and translate them into biochemical signals remains an area of active investigation. Recent reports suggest that the cell nucleus may be directly implicated in this cellular mechanotransduction process. In this chapter, we discuss how forces applied to the cell surface and cytoplasm induce changes in nuclear structure and organization, which could directly affect gene expression, while also highlighting the complex interplay between nuclear structural proteins and transcriptional regulators that may further modulate mechanotransduction signaling. Taken together, these findings paint a picture of the nucleus as a central hub in cellular mechanotransduction—both structurally and biochemically—with important implications in physiology and disease. PMID:25081618

  2. Eigentime identities for on weighted polymer networks

    Science.gov (United States)

    Dai, Meifeng; Tang, Hualong; Zou, Jiahui; He, Di; Sun, Yu; Su, Weiyi

    2018-01-01

    In this paper, we first analytically calculate the eigenvalues of the transition matrix of a structure with very complex architecture and their multiplicities. We call this structure polymer network. Based on the eigenvalues obtained in the iterative manner, we then calculate the eigentime identity. We highlight two scaling behaviors (logarithmic and linear) for this quantity, strongly depending on the value of the weight factor. Finally, by making use of the obtained eigenvalues, we determine the weighted counting of spanning trees.

  3. Molecular, cellular, and tissue engineering

    CERN Document Server

    Bronzino, Joseph D

    2015-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  4. REGULATORY MECHANISMS OF CELLULAR RESPIRATION

    Science.gov (United States)

    Barron, E. S. Guzman; Nelson, Leonard; Ardao, Maria Isabel

    1948-01-01

    Oxidizing agents of sulfhydryl groups such as iodosobenzoate, alkylating agents such as iodoacetamide, and mercaptide-forming agents such as cadmium chloride, mercuric chloride, p-chloromercuribenzoate, sodium arsenite, and p-carboxyphenylarsine oxide, added in small concentrations to a suspension of sea urchin sperm produced an increase in respiration. When the concentration was increased there was an inhibition. These effects are explained by postulating the presence in the cells of two kinds of sulfhydryl groups: soluble sulfhydryl groups, which regulate cellular respiration, and fixed sulfhydryl groups, present in the protein moiety of enzymes. Small concentrations of sulfhydryl reagents combine only with the first, thus producing an increase in respiration; when the concentration is increased, the fixed sulfhydryl groups are also attacked and inhibition of respiration is the consequence. Other inhibitors of cell respiration, such as cyanide and urethanes, which do not combine with —SH groups, did not stimulate respiration in small concentration. PMID:18891144

  5. Discrete geodesics and cellular automata

    CERN Document Server

    Arrighi, Pablo

    2015-01-01

    This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation---as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length. KEYWORDS: Discrete connection, parallel transport, general relativity, Regge calculus.

  6. Cellular compartmentalization of secondary metabolism

    Directory of Open Access Journals (Sweden)

    H. Corby eKistler

    2015-02-01

    Full Text Available Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g. amino acids, acetyl CoA, NADPH, enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported.

  7. Electrical perturbation of cellular premixed propane/air flames

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, C.L.; Harris, H.H. (Univ. of Missouri, St. Louis, MO (United States). Dept. of Chemistry)

    1994-06-01

    The phenomenon originally called polyhedral flame structure was first reported 100 years ago. Subsequent investigations showed that polyhedral structure was only one example of a more general phenomenon known now as cellular flame structure, and the range of combustion mixtures that produce them has been broadened to include lean mixtures of H[sub 2]/air, lean H[sub 2]/Br[sub 2], and rich mixtures of hydrocarbons from ethylene to octane with air. Of particular interest to the authors is the role of charged species in flames, and especially in flames that exhibit cellular structure. The electrical aspects of combustion has a long and distinguished history and this subject has been the subject of a classic monograph by Lawton and Weinberg. Electrical perturbation has been reported to affect the temperature of flames, to stabilize them at high flow rates and, in the absence of gravity, to change the speed of flame propagation, and to affect the amount of soot produced. The authors report here that premixed propane/air flames exhibiting cellular structure are quite susceptible to perturbation by electric fields. Since only charged species in the flame would be affected by the potential, and a small current would not modify transport properties of neutral species appreciably, this observation suggests that studies of this type may be useful in helping to further elucidate the role of charged species in flames.

  8. Weight maintenance: what's missing?

    Science.gov (United States)

    Hill, James O; Thompson, Helen; Wyatt, Holly

    2005-05-01

    Obesity has reached epidemic proportions in the United States, but there are few proven strategies for either preventing further weight gain or producing permanent weight loss. Our first priority should be to prevent the gradual weight gain experienced by much of the population. Although this will require less behavior change than producing and maintaining weight loss, helping Americans make and sustain the behavior changes needed to prevent gradual weight increases will be challenging. Because approximately 65% of Americans are already overweight or obese, we must also develop effective strategies to help achieve and maintain an amount of weight loss that improves their health and quality of life. Our real challenge is not in helping people lose weight but in helping them keep it off. Many programs have been shown to produce weight loss but few, if any, have been successful in maintenance of weight loss. Our challenge is in understanding how to help people keep off the weight they can lose in several ways.

  9. Cellularity of porcine adipose tissue: effects of growth and adiposity.

    Science.gov (United States)

    Hood, R L; Allen, C E

    1977-05-01

    Adipose tissue, from two depots in pigs of three breeding groups with different propensities to fatten, was characterized in terms of weight of the adipose tissue organ, adipose cell number, and mean cell volume as determined by electronic counting of adipose cells fixed with osmium tetroxide. Perirenal and extramuscular adipose tissue growth was accompanied by progressive adipose cell enlargement along with an increase in cell number. By approximately 18-20 weeks of life, adipose tissue growth in both lean Hampshire x Yorkshire and fat Minnesota 3 x 1 pigs occurred exclusively by cellular hypertrophy. By 24 weeks of life (37 kg), hyperplasia was complete in Hormel Miniature pigs, which contained about one-third as many extramuscular adipose cells as the conventional pigs. Adiposity in the pig was due to cellular hypertrophy rather than cellular hyperplasia, since during growth, the leaner conventional pigs (30.6% extramuscular fat) contained more adipose cells than the fatter pigs (46.6% extramuscular fat). The number of adipose cells per animal or per adipose organ was directly related to the true body size (weight of fat-free carcass) of the animal. Fat Minnesota 3 x 1 pigs had fewer adipose cells than lean Hampshire x Yorkshire pigs at an equivalent live weight due to the smaller true body size of these animals. In young animals (28 and 54 kg), growth rate was positively correlated with adipose cell number. However, growth rate was unrelated to the total number of cells in the more mature animals (83 and 109 kg). Therefore a slow, normal growth rate may delay but not alter the final cell number.

  10. Serial production of cellular structures - no additives allowed!: Presentation held at 8th International Conference on Porous Metals and Metallic Foams, METFOAM 2013, June 23rd to 26th, 2013, Raleigh, NC

    OpenAIRE

    Hannemann, Christian; Scholz, Steffen

    2013-01-01

    As reported during the last years the Lightweight design department of the Fraunhofer-IWU is collaborating with several foundries. The projects reach from energy management up to product development and include technology research as well. Especially in high pressure die casting most of the products are material minimized till the edge of the castability. The wall thickness is decreased to the possible extreme, holes are integrated and structures created by topology optimization pushing this ...

  11. Oxidative stress action in cellular aging

    Directory of Open Access Journals (Sweden)

    Monique Cristine de Oliveira

    2010-12-01

    Full Text Available Various theories try to explain the biological aging by changing the functions and structure of organic systems and cells. During lifetime, free radicals in the oxidative stress lead to lipid peroxidation of cellular membranes, homeostasis imbalance, chemical residues formation, gene mutations in DNA, dysfunction of certain organelles, and the arise of diseases due to cell death and/or injury. This review describes the action of oxidative stress in the cells aging process, emphasizing the factors such as cellular oxidative damage, its consequences and the main protective measures taken to prevent or delay this process. Tests with antioxidants: vitamins A, E and C, flavonoids, carotenoids and minerals, the practice of caloric restriction and physical exercise, seeking the beneficial effects on human health, increasing longevity, reducing the level of oxidative stress, slowing the cellular senescence and origin of certain diseases, are discussed.Diferentes teorias tentam explicar o envelhecimento biológico através da alteração das funções e estrutura dos sistemas orgânicos e células. Ao longo da vida, os radicais livres presentes no estresse oxidativo conduzem à peroxidação dos lipídios das membranas celulares, desequilíbrio da homeostase, formação de resíduos químicos, mutações gênicas no DNA, disfunção de certas organelas, bem como ao surgimento de doenças devido à lesão e/ou morte celular. Nesta revisão descreve-se a ação do estresse oxidativo no processo de envelhecimento das células, enfatizando fatores como os danos oxidativos celulares, suas conseqüências e as principais medidas protetoras adotadas para se prevenir ou retardar este processo. Testes com antioxidantes: vitaminas A, E e C, flavonóides, carotenóides e minerais; a prática de restrição calórica e exercícios físicos, que buscam efeitos benéficos sobre a saúde humana, aumentando a longevidade, reduzindo o nível de estresse oxidativo

  12. Molecular and cellular constraints on proteins

    Science.gov (United States)

    Kortemme, Tanja

    Engineering proteins with new sequences, structures and functions has many exciting practical applications, and provides new ways to dissect design principles for function. Recent successes in computational protein design provide a cause for optimism. Yet many functions are currently too complex to engineer predictively, and successful design of new biological activities also requires an understanding of the functional pressures acting on proteins in the context of cells and organisms. I will present two vignettes describing our progress with dissecting both molecular and cellular constraints on protein function. In the first, we characterized the cost and benefit of protein production upon sequence perturbations in a classic system for gene regulation, the lac operon. Our results were unexpected in light of the common assumption that the dominant fitness costs are due to protein expression. Instead, we discovered a direct linear relationship between cost and lacpermease activity, not protein or mRNA production. The magnitude of the cost of permease activity, relative to protein production, has consequences for regulation. Our model predicts an advantage of direct regulation of protein activity (not just expression), providing a new explanation for the long-known mechanism of ``inducer exclusion'' that inhibits transport through the permease. Similar pressures and cost/benefit tradeoffs may be key to engineering synthetic systems with improved fitness. In the second vignette, I will describe our recent efforts to develop computational approaches that predict protein sequences consistent with multiple functional conformations. We expect such ``multi-constraint'' models to improve predictions of functional sequences determined by deep mutational scanning in bacteria, to provide insights into how the balance between functional conformations shapes sequence space, and to highlight molecular and cellular constraints that cannot be captured by the model.

  13. Effect of weight fraction of carbon black and number of plies of E-glass fiber to reflection loss of E-glass/ripoxy composite for radar absorbing structure (RAS)

    Science.gov (United States)

    Widyastuti, Ramadhan, Rizal; Ardhyananta, Hosta; Zainuri, Mochamad

    2013-09-01

    Nowadays, studies on investigating radar absorbing structure (RAS) using fiber reinforced polymeric (FRP) composite materials are becoming popular research field because the electromagnetic properties of FRP composites can be tailored effectively by just adding some electromagnetic powders, such as carbon black, ferrite, carbonyl iron, and etc., to the matrix of composites. The RAS works not only as a load bearing structure to hold the antenna system, but also has the important function of absorbing the in-band electromagnetic wave coming from the electromagnetic energy of tracking systems. In this study, E-glass fiber reinforced ripoxy resin composite was fabricated by blending the conductive carbon black (Ketjenblack EC300J) with the binder matrix of the composite material and maximizing the coefficient of absorption more than 90% (more than -10 dB) within the X-band frequency (8 - 12 GHz). It was measured by electrical conductivity (LCR meter) and vector network analyzer (VNA). Finally, the composite RAS with 0.02 weight fraction of carbon black and 4 plies of E-glass fiber showed thickness of 2.1 mm, electrical conductivity of 8.33 × 10-6 S/m, and maximum reflection loss of -27.123 dB, which can absorb more than 90% of incident EM wave throughout the entire X-band frequency range, has been developed.

  14. Atomic resolution crystal structure of VcLMWPTP-1 from Vibrio cholerae O395: Insights into a novel mode of dimerization in the low molecular weight protein tyrosine phosphatase family

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Seema; Banerjee, Ramanuj; Sen, Udayaditya, E-mail: udayaditya.sen@saha.ac.in

    2014-07-18

    Highlights: • VcLMWPTP-1 forms dimer in solution. • The dimer is catalytically active unlike other reported dimeric LMWPTPs. • The formation of extended dimeric surface excludes the active site pocket. • The surface bears closer resemblance to eukaryotic LMWPTPs. - Abstract: Low molecular weight protein tyrosine phosphatase (LMWPTP) is a group of phosphotyrosine phosphatase ubiquitously found in a wide range of organisms ranging from bacteria to mammals. Dimerization in the LMWPTP family has been reported earlier which follows a common mechanism involving active site residues leading to an enzymatically inactive species. Here we report a novel form of dimerization in a LMWPTP from Vibrio cholera 0395 (VcLMWPTP-1). Studies in solution reveal the existence of the dimer in solution while kinetic study depicts the active form of the enzyme. This indicates that the mode of dimerization in VcLMWPTP-1 is different from others where active site residues are not involved in the process. A high resolution (1.45 Å) crystal structure of VcLMWPTP-1 confirms a different mode of dimerization where the active site is catalytically accessible as evident by a tightly bound substrate mimicking ligand, MOPS at the active site pocket. Although being a member of a prokaryotic protein family, VcLMWPTP-1 structure resembles very closely to LMWPTP from a eukaryote, Entamoeba histolytica. It also delineates the diverse surface properties around the active site of the enzyme.

  15. Cellular computational platform and neurally inspired elements thereof

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat

    2016-11-22

    A cellular computational platform is disclosed that includes a multiplicity of functionally identical, repeating computational hardware units that are interconnected electrically and optically. Each computational hardware unit includes a reprogrammable local memory and has interconnections to other such units that have reconfigurable weights. Each computational hardware unit is configured to transmit signals into the network for broadcast in a protocol-less manner to other such units in the network, and to respond to protocol-less broadcast messages that it receives from the network. Each computational hardware unit is further configured to reprogram the local memory in response to incoming electrical and/or optical signals.

  16. Cellular Automata with network incubation in information technology diffusion

    Science.gov (United States)

    Guseo, Renato; Guidolin, Mariangela

    2010-06-01

    Innovation diffusion of network goods determines direct network externalities that depress sales for long periods and delay full benefits. We model this effect through a multiplicative dynamic market potential driven by a latent individual threshold embedded in a special Cellular Automata representation. The corresponding mean field approximation of its aggregate version is a Riccati equation with a closed form solution. This allows the detection of a change-point time separating an incubation period from a subsequent take-off due to a collective threshold (critical mass). Weighted nonlinear least squares are the main inferential methodology. An application is analysed with reference to USA fax machine diffusion.

  17. Healthy weight game!: Lose weight together

    NARCIS (Netherlands)

    Lentelink, S.J.; Spil, Antonius A.M.; Broens, T.; Broens, T.H.F.; Hermens, Hermanus J.; Jones, Valerie M.

    2013-01-01

    Overweight and obesity pose a serious and increasing problem worldwide. Current treatment methods can result in weight loss in the short term but often fail in the longer term. Increasing motivation and thereby improving adherence can be a key factor in achieving the needed behavioral change. One

  18. Estrutura e celularidade de meniscos frescos de coelhos (Oryctolagus cuniculus preservados em glicerina Structure and cellularity of the fresh menisci (Oryctolagus cuniculus of rabbits and the menisci preserved in glycerin

    Directory of Open Access Journals (Sweden)

    Liana M. Vilela

    2010-04-01

    Full Text Available No presente estudo foi avaliada a arquitetura tecidual, a população celular, assim como a integridade e a distribuição dos tipos celulares em meniscos frescos de coelhos e preservados em glicerina 98%. Foram analisados meniscos mediais de coelhos recém abatidos, que foram distribuídos em três grupos: o grupo MF (n=7, composto por meniscos frescos, correspondeu ao grupo controle; o grupo MG (n=7, composto por meniscos preservados em glicerina 98%, por 30 dias, e o grupo MR (n=7, por meniscos preservados em glicerina 98% e reidratados em NaCl 0,9%, por 12 horas. Em todos os meniscos foram identificados e quantificados os diferentes tipos celulares: fibroblastos/fibrócitos e condrócitos. A população celular foi estatisticamente semelhante nos três grupos de meniscos, sendo que os meniscos preservados, grupos MG e MR, apresentaram menor intensidade de coloração e retração das fibras colágenas, diminuição de volume e maior intensidade de coloração dos núcleos (condensação da cromatina, em relação aos meniscos frescos (MF, caracterizando o fenômeno de lise celular. A matriz fibrocartilaginosa dos meniscos preservados revelou- se bem preservada mantendo a arquitetura tecidual dos meniscos. Conclui-se que a glicerina 98% é uma opção de meio de preservação para meniscos objetivando aloenxerto, com matriz colágena desvitalizada.In the present study was evaluated the tissue architecture, the percentage of cellular population, as well as viability and distribution of cells in fresh menisci of rabbits and preserved in 98% glycerin. Were analyzed medial menisci of rabbits freshly slaughtered, which were distributed into three groups: the MF group (n=7, composed of fresh menisci, corresponded to the control group; the MG group (n=7, composed by menisci preserved in 98% glycerin, for 30 days, and the MR group (n=7 by menisci preserved in 98% glycerin and rehydrated in NaCl 0.9% for 12 hours. In all menisci were identified and

  19. Noise Reduction Potential of Cellular Metals

    Directory of Open Access Journals (Sweden)

    Björn Hinze

    2012-06-01

    Full Text Available Rising numbers of flights and aircrafts cause increasing aircraft noise, resulting in the development of various approaches to change this trend. One approach is the application of metallic liners in the hot gas path of aero-engines. At temperatures of up to 600 °C only metallic or ceramic structures can be used. Due to fatigue loading and the notch effect of the pores, mechanical properties of porous metals are superior to the ones of ceramic structures. Consequently, cellular metals like metallic foams, sintered metals, or sintered metal felts are most promising materials. However, acoustic absorption depends highly on pore morphology and porosity. Therefore, both parameters must be characterized precisely to analyze the correlation between morphology and noise reduction performance. The objective of this study is to analyze the relationship between pore morphology and acoustic absorption performance. The absorber materials are characterized using image processing based on two dimensional microscopy images. The sound absorption properties are measured using an impedance tube. Finally, the correlation of acoustic behavior, pore morphology, and porosity is outlined.

  20. Predictors of weight maintenance

    NARCIS (Netherlands)

    Pasman, W.J.; Saris, W.H.M.; Westerterp-Plantenga, M.S.

    1999-01-01

    Objective: To obtain predictors of weight maintenance after a weight-loss intervention. Research Methods and Procedures: An overall analysis of data from two-long intervention studies [n = 67 women; age: 37.9±1.0 years; body weight (BW): 87.0±1.2 kg; body mass index: 32.1±0.5 kg·m-2; % body fat: