WorldWideScience

Sample records for wedge splitting test

  1. Wedge Splitting Test and Fracture Energy on Particulate Reinforced Composites

    Energy Technology Data Exchange (ETDEWEB)

    Na, Seong Hyeon; Kim, Jae Hoon; Choi, Hoon Seok [Chungnam National Univ., Daejeon (Korea, Republic of); Park, Jae Beom; Kim, Shin Hoe; Jung, Gyoo Dong [Agency for Defense Developmen, Daejeon (Korea, Republic of)

    2016-03-15

    The effect of temperature on the fracture energy, crack propagation, and crack tip opening displacement(CTOD) was determined for particulate reinforced composites using the wedge splitting test. The materials that were used consisted of a polymer binder, an oxidizing agent, and aluminum particles. The test rate of the wedge splitting specimen was 50 mm/min, the temperature conditions were 50℃, room temperature, -40℃, and -60℃. The fracture energy, calculated from splitting load-crack mouth opening displacement(CMOD) curves, increased with decreasing temperature from 50℃ to -40℃. In addition, the strength of the particulate reinforced composites increased sharply at -60℃, and the composites evidenced brittle fracture due to the glass transition temperature. The strain fields near the crack tip were analyzed using digital image correlation.

  2. Interpretation and inverse analysis of the wedge splitting test

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Stang, Henrik

    2002-01-01

    Determination of the stress-crack opening relationship, s(w) a material parameter in the fictitious crack model by Hillerborg has proven to be problematic and is still not a simple task to perform. However, this paper demonstrates that the cracked non-linear hinge model by Olesen may be applied...... to the wedge splitting test and that it is well suited for the interpretation of test results in terms of s(w). A fine agreement between the hinge and FEM-models has been found. It has also been found that the test and the hinge model form a solid basis for inverse analysis. The paper also discusses possible...

  3. Inverse analysis of the wedge-splitting test

    DEFF Research Database (Denmark)

    Skocek, Jan; Stang, Henrik

    2008-01-01

    The amount of information which it is possible to retrieve from the wedge-splitting test is investigated. Inverse analysis is undertaken based on the analytical hinge model for various multi-linear softening curves. This showed that the commonly used bi-linear softening curve can be replaced...... by an tip to quad-linear curve, which is reflected by increased accuracy of the test simulation. Furthermore it was demonstrated that the next refinement of the softening curve leads to convergence problems due to problems with local minima. Finally, the semi-analytically obtained results are verified using...

  4. The Wedge Splitting Test: Influence of Aggregate Size and Water-to-Cement Ratio

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Skocek, Jan; Geiker, Mette Rica;

    2007-01-01

    of various concrete mixtures there are limitations to the current analysis techniques. To date these techniques analyze the result of one WST specimen, thereby providing an estimate of material properties from single result. This paper utilizes a recent improvement to the inverse analysis technique, which......Since the development of the wedge splitting test (WST), techniques have been used to extract material properties that can describe the fracture behavior of the tested materials. Inverse analysis approaches are commonly used to estimate the stress-crack width relationship; which is described...... by the elastic modulus, tensile strength, fracture energy, and the assumed softening behavior. The stress-crack width relation can be implemented in finite element models for computing the cracking behavior of cementitious systems. While inverse analysis provides information about the material properties...

  5. Fatigue crack behaviour: comparing three-point bend test and wedge splitting test data on vibrated concrete using Paris' law

    Directory of Open Access Journals (Sweden)

    S. Seitl

    2017-01-01

    Full Text Available The fatigue behaviour of concrete has become more important for the design of constructions due to the desire to build slimmer structures, which are more sensitive to fatigue loading. This article aims to evaluate and compare the fatigue crack propagation rate in vibrated concrete for four different stress ratios using the Paris-Erdogan law. The data evaluation in this article is based on crack mouth opening displacement (CMOD measurements from cyclic three-point bending tests on single edge notched beams and from wedge splitting tests on notched cubes, obtained from experiments at Ghent University. For this study, finite element analysis is used to obtain a mathematical relationship between the CMOD and the relative crack length a/W, as well as a relationship between the stress intensity ratio ∆K and a/W. The obtained mathematical relationships were then combined with the measured CMOD values to correlate the test data to the Paris-Erdogan law. Herein, the crack propagation rate da/dN is plotted against the corresponding stress intensity range ∆K in a log-log graph. In a final step, the Paris-Erdogan law parameters C and m were obtained through linear curve fitting on the data points from the obtained graphs. The parameters C and m are then used to compare and evaluate the fatigue crack behavior in vibrated concrete, and the differences between the results from the three-point bend tests and wedge splitting tests.

  6. Strain Measurements within Fibre Boards. Part II: Strain Concentrations at the Crack Tip of MDF Specimens Tested by the Wedge Splitting Method

    Directory of Open Access Journals (Sweden)

    Jörn Rathke

    2012-08-01

    Full Text Available This is the second part of an article series where the mechanical and fracture mechanical properties of medium density fiberboard (MDF were studied. While the first part of the series focused on internal bond strength and density profiles, this article discusses the fracture mechanical properties of the core layer. Fracture properties were studied with a wedge splitting setup. The critical stress intensity factors as well as the specific fracture energies were determined. Critical stress intensity factors were calculated from maximum splitting force and two-dimensional isotropic finite elements simulations of the specimen geometry. Size and shape of micro crack zone were measured with electronic laser speckle interferometry. The process zone length was approx. 5 mm. The specific fracture energy was determined to be 45.2 ± 14.4 J/m2 and the critical stress intensity factor was 0.11 ± 0.02 MPa.

  7. Strain Measurements within Fibre Boards. Part II: Strain Concentrations at the Crack Tip of MDF Specimens Tested by the Wedge Splitting Method

    Science.gov (United States)

    Sinn, Gerhard; Müller, Ulrich; Konnerth, Johannes; Rathke, Jörn

    2012-01-01

    This is the second part of an article series where the mechanical and fracture mechanical properties of medium density fiberboard (MDF) were studied. While the first part of the series focused on internal bond strength and density profiles, this article discusses the fracture mechanical properties of the core layer. Fracture properties were studied with a wedge splitting setup. The critical stress intensity factors as well as the specific fracture energies were determined. Critical stress intensity factors were calculated from maximum splitting force and two-dimensional isotropic finite elements simulations of the specimen geometry. Size and shape of micro crack zone were measured with electronic laser speckle interferometry. The process zone length was approx. 5 mm. The specific fracture energy was determined to be 45.2 ± 14.4 J/m2 and the critical stress intensity factor was 0.11 ± 0.02 MPa.

  8. Refinement of the wedge bar technique for compression tests at intermediate strain rates

    Directory of Open Access Journals (Sweden)

    Stander M.

    2012-08-01

    Full Text Available A refined development of the wedge-bar technique [1] for compression tests at intermediate strain rates is presented. The concept uses a wedge mechanism to compress small cylindrical specimens at strain rates in the order of 10s−1 to strains of up to 0.3. Co-linear elastic impact principles are used to accelerate the actuation mechanism from rest to test speed in under 300μs while maintaining near uniform strain rates for up to 30 ms, i.e. the transient phase of the test is less than 1% of the total test duration. In particular, a new load frame, load cell and sliding anvil designs are presented and shown to significantly reduce the noise generated during testing. Typical dynamic test results for a selection of metals and polymers are reported and compared with quasistatic and split Hopkinson pressure bar results.

  9. Testing split supersymmetry with inflation

    Science.gov (United States)

    Craig, Nathaniel; Green, Daniel

    2014-07-01

    Split supersymmetry (SUSY) — in which SUSY is relevant to our universe but largely inaccessible at current accelerators — has become increasingly plausible given the absence of new physics at the LHC, the success of gauge coupling unification, and the observed Higgs mass. Indirect probes of split SUSY such as electric dipole moments (EDMs) and flavor violation offer hope for further evidence but are ultimately limited in their reach. Inflation offers an alternate window into SUSY through the direct production of superpartners during inflation. These particles are capable of leaving imprints in future cosmological probes of primordial non-gaussianity. Given the recent observations of BICEP2, the scale of inflation is likely high enough to probe the full range of split SUSY scenarios and therefore offers a unique advantage over low energy probes. The key observable for future experiments is equilateral non-gaussianity, which will be probed by both cosmic microwave background (CMB) and large scale structure (LSS) surveys. In the event of a detection, we forecast our ability to find evidence for superpartners through the scaling behavior in the squeezed limit of the bispectrum.

  10. Investigation of a Wedge Adhesion Test for Edge Seals

    Energy Technology Data Exchange (ETDEWEB)

    Kempe, Michael; Wohlgemuth, John; Miller, David; Postak, Lori; Booth, Dennis; Phillips, Nancy

    2016-09-26

    Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adapting the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be

  11. Investigation of a wedge adhesion test for edge seals

    Science.gov (United States)

    Kempe, Michael; Wohlgemuth, John; Miller, David; Postak, Lori; Booth, Dennis; Phillips, Nancy

    2016-09-01

    Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adapting the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be

  12. Large scale test of wedge shaped micro strip gas counters

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Atz, S.; Aulchenko, V.; Bachmann, S.; Baiboussinov, B.; Barthe, S.; Beaumont, W.; Beckers, T.; Beissel, F.; Benhammou, Y.; Bergdolt, A.M.; Bernier, K.; Bluem, P.; Bondar, A.; Bouhali, O.; Boulogne, I.; Bozzo, M.; Brom, J.M.; Camps, C.; Chorowicz, V.; Coffin, J.; Commichau, V.; Contardo, D.; Croix, J.; Troy, J. de; Drouhin, F.; Eberle, H.; Fluegge, G.; Fontaine, J.-C.; Geist, W.; Goerlach, U.; Gundlfinger, K.; Hangarter, K.; Haroutunian, R.; Helleboid, J.M.; Henkes, Th.; Hoffer, M.; Hoffman, C.; Huss, D.; Ischebeck, R.; Jeanneau, F.; Juillot, P.; Junghans, S.; Kapp, M.R.; Kaercher, K.; Knoblauch, D.; Kraeber, M.; Krauth, M.; Kremp, J.; Lounis, A.; Luebelsmeyer, K.; Maazouzi, C.; Macke, D.; Metri, R.; Mirabito, L.; Mueller, Th.; Nagaslaev, V.; Neuberger, D.; Nowack, A.; Pallares, A.; Pandoulas, D.; Petertill, M.; Pooth, O.; Racca, C.; Ripp, I.; Ruoff, E.; Sauer, A.; Schmitz, P.; Schulte, R.; Schultz von Dratzig, A.; Schunk, J.P.; Schuster, G.; Schwaller, B.; Shektman, L.; Siedling, R.; Sigward, M.H.; Simonis, H.J.; Smadja, G.; Stefanescu, J.; Szczesny, H.; Tatarinov, A.; Thuemmel, W.H.; Tissot, S.; Titov, V.; Todorov, T.; Tonutti, M.; Udo, F.; Velde, C. Vander. E-mail: vandervelde@hep.iihe.ac.be; Doninck, W. van; Dyck, Ch. van; Vanlaer, P.; Lancker, L. van; Verdini, P.G.; Weseler, S.; Wittmer, B.; Wortmann, R.; Zghiche, A.; Zhukov, V

    1999-11-01

    In order to check the system aspects of the forward-backward MSGC tracker designed for the future CMS experiment at LHC, 38 trapezoidal MSGC counters assembled in six multi-substrates detector modules were built and exposed to a muon beam at the CERN SPS. Results on the gain uniformity along the wedge-shaped strip pattern and across the detector modules are shown together with measurements of the detection efficiency and the spatial resolution.

  13. Large scale test of wedge shaped micro strip gas counters

    CERN Document Server

    Ackermann, M; Aulchenko, V M; Bachmann, S; Baibusinov, B O; Barthe, S; Beaumont, W; Beckers, T; Beissel, F; Benhammou, Ya; Bergdolt, A M; Bernier, K; Blüm, H P; Bondar, A E; Bouhali, O; Boulogne, I; Bozzo, M; Brom, J M; Camps, C; Chorowicz, V; Coffin, J P; Commichau, V; Contardo, D; Croix, J; De Troy, J G; Drouhin, F; Eberle, H; Flügge, G; Fontaine, J C; Geist, Walter M; Goerlach, U; Gundlfinger, K; Hangarter, K; Haroutunian, R; Helleboid, J M; Henkes, T; Hoffer, M; Hoffmann, C; Huss, D; Ischebeck, R; Jeanneau, F; Juillot, P; Junghans, S; Kapp, M R; Kärcher, K; Knoblauch, D; Kräber, M H; Krauth, M; Kremp, J; Lounis, A; Lübelsmeyer, K; Maazouzi, C; Macke, D; Metri, R; Mirabito, L; Müller, T; Nagaslaev, V; Neuberger, D; Nowak, A; Pallarès, A; Pandoulas, D; Petertill, M; Pooth, O; Racca, C; Ripp, I; Ruoff, E; Sauer, A; Schmitz, P; Schulte, R; Schultz von Dratzig, A; Schunk, J P; Schuster, G; Schwaller, B; Shekhtman, L I; Siedling, R; Sigward, M H; Simonis, H J; Smadja, G; Stefanescu, J; Szczesny, H; Tatarinov, A A; Thümmel, W H; Tissot, S; Titov, V; Todorov, T; Tonutti, M; Udo, Fred; Van der Velde, C; Van Doninck, W K; Van Dyck, C; Vanlaer, P; Van Lancker, L; Verdini, P G; Weseler, S; Wittmer, B; Wortmann, R; Zghiche, A; Zhukov, V

    1999-01-01

    In order to check the system aspects of the forward-backward MSGC tracker designed for the future CMS experiment at LHC, 38 trapezoidal MSGC counters assembled in six multi-substrates detector modules were built and exposed to a muon beam at the CERN SPS. Results on the gain uniformity along the wedge-shaped strip pattern and across the detector modules are shown together with measurements of the detection efficiency and the spatial resolution. (8 refs).

  14. Development of Cone Wedge Ring Expansion Test to Evaluate Mechanical Properties of Clad Tubing Structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    To determine the hoop tensile properties of irradiated fuel cladding in a hot cell, a cone wedge ring expansion test method was developed. A four-piece wedge insert was designed with tapered angles matched to the cone shape of a loading piston. The ring specimen was expanded in the radial direction by the lateral expansion of the wedges under the downward movement of the piston. The advantages of the proposed method are that implementation of the test setup in a hot cell is simple and easy, and that it enables a direct strain measurement of the test specimen from the piston’s vertical displacement soon after the wedge-clad contact resistance is initiated.

  15. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests

    Science.gov (United States)

    Gokcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Panel test articles included a metallic separation bolt imbedded in the compression-pad and heat shield materials, resulting in a circular protuberance over a flat plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.

  16. Analysis of Adhesively Bonded Ceramics Using an Asymmetric Wedge Test

    Science.gov (United States)

    2008-12-01

    moisture durability of adhesive bonding of ceramics is dental applications (12–14). The adhesive bonding of ceramic orthodontic inserts presents unique...sample sets. Environmental exposure is often limited to mechanical testing on the millimeter scale of bonded ceramic blocks or extracted human...Dressler, K. B.; Grenadier, M. R. Direct Bonding of Orthodontic Brackets to Esthetic Restorative Materials Using a Silane. Am. J. Orthodontics and

  17. Fastening of a High-Strength Composite Rod with a Splitted and Wedged End in a Potted Anchor 2. Finite-Element Analysis

    Science.gov (United States)

    Kulakov, V. L.; Terrasi, G. P.; Arnautov, A. K.; Portnov, G. G.; Kovalov, A. O.

    2014-03-01

    A finite element analysis is carried out to determine the stress-strain state of anchors for round rods made of a high- modulus, high-strength unidirectional carbon-fiber reinforced plastic. The rods have splitted ends in which Duralumin wedges are glued. Three types of contact between the composite rods and a potted epoxy compound are considered: adhesion, adhesion-friction, and friction ones. The corresponding three-dimensional problems in the elastic statement are solved by the finite-element method (FEM) with account of nonlinear Coulomb friction. An analysis of stresses on the surface of the composite rod revealed the locations of high concentrations of operating stresses. The results of FEM calculations agree with experimental data.

  18. Nonlinear Fracture Mechanics and Plasticity of the Split Cylinder Test

    DEFF Research Database (Denmark)

    Olesen, John Forbes; Østergaard, Lennart; Stang, Henrik

    2006-01-01

    demonstrates the influence of varying geometry or constitutive properties. For a split cylinder test in load control it is shown how the ultimate load is either plasticity dominated or fracture mechanics dominated. The transition between the two modes is related to changes in geometry or constitutive......The split cylinder testis subjected to an analysis combining nonlinear fracture mechanics and plasticity. The fictitious crack model is applied for the analysis of splitting tensile fracture, and the Mohr-Coulomb yield criterion is adopted for modelling the compressive crushing/sliding failure. Two...

  19. Mantle flow in subduction systems: The mantle wedge flow field and implications for wedge processes

    Science.gov (United States)

    Long, Maureen D.; Wirth, Erin A.

    2013-02-01

    The mantle wedge above subducting slabs is associated with many important processes, including the transport of melt and volatiles. Our understanding of mantle wedge dynamics is incomplete, as the mantle flow field above subducting slabs remains poorly understood. Because seismic anisotropy is a consequence of deformation, measurements of shear wave splitting can constrain the geometry of mantle flow. In order to identify processes that make first-order contributions to the pattern of wedge flow, we have compiled a data set of local S splitting measurements from mantle wedges worldwide. There is a large amount of variability in splitting parameters, with average delay times ranging from ~0.1 to 0.3 s up to ~1.0-1.5 s and large variations in fast directions. We tested for relationships between splitting parameters and a variety of parameters related to subduction processes. We also explicitly tested the predictions made by 10 different models that have been proposed to explain splitting patterns in the mantle wedge. We find that no simple model can explain all of the trends observed in the global data set. Mantle wedge flow is likely controlled by a combination of downdip motion of the slab, trench migration, ambient mantle flow, small-scale convection, proximity to slab edges, and slab morphology, with the relative contributions of these in any given subduction system controlled by the subduction kinematics and mantle rheology. There is also a likely contribution from B-type olivine and/or serpentinite fabric in many subduction zones, governed by the local thermal structure and volatile distribution.

  20. Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change

    Science.gov (United States)

    Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.

    2010-01-01

    Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.

  1. New machining and testing method of large angle infrared wedge mirror parts

    Science.gov (United States)

    Su, Ying; Guo, Rui; Zhang, Fumei; Zhang, Zheng; Liu, Xuanmin; Zengqi, Xu; Li, Wenting; Zhang, Feng

    2016-10-01

    Large angle wedge parts were widely used in the optical system that was used for achieving a wide range of scanning. Due to the parts having the characteristic of large difference in the thickness of both ends and high density, the accuracy of the wedge angle was hard to ensure to reach second level in optical processing. Generally, wedge mirror angle was measured by contact comparison method which was easy to damage the surface. In view of the existence of two practical problems, in this paper, based on theoretical analysis, by taking three key measures that were the accurate positioning for the central position of the large angle wedge part, the accuracy control of angle precision machined of wedge mirror and fast and non destructive laser assisted absolute measurement of large angle wedge, the qualified rate of parts were increased to 100%, a feasible, controllable and efficient process route for large angle infrared wedge parts was found out.

  2. Study on Mechanical Features of Brazilian Splitting Fatigue Tests of Salt Rock

    OpenAIRE

    Weichao Wang; Mengmeng Wang; Xiliang Liu

    2016-01-01

    The microtest, SEM, was carried out to study the fracture surface of salt rock after the Brazilian splitting test and splitting fatigue test were carried out with a servo-controlled test machine RMT-150B. The results indicate that the deviation of using the tablet splitting method is larger than that of using steel wire splitting method, in Brazilian splitting test of salt rock, when the conventional data processing method is adopted. There are similar deformation features in both the convent...

  3. Mantle wedge dynamics from seismic anisotropy (Invited)

    Science.gov (United States)

    Long, M. D.; Wirth, E. A.

    2013-12-01

    The mantle wedge above subducting slabs plays a critical role in many of the physical processes associated with subduction, including water transport into the upper mantle and the generation and transport of melts. Our understanding of mantle wedge dynamics is incomplete; in particular, the mantle flow field above subducting slabs remains poorly understood. Because seismic anisotropy is a consequence of deformation, observations of anisotropy (such as shear wave splitting and P-to-SH converted waves) can constrain the geometry of the wedge flow field. Additionally, because the presence of water (either in nominally anhydrous minerals or as hydrous phases) can have a large effect on anisotropic structure, a detailed understanding of mantle wedge anisotropy can help to constrain processes related to water cycling in subduction systems. We present a global, synoptic view of anisotropy observations in subduction zone mantle wedges, compiled from a large number of individual studies, with the goal of understanding the first-order controls on wedge anisotropy and flow patterns. This compilation allows us to explicitly test the predictions made by many different conceptual models for wedge anisotropy, as well as to explore the relationships between observed anisotropy parameters and other parameters that describe subduction. We find that no simple model can explain all of the trends observed in the global data set. Mantle wedge flow is likely controlled by a combination of downdip motion of the slab, trench migration, ambient mantle flow, small-scale convection, proximity to slab edges, and slab morphology, with the relative contributions of these in any given subduction system controlled by the subduction kinematics and mantle rheology. There is also a likely contribution from B-type olivine and/or serpentinite fabric in many subduction zones, governed by the local thermal structure and volatile distribution.

  4. Application of optical deformation analysis system on wedge splitting test and its inverse analysis

    DEFF Research Database (Denmark)

    Skocek, Jan; Stang, Henrik

    2010-01-01

    . Results of the inverse analysis are compared with traditional inverse analysis based on clip gauge data. Then the optically measured crack profile and crack tip position are compared with predictions done by the non-linear hinge model and a finite element analysis. It is shown that the inverse analysis...... based on the optically measured data can provide material parameters of the fictitious crack model matching favorably those obtained by classical inverse analysis based on the clip gauge data. Further advantages of using of the optical deformation analysis lie in identification of such effects...

  5. On split Hopkinson pressure bar testing of rubbers

    Science.gov (United States)

    Harrigan, John

    2011-06-01

    Split Hopkinson pressure bar (SHPB) studies of rubber materials are difficult due to their ability to undergo large deformations at low levels of stress. Analytical, numerical and experimental investigations are reported. The tests were performed using polymer bars. A key stage in this is the experimental determination of the propagation coefficient. An analytical investigation of the experimental arrangements used to ascertain the propagation coefficient is reported. A finite element (FE) simulation of longitudinal stress waves in solid, circular, polymer bars is presented also. The viscoelastic material definition employed in the FE simulations is obtained by curve fitting Prony series expansions to the experimentally derived elastic modulus. In order to assess the accuracy of the experimental arrangement, an FE model of the full viscoelastic SHPB set-up is then used to simulate tests on hyper-elastic materials with specified properties. Finally, experimental data for rubber materials at strain rates of the order of 1000 s-1 are presented.

  6. Study on Mechanical Features of Brazilian Splitting Fatigue Tests of Salt Rock

    Directory of Open Access Journals (Sweden)

    Weichao Wang

    2016-01-01

    Full Text Available The microtest, SEM, was carried out to study the fracture surface of salt rock after the Brazilian splitting test and splitting fatigue test were carried out with a servo-controlled test machine RMT-150B. The results indicate that the deviation of using the tablet splitting method is larger than that of using steel wire splitting method, in Brazilian splitting test of salt rock, when the conventional data processing method is adopted. There are similar deformation features in both the conventional splitting tests and uniaxial compression tests. The stress-strain curves include compaction, elasticity, yielding, and failure stage. Both the vertical deformation and horizontal deformation of splitting fatigue tests under constant average loading can be divided into three stages of “loosening-tightness-loosening.” The failure modes of splitting fatigue tests under the variational average loading are not controlled by the fracturing process curve of the conventional splitting tests. The deformation extent of fatigue tests under variational average loading is even greater than that of conventional splitting test. The tensile strength of salt rock has a relationship with crystallization conditions. Tensile strength of thick crystal salt rock is lower than the bonded strength of fine-grain crystals.

  7. Exploration in the test of splitting resilient modulus of asphalt mixture

    Science.gov (United States)

    Li, Peihong

    2017-06-01

    In terms of the non-correspondence about the bottom layer tensile stress provided by the compressive resilient modulus and the allowable tensile stress obtained by the splitting test, this paper puts forward the methods about splitting stepping testing by contrasting the compressive resilient modulus testing methods. Both the stepping load and resilient deformation are recorded. With the help of the concept of splitting stiffness modulus, the expression of splitting resilient modulus can be obtained to gain the splitting resilient testing flow. The results show that the resilient modulus which is measured by splitting stepping load can meet the design ranges of asphalt mixture and the stepping loading methods about splitting resilient modulus are worth popularizing.

  8. The use of permutation tests for the analysis of parallel and stepped-wedge cluster-randomized trials.

    Science.gov (United States)

    Wang, Rui; De Gruttola, Victor

    2017-08-15

    We investigate the use of permutation tests for the analysis of parallel and stepped-wedge cluster-randomized trials. Permutation tests for parallel designs with exponential family endpoints have been extensively studied. The optimal permutation tests developed for exponential family alternatives require information on intraclass correlation, a quantity not yet defined for time-to-event endpoints. Therefore, it is unclear how efficient permutation tests can be constructed for cluster-randomized trials with such endpoints. We consider a class of test statistics formed by a weighted average of pair-specific treatment effect estimates and offer practical guidance on the choice of weights to improve efficiency. We apply the permutation tests to a cluster-randomized trial evaluating the effect of an intervention to reduce the incidence of hospital-acquired infection. In some settings, outcomes from different clusters may be correlated, and we evaluate the validity and efficiency of permutation test in such settings. Lastly, we propose a permutation test for stepped-wedge designs and compare its performance with mixed-effect modeling and illustrate its superiority when sample sizes are small, the underlying distribution is skewed, or there is correlation across clusters. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Rethinking wedges

    Science.gov (United States)

    Davis, Steven J.; Cao, Long; Caldeira, Ken; Hoffert, Martin I.

    2013-03-01

    Abstract Stabilizing CO2 emissions at current levels for fifty years is not consistent with either an atmospheric CO2 concentration below 500 ppm or global temperature increases below 2 °C. Accepting these targets, solving the climate problem requires that emissions peak and decline in the next few decades, and ultimately fall to near zero. Phasing out emissions over 50 years could be achieved by deploying on the order of 19 'wedges', each of which ramps up linearly over a period of 50 years to ultimately avoid 1 GtC y-1 of CO2 emissions. But this level of mitigation will require affordable carbon-free energy systems to be deployed at the scale of tens of terawatts. Any hope for such fundamental and disruptive transformation of the global energy system depends upon coordinated efforts to innovate, plan, and deploy new transportation and energy systems that can provide affordable energy at this scale without emitting CO2 to the atmosphere. 1. Introduction In 2004, Pacala and Socolow published a study in Science arguing that '[h]umanity can solve the carbon and climate problem in the first half of this century simply by scaling up what we already know how to do' [1]. Specifically, they presented 15 options for 'stabilization wedges' that would grow linearly from zero to 1 Gt of carbon emissions avoided per year (GtC y-1 1 Gt = 1012 kg) over 50 years. The solution to the carbon and climate problem, they asserted, was 'to deploy the technologies and/or lifestyle changes necessary to fill all seven wedges of the stabilization triangle'. They claimed this would offset the growth of emissions and put us on a trajectory to stabilize atmospheric CO2 concentration at 500 ppm if emissions decreased sharply in the second half of the 21st century. The wedge concept has proven popular as an analytical tool for considering the potential of different technologies to reduce CO2 emissions. In the years since the paper was published, it has been cited more than 400 times, and

  10. Damage evolution in different types of concrete by means of splitting tests

    NARCIS (Netherlands)

    Vervuurt, A.; Van Mier, J.G.M.; Chiaia, B.

    1995-01-01

    A new splitting test has been used for evaluating damage in different types of concrete. The set up was developed at the Stevin Laboratory of Delft University of Technology and comprises a completely new loading device in which a perfectly horizontal splitting load can be applied to concrete specim

  11. Radial wedge flange clamp

    Science.gov (United States)

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  12. A stepped wedge design for testing an effect of intranasal insulin on cognitive development of children with Phelan-McDermid syndrome : A comparison of different designs

    NARCIS (Netherlands)

    Van den Heuvel, Edwin R; Zwanenburg, Renée J; Van Ravenswaaij-Arts, Conny Ma

    This paper compares the power of the parallel group design, the matched-pairs design, and several options for the stepped wedge and delayed start designs for testing a possible effect of intranasal insulin with respect to placebo on developmental growth of children with a rare disorder like

  13. Towards a test of QED in investigations of the hyperfine splitting in heavy ions.

    Science.gov (United States)

    Shabaev, V M; Artemyev, A N; Yerokhin, V A; Zherebtsov, O M; Soff, G

    2001-04-30

    A possibility for investigations of quantum electrodynamics (QED) in experiments on the hyperfine splitting in heavy ions is examined. It is found that QED effects can be probed on the level of a few percent in a specific difference of the hyperfine splitting values in hydrogenlike and lithiumlike bismuth. This could provide a test of QED in the strongest electric field available at present for experimental study.

  14. Reliability Tests of Aluminium Wedge Wire Bonding on Auto-catalytic Silver Immersion Gold (ASIG) PCB Metallization

    CERN Document Server

    Drozd, A; Kaufmann, S; Manolescu, F; McGill, I

    2011-01-01

    The Auto-catalytic Silver Immersion Gold (ASIG) PCB metallization is a new process that has clear advantages for PCB assembly especially with regard to lead-free soldering. As it may become a popular process in the future for electronics used in physics experiments, the quality of this metallization for aluminium wire bonding has been studied. Aluminium wedge wire bonding continues to be the interconnection method of choice for many physics detector sensors, for high density signal routing and for unpackaged die. Although advertised as having good quality for aluminium wire bonding, this study was performed to verify this claim as well as to test the longer term reliability of the wire bonds taking into consideration the environmental conditions and life-expectancy of devices, in particular for high energy physics detector applications. The tests were performed on PCBs made with the ASIG and ENIG (Electro-less Nickel Immersion Gold) processes at the same time in order to make a comparison with the current ind...

  15. The Development of Expansion Plug Wedge Test for Clad Tubing Structure Mechanical Property Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Jiang, Hao [ORNL

    2016-01-12

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at the Oak Ridge National Laboratory (ORNL) and is described fully in US Patent Application 20060070455, “Expanded plug method for developing circumferential mechanical properties of tubular materials.” This method is designed for testing fuel rod cladding ductility in a hot cell using an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the test component assembly in the hot cell and the direct measurement of the specimen’s strain. It was also found that cladding strength could be determined from the test results.

  16. Manufacture and Test of a Small Ceramic-Insulated Nb$_{3}$Sn Split Solenoid

    CERN Document Server

    Bordini, B; Rossi, L; Tommasini, D

    2008-01-01

    A small split solenoid wound with high-Jc Nb3Sn conductor, constituted by a 0.8 mm Rod Re-stack Process (RRP®) strand, was built and tested at CERN in order to study the applicability of: 1) ceramic wet glass braid insulation without epoxy impregnation of the magnet; 2) a new heat treatment devised at CERN and particularly suitable for reacting RRP® Nb3Sn strands. This paper briefly describes the solenoid and the experimental results obtained during 4.4 K and 1.9 K tests. The split solenoid consists of two coils (25 mm inner diameter, 51.1 mm outer diameter, 12.9 mm height). The coils were initially separately tested, in an iron mirror configuration, and then tested together in split solenoid configuration. In all the tests at 4.4 K the coils reached a current higher than 95 % of their short sample limits at the first quench; in split solenoid configuration the maximum field values in the coils and in the aperture were respectively 10.7 T and 12.5 T. At 1.9 K the coils had premature quenches due to self fi...

  17. Dynamic rock tests using split Hopkinson (Kolsky) bar system e A review

    Institute of Scientific and Technical Information of China (English)

    Kaiwen Xia; Wei Yao

    2015-01-01

    Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsky bar systems, which include both split Hopkinson pressure bar (SHPB) and split Hopkinson tension bar (SHTB) systems. Significant progress has been made on the quantification of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system. This review aims to fully describe and critically assess the detailed procedures and principles of tech-niques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined, followed by the key loading techniques that are useful for dynamic rock tests with SHPB (i.e. pulse shaping, momentum-trap and multi-axial loading techniques). Various measurement techniques for rock tests in SHPB (i.e. X-ray micro computed tomography (CT), laser gap gauge (LGG), digital image corre-lation (DIC), Moiré method, caustics method, photoelastic coating method, dynamic infrared thermog-raphy) are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements (i.e. dynamic compression, tension, bending and shear tests), dynamic fracture measurements (i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity), and dy-namic techniques for studying the influences of temperature and pore water.

  18. Dynamic rock tests using split Hopkinson (Kolsky bar system – A review

    Directory of Open Access Journals (Sweden)

    Kaiwen Xia

    2015-02-01

    Full Text Available Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsky bar systems, which include both split Hopkinson pressure bar (SHPB and split Hopkinson tension bar (SHTB systems. Significant progress has been made on the quantification of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system. This review aims to fully describe and critically assess the detailed procedures and principles of techniques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined, followed by the key loading techniques that are useful for dynamic rock tests with SHPB (i.e. pulse shaping, momentum-trap and multi-axial loading techniques. Various measurement techniques for rock tests in SHPB (i.e. X-ray micro computed tomography (CT, laser gap gauge (LGG, digital image correlation (DIC, Moiré method, caustics method, photoelastic coating method, dynamic infrared thermography are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements (i.e. dynamic compression, tension, bending and shear tests, dynamic fracture measurements (i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity, and dynamic techniques for studying the influences of temperature and pore water.

  19. Ice Particle Impacts on a Moving Wedge

    Science.gov (United States)

    Vargas, Mario; Struk, Peter M.; Kreeger, Richard E.; Palacios, Jose; Iyer, Kaushik A.; Gold, Robert E.

    2014-01-01

    This work presents the results of an experimental study of ice particle impacts on a moving wedge. The experiment was conducted in the Adverse Environment Rotor Test Stand (AERTS) facility located at Penn State University. The wedge was placed at the tip of a rotating blade. Ice particles shot from a pressure gun intercepted the moving wedge and impacted it at a location along its circular path. The upward velocity of the ice particles varied from 7 to 12 meters per second. Wedge velocities were varied from 0 to 120 meters per second. Wedge angles tested were 0 deg, 30 deg, 45 deg, and 60 deg. High speed imaging combined with backlighting captured the impact allowing observation of the effect of velocity and wedge angle on the impact and the post-impact fragment behavior. It was found that the pressure gun and the rotating wedge could be synchronized to consistently obtain ice particle impacts on the target wedge. It was observed that the number of fragments increase with the normal component of the impact velocity. Particle fragments ejected immediately after impact showed velocities higher than the impact velocity. The results followed the major qualitative features observed by other researchers for hailstone impacts, even though the reduced scale size of the particles used in the present experiment as compared to hailstones was 4:1.

  20. Simulation of water entry of an elastic wedge using the FDS scheme and HCIB method

    Institute of Scientific and Technical Information of China (English)

    SHIN Sangmook; BAE Sung Yong

    2013-01-01

    The hydroelasticity of water entry of an elastic wedge is simulated using a code developed using the flux-difference splitting scheme for immiscible and incompressible fluids and the hybrid Cartesian/immersed boundary method.The free surface is regarded as a moving contact discontinuity and is captured without any additional treatment along the interface.Immersed boundary nodes are distributed inside a fluid domain based on the edges that cross an instantaneous body boundary.Dependent variables are reconstructed at each immersed boundary node with the help of an interpolation along a local normal line for providing a boundary condition for a discretized flow problem.A dynamic beam equation is used for modeling the elastic deformation of a wedge.The developed code is validated through comparisons with other experimental and computational results for a free-falling wedge.The effects of the elastic deformation of the wedge on the pressure fields and time histories of the impact force are investigated in relation to the stiffness and density of the structure.Grid independence test is carried out for the computed time history of the force acting on an elastic wedge.

  1. Standard test method for splitting tensile strength for brittle nuclear waste forms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1989-01-01

    1.1 This test method is used to measure the static splitting tensile strength of cylindrical specimens of brittle nuclear waste forms. It provides splitting tensile-strength data that can be used to compare the strength of waste forms when tests are done on one size of specimen. 1.2 The test method is applicable to glass, ceramic, and concrete waste forms that are sufficiently homogeneous (Note 1) but not to coated-particle, metal-matrix, bituminous, or plastic waste forms, or concretes with large-scale heterogeneities. Cementitious waste forms with heterogeneities >1 to 2 mm and 5 mm can be tested using this procedure provided the specimen size is increased from the reference size of 12.7 mm diameter by 6 mm length, to 51 mm diameter by 100 mm length, as recommended in Test Method C 496 and Practice C 192. Note 1—Generally, the specimen structural or microstructural heterogeneities must be less than about one-tenth the diameter of the specimen. 1.3 This test method can be used as a quality control chec...

  2. Optical dating of relict sand wedges and composite-wedge pseudomorphs in Flanders, Belgium

    DEFF Research Database (Denmark)

    Buylaert, Jan-Pieter; Ghysels, Günther; Murray, Andrew S.;

    2009-01-01

    We report on quartz Optically Stimulated Luminescence (OSL) dating of the infill of 14 relict sand wedges and composite-wedge pseudomorphs at 5 different sites in Flanders, Belgium. A laboratory dose recovery test indicates that the single-aliquot regenerative-dose (SAR) procedure is suitable...... appear to have been commonplace in Flanders during the Late Pleniglacial (Oxygen Isotope Stage 2; OIS2); more specifically, around the Last Glacial Maximum (LGM, similar to 21 kyr ago) and the transition period between the LGM and the start of the Lateglacial (similar to 15 kyr ago). Optical dating...... at one site has revealed two significantly older wedge levels, the younger inset into the older; the younger wedge has an age of 36 +/- 4 kyr (Middle Pleniglacial; OIS3), the older wedge 129 +/- 11 kyr, which points to formation during the Late Saalian (OIS6). Our OSL ages of the wedges and host...

  3. Split-cross-bridge resistor for testing for proper fabrication of integrated circuits

    Science.gov (United States)

    Buehler, M. G. (Inventor)

    1985-01-01

    An electrical testing structure and method is described whereby a test structure is fabricated on a large scale integrated circuit wafer along with the circuit components and has a van der Pauw cross resistor in conjunction with a bridge resistor and a split bridge resistor, the latter having two channels each a line width wide, corresponding to the line width of the wafer circuit components, and with the two channels separated by a space equal to the line spacing of the wafer circuit components. The testing structure has associated voltage and current contact pads arranged in a two by four array for conveniently passing currents through the test structure and measuring voltages at appropriate points to calculate the sheet resistance, line width, line spacing, and line pitch of the circuit components on the wafer electrically.

  4. Benchmarking numerical models of brittle thrust wedges

    NARCIS (Netherlands)

    Buiter, Susanne J H; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric|info:eu-repo/dai/nl/270177493; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher

    2016-01-01

    We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the

  5. The limits of splitting: a framework to test model spatial distribution

    Science.gov (United States)

    Lobligeois, F.; Andréassian, V.; Perrin, C.; Loumagne, C.

    2012-04-01

    When it comes to deciding of the necessary spatial representation of a catchment, hydrologists need to choose between spatially lumped and spatially distributed approaches. This decision is not trivial: on the one hand, lumped models have proved both efficient and robust over the years (moreover their relatively low number of parameters limits the numerical problems such as secondary optima, parameter interaction, poor sensitivity); on the other hand many hydrologists believe that distributed models could potentially have a greater ability to take into account the spatial heterogeneity of both rainfall and land surface. Few attempts have been made to test rigorously alternative distributed schemes (see the discussion of semi-lumped and semi-distributed alternatives in Andréassian et al. (2004)). The purpose of our work was to identify whether an optimum level of spatialisation exists: to investigate "the limits of splitting" (Beven, 1996). We propose a framework to evaluate the effect of the distribution over a large set of 181 French catchments, using a newly available high resolution rainfall product of Météo France, combining radar data and raingage measurements. Five grid sizes are studied, as catchments are splitted into 1, 2, 4, 8 and 16 sub-catchments and streamflow simulation results are analysed in validation mode. For each type of basin, we study the trend of model efficiency with the number of sub-catchments. We find paradoxical results: while some catchments clearly benefit from the distribution, others show opposite trends. The large variability between basins underlines the necessity to have enough case studies to reach a robust conclusion. Andréassian, V. et al., 2004. Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: a theoretical study using chimera watersheds. Water Resour. Res., 40(5): W05209, doi: 10.1029/2003WR002854. Beven, K., 1996. The limits of splitting: hydrology. The Science of the

  6. Tests of Branch Splitting and Branch-Splitting Independence in Allais Paradoxes with Positive and Mixed Consequences

    Science.gov (United States)

    Birnbaum, Michael H.

    2007-01-01

    Four experiments with 1391 participants compared descriptive models of risky decision making. The first replicated and extended evidence refuting cumulative prospect theory (CPT) as an explanation of Allais paradoxes. The second and third experiments used a new design to unconfound tests of upper and lower coalescing, which allows tests of…

  7. Tests of a niobium split-ring superconducting heavy ion accelerating structure

    Energy Technology Data Exchange (ETDEWEB)

    Benaroya, R.; Bollinger, L.M.; Jaffey, A.H.; Khoe, T.K.; Olesen, M.C.; Scheibelhut, C.H.; Shepard, K.W.; Wesolowski, W.A.

    1976-01-01

    A niobium split-ring accelerating structure designed for use in the Argonne superconducting heavy-ion energy booster was successfully tested. The superconducting resonator has a resonant frequency of 97 MHz and an optimum particle velocity ..beta.. = 0.11. Ultimate performance is expected to be limited by peak surface fields, which in this structure are 4.7 E/sub a/ electric and 170 E/sub a/ (Gauss) magnetic, where E/sub a/ is the effective accelerating gradient in MV/m. The rf losses in two demountable superconducting joints severely limited performance in initial tests. Following independent measurements of the rf loss properties of several types of demountable joints, one demountable joint was eliminated and the other modified. Subsequently, the resonator could be operated continuously at E/sub a/ = 3.6 MV/m (corresponding to an energy gain of 1.3 MeV per charge) with 10W rf input power. Maximum field level was limited by electron loading. The mechanical stability of the resonator under operating conditions is excellent: vibration induced eigenfrequency noise is less than 120 Hz peak to peak, and the radiation pressure induced frequency shift is ..delta..f/f = 1.6 x 10/sup -6/ E/sub a//sup 2/.

  8. Evaluating Split Nitrogen Applications and In-Season Tests for Organic Winter Bread Wheat

    Directory of Open Access Journals (Sweden)

    Erin H. Roche

    2017-02-01

    Full Text Available Achieving high grain yields and crude protein (CP standards in organic winter wheat (Triticum aestivum L. is challenging because ensuring that adequate nitrogen (N is available at key periods of wheat growth is difficult in organic systems. Split application regimes and in-season N management tests may improve organic production. In field trials conducted over four site-years in Maine and Vermont, USA, N application regimes were analyzed for their effects on organic winter wheat, N uptake, grain yield, and CP. Tiller density and tissue N tests were evaluated as in-season decision tools. Eight treatments arranged in a non-factorial design differed in terms of N application timing (pre-plant (PP, topdress at tillering (T1, and topdress at pre-stem extension (T2 and N rate. Treatments were: (1 an untreated check, (2 pre-plant N at a low rate of 78 kg N ha−1 (PPL, (3 pre-plant N at a high rate of 117 or 157 kg N ha−1 (PPH, (4 T178, (5 PPL + T139, (6 PPL + T239, (7 PPH + T239, and (8 PPL + T139 +T239. Responses to N treatments were variable among site-years, however some common results were identified. The PP-only treatments increased grain yields more than they increased CP. The T178 and PPH + T239 treatments were the most effective at increasing yield and CP, compared with the PP-only treatments. Tiller density and tissue N tests were good predictors of grain yield (r = 0.52, p < 0.001 and CP (r = 0.75, p < 0.001 respectively. Future work should test in-season decision tools using a wider range of tiller densities, and topdress N rates against tissue N measurements.

  9. Dynamic compressive properties obtained from a split Hopkinson pressure bar test of Boryeong shale

    Science.gov (United States)

    Kang, Minju; Cho, Jung-Woo; Kim, Yang Gon; Park, Jaeyeong; Jeong, Myeong-Sik; Lee, Sunghak

    2016-09-01

    Dynamic compressive properties of a Boryeong shale were evaluated by using a split Hopkinson pressure bar, and were compared with those of a Hwangdeung granite which is a typical hard rock. The results indicated that the dynamic compressive loading reduced the resistance to fracture. The dynamic compressive strength was lower in the shale than in the granite, and was raised with increasing strain rate by microcracking effect as well as strain rate strengthening effect. Since the number of microcracked fragments increased with increasing strain rate in the shale having laminated weakness planes, the shale showed the better fragmentation performance than the granite at high strain rates. The effect of transversely isotropic plane on compressive strength decreased with increasing strain rate, which was desirable for increasing the fragmentation performance. Thus, the shale can be more reliably applied to industrial areas requiring good fragmentation performance as the striking speed of drilling or hydraulic fracturing machines increased. The present dynamic compressive test effectively evaluated the fragmentation performance as well as compressive strength and strain energy density by controlling the air pressure, and provided an important idea on which rock was more readily fragmented under dynamically processing conditions such as high-speed drilling and blasting.

  10. Wedges of Anxiety

    DEFF Research Database (Denmark)

    Hellström, Maria; Brandt, Eva

    2005-01-01

    The Heraclitian notion of a reality in constant flux seems to have settled even in the public consciousness. We are, to an ever-increasing extent, on the move; in motion between different places of abode, between domiciles and places of residence, between temporary addresses and provisory settlem...... cones of light, as the cut their way into the unknown, like wedges of anxiety...

  11. An efficient algorithm for finding optimal gain-ratio multiple-split tests on hierarchical attributes in decision tree learning

    Energy Technology Data Exchange (ETDEWEB)

    Almuallim, H. [King Fahd Univ. of Petroleum & Minerals, Dhahran (Saudi Arabia); Akiba, Yasuhiro; Kaneda, Shigeo [NTT Communication Science Labs., Kanagawa (Japan)

    1996-12-31

    Given a set of training examples S and a tree-structured attribute x, the goal in this work is to find a multiple-split test defined on x that maximizes Quinlan`s gain-ratio measure. The number of possible such multiple-split tests grows exponentially in the size of the hierarchy associated with the attribute. It is, therefore, impractical to enumerate and evaluate all these tests in order to choose the best one. We introduce an efficient algorithm for solving this problem that guarantees maximizing the gain-ratio over all possible tests. For a training set of m examples and an attribute hierarchy of height d, our algorithm runs in time proportional to dm, which makes it efficient enough for practical use.

  12. Knee abduction angular impulses during prolonged running with wedged insoles.

    Science.gov (United States)

    Lewinson, Ryan T; Worobets, Jay T; Stefanyshyn, Darren J

    2013-07-01

    Wedged insoles may produce immediate effects on knee abduction angular impulses during running; however, it is currently not known whether these knee abduction angular impulse magnitudes are maintained throughout a run when fatigue sets in. If changes occur, this could affect the clinical utility of wedged insoles in treating conditions such as patellofemoral pain. Thus, the purpose of this study was to determine whether knee abduction angular impulses are altered during a prolonged run with wedged insoles. It was hypothesized that knee abduction angular impulses would be reduced following a prolonged run with wedged insoles. Nine healthy runners participated. Runners were randomly assigned to either a 6-mm medial wedge condition or a 6-mm lateral wedge condition and then ran continuously overground for 30 min. Knee abduction angular impulses were quantified at 0 and 30 min using a gait analysis procedure. After 2 days, participants returned to perform the same test but with the other wedge type. Two-way repeated-measures analysis of variance was used to evaluate main effects of wedge condition and time and interactions between wedge condition and time (α = 0.05). Paired t-tests were used for post hoc analysis (α = 0.01). No interaction effects (p = 0.958) were found, and knee abduction angular impulses were not significantly different over time (p = 0.384). Lateral wedge conditions produced lesser knee abduction angular impulses than medial conditions at 0 min (difference of 2.79 N m s, p = 0.006) and at 30 min (difference of 2.76 N m s, p < 0.001). It is concluded that significant knee abduction angular impulse changes within wedge conditions do not occur during a 30-min run. Additionally, knee abduction angular impulse differences between wedge conditions are maintained during a 30-min run.

  13. Shock detachment from curved wedges

    Science.gov (United States)

    Mölder, S.

    2017-03-01

    Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.

  14. Shock detachment from curved wedges

    Science.gov (United States)

    Mölder, S.

    2017-09-01

    Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.

  15. Application of WST-method fore fracture testing of fibre-reinforced concrete

    DEFF Research Database (Denmark)

    Löfgren, Ingemar; Olesen, John Forbes; Flansbjer, Mathias

    be drawn from this study are that: § the wedge-splitting test method is a suitable test method for assessment of fracture properties of steel fibre-reinforced concrete; § the test method is easy to handle and relatively fast to execute § the test can be run with CMOD-control or without, in a machine......To evaluate the reproducibility of the wedge-splitting test method and to provide guidelines, a round robin study was conducted in which three labs participated. The participating labs were: § DTU – the Technical University of Denmark, Department of Civil Engineering; § CTH – Chalmers University...

  16. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  17. Split String Formalism and the Closed String Vacuum

    CERN Document Server

    Erler, T

    2007-01-01

    The split string formalism offers a simple template apon which we can build many generalizations of Schnabl's analytic solution of open string field theory. In this paper we explore two such generalizations: one which replaces the wedge state by an arbitrary function of wedge states, and another which generalizes the solution to conformal frames other than the sliver.

  18. Benchmarking numerical models of brittle thrust wedges

    NARCIS (Netherlands)

    Buiter, Susanne J H; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher

    2016-01-01

    We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the s

  19. Response surface mapping of neurobehavioral performance: Testing the feasibility of split sleep schedules for space operations

    Science.gov (United States)

    Mollicone, Daniel J.; Van Dongen, Hans P. A.; Rogers, Naomi L.; Dinges, David F.

    The demands of sustaining high levels of neurobehavioral performance during space operations necessitate precise scheduling of sleep opportunities in order to best preserve optimal performance. We report here the results of the first split sleep, dose-response experiment involving a range of sleep/wake scenarios with chronically reduced nocturnal sleep, augmented with a diurnal nap. To characterize performance over all combinations of split sleep in the range studied, we used response surface mapping methodology. Waking neurobehavioral performance was studied in N=90 subjects each assigned to one of 18 sleep regimens consisting of a restricted nocturnal anchor sleep period and a diurnal nap. Psychomotor vigilance task performance and subjective assessments of sleepiness were found to be primarily a function of total time in bed per 24 h regardless of how sleep was divided among nocturnal anchor sleep and diurnal nap periods. Digit symbol substitution task performance was also found to be primarily a function of total time in bed per 24 h; however, accounting for nocturnal sleep duration and nap duration separately provided a small but significant enhancement in the variance explained. The results suggest that reductions in total daily sleep result in a near-linear accumulation of impairment regardless of whether sleep is scheduled as a consolidated nocturnal sleep period or split into a nocturnal anchor sleep period and a diurnal nap. Thus, split sleep schedules are feasible and can be used to enhance the flexibility of sleep/work schedules for space operations involving restricted nocturnal sleep due to mission-critical task scheduling. These results are generally applicable to any continuous industrial operation that involves sleep restriction, night operations, and shift work.

  20. Response Surface Mapping of Neurobehavioral Performance: Testing the Feasibility of Split Sleep Schedules for Space Operations

    Science.gov (United States)

    Mollicone, Daniel J.; Van Dongen, Hans P.A.; Rogers, Naomi L.; Dinges, David F.

    2008-01-01

    The demands of sustaining high levels of neurobehavioral performance during space operations necessitate precise scheduling of sleep opportunities in order to best preserve optimal performance. We report here the results of the first split-sleep, dose-response experiment involving a range of sleep/wake scenarios with chronically reduced nocturnal sleep, augmented with a diurnal nap. To characterize performance over all combinations of split sleep in the range studied, we used response surface mapping methodology. Waking neurobehavioral performance was studied in N=90 subjects each assigned to one of 18 sleep regimens consisting of a restricted nocturnal anchor sleep period and a diurnal nap. Psychomotor vigilance task performance and subjective assessments of sleepiness were found to be primarily a function of total time in bed per 24 h regardless of how sleep was divided among nocturnal anchor sleep and diurnal nap periods. Digit symbol substitution task performance was also found to be primarily a function of total time in bed per 24 h; however, accounting for nocturnal sleep duration and nap duration separately provided a small but significant enhancement in the variance explained. The results suggest that reductions in total daily sleep result in a near-linear accumulation of impairment regardless of whether sleep is scheduled as a consolidated nocturnal sleep period or split into a nocturnal anchor sleep period and a diurnal nap. Thus, split sleep schedules are feasible and can be used to enhance the flexibility of sleep/work schedules for space operations involving restricted nocturnal sleep due to mission-critical task scheduling. These results are generally applicable to any continuous industrial operation that involves sleep restriction, night operations, and shift work. PMID:19194521

  1. Strength Prediction and Failure Modes of Concrete Specimens Subjected to the Split Test

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Andersen, M.E.; Hansen, N.T.;

    2014-01-01

    tensile strength as crack propagation take place. The residual tensile strength is thereafter used in a rigid plastic analysis of the splitting failure. Based on this combined approach, the ultimate load may either be governed by crack propagation or by a plastic failure, which then terminates the crack...... growth process. It is shown that the model is able to replicate a number of experimental observations. This includes size effect and influence of loading width....

  2. Application of the Split Hopkinson Resonant Bar Test for Seismic Property Characterization of Hydrate-bearing Sand Undergoing Water Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, S.; Kneafsey, T.J.

    2011-05-03

    Conventional resonant bar tests allow the measurement of seismic properties of rocks and sediments at low frequencies (several kilohertz). However, the tests require a long, slender sample which is often difficult to obtain from the deep subsurface and weak and fractured formations. We present an alternative low-frequency measurement technique to the conventional resonant bar tests. This technique involves a jacketed core sample placed between a pair of long, metal extension rods with attached seismic source and receiver—the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the added length and mass to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The proposed “Split Hopkinson Resonant Bar (SHRB)” test is applied in two steps. In the first step, extension and torsion-mode resonance frequencies and attenuation of the system are measured. Then, numerical inversions for the compressional and shear wave velocities and attenuation are performed. We initially applied the SHRB test to synthetic materials (plastics) for testing its accuracy, then used it for measuring the seismic velocities and attenuation of a rock core containing supercritical CO{sub 2}, and a sediment core while methane hydrate formed in the pore space.

  3. High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar

    Science.gov (United States)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian

    2016-04-01

    Dynamic mechanical testing of rocks is important to define the onset of rate dependency of brittle failure. The strain rate dependency occurs through the propagation velocity limit (Rayleigh wave speed) of cracks and their reduced ability to coalesce, which, in turn, significantly increases the strength of the rock. We use a newly developed pressurized air driven Split-Hopkinson-Pressure Bar (SHPB), that is specifically designed for the investigation of high strain rate testing of rocks, consisting of several 10 to 50 cm long strikers and bar components of 50 mm in diameter and 2.5 meters in length each. The whole set up, composed of striker, incident- and transmission bar is available in aluminum, titanium and maraging steel to minimize the acoustic impedance contrast, determined by the change of density and speed of sound, to the specific rock of investigation. Dynamic mechanical parameters are obtained in compression as well as in spallation configuration, covering a wide spectrum from intermediate to high strain rates (100-103 s-1). In SHPB experiments [1] one-dimensional longitudinal compressive pulses of diverse shapes and lengths - formed with pulse shapers - are used to generate a variety of loading histories under 1D states of stress in cylindrical rock samples, in order to measure the respective stress-strain response at specific strain rates. Subsequent microstructural analysis of the deformed samples is aimed at quantification fracture orientation, fracture pattern, fracture density, and fracture surface properties as a function of the loading rate. Linking mechanical and microstructural data to natural dynamic deformation processes has relevance for the understanding of earthquakes, landslides, impacts, and has several rock engineering applications. For instance, experiments on dynamic fragmentation help to unravel super-shear rupture events that pervasively pulverize rocks up to several hundred meters from the fault core [2, 3, 4]. The dynamic, strain

  4. Non-linear critical taper model and determination of accretionary wedge strength

    Science.gov (United States)

    Yang, Che-Ming; Dong, Jia-Jyun; Hsieh, Yuan-Lung; Liu, Hsueh-Hua; Liu, Cheng-Lung

    2016-12-01

    The critical taper model has been widely used to evaluate the strength contrast between the wedge and the basal detachment of fold-and-thrust belts and accretionary wedges. However, determination of the strength parameters using the traditional critical taper model, which adopts the Mohr-Coulomb failure criterion, is difficult, if not impossible. In this study, we propose a modified critical taper model that incorporates the non-linear Hoek-Brown failure criterion. The parameters in the proposed critical Hoek-Brown wedge CHBW model can be directly evaluated via field investigations and laboratory tests. Meanwhile, the wedge strength is a function of the wedge thickness, which is oriented from stress non-linearity. The fold-and-thrust belt in western central Taiwan was used as an example to validate the proposed model. The determined wedge strength was 0.86 using a representative wedge thickness of 5.3 km; this was close to the inferred value of 0.6 from the critical taper. Interestingly, a concave topographic relief is predicted as a result of the wedge thickness dependency of the wedge strength, even if the wedge is composed of homogeneous materials and if the strength of the detachment is uniform. This study demonstrates that the influence of wedge strength on the critical taper angle can be quantified by the spatial distribution of strength variables and by the consideration of the wedge thickness dependency of wedge strength.

  5. Benchmarking numerical models of brittle thrust wedges

    Science.gov (United States)

    Buiter, Susanne J. H.; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher

    2016-11-01

    We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the stable wedge test, showing negligible internal deformation and maintaining the initial surface slope upon horizontal translation over a frictional interface. Eight codes participated in the unstable wedge test that examines the evolution of a wedge by thrust formation from a subcritical state to the critical taper geometry. The critical taper is recovered, but the models show two deformation modes characterised by either mainly forward dipping thrusts or a series of thrust pop-ups. We speculate that the two modes are caused by differences in effective basal boundary friction related to different algorithms for modelling boundary friction. The third experiment examines stacking of forward thrusts that are translated upward along a backward thrust. The results of the seven codes that run this experiment show variability in deformation style, number of thrusts, thrust dip angles and surface slope. Overall, our experiments show that numerical models run with different numerical techniques can successfully simulate laboratory brittle thrust wedge models at the cm-scale. In more detail, however, we find that it is challenging to reproduce sandbox-type setups numerically, because of frictional boundary conditions and velocity discontinuities. We recommend that future numerical-analogue comparisons use simple boundary conditions and that the numerical Earth Science community defines a plasticity test to resolve the variability in model shear zones.

  6. Split Hopkinson Resonant Bar Test for Sonic-Frequency Acoustic Velocity and Attenuation Measurements of Small, Isotropic Geologic Samples

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, S.

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.

  7. Split Hopkinson resonant bar test for sonic-frequency acoustic velocity and attenuation measurements of small, isotropic geological samples

    Science.gov (United States)

    Nakagawa, Seiji

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver—the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 °C, and concurrently with x-ray CT imaging. The described split Hopkinson resonant bar test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples, and a natural rock sample.

  8. [Tablet splitting].

    Science.gov (United States)

    Quinzler, R; Haefeli, W E

    2006-06-01

    The splitting of scored tablets provides many advantages. One benefit is to achieve dose flexibility to account for the huge interindividual differences in dose requirements for instance in paediatric and geriatric patients, which are often not covered by the available strengths in the market. Moreover, large-sized tablets can easier be swallowed if broken before swallowing and medication costs can often be reduced by splitting brands with higher strength. But not all tablets, mostly unscored tablets, are suitable for splitting. Splitting of extended release formulations can result in an overdose by uncontrolled release of the active component and degradation of the compound can occur if an enteric coating is destroyed by the splitting process. Whether tablets are suitable for splitting depends on the properties of the active component (e.g. light sensitivity), the galenics, the shape of the tablet, and the shape of the scoreline. Moreover, not all patients are informed, able, or willing to split tablets and the majority of the elderly population is not capable to break tablets. When split tablets are prescribed it is therefore important to view the shape of the tablet, to assess the patients ability and willingness to break tablets, to properly inform the patient about the appropriate way of splitting, and if necessary to suggest (and instruct) the use of a tablet splitting device.

  9. A Shandon PapSpin liquid-based gynecological test: A split-sample and direct-to-vial test with histology follow-up study

    Directory of Open Access Journals (Sweden)

    Rimiene J

    2010-01-01

    Full Text Available Background: Studies for liquid-based Papanicolaou (Pap tests reveal that liquid-based cytology (LBC is a safe and effective alternative to the conventional Pap smear. Although there is research on ThinPrep and SurePath systems, information is lacking to evaluate the efficiency and effectiveness of systems based on cytocentrifugation. This study is designed to determine the sensitivity and specificity of the Shandon PapSpin (ThermoShandon, Pittsburgh, Pennsylvania, USA liquid-based gynecological system. We used split-sample and direct-to-vial study design. Materials and Methods: 2,945 women referred to prophylactic check-up were enrolled in this study. Split sample design was used in 1,500 women and residual cervical cytology specimen from all these cases was placed in fluid for PapSpin preparation after performing conventional smear. The direct-to-vial study was carried out in another cohort of 1,445 women in whom the entire cervical material was investigated using only the PapSpin technique. Follow up histological diagnoses for 141 women were obtained from both study arms following 189 abnormal cytology cases. 80 LBC cases from the split sample group and 61 LBC cases in the direct-to-vial group were correlated with the histology results. The sensitivity and secificity of the conventional smear and PapSpin tests in both study arms were compared. Results: In the split sample group, conventional smears showed a higher proportion of ASC-US (atypical cells undetermined significance: 31 (2.1% vs 10 (0.7% in PapSpin (P = 0.001. A higher proportion of unsatisfactory samples was found in the conventional smear group: 25 (1.7% vs 6 (0.4% cases (P = 0.001. In the split sample group, the sensitivity of the conventional and PapSpin tests was 68.7% vs 78.1%, and the specificity 93.8% vs 91.8%, respectively. In the direct to vial group PapSpin sensitivity was 75.9% and specificity 96.5%. The differences in sensitivity and specificity were not significant. The

  10. Influência da forma e do processo de obtenção do entalhe na carga máxima e na energia de fratura de argamassas utilizando o método da cunha para propagação estável de trinca Influence of notch shape and preparation on the maximum load and fracture energy of mortars evaluated by the wedge splitting method for stable crack propagation

    Directory of Open Access Journals (Sweden)

    S. Ribeiro

    2009-06-01

    Full Text Available Este trabalho mostra a influência da forma e do processo de obtenção do entalhe na estabilidade da propagação de trinca em materiais cerâmicos de microestrutura heterogênea e conseqüentemente, na carga máxima e energia de fratura quando esses materiais são submetidos ao carregamento utilizando o método da cunha. Foram preparadas argamassas com cimento Portland, areia e água, que foram moldadas, curadas a 25 ºC por 7 dias e secadas a 50 ºC por 48 h. Foram estudadas duas proporções (dosagens ou traços de areia:cimento de 3:1 e 2:1. Foram testados dois tipos de entalhe: um com perfil quadrado da ponta e outro em "V" com ângulo de 60º. Os entalhes de formato quadrado foram obtidos de duas formas: produzidos mecanicamente a partir de disco diamantado e outro na própria moldagem das amostras. Para produzir as amostras entalhadas e ranhuradas já na moldagem, foi desenvolvido um molde de PVC munido de lâminas de aço internas. A partir dos testes preliminares foram estabelecidas as condições de propagação estável da trinca. A trinca percorre um plano imaginário definido pelas ranhuras laterais da amostra. Os resultados mostraram que o entalhe que proporciona melhores condições de estabilidade de propagação de trinca é o de forma em "V", obtido durante o processo de moldagem das amostras.This paper discusses how the shape and preparation of the notch affect crack propagation in ceramic materials with heterogeneous microstructures and, as a result, the maximum load and fracture energy when these materials are subjected to loads using the wedge splitting test. Mortars were prepared with Portland cement, sand and water, which were mixed, molded, and cured at 25 ºC for seven days. After curing, the samples were dried at 55 ºC for 48 h. Two mortar compositions were prepared with proportions of sand:cement of 3:1 and 2:1. Two types of notches were tested: one with a square-tipped profile and the other V-shaped with a 60º

  11. Numerical Analysis of Dynamic Splitting-Tensile and Direct Tension Tests

    Science.gov (United States)

    1990-09-01

    tensile tests. The concrete material model employed in the nonlinear analysis was a hypoelastic model based on a uniaxial stress-strain relation (Figure... hypoelastic model based upon the uniaxial stress-strain relation depicted in Figure 48. The tension failure envelope illustrated in Figure 49 w~s...strain rates associated with high intensity loadings from conventional explosives. Both an elastic and an inelastic concrete model were employed in all

  12. Conceptual design of heavy ion beam compression using a wedge

    Directory of Open Access Journals (Sweden)

    Jonathan C. Wong

    2015-10-01

    Full Text Available Heavy ion beams are a useful tool for conducting high energy density physics (HEDP experiments. Target heating can be enhanced by beam compression, because a shorter pulse diminishes hydrodynamic expansion during irradiation. A conceptual design is introduced to compress ∼100  MeV/u to ∼GeV/u heavy ion beams using a wedge. By deflecting the beam with a time-varying field and placing a tailor-made wedge amid its path downstream, each transverse slice passes through matter of different thickness. The resulting energy loss creates a head-to-tail velocity gradient, and the wedge shape can be designed by using stopping power models to give maximum compression at the target. The compression ratio at the target was found to vary linearly with (head-to-tail centroid offset/spot radius at the wedge. The latter should be approximately 10 to attain tenfold compression. The decline in beam quality due to projectile ionization, energy straggling, fragmentation, and scattering is shown to be acceptable for well-chosen wedge materials. A test experiment is proposed to verify the compression scheme and to study the beam-wedge interaction and its associated beam dynamics, which will facilitate further efforts towards a HEDP facility.

  13. Banana Split: Testing the Dark Energy Consistency with Geometry and Growth

    CERN Document Server

    Ruiz, Eduardo J

    2014-01-01

    We perform parametric tests of the consistency of the standard $w$CDM model in the framework of General Relativity by carefully separating information between the geometry and growth of structure. We replace each late-universe parameter that describes the behavior of dark energy with two parameters: one describing geometrical information in cosmological probes, and the other controlling the growth of structure. We use data from all principal cosmological probes: of these, Type Ia supernovae, baryon acoustic oscillations, and the peak locations in the cosmic microwave background angular power spectrum constrain the geometry, while the redshift space distortions, weak gravitational lensing and the abundance of galaxy clusters constrain both geometry and growth. Both geometry and growth separately favor the $\\Lambda$CDM cosmology with the matter density relative to critical $\\Omega_M\\simeq 0.3$. When the equation of state is allowed to vary separately for probes of growth and geometry, we find again a good agree...

  14. Portal dosimetry in wedged beams

    NARCIS (Netherlands)

    Spreeuw, H.; Rozendaal, R.; Camargo, P.; Mans, A.; Wendling, M.; Olaciregui-Ruiz, I.; Sonke, J.J.; Herk, M. van; Mijnheer, B.

    2015-01-01

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the s

  15. Wedge wetting by electrolyte solutions

    Science.gov (United States)

    Mußotter, Maximilian; Bier, Markus

    2017-09-01

    The wetting of a charged wedgelike wall by an electrolyte solution is investigated by means of classical density functional theory. As in other studies on wedge wetting, this geometry is considered as the most simple deviation from a planar substrate, and it serves as a first step toward more complex confinements of fluids. By focusing on fluids containing ions and surface charges, features of real systems are covered that are not accessible within the vast majority of previous theoretical studies concentrating on simple fluids in contact with uncharged wedges. In particular, the filling transition of charged wedges is necessarily of first order, because wetting transitions of charged substrates are of first order and the barrier in the effective interface potential persists below the wetting transition of a planar wall; hence, critical filling transitions are not expected to occur for ionic systems. The dependence of the critical opening angle on the surface charge, as well as the dependence of the filling height, of the wedge adsorption, and of the line tension on the opening angle and on the surface charge are analyzed in detail.

  16. The effect of shoe design and lateral wedging on knee loading

    DEFF Research Database (Denmark)

    Mølgaard, Carsten; Kersting, Uwe G.

    -dimensional gait analysis. Barefoot walking, walking in a running shoe, an Oxford-type leather shoe, and a rocker shoe were analyzed. The shoes were tested both with and without a 10-degree full length laterally wedged insole. Results: Similar, significant reductions in the peak knee adduction moment with lateral...... wedges were observed in all three types of shoes. However, differences between shoe design were of similar magnitude as the effect of laterally wedged insoles. Only marginal changes in muscle activity for lateral hamstrings during barefoot toe-out walking and gastrocnemius when using the Oxford wedged...

  17. Geomechanics of penetration :laboratory analog experiments using a modified split hopkinson pressure bar/impact testing procedure.

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Joseph; Gettemy, Glen L.; Bronowski, David R.

    2005-11-01

    This research continues previous efforts to re-focus the question of penetrability away from the behavior of the penetrator itself and toward understanding the dynamic, possibly strain-rate dependent, behavior of the affected materials. A modified split Hopkinson pressure bar technique is prototyped to determine the value of reproducing the stress states, and mechanical responses, of geomaterials observed in actual penetrator tests within a laboratory setting. Conceptually, this technique simulates the passage of the penetrator surface past any fixed point in the penetrator trajectory by allowing for a controlled stress-time function to be transmitted into a sample, thereby mimicking the 1D radial projection inherent to analyses of the cavity expansion problem. Test results from a suite of weak (unconfined compressive strength, or UCS, of 22 MPa) concrete samples, with incident strain rates of 100-250 s{sup -1}, show that the complex mechanical response includes both plastic and anelastic wave propagation, and is critically dependent on incident particle velocity and saturation state. For instance, examination of the transmitted stress-time data, and post-test volumetric measurements of pulverized material, provide independent estimates of the plasticized zone length (1-2 cm) formed for incident particle velocity of {approx}16.7 m/s. The results also shed light on the elastic or energy propagation property changes that occur in the concrete. For example, the pre- and post-test zero-stress elastic wave propagation velocities show that the Young's modulus drops from {approx}19 GPa to <8 GPa for material within the first centimeter from the plastic transition front, while the Young's modulus of the dynamically confined, axially-stressed (in 6-18 MPa range) plasticized material drops to 0.5-0.6 GPa. The data also suggest that the critical particle velocity for formation of a plastic zone in the weak concrete is 13-15 m/s, with increased saturation tending to

  18. Utility evaluation on application of geometric mean depending on depth of kidney in split renal function test using 99mTc-MAG{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Byeul; Ahn, Sung Min [Dept. of Radiological Science, Gachon University, Incheon (Korea, Republic of); Lee, Wang Hui [Dept. of Nuclear Medicine, Gil-Hospital, Incheon (Korea, Republic of)

    2016-06-15

    99mTc-MAG{sub 3} Renal scan is a method that acquires dynamic renal scan image by using 99mTc-MAG{sub 3} and dynamically visualizes process of radioactive agent being absorbed to kidney and excreted continuously. Once the test starts, ratio in both kidneys in 1-2.5 minutes was measured to obtain split renal function and split renal function can be expressed in ratio based on overall renal function. This study is based on compares split renal function obtained from data acquired from posterior detector, which is a conventional renal function test method, with split renal function acquired from the geometric mean of values obtained from anterior and posterior detectors, and studies utility of attenuation compensation depending on difference in geometric mean kidney depth. From July, 2015 to February 2016, 33 patients who undertook 99mTc-MAG{sub 3} Renal scan(13 male, 20 female, average age of 44.66 with range of 5-70, average height of 160.40 cm, average weight of 55.40 kg) were selected as subjects. Depth of kidney was shown to be 65.82 mm at average for left and 71.62 mm at average for right. In supine position, 30 out of 33 patients showed higher ratio of deep-situated kidney and lower ratio of shallow-situated kidney. Such result is deemed to be due to correction by attenuation between deep-situated kidney and detector and in case where there is difference between the depth of both kidneys such as, lesions in or around kidney, spine malformation, and ectopic kidney, ratio of deep-situated kidney must be compensated for more accurate calculation of split renal function, when compared to the conventional test method (posterior detector counting)

  19. Contact process in a wedge

    CERN Document Server

    Cox, J Theodore; Schinazi, Rinaldo B

    2009-01-01

    We prove that the supercritical one-dimensional contact process survives in certain wedge-like space-time regions, and that when it survives it couples with the unrestricted contact process started from its upper invariant measure. As an application we show that a type of weak coexistence is possible in the nearest-neighbor ``grass-bushes-trees'' successional model introduced in Durrett and Swindle (1991).

  20. Bonding mechanism of ultrasonic wedge bonding of copper wire on Au/Ni/Cu substrate

    Institute of Scientific and Technical Information of China (English)

    TIAN Yan-hong; WANG Chun-qing; Y. Norman ZHOU

    2008-01-01

    The ultrasonic wedge bonding with d25 μm copper wire was achieved on Au/Ni plated Cu substrate at ambient temperature. Ultrasonic wedge bonding mechanism was investigated by using SEM/EDX, pull test, shear test and microhardness test. The results show that the thinning of the Au layer occurs directly below the center of the bonding tool with the bonding power increasing. The interdiffusion between copper wire and Au metallization during the wedge bonding is assumed negligible, and the wedge bonding is achieved by wear action induced by ultrasonic vibration. The ultrasonic power contributes to enhance the deformation of copper wire due to ultrasonic softening effect which is then followed by the strain hardening of the copper wedge bonding.

  1. Surface Geophysical Measurements for Locating and Mapping Ice-Wedges

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Tomaskovicova, Sonia; Larsen, S.H.

    2012-01-01

    With the presently observed trend of permafrost warming and degradation, the development and availability of effective tools to locate and map ice-rich soils and massive ground ice is of increasing importance. This paper presents a geophysical study of an area with polygonal landforms in order...... to test the applicability of DC electrical resistivity tomography (ERT) and Ground Penetrating Radar (GPR) to identifying and mapping ice-wedge occurrences. The site is located in Central West Greenland, and the ice-wedges are found in a permafrozen peat soil with an active layer of about 30 cm. ERT...... and GPR measurements give a coherent interpretation of possible ice-wedge locations, and active layer probing show a tendency for larger thaw depth in the major trench systems consistent with a significant temperature (at 10 cm depth) increase in these trenches identified by thermal profiling. Three...

  2. Modeling and Stability Analysis of Wedge Clutch System

    Directory of Open Access Journals (Sweden)

    Jian Yao

    2014-01-01

    Full Text Available A wedge clutch with unique features of self-reinforcement and small actuation force was designed. Its self-reinforcement feature, associated with different factors such as the wedge angle and friction coefficient, brings different dynamics and unstable problem with improper parameters. To analyze this system, a complete mathematical model of the actuation system is built, which includes the DC motor, the wedge mechanism, and the actuated clutch pack. By considering several nonlinear factors, such as the slip-stick friction and the contact or not of the clutch plates, the system is piecewise linear. Through the stability analysis of the linearized system in clutch slipping phase, the stable condition of the designed parameters is obtained as α>arctan⁡(μc. The mathematical model of the actuation system is validated by prototype testing. And with the validated model, the system dynamics in both stable and unstable conditions is investigated and discussed in engineering side.

  3. Service evaluation of an educational intervention to improve sexual health services in primary care implemented using a step-wedge design: analysis of chlamydia testing and diagnosis rate changes.

    Science.gov (United States)

    Town, Katy; McNulty, Cliodna A M; Ricketts, Ellie J; Hartney, Thomas; Nardone, Anthony; Folkard, Kate A; Charlett, Andre; Dunbar, J Kevin

    2016-08-02

    Providing sexual health services in primary care is an essential step towards universal provision. However they are not offered consistently. We conducted a national pilot of an educational intervention to improve staff's skills and confidence to increase chlamydia testing rates and provide condoms with contraceptive information plus HIV testing according to national guidelines, known as 3Cs&HIV. The effectiveness of the pilot on chlamydia testing and diagnosis rates in general practice was evaluated. The pilot was implemented using a step-wedge design over three phases during 2013 and 2014 in England. The intervention combined educational workshops with posters, testing performance feedback and continuous support. Chlamydia testing and diagnosis rates in participating general practices during the control and intervention periods were compared adjusting for seasonal trends in chlamydia testing and differences in practice size. Intervention effect modification was assessed for the following general practice characteristics: chlamydia testing rate compared to national median, number of general practice staff employed, payment for chlamydia screening, practice urban/rurality classification, and proximity to sexual health clinics. The 460 participating practices conducted 26,021 tests in the control period and 18,797 tests during the intervention period. Intention-to-treat analysis showed no change in the unadjusted median tests and diagnoses per month per practice after receiving training: 2.7 vs 2.7; 0.1 vs 0.1. Multivariable negative binomial regression analysis found no significant change in overall testing or diagnoses post-intervention (incidence rate ratio (IRR) 1.01, 95 % confidence interval (CI) 0.96-1.07, P = 0.72; 0.98 CI 0.84-1.15, P = 0.84, respectively). Stratified analysis showed testing increased significantly in practices where payments were in place prior to the intervention (IRR 2.12 CI 1.41-3.18, P educational training sessions found no

  4. Splitting Descartes

    DEFF Research Database (Denmark)

    Schilhab, Theresa

    2007-01-01

    Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...

  5. Thoracoscopic pulmonary wedge resection without post-operative chest drain

    DEFF Research Database (Denmark)

    Holbek, Bo Laksafoss; Hansen, Henrik Jessen; Kehlet, Henrik

    2016-01-01

    : Forced expiratory volume in 1 s (FEV1) ≥60 % of expected, FEV1/forced vital capacity ≥70 %, tumour diameter ≤2 cm, distance from tumour to visceral pleura ≤3 cm, ≤2 separate wedges, no air leak on an intraoperative air leakage test and absence of severe adhesions, bullous/emphysematous disease, pleural...

  6. Gleeble-3500热/力模拟压缩试验若干问题的分析与处理%Problems Analysis and Solution of Compression Test with Hydraulic Wedge for Gleeble--3500 Thermal Analogue

    Institute of Scientific and Technical Information of China (English)

    孙胜英

    2012-01-01

    Gleeble--3500型热/力模拟试验机在更换液压楔进行压缩试验时易出现应变速率、应变量达不到程序设定的要求以及试样变形不均匀、鼓形等问题,对此进行了分析和处理。结果表明:通过采用调整试样夹持力、充入氩气保护气体、修改变形程序、保证砧子和试样之间的良好润滑等改进措施可以解决以上问题。%There have been some problems of Gleeble--3500 thermal analogue when replacing the hydraulic wedge for compression test including that the strain rate and strain capacity could not meet the requirement of set-up procedure, and the specimen appeared inhomogeneous deformation and drum sharp. The above problems were analyzed and handled. The results showed that the matters can be improved by adjust the force between the jaws and the specimen, fill the argon protect air in the work cavity, modify the deformation procedure and keep suitable lubricant at the interface between the anvils and the specimen.

  7. Randomized Clinical Trial of the Innovative Bilayered Wound Dressing Made of Silk and Gelatin: Safety and Efficacy Tests Using a Split-Thickness Skin Graft Model

    Directory of Open Access Journals (Sweden)

    Sukhontha Hasatsri

    2015-01-01

    Full Text Available We developed the novel silk fibroin-based bilayered wound dressing for the treatment of partial thickness wounds. And it showed relevant characteristics and accelerated the healing of full-thickness wounds in a rat model. This study is the clinical evaluation of the bilayered wound dressing to confirm its safety and efficacy for the treatment of split-thickness skin donor sites. The safety test was performed using a patch model and no evidence of marked and severe cutaneous reactions was found. The efficacy test of the bilayered wound dressing was conducted on 23 patients with 30 split-thickness skin graft donor sites to evaluate healing time, pain score, skin barrier function, and systemic reaction in comparison to Bactigras. We found that the healing time of donor site wounds treated with the bilayered wound dressing (11 ± 6 days was significantly faster than those treated with Bactigras (14 ± 6 days (p=10-6. The wound sites treated with the bilayered wound dressing showed significantly less pain and more rapid skin functional barrier recovery than those treated with Bactigras (p=10-5. Therefore, these results confirmed the clinical safety and efficacy of the bilayered wound dressing for the treatment of split-thickness skin graft donor sites.

  8. Geometry and kinematics of extensional structural wedges

    Science.gov (United States)

    Gui, Baoling; He, Dengfa; Zhang, Yongsheng; Sun, Yanpeng; Huang, Jingyi; Zhang, Wenjun

    2017-03-01

    Structural wedges in the compressive environment have been recognized and studied in different locations. However, extension structural wedges are less well-understood. Based on the normal fault-bend folding theory and inclined shear model, this paper quantitatively analyses deformations related to extensional structural wedges and builds a series of geometric models for them. An extensional structural wedge is a fault-block held by two or more normal faults, the action of which would fold its overlying strata. Extensional structural wedges of different shapes will lead to different deformation results for the overlying strata, and this paper illustrates both the triangular and quadrangular wedges and their related deformations. This paper also discusses differences between the extensional structural wedges and the normal fault-bend-folding. By analysing two seismic sections from Langfang-Gu'an Sag, East China, this paper provides two natural examples of the triangular and quadrangular extensional structural wedges, where the models can reasonably explain the overlying distinct highs and lows without obvious faults. The establishment of a geometric model of extensional structural wedges can provide reference and theoretical bases for future quantitative analysis of deformations in the extensional environment.

  9. The effect of shoe design and lateral wedging on knee loading

    DEFF Research Database (Denmark)

    Mølgaard, Carsten; Kersting, Uwe G.

    The increasing number of patients with developing osteoarthritis is accompanied by a growing scientific interest in non-operative early treatment strategies. It is generally believed that laterally wedged insoles can change the distribution of the knee loading, but the importance of footwear design......-dimensional gait analysis. Barefoot walking, walking in a running shoe, an Oxford-type leather shoe, and a rocker shoe were analyzed. The shoes were tested both with and without a 10-degree full length laterally wedged insole. Results: Similar, significant reductions in the peak knee adduction moment with lateral...... wedges were observed in all three types of shoes. However, differences between shoe design were of similar magnitude as the effect of laterally wedged insoles. Only marginal changes in muscle activity for lateral hamstrings during barefoot toe-out walking and gastrocnemius when using the Oxford wedged...

  10. Revisit the classical Newmark displacement method for earthquake-induced wedge slide

    Science.gov (United States)

    Yang, Che-Ming; Cheng, Hui-Yun; Wu, Wen-Jie; Hsu, Chang-Hsuan; Dong, Jia-Jyun; Lee, Chyi-Tyi

    2016-04-01

    Newmark displacement method has been widely used to study the earthquake-induced landslides and adopted to explore the initiation and kinematics of catastrophic planar failure in recent years. However, surprisingly few researchers utilize the Newmark displacement method to study the earthquake-induced wedge slide. The classical Newmark displacement method for earthquake-induced wedge sliding assumed the wedge is rigid and the vertical acceleration, as well as the horizontal acceleration perpendicular to the sliding direction, is neglected. Moreover, the friction coefficients on the weak planes are assumed as unchanged during sliding. The purpose of this study is to test the reasonableness of the aforementioned assumptions. This study uses Newmark displacement method incorporating the rigid wedge method (RWM) and maximum shear stress method (MSSM) to evaluate the influence of wedge deformation. We design the geometry of the wedge and input the synthetic seismicity to trigger the wedge slide. The influence for neglecting the vertical and horizontal (perpendicular to the sliding direction) accelerations is also assessed. Besides, this research incorporates the velocity-displacement dependent friction law in the analysis to evaluate the influence of constant friction coefficient assumption. Result of this study illustrated that the aforementioned assumptions have significant effects on the calculated permeant displacement, moving speed, and failure initiation. To conclude, this study provides new insights on the initiation and kinematics of an earthquake induced wedge slide.

  11. The effect of shoe design and lateral wedges on knee load and neuromuscular control in healthy subjects during walking

    DEFF Research Database (Denmark)

    Mølgaard, Carsten Møller; Kersting, Uwe G.

    2013-01-01

    design/type on the effectiveness of lateral wedging has not been investigated so far. The Purpose of the present study was to explore alterations in knee loading due to lateral foot wedges in three different shoes. Methods: Thirteen healthy participants with no history of knee pain were tested using...... three-dimensional gait analysis. Barefoot walking, walking in a running shoe, an Oxford-type leather shoe, and a rocker shoe were analysed. The shoes were tested both with and without a 10-degree full-length laterally wedged insole. Results: There were significant shoe wedge interactions on the first...... and second peak knee adduction moments. However, the variability of this moment between shoe designs was of similar magnitude as the effect of laterally wedged insoles. Only marginal changes in muscle activity for gastrocnemius when walking with the wedged Oxford shoe were revealed. Conclusion: Lateral...

  12. Development and Test Operation of a Demonstration Plant for Sulfuric Acid Splitting at the DLR Concentrating Solar Power Tower Facility

    OpenAIRE

    Thomey, Dennis; Streber, Hans-Peter; Guerra-Niehoff, Alejandro; Romero, Moises; Lapp, Justin; Roeb, Martin; Sattler, Christian

    2016-01-01

    Sulfuric acid splitting is a key step of the hybrid sulfur cycle (HyS) for solar thermochemical hydrogen production. This exothermal reaction can be divided into two steps: firstly, the evaporation of liquid sulfuric acid (H2SO4) at about 400 °C forming sulfur trioxide (SO3), and secondly, the decomposition of SO3 to sulfur dioxide (SO2) and oxygen (O2) at 800 – 1000 °C. While the first sub-reaction has fast kinetics, the second one is rather slow and requires the introduction of ...

  13. Magnetic and structural instabilities of ultrathin Fe(100) wedges

    Energy Technology Data Exchange (ETDEWEB)

    Bader, S.D.; Li, Dongqi; Qiu, Z.Q.

    1994-05-01

    An overview is provided of recent efforts to explore magnetic and related structural issues for ultrathin Fe films grown epitaxially as wedge structures onto Ag(100) and Cu(100). Experiments were carried out utilizing the surface magneto-optic Kerr effect (SMOKE). Ordinary bcc Fe is lattice-matched to the primitive unit cell of the Ag(100) surface. Fe wedges on Ag(100) can be fabricated whose thick end has in-plane magnetic easy axes due to the shape anisotropy, and whose thin end has perpendicular easy axes due to the surface magnetic anisotrophy. A spin-reorientation transition can thus be studied in the center of the wedge where the competing anisotropies cancel. The goal is to test the Mermin-Wagner theorem which states that long-range order is lost at finite temperatures in an isotropic two-dimensional Heisenberg system. Fe wedges on Cu(100) can be studied in like manner, but the lattice matching permits fcc and tetragonally-distorted fcc phases to provide structural complexity in addition to the interplay of competing magnetic anisotropies. The results of these studies are new phase identifications that help both to put previous work into perspective and to define issues to pursue in the future.

  14. Dynamic splitting test of expanded polystyrene (EPS) concrete%聚苯乙烯混凝土动态劈裂实验

    Institute of Scientific and Technical Information of China (English)

    胡俊; 巫绪涛

    2011-01-01

    利用直径为74 mm的分离式Hopkinson压杆径向冲击巴西圆盘试样,测试了不同聚苯乙烯(ex-panded polystyrene,EPS)颗粒粒径、不同体积含量的EPS混凝土的动态拉伸性能.为了保证实验的可靠性,在试样和入射杆、透射杆之间加上精确设计的垫块,防止试样两端因应力集中而被压碎破坏;通过选择合适的整形器,保证试样有足够的时间达到应力均匀.并分析了EPS混凝土劈裂破坏形态.实验结果表明:EPS混凝土的劈裂强度随应力率的增大而增大;在EPS体积含量较低的EPS混凝土中,EPS混凝土的劈裂强度表现出一定的粒子尺寸效应,随EPS颗粒体积含量的增加,这一现象逐渐消失.%To explore the splitting strength of expanded polystyrene (EPS) concrete with the different volume concentrations of EPS, Brazilian disc specimens were diametrally impacted by using a 74-mm-diameter split Hopkinson pressure bar (SHPB) at different impact velocities. For each volume concentration of EPS, the Brazilian disc specimens were tested in the cases of two different particle sizes of EPS, respectively. And accurately designed cushions were placed in the interspaces between the input and output bars and the specimens to prevent the specimens from being crushed due to the stress concentration at the two ends of the specimens. At the same time, an appropriate pulse shaper was used to ensure enough time for the specimens to reach an equilibrium stress state during the experiment. And the splitting failure patterns of EPS concrete were analyzed. The results display that the splitting strength of EPS concrete increases with the increase of stress rate; and that in the EPS concrete with the low volume concentration of EPS, the splitting strength of EPS concrete takes on a certain particle size effect, and this effect disappears gradually with the increase of the EPS volume concentration.

  15. Validated QSAR prediction of OH tropospheric degradation of VOCs: splitting into training-test sets and consensus modeling.

    Science.gov (United States)

    Gramatica, Paola; Pilutti, Pamela; Papa, Ester

    2004-01-01

    The rate constant for hydroxyl radical tropospheric degradation of 460 heterogeneous organic compounds is predicted by QSAR modeling. The applied Multiple Linear Regression is based on a variety of theoretical molecular descriptors, selected by the Genetic Algorithms-Variable Subset Selection (GA-VSS) procedure. The models were validated for predictivity by both internal and external validation. For the external validation two splitting approaches, D-optimal Experimental Design and Kohonen Artificial Neural Networks (K-ANN), were applied to the original data set to compare the two methodologies. We emphasize that external validation is the only way to establish a reliable QSAR model for predictive purposes. Predicted data by consensus modeling from different models are also proposed. Copyright 2004 American Chemical Society

  16. Splitting statistical potentials into meaningful scoring functions: Testing the prediction of near-native structures from decoy conformations

    Directory of Open Access Journals (Sweden)

    Oliva Baldo

    2009-11-01

    Full Text Available Abstract Background Recent advances on high-throughput technologies have produced a vast amount of protein sequences, while the number of high-resolution structures has seen a limited increase. This has impelled the production of many strategies to built protein structures from its sequence, generating a considerable amount of alternative models. The selection of the closest model to the native conformation has thus become crucial for structure prediction. Several methods have been developed to score protein models by energies, knowledge-based potentials and combination of both. Results Here, we present and demonstrate a theory to split the knowledge-based potentials in scoring terms biologically meaningful and to combine them in new scores to predict near-native structures. Our strategy allows circumventing the problem of defining the reference state. In this approach we give the proof for a simple and linear application that can be further improved by optimizing the combination of Zscores. Using the simplest composite score ( we obtained predictions similar to state-of-the-art methods. Besides, our approach has the advantage of identifying the most relevant terms involved in the stability of the protein structure. Finally, we also use the composite Zscores to assess the conformation of models and to detect local errors. Conclusion We have introduced a method to split knowledge-based potentials and to solve the problem of defining a reference state. The new scores have detected near-native structures as accurately as state-of-art methods and have been successful to identify wrongly modeled regions of many near-native conformations.

  17. Verification of Varian Enhanced Dynamic Wedge implementation in masterplan treatment planning system.

    Science.gov (United States)

    Pasquino, Massimo; Casanova Borca, Valeria; Tofani, Santi; Ozzello, Franca

    2009-04-22

    This paper investigates the accuracy of the two available calculation algorithms of the Oncentra MasterPlan three-dimensional treatment planning system (TPS)-- the pencil beam method and collapsed-cone convolution--in modeling the Varian enhanced dynamic wedge (EDW). Measurements were carried out for a dual high energy (6-15 MV) Varian DHX-S linear accelerator using ionization chambers for beam axis measurements (wedge factors and depth doses), film dosimetry for off-axis dose profiles measurements, and a diode matrix detector for two dimensional absolute dose distributions. Using both calculation algorithms, different configuration of symmetric and asymmetric fields varying the wedge's angle were tested. Accuracy of the treatment planning system was evaluated in terms of percentage differences between measured and calculated values for wedge factors, depth doses, and profiles. As far as the absolute dose distribution was concerned, the gamma index method (Low et al.) was used with 3% and 3 mm as acceptance criteria for dose difference and distance-to-agreement, respectively. Wedge factors and percentage depth doses were within 1% deviation between calculated and measured values. The comparison of measured and calculated dose profiles shows that the Van Dyk's acceptance criteria (Van Dyk et al.) are generally met; a disagreement can be noted for large wedge angles and field size limited to the low dose-low gradient region only. The 2D absolute dose distribution analysis confirms the good accuracy of the two calculation algorithms in modeling the enhanced dynamic wedge.

  18. The effect of shoe design and lateral wedges on knee load and neuromuscular control in healthy subjects during walking

    DEFF Research Database (Denmark)

    Mølgaard, Carsten; Kersting, Uwe G.

    2014-01-01

    three-dimensional gait analysis. Barefoot walking, walking in a running shoe, an Oxford-type leather shoe, and a rocker shoe were analysed. The shoes were tested both with and without a 10-degree full-length laterally wedged insole. Results: There were significant shoe wedge interactions on the first...

  19. The PULSAR primary care protocol: a stepped-wedge cluster randomized controlled trial to test a training intervention for general practitioners in recovery-oriented practice to optimize personal recovery in adult patients.

    Science.gov (United States)

    Enticott, Joanne C; Shawyer, Frances; Brophy, Lisa; Russell, Grant; Fossey, Ellie; Inder, Brett; Mazza, Danielle; Vasi, Shiva; Weller, Penelope June; Wilson-Evered, Elisabeth; Edan, Vrinda; Meadows, Graham

    2016-12-20

    General practitioners (GPs) in Australia play a central role in the delivery of mental health care. This article describes the PULSAR (Principles Unite Local Services Assisting Recovery) Primary Care protocol, a novel mixed methods evaluation of a training intervention for GPs in recovery-oriented practice. The aim of the intervention is to optimize personal recovery in patients consulting study GPs for mental health issues. The intervention mixed methods design involves a stepped-wedge cluster randomized controlled trial testing the outcomes of training in recovery-oriented practice, together with an embedded qualitative study to identify the contextual enablers and challenges to implementing recovery-oriented practice. The project is conducted in Victoria, Australia between 2013 and 2017. Eighteen general practices and community health centers are randomly allocated to one of two steps (nine months apart) to start an intervention comprising GP training in the delivery of recovery-oriented practice. Data collection consists of cross-sectional surveys collected from patients of participating GPs at baseline, and again at the end of Steps 1 and 2. The primary outcome is improvement in personal recovery using responses to the Questionnaire about the Process of Recovery. Secondary outcomes are improvements in patient-rated measures of personal recovery and wellbeing, and of the recovery-oriented practice they have received, using the INSPIRE questionnaire, the Warwick-Edinburgh Mental Well-being Scale, and the Kessler Psychological Distress Scale. Participant data will be analyzed in the group that the cluster was assigned to at each study time point. Another per-protocol dataset will contain all data time-stamped according to the date of intervention received at each cluster site. Qualitative interviews with GPs and patients at three and nine months post-training will investigate experiences and challenges related to implementing recovery-oriented practice in primary

  20. Use of Wedge Absorbers in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Summers, D. [Univ. of Mississippi, Oxford, MS (United States); Mohayai, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Snopok, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Rogers, C. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL)

    2017-03-01

    Wedge absorbers are needed to obtain longitudinal cooling in ionization cooling. They also can be used to obtain emittance exchanges between longitudinal and transverse phase space. There can be large exchanges in emittance, even with single wedges. In the present note we explore the use of wedge absorbers in the MICE experiment to obtain transverse–longitudinal emittance exchanges within present and future operational conditions. The same wedge can be used to explore “direct” and “reverse” emittance exchange dynamics, where direct indicates a configuration that reduces momentum spread and reverse is a configuration that increases momentum spread. Analytical estimated and ICOOL and G4BeamLine simulations of the exchanges at MICE parameters are presented. Large exchanges can be obtained in both reverse and direct configurations.

  1. A specially curved wedge for eliminating wedge angle effect in unsteady shock reflection

    Science.gov (United States)

    Wang, He; Zhai, Zhigang; Luo, Xisheng; Yang, Jiming; Lu, Xiyun

    2017-08-01

    A curved wedge with a specific shape is designed and manufactured to guarantee the wedge angle unvaried during the cylindrically converging shock moving along the wedge. Thus the variation of the wedge angle caused by the wedge will be eliminated in unsteady shock reflection. Different initial wedge angles are considered to observe regular reflection and Mach reflection. When Mach reflection occurs, it is found that direct Mach reflection is persisted over the wedge without wave pattern transitions, which differs from our previous work with varied wedge angles [Zhang et al. "Reflection of cylindrical converging shock wave over a plane wedge," Phys. Fluids 28, 086101 (2016)]. Moreover, the Mach stem is nearly straight when the wedge angle is relatively large, and the trajectory of triple point can be well predicted by three-shock theory. It is believed that the straight Mach stem results from the coupling effect of the converging shock and the convexly curved wedge, which exert opposite effects on the Mach stem curvature. As the wedge angle reduces, the three-shock theory prediction deviates from the present results owing to the curved Mach stem. Stronger vortices are produced near the wall, which are caused by the interaction of two shear layers, and whether the stronger vortices will be generated near the wall depends on the reflection number of the shock wave over the tube wall and wedge. The length of disturbed shock front in the Mach reflection is found to increase nonlinearly due to the unsteady feature of the flow. The growth rate of length reduces as the shock converges because of the geometrical contraction effect. Further the lengths of the Mach stem and the disturbed shock front are compared, and the results show that although the difference exists between them, both of them show a similar variation tendency. Compared with our previous work with varied wedge angles, the variation of the wedge angle has great effects on the Mach stem length and wave

  2. Long-range hybrid wedge plasmonic waveguide.

    Science.gov (United States)

    Zhang, Zhonglai; Wang, Jian

    2014-11-03

    We design a novel long-range hybrid wedge plasmonic (LRHWP) waveguide composed of two identical dielectric nanowires symmetrically placed on two opposed wedges of a diamond shaped metal wire. With strong coupling between the dielectric nanowire mode and long-range surface plasmon polariton (SPP) mode, both deep subwavelength mode confinement and low propagation loss are achieved. On one hand, when compared to the previous long-range hybrid SPP waveguide, LRHWP waveguide can achieve smaller mode size with similar propagation length; on the other hand, when compared to the previous hybrid wedge SPP waveguide, LRHWP waveguide can provide an order of magnitude longer propagation length with similar level of mode confinement. The designed LRHWP waveguide also features an overall advantage of one-order improvement of Figure of Merit. We further evaluate in detail the impacts of possible practical fabrication imperfections on the mode properties. The obtained results of mode properties show that the proposed LRHWP waveguide with an optimized wedge tip angle of 140 degree is fairly tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, asymmetry in the vertical direction, variation of wedge tip angle, tilt or rotation of metal wire, and variation of wedge tip curvature radius.

  3. Preliminary results from bench-scale testing of a sulfur-iodine thermochemical water-splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, D.; Allen, C.; Besenbruch, G.; McCorkle, K.; Norman, J.; Sharp, R.

    1980-07-01

    Portions of a bench-scale model of a sulfur-iodine thermochemical water-splitting cycle have been operated at General Atomic Company as part of a comprehensive program to demonstrate the technology for hydrogen production from nonfossil sources. The hydrogen program is funded by the US Department of Energy, the Gas Research Institute, and General Atomic Company. The bench-scale model consists of three subunits which can be operated separately or together and is capable of producing as much as 4 std liters/min (6.7 x 10/sup -5/ m/sup 3//s at standard conditions) of gaseous hydrogen. One subunit (main solution reaction) reacts liquid water, liquid iodine (I/sub 2/) and gaseous sulfur dioxide (SO/sub 2/) to form two separable liquid phases: 50 wt % sulfuric acid (H/sub 2/SO/sub 4/) and a solution of iodine in hydriodic acid (HI/sub x/). Another subunit (H/sub 2/SO/sub 4/ concentration and decomposition) concentrates the H/sub 2/SO/sub 4/ phase to the azeotropic composition, then decomposes it at high temperature over a catalyst to form gaseous SO/sub 2/ and oxygen. The third subunit (HI separation and decomposition) separates the HI from water and I/sub 2/ by extractive distillation with phosphoric acid (H/sub 3/PO/sub 4/) and decomposes the HI in the vapor phase over a catalyst to form I/sub 2/ and product hydrogen. This paper presents the results of on-going parametric studies to determine the operating characteristics, performance, and capacity limitations of major components.

  4. Water-saturated physical modeling of accretionary wedges

    Science.gov (United States)

    Yamada, Y.; Zhang, M.; Nakajima, H.; Driss, E.

    2005-12-01

    Accretionary wedges have been an important research target from view points of earthquake mechanism at the subduction zone, sediment deformation that is closely coupled with hydrology, and resource exploration such as methane hydrates. The knowledge obtained from the study may also be useful for site selection of geological disposal of hazardous materials including radioactive nuclear wastes, in coastal areas of tectonically unstable island arc systems like Japan. The wedges have been well-investigated with analogue models in particular sandbox experiments that typically use dry granular materials, thus the inter-granular pore space of the sandbox experiments is filled with air. In natural sediments, however, the pore space is filled with formation water and its pressure has special effects on structural development. In order to accurately simulate the in-situ conditions and to examine the effects of water on the deformation process of accretionary wedge, a new apparatus was recently constructed in AIST, Japan, to perform physical analog experiments of accretionary wedges under water-saturated condition. For comparisons, equivalent experiments with dry materials were also conducted. The physical properties of the materials were also measured with tri-axial compression tests to interpret the experimental observations. Preliminary results obtained from this study showed that the fundamental parameters on structural geometry, such as taper angle and fault spacing, can be correlated well in wet and dry experiments. These are also in good agreement with physical properties obtained by the tri-axial compression tests, suggesting that the internal friction coefficient decreases as the overburden pressure increases. In the under water models, buoyancy decreases apparent grain density and overburden pressure thus the internal friction coefficient also decreases. This also agrees with the structural geometry of the experimental results. These results suggest that under

  5. Studying wedge factors and beam profiles for physical and enhanced dynamic wedges

    Directory of Open Access Journals (Sweden)

    Ahmad Misbah

    2010-01-01

    Full Text Available This study was designed to investigate variation in Varian′s Physical and Enhanced Dynamic Wedge Factors (WF as a function of depth and field size. The profiles for physical wedges (PWs and enhanced dynamic wedges (EDWs were also measured using LDA-99 array and compared for confirmation of EDW angles at different depths and field sizes. WF measurements were performed in water phantom using cylindrical 0.66 cc ionization chamber. WF was measured by taking the ratio of wedge and open field ionization data. A normalized wedge factor (NWF was introduced to circumvent large differences between wedge factors for different wedge angles. A strong linear dependence of PW Factor (PWF with depth was observed. Maximum variation of 8.9% and 4.1% was observed for 60° PW with depth at 6 and 15 MV beams respectively. The variation in EDW Factor (EDWF with depth was almost negligible and less than two per cent. The highest variation in PWF as a function of field size was 4.1% and 3.4% for thicker wedge (60° at 6 and 15 MV beams respectively and decreases with decreasing wedge angle. EDWF shows strong field size dependence and significant variation was observed for all wedges at both photon energies. Differences in profiles between PW and EDW were observed on toe and heel sides. These differences were dominant for larger fields, shallow depths, thicker wedges and low energy beam. The study indicated that ignoring depth and field size dependence of WF may result in under/over dose to the patient especially doing manual point dose calculation.

  6. A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximants.

    Science.gov (United States)

    Lin, Ying-Tsong; Collis, Jon M; Duda, Timothy F

    2012-11-01

    An alternating direction implicit (ADI) three-dimensional fluid parabolic equation solution method with enhanced accuracy is presented. The method uses a square-root Helmholtz operator splitting algorithm that retains cross-multiplied operator terms that have been previously neglected. With these higher-order cross terms, the valid angular range of the parabolic equation solution is improved. The method is tested for accuracy against an image solution in an idealized wedge problem. Computational efficiency improvements resulting from the ADI discretization are also discussed.

  7. Experimental and Numerical Procedures of a Sonar Platform with a Sound Absorption Wedge

    Institute of Scientific and Technical Information of China (English)

    Danzhu Yu; Xiongliang Yao; Shaoshi Dai

    2011-01-01

    Experiments involving a sonar platform with a sound absorption wedge were carried out for the purpose of obtaining the low frequency acoustic characteristics.Acoustic characteristics of a sonar platform model with a sound absorption wedge were measured,and the effects of different wedge laid areas on platform acoustic characteristic were tested.Vibration acceleration and self-noise caused by model vibration were measured in four conditions:0%,36%,60%,and 100% of wedge laid area when the sonar platform was under a single frequency excitation force.An experiment was performed to validate a corresponding numerical calculation.The numerical vibration characteristics of platform area were calculated by the finite element method,and self-noise caused by the vibration in it was predicted by an experiential formula.The conclusions prove that the numerical calculation method can partially replace the experimental process for obtaining vibration and sound characteristics.

  8. Development of a new test method for Mineral Based Composites

    DEFF Research Database (Denmark)

    Täljsten, Björn; Orosz, Katalin

    2008-01-01

    The well-known wedge splitting test, often used for characterizing brittle materials has been modified and adapted to testing MBC-reinforced concrete under splitting load. MBC (Mineral Based Composites) is a newly developed strengthening system for existing concrete structures where FRPs, mainly...... CFRP grids are externally bonded to the concrete surface by means of cementitious bonding agents. Crack development, crack patterns, crack opening displacement (COD) versus splitting load and fracture energy are investigated and evaluated. Development of a suitable test specimen and test setup has been...... accomplished. Bond provided by both mortars was excellent leading to CFRP rupture. By applying PVA-reinforced ductile ECC as bonding agent, improved performance, significantly higher fracture energy, multiple cracking and enhanced ductility were observed, caused by improved bond between grid and mortar due...

  9. Mantle wedge serpentinization effects on slab dips

    Directory of Open Access Journals (Sweden)

    Eh Tan

    2017-01-01

    Full Text Available The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.

  10. Wedged tibial components for total knee arthroplasty.

    Science.gov (United States)

    Jeffery, R S; Orton, M A; Denham, R A

    1994-08-01

    Severe coronal deformity of the knee is frequently associated with erosion of one tibial condyle. This can cause problems with fixation and alignment during total knee arthroplasty. If the tibia is cut to the level of the more worn side, valuable bone is sacrificed; if the less worn side is chosen, the deficiency must be filled with bone--graft, cement, or a prosthesis. Tibial components with an integral polyethylene wedge on the undersurface were introduced in 1980 for use in patients with a bony deficit on one tibial condyle. The authors believe that the Denham prosthesis (Biomet, Wales, U.K.) was the first knee arthroplasty to offer such spacers. Twenty-six patients with preoperative varus deformity in whom a wedged component was used were compared with 29 historic control subjects. None of the wedged components loosened after a median follow-up period of 8 years compared with loosening in five of the control subjects (P = .01). In three of the control subjects a fractured triangle of cement was present on the radiographs. Use of the wedges was not accompanied by an improvement in postoperative alignment. The authors conclude that the wedges resulted in improved fixation that was independent of postoperative alignment.

  11. Long polymers near wedges and cones

    Science.gov (United States)

    Hammer, Yosi; Kantor, Yacov

    2015-12-01

    We perform a Monte Carlo study of N -step self-avoiding walks, attached to the corner of an impenetrable wedge in two dimensions (d =2 ), or the tip of an impenetrable cone in d =3 , of sizes ranging up to N =106 steps. We find that the critical exponent γα, which determines the dependence of the number of available conformations on N for a cone or wedge with opening angle α , is in good agreement with the theory for d =2 . We study the end-point distribution of the walks in the allowed space and find similarities to the known behavior of random walks (ideal polymers) in the same geometry. For example, the ratio between the mean square end-to-end distances of a polymer near the cone or wedge and a polymer in free space depends linearly on γα, as is known for ideal polymers. We show that the end-point distribution of polymers attached to a wedge does not separate into a product of angular and radial functions, as it does for ideal polymers in the same geometry. The angular dependence of the end position of polymers near the wedge differs from theoretical predictions.

  12. Commissioning, clinical implementation and quality assurance of Siemen's Virtual Wedge.

    Science.gov (United States)

    Rathee, S; Kwok, C B; MacGillivray, C; Mirzaei, M

    1999-01-01

    This report presents the results of commissioning, clinical implementation and quality assurance of Siemens Virtual Wedge. Our measurements show that: (1) wedge factors are within 2% of unity, (2) percentage depth doses are within 1% of open beam data, and (3) wedged beam profiles can be modeled similarly to a physical wedge and follow a well defined equation to facilitate modeling of an arbitrary wedge angle. The gantry angle dependence of wedge profiles is similar to open beam profiles. The output of wedged fields is linear with delivered monitor units within 1%. Quality assurance results indicate the wedge profiles are very stable over time. Day to day variations of two points measured along the wedge gradient direction are within 1.5%.

  13. Structure of turbulent wedges created by isolated surface roughness

    Science.gov (United States)

    Kuester, Matthew S.; White, Edward B.

    2016-04-01

    Isolated surface roughness in a laminar boundary layer can create a wedge of turbulence that spreads laterally into the surrounding laminar flow. Some recent studies have identified high- and low-speed streaks along the exterior of turbulent wedges. In this experiment, developing turbulent wedges are measured to observe the creation of these streaks. Naphthalene shear stress surface visualization and hotwire measurements are utilized to investigate the details of turbulent wedges created by cylinders in a laminar flat-plate boundary layer. Both the surface visualization and the hotwire measurements show high- and low-speed streaks in the wake of the cylinder that devolve into a turbulent wedge. The turbulent wedge spreading is associated with the emergence of these high- and low-speed streaks along the outside of the wedge. As the wedge evolves in the streamwise direction, these streaks persist inside of the core of the wedge, while new, lower amplitude streaks form along the outside of the wedge. Adding asymmetry to the cylinder moved the virtual origin closer to the roughness and increased the vortex shedding frequency, while adding small-scale roughness features did not strongly affect turbulent wedge development. Intermittency calculations additionally show the origin of the turbulent core inside of the wedge. The structure and spacing of the high-speed streaks along the extremities of the turbulent wedge give insight into the spreading angle of the turbulent wedge.

  14. Commissioning Siemens Virtual Wedges in the Oncentra MasterPlan treatment planning system using Gafchromic EBT film.

    Science.gov (United States)

    Ferretti, A; Simonato, F; Zandonà, R; Reccanello, S; Fabbris, R

    2010-12-01

    Virtual Wedges were introduced in Siemens LINACs to improve the treatment workflow. The aim of the present work is the validation of dose calculation by MasterPlan-Oncentra treatment planning system for virtual wedged beams. The Oncor Siemens accelerator installed in the authors' department produces 6 and 15 MV photon beams. At first, the consistency of VW LINAC production was tested and the EBT film measuring method was verified. This method is based on the scanner uniformity correction and absolute dose calibration as reported in literature. Then, the measured and calculated wedge factors and beam profiles are compared. For 15 degrees, 30 degrees, 45 degrees, and 60 degrees wedge angles, the wedge factors for different field sizes were measured by an ionization chamber and the dose profiles were acquired by Gafchromic EBT film. Both types of measurements were collected in isocentric condition. The comparison between measured and calculated VW factors shows discrepancies that increase with field size and angle. The OTP Enhanced algorithm produces better agreement with measurements than the Classic one, with improvement overall visible for large angles. The agreement between measured and planned beam profiles is within limits reported by the ESTRO Booklet No. 7 in terms of confidence limits. The MasterPlan-Oncentra treatment planning system determines wedge factors and VW profiles within the requested accuracy in the majority of treatment conditions. For big field dimensions and wedge angle, wedge factor accordance was worse, but it may be increased with an improvement of the LINAC dosimetric board calibration.

  15. Explicit reconstruction of the entanglement wedge

    CERN Document Server

    Kim, Jung-Wook

    2016-01-01

    The problem of bulk locality, or how the boundary encodes the bulk in AdS/CFT, is still a subject of study today. One of the major issues that needs more elucidation is the problem of subregion duality; what information of the bulk a given boundary subregion encodes. Although proofs given by two teams of researchers, Dong, Harlow, and Wall and Bao, and Kim, state that the entanglement wedge of the bulk should be reconstructible from boudnary subregions, no explicit procedure for reconstructing the entanglement wedge was as of yet given. In this paper, mode sum approach to obtaining smearing functions is generalised to include bulk reconstruction in the entanglement wedge of boundary subregions. It is generally expectated that solutions to the wave equation on a complicated coordinate patch are needed, but this hard problem has been transferred to a less hard but tractable problem of matrix inversion.

  16. Shear Wave Splitting Observations Beneath Uturuncu Volcano, Bolivia

    Science.gov (United States)

    Sims, N. E.; Christensen, D. H.; Moore-Driskell, M. M.

    2015-12-01

    Anisotropy in the upper mantle is often associated with mantle flow direction through the lattice preferred orientation of anisotropic minerals such as olivine in the upper mantle material. The flow of the mantle around subduction zones can be particularly complex, and thus difficult to explain. Because of its relationship to anisotropy, analysis of shear wave splitting measurements can help to answer questions regarding the upper mantle flow that surrounds subducting slabs. Here we present SK(K)S shear wave splitting measurements from a temporary broadband network (PLUTONS) of 33 stations deployed from April 2009 to October 2012 on the Altiplano plateau around Uturuncu volcano in Bolivia. The stations are spaced 10-20 km apart, providing a high spatial resolution of the region of the mantle directly below Uturuncu volcano. Despite the lack of numerous splitting results to analyze, preliminary measurements indicate a relatively consistent pattern of fast-polarization directions in a NW-SE orientation of about N80ºW. We think that it is likely that these observations come from anisotropy in the mantle wedge above the subducting Nazca plate indicating a direction of flow in the mantle wedge that is sub-parallel to the subduction direction of the Nazca plate. Although W-E flow beneath the subducting Nazca plate cannot be completely ruled out, these results appear to be consistent with the simple model of two-dimensional corner flow in the mantle wedge and slab-entrained mantle flow beneath the slab.

  17. Non-Newtonian viscosity wedge in film formation of EHL

    Institute of Scientific and Technical Information of China (English)

    GUOF.; WONGP.L.

    2001-01-01

    This paper aims to evaluate the action of viscosity wedge in the oil film formation ofEHL at opposite sliding and zero entrainment. Using solvers developed for Newtonian and Eyringfluids, the film formation behavior originating from viscosity wedge is investigated. The numericalsimulation displays that lubricant film formation induced by viscosity wedge is different from that bythe well-known geometrical wedge with entrainment in classic EHL. The numerical analyses showthat at high opposite sliding speed the viscosity wedge acts as a leading role in film formation, thenon-Newtonian effects can have a pronounced influence on action of the viscosity wedge.

  18. A review of dynamics modelling of friction wedge suspensions

    Science.gov (United States)

    Wu, Qing; Cole, Colin; Spiryagin, Maksym; Sun, Yan Quan

    2014-11-01

    Three-piece bogies with friction wedge suspensions are the most widely used bogies in heavy haul trains. Fiction wedge suspensions play a key role in these wagon systems. This article reviews current techniques in dynamic modelling of friction wedge suspension with various motivations: to improve dynamic models of friction wedge suspensions so as to improve general wagon dynamics simulations; to seek better friction wedge suspension models for wagon stability assessments in complex train systems; to improve the modelling of other friction devices, such as friction draft gear. Relevant theories and friction wedge suspension models developed by using commercial simulation packages and in-house simulation packages are reviewed.

  19. Graphene Plasmons in Triangular Wedges and Grooves

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Dias, E. J. C.; Xiao, Sanshui

    2016-01-01

    and electric-field distributions. We have found that the dispersion of wedge/groove graphene plasmons follows the same functional dependence as their flat-graphene plasmon counterparts, but now scaled by a (purely) geometric factor in which all the information about the system’s geometry is contained. We...... and tunability of graphene plasmons guided along the apex of a graphene-covered dielectric wedge or groove. In particular, we present a quasi-analytic model to describe the plasmonic eigenmodes in such a system, including the complete determination of their spectrum and corresponding induced potential...

  20. Stress Drop as a Result of Splitting, Brittle and Transitional Faulting of Rock Samples in Uniaxial and Triaxial Compression Tests

    Directory of Open Access Journals (Sweden)

    Cieślik Jerzy

    2015-03-01

    Full Text Available Rock samples can behave brittle, transitional or ductile depending on test pressure, rate of loading and temperature. Axial stiffness and its changes, relative and absolute dilatancy, yield, and fracture thresholds, residual strength are strongly pressure dependent. In this paper the stress drop as an effect of rock sample strength loss due to failure was analyzed. Uniaxial and triaxial experiments on three types of rock were performed to investigate the stress drop phenomenon. The paper first introduces short background on rock behavior and parameters defining a failure process under uniaxial and triaxial loading conditions. Stress drop data collected with experiments are analyzed and its pressure dependence phenomenon is described. Two methods for evaluation of stress drop value are presented.

  1. Consistency of QSAR models: Correct split of training and test sets, ranking of models and performance parameters.

    Science.gov (United States)

    Rácz, A; Bajusz, D; Héberger, K

    2015-01-01

    Recent implementations of QSAR modelling software provide the user with numerous models and a wealth of information. In this work, we provide some guidance on how one should interpret the results of QSAR modelling, compare and assess the resulting models, and select the best and most consistent ones. Two QSAR datasets are applied as case studies for the comparison of model performance parameters and model selection methods. We demonstrate the capabilities of sum of ranking differences (SRD) in model selection and ranking, and identify the best performance indicators and models. While the exchange of the original training and (external) test sets does not affect the ranking of performance parameters, it provides improved models in certain cases (despite the lower number of molecules in the training set). Performance parameters for external validation are substantially separated from the other merits in SRD analyses, highlighting their value in data fusion.

  2. Numerical Investigation of Dynamic Rock Fracture Toughness Determination Using a Semi-Circular Bend Specimen in Split Hopkinson Pressure Bar Testing

    Science.gov (United States)

    Xu, Y.; Dai, F.; Xu, N. W.; Zhao, T.

    2016-03-01

    The International Society for Rock Mechanics (ISRM) has suggested a notched semi-circular bend technique in split Hopkinson pressure bar (SHPB) testing to determine the dynamic mode I fracture toughness of rock. Due to the transient nature of dynamic loading and limited experimental techniques, the dynamic fracture process associated with energy partitions remains far from being fully understood. In this study, the dynamic fracturing of the notched semi-circular bend rock specimen in SHPB testing is numerically simulated for the first time by the discrete element method (DEM) and evaluated in both microlevel and energy points of view. The results confirm the validity of this DEM model to reproduce the dynamic fracturing and the feasibility to simultaneously measure key dynamic rock fracture parameters, including initiation fracture toughness, fracture energy, and propagation fracture toughness. In particular, the force equilibrium of the specimen can be effectively achieved by virtue of a ramped incident pulse, and the fracture onset in the vicinity of the crack tip is found to synchronize with the peak force, both of which guarantee the quasistatic data reduction method employed to determine the dynamic fracture toughness. Moreover, the energy partition analysis indicates that simplifications, including friction energy neglect, can cause an overestimation of the propagation fracture toughness, especially under a higher loading rate.

  3. Impact three-point bending tests on FRP by split-Hopkinson bar technique. Hopkinson boho ni yoru FRP no shogeki santenmage shiken

    Energy Technology Data Exchange (ETDEWEB)

    Higashida, F.; Ogawa, K. (Kyoto University, Kyoto (Japan). Faculty of Engineering)

    1990-10-15

    Fiber reinforced plastics (FRP) are widely used as high ratio strength structural material and strong interest is taken in their impact strength. In their impact bending test, observation is made of stress waveform, with which largely interferes high frequency fluctuation. Various measurement methods being studied to eliminate that interference, the present report used a split-Hopkinson bar technique, not influenced by the reflection of stress wave in the tester, and made impact three-point bending tests, up to about 15cm/s in impact speed, on CFRP and GFRP by having loosely ramped incident stress act. The result gave a smooth relation, almost free from high frequency fluctuation, between the load and time, which relation could accurately derive bending rigidity, breaking strength, etc. Of the CFRP and GFRP, elucidation was further made of independency of bending strength upon the strain speed, relation between the maximum stress and strain speed, effect of deformation speed on the three-point bending strength, etc. 35 refs., 8 figs., 1 tab.

  4. Lightfront holography and area density of entropy associated with quantum localization on wedge-horizon

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: schroer@cbpf.br

    2002-08-01

    The lightfront quantization of the 70s is reviewed in the more rigorous setting of lightfront (LF) restriction of free fields in which the lightfront is considered to be linear extension of the upper causal horizon of a wedge region. Particular attention is given to the change of localization structure in passing from the wedge to its horizon which results in the emergence of a transverse quantum mechanical substructure of the QFT on the horizon and its lightfront extension. The vacuum fluctuations of QFT on the LF are compressed into the direction of the lightray (where they become associated with a chiral QFT) and lead to the notion of area density of a 'split localization' entropy. To overcome the limitation of this restriction approach and include interacting theories with non-canonical short distance behavior, we introduce a new concept of algebraic lightfront holography which uses ideas of algebraic QFT, in particular the modular structure of its associated local operator algebras. In this way the localization properties of LF degrees of freedom including the absence of transverse vacuum fluctuations are confirmed to be stable against interactions. The important universality aspect of lightfront holography is emphasized. Only in this way one is able to extract from the 'split-localization' entropy a split-independent additive entropy-like measure of the entanglement of the vacuum upon restriction to the horizon algebra. (author)

  5. Construction and test of a small parallel-grid-avalance-start detector for the split-pole spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, D.; Blumenthal, D.; Jiang, C.L. [and others

    1995-08-01

    For mass and Z-identification in a planned experiment with {sup 18}F beams, the method of a gas-filled magnet will be used. In this technique ions with different nuclear charge Z traveling through a gas-filled volume obtain a different magnetic rigidity, which can be used for Z-identification of very slow ions. Mass identification is obtained via time-of-flight. Since the experiment is being performed with a DC beam, a start detector for time-of-flight measurements is required. For this purpose a small (10 x 10 mm{sup 2}) parallel-grid-avalanche-counter (PGAC) was designed which is mounted directly on the sliding seal of the scattering chamber. In order to minimize the number of foils a particle has to penetrate, the start detector also serves as a pressure foil, separating the gas in the magnet from the vacuum in the scattering chamber. The detector, which has only two 120-{mu}g/cm{sup 2} polypropylene foils, was tested in an experiment with {sup 13}C ions. The measured time resolution was limited by straggling effects in the gas of the magnet and only an upper limit for the intrinsic time resolution of the detector of 1 nsec could be obtained. The detector was used successfully in the first experiments with {sup 18}F beams.

  6. PARADOX SOLUTION ON ELASTIC WEDGE DISSIMILAR MATERIALS

    Institute of Scientific and Technical Information of China (English)

    姚伟岸; 张兵茹

    2003-01-01

    According to the Hellinger-Reissner variational principle and introducing proper transformation of variables, the problem on elastic wedge dissimilar materials can be led to Hamiltonian system, so the solution of the problem can be got by employing the separation of variables method and symplectic eigenfunction expansion under symplectic space, which consists of original variables and their dual variables. The eigenvalue - 1 is a special one of all symplectic eigenvalue for Hamiltonian system in polar coordinate. In general, the eigenvalue - is a single eigenvalue, and the classical solution of an elastic wedge dissimilar materials subjected to a unit concentrated couple at the vertex is got directly by solving the eigenfunction vector for eigenvalue - 1 . But the eigenvalue - 1 becomes a double eigenvalue when the vertex angles and modulus of the materials satisfy certain definite relationships and the classical solution for the stress distribution becomes infinite at this moment, that is, the paradox should occur. Here the Jordan form eigenfunction vector for eigenvalue - 1 exists, and solution of the paradox on elastic wedge dissimilar materials subjected to a unit concentrated couple at the vertex is obtained directly by solving this special Jordan form eigenfunction. The result shows again that the solutions of the special paradox on elastic wedge in the classical theory of elasticity are just Jordan form solutions in symplectic space under Hamiltonian system.

  7. Radiotherapy treatment planning with dynamic wedges--an algorithm for generating wedge factors and beam data.

    Science.gov (United States)

    Thomas, S J; Foster, K R

    1995-09-01

    If the jaws of a linear accelerator are moved under computer control during irradiation, dose distributions similar to those with wedge filters can be produced. Varian linear accelerators utilize this effect to give a 'dynamic wedge', using segmented treatment tables (STTs). An algorithm is described to generate the dose per monitor unit at any point in a beam, using the STT values. Dynamically wedged beams are modelled as the superposition of static asymmetric beams, using an algorithm based on beam data measured for symmetric beams. Predictions of wedge factors, depth doses and profiles generated using the algorithm are compared with measurements. Good agreement is found between predictions and measurements. The calculation time is typically 5 ms/dose point on a PC with a 486DX processor.

  8. A comparison of exact TM plane wave diffraction by coated wedges and impedance wedges

    DEFF Research Database (Denmark)

    Andersen, Lars S.; Breinbjerg, Olav; Moore, John T.

    1996-01-01

    without interference from direct fields or reflected fields. Results have been obtained in the case of illumination by a transverse magnetic (TM) uniform plane wave. The analysis of the coated wedge is based on an integral equation formulation combined with a hybrid technique, while the analysis......The purpose of this work is to numerically investigate the accuracy of the standard impedance boundary condition (SIBC) approximation for edge diffraction. To this end, we compare the scattering by coated wedges and SIBC wedges for which the diffracted field from a single edge can be observed...... of the SIBC wedge is based on Maliuzhinets' solution. Comparisons have been carried out for a series of configurations including lossy coatings as well as lossless coatings permitting unattenuated propagation of surface waves. The results show that the presence of an edge in a coated structure does...

  9. Split liver transplantation.

    Science.gov (United States)

    Yersiz, H; Cameron, A M; Carmody, I; Zimmerman, M A; Kelly, B S; Ghobrial, R M; Farmer, D G; Busuttil, R W

    2006-03-01

    Seventy-five thousand Americans develop organ failure each year. Fifteen percent of those on the list for transplantation die while waiting. Several possible mechanisms to expand the organ pool are being pursued including the use of extended criteria donors, living donation, and split deceased donor transplants. Cadaveric organ splitting results from improved understanding of the surgical anatomy of the liver derived from Couinaud. Early efforts focused on reduced-liver transplantation (RLT) reported by both Bismuth and Broelsch in the mid-1980s. These techniques were soon modified to create both a left lateral segment graft appropriate for a pediatric recipient and a right trisegment for an appropriately sized adult. Techniques of split liver transplantation (SLT) were also modified to create living donor liver transplantation. Pichlmayr and Bismuth reported successful split liver transplantation in 1989 and Emond reported a larger series of nine split procedures in 1990. Broelsch and Busuttil described a technical modification in which the split was performed in situ at the donor institution with surgical division completed in the heart beating cadaveric donor. In situ splitting reduces cold ischemia, simplifies identification of biliary and vascular structures, and reduces reperfusion hemorrhage. However, in situ splits require specialized skills, prolonged operating room time, and increased logistical coordination at the donor institution. At UCLA over 120 in situ splits have been performed and this technique is the default when an optimal donor is available. Split liver transplantation now accounts for 10% of adult transplantations at UCLA and 40% of pediatric transplantations.

  10. Orthotic Heel Wedges Do Not Alter Hindfoot Kinematics and Achilles Tendon Force During Level and Inclined Walking in Healthy Individuals.

    Science.gov (United States)

    Weinert-Aplin, Robert A; Bull, Anthony M J; McGregor, Alison H

    2016-04-01

    Conservative treatments such as in-shoe orthotic heel wedges to treat musculoskeletal injuries are not new. However, weak evidence supporting their use in the management of Achilles tendonitis suggests the mechanism by which these heel wedges works remains poorly understood. It was the aim of this study to test the underlying hypothesis that heel wedges can reduce Achilles tendon load. A musculoskeletal modeling approach was used to quantify changes in lower limb mechanics when walking due to the introduction of 12-mm orthotic heel wedges. Nineteen healthy volunteers walked on an inclinable walkway while optical motion, force plate, and plantar pressure data were recorded. Walking with heel wedges increased ankle dorsiflexion moments and reduced plantar flexion moments; this resulted in increased peak ankle dorsiflexor muscle forces during early stance and reduced tibialis posterior and toe flexor muscle forces during late stance. Heel wedges did not reduce overall Achilles tendon force during any walking condition, but did redistribute load from the medial to lateral triceps surae during inclined walking. These results add to the body of clinical evidence confirming that heel wedges do not reduce Achilles tendon load and our findings provide an explanation as to why this may be the case.

  11. Life at the wedge: the activity and diversity of arctic ice wedge microbial communities.

    Science.gov (United States)

    Wilhelm, Roland C; Radtke, Kristin J; Mykytczuk, Nadia C S; Greer, Charles W; Whyte, Lyle G

    2012-04-01

    The discovery of polygonal terrain on Mars underlain by ice heightens interest in the possibility that this water-bearing habitat may be, or may have been, a suitable habitat for extant life. The possibility is supported by the recurring detection of terrestrial microorganisms in subsurface ice environments, such as ice wedges found beneath tundra polygon features. A characterization of the microbial community of ice wedges from the high Arctic was performed to determine whether this ice environment can sustain actively respiring microorganisms and to assess the ecology of this extreme niche. We found that ice wedge samples contained a relatively abundant number of culturable cells compared to other ice habitats (∼10(5) CFU·mL(-1)). Respiration assays in which radio-labeled acetate and in situ measurement of CO(2) flux were used suggested low levels of microbial activity, though more sensitive techniques are required to confirm these findings. Based on 16S rRNA gene pyrosequencing, bacterial and archaeal ice wedge communities appeared to reflect surrounding soil communities. Two Pseudomonas sp. were the most abundant taxa in the ice wedge bacterial library (∼50%), while taxa related to ammonia-oxidizing Thaumarchaeota occupied 90% of the archaeal library. The tolerance of a variety of isolates to salinity and temperature revealed characteristics of a psychrotolerant, halotolerant community. Our findings support the hypothesis that ice wedges are capable of sustaining a diverse, plausibly active microbial community. As such, ice wedges, compared to other forms of less habitable ground ice, could serve as a reservoir for life on permanently cold, water-scarce, ice-rich extraterrestrial bodies and are therefore of interest to astrobiologists and ecologists alike. .

  12. Radiation pressure on a dielectric wedge

    CERN Document Server

    Mansuripur, Masud; Moloney, Jerome V

    2014-01-01

    The force of electromagnetic radiation on a dielectric medium may be derived by a direct application of the Lorentz law of classical electrodynamics. While the light's electric field acts upon the (induced) bound charges in the medium, its magnetic field exerts a force on the bound currents. We use the example of a wedge-shaped solid dielectric, immersed in a transparent liquid and illuminated at Brewster's angle, to demonstrate that the linear momentum of the electromagnetic field within dielectrics has neither the Minkowski nor the Abraham form; rather, the correct expression for momentum density has equal contributions from both. The time rate of change of the incident momentum thus expressed is equal to the force exerted on the wedge plus that experienced by the surrounding liquid.

  13. Graphene Plasmons in Triangular Wedges and Grooves

    CERN Document Server

    Gonçalves, P A D; Xiao, Sanshui; Vasilevskiy, M I; Mortensen, N Asger; Peres, N M R

    2016-01-01

    The ability to effectively guide electromagnetic radiation below the diffraction limit is of the utmost importance in the prospect of all-optical plasmonic circuitry. Here, we propose an alternative solution to conventional metal-based plasmonics by exploiting the deep subwavelength confinement and tunability of graphene plasmons guided along the apex of a graphene-covered dielectric wedge or groove. In particular, we present a quasi-analytic model to describe the plasmonic eigenmodes in such a system, including the complete determination of their spectrum and corresponding induced potential and electric field distributions. We have found that the dispersion of wedge/groove graphene plasmons follows the same functional dependence as their flat-graphene plasmons counterparts, but now scaled by a (purely) geometric factor in which all the information about the system's geometry is contained. We believe our results pave the way for the development of novel custom-tailored photonic devices for subwavelength waveg...

  14. Checking the virtual treatment modality Wedge from Siemens; Verificacion de la modalidad de tratamiento virtual WEDGE de SIEMENS

    Energy Technology Data Exchange (ETDEWEB)

    Suero Rodrigo, M. A.; Marques Fraguela, E.

    2011-07-01

    The treatment modality Virtual Wedge (VW) or implemented by Siemens virtual wedge in electron linear accelerators achieved dose distributions are similar but not identical, to those obtained with physical wedges. Among the advantages against the latter is the greater ease of use, wedge factor close to one, and lower peripheral dose. However, these benefits are to be effective requires a through quality control dependence because a larger number of parameters that control the generation of the beam, the dose monitor system and the movement of the jaws of the collimator. We performed a study of the wedge taking into account different configurations that can affect their behavior from the dosimetric point of view.

  15. Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure

    Science.gov (United States)

    Turner, Stephen J.; Langmuir, Charles H.; Katz, Richard F.; Dungan, Michael A.; Escrig, Stéphane

    2016-10-01

    The processes that lead to the fourfold variation in arc-averaged compositions of mafic arc lavas remain controversial. Control by the mantle-wedge thermal structure is supported by chemical correlations with the thickness of the underlying arc crust, which affects the thermal state of the wedge. Control by down-going slab temperature is supported by correlations with the slab thermal parameter. The Chilean Southern Volcanic Zone provides a test of these hypotheses. Here we use chemical data to demonstrate that the Southern Volcanic Zone and global arc averages define the same chemical trends, both among elements and between elements and crustal thickness. But in contrast to the global arc system, the Southern Volcanic Zone is built on crust of variable thickness with a constant slab thermal parameter. This natural experiment, along with a set of numerical simulations, shows that global arc compositional variability is dominated by different extents of melting that are controlled by the thermal structure of the mantle wedge. Slab temperatures play a subordinate role. Variations in the subducting slab's fluid flux and sediment compositions, as well as mantle-wedge heterogeneities, produce second-order effects that are manifested as distinctive trace element and isotopic signatures; these can be more clearly elucidated once the importance of wedge thermal structure is recognized.

  16. Wedge filling and interface delocalization in finite Ising lattices with antisymmetric surface fields

    Science.gov (United States)

    Milchev, Andrey; Müller, M.; Binder, K.; Landau, D. P.

    2003-09-01

    Theoretical predictions by Parry et al. for wetting phenomena in a wedge geometry are tested by Monte Carlo simulations. Simple cubic L×L×Ly Ising lattices with nearest neighbor ferromagnetic exchange and four free L×Ly surfaces, at which antisymmetric surface fields ±Hs act, are studied for a wide range of linear dimensions (4⩽L⩽320, 30⩽Ly⩽1000), in an attempt to clarify finite size effects on the wedge filling transition in this “double-wedge” geometry. Interpreting the Ising model as a lattice gas, the problem is equivalent to a liquid-gas transition in a pore with quadratic cross section, where two walls favor the liquid and the other two walls favor the gas. For temperatures T below the bulk critical temperature Tc this boundary condition (where periodic boundary conditions are used in the y direction along the wedges) leads to the formation of two domains with oppositely oriented magnetization and separated by an interface. For L,Ly→∞ and T larger than the filling transition temperature Tf(Hs), this interface runs from the one wedge where the surface planes with a different sign of the surface field meet (on average) straight to the opposite wedge, so that the average magnetization of the system is zero. For Tinterface is bound either to the wedge where the two surfaces with field -Hs meet (then the total magnetization m of the system is positive) or to the opposite wedge (then minterface midpoint from the wedges is studied as T→Tf(Hs) from below, as is the corresponding behavior of the magnetization and its moments. We consider the variation of l0 for T>Tf(Hs) as a function of a bulk field and find that the associated exponents agree with theoretical predictions. The correlation length ξy in the y direction along the wedges is also studied, and we find no transition for finite L and Ly→∞. For L→∞ the prediction l0∝(Hsc-Hs)-1/4 is verified, where Hsc(T) is the inverse function of Tf(Hs) and ξy∝(Hsc-Hs)-3/4, respectively. We

  17. Water Impact of Rigid Wedges in Two-Dimensional Fluid Flow

    Directory of Open Access Journals (Sweden)

    Sawan Shah

    2015-01-01

    Full Text Available A combined experimental and numerical investigation was conducted into impact of rigid wedges on water in two-dimensional fluid conditions. Drop test experiments were conducted involving symmetric rigid wedges of varying angle and mass impacted onto water. The kinematic behaviour of the wedge and water was characterised using high-speed video. Numerical models were analysed in LS-DYNA® that combined regions of Smoothed Particle Hydrodynamics particles and a Lagrangian element mesh. The analysis captured the majority of experimental results and trends, within the bounds of experimental variance. Further, the combined modelling technique presented a highly attractive combination of computational efficiency and accuracy, making it a suitable candidate for aircraft ditching investigations.

  18. Effects of low energy E-beam irradiation on graphene and graphene field effect transistors and raman metrology of graphene on split gate test structures

    Science.gov (United States)

    Rao, Gayathri S.

    2011-12-01

    to the graphene Dirac bands thereby reducing the inelastic scattering and inhibiting the phonon decay medicated by SiO2 surface polar phonons (SPP). This model also explains the enhancement of n-type doping in GFETS observed for multi-step irradiation. These results highlight the impact of substrate defects and interaction of induced defectivity with the e-beam along with the role of interfacial water in impacting graphene device performance. The thesis also presents data on Raman-based characterization of graphene including layer number determination and carrier concentration measurement. Determination of layer number for graphene exfoliates focused on the splitting of the 2D Raman band. In addition, an alternate Raman-based thickness metrology was evaluated for CVD-based, polycrystalline graphene. Both were carried out on split gate test structures as a method for monolayer or bilayer confirmation in device geometries. In addition, carrier concentration measurements of exfoliates on 300nm SiO2 and split-gate test structure substrate have also been characterized with back gate biasing. These measurements made use of the stiffening of the Raman G-band with doping and the narrowing of the G-band FWHM. These results were important for validating conclusions from the e-beam irradiation experiments mentioned above regarding carrier doping.

  19. The CORE study protocol: a stepped wedge cluster randomised controlled trial to test a co-design technique to optimise psychosocial recovery outcomes for people affected by mental illness in the community mental health setting

    Science.gov (United States)

    Palmer, Victoria J; Chondros, Patty; Piper, Donella; Callander, Rosemary; Weavell, Wayne; Godbee, Kali; Potiriadis, Maria; Richard, Lauralie; Densely, Konstancja; Herrman, Helen; Furler, John; Pierce, David; Schuster, Tibor; Iedema, Rick; Gunn, Jane

    2015-01-01

    Introduction User engagement in mental health service design is heralded as integral to health systems quality and performance, but does engagement improve health outcomes? This article describes the CORE study protocol, a novel stepped wedge cluster randomised controlled trial (SWCRCT) to improve psychosocial recovery outcomes for people with severe mental illness. Methods An SWCRCT with a nested process evaluation will be conducted over nearly 4 years in Victoria, Australia. 11 teams from four mental health service providers will be randomly allocated to one of three dates 9 months apart to start the intervention. The intervention, a modified version of Mental Health Experience Co-Design (MH ECO), will be delivered to 30 service users, 30 carers and 10 staff in each cluster. Outcome data will be collected at baseline (6 months) and at completion of each intervention wave. The primary outcome is improvement in recovery score using the 24-item Revised Recovery Assessment Scale for service users. Secondary outcomes are improvements to user and carer mental health and well-being using the shortened 8-item version of the WHOQOL Quality of Life scale (EUROHIS), changes to staff attitudes using the 19-item Staff Attitudes to Recovery Scale and recovery orientation of services using the 36-item Recovery Self Assessment Scale (provider version). Intervention and usual care periods will be compared using a linear mixed effects model for continuous outcomes and a generalised linear mixed effects model for binary outcomes. Participants will be analysed in the group that the cluster was assigned to at each time point. Ethics and dissemination The University of Melbourne, Human Research Ethics Committee (1340299.3) and the Federal and State Departments of Health Committees (Project 20/2014) granted ethics approval. Baseline data results will be reported in 2015 and outcomes data in 2017. Trial registration number Australian and New Zealand Clinical Trials Registry ACTRN

  20. Comet LINEAR Splits Further

    Science.gov (United States)

    2001-05-01

    Third Nucleus Observed with the VLT Summary New images from the VLT show that one of the two nuclei of Comet LINEAR (C/2001 A2), now about 100 million km from the Earth, has just split into at least two pieces . The three fragments are now moving through space in nearly parallel orbits while they slowly drift apart. This comet will pass through its perihelion (nearest point to the Sun) on May 25, 2001, at a distance of about 116 million kilometres. It has brightened considerably due to the splitting of its "dirty snowball" nucleus and can now be seen with the unaided eye by observers in the southern hemisphere as a faint object in the southern constellation of Lepus (The Hare). PR Photo 18a/01 : Three nuclei of Comet LINEAR . PR Photo 18b/01 : The break-up of Comet LINEAR (false-colour). Comet LINEAR splits and brightens ESO PR Photo 18a/01 ESO PR Photo 18a/01 [Preview - JPEG: 400 x 438 pix - 55k] [Normal - JPEG: 800 x 875 pix - 136k] ESO PR Photo 18b/01 ESO PR Photo 18b/01 [Preview - JPEG: 367 x 400 pix - 112k] [Normal - JPEG: 734 x 800 pix - 272k] Caption : ESO PR Photo 18a/01 shows the three nuclei of Comet LINEAR (C/2001 A2). It is a reproduction of a 1-min exposure in red light, obtained in the early evening of May 16, 2001, with the 8.2-m VLT YEPUN (UT4) telescope at Paranal. ESO PR Photo 18b/01 shows the same image, but in a false-colour rendering for more clarity. The cometary fragment "B" (right) has split into "B1" and "B2" (separation about 1 arcsec, or 500 km) while fragment "A" (upper left) is considerably fainter. Technical information about these photos is available below. Comet LINEAR was discovered on January 3, 2001, and designated by the International Astronomical Union (IAU) as C/2001 A2 (see IAU Circular 7564 [1]). Six weeks ago, it was suddenly observed to brighten (IAUC 7605 [1]). Amateurs all over the world saw the comparatively faint comet reaching naked-eye magnitude and soon thereafter, observations with professional telescopes indicated

  1. Fossil predation: did some clavilithine fasciolariid gastropods employ valve-wedging to feed on bivalves?

    NARCIS (Netherlands)

    Vermeij, Geerat J.

    2015-01-01

    Several gastropods, including members of the Busyconinae, wedge or chip bivalve prey by inserting the outer lip between the valves. This habit, which is associated with an abapically downwardly convex outer lip, often results in breakage and subsequent repair of the lip. I tested the hypothesis that

  2. Split Cord Malformations

    Directory of Open Access Journals (Sweden)

    Yurdal Gezercan

    2015-06-01

    Full Text Available Split cord malformations are rare form of occult spinal dysraphism in children. Split cord malformations are characterized by septum that cleaves the spinal canal in sagittal plane within the single or duplicated thecal sac. Although their precise incidence is unknown, split cord malformations are exceedingly rare and represent %3.8-5 of all congenital spinal anomalies. Characteristic neurological, urological, orthopedic clinical manifestations are variable and asymptomatic course is possible. Earlier diagnosis and surgical intervention for split cord malformations is associated with better long-term fuctional outcome. For this reason, diagnostic imaging is indicated for children with associated cutaneous and orthopedic signs. Additional congenital anomalies usually to accompany the split cord malformations. Earlier diagnosis, meticuolus surgical therapy and interdisciplinary careful evaluation and follow-up should be made for good prognosis. [Cukurova Med J 2015; 40(2.000: 199-207

  3. Accuracy of tablet splitting.

    Science.gov (United States)

    McDevitt, J T; Gurst, A H; Chen, Y

    1998-01-01

    We attempted to determine the accuracy of manually splitting hydrochlorothiazide tablets. Ninety-four healthy volunteers each split ten 25-mg hydrochlorothiazide tablets, which were then weighed using an analytical balance. Demographics, grip and pinch strength, digit circumference, and tablet-splitting experience were documented. Subjects were also surveyed regarding their willingness to pay a premium for commercially available, lower-dose tablets. Of 1752 manually split tablet portions, 41.3% deviated from ideal weight by more than 10% and 12.4% deviated by more than 20%. Gender, age, education, and tablet-splitting experience were not predictive of variability. Most subjects (96.8%) stated a preference for commercially produced, lower-dose tablets, and 77.2% were willing to pay more for them. For drugs with steep dose-response curves or narrow therapeutic windows, the differences we recorded could be clinically relevant.

  4. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...... as possible. Evaluations show that the proposed protocol provides considerable gains over the standard tree splitting protocol applying SIC. The improvement comes at the expense of an increased feedback and receiver complexity....

  5. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geo- metrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hy- drodynamic load support as high as 2.5 times of what the geometrical conver- gent-wedge can produce. Wall slip usually gives a small surface friction.

  6. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)

    MA GuoJun; WU ChengWei; ZHOU Ping

    2007-01-01

    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geometrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hydrodynamic load support as high as 2.5 times of what the geometrical convergent-wedge can produce. Wall slip usually gives a small surface friction.

  7. Plastic deformation of a wedge by a sliding punch

    Science.gov (United States)

    Nepershin, R. I.

    2016-11-01

    We present a self-similar solution of the problem of deformation of an ideally plastic wedge by a sliding punch with regard to contact friction; such a solution generalizes the well-known solutions of the problem of wedge penetration into a plastic half-space and of compression of an ideally plastic wedge by a plane punch. The problem is of interest for modeling the processes of plastic deformation of rough surfaces of metal pieces by a rigid tool.

  8. Optimal clinical implementation of the Siemens virtual wedge.

    Science.gov (United States)

    Walker, C P; Richmond, N D; Lambert, G D

    2003-01-01

    Installation of a modern high-energy Siemens Primus linear accelerator at the Northern Centre for Cancer Treatment (NCCT) provided the opportunity to investigate the optimal clinical implementation of the Siemens virtual wedge filter. Previously published work has concentrated on the production of virtual wedge angles at 15 degrees, 30 degrees, 45 degrees, and 60 degrees as replacements for the Siemens hard wedges of the same nominal angles. However, treatment plan optimization of the dose distribution can be achieved with the Primus, as its control software permits the selection of any virtual wedge angle from 15 degrees to 60 degrees in increments of 1 degrees. The same result can also be produced from a combination of open and 60 degrees wedged fields. Helax-TMS models both of these modes of virtual wedge delivery by the wedge angle and the wedge fraction methods respectively. This paper describes results of timing studies in the planning of optimized patient dose distributions by both methods and in the subsequent treatment delivery procedures. Employment of the wedge fraction method results in the delivery of small numbers of monitor units to the beam's central axis; therefore, wedge profile stability and delivered dose with low numbers of monitor units were also investigated. The wedge fraction was proven to be the most efficient method when the time taken for both planning and treatment delivery were taken into consideration, and is now used exclusively for virtual wedge treatment delivery in Newcastle. It has also been shown that there are no unfavorable dosimetric consequences from its practical implementation.

  9. The CORE study protocol: a stepped wedge cluster randomised controlled trial to test a co-design technique to optimise psychosocial recovery outcomes for people affected by mental illness in the community mental health setting.

    Science.gov (United States)

    Palmer, Victoria J; Chondros, Patty; Piper, Donella; Callander, Rosemary; Weavell, Wayne; Godbee, Kali; Potiriadis, Maria; Richard, Lauralie; Densely, Konstancja; Herrman, Helen; Furler, John; Pierce, David; Schuster, Tibor; Iedema, Rick; Gunn, Jane

    2015-03-24

    User engagement in mental health service design is heralded as integral to health systems quality and performance, but does engagement improve health outcomes? This article describes the CORE study protocol, a novel stepped wedge cluster randomised controlled trial (SWCRCT) to improve psychosocial recovery outcomes for people with severe mental illness. An SWCRCT with a nested process evaluation will be conducted over nearly 4 years in Victoria, Australia. 11 teams from four mental health service providers will be randomly allocated to one of three dates 9 months apart to start the intervention. The intervention, a modified version of Mental Health Experience Co-Design (MH ECO), will be delivered to 30 service users, 30 carers and 10 staff in each cluster. Outcome data will be collected at baseline (6 months) and at completion of each intervention wave. The primary outcome is improvement in recovery score using the 24-item Revised Recovery Assessment Scale for service users. Secondary outcomes are improvements to user and carer mental health and well-being using the shortened 8-item version of the WHOQOL Quality of Life scale (EUROHIS), changes to staff attitudes using the 19-item Staff Attitudes to Recovery Scale and recovery orientation of services using the 36-item Recovery Self Assessment Scale (provider version). Intervention and usual care periods will be compared using a linear mixed effects model for continuous outcomes and a generalised linear mixed effects model for binary outcomes. Participants will be analysed in the group that the cluster was assigned to at each time point. The University of Melbourne, Human Research Ethics Committee (1340299.3) and the Federal and State Departments of Health Committees (Project 20/2014) granted ethics approval. Baseline data results will be reported in 2015 and outcomes data in 2017. Australian and New Zealand Clinical Trials Registry ACTRN12614000457640. Published by the BMJ Publishing Group Limited. For

  10. Vibration frequencies of a constrained cantilever wedge

    Science.gov (United States)

    Craver, W. Lionel, Jr.; Lu, Yangshan

    1989-05-01

    This paper presents the solution for the natural frequencies of a beam tapered in one direction, or a wedge, with both a rotational and a translational constraint at a position along the length of the beam. The eigenfrequencies were determined using an incremental search and bisection method, accurate to the fourth decimal place. The taper ratio was varied from 1.4 to 5.0 and the dimensionless spring constants were varied from 0 to 1000. Graphs are provided to illustrate some results.

  11. Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds

    Science.gov (United States)

    Serafini, John S

    1954-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  12. Wedge filling and interface delocalization in finite Ising lattices with antisymmetric surface fields.

    Science.gov (United States)

    Milchev, Andrey; Müller, M; Binder, K; Landau, D P

    2003-09-01

    Theoretical predictions by Parry et al. for wetting phenomena in a wedge geometry are tested by Monte Carlo simulations. Simple cubic LxLxL(y) Ising lattices with nearest neighbor ferromagnetic exchange and four free LxL(y) surfaces, at which antisymmetric surface fields +/-H(s) act, are studied for a wide range of linear dimensions (4Ising model as a lattice gas, the problem is equivalent to a liquid-gas transition in a pore with quadratic cross section, where two walls favor the liquid and the other two walls favor the gas. For temperatures T below the bulk critical temperature T(c) this boundary condition (where periodic boundary conditions are used in the y direction along the wedges) leads to the formation of two domains with oppositely oriented magnetization and separated by an interface. For L,L(y)--> infinity and T larger than the filling transition temperature T(f)(H(s)), this interface runs from the one wedge where the surface planes with a different sign of the surface field meet (on average) straight to the opposite wedge, so that the average magnetization of the system is zero. For Tinterface is bound either to the wedge where the two surfaces with field -H(s) meet (then the total magnetization m of the system is positive) or to the opposite wedge (then minterface midpoint from the wedges is studied as T-->T(f)(H(s)) from below, as is the corresponding behavior of the magnetization and its moments. We consider the variation of l(0) for T>T(f)(H(s)) as a function of a bulk field and find that the associated exponents agree with theoretical predictions. The correlation length xi(y) in the y direction along the wedges is also studied, and we find no transition for finite L and L(y)--> infinity. For L--> infinity the prediction l(0) proportional, variant (H(sc)-H(s))(-1/4) is verified, where H(sc)(T) is the inverse function of T(f)(H(s)) and xi(y) proportional, variant (H(sc)-H(s))(-3/4), respectively. We also find that m vanishes discontinuously at the

  13. Global Existence of a Shock for the Supersonic Flow Past a Curved Wedge

    Institute of Scientific and Technical Information of China (English)

    Hui Cheng YIN

    2006-01-01

    This note is devoted to the study of the global existence of a shock wave for the supersonic flow past a curved wedge. When the curved wedge is a small perturbation of a straight wedge and the angle of the wedge is less than some critical value, we show that a shock attached at the wedge will exist globally.

  14. Molecular depth profiling by wedged crater beveling.

    Science.gov (United States)

    Mao, Dan; Lu, Caiyan; Winograd, Nicholas; Wucher, Andreas

    2011-08-15

    Time-of-flight secondary ion mass spectrometry and atomic force microscopy are employed to characterize a wedge-shaped crater eroded by a 40-keV C(60)(+) cluster ion beam on an organic film of Irganox 1010 doped with Irganox 3114 delta layers. From an examination of the resulting surface, the information about depth resolution, topography, and erosion rate can be obtained as a function of crater depth for every depth in a single experiment. It is shown that when measurements are performed at liquid nitrogen temperature, a constant erosion rate and reduced bombardment induced surface roughness is observed. At room temperature, however, the erosion rate drops by ∼(1)/(3) during the removal of the 400 nm Irganox film and the roughness gradually increased to from 1 nm to ∼4 nm. From SIMS lateral images of the beveled crater and AFM topography results, depth resolution was further improved by employing glancing angles of incidence and lower primary ion beam energy. Sub-10 nm depth resolution was observed under the optimized conditions on a routine basis. In general, we show that the wedge-crater beveling is an important tool for elucidating the factors that are important for molecular depth profiling experiments.

  15. Ice-Creams and Wedge Graphs

    CERN Document Server

    Ackerman, Eyal; Pinchasi, Rom

    2011-01-01

    We show that for every compact convex set $S$ in the plane and every $0 < \\alpha < \\pi$, there exist a point $O$ and two supporting lines to $S$ passing through $O$ and touching $S$ at two \\emph{single points} $X$ and $Y$, respectively, such that $|OX|=|OY|$ and the angle between the two lines has measure $\\alpha$. As a consequence, we provide a simplified proof to the following result by Carmi, Katz, Lotker, and Ros\\'en \\cite{CKLR10}. Given a set of $\\frac{\\pi}{3}$-directional antennas (that is, antennas each of which can communicate along a wedge of angle $\\frac{\\pi}{3}$), one can always assign a direction to each antenna such that the resulting communication graph is connected, where two antennas can communicate if and only if each lies in the wedge assigned to the other. In fact we obtain a much stronger and optimal result (see Theorem \\ref{theorem:main}) saying in particular that one can chose the directions of the antennas so that the communication graph has diameter $\\le 4$.

  16. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  17. Polarized Antenna Splitting Functions

    Energy Technology Data Exchange (ETDEWEB)

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC

    2009-10-17

    We consider parton showers based on radiation from QCD dipoles or 'antennae'. These showers are built from 2 {yields} 3 parton splitting processes. The question then arises of what functions replace the Altarelli-Parisi splitting functions in this approach. We give a detailed answer to this question, applicable to antenna showers in which partons carry definite helicity, and to both initial- and final-state emissions.

  18. 49 CFR 215.113 - Defective plain bearing wedge.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  19. Comparison of wedge resection (Winograd procedure) and wedge resection plus complete nail plate avulsion in the treatment of ingrown toenails.

    Science.gov (United States)

    Huang, Jia-Zhang; Zhang, Yi-Jun; Ma, Xin; Wang, Xu; Zhang, Chao; Chen, Li

    2015-01-01

    The present retrospective study compared the efficacy of wedge resection (Winograd procedure) and wedge resection plus complete nail plate avulsion for the treatment of ingrown toenails (onychocryptosis). Two surgical methods were performed in 95 patients with a stage 2 or 3 ingrown toenail. Each patient was examined weekly until healing and then at 1, 6, and 12 months of follow-up. The outcomes measured were surgical duration, healing time, recurrence rate, the incidence of postoperative infection, and cosmetic appearance after surgery. Of the 95 patients (115 ingrown toenails) included in the present study, 39 (41.1%) underwent wedge resection (Winograd procedure) and 56 (59%), wedge resection plus complete nail plate avulsion. The mean surgical duration for wedge resection (Winograd procedure) and wedge resection plus complete nail plate avulsion was 14.9 ± 2.4 minutes and 15.1 ± 3.2 minutes, respectively (p = .73). The corresponding healing times were 2.8 ± 1.2 weeks and 2.7 ± 1.3 weeks (p = .70). Recurrence developed in 3 (3.2%) patients after wedge resection (Winograd procedure) and in 4 (4.2%) after wedge resection plus complete nail plate avulsion. In addition, postoperative infection occurred in 3 (3.2%) patients after wedge resection (Winograd procedure) and 2 (2.1%) after wedge resection plus complete nail plate avulsion. Both of the surgical procedures were practical and appropriate for the treatment of ingrown toenails, being simple and associated with low morbidity and a high success rate. However, cosmetically, wedge resection (Winograd procedure) would be the better choice because the nail plate remains intact.

  20. Ground penetrating radar estimates of permafrost ice wedge depth

    Science.gov (United States)

    Parsekian, A.; Slater, L. D.; Nolan, J. T.; Grosse, G.; Walter Anthony, K. M.

    2013-12-01

    Vertical ground ice wedges associated with polygonal patterning in permafrost environments form due to frost cracking of soils under harsh winter conditions and subsequent infilling of cracks with snow melt water. Ice wedge polygon patterns have implications for lowland geomorphology, hydrology, and vulnerability of permafrost to thaw. Ice wedge dimensions may exceed two meters width at the surface and several meters depth, however few studies have addressed the question of ice wedge depth due to challenges related to measuring the vertical dimension below the ground. Vertical exposures where ice wedges maybe observed are limited to rapidly retreating lake, river, and coastal bluffs. Coring though the ice wedges to determine vertical extent is possible, however that approach is time consuming and labor intensive. Many geophysical investigations have noted signal anomalies related to the presence of ice wedges, but no reliable method for extracting wedge dimensions from geophysical data has been yet proposed. Here we present new evidence that ground penetrating radar (GPR) may be a viable method for estimating ice wedge depth. We present three new perspectives on processing GPR data collected over ice wedges that show considerable promise for use as a fast, cost effective method for evaluating ice wedge depth. Our novel approaches include 1) a simple frequency-domain analysis, 2) an S-transform frequency domain analysis and 3) an analysis of the returned signal power as a radar cross section (RCS) treating subsurface ice wedges as dihedral corner retro-reflectors. Our methods are demonstrated and validated using finite-difference time domain FDTD) GPR forward models of synthetic idealized ice wedges and field data from permafrost sites in Alaska. Our results indicate that frequency domain and signal power data provide information that is easier to extract from raw GPR data than similar information in the time domain. We also show that we can simplify the problem by

  1. A reciprocating ledge technique in closing wedge osteotomy for genu valgum in adolescents.

    Science.gov (United States)

    Dhar, Shabir Ahmed; Butt, Mohammed Farooq; Mir, Mohammed Ramzan; Dar, Tahir Ahmed; Sultan, Asif

    2009-12-01

    To describe a technique that preserves anterior and posterior alternate ledges in a closing wedge osteotomy. Five patients aged 14 to 19 years underwent a closing wedge osteotomy for genu valgum in 8 limbs using a reciprocating ledge technique. A unicortical wedge of bone was removed, with the anterior and posterior cortices spared. The anterior cortex at the proximal level and the posterior cortex at the distal level were cut through. With a wobbling action, the osteotomy site was rotated, and the distal fragment externally rotated. Manual force was applied to close the osteotomy site ensuring overlapping of the reciprocal ledges. The distal fragment was translated laterally to prevent club deformity. The osteotomy site was held with one or 2 staples. Stability was tested by flexion and extension of knee. All 8 limbs attained bone union within 12 weeks, and full range of motion within a mean of 13 (range, 12-15) weeks. The mean correction of the tibiofemoral angle was 13 degrees. At a mean follow-up of 12 months, all patients were pain-free and none developed club deformity. Sparing reciprocal ledges in a closing wedge osteotomy for genu valgum may increase stability in the flexion-extension axis, enable early range-of-motion exercises, and facilitate early bone union.

  2. Laterally wedged insoles in knee osteoarthritis: do biomechanical effects decline after one month of wear?

    Directory of Open Access Journals (Sweden)

    Bennell Kim L

    2009-11-01

    Full Text Available Abstract Objective This study aimed to determine whether the effect of laterally wedged insoles on the adduction moment in knee osteoarthritis (OA declined after one month of wear, and whether higher reported use of insoles was associated with a reduced effect on the adduction moment at one month. Methods Twenty people with medial compartment OA underwent gait analysis in their own shoes wearing i no insoles and; ii insoles wedged laterally 5° in random order. Testing occurred at baseline and after one month of use of the insoles. Participants recorded daily use of insoles in a log-book. Outcomes were the first and second peak external knee adduction moment and the adduction angular impulse, compared across conditions and time with repeated measures general linear models. Correlations were obtained between total insole use and change in gait parameters with used insoles at one month, and change scores were compared between high and low users of insoles using general linear models. Results There was a significant main effect for condition, whereby insoles significantly reduced the adduction moment (all p Conclusion Effects of laterally wedged insoles on the adduction moment do not appear to decline after one month of continuous use, suggesting that significant wedge degradation does not occur over the short-term.

  3. Characterization of CNRS Fizeau wedge laser tuner

    Science.gov (United States)

    A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.

  4. Irrational beliefs, attitudes about competition, and splitting.

    Science.gov (United States)

    Watson, P J; Morris, R J; Miller, L

    2001-03-01

    Rational-Emotive Behavior Therapy (REBT) theoretically promotes actualization of both individualistic and social-oriented potentials. In a test of this assumption, the Belief Scale and subscales from the Survey of Personal Beliefs served as measures of what REBT presumes to be pathogenic irrationalities. These measures were correlated with the Hypercompetitive Attitude Scale (HCAS), the Personal Development Competitive Attitude Scale (PDCAS), factors from the Splitting Index, and self-esteem. Results for the HCAS and Self-Splitting supported the REBT claim about individualistic self-actualization. Mostly nonsignificant and a few counterintuitive linkages were observed for irrational beliefs with the PDCAS, Family-Splitting, and Other-Splitting, and these data suggested that REBT may be less successful in capturing the "rationality" of a social-oriented self-actualization.

  5. (O)Mega Split

    CERN Document Server

    Benakli, Karim; Goodsell, Mark

    2015-01-01

    We study two realisations of the Fake Split Supersymmetry Model (FSSM), the simplest model that can easily reproduce the experimental value of the Higgs mass for an arbitrarily high supersymmetry scale, as a consequence of swapping higgsinos for equivalent states, fake higgsinos, with suppressed Yukawa couplings. If the LSP is identified as the main Dark matter component, then a standard thermal history of the Universe implies upper bounds on the supersymmetry scale, which we derive. On the other hand, we show that renormalisation group running of soft masses above the supersymmetry scale barely constrains the model - in stark contrast to Split Supersymmetry - and hence we can have a "Mega Split" spectrum even with all of these assumptions and constraints, which include the requirements of a correct relic abundance, a gluino life-time compatible with Big Bang Nucleosynthesis and absence of signals in present direct detection experiments of inelastic dark matter. In an appendix we describe a related scenario, ...

  6. Effects of medially wedged foot orthoses on knee and hip joint running mechanics in females with and without patellofemoral pain syndrome.

    Science.gov (United States)

    Boldt, Andrew R; Willson, John D; Barrios, Joaquin A; Kernozek, Thomas W

    2013-02-01

    We examined the effects of medially wedged foot orthoses on knee and hip joint mechanics during running in females with and without patellofemoral pain syndrome (PFPS). We also tested if these effects depend on standing calcaneal eversion angle. Twenty female runners with and without PFPS participated. Knee and hip joint transverse and frontal plane peak angle, excursion, and peak internal knee and hip abduction moment were calculated while running with and without a 6° full-length medially wedged foot orthoses. Separate 3-factor mixed ANOVAs (group [PFPS, control] x condition [medial wedge, no medial wedge] x standing calcaneal angle [everted, neutral, inverted]) were used to test the effect of medially wedged orthoses on each dependent variable. Knee abduction moment increased 3% (P = .03) and hip adduction excursion decreased 0.6° (P < .01) using medially wedged foot orthoses. No significant group x condition or calcaneal angle x condition effects were observed. The addition of medially wedged foot orthoses to standardized running shoes had minimal effect on knee and hip joint mechanics during running thought to be associated with the etiology or exacerbation of PFPS symptoms. These effects did not appear to depend on injury status or standing calcaneal posture.

  7. Comparative study of fracture mechanical test methods for concrete

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Olesen, John Forbes

    2004-01-01

    and the interpretation, i.e. the analysis needed to extract the stress-crack opening relationship, the fracture energy etc. Experiments are carried out with each test configuration using mature, high performance concrete. The results show that the UTT is a highly complicated test, which only under very well controlled......This paper describes and compares three different fracture mechanical test methods; the uniaxial tension test (UTT), the three point bending test (TPBT) and the wedge splitting test (WST). Potentials and problems with the test methods will be described with regard to the experiment...... circumstances will yield the true fracture mechanical properties. It is also shown that both the three point bending test and the WST are well-suited substitutes for the uniaxial tension test....

  8. Investigations of Air-cooled Turbine Rotors for Turbojet Engines II : Mechanical Design, Stress Analysis, and Burst Test of Modified J33 Split-disk Rotor / Richard H. Kemp and Merland L. Moseson

    Science.gov (United States)

    Kemp, Richard H; Moseson, Merland L

    1952-01-01

    A full-scale J33 air-cooled split turbine rotor was designed and spin-pit tested to destruction. Stress analysis and spin-pit results indicated that the rotor in a J33 turbojet engine, however, showed that the rear disk of the rotor operated at temperatures substantially higher than the forward disk. An extension of the stress analysis to include the temperature difference between the two disks indicated that engine modifications are required to permit operation of the two disks at more nearly the same temperature level.

  9. Splitting Ward identity

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Mahmoud [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Within the background-field framework we present a path integral derivation of the splitting Ward identity for the one-particle irreducible effective action in the presence of an infrared regulator, and make connection with earlier works on the subject. The approach is general in the sense that it does not rely on how the splitting is performed. This identity is then used to address the problem of background dependence of the effective action at an arbitrary energy scale. We next introduce the modified master equation and emphasize its role in constraining the effective action. Finally, application to general gauge theories within the geometric approach is discussed. (orig.)

  10. Split Malcev Algebras

    Indian Academy of Sciences (India)

    Antonio J Calderón Martín; Manuel Forero Piulestán; José M Sánchez Delgado

    2012-05-01

    We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form $M=\\mathcal{U}+\\sum_jI_j$ with $\\mathcal{U}$ a subspace of the abelian Malcev subalgebra and any $I_j$ a well described ideal of satisfying $[I_j, I_k]=0$ if ≠ . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.

  11. The Tax Wedge in Slovenia: International Comparison and Policy Recommendations

    Directory of Open Access Journals (Sweden)

    Primož Dolenc

    2005-09-01

    Full Text Available When taxes on labor are introduced, a “tax wedge” appears between the labor costs paid by the employer (gross wage and the net wage received by an employee. At a certain level of wage, a higher tax wedge increases unemployment and decreases employment, all other things being equal. The paper tackles three main questions: the characteristics of the tax wedge, unemployment and employment rates in OECD countries in the recent past, tax wedge policy in the EU15 and the new EU members and the tax system and its effects on the unemployment and employment rates in Slovenia. We found that the OECD countries can be classified into two groups of countries if the tax wedge, the unemployment rate and the employment rate are taken into consideration. The first group is the high tax wedge, high unemployment rate and low employment rate group of countries, whereas the other group has the opposite characteristics. European member states (old and new have on average a higher tax burden on labor than the OECD average, consequently suffering from higher unemployment rates. Slovenia has an unreasonably high tax wedge; in the EU only Belgium and Germany have a higher tax burden. According to previous and our empirical findings we suggest that Slovenia could benefit from a reduction in the tax wedge.

  12. Group sequential designs for stepped-wedge cluster randomised trials.

    Science.gov (United States)

    Grayling, Michael J; Wason, James Ms; Mander, Adrian P

    2017-06-01

    The stepped-wedge cluster randomised trial design has received substantial attention in recent years. Although various extensions to the original design have been proposed, no guidance is available on the design of stepped-wedge cluster randomised trials with interim analyses. In an individually randomised trial setting, group sequential methods can provide notable efficiency gains and ethical benefits. We address this by discussing how established group sequential methodology can be adapted for stepped-wedge designs. Utilising the error spending approach to group sequential trial design, we detail the assumptions required for the determination of stepped-wedge cluster randomised trials with interim analyses. We consider early stopping for efficacy, futility, or efficacy and futility. We describe first how this can be done for any specified linear mixed model for data analysis. We then focus on one particular commonly utilised model and, using a recently completed stepped-wedge cluster randomised trial, compare the performance of several designs with interim analyses to the classical stepped-wedge design. Finally, the performance of a quantile substitution procedure for dealing with the case of unknown variance is explored. We demonstrate that the incorporation of early stopping in stepped-wedge cluster randomised trial designs could reduce the expected sample size under the null and alternative hypotheses by up to 31% and 22%, respectively, with no cost to the trial's type-I and type-II error rates. The use of restricted error maximum likelihood estimation was found to be more important than quantile substitution for controlling the type-I error rate. The addition of interim analyses into stepped-wedge cluster randomised trials could help guard against time-consuming trials conducted on poor performing treatments and also help expedite the implementation of efficacious treatments. In future, trialists should consider incorporating early stopping of some kind into

  13. Stable and Critical Noncohesive Coulomb Wedges: Exact Elastic Solutions

    Science.gov (United States)

    Wang, K.; Hu, Y.

    2004-12-01

    The theory of critically tapered Coulomb wedge has been successfully applied to model active fold-and-thrust belts or submarine accretionary prisms. Brittle mountain building is episodic in nature, controlled by changes in basal friction, erosion and sedimentation, and hydrogeology. Sediment accretion may be modulated by great subduction earthquakes. Between deformation episodes and/or during transition between compressional and extensional tectonics, the Coulomb wedges are stable (i.e., supercritical), to which the critical taper theory does not apply. In this work, we provide an exact elastic solution for stable wedges based on Airy stress functions. The stress equilibrium equation and definition of basal friction and basal and internal pore fluid pressure ratios are exactly the same as those used for Dahlen's [1984] exact solution for critical noncohesive Coulomb wedges, but internal friction μ becomes irrelevant. Given elastic - perfectly Coulomb-plastic rheology, for stresses in a wedge on the verge of Coulomb failure there must co-exist a critical taper solution involving μ and a unique equivalent elastic solution not involving μ . Our elastic solution precisely reduces to Dahlen's critical taper solution for critical conditions. For stable conditions, normal stress perpendicular to the surface slope σ z and shear stress τ xz are identical with those in a critical taper, but the slope-parallel normal stress is different. The elastic solution is also generally applicable to purely elastic wedges and useful for modeling geodetic observations. A stable noncohesive Coulomb wedge differs from a general elastic wedge in that its upper and lower surfaces stay at zero curvature during loading. Dahlen, F.A. (1984), Noncohesive critical Coulomb wedges: An exact solution, JGR, 89, 10,125-10,133.

  14. Effect of Ferrite Magnetic Wedge on Capacitor Motor Characteristics in Triac Control

    Science.gov (United States)

    Kaga, Akio; Anazawa, Yoshihisa; Tajima, Katsubumi

    1991-07-01

    Split-phase capacitor motors are commonly used to drive household electric appliances. The motor has some slots and teeth to embed electric conductors or coils. The presence of the slots and teeth induces the variation of magnetic reluctance through the magnetic circuit to introduce heavy pulsation of the air gap flux. Thus, the voltage, current and torque of the motor become oscillative to increase the electric power loss and finally to reduce the motor efficiency. First, the authors discuss the characteristics of a 3-phase cage-type induction motor in which the ferrite magnetic wedges have been installed into the stator slot openings of the motor to smooth the air gap flux pulsation and to decrease the electric power loss, resulting in improved motor efficiency. If the motor is driven by the voltage source in accordance with the loading condition, more economical operation will be achieved. In this study, a nonsinusoidal voltage controlled by the switching element of a triac has been applied to a capacitor motor with wedges of ferrite magnetic materials. This paper reports on the interesting results obtained.

  15. The Splitting Loope

    Science.gov (United States)

    Wilkins, Jesse L. M.; Norton, Anderson

    2011-01-01

    Teaching experiments have generated several hypotheses concerning the construction of fraction schemes and operations and relationships among them. In particular, researchers have hypothesized that children's construction of splitting operations is crucial to their construction of more advanced fractions concepts (Steffe, 2002). The authors…

  16. Pendulum separatrix splitting

    CERN Document Server

    Gallavotti, G; Mastropietro, V

    1997-01-01

    An exact expression for the determinant of the splitting matrix is derived: it allows us to analyze the asympotic behaviour needed to amend the large angles theorem proposed in Ann. Inst. H. Poincaré, B-60, 1, 1994. The asymptotic validity of Melnokov's formulae is proved for the class of models considered, which include polynomial perturbations.

  17. Employment and productivity: The role of the tax wedge

    Directory of Open Access Journals (Sweden)

    Andrea FESTA

    2015-11-01

    Full Text Available After the economic crisis, many countries aim at reducing unemployment and foster productivity. To address these issues one of the most common policy indications recommends lowering the tax wedge on labour in order to increase employment and growth. As a consequence, a review of the empirical studies focused on the relation between tax wedge, employment and productivity is an useful and demanding exercise, especially in those European countries where the topic is on the front page of the domestic policy debate because the productivity growth is low and the tax wedge on labour is high.

  18. CBM split title in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, L.M. [EnCana Corp., Calgary, AB (Canada); Laurin, W.

    2006-07-01

    Coalbed methane (CBM) coal underlies most of central and southern Alberta. This article discussed disputes surrounding CBM ownership and split-titles. Historically, ownership of lands in Alberta implied possession and rights of all under- and overground substances. Surface estates are now typically separated from the subsurface estate, and subsurface estates are further divided either on the basis of substances or stratigraphically to create a split-title. Mineral severances are used to separate respective mineral rights among owners. While there is a relative certainty that under provincial Crown tenure CBM is included in natural gas tenure, there is currently no Canadian jurisprudence in respect of CBM entitlement on split-title private lands. Where compressed natural gas (CNG) and coal are separately held, and CBM ownership is not specifically addressed in the mineral severance, there is no Canadian law respecting CBM ownership. Resolution of ownership issues has proceeded on a case by case basis. Coal owners argue that there is a distinct interrelationship between CBM and its host coal strata. Gas owners argue that the chemical composition of CBM is identical to CNG, and that the recovery method is similar to that of CNG. Courts have historically applied the vernacular test to resolve mineral substance ownership disputes, which considers the meanings of the word coal and coalbed methane as defined by industry. The most recent and relevant application of the vernacular test were the Borys/Anderson, which effectively implemented a gas-oil interface ownership determination, which if applied to a coal grant or reservation, may lead to the conclusion that the coal strata includes CBM. It was concluded that there are 26,000 individual mineral owners in Alberta that may become involved in CBM litigation. and could become parties to litigation. refs., tabs., figs.

  19. 无楔块条件下超声相控阵的聚焦特性测试%Test of Focusing on Phased Array Ultrasonic Without Using Wedge

    Institute of Scientific and Technical Information of China (English)

    刘晓睿; 强天鹏; 邬冠华; 孙忠波; 肖雄; 郑凯

    2012-01-01

    ASTM E2491-2008 provides the standard guide for evaluating performance characteristics of phased array ultrasonic testing instruments and systems. In this paper,we use the phased array technology to measure the beam focusing capability of phased array ultrasonic in direct contact condition according with ASTM E2491-2008, so that we can identify the causes and effects of the focusing capability in the factors such as the number of elements and the focal depth. In the test, the block designed in ASTM E2491-2008 was used, the elements used were 8,16 and 32,and the focal depths used were 10, 30, 50, 100, 150 and 200 mm, respectively. Through the test, we could find the focusing phenomenon clearly in the near field and we could not find this phenomenon outside the near field. When the elements used in the test increased, the focusing ability of the PAUT system increased as well. In the near field, when the focal depth increased, the focal spot size increased too, as well.%ASTME2491-2008《相控阵超声波检查仪和系统工作特性评定指南》标准为相控阵设备的测试提供了指导性规定。文章根据ASTME2491-2008标准,在无楔块情况下测试相控阵系统的聚焦能力,确定激发晶片数、聚焦深度等因素对系统聚焦能力的影响。试验采用标准规定的试块,试验激发的晶片数量为8,16和32个,设置的聚焦深度为10,30,50,100,150以及200mm。通过试验发现,在近场区内有明显的聚焦现象,而在近场区以外则无法聚焦;随着激发晶片数量的增加,相控阵系统的聚焦能力也随着增强;在近场区中,随着相控阵聚焦深度的增加,焦点尺寸逐渐增大。

  20. Flow braking and the substorm current wedge

    Science.gov (United States)

    Birn, J.; Hesse, M.; Haerendel, G.; Baumjohann, W.; Shiokawa, K.

    1999-09-01

    Recent models of magnetotail activity have associated the braking of earthward flow with dipolarization and the reduction and diversion of cross-tail current, that is, the signatures of the substorm current wedge. Estimates of the magnitude of the diverted current by Haerendel [1992] and Shiokawa et al. [1997, 1998] tend to be lower than results from computer simulations of magnetotail reconnection and tail collapse [Birn and Hesse, 1996], despite similar underlying models. An analysis of the differences between these estimates on the basis of the simulations gives a more refined picture of the diversion of perpendicular into parallel currents. The inertial currents considered by Haerendel [1992] and Shiokawa et al. [1997] contribute to the initial current reduction and diversion, but the dominant and more permanent contribution stems from the pressure gradient terms, which change in connection with the field collapse and distortion. The major effect results from pressure gradients in the z direction, rather than from the azimuthal gradients [Shiokawa et al., 1998], combined with changes in By and Bx. The reduction of the current density near the equatorial plane is associated with a reduction of the curvature drift which overcompensates changes of the magnetization current and of the gradient B drift current. In contrast to the inertial current effects, the pressure gradient effects persist even after the burst of earthward flow ends.

  1. Casimir Effect for a Semitransparent Wedge and an Annular Piston

    CERN Document Server

    Milton, Kimball A; Kirsten, Klaus

    2009-01-01

    We consider the Casimir energy due to a massless scalar field in a geometry of an infinite wedge closed by a Dirichlet circular cylinder, where the wedge is formed by $\\delta$-function potentials, so-called semitransparent boundaries. A finite expression for the Casimir energy corresponding to the arc and the presence of both semitransparent potentials is obtained, from which the torque on the sidewalls can be derived. The most interesting part of the calculation is the nontrivial nature of the angular mode functions. Numerical results are obtained which are closely analogous to those recently found for a magnetodielectric wedge, with the same speed of light on both sides of the wedge boundaries. Alternative methods are developed for annular regions with radial semitransparent potentials, based on reduced Green's functions for the angular dependence, which allows calculations using the multiple-scattering formalism. Numerical results corresponding to the torque on the radial plates are likewise computed, whic...

  2. Electrodynamic Casimir effect in a medium-filled wedge.

    Science.gov (United States)

    Brevik, Iver; Ellingsen, Simen A; Milton, Kimball A

    2009-04-01

    We re-examine the electrodynamic Casimir effect in a wedge defined by two perfect conductors making dihedral angle alpha=pi/p. This system is analogous to the system defined by a cosmic string. We consider the wedge region as filled with an azimuthally symmetric material, with permittivity and permeability epsilon1, micro1 for distance from the axis ra. The results are closely related to those for a circular-cylindrical geometry, but with noninteger azimuthal quantum number mp. Apart from a zero-mode divergence, which may be removed by choosing periodic boundary conditions on the wedge, and may be made finite if dispersion is included, we obtain finite results for the free energy corresponding to changes in a for the case when the speed of light is the same inside and outside the radius a , and for weak coupling, |epsilon1-epsilon2|cosmic string, situated along the cusp line of the pre-existing wedge.

  3. ELASTIC INTERACTION BETWEEN WEDGE DISCLINATION DIPOLE AND INTERNAL CRACK

    Institute of Scientific and Technical Information of China (English)

    FANG Qi-hong; LIU You-wen

    2006-01-01

    The system of a wedge disclination dipole interacting with an internal crack was investigated. By using the complex variable method, the closed form solutions of complex potentials to this problem were presented. The analytic formulae of the physics variables, such as stress intensity factors at the tips of the crack produced by the wedge disclination dipole and the image force acting on disclination dipole center were obtained.The influence of the orientation, the dipole arm and the location of the disclination dipole on the stress intensity factors was discussed in detail. Furthermore, the equilibrium position of the wedge disclination dipole was also examined. It is shown that the shielding or antishielding effect of the wedge disclination to the stress intensity factors is significant when the disclination dipole moves to the crack tips.

  4. Reactive Atom Plasma Processing of Slumped Glass Wedges Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Reactive Atom Plasma (RAPTM) process will be evaluated as a rapid and practical method for fabricating precision wedges in glass sheets. The glass sheets are to...

  5. Structure and Kinematics of the Indo-Burmese Wedge

    Science.gov (United States)

    Maurin, T.; Rangin, C.

    2007-12-01

    The Burma subduction trench and the associated Indo Burmese wedge mark the present eastern boundary of the Indian plate in the northern Bengal area. The initiation, duration and history of the Bengal crust subduction beneath Burma is still debated. The aim of this paper is to provide a structural and kinematic analysis of the Indo- Burmese wedge in order to better constraints the Bengal crust subduction history beneath Burma. On the basis of field observations, seismic reflection data interpretation and well logs data we present a structural analysis of the Outer Indo-Burmese Wedge. We also constrain the onset of this Outer Wedge to be younger than 2Ma, implying a recent and fast westward growth (~10cm/yr) since Late Pliocene in close relationship with the onset of the Shillong plateau. Restoration process of a synthetic cross section through the Outer Wedge allowed us to estimate the amount of EW shortening accommodated in the Outer Wedge to be 5.1mm/yr since 2Ma. These results combined with previous available GPS data from central Myanmar suggest strain partitioning at wedge scale. The core of the wedge is affected by shear deformation and acts as a buttress for a frontal wedge that accommodates a more compressive strain component. Finally we propose that the main characteristic of the Indo-Burmese wedge growth mechanism is the progressive incorporation of the most internal part of the wedge, formerly affected by transpressive thin-skinned tectonics, to the buttress where they are subsequently affected by shear deformation. The crustal structure boarding the newly formed buttress seems to be guided by the subducting crust fabrics. We are in favour of a very recent (Late Miocene) onset of the present Indian crust subduction beneath Burma coeval with the global plate kinematics reorganisation related to the Indian/Australian plate spliting. This subduction postdates the Indo Burmese range onset that must have started in early Miocene. This range first began to

  6. Quantum tunneling splittings from path-integral molecular dynamics

    Science.gov (United States)

    Mátyus, Edit; Wales, David J.; Althorpe, Stuart C.

    2016-03-01

    We illustrate how path-integral molecular dynamics can be used to calculate ground-state tunnelling splittings in molecules or clusters. The method obtains the splittings from ratios of density matrix elements between the degenerate wells connected by the tunnelling. We propose a simple thermodynamic integration scheme for evaluating these elements. Numerical tests on fully dimensional malonaldehyde yield tunnelling splittings in good overall agreement with the results of diffusion Monte Carlo calculations.

  7. Scattering of wedges and cones with impedance boundary conditions

    CERN Document Server

    Lyalinov, Mikhail

    2012-01-01

    This book is a systematic and detailed exposition of different analytical techniques used in studying two of the canonical problems, the wave scattering by wedges or cones with impedance boundary conditions. It is the first reference on novel, highly efficient analytical-numerical approaches for wave diffraction by impedance wedges or cones. The applicability of the reported solution procedures and formulae to existing software packages designed for real-world high-frequency problems encountered in antenna, wave propagation, and radar cross section.

  8. Fee splitting in ophthalmology.

    Science.gov (United States)

    Levin, Alex V; Ganesh, Anuradha; Al-Busaidi, Ahmed

    2011-02-01

    Fee splitting and co-management are common practices in ophthalmology. These arrangements may conflict with the ethical principles governing the doctor-patient relationship, may constitute professional misconduct, and at times, may be illegal. Implications and perceptions of these practices may vary between different cultures. Full disclosure to the patient may minimize the adverse effects of conflicts of interest that arise from these practices, and may thereby allow these practices to be deemed acceptable by some cultural morays, professional guidelines, or by law. Disclosure does not necessarily relieve the physician from a potential ethical compromise. This review examines the practice of fee splitting in ophthalmology, its legal implications, the policies or guidelines governing such arrangements, and the possible ethical ramifications. A comparative view between 3 countries, Canada, the United States, and Oman, was conducted; illustrating that even in disparate cultures, there may be some universality to the application of ethical principles.

  9. Optical refractometry based on Fresnel diffraction from a phase wedge.

    Science.gov (United States)

    Tavassoly, M Taghi; Saber, Ahad

    2010-11-01

    A method that utilizes the Fresnel diffraction of light from the phase step formed by a transparent wedge is introduced for measuring the refractive indices of transparent solids, liquids, and solutions. It is shown that, as a transparent wedge of small apex angle is illuminated perpendicular to its surface by a monochromatic parallel beam of light, the Fresnel fringes, caused by abrupt change in refractive index at the wedge lateral boundary, are formed on a screen held perpendicular to the beam propagation direction. The visibility of the fringes varies periodically between zero and 1 in the direction normal to the wedge apex. For a known or measured apex angle, the wedge refractive index is obtained by measuring the period length by a CCD. To measure the refractive index of a transparent liquid or solution, the wedge is installed in a transparent rectangle cell containing the sample. Then, the cell is illuminated perpendicularly and the visibility period is measured. By using modest optics, one can measure the refractive index at a relative uncertainty level of 10(-5). There is no limitation on the refractive index range. The method can be applied easily with no mechanical manipulation. The measuring apparatus can be very compact with low mechanical and optical noises.

  10. Syntax for Split Preorders

    CERN Document Server

    Dosen, K

    2009-01-01

    A split preorder is a preordering relation on the disjoint union of two sets, which function as source and target when one composes split preorders. The paper presents by generators and equations the category SplPre, whose arrows are the split preorders on the disjoint union of two finite ordinals. The same is done for the subcategory Gen of SplPre, whose arrows are equivalence relations, and for the category Rel, whose arrows are the binary relations between finite ordinals, and which has an isomorphic image within SplPre by a map that preserves composition, but not identity arrows. It was shown previously that SplPre and Gen have an isomorphic representation in Rel in the style of Brauer. The syntactical presentation of Gen and Rel in this paper exhibits the particular Frobenius algebra structure of Gen and the particular bialgebraic structure of Rel, the latter structure being built upon the former structure in SplPre. This points towards algebraic modelling of various categories motivated by logic, and re...

  11. Benchmarking analogue models of brittle thrust wedges

    Science.gov (United States)

    Schreurs, Guido; Buiter, Susanne J. H.; Boutelier, Jennifer; Burberry, Caroline; Callot, Jean-Paul; Cavozzi, Cristian; Cerca, Mariano; Chen, Jian-Hong; Cristallini, Ernesto; Cruden, Alexander R.; Cruz, Leonardo; Daniel, Jean-Marc; Da Poian, Gabriela; Garcia, Victor H.; Gomes, Caroline J. S.; Grall, Céline; Guillot, Yannick; Guzmán, Cecilia; Hidayah, Triyani Nur; Hilley, George; Klinkmüller, Matthias; Koyi, Hemin A.; Lu, Chia-Yu; Maillot, Bertrand; Meriaux, Catherine; Nilfouroushan, Faramarz; Pan, Chang-Chih; Pillot, Daniel; Portillo, Rodrigo; Rosenau, Matthias; Schellart, Wouter P.; Schlische, Roy W.; Take, Andy; Vendeville, Bruno; Vergnaud, Marine; Vettori, Matteo; Wang, Shih-Hsien; Withjack, Martha O.; Yagupsky, Daniel; Yamada, Yasuhiro

    2016-11-01

    We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing

  12. Calculating dose distributions and wedge factors for photon treatment fields with dynamic wedges based on a convolution/superposition method.

    Science.gov (United States)

    Liu, H H; McCullough, E C; Mackie, T R

    1998-01-01

    A convolution/superposition based method was developed to calculate dose distributions and wedge factors in photon treatment fields generated by dynamic wedges. This algorithm used a dual source photon beam model that accounted for both primary photons from the target and secondary photons scattered from the machine head. The segmented treatment tables (STT) were used to calculate realistic photon fluence distributions in the wedged fields. The inclusion of the extra-focal photons resulted in more accurate dose calculation in high dose gradient regions, particularly in the beam penumbra. The wedge factors calculated using the convolution method were also compared to the measured data and showed good agreement within 0.5%. The wedge factor varied significantly with the field width along the moving jaw direction, but not along the static jaw or the depth direction. This variation was found to be determined by the ending position of the moving jaw, or the STT of the dynamic wedge. In conclusion, the convolution method proposed in this work can be used to accurately compute dose for a dynamic or an intensity modulated treatment based on the fluence modulation in the treatment field.

  13. Ice wedges as climate archives - opportunities and limitations

    Science.gov (United States)

    Opel, Thomas; Meyer, Hanno; Dereviagin, Alexander; Wetterich, Sebastian; Schirrmeister, Lutz

    2014-05-01

    Permafrost regions are assumed to play a major role for Global Climate Change as they are susceptible to recent warming in particular with regard to the potential release of stored fossil carbon. Permafrost serves as archive of past environmental and climate conditions (such as sedimentation processes, temperature and precipitation regimes as well as landscape and ecosystem development) over tens of thousands of years that can be traced by the study of the frozen deposits, paleontological content and ground ice. Ground ice comprises all types of ice contained in frozen ground, including pore ice, segregation ice and ice wedges. Here, we focus on ice wedges as the most promising climate archive that can be studied by stable water isotope methods analogously to glacier ice. They may be identified by their vertically oriented foliations. Ice wedges form by the repeated filling of wintertime thermal contraction cracks by snow melt water in spring. As the melt water quickly refreezes at negative ground temperature no isotopic fractionation takes place. Hence, the isotopic composition (δ18O, δD, d excess) of wedge ice is assumed to be representative of annual cold period climate conditions, i.e. winter and spring. Ice wedges are widely distributed in non-glaciated high northern latitudes, are diagnostic of permafrost and, in general, indicative of cold and stable climate conditions. They are found in continuous and discontinuous permafrost zones and may also have formed during and survived interglacials. They may provide unique paleo information that is not captured by other climate archives. Usually, ice wedges are dated by radiocarbon dating of organic material incorporated in the ice, but also 36Cl/Cl ratios have been successfully used to date ice wedges. Nevertheless reliable age determination is challenging when studying ice wedges. Here we tackle the potential of ice wedges from the Siberian and American Arctic to trace past climate changes from stable isotope

  14. The WST method, a fracture mechanics test method for FRC

    DEFF Research Database (Denmark)

    Lofgren, I.; Stang, Henrik; Olesen, John Forbes

    2008-01-01

    FRC compositions. Furthermore, for the WST method, two different specimen sizes have been investigated. Results from this investigation demonstrate the applicability of the WST method and show that the scatter of the test results is lower than for the 3PBT. Through inverse analysis, stress......The applicability of the wedge-splitting test method (WST), for determining fracture properties of fibre-reinforced concrete, is discussed. Experimental results, using the WST method, are compared with results from uniaxial tension tests (UTT) and three-point bending tests (3PBT) for five different......-crack opening (sigma-w) relationships have been determined for each mix and test method. For the two WST specimen sizes, there is no apparent difference either in the number of fibres (per cm(2)) crossing the fracture plane or in the fracture properties. The major factor contributing to the scatter in the test...

  15. Hyperfine splitting in lithium-like bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Lochmann, Matthias; Froemmgen, Nadja; Hammen, Michael; Will, Elisa [Universitaet Mainz (Germany); Andelkovic, Zoran; Kuehl, Thomas; Litvinov, Yuri; Winters, Danyal; Sanchez, Rodolfo [GSI Helmholtzzentrum, Darmstadt (Germany); Botermann, Benjamin; Noertershaeuser, Wilfried [Technische Universitaet Darmstadt (Germany); Bussmann, Michael [Helmholtzzentrum Dresden-Rossendorf (Germany); Dax, Andreas [CERN, Genf (Switzerland); Hannen, Volker; Joehren, Raphael; Vollbrecht, Jonas; Weinheimer, Christian [Universitaet Muenster (Germany); Geppert, Christopher [Universitaet Mainz (Germany); GSI Helmholtzzentrum, Darmstadt (Germany); Stoehlker, Thomas [GSI Helmholtzzentrum, Darmstadt (Germany); Universitaet Heidelberg (Germany); Thompson, Richard [Imperial College, London (United Kingdom); Volotka, Andrey [Technische Universitaet Dresden (Germany); Wen, Weiqiang [IMP Lanzhou (China)

    2013-07-01

    High-precision measurements of the hyperfine splitting values on Li- and H-like bismuth ions, combined with precise atomic structure calculations allow us to test QED-effects in the regime of the strongest magnetic fields that are available in the laboratory. Performing laser spectroscopy at the experimental storage ring (ESR) at GSI Darmstadt, we have now succeeded in measuring the hyperfine splitting in Li-like bismuth. Probing this transition has not been easy because of its extremely low fluorescence rate. Details about this challenging experiment will be given and the achieved experimental accuracy are presented.

  16. DYNAMICS OF FREIGHT CARS ON BOGIES MODEL 18-1711 WITH DIFFERENT WEDGE DE-SIGNS OF SPRING SUSPENSION

    Directory of Open Access Journals (Sweden)

    N. B. Mankevych

    2014-01-01

    Full Text Available Purpose. To analyze the results of the study of dynamic parameters of a gondola car, model 12-1704-04 with axle load 23.5 ton in bogies, models 18-1750 and two gondola cars, model 12-1905 with axial load of 25 ton, one of which is equipped with bogies, model 18-1711 with friction wedges of spring suspension with spatial form with increased angle to the horizontal line of intersection of the contact surfaces between the wedge and bolster, the other gondola car, model 12-1905 is equipped with bogies of the same model on which the friction wedges fitted with a flat form of contact surface. It has an angle of inclination like a wedge of bogie, model 18-100. On the basis of the obtained results to draw conclusions about the feasibility of unification design bogie bolster, model 18-1711 with bogie, model 18-100 by contact surfaces with elements of spring suspension. Methodology. Research on dynamic performance of cars was performed during running dynamic tests of specimens of freight cars in experimental train consisting of two locomotives, a laboratory, and three gondola cars of the above mentioned models. Findings. Main results of dynamic studies are presented as graphs of indicators on the speed of the train and the experimental evidence that the freight gondola cars on bogies, model 18-1711 with flat-shaped wedges, in most cases are better than the others. Originality. Research results of cars on bogies, model 18-1711 were obtained. They let assess the dependence of the dynamic performance of the car from the design of the friction wedges of spring suspension. Practical value. Cast parts of bogie, model 18-1711 with 25 ton axle load can be used as a replacement of defective parts of bogie, model 18-100 and its analogs.

  17. Split Q-balls

    Science.gov (United States)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.

    2017-02-01

    We investigate the presence of non-topological solutions of the Q-ball type in (1 , 1) spacetime dimensions. The model engenders the global U (1) symmetry and is of the k-field type, since it contains a new term, of the fourth-order power in the derivative of the complex scalar field. It supports analytical solution of the Q-ball type which is stable quantum mechanically. The new solution engenders an interesting behavior, with the charge and energy densities unveiling a splitting profile.

  18. Quantum-chemical prediction of the effects of Ni-loading on the hydrogenation and water-splitting efficiency of TiO2 nanoparticles with an experimental test

    Science.gov (United States)

    Lin, Cheng-Kuo; Chuang, Chung-Ching; Raghunath, Putikam; Srinivasadesikan, V.; Wang, T. T.; Lin, M. C.

    2017-01-01

    The effects of Ni-loading on TiO2 nanoparticles can pronouncedly reduce the barriers for dissociation of H2 from 48 kcal/mol on the pure TiO2 to as low as 1-3 kcal/mol on the loaded samples facilitating the hydrogenation of NPs. Preliminary data of our test indicate that the hydrogenation of Ni-loaded TiO2 NPs results in a significant UV-visible absorption extending well beyond 750 nm with an increase in water splitting efficiency by as much as 67 times over those of pure and hydrogenated TiO2 NPs without Ni-loading under our mild hydrogenation condition using 800 Torr of H2 at 300 °C for 3 h.

  19. The evolving energy budget of accretionary wedges

    Science.gov (United States)

    McBeck, Jessica; Cooke, Michele; Maillot, Bertrand; Souloumiac, Pauline

    2017-04-01

    The energy budget of evolving accretionary systems reveals how deformational processes partition energy as faults slip, topography uplifts, and layer-parallel shortening produces distributed off-fault deformation. The energy budget provides a quantitative framework for evaluating the energetic contribution or consumption of diverse deformation mechanisms. We investigate energy partitioning in evolving accretionary prisms by synthesizing data from physical sand accretion experiments and numerical accretion simulations. We incorporate incremental strain fields and cumulative force measurements from two suites of experiments to design numerical simulations that represent accretionary wedges with stronger and weaker detachment faults. One suite of the physical experiments includes a basal glass bead layer and the other does not. Two physical experiments within each suite implement different boundary conditions (stable base versus moving base configuration). Synthesizing observations from the differing base configurations reduces the influence of sidewall friction because the force vector produced by sidewall friction points in opposite directions depending on whether the base is fixed or moving. With the numerical simulations, we calculate the energy budget at two stages of accretion: at the maximum force preceding the development of the first thrust pair, and at the minimum force following the development of the pair. To identify the appropriate combination of material and fault properties to apply in the simulations, we systematically vary the Young's modulus and the fault static and dynamic friction coefficients in numerical accretion simulations, and identify the set of parameters that minimizes the misfit between the normal force measured on the physical backwall and the numerically simulated force. Following this derivation of the appropriate material and fault properties, we calculate the components of the work budget in the numerical simulations and in the

  20. 49 CFR 40.153 - How does the MRO notify employees of their right to a test of the split specimen?

    Science.gov (United States)

    2010-10-01

    ... employer may seek reimbursement for the cost of the test (see § 40.173 ). (e) You must tell the employee... use of an answering machine with a “time stamp” feature when there is no one in your office to answer... employer must ensure that the test takes place, and that the employee is not required to pay for the...

  1. Analysis of Mechanical Energy Transport on Free-Falling Wedge during Water-Entry Phase

    Directory of Open Access Journals (Sweden)

    Wen-Hua Wang

    2012-01-01

    Full Text Available For better discussing and understanding the physical phenomena and body-fluid interaction of water-entry problem, here mechanical-energy transport (wedge, fluid, and each other of water-entry model for free falling wedge is studied by numerical method based on free surface capturing method and Cartesian cut cell mesh. In this method, incompressible Euler equations for a variable density fluid are numerically calculated by the finite volume method. Then artificial compressibility method, dual-time stepping technique, and Roe's approximate Riemann solver are applied in the numerical scheme. Furthermore, the projection method of momentum equations and exact Riemann solution are used to calculate the fluid pressure on solid boundary. On this basis, during water-entry phase of the free-falling wedge, macroscopic energy conversion of overall body-fluid system and microscopic energy transformation in fluid field are analyzed and discussed. Finally, based on test cases, many useful conclusions about mechanical energy transport for water entry problem are made and presented.

  2. Extension of a double-wedged orogen potentially leads to the current South China Sea

    Science.gov (United States)

    Wu, G.; Lavier, L. L.

    2015-12-01

    The South China Sea (SCS) is surrounded by South China on the NW, Palawan and Reed Bank on the SE, as well as several microplates, resembling a jigsaw puzzle. In an attempt to better understand its evolution, we designed simplified thermomechanical models to simulate extension of a double-wedge-shaped orogen with highlands on both sides and lowland in the center to mimic the geological condition of the proto-SCS. We imposed constant extension rates on both sides and Gaussian-shaped thermal impulse in the center. We also varied the strength of lower crust but did not explicitly incorporate mid-ocean ridges and searfloor spreading mechanisms. We currently used symmetric double-wedge, but further tests are planed for asymmetric double-wedges. Our preliminary results show that the models produced many structures that resemble those of SCS, such as 1) a series of domino or conjugate faults sitting above a subsurface detachment (or décollement), 2) exhumed domes of middle-lower crust, 3) extreme thinning of both upper crust and lower crust, and 4) propagation of extension towards NW and SE margins. Our models suggest that superimposition of these modeled characteristics produced during several phases of extension of the SCS that may be due to thermal impulsion, magmatic events, and subduction related relaxation potentially produces high resemblance of the SCS.

  3. Flow Visualization around a Double Wedge Airfoil Model with Focusing Schlieren System

    Institute of Scientific and Technical Information of China (English)

    Masashi KASHITANI; Yutaka YAMAGUCHI

    2006-01-01

    In the present study, aerodynamic characteristics of the double wedge airfoil model were investigated in a transonic flow by using the shock tube as an intermittent wind tunnel. The driver and driven gases of the shock tube are dry air. The airfoil model of double wedge has the span of 58 mm, chord length c = 75 mm and its maximum thickness is 7.5 mm. The apex of the double wedge airfoil model is located on the 35% chord length from the leading edge. The range of hot gas Mach numbers are from 0.80 to 0.88, and the Reynolds numbers based on chord length are 3.11×105~3.49×105, respectively. The flow visualizations were performed by the sharp focusing schlieren method which can visualize the three dimensional flow fields. The results show that the present system can visualize the transonic flowfield clearer than the previous system, and the shock wave profiles of the center of span in the test section are visualized

  4. Implementation of enhanced dynamic wedge in the focus rtp system.

    Science.gov (United States)

    Miften, M; Wiesmeyer, M; Beavis, A; Takahashi, K; Broad, S

    2000-01-01

    The FOCUS RTP system implementation of Varian's enhanced dynamic wedge (EDW) is presented. Calculations of both dose distributions and wedge factors (WFs) are based on segmented treatment tables (STTs). Calculating dose requires a "transmission matrix" derived from an STT to model the modified fluence from the source. The dose calculation is then performed using either the Clarkson or convolution/superposition algorithms. An initial "primary dose/monitor unit (MU) fraction" WF estimate at the weight point of symmetric and asymmetric fields is calculated from the STT as the ratio of MU delivered on the axis of the weight point divided by total MU delivered for the treatment field. In our approach, we go beyond this initial estimate with a "scatter dose" correction. This requires measured 60 degrees WFs for 5 fields. Scatter corrections derived from measured WFs are interpolated for other wedge angles and field sizes in much the same way as arbitrary wedge angle STTs are derived from a "golden STT" using the "ratio of tangents" formalism. Dose comparisons with measured distributions show good agreement to within 3% or 3 mm for 6-MV beams and all EDW angles. Agreement with measurements to within 1% is obtained for WFs in all symmetric and asymmetric fields for 6- and 10-MV beams. For large wedge angles and field sizes, this represents a significant improvement over the 3% to 4% errors often observed using the MU fraction model alone.

  5. The average numbers of outliers over groups of various splits into training and test sets: A criterion of the reliability of a QSPR? A case of water solubility

    Science.gov (United States)

    Toropova, Alla P.; Toropov, Andrey A.; Benfenati, Emilio; Gini, Giuseppina; Leszczynska, Danuta; Leszczynski, Jerzy

    2012-07-01

    The validation of quantitative structure-property/activity relationships (QSPR/QSAR) is an important challenge of modern theoretical chemistry. Analysis of QSPRs which are obtained with various distribution into sub-systems of training and of testing can be a useful approach to estimate reliability of QSPR predictions. The balance of correlation is an approach for the building up of QSPR with using three components of available data: (a) sub-training set (developer), (b) calibration set (critic), and (c) test set (estimator). Computational experiments have shown that the probabilistic interdependence between the distribution of available data into sub-training set, calibration set, and test set and the average numbers of outliers in the test set exists.

  6. Casimir effect at nonzero temperature for wedges and cylinders

    CERN Document Server

    Ellingsen, Simen Å; Milton, Kimball A

    2010-01-01

    We consider the Casimir-Helmholtz free energy at nonzero temperature $T$ for a circular cylinder and perfectly conducting wedge closed by a cylindrical arc, either perfectly conducting or isorefractive. The energy expression at nonzero temperature may be regularized to obtain a finite value, except for a singular corner term in the case of the wedge which is present also at zero temperature. Assuming the medium in the interior of the cylinder or wedge be nondispersive with refractive index $n$, the temperature dependence enters only through the non-dimensional parameter $2\\pi naT$, $a$ being the radius of the cylinder or cylindrical arc. We show explicitly that the known zero temperature result is regained in the limit $aT\\to 0$ and that previously derived high temperature asymptotics for the cylindrical shell are reproduced exactly.

  7. Dislocation Nucleation and Pileup under a Wedge Contact at Nanoscale

    Directory of Open Access Journals (Sweden)

    Y. F. Gao

    2008-01-01

    Full Text Available Indentation responses of crystalline materials have been found to be radically different at micrometer and nanometer scales. The latter is usually thought to be controlled by the nucleation of dislocations. To explore this physical process, a dislocation mechanics study is performed to determine the conditions for the nucleation of a finite number of dislocations under a two-dimensional wedge indenter, using the Rice-Thomson nucleation criterion. The configurational force on the dislocation consists of the applied force, the image force, and the interaction force between dislocations. Dislocations reach equilibrium positions when the total driving force equals the effective Peierls stress, giving a set of nonlinear equations that can be solved using the Newton-Raphson method. When the apex angle of the wedge indenter increases, the critical contact size for dislocation nucleation increases rapidly, indicating that dislocation multiplication near a blunt wedge tip is extremely difficult. This geometric dependence agrees well with experimental findings.

  8. Indentation tectonics in the accretionary wedge of middle Manila Trench

    Institute of Scientific and Technical Information of China (English)

    LI Jiabiao; JIN Xianglong; RUAN Aiguo; WU Shimin; WU Ziyin; LIU Jianhua

    2004-01-01

    Based on the multibeam morpho-tectonic analysis of the Manila Trench accretionary wedge and its indentation tectonics and the contrasting researches with other geological and geophysical data, three tectonic zones of the wedge are established, faulting features, tectonic distribution and stress mechanism for the indentation tectonicsareanalyzed,oblique subduction along Manila Trench with convergent stress of NW55. Is presented, and the relationship of the ceasing of Eastern Subbasin spreading of South China Sea Basin to the formation of subduction zone of Manila Trench is discussed. By the model analysis and regional research, it is found that the seamount subduction along Manila Trenchoes not lead to the erosion of the accretionary wedge and the oblique subduction actually is a NWWtrending obducfion of Luzon micro-plate that results from the NWW-trending displacement of the Philippine Sea plate.

  9. Tricritical wedge filling transitions with short-ranged forces

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Enrique, J M [Departamento de Fisica Atomica, Molecular y Nuclear, Area de Fisica Teorica, Universidad de Sevilla, Apartado de Correos 1065, 41080 Sevilla (Spain); Parry, A O [Department of Mathematics, Imperial College 180 Queen' s Gate, London SW7 2BZ (United Kingdom)

    2005-11-16

    We show that the 3D wedge filling transition in the presence of short-ranged interactions can be first order or second order depending on the strength of the line tension associated with the wedge bottom. This fact implies the existence of a tricritical point characterized by a short-distance expansion which differs from the usual continuous filling transition. Our analysis is based on an effective one-dimensional model for the 3D wedge filling, which arises from the identification of the breather modes as the only relevant interfacial fluctuations. From such analysis we find a correspondence between continuous 3D filling at bulk coexistence and 2D wetting transitions with random-bond disorder.

  10. Solar water splitting: efficiency discussion

    OpenAIRE

    Juodkazyte, Jurga; Seniutinas, Gediminas; Sebeka, Benjaminas; Savickaja, Irena; Malinauskas, Tadas; Badokas, Kazimieras; Juodkazis, Kestutis; Juodkazis, Saulius

    2016-01-01

    The current state of the art in direct water splitting in photo-electrochemical cells (PECs) is presented together with: (i) a case study of water splitting using a simple solar cell with the most efficient water splitting electrodes and (ii) a detailed mechanism analysis. Detailed analysis of the energy balance and efficiency of solar hydrogen production are presented. The role of hydrogen peroxide formation as an intermediate in oxygen evolution reaction is newly revealed and explains why a...

  11. Split Quasi-adequate Semigroups

    Institute of Scientific and Technical Information of China (English)

    Xiao Jiang GUO; Ting Ting PENG

    2012-01-01

    The so-called split IC quasi-adequate semigroups are in the class of idempotent-connected quasi-adequate semigroups.It is proved that an IC quasi-adequate semigroup is split if and only if it has an adequate transversal.The structure of such semigroup whose band of idempotents is regular will be particularly investigated.Our obtained results enrich those results given by McAlister and Blyth on split orthodox semigroups.

  12. Circular permutation prediction reveals a viable backbone disconnection for split proteins: an approach in identifying a new functional split intein.

    Directory of Open Access Journals (Sweden)

    Yun-Tzai Lee

    Full Text Available Split-protein systems have emerged as a powerful tool for detecting biomolecular interactions and reporting biological reactions. However, reliable methods for identifying viable split sites are still unavailable. In this study, we demonstrated the feasibility that valid circular permutation (CP sites in proteins have the potential to act as split sites and that CP prediction can be used to search for internal permissive sites for creating new split proteins. Using a protein ligase, intein, as a model, CP predictor facilitated the creation of circular permutants in which backbone opening imposes the least detrimental effects on intein folding. We screened a series of predicted intein CPs and identified stable and native-fold CPs. When the valid CP sites were introduced as split sites, there was a reduction in folding enthalpy caused by the new backbone opening; however, the coincident loss in entropy was sufficient to be compensated, yielding a favorable free energy for self-association. Since split intein is exploited in protein semi-synthesis, we tested the related protein trans-splicing (PTS activities of the corresponding split inteins. Notably, a novel functional split intein composed of the N-terminal 36 residues combined with the remaining C-terminal fragment was identified. Its PTS activity was shown to be better than current reported two-piece intein with a short N-terminal segment. Thus, the incorporation of in silico CP prediction facilitated the design of split intein as well as circular permutants.

  13. Flow Analysis for the Falkner–Skan Wedge Flow

    DEFF Research Database (Denmark)

    Bararnia, H; Haghparast, N; Miansari, M

    2012-01-01

    the constant coefficients in the approximated solution. The effects of the polynomial terms of HAM are considered and the accuracy of the results is shown, which increases with the increasing polynomial terms of HAM. Analytical results for the dimensionless velocity and temperature profiles of the wedge flow......In this article an analytical technique, namely the homotopy analysis method (HAM), is applied to solve the momentum and energy equations in the case of a two-dimensional incompressible flow passing over a wedge. The trail and error method and Padé approximation strategies have been used to obtain...

  14. Molecular Depth Profiling with Cluster SIMS and Wedges

    Science.gov (United States)

    Mao, Dan; Wucher, Andreas; Winograd, Nicholas

    2009-01-01

    Secondary ion mass spectrometry and atomic force microscopy are employed to characterize a wedge-shaped crater eroded by 40 keV C60+ bombardment of a 395-nm thin film of Irganox 1010 doped with four delta layers of Irganox 3114. The wedge structure creates a laterally magnified cross section of the film. From an examination of the resulting surface, information about depth resolution, topography and erosion rate can be obtained as a function of crater depth in a single experiment. This protocol provides a straightforward way to determine the parameters necessary to characterize molecular depth profiles, and to obtain an accurate depth scale for erosion experiments. PMID:19968247

  15. Surgical treatment of idiopathic syringomyelia: Silastic wedge syringosubarachnoid shunting technique

    Directory of Open Access Journals (Sweden)

    Teck M Soo

    2014-01-01

    Conclusions: Shunting procedures for the syringomyelia disease spectrum have been criticized due to the inconsistent long-term outcomes. This surgical technique used to treat symptomatic idiopathic syringomyelia has been devised based on our intraoperative experience, surgical outcomes, and evaluation of the literature. The purpose of the wedges is to preserve patency of the communication between the syrinx cavity and the expanded subarachnoid space by preventing healing of the myelotomy edges and by maintaining an artificial conduit between the syrinx cavity and the subarachnoid space. Although short-term results are promising, continued long-term follow up is needed to determine the ultimate success of the silastic wedge shunting procedure.

  16. Three-dimensional wedge filling in ordered and disordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Greenall, M J [Department of Mathematics, Imperial College London, 180 Queen' s Gate, London SW7 2BZ (United Kingdom); Parry, A O [Department of Mathematics, Imperial College London, 180 Queen' s Gate, London SW7 2BZ (United Kingdom); Romero-Enrique, J M [Department of Mathematics, Imperial College London, 180 Queen' s Gate, London SW7 2BZ (United Kingdom)

    2004-04-21

    We investigate interfacial structural and fluctuation effects occurring at continuous filling transitions in 3D wedge geometries. We show that fluctuation-induced wedge covariance relations that have been reported recently for 2D filling and wetting have mean-field or classical analogues that apply to higher-dimensional systems. Classical wedge covariance emerges from analysis of filling in shallow wedges based on a simple interfacial Hamiltonian model and is supported by detailed numerical investigations of filling within a more microscopic Landau-like density functional theory. Evidence is presented that classical wedge covariance is also obeyed for filling in more acute wedges in the asymptotic critical regime. For sufficiently short-ranged forces mean-field predictions for the filling critical exponents and covariance are destroyed by pseudo-one-dimensional interfacial fluctuations. We argue that in this filling fluctuation regime the critical exponents describing the divergence of length scales are related to values of the interfacial wandering exponent {zeta}(d) defined for planar interfaces in (bulk) two-dimensional (d = 2) and three-dimensional (d = 3) systems. For the interfacial height l{sub w} {approx} {theta}-{alpha}){sup -{beta}}{sub w}, with {theta} the contact angle and {alpha} the wedge tilt angle, we find {beta}{sub w} = {zeta}(2)/2(1-{zeta}(3)). For pure systems (thermal disorder) we recover the known result {beta}{sub w} = 1/4 predicted by interfacial Hamiltonian studies whilst for random-bond disorder we predict the universal critical exponent {beta} {approx} even in the presence of dispersion forces. We revisit the transfer matrix theory of three-dimensional filling based on an effective interfacial Hamiltonian model and discuss the interplay between breather, tilt and torsional interfacial fluctuations. We show that the coupling of the modes allows the problem to be mapped onto a quantum mechanical problem as conjectured by previous authors

  17. Thermally induced photon splitting

    CERN Document Server

    Elmfors, P; Elmfors, Per; Skagerstam, Bo-Sture

    1998-01-01

    We calculate thermal corrections to the non-linear QED effective action for low-energy photon interactions in a background electromagnetic field. The high-temperature expansion shows that at $T \\gg m$ the vacuum contribution is exactly cancelled to all orders in the external field except for a non-trivial two-point function contribution. The high-temperature expansion derived reveals a remarkable cancellation of infrared sensitive contributions. As a result photon-splitting in the presence of a magnetic field is suppressed in the presence of an electron-positron QED-plasma at very high temperatures. In a cold and dense plasma a similar suppression takes place. At the same time Compton scattering dominates for weak fields and the suppression is rarely important in physical situations.

  18. Leptogenesis from split fermions

    Energy Technology Data Exchange (ETDEWEB)

    Nagatani, Yukinori; Perez, Gilad

    2004-01-11

    We present a new type of leptogenesis mechanism based on a two-scalar split-fermions framework. At high temperatures the bulk scalar vacuum expectation values (VEVs) vanish and lepton number is strongly violated. Below some temperature, T{sub c}, the scalars develop extra dimension dependent VEVs. This transition is assumed to proceed via a first order phase transition. In the broken phase the fermions are localized and lepton number violation is negligible. The lepton-bulk scalar Yukawa couplings contain sizable CP phases which induce lepton production near the interface between the two phases. We provide a qualitative estimation of the resultant baryon asymmetry which agrees with current observation. The neutrino flavor parameters are accounted for by the above model with an additional approximate U(1) symmetry.

  19. Shear-wave splitting and mantle anisotropy in the southern South American subduction zone

    Science.gov (United States)

    MacDougall, J. G.; Fischer, K. M.; Anderson, M. L.

    2010-12-01

    The goal of this study is to constrain mantle flow above and below the subducting Nazca plate at latitudes of 30°-41° S. In this segment of the South American subduction zone, slab dip varies dramatically, including a region of flat slab subduction in the north and greater dip angles (~30°) in the south, where the segment ends at a slab gap associated with Chile Ridge. We measured shear-wave splitting in over 200 S arrivals from local earthquakes at permanent stations PLCA (USGS/GTSN) and PEL (Geoscope) and 14 stations of the 2000-2002 CHARGE (Chile Argentina Geophysical Experiment) PASSCAL array. We also made splitting measurements in 17 SKS and SKKS phases recorded by PLCA and permanent station TRQA (IRIS/GSN). Splitting parameters for a sub-set of local S, SKS and SKKS phases were determined using a range of filters from 0.05-0.2 to 0.05-2, and were generally stable as a function of frequency; frequency-dependence was observed in a small number of cases, and will be investigated further. The results reported below correspond to a 0.05-2 Hz bandpass filter. Local S splitting times range from 0.1-0.9 seconds, and for back-arc stations, splitting times correlate with path length in the mantle wedge. These results indicate that wedge anisotropy is a dominant factor in the observed splitting, although shallower anisotropy also appears to be present. Splitting fast polarizations at back-arc stations show a coherent variation with latitude. Fast polarizations vary from NE at 40°-41°S, to N (roughly slab-strike parallel) at 35°-36°S, to NE-ESE at 30°-33°S, curving as the slab flattens where the Juan Fernandez Ridge is subducting beneath the South American lithosphere. For SKS and SKKS phases at PLCA (in the western back-arc at 41°S), fast directions are predominantly ENE-ESE and splitting times range from 1.0-2.3 s. At TRQA (much farther to the east and at 38°S), teleseismic fast polarizations are E-SE and splitting times vary from 0.8-2.4 s. At PLCA, because

  20. Perfect light trapping in nanoscale thickness semiconductor films with resonant back reflector and spectrum-splitting structures

    CERN Document Server

    Liu, Jiang-Tao; Yang, Wen; Li, Jun

    2014-01-01

    The optical absorption of nanoscale thickness semiconductor films on top of light-trapping structures based on optical interference effects combined with spectrum-splitting structures is theoretically investigated. Nearly perfect absorption over a broad spectrum range can be achieved in $<100$ nm thick films on top of one-dimensional photonic crystal or metal films. This phenomenon can be attributed to interference induced photonic localization, which enhances the absorption and reduces the reflection of the films. Perfect solar absorption and low carrier thermalization loss can be achieved when the light-trapping structures with wedge-shaped spacer layer or semiconductor films are combined with spectrum-splitting structures.

  1. locally fabricated metal step wedge for quality assurance in ...

    African Journals Online (AJOL)

    DR. AMINU

    materials, as well as to investigate an alternative wedge material. The values of the ... The use of low performance x-ray machines. b. ... machine in the Radiology Department of. JUTH is .... the x-ray beam, while ms determines the interaction.

  2. Stark effect in a wedge-shaped quantum box

    CERN Document Server

    Reyes-Esqueda, J A; Castillo-Mussot, M; Vazquez, G J; Reyes-Esqueda, Jorge-Alejandro; Mendoza, Carlos I.; Castillo-Mussot, Marcelo del; Vazquez, Gerardo J.

    2005-01-01

    The effect of an external applied electric field on the electronic ground state energy of a quantum box with a geometry defined by a wedge is studied by carrying out a variational calculation. This geometry could be used as an approximation for a tip of a cantilever of an atomic force microscope. We study theoretically the Stark effect as function of the parameters of the wedge: its diameter, angular aperture and thickness; as well as function of the intensity of the external electric field applied along the axis of the wedge in both directions; pushing the carrier towards the wider or the narrower parts. A confining electronic effect, which is sharper as the wedge dimensions are smaller, is clearly observed for the first case. Besides, the sign of the Stark shift changes when the angular aperture is changed from small angles to angles theta>pi. For the opposite field, the electronic confinement for large diameters is very small and it is also observed that the Stark shift is almost independent with respect t...

  3. Wedges, Cones, Cosmic Strings, and the Reality of Vacuum Energy

    CERN Document Server

    Fulling, S A; Truong, P N; Wagner, J

    2012-01-01

    One of J. Stuart Dowker's most significant achievements has been to observe that the theory of diffraction by wedges developed a century ago by Sommerfeld and others provided the key to solving two problems of great interest in general-relativistic quantum field theory during the last quarter of the twentieth century: the vacuum energy associated with an infinitely thin, straight cosmic string, and (after an interchange of time with a space coordinate) the apparent vacuum energy of empty space as viewed by an accelerating observer. In a sense the string problem is more elementary than the wedge, since Sommerfeld's technique was to relate the wedge problem to that of a conical manifold by the method of images. Indeed, Minkowski space, as well as all cone and wedge problems, are related by images to an infinitely sheeted master manifold, which we call Dowker space. We review the research in this area and exhibit in detail the vacuum expectation values of the energy density and pressure of a scalar field in Dowk...

  4. Discrete dislocation plasticity analysis of the wedge indentation of films

    NARCIS (Netherlands)

    Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van der Giessen, E.

    2006-01-01

    The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at +/- 35.3 degrees and 90 degrees with respect to the indentation direction. The analyses are carried out for

  5. Fixed Points of Maps of a Nonaspherical Wedge

    Directory of Open Access Journals (Sweden)

    Merrill Keith

    2009-01-01

    Full Text Available Abstract Let be a finite polyhedron that has the homotopy type of the wedge of the projective plane and the circle. With the aid of techniques from combinatorial group theory, we obtain formulas for the Nielsen numbers of the selfmaps of .

  6. Gripping System For Mechanical Testing Of Composites

    Science.gov (United States)

    Mackay, Rebecca A.; Nathal, Michael V.

    1994-01-01

    Specimens held without slippage, even at high temperatures. Improved gripping system designed to securely hold ends of specimen of composite material during creep or tensile test. Each grip includes pair of wedges having sharply corrugated gripping surfaces. Wedges held between two plates containing cavities sloped to accommodate wedges. Two such grips (one for each end) holds specimen in furnace connected to tensile test machine for creep measurements.

  7. Use of computed tomography assessed kidney length to predict split renal GFR in living kidney donors

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Francois; Fournier, Catherine; Leon, Carine; Legendre, Christophe [Paris Descartes University, AP-HP, Hopital Necker-Enfants Malades, Renal Transplantation Department, Paris (France); Pavlov, Patrik [Linkoeping University, Linkoeping (Sweden); Tissier, Anne-Marie; Correas, Jean-Michel [Paris Descartes University, AP-HP, Hopital Necker-Enfants Malades, Radiology Department, Paris (France); Harache, Benoit; Hignette, Chantal; Weinmann, Pierre [Paris Descartes University, AP-HP, Hopital Europeen Georges Pompidou, Nuclear Medicine Department, Paris (France); Eladari, Dominique [Paris Descartes University, and INSERM, Unit 970, AP-HP, Hopital Europeen Georges Pompidou, Physiology Department, Paris (France); Timsit, Marc-Olivier; Mejean, Arnaud [Paris Descartes University, AP-HP, Hopital Europeen Georges Pompidou, Urology Department, Paris (France); Friedlander, Gerard; Courbebaisse, Marie [Paris Descartes University, and INSERM, Unit 1151, AP-HP, Hopital Europeen Georges Pompidou, Physiology Department, Paris (France); Houillier, Pascal [Paris Descartes University, INSERM, Unit umrs1138, and CNRS Unit erl8228, AP-HP, Hopital Europeen Georges Pompidou, Physiology Department, Paris (France)

    2017-02-15

    Screening of living kidney donors may require scintigraphy to split glomerular filtration rate (GFR). To determine the usefulness of computed tomography (CT) to split GFR, we compared scintigraphy-split GFR to CT-split GFR. We evaluated CT-split GFR as a screening test to detect scintigraphy-split GFR lower than 40 mL/min/1.73 m{sup 2}/kidney. This was a monocentric retrospective study on 346 potential living donors who had GFR measurement, renal scintigraphy, and CT. We predicted GFR for each kidney by splitting GFR using the following formula: Volume-split GFR for a given kidney = measured GFR*[volume of this kidney/(volume of this kidney + volume of the opposite kidney)]. The same formula was used for length-split GFR. We compared length- and volume-split GFR to scintigraphy-split GFR at donation and with a 4-year follow-up. A better correlation was observed between length-split GFR and scintigraphy-split GFR (r = 0.92) than between volume-split GFR and scintigraphy-split GFR (r = 0.89). A length-split GFR threshold of 45 mL/min/1.73 m{sup 2}/kidney had a sensitivity of 100 % and a specificity of 75 % to detect scintigraphy-split GFR less than 40 mL/min/1.73 m{sup 2}/kidney. Both techniques with their respective thresholds detected living donors with similar eGFR evolution during follow-up. Length-split GFR can be used to detect patients requiring scintigraphy. (orig.)

  8. Wedges, cones, cosmic strings and their vacuum energy

    Science.gov (United States)

    Fulling, S. A.; Trendafilova, C. S.; Truong, P. N.; Wagner, J.

    2012-09-01

    One of J Stuart Dowker’s most significant achievements has been to observe that the theory of diffraction by wedges developed a century ago by Sommerfeld and others provided the key to solving two problems of great interest in general-relativistic quantum field theory during the last quarter of the 20th century: the vacuum energy associated with an infinitely thin, straight cosmic string, and (after an interchange of time with a space coordinate) the apparent vacuum energy of empty space as viewed by an accelerating observer. In a sense the string problem is more elementary than the wedge, since Sommerfeld’s technique was to relate the wedge problem to that of a conical manifold by the method of images. Indeed, Minkowski space, as well as all cone and wedge problems, are related by images to an infinitely sheeted master manifold, which we call Dowker space. We review the research in this area and exhibit in detail the vacuum expectation values of the energy density and pressure of a scalar field in Dowker space and the cone and wedge spaces that result from it. We point out that the (vanishing) vacuum energy of Minkowski space results, from the point of view of Dowker space, from the quantization of angular modes, in precisely the way that the Casimir energy of a toroidal closed universe results from the quantization of Fourier modes; we hope that this understanding dispels any lingering doubts about the reality of cosmological vacuum energy. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  9. Split-ball resonator

    CERN Document Server

    Kuznetsov, Arseniy I; Fu, Yuan Hsing; Viswanathan, Vignesh; Rahmani, Mohsen; Valuckas, Vytautas; Kivshar, Yuri; Pickard, Daniel S; Lukiyanchuk, Boris

    2014-01-01

    We introduce a new concept of split-ball resonator and demonstrate a strong omnidirectional magnetic dipole response for both gold and silver spherical plasmonic nanoparticles with nanometer-scale cuts. Tunability of the magnetic dipole resonance throughout the visible spectral range is demonstrated by a change of the depth and width of the nanoscale cut. We realize this novel concept experimentally by employing the laser-induced transfer method to produce near-perfect spheres and helium ion beam milling to make cuts with the nanometer resolution. Due to high quality of the spherical particle shape, governed by strong surface tension forces during the laser transfer process, and the clean, straight side walls of the cut made by helium ion milling, magnetic resonance is observed at 600 nm in gold and at 565 nm in silver nanoparticles. Structuring arbitrary features on the surface of ideal spherical resonators with nanoscale dimensions provides new ways of engineering hybrid resonant modes and ultra-high near-f...

  10. Role of Neogene Exhumation and Sedimentation on Critical-Wedge Kinematics in the Zagros Orogenic Belt, Northeastern Iraq, Kurdistan

    Science.gov (United States)

    Koshnaw, R. I.; Horton, B. K.; Stockli, D. F.; Barber, D. E.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The Zagros orogenic belt and foreland basin formed during the Cenozoic Arabia-Eurasia collision, but the precise histories of shortening and sediment accumulation remain ambiguous, especially at the NW extent of the fold-thrust belt in Iraqi Kurdistan. This region is characterized by well-preserved successions of Cenozoic clastic foreland-basin fill and deformed Paleozoic-Mesozoic hinterland bedrock. The study area provides an excellent opportunity to investigate the linkage between orogenic wedge behavior and surface processes of erosion and deposition. The aim of this research is to test whether the Zagros orogenic wedge advanced steadily under critical to supercritical wedge conditions involving in-sequence thrusting with minimal erosion or propagated intermittently under subcritical condition involving out-of-sequence deformation with intense erosion. These endmember modes of mountain building can be assessed by integrating geo/thermochronologic and basin analyses techniques, including apatite (U-Th)/He thermochronology, detrital zircon U-Pb geochronology, stratigraphic synthesis, and seismic interpretations. Preliminary apatite (U-Th)/He data indicate activation of the Main Zagros Fault (MZF) at ~10 Ma with frontal thrusts initiating at ~8 Ma. However, thermochronometric results from the intervening Mountain Front Flexure (MFF), located between the MZF and the frontal thrusts, suggest rapid exhumation at ~6 Ma. These results suggest that the MFF, represented by the thrust-cored Qaradagh anticline, represents a major episode of out-of-sequence deformation. Detrital zircon U-Pb analyses from the Neogene foreland-basin deposits show continuous sediment derivation from sources to the NNE in Iraq and western Iran, suggesting that out-of-sequence thrusting did not significantly alter sedimentary provenance. Rather, intense hinterland erosion and recycling of older foreland-basin fill dominated sediment delivery to the basin. The irregular distribution of

  11. Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F., E-mail: robert.cook@nist.gov

    2016-04-15

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA–AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2×10{sup −4} in strain. CRM was similarly precise, but was limited in accuracy to several times this value. - Highlights: • We map strain by electron backscatter diffraction and confocal Raman microscopy. • The test vehicle is the multi-axial strain field of wedge-indented silicon. • Strain accuracy is assessed by direct experimental intercomparison. • Accuracy is also assessed by atomic force microscopy and finite element analyses. • Electron diffraction measurements are accurate; Raman measurements need refinement.

  12. Vertebral Osteotomies in Ankylosing Spondylitis-Comparison of Outcomes Following Closing Wedge Osteotomy versus Opening Wedge Osteotomy: A Systematic Review.

    Science.gov (United States)

    Ravinsky, Robert A; Ouellet, Jean-Albert; Brodt, Erika D; Dettori, Joseph R

    2013-04-01

    Study Design Systematic review. Study Rationale To seek out and assess the best quality evidence available comparing opening wedge osteotomy (OWO) and closing wedge osteotomy (CWO) in patients with ankylosing spondylitis to determine whether their results differ with regard to several different subjective and objective outcome measures. Objective The aim of this study is to determine whether there is a difference in subjective and objective outcomes when comparing CWO and OWO in patients with ankylosing spondylitis suffering from clinically significant thoracolumbar kyphosis with respect to quality-of-life assessments, complication risks, and the amount of correction of the spine achieved at follow-up. Methods A systematic review was undertaken of articles published up to July 2012. Electronic databases and reference lists of key articles were searched to identify studies comparing effectiveness and safety outcomes between adult patients with ankylosing spondylitis who received closing wedge versus opening wedge osteotomies. Studies that included pediatric patients, polysegmental osteotomies, or revision procedures were excluded. Two independent reviewers assessed the strength of evidence using the GRADE criteria and disagreements were resolved by consensus. Results From a total of 67 possible citations, 4 retrospective cohorts (class of evidence III) met our inclusion criteria and form the basis for this report. No differences in Oswestry Disability Index, visual analog scale for pain, Scoliosis Research Society (SRS)-24 score, SRS-22 score, and patient satisfaction were reported between the closing and opening wedge groups across two studies. Regarding radiological outcomes following closing versus opening osteotomies, mean change in sagittal vertical axis ranged from 8.9 to 10.8 cm and 8.0 to 10.9 cm, respectively, across three studies; mean change in lumbar lordosis ranged from 36 to 47 degrees and 19 to 41 degrees across four studies; and mean change

  13. The impact of slab dip variations, gaps and rollback on mantle wedge flow: insights from fluids experiments

    Science.gov (United States)

    MacDougall, Julia G.; Kincaid, Chris; Szwaja, Sara; Fischer, Karen M.

    2014-05-01

    Observed seismic anisotropy and geochemical anomalies indicate the presence of 3-D flow around and above subducting slabs. To investigate how slab geometry and velocity affect mantle flow, we conducted a set of experiments using a subduction apparatus in a fluid-filled tank. Our models comprise two independently adjustable, continuous belts to represent discrete sections of subducting slabs that kinematically drive flow in the surrounding glucose syrup that represents the upper mantle. We analyse how slab dip (ranging from 30° to 80°), slab dip difference between slab segments (ranging from 20° to 50°), rates of subduction (4-8 cm yr-1) and slab/trench rollback (0-3 cm yr-1) affect mantle flow. Whiskers were used to approximate mineral alignment induced by the flow, as well as to predict directions of seismic anisotropy. We find that dip variations between slab segments generate 3-D flow in the mantle wedge, where the path lines of trenchward moving mantle material above the slab are deflected towards the slab segment with the shallower dip. The degree of path line deflection increases as the difference in slab dip between the segments increases, and, for a fixed dip difference, as slab dip decreases. In cases of slab rollback and large slab dip differences, we observe intrusion of subslab material through the gap and into the wedge. Flow through the gap remains largely horizontal before eventual downward entrainment. Whisker alignment in the wedge flow is largely trench-normal, except near the lateral edges of the slab where toroidal flow dominates. In addition, whisker azimuths located above the slab gap deviate most strongly from trench-normal orientations when slab rollback does not occur. Such flow field complexities are likely sufficient to affect deep melt production and shallow melt delivery. However, none of the experiments produced flow fields that explain the trench-parallel shear wave splitting fast directions observed over broad arc and backarc

  14. Theoretical and experimental investigation of a new CFRP tendon wedge-anchor%新型CFRP筋夹片式锚具理论与试验研究

    Institute of Scientific and Technical Information of China (English)

    诸葛萍; 强士中

    2011-01-01

    A new theory for CFRP tendon wedge-anchor was presented and a new CFRP tendon wedge-anchor system was developed. The wedge-anchor system consists of a soft metal (aluminum alloy or copper) sleeve coated with sand, four steel wedges and a stee} barrel. In the theoretical analysis, the anchor components were divided into segments along the length, and the analytical modes of all components are established with the independence between the four wedges considered. The anchorage performance was evaluated through static test. Analytical and test results for the stress of the barrel were compared. The results show that the theory can evaluate the stress and transverse displacement and provide a reasonable prediction for the carrying capacity of the wedge-anchor system. The wedge-anchor can be applied to anchor high strength CFRP tendons, the average anchorage efficiency coefficient of the wedge-anchor system was as high as 94.9% in the test, and the wedge-anchor system is reliable.%提出CFRP筋夹片式锚具新的计算理论,并以此理论为依据设计一种新型CFRP筋夹片式锚具,它由锚杯、四片式夹片、涂砂铝套管或涂砂铜套管组成。在理论推导过程中,将夹片式锚具各组件在长度方向上分成多个等份,对其中各组件任意等份建立力学计算模型,并考虑各夹片间的独立性;通过静载试验对夹片式锚具的锚固性能进行测试,并分析比较锚杯拉应力的理论计算与试验实测结果。结果表明,该CFRP筋夹片式锚具计算理论能计算锚具各点的应力及横向位移,并能预测锚具极限承载力;此夹片式锚具适用于锚固高强CFRP筋,它的平均锚固效率系数达到94.9%,且性能稳定;锚杯拉应力的理论计算与试验实测结果较吻合。

  15. Comparison of clinical and radiological outcomes between opening-wedge and closing-wedge high tibial osteotomy: A comprehensive meta-analysis

    Science.gov (United States)

    Wu, Lingfeng; Lin, Jun; Jin, Zhicheng; Cai, Xiaobin; Gao, Weiyang

    2017-01-01

    High tibial osteotomy (HTO) has been widely used for clinical treatment of osteoarthritis of the medial compartment of the knee, and both opening-wedge and closing-wedge HTO are the most commonly used methods. However, it remains unclear which technique has better clinical and radiological outcomes in practice. To systematically evaluate this issue, we conducted a comprehensive meta-analysis by pooling all available data for the opening-wedge HTO and closing-wedge HTO techniques from the electronic databases including PubMed, Embase, Wed of Science and Cochrane Library. A total of 22 studies encompassing 2582 cases were finally enrolled in the meta-analysis. There was no significant difference regarding surgery time, duration of hospitalization, knee pain VAS, Lysholm score and HSS knee score (clinical outcomes) between the opening-wedge and closing-wedge HTO groups (P > 0.05). However, the opening-wedge HTO group showed wider range of motion than the closing-wedge HTO group (P = 0.003). Moreover, as for Hip-Knee-Ankle angle and mean angle of correction, no significant difference was observed between the opening-wedge and closing-wedge HTO groups (P > 0.05), while the opening-wedge HTO group showed greater posterior tibial slope angle (P < 0.001) and lesser patellar height than the closing-wedge HTO group (P < 0.001). On light of the above analysis, we believe that individualized surgical approach should be introduced based on the clinical characteristics of each patient. PMID:28182736

  16. Design of folded holographic spectrum-splitting photovoltaic system for direct and diffuse illumination conditions

    Science.gov (United States)

    Wu, Yuechen; Vorndran, Shelby D.; Russo, Juan M.; Ayala, Silvana; Kostuk, Raymond K.

    2014-10-01

    Spectrum-splitting is a beneficial technique to increase the efficiency and reduce the cost of photovoltaic (PV) systems. This method divides the incident solar spectrum into spectral components that are spatially separated and directed to PV cells with matching spectral responsivity characteristics. This approach eliminates problems associated with current and lattice matching that must be maintained in tandem multi-junction systems. In this paper, a two-junction holographic spectrum-splitting photovoltaic system is demonstrated with a folded PV geometry. The system is designed to use both direct and diffuse solar irradiation. It consists of holographic elements, a wedge-shaped optical guide, and PV substrates with back reflectors. The holographic elements and back reflectors spatially separate the incident solar spectrum and project spectral components onto matching PV cell types. In addition, the wedge-shaped optical guide traps diffuse illumination inside the system to increase absorption. In this paper, the wedge spectrum splitting system is analyzed using tabulated data for InGaP2/GaAs cells with direct illumination combined with experimental data for reflection volume holograms. A system efficiency of 31.42% is obtained with experimental reflection hologram data. This efficiency is a 21.42% improvement over a similar system that uses one PV cell with the highest efficiency (GaAs). Simulation results show large acceptance angle for both in-plane and out-of plane directions. Simulation of the output power of the system with different configurations at different times of the year are also presented.

  17. Landsliding generated by thermomechanical interactions between rock columns and wedging blocks: Study case from the Larzac Plateau (Southern France)

    Science.gov (United States)

    Taboada, Alfredo; Ginouvez, Hadrien; Renouf, Mathieu; Azemard, Pierre

    2017-06-01

    The Larzac Plateau is delimited by vertical cliffs whose geometry is controlled by vertical joints. Cliff's erosion involves landslides initiated by incremental enlargement of joints that progressively detach rock columns at very low velocities (1.2 mm/yr). We find that enlargement of joints is linked to intraseasonal thermal cycles ranging between 2-15 days in relation with dilation/contraction of rock blocks trapped inside the joints. The mechanism involves two successive stages in which blocks create a wedging and a ratcheting effect on the rock column. Wedging is associated with compressional forces acting on the rock column, resulting from temperature increase and dilation of the shallow rocks. Ratcheting is associated with downward displacement of blocks by gravity to a new equilibrium position, resulting from temperature decrease and contraction of shallow rocks. The displacement vector in a thermal cycle is split into a plastic and a thermal component; plastic displacements range between 10 — 200 μm according to the seasons, and are absorbed along a shear plane dipping 40° beneath the rock column: they are largest during autumn and winter, minor during spring and negligible in summer. This deformation mechanism is termed thermomechanical creep as permanent deformations are associated to mechanical forces induced by short-term thermal cycles.

  18. SiC MOSFETs based split output half bridge inverter

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Beczkowski, Szymon

    2014-01-01

    Body diode of SiC MOSFETs has a relatively high forward voltage drop and still experiences reverse recovery phenomenon. Half bridge with split output aims to decouple both the body diode and junction capacitance of SiC MOSFETs, therefore achieving a reduced switching loss in a bridge configuration....... This paper makes the current commutation mechanism and efficiency analysis of half bridge with split output based on SiC MOSFETs. Current commutation process analysis is illustrated together with LTspice simulation and afterwards, verified by the experimental results of a double pulse test circuit with split...

  19. Torque Splitting by a Concentric Face Gear Transmission

    Science.gov (United States)

    Filler, Robert R.; Heath, Gregory F.; Slaughter, Stephen C.; Lewicki, David G.

    2002-01-01

    Tests of a 167 Kilowatt (224 Horsepower) split torque face gearbox were performed by the Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP). This paper provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA. Design, manufacture and testing of the scaled-power TRP proof-of-concept (POC) split torque gearbox followed preliminary evaluations of the concept performed early in the program. The split torque tests were run using 200 N-m (1767 in-lbs) torque input to each side of the transmission. During tests, two input pinions were slow rolled while in mesh with the two face gears. Two idler gears were also used in the configuration to recombine torque near the output. Resistance was applied at the output face gear to create the required loading conditions in the gear teeth. A system of weights, pulleys and cables were used in the test rig to provide both the input and output loading. Strain gages applied in the tooth root fillets provided strain indication used to determine torque splitting conditions at the input pinions. The final two pinion-two idler tests indicated 52% to 48% average torque split capabilities for the two pinions. During the same tests, a 57% to 43% average distribution of the torque being recombined to the upper face gear from the lower face gear was measured between the two idlers. The POC split torque tests demonstrated that face gears can be applied effectively in split torque rotorcraft transmissions, yielding good potential for significant weight, cost and reliability improvements over existing equipment using spiral bevel gearing.

  20. Semantic Parameters of Split Intransitivity.

    Science.gov (United States)

    Van Valin, Jr., Robert D.

    1990-01-01

    This paper argues that split-intransitive phenomena are better explained in semantic terms. A semantic analysis is carried out in Role and Reference Grammar, which assumes the theory of verb classification proposed in Dowty 1979. (49 references) (JL)

  1. ISR split-field magnet

    CERN Multimedia

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  2. Innovative solar thermochemical water splitting.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas (Robocasting Enterprises, Albuquerque, NM); Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); James, Darryl L. (Texas Tech University, Lubbock, TX)

    2008-02-01

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  3. Split NMSSM with electroweak baryogenesis

    OpenAIRE

    Demidov, S.; Gorbunov, D; Kirpichnikov, D.

    2016-01-01

    In light of the Higgs boson discovery and other results of the LHC we re-consider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for t...

  4. Effects of slot closure by soft magnetic powder wedge material in axial-field permanent magnet brushless machines

    Science.gov (United States)

    Gair, S.; Eastham, J. F.; Canova, A.

    1996-04-01

    The article reports on a study of the effects of slot closure in axial-field permanent magnet brushless machines by a two-dimensional finite element method (2D FEM) of analysis. The closure of the slots is made by using soft magnetic powder wedge material. Parameter values and machine performance for the open and closed slot configuration are computed. In order to test the 2D FEM model, calculated results are compared with measurements and favorable agreement is shown.

  5. Artificial photosynthesis for solar water-splitting

    Science.gov (United States)

    Tachibana, Yasuhiro; Vayssieres, Lionel; Durrant, James R.

    2012-08-01

    Hydrogen generated from solar-driven water-splitting has the potential to be a clean, sustainable and abundant energy source. Inspired by natural photosynthesis, artificial solar water-splitting devices are now being designed and tested. Recent developments based on molecular and/or nanostructure designs have led to advances in our understanding of light-induced charge separation and subsequent catalytic water oxidation and reduction reactions. Here we review some of the recent progress towards developing artificial photosynthetic devices, together with their analogies to biological photosynthesis, including technologies that focus on the development of visible-light active hetero-nanostructures and require an understanding of the underlying interfacial carrier dynamics. Finally, we propose a vision for a future sustainable hydrogen fuel community based on artificial photosynthesis.

  6. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone

    Science.gov (United States)

    Nagaya, Takayoshi; Walker, Andrew M.; Wookey, James; Wallis, Simon R.; Ishii, Kazuhiko; Kendall, J.-Michael

    2016-07-01

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed.

  7. Electrodynamic Casimir Effect in a Medium-Filled Wedge II

    CERN Document Server

    Ellingsen, Simen Adnoy; Milton, Kimball A

    2009-01-01

    We consider the Casimir energy in a geometry of an infinite magnetodielectric wedge closed by a circularly cylindrical arc embedded in another magnetodielectric medium, under the condition that the speed of light be the same in both media. An expression for the Casimir energy corresponding to the arc is obtained and it is found that in the limit where the reflectivity of the boundaries tends to unity the finite part of the Casimir energy of a perfectly conducting wedge-shaped sheet closed by a circular cylinder is regained. The energy of the latter geometry possesses divergences due to the presence of sharp corners. We argue how this is a pathology of the assumption of ideal conductor boundaries, and that no analogous term enters in the present geometry.

  8. MHD Casson nanofluid flow past a wedge with Newtonian heating

    Science.gov (United States)

    Ahmad, Kartini; Hanouf, Zahir; Ishak, Anuar

    2017-02-01

    The problem of steady Casson nanofluid flow past a wedge is studied in this paper. The presence of magnetic field along with Newtonian heating at the surface is considered. The governing partial differential equations are first transformed into a set of nonlinear ordinary differential equations by similarity transformations, before being solved numerically using the Keller-box method. The effects of the wedge angle Ω from 0° (horizontal plate) to 180° (vertical plate) as well as of as the magnetic parameter M on the non-Newtonian fluid flow and heat transfer characteristics are investigated. It is found that the surface temperature is slightly higher for the flow over a horizontal plate compared to that over a vertical plate. It is also found that the magnetic field decreases the surface temperature but increases the skin friction. The flow of a Newtonian fluid is found to give higher skin friction as compared to that of Casson fluid.

  9. Wedge Diffraction as an Instance of Radiative Shielding

    CERN Document Server

    Grzesik, J A

    2016-01-01

    The celebrated Sommerfeld wedge diffraction solution is reexamined from a null interior field perspective. Exact surface currents provided by that solution, when considered as disembodied half-plane laminae radiating into an ambient, uniform space both inside and outside the wedge proper, do succeed in reconstituting both a specular, mirror field above the exposed face, and a shielding plane-wave field of a sign opposite to that of the incoming excitation which, under superposition, creates both the classical, geometric-optics shadow, and a strictly null interior field at the dominant, plane-wave level. Both mirror and shadow radiated fields are controlled by the residue at just one simple pole encountered during a spectral radiative field assembly, fixed in place by incidence direction $\\phi_{0}$ as measured from the exposed face. The radiated fields further provide diffractive contributions drawn from two saddle points that track observation angle $\\phi.$ Even these, more or less asymptotic contributions, a...

  10. Direct FVM Simulation for Sound Propagation in an Ideal Wedge

    Directory of Open Access Journals (Sweden)

    Hongyu Ji

    2016-01-01

    Full Text Available The sound propagation in a wedge-shaped waveguide with perfectly reflecting boundaries is one of the few range-dependent problems with an analytical solution. This provides a benchmark for the theoretical and computational studies on the simulation of ocean acoustic applications. We present a direct finite volume method (FVM simulation for the ideal wedge problem, and both time and frequency domain results are analyzed. We also study the broadband problem with large-scale parallel simulations. The results presented in this paper validate the accuracy of the numerical techniques and show that the direct FVM simulation could be applied to large-scale complex acoustic applications with a high performance computing platform.

  11. Stem thrust prediction model for W-K-M double wedge parallel expanding gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Eldiwany, B.; Alvarez, P.D. [Kalsi Engineering Inc., Sugar Land, TX (United States); Wolfe, K. [Electric Power Research Institute, Palo Alto, CA (United States)

    1996-12-01

    An analytical model for determining the required valve stem thrust during opening and closing strokes of W-K-M parallel expanding gate valves was developed as part of the EPRI Motor-Operated Valve Performance Prediction Methodology (EPRI MOV PPM) Program. The model was validated against measured stem thrust data obtained from in-situ testing of three W-K-M valves. Model predictions show favorable, bounding agreement with the measured data for valves with Stellite 6 hardfacing on the disks and seat rings for water flow in the preferred flow direction (gate downstream). The maximum required thrust to open and to close the valve (excluding wedging and unwedging forces) occurs at a slightly open position and not at the fully closed position. In the nonpreferred flow direction, the model shows that premature wedging can occur during {Delta}P closure strokes even when the coefficients of friction at different sliding surfaces are within the typical range. This paper summarizes the model description and comparison against test data.

  12. Restraint of fatigue crack growth by wedge effects of fine particles

    CERN Document Server

    Takahashi, I; Kotani, N

    2000-01-01

    Presents some experimental results which demonstrate restraint of fatigue crack growth in an Al-Mg alloy by wedge effects of fine particles. Fatigue test specimens were machined from a JIS A5083P-O Al-Mg alloy plate of 5 mm thickness and an EDM starter notch was introduced to each specimen. Three kinds of fine particles were prepared as the materials to be wedged into the fatigue cracks, i.e. magnetic particles and two kinds of alumina particles having different mean particle sizes of 47.3 mu m and 15.2 mu m. Particles of each kind were suspended in an oil to form a paste, which was applied on the specimen surface covering the notch zone prior to the fatigue tests. In order to make some fracture mechanics approaches, in situ observations of fatigue cracks were performed for the two cases using a CCD microscope, with a magnification of *1000. The crack length and the crack opening displacement (COD) at the notch root, delta , were measured. The crack retardation effect continues almost through the entire lifet...

  13. Modal Analysis in Lined Wedge-Shaped Ducts

    Science.gov (United States)

    Mechel, F. P.

    1998-10-01

    It has been suggested to describe the sound field in a wedge-shaped duct in a cylindrical co-ordinate system in which the boundaries of the wedge lie in a co-ordinate surface. This suggestion was developed in a companion paper [1]. The wave equation can be separated only if the boundaries are ideally reflecting (rigid or soft). Two solutions were proposed in reference [1] for absorbing boundaries. In the first solution the sound field is composed of “ideal modes” (modes in a wedge with ideally reflecting boundaries); the boundary condition at the absorbing boundary then leads to a system of equations for the mode amplitudes. The problem with this method lies in the fact that there is no radial orthogonality of the ideal modes so that the precision of the field synthesis by ideal modes is doubtful. In the second method in reference [1] one defines “fictitious modes” which satisfy the boundary conditions at the flanks exactly and which are based on hypergeometric functions as radial functions, but which produce a “rest” in the wave equation. It was described how this rest can be minimized; this procedure leads to slow numerical integrations. In the present paper, the wedge is subdivided into duct sections with parallel walls (the boundary is stepped); the fields in the sections are composed of duct modes (modes in a straight lined duct); the mode amplitudes are determined from the boundary conditions at the section limits. The advantages of the present method are (analytically) the duct modes are orthogonal across the sections, so the mode amplitudes can be determined with the usual precision of a modal analysis, and (numerically) no numerical integrations are needed.

  14. DNS of compressible turbulent boundary layer over a blunt wedge

    Institute of Scientific and Technical Information of China (English)

    LI Xinliang; FU Dexun; MA Yanwan

    2005-01-01

    Direct numerical simulation of spatially evolving compressible boundary layer over a blunt wedge is performed in this paper. The free-stream Mach number is 6 and the disturbance source produced by wall blowing and suction is located downstream of the sound-speed point. Statistics are studied and compared with the results in incompressible flat-plate boundary layer. The mean pressure gradient effects on the vortex structure are studied.

  15. Opening- and Closing-Wedge Distal Femoral Osteotomy

    Science.gov (United States)

    Chahla, Jorge; Mitchell, Justin J.; Liechti, Daniel J.; Moatshe, Gilbert; Menge, Travis J.; Dean, Chase S.; LaPrade, Robert F.

    2016-01-01

    Background: Lateral compartment osteoarthritis of the knee can be a challenging pathology in the younger, active population due to limited treatment options and high patient expectations. Distal femoral osteotomy (DFO) has been reported to be a potential treatment option. Purpose: To perform a systematic review on the survival, outcomes, and complications of DFO for treatment of genu valgum with concomitant lateral compartment osteoarthritis of the knee. Study Design: Systematic review; Level of evidence, 4. Methods: A systematic review of the literature was performed using the Cochrane Database of Systematic Reviews, the Cochrane Central Registry of Controlled Trials, PubMed, and MEDLINE from 1980 to present. Inclusion criteria were as follows: outcomes of opening- and closing-wedge DFOs performed for treatment of genu valgum with concomitant lateral compartment osteoarthritis of the knee, English language, minimum 2-year follow-up, and human studies. Data abstracted from the selected studies included type of osteotomy (opening vs closing), survival rate, patient-reported and radiographic outcomes, and complications. Results: Fourteen studies met the inclusion criteria and were considered for the review. A total of 9 closing-wedge and 5 opening-wedge DFO studies were included. All were retrospective studies and reported good to excellent patient-reported outcomes after DFO. Survival decreased with increasing time from surgery, with 1 study reporting a 100% survival rate at 6.5 years, compared with 21.5% at 20 years in another study. A low rate of complications was reported throughout the review. Conclusion: Highly heterogeneous literature exists for both opening- and closing-wedge DFOs for the treatment of isolated lateral compartment osteoarthritis with valgus malalignment. A mean survival rate of 80% at 10-year follow-up was reported, supporting that this procedure can be a viable treatment option to delay or reduce the need for joint arthroplasty. A low

  16. Wedge-local quantum fields on a nonconstant noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Much, A. [Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig (Germany) and Institute for Theoretical Physics, University of Leipzig, 04009 Leipzig (Germany)

    2012-08-15

    Within the framework of warped convolutions we deform the massless free scalar field. The deformation is performed by using the generators of the special conformal transformations. The investigation shows that the deformed field turns out to be wedge-local. Furthermore, it is shown that the spacetime induced by the deformation with the special conformal operators is nonconstant noncommutative. The noncommutativity is obtained by calculating the deformed commutator of the coordinates.

  17. On the acoustic wedge design and simulation of anechoic chamber

    Science.gov (United States)

    Jiang, Changyong; Zhang, Shangyu; Huang, Lixi

    2016-10-01

    This study proposes an alternative to the classic wedge design for anechoic chambers, which is the uniform-then-gradient, flat-wall (UGFW) structure. The working mechanisms of the proposed structure and the traditional wedge are analyzed. It is found that their absorption patterns are different. The parameters of both structures are optimized for achieving minimum absorber depth, under the condition of absorbing 99% of normal incident sound energy. It is found that, the UGFW structure achieves a smaller total depth for the cut-off frequencies ranging from 100 Hz to 250 Hz. This paper also proposes a modification for the complex source image (CSI) model for the empirical simulation of anechoic chambers, originally proposed by Bonfiglio et al. [J. Acoust. Soc. Am. 134 (1), 285-291 (2013)]. The modified CSI model considers the non-locally reactive effect of absorbers at oblique incidence, and the improvement is verified by a full, finite-element simulation of a small chamber. With the modified CSI model, the performance of both decorations with the optimized parameters in a large chamber is simulated. The simulation results are analyzed and checked against the tolerance of 1.5 dB deviation from the inverse square law, stipulated in the ISO standard 3745(2003). In terms of the total decoration depth and anechoic chamber performance, the UGFW structure is better than the classic wedge design.

  18. Wave dynamic processes in cellular detonation reflection from wedges

    Institute of Scientific and Technical Information of China (English)

    Zongmin Hu; Zonglin Jiang

    2007-01-01

    When the cell width of the incident deto-nation wave (IDW) is comparable to or larger than theMach stem height,self-similarity will fail during IDWreflection from a wedge surface.In this paper,the det-onation reflection from wedges is investigated for thewave dynamic processes occurring in the wave front,including transverse shock motion and detonation cellvariations behind the Mach stem.A detailed reactionmodel is implemented to simulate two-dimensional cel-lular detonations in stoichiometric mixtures of H2/O2diluted by Argon.The numerical results show that thetransverse waves,which cross the triple point trajec-tory of Mach reflection,travel along the Mach stem andreflect back from the wedge surface,control the size ofthe cells in the region swept by the Mach stem.It is theenergy carried by these transverse waves that sustainsthe triple-wave-collision with a higher frequency withinthe over-driven Mach stem.In some cases,local wavedynamic processes and wave structures play a dominantrole in determining the pattern of cellular record,lead-ing to the fact that the cellular patterns after the Machstem exhibit some peculiar modes.

  19. Comparison of Lateral Closing-Wedge Versus Medial Opening-Wedge High Tibial Osteotomy on Knee Joint Alignment and Kinematics in the ACL-Deficient Knee.

    Science.gov (United States)

    Ranawat, Anil S; Nwachukwu, Benedict U; Pearle, Andrew D; Zuiderbaan, Hendrik A; Weeks, Kenneth D; Khamaisy, Saker

    2016-12-01

    Lateral closing-wedge (LCW) and medial opening-wedge (MOW) high tibial osteotomies (HTOs) correct varus knee alignment and stabilize the anterior cruciate ligament (ACL)-deficient knee. Tibiofemoral and patellofemoral alignment and kinematics after HTO are not well quantified. To compare the effect of LCW and MOW HTO on tibiofemoral and patellofemoral alignment in the ACL-deficient knee. Controlled laboratory study. Anterior drawer, Lachman, and pivot-shift tests were performed on cadaveric specimens (N = 16), and anterior tibial translation and tibial rotation were measured for the native and ACL-sectioned knee. The right and left knee of each cadaveric specimen underwent an LCW and MOW HTO, respectively, and stability testing was repeated. All cadavers underwent pre- and postosteotomy computerized tomography with 3-dimensional computer modeling to determine the effect of HTO on posterior tibial slope, as well as tibial and patellofemoral axial plane alignment (tibial axial rotation and patellar axial tilt). Correction to neutral coronal alignment was obtained with both osteotomy techniques; however, larger posterior tibial slope neutralization was achieved with LCW compared with MOW (mean ± SD, 11° ± 3.8° vs 5° ± 5°). LCW demonstrated a greater decrease in anterior tibial translation (P rotation with pivot shift. Relative to MOW, LCW resulted in greater tibial axial rotation and patellar axial tilt (7.7° ± 4° and 5.6° ± 3.9° [LCW], 2.8° ± 2.3° and 2.4° ± 0.9° [MOW], respectively; P rotation and lateral patellar tilt, which may adversely affect the patellofemoral joint. More work is needed to understand the clinical and functional outcome of these biomechanical findings in the ACL-deficient knee. © 2016 The Author(s).

  20. Robustness of oscillatory α2 dynamos in spherical wedges

    Science.gov (United States)

    Cole, E.; Brandenburg, A.; Käpylä, P. J.; Käpylä, M. J.

    2016-10-01

    Context. Large-scale dynamo simulations are sometimes confined to spherical wedge geometries by imposing artificial boundary conditions at high latitudes. This may lead to spatio-temporal behaviours that are not representative of those in full spherical shells. Aims: We study the connection between spherical wedge and full spherical shell geometries using simple mean-field dynamos. Methods: We solve the equations for one-dimensional time-dependent α2 and α2Ω mean-field dynamos with only latitudinal extent to examine the effects of varying the polar angle θ0 between the latitudinal boundaries and the poles in spherical coordinates. Results: In the case of constant α and ηt profiles, we find oscillatory solutions only with the commonly used perfect conductor boundary condition in a wedge geometry, while for full spheres all boundary conditions produce stationary solutions, indicating that perfect conductor conditions lead to unphysical solutions in such a wedge setup. To search for configurations in which this problem can be alleviated we choose a profile of the turbulent magnetic diffusivity that decreases toward the poles, corresponding to high conductivity there. Oscillatory solutions are now achieved with models extending to the poles, but the magnetic field is strongly concentrated near the poles and the oscillation period is very long. By changing both the turbulent magnetic diffusivity and α profiles so that both effects are more concentrated toward the equator, we see oscillatory dynamos with equatorward drift, shorter cycles, and magnetic fields distributed over a wider range of latitudes. Those profiles thus remove the sensitive and unphysical dependence on θ0. When introducing radial shear, we again see oscillatory dynamos, and the direction of drift follows the Parker-Yoshimura rule. Conclusions: A reduced α effect near the poles with a turbulent diffusivity concentrated toward the equator yields oscillatory dynamos with equatorward migration and

  1. Chronology and palaeoenvironmental implications of the ice-wedge pseudomorphs and composite-wedge casts on the Magdalen Islands (eastern Canada)

    DEFF Research Database (Denmark)

    Remillard, A.M.; Hetu, B.; Bernatchez, P.

    2015-01-01

    The Magdalen Islands are a valuable terrestrial record, evidencing the complex glacial and periglacial history of the Gulf of St. Lawrence. Thirteen structures interpreted as ice-wedge pseudomorphs or composite-wedge casts were observed at four sites on the southern Magdalen Islands and testify...

  2. 饱水-干燥循环和长期饱水砂岩劈裂试验%Split Test of Sandstone under Conditions of Cyclic Saturation-drying and Long-term Saturation

    Institute of Scientific and Technical Information of China (English)

    朱朝辉; 吴平; 姚华彦; 朱大勇

    2012-01-01

    The continuous change of underground water level makes the rock mass in a saturated drying alternate status and it is unfavorable to long-term stability of rock mass engineering. In order to analyze the impact of saturation drying cycle on rock mass tensile strength, taking sandstone as research object, Brazil splitting tests are implemented under the conditions of dry, saturation and long-term soaking saturation. And the influence of water rock interaction in different conditions on rock tensile strength is analyzed. The results show that the reduction of sandstone tensile strength in saturation drying cycle condition is obvious than that in long-term soaking condition.%地下水位的不断变化使岩体往往处于饱和-干燥交替状态,对岩体工程的长期稳定性不利.为分析饱和-干燥循环作用对岩体的抗拉强度影响规律,以砂岩为研究对象,开展了砂岩在饱水—干燥”循环作用后处于干燥、饱和及长期浸泡饱和三种状态的巴西劈裂试验,分析了不同条件下的水-岩作用对岩石抗拉强度的影响规律.结果表明,砂岩抗拉强度的降低在饱和-干燥循环条件下比长期浸泡条件下更显著.

  3. Is it safe to perform completion lobectomy after diagnostic wedge resection using video-assisted thoracoscopic surgery?

    DEFF Research Database (Denmark)

    Holbek, Bo Laksáfoss; Petersen, René Horsleben; Hansen, Henrik Jessen

    2016-01-01

    OBJECTIVES: The objective of this study was to assess the safety of video-assisted thoracoscopic surgery (VATS) completion lobectomy (CL) for non-small cell lung cancer (NSCLC) after diagnostic wedge resection by comparing with standard VATS lobectomy (SL). METHODS: Data were retrieved from...... test. RESULTS: In total 80 CL and 958 SLs were performed. There were no significant differences in median operating time, median chest drain duration or median length of stay. Median operative bleeding was 100 mL (IQR 50-238) in the CL group compared to 75 mL (IQR 25-200) in the SL group (p = 0.......99). CONCLUSIONS: This study comparing short-term surgical outcome and complications after surgical treatment of NSCLC indicates that VATS completion lobectomy after diagnostic wedge resection seems safe when looking at a relatively short time interval between the two procedures....

  4. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Rashidi, Majid; Krantz, Timothy

    A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system.

  5. Assessment of computerized treatment planning system accuracy in calculating wedge factors of physical wedged fields for 6 MV photon beams.

    Science.gov (United States)

    Muhammad, Wazir; Maqbool, Muhammad; Shahid, Muhammad; Hussain, Amjad; Tahir, Sajjad; Matiullah; Rooh, Gul; Ahmad, Tanveer; Lee, Sang Hoon

    2011-07-01

    Wedge filters are commonly used in external beam radiotherapy to achieve a uniform dose distribution within the target volume. The main objective of this study was to investigate the accuracy of the beam modifier algorithm of Theraplan plus (TPP version 3.8) treatment planning system and to confirm that either the beam hardening, beam softening and attenuation coefficients along with wedge geometry and measured wedge factor at single depth and multiple fields sizes can be the replacement of wedged profile and wedged cross-sectional data or not. In this regard the effect of beam hardening and beam softening was studied with physical wedges for 6 MV photons. The Normalized Wedge Factors (NWFs) were measured experimentally as well as calculated with the Theraplan plus, as a function of depth and field size in a water phantom for 15°, 30°, 45°, and 60° wedge filters. The beam hardening and softening was determined experimentally by deriving the required coefficients for all wedge angles. The TPP version 3.8 requires wedge transmission factor at single depth and multiple field sizes. Without incorporating the hardening and softening coefficients the percent difference between measured and calculated NFWs was as high as 7%. After the introduction of these parameters into the algorithm, the agreement between measured and TPP (V 3.8) calculated NWFs were improved to within 2 percent for various depths. Similar improvement was observed in TPP version 3.8 while calculating NWFs for various field sizes when the required coefficients were adjusted. In conclusion, the dose calculation algorithm of TPP version 3.8 showed good accuracy for a 6 MV photon beam provided beam hardening and softening parameters are taken into account. From the results, it is also concluded that, the beam hardening, beam softening and attenuation coefficients along with wedge geometry and measured wedge factor at single depth and multiple fields sizes can be the replacement of wedged profile and

  6. Observation of wedge waves and their mode transformation by laser ultrasonic technique

    Institute of Scientific and Technical Information of China (English)

    Jing Jia; Zhonghua Shen; Lijuan Wang; Ling Yuan

    2011-01-01

    Wedge waves (WWs) in wedges, including their dispersion characteristics and mode transformation, are investigated using the laser ultrasound technique. Pulsed laser excitation and optical deflection beam method for detection are used to record WWs. Numerous WWs are detected by scanning the excitation laser along the wedge tip. Dispersions of WWs are obtained by using the two-dimensional (2D) Fourier transformation method, and different WW orders are revealed on the wedges. Mode transformation is determined by fixing the distance between the excitation and detection position, as well as by scanning the samples along the normal direction of the wedge tip.%@@ Wedge waves (WWs) in wedges, including their dispersion characteristics and mode transformation, are investigated using the laser ultrasound technique. Pulsed laser excitation and optical deflection beam method for detection are used to record WWs. Numerous WWs are detected by scanning the excitation laser along the wedge tip. Dispersions of WWs are obtained by using the two-dimensional (2D) Fourier transformation method, and different WW orders are revealed on the wedges. Mode transformation is determined by fixing the distance between the excitation and detection position, as well as by scanning the samples along the normal direction of the wedge tip.

  7. A dual wedge microneedle for sampling of perilymph solution via round window membrane.

    Science.gov (United States)

    Watanabe, Hirobumi; Cardoso, Luis; Lalwani, Anil K; Kysar, Jeffrey W

    2016-04-01

    Precision medicine for inner-ear disease is hampered by the absence of a methodology to sample inner-ear fluid atraumatically. The round window membrane (RWM) is an attractive portal for accessing cochlear fluids as it heals spontaneously. In this study, we report on the development of a microneedle for perilymph sampling that minimizes the size of RWM perforation, facilitates quick aspiration, and provides precise volume control. Here, considering the mechanical anisotropy of the RWM and hydrodynamics through a microneedle, a 31G stainless steel pipe was machined into wedge-shaped design via electrical discharge machining. The sharpness of the needle was evaluated via a surface profilometer. Guinea pig RWM was penetrated in vitro, and 1 μL of perilymph was sampled and analyzed via UV-vis spectroscopy. The prototype wedge shaped needle was successfully fabricated with the tip curvature of 4.5 μm and the surface roughness of 3.66 μm in root mean square. The needle created oval perforation with minor and major diameter of 143 and 344 μm (n = 6). The sampling duration and standard deviation of aspirated volume were 3 s and 6.8 % respectively. The protein concentration was 1.74 mg/mL. The prototype needle facilitated precise perforation of RWMs and rapid aspiration of cochlear fluid with precise volume control. The needle design is promising and requires testing in human cadaveric temporal bone and further optimization to become clinically viable.

  8. Solar water splitting: efficiency discussion

    CERN Document Server

    Juodkazyte, Jurga; Sebeka, Benjaminas; Savickaja, Irena; Malinauskas, Tadas; Badokas, Kazimieras; Juodkazis, Kestutis; Juodkazis, Saulius

    2016-01-01

    The current state of the art in direct water splitting in photo-electrochemical cells (PECs) is presented together with: (i) a case study of water splitting using a simple solar cell with the most efficient water splitting electrodes and (ii) a detailed mechanism analysis. Detailed analysis of the energy balance and efficiency of solar hydrogen production are presented. The role of hydrogen peroxide formation as an intermediate in oxygen evolution reaction is newly revealed and explains why an oxygen evolution is not taking place at the thermodynamically expected 1.23 V potential. Solar hydrogen production with electrical-to-hydrogen conversion efficiency of 52% is demonstrated using a simple ~0.7%-efficient n-Si/Ni Schottky solar cell connected to a water electrolysis cell. This case study shows that separation of the processes of solar harvesting and electrolysis avoids photo-electrode corrosion and utilizes optimal electrodes for hydrogen and oxygen evolution reactions and achieves ~10% efficiency in light...

  9. Lattice splitting under intermittent flows

    CERN Document Server

    Schläpfer, Markus

    2010-01-01

    We study the splitting of regular square lattices subject to stochastic intermittent flows. By extensive Monte Carlo simulations we reveal how the time span until the occurence of a splitting depends on various flow patterns imposed on the lattices. Increasing the flow fluctuation frequencies shortens this time span which reaches a minimum before rising again due to inertia effects incorporated in the model. The size of the largest connected component after the splitting is rather independent of the flow fluctuations but sligthly decreases with the link capacities. Our results are relevant for assessing the robustness of real-life systems, such as electric power grids with a large share of renewable energy sources including wind turbines and photovoltaic systems.

  10. On Split Lie Triple Systems

    Indian Academy of Sciences (India)

    Antonio J Calderón Martín

    2009-04-01

    We begin the study of arbitrary split Lie triple systems by focussing on those with a coherent 0-root space. We show that any such triple systems with a symmetric root system is of the form $T=\\mathcal{U}+\\sum_j I_j$ with $\\mathcal{U}$ a subspace of the 0-root space $T_0$ and any $I_j$ a well described ideal of , satisfying $[I_j,T,I_k]=0$ if $j≠ k$. Under certain conditions, it is shown that is the direct sum of the family of its minimal ideals, each one being a simple split Lie triple system, and the simplicity of is characterized. The key tool in this job is the notion of connection of roots in the framework of split Lie triple systems.

  11. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    Ignatios Antoniadis

    2006-11-01

    Type-I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with sin2 W = 3/8 at the com-pactification scale of GUT ≃ 2 × 1016 GeV. I discuss mechanisms for generating gaugino and higgsino masses at the TeV scale, as well as generalizations to models with split extended supersymmetry in the gauge sector.

  12. Split NMSSM with electroweak baryogenesis

    Science.gov (United States)

    Demidov, S. V.; Gorbunov, D. S.; Kirpichnikov, D. V.

    2016-11-01

    In light of the Higgs boson discovery and other results of the LHC we re-consider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.

  13. Splitting strings on integrable backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Vicedo, Benoit

    2011-05-15

    We use integrability to construct the general classical splitting string solution on R x S{sup 3}. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet {sigma}-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL{sub 2}(C). (orig.)

  14. Split Supersymmetry in String Theory

    CERN Document Server

    Antoniadis, Ignatios

    2006-01-01

    Type I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with \\sin^2{\\theta_W}=3/8 at the compactification scale of M_{\\rm GUT}\\simeq 2 \\times 10^{16} GeV. I discuss mechanisms for generating gaugino and higgsino masses at the TeV scale, as well as generalizations to models with split extended supersymmetry in the gauge sector.

  15. Death with "dignity": the wedge that divides the disability rights movement from the right to die movement.

    Science.gov (United States)

    Behuniak, Susan M

    2011-01-01

    Much of the American debate over physician assisted death (PAD) is framed as an ideological split between conservatives and liberals, pro life and pro choice advocates, and those who emphasize morality versus personal autonomy. Less examined, but no less relevant, is a split within the ranks of progressives--one that divides those supporting a right to die in the name of human rights from disability rights activists who invoke human rights to vehemently oppose euthanasia. This paper reviews how "dignity" serves both as a divisive wedge in this debate but also as a value that can span the divide between groups and open the way to productive discourse. Supporters of legalized euthanasia use "dignity" to express their position that some deaths might indeed be accelerated. At the same time, opponents adopt the concept to argue that physician assisted suicide stigmatizes life with a disability. To bridge this divide, the worldviews of two groups, Compassion & Choices and Not Dead Yet, are studied. The analysis concludes that the two organizations are more parallel than contrary--a finding that offers opportunities for dialogue and perhaps even advances in public policy.

  16. The role of aerothermochemistry in double cone and double wedge flows

    Science.gov (United States)

    Swantek, Andrew

    In this work, hypervelocity flows over double cone and double wedge geometries are studied. The flow configurations established over the double cone/double wedge models are extremely sensitive to thermochemistry, and thus serve as ideal benchmarks for validating chemical models. The goals of this research are: i) to investigate the coupling between the fluid mechanics and thermochemistry in these flow fields by varying freestream flow composition and enthalpy, ii) to implement a diagnostic suite for time-resolved surface and freestream measurements, iii) to investigate the nature of flow field unsteadiness across various test conditions, and lastly iv) to extend the experimental database for shock wave boundary/layer interactions. An expansion tube is used to generate flows with enthalpies ranging from 2.2-8.0 MJ/kg (2-4 km/s) and Mach numbers from 4-7. The expansion tube is a novel impulse facility for accelerating a test gas to these velocities, while maintaining a minimally dissociated freestream. Additionally, the facility allows variation of the freestream composition (between nitrogen and air), while maintaining freestream test parameters (Mach number, density, enthalpy) to within 0.5%. Two models are used: a 25-55 degree double cone model and a 30-55 degree double wedge. There are four diagnostic components to this research which aim to enable a better understanding of these canonical flow fields. Single frame, high resolution schlieren photography is used to visualize various flow features including: the separation zone formed in the corner, the triple point interaction, and a supersonic shear layer. From these images, a separation zone length scaling parameter is determined. This parameter, derived for wedge geometries, is successfully applied to conical geometries by using a judicious choice of flow properties for scaling. In the wedge image series, nitrogen test conditions exhibit a distinct increase in bow shock standoff distance. Additionally, aft

  17. Modes of continental extension in a crustal wedge

    KAUST Repository

    Wu, Guangliang

    2015-07-01

    © 2015 Elsevier B.V. We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  18. Modes of continental extension in a crustal wedge

    Science.gov (United States)

    Wu, Guangliang; Lavier, Luc L.; Choi, Eunseo

    2015-07-01

    We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  19. Heat conduction problem of an evaporating liquid wedge

    Directory of Open Access Journals (Sweden)

    Tomas Barta

    2015-02-01

    Full Text Available We consider the stationary heat transfer near the contact line of an evaporating liquid wedge surrounded by the atmosphere of its pure vapor. In a simplified setting, the problem reduces to the Laplace equation in a half circle, subject to a non-homogeneous and singular boundary condition. By classical tools (conformal mapping, Green's function, we reformulate the problem as an integral equation for the unknown Neumann boundary condition in the setting of appropriate fractional Sobolev and weighted space. The unique solvability is then obtained by means of the Fredholm theorem.

  20. Magmatism significantly alters the thermal structure of the wedge

    Science.gov (United States)

    Rees Jones, D. W.; Katz, R. F.; Rudge, J. F.; Tian, M.

    2016-12-01

    The temperature structure of the mantle wedge is typically modelled as a balance between thermal diffusion and advection by the solid mantle [e.g., 1]. The thermal state of the wedge promotes melting and melt transport in the natural system, but the thermal consequences of these processes have been neglected from previous models. We show that advective transport of sensible and latent heat by liquid magma can locally alter the temperature structure from canonical models by up to 200K. Liquids are liberated from the subducting slab by de-volatilization reactions. They trigger melting and become silicic en route to the surface, where they cause arc volcanism. These liquids transport heat advectively, and consume or supply latent heat as they melt or freeze. To analyse these effects, we parameterise melting in the presence of volatile species. We combine this with a one-dimensional "melting-column model," previously used to understand mid-ocean ridge volcanism. Our calculations highlight the thermal and chemical response to melt transport across the mantle wedge. Finally, we solve two-dimensional geodynamic models with a prescribed slab flux [2]. These models allow us to identify the most thermally significant fluxes of melt in the system. Perturbations of 200K are found at the base of the overriding lithosphere. This thermal signature of melt migration should be considered when interpreting heat flow, petrologic and seismic data [e.g., 3]. Such a thermal perturbation is likely to affect the chemistry of arc volcanoes, the solid mantle flow and, perhaps, the location of the volcanos themselves [4]. [1] van Keken, P. E., Currie, C., King, S. D., Behn, M. D., Cagnioncle, A., He, J., et al. (2008). A community benchmark for subduction zone modeling. PEPI, doi:10.1016/j.pepi.2008.04.015 [2] Wilson, C. R., Spiegelman, M., van Keken, P. E., & Hacker, B. R. (2014). Fluid flow in subduction zones: The role of solid rheology and compaction pressure. EPSL, doi:10.1016/j

  1. Electric monopoles in generalised B\\wedge F theories

    CERN Document Server

    Temple-Raston, M

    1996-01-01

    A tensor product generalisation of B\\wedge F theories is proposed to give a Bogomol'nyi structure. Non-singular, stable, finite-energy particle-like solutions to the Bogomol'nyi equations are studied. Unlike Yang-Mills(-Higgs) theory, the Bogomol'nyi structure does not appear as a perfect square in the Lagrangian. Consequently, the Bogomol'nyi energy can be obtained in more than one way. The added flexibility permits electric monopole solutions to the field equations.

  2. Beam splitting on weak illumination.

    Science.gov (United States)

    Snyder, A W; Buryak, A V; Mitchell, D J

    1998-01-01

    We demonstrate, in both two and three dimensions, how a self-guided beam in a non-Kerr medium is split into two beams on weak illumination. We also provide an elegant physical explanation that predicts the universal character of the observed phenomenon. Possible applications of our findings to guiding light with light are also discussed.

  3. Torque-Splitting Gear Drive

    Science.gov (United States)

    Kish, J.

    1991-01-01

    Geared drive train transmits torque from input shaft in equal parts along two paths in parallel, then combines torques in single output shaft. Scheme reduces load on teeth of meshing gears while furnishing redundancy to protect against failures. Such splitting and recombination of torques common in design of turbine engines.

  4. Water splitting by cooperative catalysis

    NARCIS (Netherlands)

    D.G.H. Hetterscheid; J.I. van der Vlugt; B. de Bruin; J.N.H. Reek

    2009-01-01

    A mononuclear Ru complex is shown to efficiently split water into H2 and O2 in consecutive steps through a heat- and light-driven process (see picture). Thermally driven H2 formation involves the aid of a non-innocent ligand scaffold, while dioxygen is generated by initial photochemically induced re

  5. Modified retro-tubercle opening-wedge versus conventional high tibial osteotomy.

    Science.gov (United States)

    Keyhani, Sohrab; Abbasian, Mohammad Reza; Kazemi, Seyed Morteza; Esmailiejah, Ali Akbar; Seyed Hosseinzadeh, Hamid Reza; Shahi, Alisina; Shahi, Ali Sina; Firouzi, Farzad

    2011-01-01

    Despite the fact that common surgical techniques for the treatment of genu varum usually correct the malalignment in the affected knee, these methods have significant complications and cause problems in the long term. Retro-tubercle opening-wedge high tibial osteotomy is among the newer techniques for the treatment of genu varum. The goal of this study was to compare the results of retro-tubercle opening-wedge high tibial osteotomy with those of medial opening-wedge osteotomy. In a randomized, controlled trial, 72 patients with varus knees who were scheduled for surgery were assigned into either the retro-tubercle opening-wedge high tibial osteotomy (n=34) or medial opening-wedge osteotomy groups (n=38). Groups were matched for age and sex. The position of the patella was compared with respect to the tuberosity and the upper tibial slope pre- and postoperatively. Patients were followed for an average of 13 months (range, 10-21 months). In the retro-tubercle opening-wedge high tibial osteotomy group, the length of the patellar tendon did not significantly differ pre- and postoperatively (P≥.5); however, in the medial opening-wedge osteotomy group, a statistically significant shortening was noted in patellar tendon postoperatively (P≤.05). Similarly, the tibial plateau inclination showed a statistically significant difference postoperatively in the medial opening-wedge osteotomy group, while the difference in the retro-tubercle opening-wedge high tibial osteotomy group did not reach statistical significance.

  6. Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Volkov, V.S.; Nielsen, Rasmus Bundgaard

    2008-01-01

    . Using scanning near-field optical imaging at the wavelengths in the range of 1.43 - 1.52 µm, we demonstrate low-loss (propagation length ~ 120 µm) and well-confined (mode width ≅ 1.3 µm) wedge plasmon-polariton guiding along triangular 6-µm-high and 70.5°- angle gold wedges. Experimental observations......We report on subwavelength plasmon-polariton guiding by triangular metal wedges at telecom wavelengths. A high-quality fabrication procedure for making gold wedge waveguides, which is also mass- production compatible offering large-scale parallel fabrication of plasmonic components, is developed...

  7. Decollement controls on pro versus retro wedge deformation in mountain belts

    Science.gov (United States)

    Grool, Arjan; Huismans, Ritske S.; Ford, Mary

    2017-04-01

    Doubly vergent orogens have a pro-wedge (lower plate) and a retro-wedge (upper plate). Most shortening is accommodated on the pro-wedge while retro-wedge shortening is typically limited. For example, the Eastern Pyrenees have experienced about 145 km of convergence, of which about 125 km (86%) was accommodated in the pro-wedge and about 20 km (14%) in the retro-wedge. Strain partitioning between pro- and retro-wedge is influenced by several factors, some of which have been identified in past work: Extensional inheritance and syn-orogenic sedimentation can help to increase the percentage of total shortening accommodated in the retro-wedge while erosion promotes pro-wedge shortening. We use high-resolution 2D numerical models to investigate factors that control pro- versus retro-wedge shortening. For a total convergence similar to the Eastern Pyrenees, our models predict that variations in extensional inheritance and syn-orogenic sedimentation will result in a maximum of 10% of total shortening being accommodated in the retro-wedge. Here, we investigate the role of 1) the rheology and 2) distribution of a decollement layer. Our models show that: 1) Decollement rheology has a first order control on strain distribution between the pro- and the retro-wedge. After 145 km of total convergence, a model with a weak frictional (φ=2, shale-like) decollement will only accommodate 9% of total shortening in the retro-wedge. In contrast in models with a weak viscous (μ=1018, salt-like) decollement retro-wedge shortening amounts to 18% and a stronger, but still weak, viscous decollement (μ=1019) leads to 21%. 2) Décollement distribution influences the timing of the first outward propagation of thick-skinned deformation in the retro-wedge. In the Eastern Pyrenees, thick-skinned deformation propagated out into the retro-wedge within 145 km of total convergence. In models with a decollement on both sides of the orogen this only occurred after 240 km. If, as in the Eastern

  8. Altering Knee Abduction Angular Impulse Using Wedged Insoles for Treatment of Patellofemoral Pain in Runners: A Six-Week Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Ryan T Lewinson

    Full Text Available Determine if a change in internal knee abduction angular impulse (KAAI is related to pain reduction for runners with patellofemoral pain (PFP by comparing lateral and medial wedge insole interventions, and increased KAAI and decreased KAAI groups.Randomized controlled clinical trial (ClinicalTrials.gov ID# NCT01332110.Biomechanics laboratory and community.Thirty-six runners with physician-diagnosed PFP enrolled in the trial, and 27 were analyzed.Runners with PFP were randomly assigned to either an experimental 3 mm lateral wedge or control 6 mm medial wedge group. Participants completed a biomechanical gait analysis to quantify KAAIs with their assigned insole, and then used their assigned insole for six-weeks during their regular runs. Usual pain during running was measured at baseline and at six-week follow-up using a visual analog scale. Statistical tests were performed to identify differences between wedge types, differences between biomechanical response types (i.e. increase or decrease KAAI, as well as predictors of pain reduction.Percent change in KAAI relative to neutral, and % change in pain over six weeks.Clinically meaningful reductions in pain (>33% were measured for both footwear groups; however, no significant differences between footwear groups were found (p = 0.697. When participants were regrouped based on KAAI change (i.e., increase or decrease, again, no significant differences in pain reduction were noted (p = 0.146. Interestingly, when evaluating absolute change in KAAI, a significant relationship between absolute % change in KAAI and % pain reduction was observed (R2 = 0.21; p = 0.030, after adjusting for baseline pain levels.The greater the absolute % change in KAAI during running, the greater the % reduction in pain over six weeks, regardless of wedge type, and whether KAAIs increased or decreased. Lateral and medial wedge insoles were similar in effectiveness for treatment of PFP.Altering KAAI should be a focus of future

  9. Cool covered sky-splitting spectrum-splitting FK

    Energy Technology Data Exchange (ETDEWEB)

    Mohedano, Rubén; Chaves, Julio; Falicoff, Waqidi; Hernandez, Maikel; Sorgato, Simone [LPI, Altadena, CA, USA and Madrid (Spain); Miñano, Juan C.; Benitez, Pablo [LPI, Altadena, CA, USA and Madrid, Spain and Universidad Politécnica de Madrid (UPM), Madrid (Spain); Buljan, Marina [Universidad Politécnica de Madrid (UPM), Madrid (Spain)

    2014-09-26

    Placing a plane mirror between the primary lens and the receiver in a Fresnel Köhler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell for better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.

  10. Dying Flow Bursts as Generators of the Substorm Current Wedge

    Science.gov (United States)

    Haerendel, Gerhard

    2016-07-01

    Many theories or conjectures exist on the driver of the substorm current wedge, e.g. rerouting of the tail current, current disruption, flow braking, vortex formation, and current sheet collapse. Magnitude, spatial scale, and temporal development of the related magnetic perturbations suggest that the generator is related to the interaction of the flow bursts with the dipolar magnetosphere after onset of reconnection in the near-Earth tail. The question remains whether it is the flow energy that feeds the wedge current or the internal energy of the arriving plasma. In this presentation I argue for the latter. The current generation is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the preceding layer of high-beta plasma after flow braking. The generator current is the grad-B current at the outer boundary of the compressed high-beta plasma layers. It needs the sequential arrival of several flow bursts to account for duration and magnitude of the ionospheric closure current.

  11. Growth and mixing dynamics of mantle wedge plumes

    Science.gov (United States)

    Gorczyk, Weronika; Gerya, Taras V.; Connolly, James A. D.; Yuen, David A.

    2007-07-01

    Recent work suggests that hydrated partially molten thermal-chemical plumes that originate from subducted slab as a consequence of Rayleigh-Taylor instability are responsible for the heterogeneous composition of the mantle wedge. We use a two-dimensional ultrahigh-resolution numerical simulation involving 10 × 109 active markers to anticipate the detailed evolution of the internal structure of natural plumes beneath volcanic arcs in intraoceanic subduction settings. The plumes consist of partially molten hydrated peridotite, dry solid mantle, and subducted oceanic crust, which may compose as much as 12% of the plume. As plumes grow and mature these materials mix chaotically, resulting in attenuation and duplication of the original layering on scales of 1-1000 m. Comparison of numerical results with geological observations from the Horoman ultramafic complex in Japan suggests that mixing and differentiation processes related to development of partially molten plumes above slabs may be responsible for the strongly layered lithologically mixed (marble cake) structure of asthenospheric mantle wedges.

  12. Relation of the auroral substorm to the substorm current wedge

    Science.gov (United States)

    McPherron, Robert L.; Chu, Xiangning

    2016-12-01

    The auroral substorm is an organized sequence of events seen in the aurora near midnight. It is a manifestation of the magnetospheric substorm which is a disturbance of the magnetosphere brought about by the solar wind transfer of magnetic flux from the dayside to the tail lobes and its return through the plasma sheet to the dayside. The most dramatic feature of the auroral substorm is the sudden brightening and poleward expansion of the aurora. Intimately associated with this expansion is a westward electrical current flowing across the bulge of expanding aurora. This current is fed by a downward field-aligned current (FAC) at its eastern edge and an upward current at its western edge. This current system is called the substorm current wedge (SCW). The SCW forms within a minute of auroral expansion. FAC are created by pressure gradients and field line bending from shears in plasma flow. Both of these are the result of pileup and diversion of plasma flows in the near-earth plasma sheet. The origins of these flows are reconnection sites further back in the tail. The auroral expansion can be explained by a combination of a change in field line mapping caused by the substorm current wedge and a tailward growth of the outer edge of the pileup region. We illustrate this scenario with a complex substorm and discuss some of the problems associated with this interpretation.

  13. An automated optical wedge calibrator for Dobson ozone spectrophotometers

    Science.gov (United States)

    Evans, R. D.; Komhyr, W. D.; Grass, R. D.

    1994-01-01

    The Dobson ozone spectrophotometer measures the difference of intensity between selected wavelengths in the ultraviolet. The method uses an optical attenuator (the 'Wedge') in this measurement. The knowledge of the relationship of the wedge position to the attenuation is critical to the correct calculation of ozone from the measurement. The procedure to determine this relationship is time-consuming, and requires a highly skilled person to perform it correctly. The relationship has been found to change with time. For reliable ozone values, the procedure should be done on a Dobson instrument at regular intervals. Due to the skill and time necessary to perform this procedure, many instruments have gone as long as 15 years between procedures. This article describes an apparatus that performs the procedure under computer control, and is adaptable to the majority of existing Dobson instruments. Part of the apparatus is usable for normal operation of the Dobson instrument, and would allow computer collection of the data and real-time ozone measurements.

  14. Wave Dispersion and Attenuation in Viscoelastic Split Hopkinson Pressure Bar

    Directory of Open Access Journals (Sweden)

    Z.Q. Cheng

    1998-01-01

    Full Text Available A viscoelastic split Hopkinson pressure bar intended for testing soft materials with low acoustic impedance is studied. Using one-dimensional linear viscoelastic wave propagation theory, the basic equations have been established for the determination of the stress—strain—strain rate relationship for the tested material. A method, based on the spectral analysis of wave motion and using measured wave signals along the split Hopkinson pressure bar, is developed for the correction of the dispersion and attenuation of viscoelastic waves. Computational simulations are performed to show the feasibility of the method.

  15. Dirac and Maxwell equations in Split Octonions

    CERN Document Server

    Beradze, Revaz

    2016-01-01

    The split octonionic form of Dirac and Maxwell equations are found. In contrast with the previous attempts these equations are derived from the octonionic analyticity condition and also we use different basis of the 8-dimensional space of split octonions.

  16. Split Left GC-Lpp Semigroups

    Institute of Scientific and Technical Information of China (English)

    Zhen Zhen LI; Xiao Jiang GUO; Zhi Qing FU

    2012-01-01

    A left GC-lpp semigroup S is called split if the natural homomorphism γb of S onto S/γ induced by γ is split.It is proved that a left GC-lpp semigroup is split if and only if it has a left adequate transversal.In particular,a construction theorem for split left GC-lpp semigroups is established.

  17. Duality in nonlinear B$\\wedge$F models equivalence between self-dual and topologically massive Born-Infeld B$\\wedge$F models

    CERN Document Server

    Menezes, R; Ribeiro, R F; Wotzasek, C

    2002-01-01

    We study the dual equivalence between the nonlinear generalization of the self-dual ($NSD_{B\\wedge F}$) and the topologically massive $B\\wedge F$ models with particular emphasis on the nonlinear electrodynamics proposed by Born and Infeld. This is done through a dynamical gauge embedding of the nonlinear self-dual model yielding to a gauge invariant and dynamically equivalent theory. We clearly show that nonpolinomial $NSD_{B\\wedge F}$ models can be mapped, through a properly defined duality transformation, into $TM_{B\\wedge F}$ actions. The general result obtained is then particularized for a number of examples, including the Born-Infeld-BF (BIBF) model that has experienced a revival in the recent literature.

  18. 7 CFR 51.2002 - Split shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack....

  19. Split NMSSM with electroweak baryogenesis

    CERN Document Server

    Demidov, S V; Kirpichnikov, D V

    2016-01-01

    In light of the Higgs boson discovery we reconsider generation of the baryon asymmetry in the non-minimal split Supersymmetry model with an additional singlet superfield in the Higgs sector. We find that successful baryogenesis during the first order electroweak phase transition is possible within phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.

  20. The Split Variational Inequality Problem

    CERN Document Server

    Censor, Yair; Reich, Simeon

    2010-01-01

    We propose a new variational problem which we call the Split Variational Inequality Problem (SVIP). It entails finding a solution of one Variational Inequality Problem (VIP), the image of which under a given bounded linear transformation is a solution of another VIP. We construct iterative algorithms that solve such problems, under reasonable conditions, in Hilbert space and then discuss special cases, some of which are new even in Euclidean space.

  1. Torsional Split Hopkinson Bar Optimization

    Science.gov (United States)

    2012-04-10

    pillow blocks used to mount the incident and transmitter bars are cast iron based- mounted Babbitt -lined bearing split, for 1 in. shaft diameter...Total 1 McMaster-CARR 5911k16 1" Dia, 6" long anodized aluminum shaft $15.38 8 $123.04 2 McMaster-CARR 6359k37 Cast iron base-mounted babbitt

  2. Spatial and temporal distribution of deformation at the front of the Andean orogenic wedge in Bolivia and implications for incremental wedge evolution

    Science.gov (United States)

    Weiss, J. R.; Brooks, B. A.; Vergani, G.; Arrowsmith, R.

    2012-12-01

    There is no consensus regarding how orogenic wedges accommodate deformation over seismo-tectonic timescales. Results from the Himalaya and Taiwan suggest differing mechanisms including localized deformation along a single wedge-front structure and distributed shortening across multiple structures respectively. Here we provide the first detailed constraints on the distribution and timing of deformation at the front of the Andean orogenic wedge using industry acquired seismic reflection data from the ~500-km-long thin-skinned fold-and-thrust belt of the Bolivian Subandes (BSA). Almost no information exists on the recent history of BSA wedge-front deformation despite the presence of multiple ~10-m-high topographic scarps on Holocene surfaces and a recent analysis of the GPS-derived velocity field, which suggests the frontal Mandeyapecua thrust fault system (MTFS) is capable of >Mw 8 earthquakes. We use stratigraphic relationships across fault-related folds to depict the onset of deformation for the complete suite of structures comprising the MTFS. For each structure we determine the uncertainty in timing using an envelope of seismic velocity models from ~70 well-logs and published Quaternary sedimentation rates for the region. We further explore fault geometry and fault slip parameters associated with the displacement field of seismic reflection horizons using elastic dislocation theory. Our analyses reveal the presence of at least eight distinct fault segments comprising the MTFS, including previously unrecognized subsurface thrust faults that have been active since ~1 Ma. Shortening rates are generally higher across the younger, northern portion of the fault system but across-strike, in a ~50-km-wide zone from west to east, no distinct pattern of deformation migration exists. We estimate the percentage of whole-wedge deformation accommodated by wedge-front structures using our new fault slip rates combined with the wedge-loading rate of ~10 mm/yr and place our

  3. Upper crustal mechanical stratigraphy and the evolution of thrust wedges: insights from sandbox analogue experiments

    Science.gov (United States)

    Milazzo, Flavio; Storti, Fabrizio; Nestola, Yago; Cavozzi, Cristian; Magistroni, Corrado; Meda, Marco; Salvi, Francesca

    2016-04-01

    this contribution we present the results of such a study, where a three-décollement mechanical stratigraphy has been deformed in the sandbox at the same boundary conditions. Different rheological properties were assigned to the three décollements in different experiments, up to testing all possible mechanical stratigraphies. Implications on thrust propagation and slip rate history and cross-sectional thrust wedge architecture are discussed and compared with natural cases.

  4. Geometrical Applications of Split Octonions

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili

    2015-01-01

    Full Text Available It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations. This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin, as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.

  5. First direct dating of Late Pleistocene ice-wedges by AMS

    NARCIS (Netherlands)

    Vasil'chuk, YK; van der Plicht, J; Jungner, H; Sonninen, E; Vasil'chuk, AC; Vasil'chuk, Yurij K.; Vasil'chuk, Alla C.

    2000-01-01

    We present the first direct dating by C-14-accelerator mass spectrometry of three Late Pleistocene syngenetic ice-wedges from the Seyaha cross-section. They are representative of permafrost with multistage ice-wedges from the North of Western Siberia. The most important result is the clear vertical

  6. Enhancement of linear and second-order hyperpolarizabilities in wedge-shaped nanostructures

    Science.gov (United States)

    Jayabalan, J.; Singh, Manoranjan P.; Rustagi, K. C.

    2003-08-01

    Analytical solutions for the wave functions for free electrons inside a wedge-shaped quantum dot are reported. For silver wedge-shaped quantum dots, linear and second-order hyperpolarizabilities are calculated for various apex angles. It is found that linear and nonlinear hyperpolarizabilities both increase with decreasing apex angle.

  7. Duwamish Waterways Navigation Improvement Study: Analysis of Impacts on Water Quality and Salt Wedge Characteristics.

    Science.gov (United States)

    1981-02-01

    dissolved oxygen consumption in the saltwater wedge is emphasized. A section has also been prepared discussing sediment transport in the estuary...biomass produced and sedimented 23 1,000 800 00 0 400 Xi. . *-*’* 200 ox- :~. ---0 - .....’ ~ ’J FIGURE 6 Annual Dissolved Oxygen Consumption in the wedge

  8. Reflection of a converging cylindrical shock wave segment by a straight wedge

    Science.gov (United States)

    Gray, B.; Skews, B.

    2017-01-01

    As a converging cylindrical shock wave propagates over a wedge, the shock wave accelerates and the angle between the shock wave and the wedge decreases. This causes the conditions at the reflection point to move from what would be the irregular reflection domain for a straight shock wave into the regular reflection domain. This paper covers a largely qualitative study of the reflection of converging shock wave segments with Mach numbers between 1.2 and 2.1 by wedges inclined at angles between 15° and 60° from experimental and numerical results. The sonic condition conventionally used for predicting the type of reflection of straight shock waves was found to also be suitable for predicting the initial reflection of a curved shock wave. Initially regular reflections persisted until the shock was completely reflected by the wedge, whereas the triple point of initially irregular reflections was observed to return to the wedge surface, forming transitioned regular reflection. After the incident shock wave was completely reflected by the wedge, a shock wave focusing mechanism was observed to amplify the pressure on the surface of the wedge by a factor of up to 100 for low wedge angles.

  9. A quantum hybrid with a thin antenna at the vertex of a wedge

    Science.gov (United States)

    Carlone, Raffaele; Posilicano, Andrea

    2017-03-01

    We study the spectrum, resonances and scattering matrix of a quantum Hamiltonian on a "hybrid surface" consisting of a half-line attached by its endpoint to the vertex of a concave planar wedge. At the boundary of the wedge, outside the vertex, homogeneous Dirichlet conditions are imposed. The system is tunable by varying the measure of the angle at the vertex.

  10. Immediate and 1 week effects of laterally wedge insoles on gait biomechanics in healthy females.

    Science.gov (United States)

    Weinhandl, Joshua T; Sudheimer, Sarah E; Van Lunen, Bonnie L; Stewart, Kimberly; Hoch, Matthew C

    2016-03-01

    It is estimated that approximately 45% of the U.S. population will develop knee osteoarthritis, a disease that creates significant economic burdens in both direct and indirect costs. Laterally wedged insoles have been frequently recommended to reduce knee abduction moments and to manage knee osteoarthritis. However, it remains unknown whether the lateral wedge will reduce knee abduction moments over a prolonged period of time. Thus, the purposes of this study were to (1) examine the immediate effects of a laterally wedged insole in individuals normally aligned knees and (2) determine prolonged effects after the insole was worn for 1 week. Gait analysis was performed on ten women with and without a laterally wedged insole. After participants wore the wedges for a week, a second gait analysis was performed with and without the insole. The wedged insole did not affect peak knee abduction moment, although there was a significant increase in knee abduction angular impulse after wearing the insoles for 1 week. Furthermore, there was a significant increase in vertical ground reaction force at the instance of peak knee abduction moment with the wedges. While the laterally wedged insole used in the current study did not alter knee abduction moments as expected, other studies have shown alterations. Future studies should also examine a longer acclimation period, the influence of gait speed, and the effect of different shoe types with the insole.

  11. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology

    Science.gov (United States)

    Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.; Fedorov, Alexander N.; Frost, Gerald V.; Grosse, Guido; Hinzman, Larry D.; Iijma, Yoshihiro; Jorgenson, Janet C.; Matveyeva, Nadya; Necsoiu, Marius; Raynolds, Martha K.; Romanovsky, Vladimir E.; Schulla, Jörg; Tape, Ken D.; Walker, Donald A.; Wilson, Cathy J.; Yabuki, Hironori; Zona, Donatella

    2016-04-01

    Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions.

  12. Comparison of dosimetric characteristics of Siemens virtual and physical wedges for ONCOR linear accelerator

    Directory of Open Access Journals (Sweden)

    Attalla Ehab

    2010-01-01

    Full Text Available Dosimetric properties of virtual wedge (VW and physical wedge (PW in 6- and 10-MV photon beams from a Siemens ONCOR linear accelerator, including wedge factors, depth doses, dose profiles, peripheral doses, are compared. While there is a great difference in absolute values of wedge factors, VW factors (VWFs and PW factors (PWFs have a similar trend as a function of field size. PWFs have stronger depth dependence than VWF due to beam hardening in PW fields. VW dose profiles in the wedge direction, in general, match very well with those of PW, except in the toe area of large wedge angles with large field sizes. Dose profiles in the nonwedge direction show a significant reduction in PW fields due to off-axis beam softening and oblique filtration. PW fields have significantly higher peripheral doses than open and VW fields. VW fields have similar surface doses as the open fields, while PW fields have lower surface doses. Surface doses for both VW and PW increase with field size and slightly with wedge angle. For VW fields with wedge angles 45° and less, the initial gap up to 3 cm is dosimetrically acceptable when compared to dose profiles of PW. VW fields in general use less monitor units than PW fields.

  13. Benchmarking the Sandbox: Quantitative Comparisons of Numerical and Analogue Models of Brittle Wedge Dynamics (Invited)

    Science.gov (United States)

    Buiter, S.; Schreurs, G.; Geomod2008 Team

    2010-12-01

    When numerical and analogue models are used to investigate the evolution of deformation processes in crust and lithosphere, they face specific challenges related to, among others, large contrasts in material properties, the heterogeneous character of continental lithosphere, the presence of a free surface, the occurrence of large deformations including viscous flow and offset on shear zones, and the observation that several deformation mechanisms may be active simultaneously. These pose specific demands on numerical software and laboratory models. By combining the two techniques, we can utilize the strengths of each individual method and test the model-independence of our results. We can perhaps even consider our findings to be more robust if we find similar-to-same results irrespective of the modeling method that was used. To assess the role of modeling method and to quantify the variability among models with identical setups, we have performed a direct comparison of results of 11 numerical codes and 15 analogue experiments. We present three experiments that describe shortening of brittle wedges and that resemble setups frequently used by especially analogue modelers. Our first experiment translates a non-accreting wedge with a stable surface slope. In agreement with critical wedge theory, all models maintain their surface slope and do not show internal deformation. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. All models show similar cross-sectional evolutions that demonstrate reproducibility to first order. However

  14. Prevalence of Split Nerve Fiber Layer Bundles in Healthy People Imaged with Spectral Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Sirel Gür Güngör

    2016-12-01

    Full Text Available Objectives: The presence of retinal nerve fiber layer (RNFL split bundles was recently described in normal eyes scanned using scanning laser polarimetry and by histologic studies. Split bundles may resemble RNFL loss in healthy eyes. The aim of our study was to determine the prevalence of nerve fiber layer split bundles in healthy people. Materials and Methods: We imaged 718 eyes of 359 healthy persons with the spectral domain optical coherence tomography in this cross-sectional study. All eyes had intraocular pressure of 21 mmHg or less, normal appearance of the optic nerve head, and normal visual fields (Humphrey Field Analyzer 24-2 full threshold program. In our study, a bundle was defined as ‘split’ when there is localized defect not resembling a wedge defect in the RNFL deviation map with a symmetrically divided RNFL appearance on the RNFL thickness map. The classification was performed by two independent observers who used an identical set of reference examples to standardize the classification. Results: Inter-observer consensus was reached in all cases. Bilateral superior split bundles were seen in 19 cases (5.29% and unilateral superior split was observed in 15 cases (4.16%. In 325 cases (90.52% there was no split bundle. Conclusion: Split nerve fiber layer bundles, in contrast to single nerve fiber layer bundles, are not common findings in healthy eyes. In eyes with normal optic disc appearance, especially when a superior RNFL defect is observed in RNFL deviation map, the RNLF thickness map and graphs should also be examined for split nerve fiber layer bundles.

  15. Alternating tip splitting in directional solidification.

    Science.gov (United States)

    Utter, B; Ragnarsson, R; Bodenschatz, E

    2001-05-14

    We report experimental results on the tip splitting dynamics of seaweed growth in directional solidification of succinonitrile alloys. Despite the random appearance of the growth, a tip splitting morphology was observed in which the tip alternately splits to the left and to the right. The tip splitting frequency f was found to be related to the growth velocity V as a power law f~V1.5. This finding is consistent with the predictions of a tip splitting model that is also presented. Small anisotropies are shown to lead to different kinds of seaweed morphologies.

  16. Two-dimensional electronic spectroscopy with birefringent wedges

    Energy Technology Data Exchange (ETDEWEB)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  17. The effects of split keyboard geometry on upper body postures.

    Science.gov (United States)

    Rempel, David; Nathan-Roberts, Dan; Chen, Bing Yune; Odell, Dan

    2009-01-01

    Split, gabled keyboard designs can prevent or improve upper extremity pain among computer users; the mechanism appears to involve the reduction of awkward wrist and forearm postures. This study evaluated the effects of changes in opening angle, slope and height (independent variables) of a gabled (14 degrees) keyboard on typing performance and upper extremity postures. Twenty-four experienced touch typists typed on seven keyboard conditions while typing speed and right and left wrist extension, ulnar deviation, forearm pronation and elbow position were measured using a motion tracking system. The lower keyboard height led to a lower elbow height (i.e. less shoulder elevation) and less wrist ulnar deviation and forearm pronation. Keyboard slope and opening angle had mixed effects on wrist extension and ulnar deviation, forearm pronation and elbow height and separation. The findings suggest that in order to optimise wrist, forearm and upper arm postures on a split, gabled keyboard, the keyboard should be set to the lowest height of the two heights tested. Keyboard slopes in the mid-range of those tested, 0 degrees to -4 degrees, provided the least wrist extension, forearm pronation and the lowest elbow height. A keyboard opening angle in the mid-range of those tested, 15 degrees, may provide the best balance between reducing ulnar deviation while not increasing forearm pronation or elbow separation. These findings may be useful in the design of computer workstations and split keyboards. The geometry of a split keyboard can influence wrist and forearm postures. The findings of this study are relevant to the positioning and adjustment of split keyboards. The findings will also be useful for engineers who design split keyboards.

  18. Isolating active orogenic wedge deformation in the southern Subandes of Bolivia

    Science.gov (United States)

    Weiss, Jonathan R.; Brooks, Benjamin A.; Foster, James H.; Bevis, Michael; Echalar, Arturo; Caccamise, Dana; Heck, Jacob; Kendrick, Eric; Ahlgren, Kevin; Raleigh, David; Smalley, Robert; Vergani, Gustavo

    2016-08-01

    A new GPS-derived surface velocity field for the central Andean backarc permits an assessment of orogenic wedge deformation across the southern Subandes of Bolivia, where recent studies suggest that great earthquakes (>Mw 8) are possible. We find that the backarc is not isolated from the main plate boundary seismic cycle. Rather, signals from subduction zone earthquakes contaminate the velocity field at distances greater than 800 km from the Chile trench. Two new wedge-crossing velocity profiles, corrected for seasonal and earthquake affects, reveal distinct regions that reflect (1) locking of the main plate boundary across the high Andes, (2) the location of and loading rate at the back of orogenic wedge, and (3) an east flank velocity gradient indicative of décollement locking beneath the Subandes. Modeling of the Subandean portions of the profiles indicates along-strike variations in the décollement locked width (WL) and wedge loading rate; the northern wedge décollement has a WL of ~100 km while accumulating slip at a rate of ~14 mm/yr, whereas the southern wedge has a WL of ~61 km and a slip rate of ~7 mm/yr. When compared to Quaternary estimates of geologic shortening and evidence for Holocene internal wedge deformation, the new GPS-derived wedge loading rates may indicate that the southern wedge is experiencing a phase of thickening via reactivation of preexisting internal structures. In contrast, we suspect that the northern wedge is undergoing an accretion or widening phase primarily via slip on relatively young thrust-front faults.

  19. The use of sternal wedge osteotomy in pectus surgery: when is it necessary?

    Science.gov (United States)

    Kara, Murat; Gundogdu, Ahmet Gokhan; Kadioglu, Salih Zeki; Cayirci, Ertug Can; Taskin, Necati

    2016-09-01

    The Ravitch procedure is a well-established surgical procedure for correction of chest wall deformities. Sternal wedge osteotomy is an important part of this procedure. We studied the incidence of wedge osteotomy with respect to the type of chest wall deformity in patients undergoing surgical correction with the use of a recently developed chest wall stabilization system. A total of 47 patients, 39 (83%) male and 8 (17%) female with a mean age of 14.9 ± 2.1 years, underwent the Ravitch procedure. Twenty-four (51.1%) had pectus carinatum, 19 (40.4%) had pectus excavatum, and 4 (8.5%) had pectus arcuatum. A conventional or oblique sternal wedge osteotomy was performed as indicated, followed by chest wall stabilization using the MedXpert system. Of the 47 patients, 27 (57.4%) had a sternal wedge osteotomy. All cases of pectus arcuatum and redo cases underwent sternal wedge osteotomy. Pectus excavatum cases tended to have a greater incidence of wedge osteotomy compared to pectus carinatum cases (68.4% vs. 41.7%, p = 0.052). Patients with more resected ribs had a greater rate of wedge osteotomy (63.4%) compared to those with fewer resected ribs (16.7%, p = 0.043). A sternal wedge osteotomy is more commonly performed in patients with pectus excavatum compared to those with pectus carinatum. All redo and pectus arcuatum cases need a wedge osteotomy for proper correction. Wedge osteotomy is very likely in more aggressive corrections with more rib resections. © The Author(s) 2016.

  20. Split-and-merge Procedure for Image Segmentation using Bimodality Detection Approach

    Directory of Open Access Journals (Sweden)

    Debasis Chaudhuri

    2010-04-01

    Full Text Available Image segmentation, the division of a multi-dimensional image into groups of associated pixels, is an essential step for many advanced imaging applications. Image segmentation can be performed by recursively splitting the whole image or by merging together a large number of minute regions until a specified condition is satisfied. The split-and-merge procedure of image segmentation takes an  intermediate level in an image description as the starting cutest, and thereby achieves a compromise between merging small primitive regions and recursively splitting the whole images to reach the desired final cutest. The proposed segmentation approach is a split-andmerge technique. The conventional split-and-merge algorithm is lacking in adaptability to the image semantics because of its stiff quadtree-based structure. In this paper, an automatic thresholding technique based on bimodality detection approach with non-homogeneity criterion is employed in the splitting phase of the split-and-merge segmentation scheme to directly reflect the image semantics to the image segmentation results. Since the proposed splitting technique depends upon homogeneity factor, some of the split regions may or may not split properly. There should be rechecking through merging technique between the two adjacent regions to overcome the drawback of the splitting technique. A sequential-arrange-based or a minimal spanning-tree based approach, that depends on data dimensionality of the weighted centroids of all split regions for finding the pair wise adjacent regions, is introduced. Finally, to overcome the problems caused by the splitting technique, a novel merging technique based on the density ratio of the adjacent pair regions is proposed. The algorithm has been tested on several synthetic as well as real life data and the results show the efficiency of the segmentation technique.Defence Science Journal, 2010, 60(3, pp.290-301, DOI:http://dx.doi.org/10.14429/dsj.60.356

  1. LBP and lower limb discrepancy: 3D evaluation of postural rebalancing via underfoot wedge correction.

    Science.gov (United States)

    D'Amico, Moreno; Roncoletta, Piero; Di Felice, Francesca; Porto, Daniele; Bellomo, Rosagrazia; Saggini, Raoul

    2012-01-01

    Leg Length Discrepancy (LLD) is very often associated to Low Back Pain (LBP), but still controversial is the use of underfoot wedge correction (heel rise) to re-balance pelvis and trunk posture. In a review of our last 5 years clinical activity we observed that more than 70% out of 300 LBP patients presented a LLD. In more than 80 % we ascertained, via Baropodography, the presence of underfoot asymmetric load, during standing. More durable therapy recovery effect has been observed when LLD correction had been adopted. These reasons led us to start a study to assess if a Full 3D multifactorial Posture evaluation approach, by means of Opto-electronic device associated to foot pressure maps recording, was able to quantitatively discriminate the clinically observed phenomena. On a 94 LBP (av. age 46.3±16 Y range 15-82 Y) patients sample, 83 (88%) have been found to improve posture when LLD was corrected. The 94 patients showed a mean lower limb discrepancy of μ=8±3.2mm associated to a mean scoliotic lumbar curve μ=10.5°±5.1° Cobb (frontal plane), mean Spinal offset μ=6.6±4.9mm and mean Global offset 10.7±8.8mm. The applied paired t-test comparison (indifferent vs. corrected orthostasis) showed significant (p < 0.05) postural improvements could be obtained in the whole or in a part of the considered parameters, both in rebalancing and in spine deformities reduction after the application of suitable under-foot wedge. The joint 3D opto-electronic and foot pressure map approach proved to be effective to control several clinical parameters with statistical significance.

  2. Personalized implant for high tibial opening wedge: combination of solid freeform fabrication with combustion synthesis process.

    Science.gov (United States)

    Zhim, Fouad; Ayers, Reed A; Moore, John J; Moufarrège, Richard; Yahia, L'Hocine

    2012-09-01

    In this work a new generation of bioceramic personalized implants were developed. This technique combines the processes of solid freeform fabrication (SFF) and combustion synthesis (CS) to create personalized bioceramic implants with tricalcium phosphate (TCP) and hydroxyapatite (HA). These porous bioceramics will be used to fill the tibial bone gap created by the opening wedge high tibial osteotomy (OWHTO). A freeform fabrication with three-dimensional printing (3DP) technique was used to fabricate a metallic mold with the same shape required to fill the gap in the opening wedge osteotomy. The mold was subsequently used in a CS process to fabricate the personalized ceramic implants with TCP and HA compositions. The mold geometry was designed on commercial 3D CAD software. The final personalized bioceramic implant was produced using a CS process. This technique was chosen because it exploits the exothermic reaction between P₂O₅ and CaO. Also, chemical composition and distribution of pores in the implant could be controlled. To determine the chemical composition, the microstructure, and the mechanical properties of the implant, cylindrical shapes were also fabricated using different fabrication parameters. Chemical composition was performed by X-ray diffraction. Pore size and pore interconnectivity was measured and analyzed using an electronic microscope system. Mechanical properties were determined by a mechanical testing system. The porous TCP and HA obtained have an open porous structure with an average 400 µm channel size. The mechanical behavior shows great stiffness and higher load to failure for both ceramics. Finally, this personalized ceramic implant facilitated the regeneration of new bone in the gap created by OWHTO and provides additional strength to allow accelerated rehabilitation.

  3. Climate stabilization wedges in action: a systems approach to energy sustainability for Hawaii Island.

    Science.gov (United States)

    Johnson, Jeremiah; Chertow, Marian

    2009-04-01

    Pacala and Socolow developed a framework to stabilize global greenhouse gas levels for the next fifty years using wedges of constant size representing an increasing use of existing technologies and approaches for energy efficiency, carbon free generation, renewables, and carbon storage. The research presented here applies their approach to Hawaii Island, with modifications to support local scale analysis and employing a "bottom-up" methodology that allows for wedges of various sizes. A discretely bounded spatial unit offers a testing ground for a holistic approach to improving the energy sector with the identification of local options and limitations to the implementation of a comprehensive energy strategy. Nearly 80% of total primary energy demand across all sectors for Hawaii Island is currently met using petroleum-based fuels.The Sustainable Energy Plan scenario included here presents an internally consistent set of recommendations bounded by local constraints in areas such as transportation efficiency, centralized renewable generation (e.g., geothermal, wind), reduction in transmission losses, and improved building efficiency. This scenario shows thatthe demand for primary energy in 2030 could be reduced by 23% through efficiency measures while 46% could be met by renewable generation, resulting in only 31% of the projected demand being met by fossil fuels. In 2030, the annual releases of greenhouse gases would be 3.2 Mt CO2-eq/year under the Baseline scenario, while the Sustainable Energy Plan would reduce this to 1.2 Mt CO2-eq/year--an annual emissions rate 40% below 2006 levels and 10% below 1990 levels. The total for greenhouse gas emissions during the 24-year study period (2007 to 2030) is 59.9 Mt CO2-eq under the Baseline scenario and 32.5 Mt CO2-eq under the Sustainable Energy Plan scenario. Numerous combinations of efficiency and renewable energy options can be employed in a manner that stabilizes the greenhouse gas emissions of Hawaii Island.

  4. Deformation transients in the brittle regime: Insights from spring-wedge experiments

    Science.gov (United States)

    Rosenau, Matthias; Santimano, Tasca; Oncken, Onno

    2016-04-01

    Deformation of the earth's crust varies over timescales ranging from the seismic cycle to plate tectonic phases. Seismic cycles can generically be explained by sudden coseismic release of strain energy accumulated slowly over the interseismic period. The simplest models of such transient behavior is a spring-slider system where the spring stores elastic energy and the slider is characterized by static and dynamic friction at its base allowing cyclic occurrence of slip instabilities. Here we extend this model by allowing the slider to deform in an accretionary wedge type system. Because cyclic thrust formation is associated with bulk strain weakening this should introduce slip instabilities at the time-scale of accretionary cycles superimposed on seismic cycles which are controlled by static and dynamic friction at the wedge base. To test this hypothesis we set up sandbox-type experiments where the backwall is not rigid but elastic. We vary stiffness, friction coefficients and amount of strain weakening during fault formation and reactivation within realistic ranges when scaled to nature and monitor backwall push force and surface deformation at high resolution. We observe slip instabilities both at seismic and accretionary cycle scale. Depending on the ratio of the amount of strain weakening to elastic stiffness, shortening rate increases transiently by a factor of 2-3 during fault growth. Applied to nature our observation suggests that episodic deformation transients might be interpreted as longterm slip instabilities related to crustal weakening at all relevant spatial scales: At local scale "slow earthquakes" might be interpreted as the result of the interplay between matrix stiffness and strain weakening in fault gouge material. At regional scale, applying buckling theory, we predict that deformation zones bordered by "soft" oceanic plates (e.g. the Andes) are more susceptible to deformation transients than "stiff" intracontinental settings (e.g. the Himalaya).

  5. Relativistic Symmetry Suppresses Quark Spin-Orbit Splitting

    CERN Document Server

    Page, P R; Ginocchio, J N; Page, Philip R.; Goldman, Terry; Ginocchio, Joseph. N.

    2001-01-01

    Experimental data indicate small spin-orbit splittings in hadrons. Forheavy-light mesons we identify a relativistic symmetry that suppresses thesesplittings. We suggest an experimental test in electron-positron annihilation.Furthermore, we argue that the dynamics necessary for this symmetry arepossible in QCD.

  6. Ductless Mini-Split Heat Pump Comfort Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, K.; Sehgal, N.; Akers, C.

    2013-03-01

    Field tests were conducted in two homes in Austin, TX to evaluate the comfort performance of ductless mini-split heat pumps (DMSHPs), measuring temperature and relative humidity measurements in four rooms in each home before and after retrofitting a central HVAC system with DMSHPs.

  7. Fast optical 3D form measurement of aspheres including determination of thickness and wedge and decenter errors

    Science.gov (United States)

    Stover, E.; Berger, G.; Wendel, M.; Petter, J.

    2015-10-01

    A method for non-contact 3D form testing of aspheric surfaces including determination of decenter and wedge errors and lens thickness is presented. The principle is based on the absolute measurement capability of multi-wavelength interferometry (MWLI). The approach produces high density 3D shape information and geometric parameters at high accuracy in short measurement times. The system allows inspection of aspheres without restrictions in terms of spherical departures, of segmented and discontinuous optics. The optics can be polished or ground and made of opaque or transparent materials.

  8. Stem thrust prediction model for Westinghouse wedge gate valves with linkage type stem-to-disk connection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.K.; Sharma, V.; Kalsi, M.S. [Kalsi Engineering, Inc., Sugar Land, TX (United States)] [and others

    1996-12-01

    The Electric Power Research Institute (EPRI) conducted a comprehensive research program with the objective of providing nuclear utilities with analytical methods to predict motor operated valve (MOV) performance under design basis conditions. This paper describes the stem thrust calculation model developed for evaluating the performance of one such valve, the Westinghouse flexible wedge gate valve. These procedures account for the unique functional characteristics of this valve design. In addition, model results are compared to available flow loop and in situ test data as a basis for evaluating the performance of the valve model.

  9. Vertebral body or intervertebral disc wedging: which contributes more to thoracolumbar kyphosis in ankylosing spondylitis patients?

    Science.gov (United States)

    Liu, Hao; Qian, Bang-Ping; Qiu, Yong; Wang, Yan; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang

    2016-01-01

    Abstract Both vertebral body wedging and disc wedging are found in ankylosing spondylitis (AS) patients with thoracolumbar kyphosis. However, their relative contribution to thoracolumbar kyphosis is not fully understood. The objective of this study was to compare different contributions of vertebral and disc wedging to the thoracolumbar kyphosis in AS patients, and to analyze the relationship between the apical vertebral wedging angle and thoracolumbar kyphosis. From October 2009 to October 2013, a total of 59 consecutive AS patients with thoracolumbar kyphosis with a mean age of 38.1 years were recruited in this study. Based on global kyphosis (GK), 26 patients with GK < 70° were assigned to group A, and the other 33 patients with GK ≥ 70° were included in group B. Each GK was divided into disc wedge angles and vertebral wedge angles. The wedging angle of each disc and vertebra comprising the thoracolumbar kyphosis was measured, and the proportion of the wedging angle to the GK was calculated accordingly. Intergroup and intragroup comparisons were subsequently performed to investigate the different contributions of disc and vertebra to the GK. The correlation between the apical vertebral wedging angle and GK was calculated by Pearson correlation analysis. The duration of disease and sex were also recorded in this study. With respect to the mean disease duration, significant difference was observed between the two groups (P < 0.01). The wedging angle and wedging percentage of discs were significantly higher than those of vertebrae in group A (34.8° ± 2.5° vs 26.7° ± 2.7°, P < 0.01 and 56.6% vs 43.4%, P < 0.01), whereas disc wedging and disc wedging percentage were significantly lower than vertebrae in group B (37.6° ± 7.0° vs 50.1° ± 5.1°, P < 0.01 and 42.7% vs 57.3%, P < 0.01). The wedging of vertebrae was significantly higher in group B than in group A (50.1° ± 5.1° vs 26.7° ± 2.7°, P < 0

  10. Experimental study on dynamic splitting of recycled concrete using SHPB

    Directory of Open Access Journals (Sweden)

    Lu Yubin

    2015-01-01

    Full Text Available To study the recycled concrete splitting tensile properties and fracture state with various recycled coarse aggregate replacement percentage (i.e. 0%, 25%, 50%, 75% and 100%, the dynamic splitting test of recycled concrete was carried out using large diameter (75 mm split Hopkinson pressure bar (SHPB. The results show that the recycled concrete splitting tensile strength increases with the increase of loading rate, and the loading rate also affects the recycled concrete fracture state, which indicates that the recycled concrete has obvious rate sensitivity. The damage state of the recycled concrete is not only the destruction of the interface between coarse aggregate and cement mortar, but also associates with the fracture damage of aggregates. Under the same water cement ratio, when the replacement percentage of coarse aggregates is around 50%–75%, the gradation of natural and recycled coarse aggregate is optimal, and thus the splitting tensile strength is the largest. This study offers theoretical basis for the engineering applications of recycled concrete.

  11. ALLOPHONIC SPLITS IN L2 PHONOLOGY: THE QUESTION OF LEARNABILITY

    Directory of Open Access Journals (Sweden)

    Gregory K . Iverson

    2001-06-01

    Full Text Available The research reported in this paper is intended as a contribution to the understanding of several wellknown problems relating to the leaming of phonemic contrasts in second language (L2 phonology. The paper describes a series of ongoing studies examining what Lado (1957 hypothesized to represent maximum diffículty in second language pronunciation, narnely, a phonemic split. This is the process involved when an L2 learner must split native language (NL allophones into separate target language (TL phonemes. Two core principles of phonological theory are described and evaluated for their relevante in explaining the series of well-defined, implicationally-related stages involved in a phonemic split. Finally, the paper reports the results of an empirical study designed to test the explanatory adequacy of these principles, and concludes with a discussion of the implications of these studies for second language phonology in general.

  12. High Order Three Part Split Symplectic Integration Schemes

    CERN Document Server

    Gerlach, Enrico; Skokos, Charalampos; Bodyfelt, Joshua D; Papamikos, Georgios

    2013-01-01

    Symplectic integration methods based on operator splitting are well established in many branches of science. For Hamiltonian systems which split in more than two parts, symplectic methods of higher order have been studied in detail only for a few special cases. In this work, we present and compare different ways to construct high order symplectic schemes for general Hamiltonian systems that can be split in three integrable parts. We use these techniques to numerically solve the equations of motion for a simple toy model, as well as the disordered discrete nonlinear Schr\\"odinger equation. We thereby compare the efficiency of symplectic and non-symplectic integration methods. Our results show that the new symplectic schemes are superior to the other tested methods, with respect to both long term energy conservation and computational time requirements.

  13. An Intuitive Graphical Approach to Understanding the Split-Plot Experiment

    Science.gov (United States)

    Robinson, Timothy J.; Brenneman, William A.; Myers, William R.

    2009-01-01

    While split-plot designs have received considerable attention in the literature over the past decade, there seems to be a general lack of intuitive understanding of the error structure of these designs and the resulting statistical analysis. Typically, students learn the proper error terms for testing factors of a split-plot design via "expected…

  14. Mechanism of bone incorporation of beta-TCP bone substitute in open wedge tibial osteotomy in patients.

    NARCIS (Netherlands)

    Gaasbeek, R.D.A.; Toonen, H.G.; Heerwaarden, R.J. van; Buma, P.

    2005-01-01

    A histological study was performed of bone biopsies from 16 patients (17 biopsies) treated with open wedge high tibial osteotomies for medial knee osteoarthritis. The open wedge osteotomies were filled with a wedge of osteoconductive beta tricalcium phosphate (beta-TCP) ceramic bone replacement. At

  15. Limited climate control of the Chugach/St. Elias thrust wedge in southern Alaska demonstrated by orogenic widening during Pliocene to Quaternary climate change

    Science.gov (United States)

    Meigs, Andrew

    2014-05-01

    Critical taper wedge theory is the gold standard by which climate control of convergent orogenic belts is inferred. The theory predicts (and models reproduce) that an orogenic belt narrows if erosion increases in erosion in the face of a constant tectonic influx. Numerous papers now argue on the basis of thermochronologic data that the Chugach/ St. Elias Range (CSE) of southern Alaska narrowed as a direct response to Quaternary climate change because glaciers dominated erosion of the orogenic belt. The CSE formed in response to collision of a microplate with North America and is notable because glacial erosion has dominated the CSE for the past 5 to 6 Ma. An increase in sediment accumulation rates in the foreland basin over that time suggests that glacial erosion become more efficient. If correct, it is possible that glacial erosion outpaced rock influx thereby inducing a climatically controlled narrowing of the orogenic wedge during the Quaternary. Growth strata preserved within the wedge provide a test of that interpretation because they demonstrate the spatial and temporal pattern of deformation during the Pliocene to Quaternary climate transition. A thrust front established between 6 and 5 Ma jumped towards the foreland by 30 and 15 km at 1.8 and 0.25 Ma, respectively. Distributed deformation within the thrust belt accompanied the thrust front relocations. Continuous exhumation recorded by low-temperature thermochronometers occurred contemporaneously with the shortening, parallel the structural not the topographic grain, and ages become younger towards the foreland as well. Interpreted in terms of critical wedge theory, continuous distributed deformation reflects a sub-critical wedge taper resulting from the combined effects of persistent exhumation and incremental accretion and orogenic widening via thrust front jumps into the undeformed foreland. Taper angle varies according to published cross-sections and ranges from 3 to 9 degrees. If the wedge oscillated

  16. Partitions of generalized split graphs

    OpenAIRE

    Shklarsky, Oren

    2012-01-01

    We discuss matrix partition problems for graphs that admit a partition into k independent sets and ` cliques. We show that when k + ` 6 2, any matrix M has finitely many (k; `) minimal obstructions and hence all of these problems are polynomial time solvable. We provide upper bounds for the size of any (k; `) minimal obstruction when k = ` = 1 (split graphs), when k = 2; ` = 0 (bipartite graphs), and when k = 0; ` = 2 (co-bipartite graphs). When k = ` = 1, we construct an exponential size spl...

  17. Generalized Forward-Backward Splitting

    OpenAIRE

    2011-01-01

    International audience; This paper introduces a generalized forward-backward splitting algorithm for finding a zero of a sum of maximal monotone operators $B + \\sum_{i=1}^{n} A_i$, where $B$ is cocoercive. It involves the computation of $B$ in an explicit (forward) step and of the parallel computation of the resolvents of the $A_i$'s in a subsequent implicit (backward) step. We prove its convergence in infinite dimension, and robustness to summable errors on the computed operators in the expl...

  18. Rectangular split-ring resonators with single-split and two-splits under different excitations at microwave frequencies

    Directory of Open Access Journals (Sweden)

    S. Zahertar

    2015-11-01

    Full Text Available In this work, transmission characteristics of rectangular split-ring resonators with single-split and two-splits are analyzed at microwave frequencies. The resonators are coupled with monopole antennas for excitation. The scattering parameters of the devices are investigated under different polarizations of E and H fields. The magnetic resonances induced by E and H fields are identified and the differences in the behavior of the resonators due to orientations of the fields are explained based on simulation and experimental results. The addition of the second split of the device is investigated considering different configurations of the excitation vectors. It is demonstrated that the single-split and the two-splits resonators exhibit identical transmission characteristics for a certain excitation configuration as verified with simulations and experiments. The presented resonators can effectively function as frequency selective media for varying excitation conditions.

  19. To Split or Not to Split, That Is the Question in Some Shallow Water Equations

    CERN Document Server

    Martínez, Vicente

    2012-01-01

    In this paper we analyze the use of time splitting techniques for solving shallow water equation. We discuss some properties that these schemes should satisfy so that interactions between the source term and the shock waves are controlled. This paper shows that these schemes must be well balanced in the meaning expressed by Greenberg and Leroux [5]. More speci?cally, we analyze in what cases it is enough to verify an Approximate C-property and in which cases it is required to verify an Exact C-property (see [1], [2]). We also include some numerical tests in order to justify our reasoning.

  20. Research on beam splitting prism in laser heterodyne interferometer

    Science.gov (United States)

    Fu, Xiu-hua; Xiong, Shi-fu; Kou, Yang; Pan, Yong-gang; Chen, Heng; Li, Zeng-yu; Zhang, Chuan-xin

    2014-08-01

    With the rapid development of optical testing technology, laser heterodyne interferometer has been used more and more widely. As the testing precision requirements continue to increase, the technical prism is an important component of heterodyne interference. The research utilizing thin film technology to improve optical performance of interferometer has been a new focus. In the article, based on the use requirements of interferometer beam splitting prism, select Ta2O5 and SiO2 as high and low refractive index materials respectively, deposit on substrate K9. With the help of TFCalc design software and Needle method, adopting electron gun evaporation and ion assisted deposition, the beam splitting prism is prepared successfully and the ratio of transmittance and reflectance for this beam splitting prism in 500~850 nm band, incident angle 45 degree is 8:2. After repeated tests, solved the difference problem of film deposition process parameters ,controlled thickness monitoring precision effectively and finally prepared the ideal beam splitting prism which is high adhesion and stable optics properties. The film the laser induced damage threshold and it meet the requirements of heterodyne interferometer for use.

  1. Biomechanical effects of lateral and medial wedge insoles on unilateral weight bearing.

    Science.gov (United States)

    Sawada, Tomonori; Kito, Nobuhiro; Yukimune, Masaki; Tokuda, Kazuki; Tanimoto, Kenji; Anan, Masaya; Takahashi, Makoto; Shinkoda, Koichi

    2016-01-01

    [Purpose] Lateral wedge insoles reduce the peak external knee adduction moment and are advocated for patients with knee osteoarthritis. However, some patients demonstrate adverse biomechanical effects with treatment. In this study, we examined the immediate effects of lateral and medial wedge insoles under unilateral weight bearing. [Subjects and Methods] Thirty healthy young adults participated in this study. The subjects were assessed by using the foot posture index, and were divided into three groups: normal foot, pronated foot, and supinated foot groups. The knee adduction moment and knee-ground reaction force lever arm under the studied conditions were measured by using a three-dimensional motion capture system and force plates. [Results] In the normal and pronated groups, the change in knee adduction moment significantly decreased under the lateral wedge insole condition compared with the medial wedge insole condition. In the normal group, the change in the knee-ground reaction force lever arm also significantly decreased under the lateral wedge insole condition than under the medial wedge insole condition. [Conclusion] Lateral wedge insoles significantly reduced the knee adduction moment and knee-ground reaction force lever arm during unilateral weight bearing in subjects with normal feet, and the biomechanical effects varied according to individual foot alignment.

  2. A prospective comparison of wedge matrix resection with nail matrix phenolization for the treatment of ingrown toenail.

    Science.gov (United States)

    Herold, N; Houshian, S; Riegels-Nielsen, P

    2001-01-01

    In a prospective study, 110 patients with ingrown toenails were operated on, 55 with wedge matrix resection (WMR) and 55 with nail matrix phenolization (NMP). The patients were randomized on the basis of their address. All patients were reviewed by questionnaire 4 weeks postoperatively to establish the degree of pain, time of pain relief, walking and working ability, and the presence of infection. Furthermore, they were examined clinically at a median follow-up time of 11 months postoperatively to evaluate recurrence rate, rate of spicula formation, and patient satisfaction with regard to cosmesis and symptom relief. The data were tested for statistical significance using the chi-square test and Mann-Whitney rank sum test. The recurrence rate of ingrown toenail for the WMR group was 5.5% (3 patients) with a spicula rate of 36% (20 patients) and a reoperation rate of 20% (9 patients). In the NMP group, there were no recurrences (p = n.s.), the spicula rate was 7.3% (4 patients) (p ingrown toenails and may be preferable to nail wedge resection.

  3. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    A miniaturized planar antenna based on a broadside-coupled split ring resonator excited by an arc-shaped dipole is presented. The excitation dipole acts as a small tuning capacitor in series with a parallel RLC circuit represented by the SRR. The antenna resonance frequency and dimensions...... a essentially determined by the SRR, while by varying the dipole arm length the input resistance is changed in a wide range, thus matching the antenna to a feed line and compensating for simulation and manufacturing inaccuracies. No additional matching network is required. Theoretically, there is no limit...... on how small this antenna can be. In practice, the lower bound is set by losses in utilized materials and manufacturing inaccuracies. As an example, an antenna of ka=0.09 was designed, fabricated and tested. Although the initially fabricated antenna prototype had the input impedance of 43 ohms...

  4. Generalized Forward-Backward Splitting

    CERN Document Server

    Raguet, Hugo; Peyré, Gabriel

    2011-01-01

    This paper introduces the generalized forward-backward splitting algorithm for minimizing convex functions of the form $F + \\sum_{i=1}^n G_i$, where $F$ has a Lipschitz-continuous gradient and the $G_i$'s are simple in the sense that their Moreau proximity operators are easy to compute. While the forward-backward algorithm cannot deal with more than $n = 1$ non-smooth function, our method generalizes it to the case of arbitrary $n$. Our method makes an explicit use of the regularity of $F$ in the forward step, and the proximity operators of the $G_i$'s are applied in parallel in the backward step. This allows the generalized forward backward to efficiently address an important class of convex problems. We prove its convergence in infinite dimension, and its robustness to errors on the computation of the proximity operators and of the gradient of $F$. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.

  5. THE SPLITTING OF COMET HALLEY

    Institute of Scientific and Technical Information of China (English)

    Chen Daohan; Liu Linzhong; Alan Gilmore

    2000-01-01

    In combination with the authors previous obsewation about the splitting of Comet Halley in March 1986, the events involving the sharp, straight feature in the antisolar direction observed in the head of Comet Halley in 1910 (such as those occurring on May 14, 25 and 31, and June 2) are rediscussed The analysis leads to the following scenario: When Comet Halley explodes and splits, a fragment jettisoned or thrown off from the nucleus will, after moving in the direction of its tail, develop into a mini-comet. Although not well developed or permanent, it has its own plasma tail and, sometimes, a dust tail. If Bobrovnikoffs definition of a secondary nucleus is assumed, then the fragment should be considered as a real secondary nucleus. It seems that the current idea of a tailward jet suggested by Sekanina and Larson is a wrong explanation for the plasma tail of a mini-comet and hence the rotation period of 52-53h for Comet Halley is doubtful

  6. The splitting of Comet Halley

    Institute of Scientific and Technical Information of China (English)

    陈道汉; 刘麟仲; Alan Gilmore

    1995-01-01

    In combination with the authors’ previous observation about the splitting of Comet Halley in March 1986, the events involving the sharp, straight feature in the antisolar direction observed in the bead of Comet Halley in 1910 (such as those occurring on May 14, 25 and 31, and June 2) are rediscussed. The analysis leads to the following scenario: When Comet Halley explodes and splits, a fragment jettisoned or thrown off from the nucleus will, after moving in the direction of its tail, develop into a mini-comet. Although not well developed or permanent, it has its own plasma tail and, sometimes, a dust tail. If Bobrovnikoff’s definition of a secondary nucleus is assumed, then the fragment should be considered as a real secondary nucleus. It seems that the current idea of a tailward jet suggested by Sekanina and Larson is a wrong explanation for the plasma tail of a mini-comet and hence the rotation period of 52- 53 h for Comet Halley is doubtful.

  7. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tongsong, E-mail: jiangtongsong@sina.com [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China); Department of Mathematics, Heze University, Heze, Shandong 274015 (China); Jiang, Ziwu; Zhang, Zhaozhong [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China)

    2015-08-15

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.

  8. Telugu Bigram Splitting using Consonant-based and Phrase-based Splitting

    Directory of Open Access Journals (Sweden)

    T. Kameswara Rao

    2014-06-01

    Full Text Available Splitting is a conventional process in most of Indian languages according to their grammar rules. It is called ‘pada vicchEdanam’ (a Sanskrit term for word splitting and is widely used by most of the Indian languages. Splitting plays a key role in Machine Translation (MT particularly when the source language (SL is an Indian language. Though this splitting may not succeed completely in extracting the root words of which the compound is formed, but it shows considerable impact in Natural Language Processing (NLP as an important phase. Though there are many types of splitting, this paper considers only consonant based and phrase based splitting.

  9. Measured Two-Dimensional Ice-Wedge Polygon Thermal Dynamics

    Science.gov (United States)

    Cable, William; Romanovsky, Vladimir; Busey, Robert

    2016-04-01

    Ice-wedge polygons are perhaps the most dominant permafrost related features in the arctic landscape. The microtopography of these features, that includes rims, troughs, and high and low polygon centers, alters the local hydrology, as water tends to collect in the low areas. During winter, wind redistribution of snow leads to an increased snowpack depth in the low areas, while the slightly higher areas often have very thin snow cover, leading to differences across the landscape in vegetation communities and soil moisture between higher and lower areas. These differences in local surface conditions lead to spatial variability of the ground thermal regime in the different microtopographic areas and between different types of ice-wedge polygons. To study these features in depth, we established temperature transects across four different types of ice-wedge polygons near Barrow, Alaska. The transects were composed of five vertical array thermistor probes (VATP) beginning in the center of each polygon and extending through the trough to the rim of the adjacent polygon. Each VATP had 16 thermistors from the surface to a depth of 1.5 m. In addition to these 80 subsurface temperature measurement points per polygon, soil moisture, thermal conductivity, heat flux, and snow depth were all measured in multiple locations for each polygon. Above ground, a full suite of micrometeorological instrumentation was present at each polygon. Data from these sites has been collected continuously for the last three years. We found snow cover, timing and depth, and active layer soil moisture to be major controlling factors in the observed thermal regimes. In troughs and in the centers of low-center polygons, the combined effect of typically saturated soils and increased snow accumulation resulted in the highest mean annual ground temperatures (MAGT). Additionally, these areas were the last part of the polygon to refreeze during the winter. However, increased active layer thickness was not

  10. Metastable olivine wedge beneath northeast China and its applications

    Science.gov (United States)

    Jiang, G.; Zhao, D.; Zhang, G.

    2013-12-01

    When the Pacific slab subducted into the mantle transition zone, there might exist a metastable olivine wedge (MOW) inside the slab due to the phase transition. Lots of researchers have adopted such various methods to detect the characteristics of this MOW as the forward modeling of travel times, shear wave amplitude patterns, teleseismic P wave coda, receiver function imaging, thermodynamic simulation and so on. Almost all results could be more or less affected by the source, the receiver and/or the velocity model passed through by the seismic rays. In this study, we have used 21 deep earthquakes, greater than 400 km and locating beneath northeast China, to study the velocity within the MOW. For more precisions, we have done further modifications in two ways based on our previous studies. (1) Double-difference location method is used to relocate all events with an error of 1-2 km with the data recorded by stations both at northeast China and at Japan. All relocated events locate in a zone about 30 km away from the upper boundary of Pacific slab. (2) Double residual travel times, generated by an event-pair at a common station at only Japan, are used to constrain the velocity anomaly rather than the residuals themselves. As a result, we have found that an ultra-lower velocity zone (ULVZ), averagely -7% relative to the iasp91 model, exists within the subducted Pacific slab around the deep earthquakes, which might be represented as the metastable olivine wedge. Because of the lower-velocity corresponding to the lower-density, the MOW would provide upward buoyancy forces which might prevent the slab from free subduction into the mantle transition zone. This feed-back mechanism of MOW to the slab is called ';parachute-effect', which is characterized by other researchers. In addition, the existence of the ULVZ or the MOW in the slab may supply a possible mechanism for triggering deep earthquakes, called ';phase transformation faulting', which was already proposed few

  11. Liquid-based cytology versus conventional cytology for evaluation of cervical Pap smears: Experience from the first 1000 split samples

    OpenAIRE

    Vikrant Bhar Singh; Nalini Gupta; Raje Nijhawan; Radhika Srinivasan; Vanita Suri; Arvind Rajwanshi

    2015-01-01

    Context and Aim: Screening programs using conventional cytology conventional Pap smear (CPS) have successfully reduced cervical cancer, but newer tests like liquid-based cytology (LBC) and human papillomavirus testing might enhance screening. The main aim of the present study was to assess the diagnostic accuracy of LBC versus CPS using "split samples." Materials and Methods: This was a prospective study comprising of 1000 consecutive cervical "split samples" over a period of 1 year. Split sa...

  12. Split-system solar cooker with heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, A.M.A.; Taha, M.M.A.; Mannaa, A.; Akyurt, M.

    1986-01-01

    A split-system solar cooker is described which has its flat-plate collector outdoors and the cooking chamber inside the kitchen, with heat pipes transferring the energy between the two. Test results are discussed, and areas of possible improvement are indicated. The results of a series of tests conducted to ascertain the most suitable heat transfer arrangement in the cooking chamber are presented. Recommendations are made for further areas of improvement.

  13. Development of new flux splitting schemes. [computational fluid dynamics algorithms

    Science.gov (United States)

    Liou, Meng-Sing; Steffen, Christopher J., Jr.

    1992-01-01

    Maximizing both accuracy and efficiency has been the primary objective in designing a numerical algorithm for computational fluid dynamics (CFD). This is especially important for solutions of complex three dimensional systems of Navier-Stokes equations which often include turbulence modeling and chemistry effects. Recently, upwind schemes have been well received for their capability in resolving discontinuities. With this in mind, presented are two new flux splitting techniques for upwind differencing. The first method is based on High-Order Polynomial Expansions (HOPE) of the mass flux vector. The second new flux splitting is based on the Advection Upwind Splitting Method (AUSM). The calculation of the hypersonic conical flow demonstrates the accuracy of the splitting in resolving the flow in the presence of strong gradients. A second series of tests involving the two dimensional inviscid flow over a NACA 0012 airfoil demonstrates the ability of the AUSM to resolve the shock discontinuity at transonic speed. A third case calculates a series of supersonic flows over a circular cylinder. Finally, the fourth case deals with tests of a two dimensional shock wave/boundary layer interaction.

  14. Analysis of distribution rule of surface stress on cross wedge rolling contact zone by finite element method

    Science.gov (United States)

    Shu, Xuedao; Li, Lianpeng; Hu, Zhenghuan

    2005-12-01

    Contact surface of cross-wedge rolling is a complicated space surface and distribution rule of contact surface stress is very complicated. So far, its analyzed result was still based on slippery line method. Designing mould and actual production mainly depend on experiential factor. Application and development of cross-wedge rolling was baffled seriously. Based on the forming characteristics of cross-wedge rolling with flat wedge-shape, the ANSYS/DYNA software was developed secondly on the basis of itself, and the corresponding command program was compiled. Rolling process of cross-wedge rolling with flat wedge-shape was simulated successfully. Through simulation, space surface shape of contact surface was achieved, and distribution rule of contact surface stress was analyzed detailed and obtained. The results provide important theoretical foundation for avoiding appearing bug on surface of rolled part, instructing to design cross-wedge mould and confirming force and energy parameter.

  15. One-way successive plate cross wedge rolling machine

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In our last paper(Sci China Ser E-Tech Sci,2009,52(11):3117-3121) we designed the precision forming machine with rolling plate CWR(cross wedge rolling).This kind of machine colligates the advantages of high rigidity and small floor space for roller CWR machine and those of simple die manufacture and high precision for plate CWR machine.At the same time,it abandons the shortcomings of complex die manufacture and poor precision for roller CWR machine,and those of poor rigidity and large floor space for plate CWR machine.During rolling,the upper and lower rolling plates of the machine make reciprocating slide toward or away from each other,so the inertial forces should be overcome,which will cause great energy loss,besides,large floor space is needed when the rolled workpiece is large.In order to solve the above problems,this paper presents the one-way successive plate CWR machine,whose rolling plates need not make reciprocating slide.Hence,it has high energy utilization efficiency and production efficiency.Furthermore,the roll scale can be removed automatically.In particular,the machine can produce large axisymmetrical workpieces.

  16. Sinking, wedging, spreading - viscous spreading on a layer of fluid

    Science.gov (United States)

    Bergemann, Nico; Juel, Anne; Heil, Matthias

    2016-11-01

    We study the axisymmetric spreading of a sessile drop on a pre-existing layer of the same fluid in a regime where the drop is sufficiently large so that the spreading is driven by gravity while capillary and inertial effects are negligible. Experiments performed with 5 ml drops and layer thicknesses in the range 0.1 mm drop evolves as R tn , where the spreading exponent n increases with the layer thickness h. Numerical simulations, based on the axisymmetric free-surface Navier-Stokes equations, reveal three distinct spreading regimes depending on the layer thickness. For thick layers the drop sinks into the layer, accompanied by significant flow in the layer. By contrast, for thin layers the layer ahead of the propagating front is at rest and the spreading behaviour resembles that of a gravity-driven drop spreading on a dry substrate. In the intermediate regime the spreading is characterised by an advancing wedge, which is sustained by fluid flow from the drop into the layer.

  17. Precision forming machine with rolling plate cross wedge rolling

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Roller cross wedge rolling(CWR)machines have high rigidity, but sector dies are difficult to process. Plate CWR machines have low rigidity and need large floor space, but plate dies are easy to process. Neither roller CWR machine nor plate CWR machine can produce larger workpieces. Based on the above conclusions, this paper presents the mechanical principle of the precision forming machine with rolling plate CWR. Then, its design principle and machine construction are presented. There are a top press roller above the upper sliding plate and a bottom press roller under the lower sliding plate. The press rollers make rolling contact with the sliding plates. The plate dies are mounted on the upper and lower sliding plates, respectively. Furthermore, the axes of both press rollers and centerline of work-piece always keep in the identical vertical plane during forming process. These make the machine retain advantages of high rigidity for roller CWR machine and simpleness of manufacturing dies for plate CWR machine, and abandon defects of poor rigidity for plate CWR machine and difficulty of manufac-turing dies for roller CWR machine. Moreover, the machine can produce larger workpieces.

  18. Lateral closed wedge osteotomy for cubitus varus deformity

    Directory of Open Access Journals (Sweden)

    Srivastava Amit

    2008-01-01

    Full Text Available Background: Lateral closed wedge (LCW osteotomy is a commonly accepted method for the correction of the cubitus varus deformity. The fixation of osteotomy is required to prevent loss of correction achieved. The fixation of the osteotomy by the two screw and figure of eight wire is not stable enough to maintain the correction achieved during surgery. In this prospective study we supplemented the fixation by Kirschner′s (K- wires for stable fixation and evaluated the results. Materials and Methods: Twenty-one cases of the cubitus varus deformity following supracondylar fractures of the humerus were operated by LCW osteotomy during February 2001 to June 2006. The mean age of the patients at the time of corrective surgery was 8.5 years (range 6.6-14 years. The osteotomy was fixed by two screws with figure of eight tension band wire between them and the fixation was supplemented by passing two to three K-wires from the lateral condyle engaging the proximal medial cortex through the osteotomy site. Result: The mean follow-up period was 2.5 years (range seven months to 3.4 years. The results were assessed as per Morrey criteria. Eighteen cases showed excellent results and three cases showed good results. Two cases had superficial pin tract infection. Conclusion: The additional fixation by K wires controls rotational forces effectively besides angulation and translation forces and maintains the correction achieved peroperatively.

  19. Precision forming machine with rolling plate cross wedge rolling

    Institute of Scientific and Technical Information of China (English)

    SONG YuQuan; LI ZhiGang; WANG MingHui; GUAN XiaoFang

    2009-01-01

    Roller cross wedge rolling (CWR) machines have high rigidity, but sector dies are difficult to process.Plate CWR machines have low rigidity and need large floor space, but plate dies are easy to process.Neither roller CWR machine nor plate CWR machine can produce larger workpieces.Based on the above conclusions, this paper presents the mechanical principle of the precision forming machine with rolling plate CWR.Then, its design principle and machine construction are presented.There are a top press roller above the upper sliding plate and a bottom press roller under the lower sliding plate.The press rollers make rolling contact with the sliding plates.The plate dies are mounted on the upper and lower sliding plates, respectively.Furthermore, the axes of both press rollers and centerline of work-piece always keep in the identical vertical plane during forming process.These make the machine re-tain advantages of high rigidity for roller CWR machine and simpleness of manufacturing dies for plate CWR machine, and abandon defects of poor rigidity for plate CWR machine and difficulty of manufac-turing dies for roller CWR machine.Moreover, the machine can produce larger workpieces.

  20. Influence of intermolecular forces at critical-point wedge filling.

    Science.gov (United States)

    Malijevský, Alexandr; Parry, Andrew O

    2016-04-01

    We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.

  1. Influence of intermolecular forces at critical-point wedge filling

    Science.gov (United States)

    Malijevský, Alexandr; Parry, Andrew O.

    2016-04-01

    We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.

  2. Salt splitting with ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures.

  3. Signature splitting in 129Ce

    Institute of Scientific and Technical Information of China (English)

    LIU Ying; WU Xiao-Guang; ZHU Li-Hua; LI Guang-Sheng; HE Chuang-Ye; LI Xue-Qin; PAN Bo; HAO Xin; LI Li-Hua; WANG Zhi-Min; LI Zhong-Yu; XU Qiang

    2009-01-01

    The high spin states of 129Ce have been populated via heavy-ion fusion evaporation reaction 96Mo (37C1, 1p3n) 129Ce. The γ-γ coincidence and intensity balance used to measure the B(M1; I→I-1)/B(E2; I→I-2) (the probability ratio of the dipole and quadrupole transition) in v7/2[523] rotational band of 129Ce. And the energy splitting (Δe') has been got through the experimental Routhians. The lifetimes and quadrupole moments Qt have been extracted from the lineshape analyses using DSAM. The deformation of the v7/2[523] rotational band of 129Ce was extracted from the Qt and moment of inertia JRR.

  4. Method for carbon dioxide splitting

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James E.; Diver, Jr., Richard B.; Siegel, Nathan P.

    2017-02-28

    A method for splitting carbon dioxide via a two-step metal oxide thermochemical cycle by heating a metal oxide compound selected from an iron oxide material of the general formula A.sub.xFe.sub.3-xO.sub.4, where 0.ltoreq.x.ltoreq.1 and A is a metal selected from Mg, Cu, Zn, Ni, Co, and Mn, or a ceria oxide compound of the general formula M.sub.aCe.sub.bO.sub.c, where 0

  5. Salt splitting using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  6. Fabrication and Determination of Refractive Index Profile of the Planar Waveguides by Wedge Technique

    Institute of Scientific and Technical Information of China (English)

    S.; M.; R.; Sadat; Hosseini; A.; Darudi

    2003-01-01

    Several planar waveguides have been fabricated. The waveguides have been polished for determination of their refractive index profiles (RIP) by wedge method. The RIP determined by inserting the sample in a Mach-Zehnder interferometer and applying fringe analysis methods.

  7. Fabrication and Determination of Refractive Index Profile of the Planar Waveguides by Wedge Technique

    Institute of Scientific and Technical Information of China (English)

    S. M. R. Sadat Hosseini; A. Darudi

    2003-01-01

    Several planar waveguides have been fabricated. The waveguides have been polished for determination of their refractiveindex profiles (RIP) by wedge method. The RIP determined by inserting the sample in a Mach-Zehnder interferometer andapplying fringe analysis methods.

  8. Distal femoral varus osteotomy: problems associated with the lateral open-wedge technique.

    Science.gov (United States)

    Jacobi, Matthias; Wahl, Peter; Bouaicha, Samy; Jakob, Roland P; Gautier, Emanuel

    2011-06-01

    Varisation osteotomies on the distal femur are an established treatment method for valgus osteoarthritis of the knee in younger patients. Osteotomy can be done in a lateral open-wedge or medial closed-wedge manner. We retrospectively studied 14 patients treated by the lateral open-wedge technique, fixed with the Tomofix plate, with a mean duration of follow-up of 45 ± 3.4 months. We observed often delayed osteotomy healing after 3, 6 and 12 months, no secondary dislocations, and frequent troublesome irritation due to the plate being on the iliotibial band. However, outcome was satisfactory once the osteotomy healed and the plate was removed. Based on the often slow healing of the osteotomy and frequent irritation due to the plate, this procedure has been abandoned by the authors, and the medial closing-wedge osteotomy adopted as the alternative treatment.

  9. Medial opening wedge distal femoral osteotomy for post-traumatic secondary knee osteoarthritis.

    Science.gov (United States)

    Matsui, Gen; Akiyama, Takenori; Ikemura, Satoshi; Mawatari, Taro

    2014-04-30

    Osteoarthritis of the knee secondary to femoral fracture is difficult to treat. There are some surgical options, such as total knee arthroplasty or correction osteotomy. Opening wedge high tibial osteotomy is an established treatment of gonarthrosis. However, few reports are available on the effectiveness of a medial opening wedge distal femoral osteotomy. We present a case of a medial opening wedge distal femoral osteotomy on gonarthrosis secondary to a malunited femoral fracture with varus deformity and leg length discrepancy. This osteotomy was performed at the deformed femur, with locking plate fixation and autologous bone graft. Six months after the surgery, the osteotomy site was filled with bridging callus. Two years later, the Knee Society Score improved from 45 to 90 points. Medial opening wedge distal femoral osteotomy can be a useful method to treat knee osteoarthritis associated with distal femoral deformity.

  10. Diffraction of an inhomogeneous plane wave by an impedance wedge in a lossy medium

    CSIR Research Space (South Africa)

    Manara, G

    1998-11-01

    Full Text Available The diffraction of an inhomogeneous plane wave by an impedance wedge embedded in a lossy medium is analyzed. The rigorous integral representation for the field is asymptotically evaluated in the context of the uniform geometrical theory...

  11. Second-law analysis of fluid flow over an isothermal moving wedge

    Directory of Open Access Journals (Sweden)

    F. Hedayati

    2014-03-01

    Full Text Available In this study, entropy generation minimization (EGM was employed to optimize fluid flow and heat transfer over a moving wedge. Governing partial differential equations including continuity, momentum and energy are reduced to ordinary ones using similarity variables and solved numerically. The novelty of this study is to consider the effects of the moving wedge parameter λ, to find the stable system via entropy generation minimization (EGM method. The results indicated that as the slope of the wedge increases, the absolute values of the optimum moving wedge parameter λo grow as well. Moreover, it was found that the minimum value of entropy generation happens for the negative values of λo which gets smaller as Falkner–Skan power law parameter m increases.

  12. Optimization of parameters on material removal rate in micro-WEDG ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... Optimization of parameters on material removal rate in micro-WEDG process ... nonconventional machining method for manufacturing accurate and complex three dimensional ...

  13. Study on Mach stems induced by interaction of planar shock waves on two intersecting wedges

    Institute of Scientific and Technical Information of China (English)

    Gaoxiang Xiang; Chun Wang; Honghui Teng; Yang Yang; Zonglin Jiang

    2016-01-01

    The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D inter-secting wedges were studied theoretically and numerically. A new method called “spatial dimension reduction” was used to analyze theoretically the location and Mach num-ber behind Mach stems. By using this approach, the problem of 3D steady shock/shock interaction over 3D intersecting wedges was transformed into a 2D moving one on cross sec-tions, which can be solved by shock-polar theory and shock dynamics theory. The properties of Mach interaction over 3D intersecting wedges can be analyzed with the new method, including pressure, temperature, density in the vicinity of triple points, location, and Mach number behind Mach stems. Theoretical results were compared with numerical results, and good agreement was obtained. Also, the influence of Mach number and wedge angle on the properties of a 3D Mach stem was studied.

  14. Numerical Modeling of Two-Dimensional Temperature Dynamics Across Ice-Wedge Polygons

    Science.gov (United States)

    Garayshin, Viacheslav V.

    The ice wedges on the North Slope of Alaska have been forming for many millennia, when the ground cracked and the cracks were filled with snowmelt water. The infiltrated water then became frozen and turned into ice. When the annual and summer air temperatures become higher, the depth of the active layer increases. A deeper seasonal thawing may cause melting of ice wedges from their tops. Consequently, the ground starts to settle and a trough begins to form above the ice wedge. The forming trough creates a local temperature anomaly in the surrounding ground, and the permafrost located immediately under the trough starts degrading further. Once the trough is formed, the winter snow cover becomes deeper at the trough area further degrading the permafrost. In this thesis we present a computational approach to study the seasonal temperature dynamics of the ground surrounding an ice wedge and ground subsidence associated with ice wedge degradation. A thermo-mechanical model of the ice wedge based on principles of macroscopic thermodynamics and continuum mechanics was developed and will be presented. The model includes heat conduction and quasi-static mechanical equilibrium equations, a visco-elastic rheology for ground deformation, and an empirical formula which relates unfrozen water content to temperature. The complete system is reduced to a computationally convenient set of coupled equations for temperature, ground displacement and ground porosity in a two-dimensional domain. A finite element method and an implicit scheme in time were utilized to construct a non-linear system of equations, which was solved iteratively. The model employs temperature and moisture content data collected from a field experiment at the Next-Generation Ecosystem Experiments (NGEE) sites in Barrow, Alaska. The model describes seasonal dynamics of temperature and the long-term ground motion near the ice wedges and helps to explain destabilization of the ice wedges north of Alaska's Brooks

  15. Comparison of the homogeneity of breast dose distributions with and without the medial wedge.

    Science.gov (United States)

    Ikner, C L; Russo, R; Podgorsak, M B; Proulx, G M; Lee, R J

    1998-01-01

    Radiation of the intact breast often requires medial and lateral wedges to improve dose homogeneity of its pyramidal shape and to achieve acceptable cosmesis. There is some concern that radiation scatter from the medial wedge may contribute to cancer in the uninvolved breast, yet treatment without the medial wedge is associated with inhomogeneity of magnitudes that affect cosmesis. These homogeneities are identified on treatment plans generated at the central axis (CAX). It is not known if comparing isodose curves at the central axis reflect homogeneity in superior and inferior planes. A study was undertaken to both examine inhomogeneity with and without the medial wedge, and to determine if plan selection at the CAX was representative of homogeneity above and below the CAX. Ten consecutive patients with early breast cancers had cranial, CAX, and caudal CT images of each breast compared with two wedging conditions, lateral only (LW) and medial and lateral wedged conditions (dual wedges = DW). Dosimetry was optimized at the CAX for DW and LW conditions. Dose distributions and hot spots relative to prescribed dose were compared for cranial, CAX, and caudal images. Mean chest wall separations were measured. Six of ten patients had equivalent LW and DW distributions at the levels examined. Only one of these patients had a single off-axis hot spot > 20%. Six patients had comparable LW and DW dosimetry and acceptable hot spots at the central axis, as well as chest wall separations < or = 22 cm. In conclusion, if isodose configurations are commensurate at the CAX, these patients will have homogeneity above and below the CAX. In patients with chest wall separations < or = 22 cm, treatment without the medial wedge is feasible, sparing the contralateral breast dose with little compromise to inhomogeneity in the treated breast.

  16. Statics of Magnetic Fluid Drop with Compound Magnetic Core in a Wedge-Shaped Channel

    Directory of Open Access Journals (Sweden)

    V. Bashtovoi

    2013-12-01

    Full Text Available A behavior of magnetic fluid drop with compound magnetic core in a wedge-shaped channel was studied experimentally. The study examines influence of magnetic fluid properties, its volume and magnetic field on statics of the system compound magnet – magnetic fluid drop in wedge-shaped channel. The possibility to change the static conditions of such system by altering magnetic field of the core was observed

  17. The effect of foot orthoses and in-shoe wedges during cycling: a systematic review

    OpenAIRE

    Yeo, Boon K; Bonanno, Daniel R

    2014-01-01

    Background The use of foot orthoses and in-shoe wedges in cycling are largely based on theoretical benefits and anecdotal evidence. This review aimed to systematically collect all published research on this topic, critically evaluate the methods and summarise the findings. Methods Study inclusion criteria were: all empirical studies that evaluated the effects of foot orthoses or in-shoe wedges on cycling; outcome measures that investigated physiological parameters, kinematics and kinetics of ...

  18. Pulmonary Artery Wedge Pressure Relative to Exercise Work Rate in Older Men and Women.

    Science.gov (United States)

    Esfandiari, Sam; Wright, Stephen P; Goodman, Jack M; Sasson, Zion; Mak, Susanna

    2017-07-01

    An augmented pulmonary artery wedge pressure (PAWP) response may explain exercise intolerance in some humans. However, routine use of exercise hemodynamic testing is limited by a lack of data from normal older men and women. Our objective was to evaluate the exercise PAWP response and the potential for sexual dimorphism in healthy, nondyspneic older adults. Thirty-six healthy volunteers (18 men [54 ± 7 yr] and 18 women [58 ± 6 yr]) were studied at rest (control) and during two stages of semi-upright cycle ergometry, at heart rates of 100 bpm (light exercise) and 120 bpm (moderate exercise). Right heart catheterization was performed to measure pulmonary pressures. The PAWP response to exercise was assessed in context of exercise work rate and body size. At control, PAWP was similar between men and women. Work rates were significantly smaller in women at comparable HR (P relative to the increase in cardiac output did not exceed 2 mm Hg·L·min in any volunteer at moderate exercise. The similar rise in the PAWP response to submaximal exercise occurs despite lower work rate in healthy older women compared with men, even when adjusted for smaller body size. It is important to consider sex in the development of normal reference ranges for exercise hemodynamic testing.

  19. Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar.

    Science.gov (United States)

    McKay, Jack A

    2002-03-20

    The Fabry-Perot interferometer is the standard instrument for the direct detection Doppler lidar measurement of atmospheric wind speeds. The multibeam Fizeau wedge has some practical advantages over the Fabry-Perot, such as the linear fringe pattern, and is evaluated for this application. The optimal Fizeau must have a resolving power of 10(6) or more. As the multibeam Fizeau wedge is pushed to such high resolving power, the interference fringes of the device become complicated by asymmetry and secondary maxima. A simple condition for the interferometer plate reflectance, optical gap, and wedge angle reveals whether a set of parameters will yield simple, Airy-like fringes or complex Fizeau fringes. Tilting of the Fizeau wedge improves the fringe shape and permits an extension of the regime of Airy-like fringes to higher resolving power. Sufficient resolving power for the wind lidar application is shown to be possible with a large-gap, low-finesse multibeam Fizeau wedge. Liabilities of the multibeam Fizeau wedge in the wind lidar application include a smaller acceptance solid angle and calibration sensitivity to localized deviations of the plates from the ideal.

  20. EFFECT OF SALT WEDGE INTRUSION IN KUSHIRO WETLAND CONSIDERING SEA LEVEL RISE

    Science.gov (United States)

    Nakamoto, Atsushi; Shintani, Tetsuya; Nakayama, Keisuke; Maruya, Yasuyuki; Ishida, Tetsuya; Houmura, Kenichi

    This paper describes the effect of sea-level rise (SLR) on the salt wedge intrusion in terms of ecological system in Kushiro wetland. Kushiro wetland was registered by Ramsar Treaty and the largest wetland in Japan. A previous study demonstrates that the salt wedge intrusion may not affect ecological system of Kushiro wetland, such as loss of freshwater plants along Kushiro River. However, it is revealed that SLR may occur in the end of the 21st century, which enhances the increase in the distance of the salt wedge intrusion along Kushiro River and the loss of endangered species of Kushiro wetland along Kushiro River. This study thus aims to investigate the influence of the salt wedge intrusion on freshwater plants along Kushiro River, and to clarify the salt wedge intrusion when SLR occurs due to climate change. We attempted to investigate the influence of SLR on endangered species along Kyu-Kushiro River in which sea water is likely to intrude up to about 8 km from the river mouth. As results, it is suggested from field observations that salinity may decrease freshwater plants along Kushiro River, and it clarifies the possibility that the salt wedge intrudes Kushiro River due to SLR by using 3D hydrodynamic model, Fantom3D.

  1. Experimental study of slot jet impingement heat transfer on a wedge-shaped surface

    Science.gov (United States)

    Rahimi, Mostafa; Irani, Mohammad

    2012-12-01

    An experimental investigation was conducted to study the convective heat transfer rate from a wedge-shaped surface to a rectangular subsonic air jet impinging onto the apex of the wedge. The jet Reynolds number, nozzle-to-surface distance and the wedge angle were considered as the main parameters. Jet Reynolds number was ranged from 5,000 to 20,000 and two dimensionless nozzle-to-surface distances h/w = 4 and 10 were examined. The apex angle of the wedge ranged from 30° to 180° where the latter case corresponds with that of a flat surface. Velocity profile and turbulence intensity were provided for free jet flow using hot wire anemometer. Local and average Nusselt numbers on the impinged surface are presented for all the configurations. Based on the results presented, the local Nusselt number at the stagnation region increases as the wedge angle is decreased but, it then decreases over the remaining area of the impinged surface. Average Nusselt number over the whole surface is maximum when the wedge angle is 180° (i.e. plane surface) for any jet and nozzle-to-surface configuration.

  2. Improve the transconductance of a graphene field-effect transistor by folding graphene into a wedge

    Science.gov (United States)

    Cao, Guiming; Liu, Weihua; Cao, Meng; Li, Xin; Zhang, Anping; Wang, Xiaoli; Chen, Bangdao

    2016-07-01

    The transport property of a graphene wedge channel is studied theoretically and its leakage current through field emission is estimated when considering the effect of the internal electric field. The transconductance of the graphene transistor is improved from 0.016 to 0.321 μS μm-1 when the graphene is folded into a wedge (with angle of wedge π/6 and radius curvature 2.7 nm at the tip), while the wedge height is much smaller than the space between the top-gate and the channel. The improved transconductance is due to the locally enhanced electric field, which results in a potential well and causes electron accumulation at the wedge tip. The leakage current through field emission J FE shows a super-linear increase with the channel conductive current J DS, where overall the electron supply for the field emission at the wedge tip is improved by the channel bias voltage V DS.

  3. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  4. Standard Model Particles from Split Octonions

    CERN Document Server

    Gogberashvili, Merab

    2016-01-01

    We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors). It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  5. Distinguishing division algebras by finite splitting fields

    CERN Document Server

    Krashen, Daniel

    2010-01-01

    This paper is concerned with the problem of determining the number of division algebras which share the same collection of finite splitting fields. As a corollary we are able to determine when two central division algebras may be distinguished by their finite splitting fields over certain fields.

  6. Transferring Goods or Splitting a Resource Pool

    Science.gov (United States)

    Dijkstra, Jacob; Van Assen, Marcel A. L. M.

    2008-01-01

    We investigated the consequences for exchange outcomes of the violation of an assumption underlying most social psychological research on exchange. This assumption is that the negotiated direct exchange of commodities between two actors (pure exchange) can be validly represented as two actors splitting a fixed pool of resources (split pool…

  7. 2-Photon tandem device for water splitting

    DEFF Research Database (Denmark)

    Seger, Brian; Castelli, Ivano Eligio; Vesborg, Peter Christian Kjærgaard;

    2014-01-01

    Within the field Of photocatalytic water splitting there are several strategies to achieve the goal of efficient and cheap photocatalytic water splitting. This work examines one particular strategy by focusing on monolithically stacked, two-photon photoelectrochemical cells. The overall aim of th...

  8. Cheating More when the Spoils Are Split

    Science.gov (United States)

    Wiltermuth, Scott S.

    2011-01-01

    Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…

  9. Split scheduling with uniform setup times.

    NARCIS (Netherlands)

    F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen

    2015-01-01

    htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a

  10. Cheating More when the Spoils Are Split

    Science.gov (United States)

    Wiltermuth, Scott S.

    2011-01-01

    Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…

  11. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final sample

    CERN Document Server

    Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Scoccimarro, Román; Crocce, Martín; Vecchia, Claudio Dalla; Montesano, Francesco; Gil-Marín, Héctor; Ross, Ashley J; Beutler, Florian; Rodríguez-Torres, Sergio; Chuang, Chia-Hsun; Prada, Francisco; Kitaura, Francisco-Shu; Cuesta, Antonio J; Eisenstein, Daniel J; Percival, Will J; Vargas-Magana, Mariana; Tinker, Jeremy L; Tojeiro, Rita; Brownstein, Joel R; Maraston, Claudia; Nichol, Robert C; Olmstead, Matthew D; Samushia, Lado; Seo, Hee-Jong; Streblyanska, Alina; Zhao, Gong-bo

    2016-01-01

    We extract cosmological information from the anisotropic power spectrum measurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new FFT-based estimators, we measure the power spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles l > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias, and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular diameter distance, the Hubble parameter, and the cosmic growth rate, and explore the cosmological implications of our full shape clustering measurements in combination with CMB and SN Ia data. Assuming a {\\Lambda}CDM cosmology, we constra...

  12. Prediction of Splitting Tensile Strength from Cylinder Compressive Strength of Concrete by Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Kezhen Yan

    2013-01-01

    Full Text Available Compressive strength and splitting tensile strength are both important parameters that are utilized for characterization concrete mechanical properties. This paper aims to show a possible applicability of support vector machine (SVM to predict the splitting tensile strength of concrete from compressive strength of concrete, a SVM model was built, trained, and tested using the available experimental data gathered from the literature. All of the results predicted by the SVM model are compared with results obtained from experimental data, and we found that the predicted splitting tensile strength of concrete is in good agreement with the experimental data. The splitting tensile strength results predicted by SVM are also compared to those obtained by using empirical results of the building codes and various models. These comparisons show that SVM has strong potential as a feasible tool for predicting splitting tensile strength from compressive strength.

  13. Anisotropic Spin Splitting in Step Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    HAO Ya-Fei; CHEN Yong-Hai; HAO Guo-Dong; WANG Zhan-Guo

    2009-01-01

    By the method of finite difference,the anisotropic spin splitting of the Alx Ga1-x As/GaAs/Aly Ga1-y As/Alx Ga1-x As step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field.We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field.The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin.The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.

  14. Crushing or splitting medications: unrecognized hazards.

    Science.gov (United States)

    Gill, Donna; Spain, Margaret; Edlund, Barbara J

    2012-01-01

    Given the high use and the cost of medications in the current economy, one way older adults may save money on prescription costs is to split some of their medications in half. However, not all oral medications can be split. Splitting inappropriate medications such as extended-release tablets can be harmful and in some instances very dangerous. In addition to splitting medications, older adults who have difficulty swallowing pills may resort to crushing the medication for ease of administration. This option is also problematic and potentially harmful if the medication is not intended to be crushed. Clinicians managing the care of older adults need to discuss medication administration, clarify the dosing schedule, and clearly indicate the route of administration. Patients should be cautioned not to split or crush a medication without checking with the health care provider or pharmacist.

  15. Light splitting with imperfect wave plates.

    Science.gov (United States)

    Jackson, Jarom S; Archibald, James L; Durfee, Dallin S

    2017-02-01

    We discuss the use of wave plates with arbitrary retardances, in conjunction with a linear polarizer, to split linearly polarized light into two linearly polarized beams with an arbitrary splitting fraction. We show that for non-ideal wave plates, a much broader range of splitting ratios is typically possible when a pair of wave plates, rather than a single wave plate, is used. We discuss the maximum range of splitting fractions possible with one or two wave plates as a function of the wave plate retardances, and how to align the wave plates to achieve the maximum splitting range possible when simply rotating one of the wave plates while keeping the other one fixed. We also briefly discuss an alignment-free polarization rotator constructed from a pair of half-wave plates.

  16. Mode splitting effect in FEMs with oversized Bragg resonators

    Energy Technology Data Exchange (ETDEWEB)

    Peskov, N. Yu.; Sergeev, A. S. [Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Kaminsky, A. K.; Perelstein, E. A.; Sedykh, S. N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kuzikov, S. V. [Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Nizhegorodsky State University, Nizhny Novgorod (Russian Federation)

    2016-07-15

    Splitting of the fundamental mode in an oversized Bragg resonator with a step of the corrugation phase, which operates over the feedback loop involving the waveguide waves of different transverse structures, was found to be the result of mutual influence of the neighboring zones of the Bragg scattering. Theoretical description of this effect was developed within the framework of the advanced (four-wave) coupled-wave approach. It is shown that mode splitting reduces the selective properties, restricts the output power, and decreases the stability of the narrow-band operating regime in the free-electron maser (FEM) oscillators based on such resonators. The results of the theoretical analysis were confirmed by 3D simulations and “cold” microwave tests. Experimental data on Bragg resonators with different parameters in a 30-GHz FEM are presented. The possibility of reducing the mode splitting by profiling the corrugation parameters is shown. The use of the mode splitting effect for the output power enhancement by passive compression of the double-frequency pulse generated in the FEM with such a resonator is discussed.

  17. Forced splitting of human sleep in free-running rhythms.

    Science.gov (United States)

    Zulley; Carr

    1992-06-01

    The assumption of polyphasic sleep/wake regulation is based on the occurrence of nap-sleep at specific phase positions in the circadian cycle. Further support would be the split of the normal long major sleep episode into shorter components. Evidence for this hypothesis comes from the discovery of bimodal distribution in sleep duration. An experimental approach to test this hypothesis has been carried out by restricting sleep duration in free-running rhythms. The outcome was a biphasic distribution of sleep within a circadian cycle with sections of dissociation and synchronization of the two sleep blocks. The results show similarities with 'splitting', a phenomenon which has been found in animal studies. The relatively short duration of the different sections as well as the asymmetric distribution of the two sleep blocks in the circadian cycle leads to the assumption of a splitting of the major sleep episode and not of the circadian rhythm. Sleep split into two, relatively short sleep episodes of comparable duration contrasts with napping, which is characterized by an extra sleep episode in addition to the long major sleep.

  18. Active Aerothermoelastic Control of Hypersonic Double-wedge Lifting Surface

    Institute of Scientific and Technical Information of China (English)

    Laith K Abbas; Chen Qian; Piergiovanni Marzocca; Gürdal Zafer; Abdalla Mostafa

    2008-01-01

    Designing reentry space vehicles and high-speed aireraft requires special attention to the nonlinear thermoelastic and aerodynamic instability of their structural components. The thermal effects are important since temperature environment brings dramatic influences on the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes and is likely to cause instability, catastrophic failure and oscillations resulting in structural failure due to fatigue. In order to understand the dynamic behaviors of these "hot"structures, a double-wedge lifting surface with combining freeplay and cubic structural nonlinearities in both plunging and pitching degrees-of-freedom operating in supersonic/hypersonic flight speed regimes has been analyzed. A third order piston theory aerodynamic isused to estimate the applied nonlinear unsteady aerodynamic loads. Also considered is the loss of torsiunal stiffness that may be incurredby lifting surfaces subject to axial stresses induced by aerodynamic heating. The aerodynamic heating effects are estimated based on theadiabatic wall temperature due to high speed airstreams. As a recently emerging technology, the active aerothermoelastic control isaimed at providing solutions to a large number of problems involving the aeronautica Faerospace flight vehicle structures. To preventsuch damaging phenomena from occurring, an application of linear and nonlinear active control methods on both flutter boundary andpost-flutter behavior has been fulfilled. In this paper, modeling issues as well as numerical simulation have been presented and pertinent conclusions outlined. It is evidenced that a serious loss of torsional stiffness may induce the dynamic instability; however active controlcan be used to expand the flutter boundary and convert unstable limit cycle oscillations (LCO) into the stable LCO and/or to shift the transition between these two states toward higher flight Mach numbers.

  19. Modes of continental extension in a lithospheric wedge

    Science.gov (United States)

    Wu, G.; Lavier, L. L.; Choi, E.

    2014-12-01

    We studied extension of a lithospheric wedge as an approximation to an orogenic belt or a continental margin. We ran a series of numerical models to quantify the effects of the strength of the lower crust and a mid-crustal shear zone (MCSZ) on the extension processes. When the MCSZ is present, we found that the regional lower crustal flow plays a critical role in controlling the modes of extension. The compensation is long-wavelength when the lower crust flows from the highest to the lowest elevation in order to compensate upper crustal thinning. In response to this motion, the mantle flows towards the highest elevation in order to balance for the lower crust leaving the area under the highest topography. For weak (wet quartz regime with partial melting) or intermediate (wet quartz regime), or strong (dry quartz regime) lower crust, we recognized three predominantly decoupled modes of extension characterized by 1) significant lower crustal exhumation exemplified as a large massif, 2) formation of core complexes and detachment faults, and 3) distributive domino faulting, respectively. Without the MCSZ, however, the lower crustal flow is essentially subdued with predominantly coupled extension. For weak or intermediate, or strong lower crust, we recognized three coupled modes characterized by 1) localized generally symmetric crustal exhumation, 2) distributed grabens and narrow rifts, and 3) wide continental margins, respectively. The MCSZ controls the degree of decoupling of the lower crustal flow such that a frictionally stronger MCSZ does not change the behaviors of the models but results in a more distributed extension. Due to the long-wavelength compensation, subhorizontal Moho is achieved where intensive extension occurred for all the decoupled models with a MCSZ. Natural counterparts for each mode may be easily identified, for instance, in the Basin and Range or the Aegean.

  20. Laboratory investigation of water extraction effects on saltwater wedge displacement

    Directory of Open Access Journals (Sweden)

    S. Noorabadi

    2017-12-01

    Full Text Available There is a close connection between saltwater intrusion into aquifers and groundwater extraction. Freshwater extraction in coastal aquifers is one of the most important reasons for the saltwater intrusion into these aquifers. Condition of extraction system such as well depth, discharge rate, saltwater concentration and etc. could affect this process widely. Thus, investigating different extraction conditions comprises many management advantages.  In the present study, the effects of freshwater extraction on saltwater interface displacement have been investigated in a laboratory box. Three different well depths (H were considered with combinations of 3 different extraction rates (Q and 3 saltwater concentrations (C for detailed investigation of the effects of these factors variations on saltwater displacement. SEAWAT model has been used to simulate all the scenarios to numerically study of the process. The experimental and numerical results showed that when the C and Q rates were small and the well depth was shallow, the saltwater interface wouldn’t reach the extraction well, so the extracted water remained uncontaminated. When the C and Q rates were increased and the well was deepened, the salinity of the extracted water became higher. When the Q and C rates were high enough, in the shallow well depth, the final concentration of the extracted water was low but a huge part of the porous media was contaminated by the saltwater, furthermore when the well was deepened enough, the final concentration of the extracted water was increased but a small part of the porous media was contaminated by the saltwater. Finally, the results showed that when the Q and H rates were high enough, the extraction well behaved like a barrier and didn’t allow the advancing saltwater wedge toe to be intruded beyond the wells.

  1. The New Wedge-Shaped Hubble Diagram of 398 SCP Supernovae According to the Expansion Center Model

    CERN Document Server

    Lorenzi, Luciano

    2010-01-01

    Following the successful dipole test on 53 SCP SNe Ia presented at SAIt2004 in Milan, this 9th contribution to the ECM series beginning in 1999 in Naples (43th SAIt meeting: "Revolutions in Astronomy") deals with the construction of the new wedge-shaped Hubble diagram obtained with 398 supernovae of the SCP Union Compilation (Kowalski et al. 2008) by applying a calculated correlation between SNe Ia absolute blue magnitude MB and central redshift z0, according to the expansion center model. The ECM distance D of the Hubble diagram (cz versus D) is computed as the ratio between the luminosity distance DL and 1 + z. Mathematically D results to be a power series of the light-space r run inside the expanding cosmic medium or Hubble flow; thus its expression is independent of the corresponding z. In addition one can have D = D(z, h) from the ECM Hubble law by using the h convention with an anisotropic HX. It is proposed to the meeting that the wedge-shape of this new Hubble diagram be confirmed independently as mai...

  2. Stress analysis of the tibial plateau according to the difference of blade path entry in opening wedge high tibial osteotomy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Woo; Xin, YuanZhu; Yang, Seok Jo [Chungnam National University, Daejeon (Korea, Republic of); Ji, Jong Hun; Panchal, Karnav; Kwon, Oh Soo [The Catholic University of Korea, Daejeon (Korea, Republic of)

    2015-03-15

    High tibial osteotomy (HTO) has been used to successfully treat patients with genu varus deformities that can improve mechanical function and condition in the knee joint. Clinical studies have reported that bow legs often occur with a concentrated load on the varus of the tibia. This study aimed to analyze and verify the clinical test data result by utilizing the three-dimensional (3D) static finite element method (FEM). The 3D model of lower extremities, which include the femur, tibia, meniscus, and knee articular cartilage, was created using the images from a computer tomography scan and magnetic resonance imaging. In this report, we compared changes in stress distribution and force reaction on the tibial plateau because of critical problems caused by unexpected changes in the tibial posterior-slope angle because of HTO. The results showed that the 5 .deg. wedge-angle virtual opening wedge HTO without and with the posterior-slope angle shows has a load concentration of approximately 60% and 45% in the medial region, respectively.

  3. Comparison of the stability of split and intact gabapentin tablets.

    Science.gov (United States)

    Volpe, Donna A; Gupta, Abhay; Ciavarella, Anthony B; Faustino, Patrick J; Sayeed, Vilayat A; Khan, Mansoor A

    2008-02-28

    The purpose of this study was to determine the stability differences between split and intact gabapentin tablets. Gabapentin tablets from three different manufacturers (G1, G2 and G3) were tested for a period of 9 weeks under long-term (25 degrees C/60% RH) and intermediate stability (30 degrees C/60% RH) storage conditions after storage in closed amber pharmacy dispensing containers. Samples were analyzed for dissolution and potency using validated HPLC methods. Potency test also included the quantitation of gabapentin's main degradation product. Tablets from all manufacturers and at all time points had potency >90%. At 9 weeks, a statistically significant decrease (psplit G2 and G3 tablets under the intermediate storage conditions. At the end of 9 weeks, all samples also showed slightly higher levels of degradation product which was statistically significant (psplit and intact tablets. No difference was observed between the potency and dissolution of the intact and the split tablets from the same manufacturer and the three products tested remained stable throughout the study period. The results suggest that splitting of gabapentin tablets did not affect the stability of these particular drug products tested as part of this study when stored under normal storage conditions for a period of up to 9 weeks. However, the results should not be extrapolated to other gabapentin drug products and to other tablet dosage forms.

  4. Three-dimensional vertebral wedging in mild and moderate adolescent idiopathic scoliosis.

    Directory of Open Access Journals (Sweden)

    Sophie-Anne Scherrer

    Full Text Available BACKGROUND: Vertebral wedging is associated with spinal deformity progression in adolescent idiopathic scoliosis. Reporting frontal and sagittal wedging separately could be misleading since these are projected values of a single three-dimensional deformation of the vertebral body. The objectives of this study were to determine if three-dimensional vertebral body wedging is present in mild scoliosis and if there are a preferential vertebral level, position and plane of deformation with increasing scoliotic severity. METHODOLOGY: Twenty-seven adolescent idiopathic scoliotic girls with mild to moderate Cobb angles (10° to 50° participated in this study. All subjects had at least one set of bi-planar radiographs taken with the EOS® X-ray imaging system prior to any treatment. Subjects were divided into two groups, separating the mild (under 20° from the moderate (20° and over spinal scoliotic deformities. Wedging was calculated in three different geometric planes with respect to the smallest edge of the vertebral body. RESULTS: Factorial analyses of variance revealed a main effect for the scoliosis severity but no main effect of vertebral Levels (apex and each of the three vertebrae above and below it (F = 1.78, p = 0.101. Main effects of vertebral Positions (apex and above or below it (F = 4.20, p = 0.015 and wedging Planes (F = 34.36, p<0.001 were also noted. Post-hoc analysis demonstrated a greater wedging in the inferior group of vertebrae (3.6° than the superior group (2.9°, p = 0.019 and a significantly greater wedging (p≤0.03 along the sagittal plane (4.3°. CONCLUSIONS: Vertebral wedging was present in mild scoliosis and increased as the scoliosis progressed. The greater wedging of the inferior group of vertebrae could be important in estimating the most distal vertebral segment to be restrained by bracing or to be fused in surgery. Largest vertebral body wedging values obtained in the sagittal plane support

  5. Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.

    Science.gov (United States)

    Steenen, S A; Becking, A G

    2016-07-01

    An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches.

  6. Segmented holographic spectrum splitting concentrator

    Science.gov (United States)

    Ayala, Silvana P.; Vorndran, Shelby; Wu, Yuechen; Chrysler, Benjamin; Kostuk, Raymond K.

    2016-09-01

    This paper presents a segmented parabolic concentrator employing holographic spectral filters that provide focusing and spectral bandwidth separation capability to the system. Strips of low band gap silicon photovoltaic (PV) cells are formed into a parabolic surface as shown by Holman et. al. [1]. The surface of the PV segments is covered with holographic elements formed in dichromated gelatin. The holographic elements are designed to transmit longer wavelengths to silicon cells, and to reflect short wavelength light towards a secondary collector where high-bandgap PV cells are mounted. The system can be optimized for different combinations of diffuse and direct solar illumination conditions for particular geographical locations by controlling the concentration ratio and filtering properties of the holographic elements. In addition, the reflectivity of the back contact of the silicon cells is used to increase the optical path length and light trapping. This potentially allows the use of thin film silicon for the low bandgap PV cell material. The optical design combines the focusing properties of the parabolic concentrator and the holographic element to control the concentration ratio and uniformity of the spectral distribution at the high bandgap cell location. The presentation concludes with a comparison of different spectrum splitting holographic filter materials for this application.

  7. Process Based Explanations for Correlations Between the Structural and Seismic Segmentation of the Cascadia Subduction Wedge

    Science.gov (United States)

    Fuller, C. W.; Brandon, M. T.; Willett, S. D.

    2006-12-01

    Variations in the geological and geophysical characteristics of the Cascadia subduction wedge, the region between the trench and arc, result in along-strike wedge segmentation. We focus on explaining the large-scale structural segmentation and how processes causing this segmentation influence segmentation with respect to the seismic behavior of the wedge and subduction thrust. The relationships we develop illustrate the fundamental interplay of processes controlling long-term structure and short-term seismic behavior. Our conclusions are based on the results of numerical models designed to simulate the growth and evolution of the Cascadia subduction wedge through the accretion of a thin layer of sediment to the basaltic Coast Range Terrane (CRT) of the Cascadia margin. Two aspects of wedge structural segmentation are of interest: (1) segmentation with respect to the location or absence of large, continental shelf, forearc basins, and (2) segmentation with respect to the Coastal Range (CR) structural high. Our models illustrate that the form of the submarine portion of the Cascadia wedge, including the basins or lack thereof, is a consequence of the frictional behavior of this region of wedge, subduction thrust strength, wedge strength, and dip thrust. We propose that basin segments have stronger wedge material, a weaker thrust, or a steeper thrust than basin free segments. The presence of basins is significant because they stabilize the margin and prevent subduction and accretion related deformation. This stabilization allows the thrust to preferentially support thermally induced, fluid overpressures and undergo fault healing thus increasing the likelihood of large coseismic slip within basin segments. While no historical earthquake data supporting this argument exists for Cascadia, such behavior has been observed in many margins (Song and Simons, 2003; Wells et al., 2003). It is reasonable to assume that large earthquakes in Cascadia will have the same association

  8. Selection and geographic isolation influence hummingbird speciation: genetic, acoustic and morphological divergence in the wedge-tailed sabrewing (Campylopterus curvipennis

    Directory of Open Access Journals (Sweden)

    Ornelas Juan

    2011-02-01

    Full Text Available Abstract Background Mesoamerica is one of the most threatened biodiversity hotspots in the world, yet we are far from understanding the geologic history and the processes driving population divergence and speciation for most endemic taxa. In species with highly differentiated populations selective and/or neutral factors can induce rapid changes to traits involved in mate choice, promoting reproductive isolation between allopatric populations that can eventually lead to speciation. We present the results of genetic differentiation, and explore drift and selection effects in promoting acoustic and morphological divergence among populations of Campylopterus curvipennis, a lekking hummingbird with an extraordinary vocal variability across Mesoamerica. Results Analyses of two mitochondrial genes and ten microsatellite loci genotyped for 160 individuals revealed the presence of three lineages with no contemporary gene flow: C. c. curvipennis, C. c. excellens, and C. c. pampa disjunctly distributed in the Sierra Madre Oriental, the Tuxtlas region and the Yucatan Peninsula, respectively. Sequence mtDNA and microsatellite data were congruent with two diversification events: an old vicariance event at the Isthmus of Tehuantepec (c. 1.4 Ma, and a more recent Pleistocene split, isolating populations in the Tuxtlas region. Hummingbirds of the excellens group were larger, and those of the pampa group had shorter bills, and lineages that have been isolated the longest shared fewer syllables and differed in spectral and temporal traits of a shared syllable. Coalescent simulations showed that fixation of song types has occurred faster than expected under neutrality but the null hypothesis that morphological divergence resulted from drift was not rejected. Conclusions Our phylogeographic analyses uncovered the presence of three Mesoamerican wedge-tailed sabrewing lineages, which diverged at different time scales. These results highlight the importance of the

  9. Forced splitting of human sleep in free-running rhythms

    OpenAIRE

    Zulley, Jürgen; Carr, D

    1992-01-01

    The assumption of polyphasic sleep/wake regulation is based on the occurrence of nap-sleep at specific phase positions in the circadian cycle. Further support would be the split of the normal long major sleep episode into shorter components. Evidence for this hypothesis comes from the discovery of bimodal distribution in sleep duration. An experimental approach to test this hypothesis has been carried out by restricting sleep duration in free-running rhythms. The outcome was a biphasic distri...

  10. Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars

    CERN Document Server

    Warnecke, Jörn; Käpylä, Petri J; Käpylä, Maarit J; Brandenburg, Axel

    2016-01-01

    We investigate the magnetic field generation in global solar-like convective dynamos in the framework of mean-field theory. We simulate a solar-type star in a wedge-shaped spherical shell, where the interplay between convection and rotation self-consistently drives large-scale dynamo. To analyze the dynamo mechanism we apply the test-field method for azimuthally ($\\phi$) averaged fields to determine the 27 turbulent transport coefficients of the electromotive force, of which 9 are related to the $\\alpha$ effect tensor. This method has previously been used either in simulations in Cartesian coordinates or in the geodynamo context and it is applied here for the first time in simulations of solar-like dynamo action. We find that the $\\phi\\phi$-component of the $\\alpha$ tensor does not follow the profile expected from that of kinetic helicity. Beside the dominant $\\alpha$-$\\Omega$ dynamo, also an $\\alpha^2$ dynamo is locally enhanced. The turbulent pumping velocities significantly alter the effective mean flows a...

  11. Solving Large-Scale TSP Using a Fast Wedging Insertion Partitioning Approach

    Directory of Open Access Journals (Sweden)

    Zuoyong Xiang

    2015-01-01

    Full Text Available A new partitioning method, called Wedging Insertion, is proposed for solving large-scale symmetric Traveling Salesman Problem (TSP. The idea of our proposed algorithm is to cut a TSP tour into four segments by nodes’ coordinate (not by rectangle, such as Strip, FRP, and Karp. Each node is located in one of their segments, which excludes four particular nodes, and each segment does not twist with other segments. After the partitioning process, this algorithm utilizes traditional construction method, that is, the insertion method, for each segment to improve the quality of tour, and then connects the starting node and the ending node of each segment to obtain the complete tour. In order to test the performance of our proposed algorithm, we conduct the experiments on various TSPLIB instances. The experimental results show that our proposed algorithm in this paper is more efficient for solving large-scale TSPs. Specifically, our approach is able to obviously reduce the time complexity for running the algorithm; meanwhile, it will lose only about 10% of the algorithm’s performance.

  12. Water splitting and electricity with semiconducting silicides in sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Demuth, Martin [Max-Planck-Institut fuer Bioanorganische Chemie, Muelheim an der Ruhr (Germany); H2 Solar GmbH, Loerrach (Germany); Kerpen, Klaus; Kuklya, Andriy; Wuestkamp, Marc-Andre [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    2010-07-01

    Generation of hydrogen and oxygen from water is described using mainly the semiconductor titanium disilicide as catalyst and halogen light which closely mimics solar radiation. The reactions are carried out under non-aerobic conditions, i.e., under nitrogen. High efficiencies are reached at 1.1-1.2 bar pressure. In the first phase of these reactions the catalytically active centers are built up. During this phase of reaction the kinetics of the water splitting process is growing in and leads to a linear dependence in the further course of the reactions which consists of >96% water splitting to yield hydrogen and oxygen in a 2:1 ratio. Hydrogen is partially and reversibly stored physically, depending on temperature. Oxygen behaves differently since it is stored entirely under the applied reaction conditions (50-80 C and light) and can be liberated from storage upon heating the slurries in the dark. This allows convenient separation of hydrogen and oxygen. The stability of titanium disilicide has been positively tested over several months. This material is abundant and inexpensive besides that it absorbs most of the solar radiation. Further, XRD and XPS studies show that titanium disilicide is 80% crystalline and the oxide formation is limited to a few molecular layers in depth. By using labeled water it was shown that labeled dioxygen appears in the gas phase of such reactions, this showing definitively that hydrogen evolution occuring here stems from photochemical splitting of water. Further, water splitting is part of a project which involves photoelectrochemistry and in which the silicides are used as light-receiving electrode and transition metal-coated anodes serve to split water. (orig.)

  13. Rainfall induced groundwater mound in wedge-shaped promontories: The Strack-Chernyshov model revisited

    Science.gov (United States)

    Kacimov, A. R.; Kayumov, I. R.; Al-Maktoumi, A.

    2016-11-01

    An analytical solution to the Poisson equation governing Strack's discharge potential (squared thickness of a saturated zone in an unconfined aquifer) is obtained in a wedge-shaped domain with given head boundary conditions on the wedge sides (specified water level in an open water body around a porous promontory). The discharge vector components, maximum elevation of the water table in promontory vertical cross-sections, quantity of groundwater seeping through segments of the wedge sides, the volume of fresh groundwater in the mound are found. For acute angles, the solution to the problem is non-unique and specification of the behaviour at infinity is needed. A "basic" solution is distinguished, which minimizes the water table height above a horizontal bedrock. MODFLOW simulations are carried out in a finite triangular island and compare solutions with a constant-head, no-flow and "basic" boundary condition on one side of the triangle. Far from the tip of an infinite-size promontory one has to be cautious with truncation of the simulated flow domains and imposing corresponding boundary conditions. For a right and obtuse wedge angles, there are no positive solutions for the case of constant accretion on the water table. In a particular case of a confined rigid wedge-shaped aquifer and incompressible fluid, from an explicit solution to the Laplace equation for the hydraulic head with arbitrary time-space varying boundary conditions along the promontory rays, essentially 2-D transient Darcian flows within the wedge are computed. They illustrate that surface water waves on the promontory boundaries can generate strong Darcian waves inside the porous wedge. Evaporation from the water table and sea-water intruded interface (rather than a horizontal bed) are straightforward generalizations for the Poissonian Strack potential.

  14. Effect of Laterally Wedged Insoles on the External Knee Adduction Moment across Different Reference Frames.

    Directory of Open Access Journals (Sweden)

    Satoshi Yamaguchi

    Full Text Available Biomechanical effects of laterally wedged insoles are assessed by reduction in the knee adduction moment. However, the degree of reduction may vary depending on the reference frame with which it is calculated. The purpose of this study was to clarify the effect of reference frame on the reduction in the knee adduction moment by laterally wedged insoles.Twenty-nine healthy participants performed gait trials with a laterally wedged insole and with a flat insole as a control. The knee adduction moment, including the first and second peaks and the angular impulse, were calculated using four different reference frames: the femoral frame, tibial frame, laboratory frame and the Joint Coordinate System.There were significant effects of reference frame on the knee adduction moment first and second peaks (P < 0.001 for both variables, while the effect was not significant for the angular impulse (P = 0.84. No significant interaction between the gait condition and reference frame was found in either of the knee adduction moment variables (P = 0.99 for all variables, indicating that the effects of laterally wedged insole on the knee adduction moments were similar across the four reference frames. On the other hand, the average percent changes ranged from 9% to 16% for the first peak, from 16% to 18% for the second peak and from 17% to 21% for the angular impulse when using the different reference frames.The effects of laterally wedged insole on the reduction in the knee adduction moment were similar across the reference frames. On the other hand, Researchers need to recognize that when the percent change was used as the parameter of the efficacy of laterally wedged insole, the choice of reference frame may influence the interpretation of how laterally wedged insoles affect the knee adduction moment.

  15. Prediction of knee joint moment changes during walking in response to wedged insole interventions.

    Science.gov (United States)

    Lewinson, Ryan T; Stefanyshyn, Darren J

    2016-04-01

    Wedged insoles are prescribed for medial knee osteoarthritis to reduce the knee adduction moment; however, it is currently not possible to predict which patients will in fact experience reduced moments. The purpose of this study was to identify a simple method using two-dimensional data for predicting the expected change in knee adduction moments with wedged insoles. Knee adduction moments during walking were determined for healthy individuals (n = 15) and individuals with medial knee osteoarthritis (n = 19) while wearing their own shoe without an insole (control), with a 6-mm medial wedge and with a 6-mm lateral wedge. The percent changes relative to control were determined. Then, participants completed single-step trials with each footwear condition where only the changes in mediolateral positions of the knee joint center, shank center of mass, ankle joint center, and foot center of mass relative to control were determined. These variables were used as predictors in regression equations where the change in knee adduction moment during walking was the dependent variable. The change in mediolateral positions of the lower extremity during a single step significantly predicted the change in knee adduction moment during walking for the lateral wedge in both the healthy (R(2) = 0.72, p = 0.008) and knee osteoarthritis (R(2) = 0.52, p = 0.026) groups, and also for the medial wedge in both the healthy (R(2) = 0.67, p = 0.016) and knee osteoarthritis (R(2) = 0.54, p = 0.020) groups. The method of using mediolateral position data from a single-step movement to predict walking biomechanics was successful. These data are relatively simple to collect and analyze, offering the possibility for future incorporation into a wedge prediction system. © IMechE 2016.

  16. Semi-strong split domination in graphs

    Directory of Open Access Journals (Sweden)

    Anwar Alwardi

    2014-06-01

    Full Text Available Given a graph $G = (V,E$, a dominating set $D subseteq V$ is called a semi-strong split dominating set of $G$ if $|V setminus D| geq 1$ and the maximum degree of the subgraph induced by $V setminus D$ is 1. The minimum cardinality of a semi-strong split dominating set (SSSDS of G is the semi-strong split domination number of G, denoted $gamma_{sss}(G$. In this work, we introduce the concept and prove several results regarding it.

  17. Rotations in the Space of Split Octonions

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili

    2009-01-01

    Full Text Available The geometrical application of split octonions is considered. The new representation of products of the basis units of split octonionic having David's star shape (instead of the Fano triangle is presented. It is shown that active and passive transformations of coordinates in octonionic “eight-space” are not equivalent. The group of passive transformations that leave invariant the pseudonorm of split octonions is SO(4,4, while active rotations are done by the direct product of O(3,4-boosts and real noncompact form of the exceptional group G2. In classical limit, these transformations reduce to the standard Lorentz group.

  18. Communication: Tunnelling splitting in the phosphine molecule

    Science.gov (United States)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N.

    2016-09-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν2 bending mode starting with 4ν2.

  19. Level of copper in human split ejaculate.

    Science.gov (United States)

    Skandhan, Kalanghot; Valsa, James; Sumangala, Balakrishnan; Jaya, Vasudevan

    2017-02-03

    The purpose of this study was to understand the details of splits of an ejaculate and to locate the origin of release of copper into semen. Laboratory methods routinely followed for semen analysis were carried out. Copper was estimated by employing atomic absorption spectrophotometry. First split of ejaculate showed the highest number of motile sperm, the quality of which decreased from first to third. Copper level in splits 1, 2 and 3 was 29, 23 and 22 µg%, respectively. This study concluded that copper was released from throughout the genital tract.

  20. Splitting Functions at High Transverse Momentum

    CERN Document Server

    Moutafis, Rhea Penelope; CERN. Geneva. TH Department

    2017-01-01

    Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.

  1. 2S Hyperfine splitting of muonic hydrogen

    CERN Document Server

    Martynenko, A P

    2004-01-01

    Corrections of orders alpha^5, alpha^6 are calculated in the hyperfine splitting of the 2S state in the muonic hydrogen. The nuclear structure effects are taken into account in the one- and two-loop Feynman amplitudes by means of the proton electromagnetic form factors. Total numerical value of the 2S state hyperfine splitting 22.8148 meV in the (\\mu p) can be considered as reliable estimation for the corresponding experiment with the accuracy 10^{-5}. The value of the Sternheim's hyperfine splitting interval [8\\Delta E^{HFS}(2S)-\\Delta E^{HFS}(1S)] is obtained with the accuracy 10^{-6}.

  2. Tunnelling splitting in the phosphine molecule

    CERN Document Server

    Sousa-Silva, Clara; Yurchenko, Sergey N

    2016-01-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the $\

  3. Total knee arthroplasty after failed high tibial osteotomy: a systematic review of open versus closed wedge osteotomy.

    Science.gov (United States)

    Han, Jae Hwi; Yang, Jae-Hyuk; Bhandare, Nikhl N; Suh, Dong Won; Lee, Jong Seong; Chang, Yong Suk; Yeom, Ji Woong; Nha, Kyung Wook

    2016-08-01

    Medial opening wedge high tibial osteotomy (HTO) has become increasingly popular as an alternative to lateral closing wedge osteotomy for the treatment of medial compartment knee osteoarthritis with varus deformity. The present systematic review was conducted to provide an objective analysis of total knee arthroplasty (TKA) outcomes following previous knee osteotomy (medial opening wedge vs. lateral closing wedge). A literature search of online databases (MEDLINE, EMBASE, Cochrane Library database) was made, in addition to manual search of major orthopaedic journals. The methodological quality of each of the studies was assessed on the Newcastle-Ottawa Scale and Effective Practice and Organization of Care. A total of ten studies were included in the review. There were eight studies with Level IV and two studies with Level III evidence. Eight studies reported clinical and radiologic scores. Comparative studies between TKA following medial opening and lateral closing wedge HTO did not demonstrate statistically significant clinical and radiologic differences. The revision rates were similar. However, more technical issues during TKA surgery after lateral closing wedge HTO were mentioned than the medial open wedge group. The quadriceps snip, tibial tubercle osteotomy, and lateral soft tissue release were more frequently needed in the lateral closing wedge HTO group. In addition, because of loss of proximal tibia bone geometry in the lateral closing wedge HTO group, concerns such as tibia stem impingement in the lateral tibial cortex was noted. The present systematic review suggests that TKA after medial opening and lateral closing wedge HTO showed similar performance. Clinical and radiologic outcome including revision rates did not statistically differ from included studies. However, there are more surgical technical concerns in TKA conversion from lateral closing wedge HTO than from the medial opening wedge HTO group. IV.

  4. 楔形离合器系统的正压力观测%Normal Pressure Observation of Wedge Clutch System

    Institute of Scientific and Technical Information of China (English)

    余孟珂; 姚健; 陈俐

    2014-01-01

    The wedge clutch system can reduce the current demand of motor and space demand of the installation because of the self-reinforcement feature of wedge mechanism. By applying Kalman Filter theory, the authors give a real-time estimate of the normal pressure of the wedge clutch system after eliminating the impact of measurement noise and system process noise. The results with multiple input current tests indicate that the estimated value and the measured value have good trackability.%楔形离合器具有自增力特性,可降低执行电机电流并节约安装空间。通过引入卡尔曼滤波器原理,在滤除测量噪声和系统过程噪声影响后给出了楔形离合器正压力值的实时估计。多种输入电流下的试验结果表明,观测值与实测值具有良好的跟踪性。

  5. Effects of laterally wedged insoles on symptoms and disease progression in medial knee osteoarthritis: a protocol for a randomised, double-blind, placebo controlled trial

    Directory of Open Access Journals (Sweden)

    Osborne Richard

    2007-09-01

    Full Text Available Abstract Background Whilst laterally wedged insoles, worn inside the shoes, are advocated as a simple, inexpensive, non-toxic self-administered intervention for knee osteoarthritis (OA, there is currently limited evidence to support their use. The aim of this randomised, double-blind controlled trial is to determine whether laterally wedges insoles lead to greater improvements in knee pain, physical function and health-related quality of life, and slower structural disease progression as well as being more cost-effective, than control flat insoles in people with medial knee OA. Methods/Design Two hundred participants with painful radiographic medial knee OA and varus malalignment will be recruited from the community and randomly allocated to lateral wedge or control insole groups using concealed allocation. Participants will be blinded as to which insole is considered therapeutic. Blinded follow up assessment will be conducted at 12 months after randomisation. The outcome measures are valid and reliable measures recommended for OA clinical trials. Questionnaires will assess changes in pain, physical function and health-related quality-of-life. Magnetic resonance imaging will measure changes in tibial cartilage volume. To evaluate cost-effectiveness, participants will record the use of all health-related treatments in a log-book returned to the assessor on a monthly basis. To test the effect of the intervention using an intention-to-treat analysis, linear regression modelling will be applied adjusting for baseline outcome values and other demographic characteristics. Discussion Results from this trial will contribute to the evidence regarding the effectiveness of laterally wedged insoles for the management of medial knee OA. Trial registration ACTR12605000503628; NCT00415259.

  6. Seaward- Versus Landward-Verging Thrusts in Accretionary Wedges: A Numerical Modeling Study of the Effects of Heterogeneity in Pore Fluid Pressure and Frictional Strength

    Science.gov (United States)

    Ito, G.; Moore, G. F.; Olive, J. A. L.; Weiss, J. R.

    2015-12-01

    Whereas seaward-verging thrust faults are, by far, the most common large faults associated with accretionary wedges, the importance of the globally rare, landward verging thrusts has recently been highlighted given the prominence of landward vergence along the Cascadia margin as well as along the Andaman-Sumatra subduction zone, especially in the rupture area of the great 2004 earthquake. The mechanical processes that lead to seaward- versus landward-verging thrusts in accretionary wedges has long been a topic of debate. A weak frictional décollement is one explanation that indeed promotes landward vergence, but not only so, because the typical pattern is of dual verging conjugate faults. A non-brittle, ductile décollement is a second explanation that has been shown in the laboratory to produce a wide sequence of only landward-verging thrusts, but the mechanical causes are not well understood and numerical modeling studies have yet to reproduce this behavior. A seaward-dipping backstop is a third explanation; it promotes landward vergence locally, but more distally the backstop effects diminish and the sense of vergence transitions back to seaward. Mohr-Coulomb and minimum work theory predict that landward vergence should predominate when the direction of maximum principal compression dips landward. We hypothesize that such a condition can arise due to the migration of pore fluids and the associated spatial heterogeneity in frictional strength within the wedge. We test this hypothesis using 2-D numerical models that use a finite-difference, particle-in-cell method for simulating the deformation of an accretionary wedge with a viscoelastic-plastic rheology. With a uniform internal frictional strength, the calculations reproduce many of the faulting behaviors seen in prior laboratory and numerical modeling studies. We are exploring the impacts of heterogeneity in pore fluid pressure and frictional strength on the pattern and vergence of thrust faults.

  7. Protein trans-splicing of multiple atypical split inteins engineered from natural inteins.

    Directory of Open Access Journals (Sweden)

    Ying Lin

    Full Text Available Protein trans-splicing by split inteins has many uses in protein production and research. Splicing proteins with synthetic peptides, which employs atypical split inteins, is particularly useful for site-specific protein modifications and labeling, because the synthetic peptide can be made to contain a variety of unnatural amino acids and chemical modifications. For this purpose, atypical split inteins need to be engineered to have a small N-intein or C-intein fragment that can be more easily included in a synthetic peptide that also contains a small extein to be trans-spliced onto target proteins. Here we have successfully engineered multiple atypical split inteins capable of protein trans-splicing, by modifying and testing more than a dozen natural inteins. These included both S1 split inteins having a very small (11-12 aa N-intein fragment and S11 split inteins having a very small (6 aa C-intein fragment. Four of the new S1 and S11 split inteins showed high efficiencies (85-100% of protein trans-splicing both in E. coli cells and in vitro. Under in vitro conditions, they exhibited reaction rate constants ranging from ~1.7 × 10(-4 s(-1 to ~3.8 × 10(-4 s(-1, which are comparable to or higher than those of previously reported atypical split inteins. These findings should facilitate a more general use of trans-splicing between proteins and synthetic peptides, by expanding the availability of different atypical split inteins. They also have implications on understanding the structure-function relationship of atypical split inteins, particularly in terms of intein fragment complementation.

  8. TWO APPROACHES TO CALCULATION OF SPLIT PHASE DANCING OF OVERHEAD ELECTRICAL TRANSMISSION LINE

    Directory of Open Access Journals (Sweden)

    I. I. Sergey

    2005-01-01

    Full Text Available The paper shows two approaches to mathematical modeling of split phase dancing of overhead electrical transmission line. The first approach is based on calculative method when a phase is in the shape of flexible elastic thread connected with rigid rods. The phase is represented with equivalent wire in the second approach. Principle of mechanics relations has been used to set combined boundary problem of split phase dynamics. Two packets of computer programs for calculation of split phase dancing of overhead (electric power line have been set up and tested.

  9. CALCULATION OF SPLITTING VANES AND INNER FLOW ANALYSIS FOR CENTRIFUGAL PUMP IMPELLER

    Institute of Scientific and Technical Information of China (English)

    Pan Zhongyong; Yuan Shouqi; Li Hong; Cao Weidong

    2004-01-01

    The calculation method for vane numbers is obtained on the intention that it should have no back flow area in the flow passage of centrifugal passage.Then a criterion that the design of splitting vanes of centrifugal compound impeller should ensure that the back flow area ratio be the minimum is proposed.On the basis of the criterion, the slippery theory is used as one of CFD methods to analyze the inner flow field of the impeller of various kinds of splitting vanes design, therefore, the optimized design of splitting vanes is obtained and which agrees with that of some testing results.

  10. Study and evaluation of the Siemens virtual wedge factor: dosimetric monitor system and variable field effects

    Energy Technology Data Exchange (ETDEWEB)

    Sendon Rio, J R Sendon; Martinez, C Otero; GarcIa, M Sanchez; Busto, R Lobato; Vega, V Luna; Sueiro, J Mosquera; Camean, M Pombar [Servizo de Radiofisica e Proteccion Radioloxica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago de Compostela (Spain)], E-mail: jose.ramon.sendon.del.rio@sergas.es

    2008-03-07

    In the year 1997 Siemens introduced the virtual wedge in its accelerators. The idea was that a dose profile similar to that of a physical wedge can be obtained by moving one of the accelerator jaws at a constant speed while the dose rate is changing. This work explores the observed behaviour of virtual wedge factors. A model is suggested which takes into account that at any point in time, when the jaw moves, the dose at a point of interest in the phantom is not only due to the direct beam. It also depends on the scattered radiation in the phantom, the head scatter and the behaviour of the monitoring system of the accelerator. Measurements are performed in a Siemens Primus accelerator and compared to the model predictions. It is shown that the model agrees reasonably well with measurements spanning a wide range of conditions. A strong dependence of virtual wedge factors on the dosimetric board has been confirmed and an explanation has been given on how the balance between different contributions is responsible for virtual wedge factors values.

  11. Analysis of bonded anisotropic wedges with interface crack under anti-plane shear loading

    Institute of Scientific and Technical Information of China (English)

    M.GHADIRI; A.R.SHAHANI

    2014-01-01

    The antiplane stress analysis of two anisotropic finite wedges with arbitrary radii and apex angles that are bonded together along a common edge is investigated. The wedge radial boundaries can be subjected to displacement-displacement boundary condi-tions, and the circular boundary of the wedge is free from any traction. The new finite complex transforms are employed to solve the problem. These finite complex transforms have complex analogies to both kinds of standard finite Mellin transforms. The traction free condition on the crack faces is expressed as a singular integral equation by using the exact analytical method. The explicit terms for the strength of singularity are extracted, showing the dependence of the order of the stress singularity on the wedge angle, material constants, and boundary conditions. A numerical method is used for solving the resul-tant singular integral equations. The displacement boundary condition may be a general term of the Taylor series expansion for the displacement prescribed on the radial edge of the wedge. Thus, the analysis of every kind of displacement boundary conditions can be obtained by the achieved results from the foregoing general displacement boundary condition. The obtained stress intensity factors (SIFs) at the crack tips are plotted and compared with those obtained by the finite element analysis (FEA).

  12. Proximal first metatarsal opening wedge osteotomy: geometric analysis on saw bone models.

    Science.gov (United States)

    Kugan, R; Currall, V A; Johal, P; Clark, C I C

    2015-03-01

    For hallux valgus correction, distal first metatarsal osteotomy is generally used for minor to moderate deformities, diaphyseal osteotomy for moderate deformities and basal osteotomy or arthrodesis for severe deformities. With the advent of locking plates, there has been renewed interest in opening wedge basal osteotomy. We undertook this study in order to understand the power and limitations of this osteotomy. Proximal opening wedge osteotomies were performed on saw bone models in four orientations, with three different wedge sizes: (1) perpendicular to the ground (PG); (2) perpendicular to the shaft (PS); (3) perpendicular to shaft with 30° declination (DEC); (4) 30° oblique (OB). Pre- and post-osteotomy measurements were made of axial and plantar translation and inter-metatarsal angle. Plantar translation and intermetatarsal angle correction increased with increasing wedge size. The DEC osteotomy produced the greatest increase in length of metatarsal shaft, while the PS osteotomy gave the least. The most plantar translation was achieved with the DEC osteotomy. Overall, the PS osteotomy gave the largest correction of the intermetatarsal angle. Although there are several published clinical case series of the proximal opening wedge osteotomy, this is the first study to fully evaluate its geometry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Enhanced dynamic wedge output factors for Varian 2300CD and the case for a reference database.

    Science.gov (United States)

    Njeh, Christopher F

    2015-09-08

    Dose inhomogeneity in treatment planning can be compensated using physical wedges. Enhanced dynamic wedges (EDW) were introduced by Varian to overcome some of the shortcomings of physical wedges. The objectives of this study were to measure EDW output factors for 6 MV and 20 MV photon energies for a Varian 2300CD. Secondly, to review the literature in terms of published enhanced dynamic wedge output factors (EDWOF) for different Varian models and thereby add credence to the case of the validity of reference databases. The enhanced dynamic wedge output factors were measured for the Varian 2300CD for both 6MV and 20 MV photon energies. Twelve papers with published EDWOF for different Varian linac models were found in the literature. Comparing our results with the published mean, we found an excellent agreement for 6 MV EDWOF, with the percentage differences ranging from 0.01% to 0.57%, with a mean of 0.03%. The coefficient of variation of published EDWOF ranged from 0.17% to 0.85% and 0.1% to 0.9% for the for 6 MV and 18 MV photon energies, respectively. This paper provides the first published EDWOF for 20 MV photon energy. In addition, we have provided the first compendium of EDWOFs for different Varian linac models. The consistency of value across models and institution provide further support that a standard dataset of basic photon and electron dosimetry could be established as a guide for future commissioning, beam modeling, and quality assurance purposes.

  14. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens.

    Science.gov (United States)

    Hansen, S M; Schmandt, B; Levander, A; Kiser, E; Vidale, J E; Abers, G A; Creager, K C

    2016-11-01

    Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location of Mount St Helens raises questions regarding the extent of the cold mantle wedge and the source region of melts that are responsible for volcanism. Here using, high-resolution active-source seismic data, we show that Mount St Helens sits atop a sharp lateral boundary in Moho reflectivity. Weak-to-absent PmP reflections to the west are attributed to serpentinite in the mantle-wedge, which requires a cold hydrated mantle wedge beneath Mount St Helens (<∼700 °C). These results suggest that the melt source region lies east towards Mount Adams.

  15. Medial Closing-Wedge Distal Femoral Osteotomy for Genu Valgum With Lateral Compartment Disease.

    Science.gov (United States)

    Wylie, James D; Maak, Travis G

    2016-12-01

    Lateral compartment disease combined with valgus alignment can lead to progressive knee joint degeneration. In the symptomatic patient with isolated lateral compartment disease, a varus-producing distal femoral osteotomy can unload the diseased lateral compartment. This osteotomy may be combined with other cartilage or meniscal restorative techniques to optimize knee joint preservation and pain relief. The osteotomy can be performed with a medial closing-wedge or lateral opening-wedge technique. Both techniques have been reported to improve knee-related quality of life in patients with lateral compartment disease. Advantages of the medial closing-wedge technique are direct bone apposition leading to inherent stability of the construct, as well as reliable bony healing, and less hardware irritation. Advantages of the lateral opening-wedge technique are a single bony cut and therefore more of an ability to adjust correction intraoperatively. However, this technique requires bone grafting and has a high rate of hardware irritation or removal. We present a surgical technique for the medial closing-wedge distal femoral osteotomy using an anteromedial-distal femoral locking plate.

  16. Measurement of photoneutron dose produced by wedge filters of a high energy linac using polycarbonate films.

    Science.gov (United States)

    Hashemi, Seyed Mehdi; Hashemi-Malayeri, Bijan; Raisali, Gholamreza; Shokrani, Parvaneh; Sharafi, Ali Akbar; Torkzadeh, Falamarz

    2008-05-01

    Radiotherapy represents the most widely spread technique to control and treat cancer. To increase the treatment efficiency, high energy linacs are used. However, applying high energy photon beams leads to a non-negligible dose of neutrons contaminating therapeutic beams. In addition, using conventional linacs necessitates applying wedge filters in some clinical conditions. However, there is not enough information on the effect of these filters on the photoneutrons produced. The aim of this study was to investigate the change of photoneutron dose equivalent due to the use of linac wedge filters. A high energy (18 MV) linear accelerator (Elekta SL 75/25) was studied. Polycarbonate films were used to measure the dose equivalent of photoneutrons. After electrochemical etching of the films, the neutron dose equivalent was calculated using Hp(10) factor, and its variation on the patient plane at 0, 5, 10, 50 and 100 cm from the center of the X-ray beam was determined. By increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreased rapidly for the open and wedged fields. Increasing of the field size increased the photoneutron dose equivalent. The use of wedge filter increased the proportion of the neutron dose equivalent. The increase can be accounted for by the selective absorption of the high energy photons by the wedge filter.

  17. Electroweak Splitting Functions and High Energy Showering

    CERN Document Server

    Chen, Junmou; Tweedie, Brock

    2016-01-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2)xU(1) and discuss their general features in the collinear and soft-collinear regimes. We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in the VEV. We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching...

  18. Supramolecular Control over Split-Luciferase Complementation.

    Science.gov (United States)

    Bosmans, Ralph P G; Briels, Jeroen M; Milroy, Lech-Gustav; de Greef, Tom F A; Merkx, Maarten; Brunsveld, Luc

    2016-07-25

    Supramolecular split-enzyme complementation restores enzymatic activity and allows for on-off switching. Split-luciferase fragment pairs were provided with an N-terminal FGG sequence and screened for complementation through host-guest binding to cucurbit[8]uril (Q8). Split-luciferase heterocomplex formation was induced in a Q8 concentration dependent manner, resulting in a 20-fold upregulation of luciferase activity. Supramolecular split-luciferase complementation was fully reversible, as revealed by using two types of Q8 inhibitors. Competition studies with the weak-binding FGG peptide revealed a 300-fold enhanced stability for the formation of the ternary heterocomplex compared to binding of two of the same fragments to Q8. Stochiometric binding by the potent inhibitor memantine could be used for repeated cycling of luciferase activation and deactivation in conjunction with Q8, providing a versatile module for in vitro supramolecular signaling networks.

  19. Split Brain Theory: Implications for Nurse Educators.

    Science.gov (United States)

    de Meneses, Mary

    1980-01-01

    Discusses incorporating nontraditional concepts of learning in nursing education. Elements explored include the split brain theory, school design, teaching styles, teacher's role, teaching strategies, adding variety to the curriculum, and modular learning. (CT)

  20. First and second order numerical methods based on a new convex splitting for phase-field crystal equation

    Science.gov (United States)

    Shin, Jaemin; Lee, Hyun Geun; Lee, June-Yub

    2016-12-01

    The phase-field crystal equation derived from the Swift-Hohenberg energy functional is a sixth order nonlinear equation. We propose numerical methods based on a new convex splitting for the phase-field crystal equation. The first order convex splitting method based on the proposed splitting is unconditionally gradient stable, which means that the discrete energy is non-increasing for any time step. The second order scheme is unconditionally weakly energy stable, which means that the discrete energy is bounded by its initial value for any time step. We prove mass conservation, unique solvability, energy stability, and the order of truncation error for the proposed methods. Numerical experiments are presented to show the accuracy and stability of the proposed splitting methods compared to the existing other splitting methods. Numerical tests indicate that the proposed convex splitting is a good choice for numerical methods of the phase-field crystal equation.

  1. Ray splitting in paraxial optical cavities

    CERN Document Server

    Puentes, G; Woerdman, J P

    2003-01-01

    We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive Lyapunov exponent.

  2. Antenna Splitting Functions for Massive Particles

    Energy Technology Data Exchange (ETDEWEB)

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC

    2011-06-22

    An antenna shower is a parton shower in which the basic move is a color-coherent 2 {yields} 3 parton splitting process. In this paper, we give compact forms for the spin-dependent antenna splitting functions involving massive partons of spin 0 and spin 1/2. We hope that this formalism we have presented will be useful in describing the QCD dynamics of the top quark and other heavy particles at LHC.

  3. Split-plot designs for multistage experimentation

    DEFF Research Database (Denmark)

    Kulahci, Murat; Tyssedal, John

    2016-01-01

    at the same time will be more efficient. However, there have been only a few attempts in the literature to provide an adequate and easy-to-use approach for this problem. In this paper, we present a novel methodology for constructing two-level split-plot and multistage experiments. The methodology is based...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....

  4. Laser beam splitting by polarization encoding.

    Science.gov (United States)

    Wan, Chenhao

    2015-03-20

    A scheme is proposed to design a polarization grating that splits an incident linearly polarized beam to an array of linearly polarized beams of identical intensity distribution and various azimuth angles of linear polarization. The grating is equivalent to a wave plate with space-variant azimuth angle and space-variant phase retardation. The linear polarization states of all split beams make the grating suitable for coherent beam combining architectures based on Dammann gratings.

  5. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  6. Photoelectrochemical water splitting standards, experimental methods, and protocols

    CERN Document Server

    Chen, Zhebo; Miller, Eric

    2014-01-01

    This book outlines many of the techniques involved in materials development and characterization for photoelectrochemical (PEC) - for example, proper metrics for describing material performance, how to assemble testing cells and prepare materials for assessment of their properties, and how to perform the experimental measurements needed to achieve reliable results towards better scientific understanding. For each technique, proper procedure, benefits, limitations, and data interpretation are discussed. Consolidating this information in a short, accessible, and easy to read reference guide will allow researchers to more rapidly immerse themselves into PEC research and also better compare their results against those of other researchers to better advance materials development. This book serves as a "how-to" guide for researchers engaged in or interested in engaging in the field of photoelectrochemical (PEC) water splitting. PEC water splitting is a rapidly growing field of research in which the goal is to deve...

  7. Charmed baryon isodoublet mass splitting in quantum chromodynamics revitalized

    Science.gov (United States)

    Sinha, S. N.; Sinha, S. M.; Rahman, M.; Kim, D. Y.

    1989-02-01

    We calculate the isodoublet mass splitting of charmed baryons in the quark model in QCD, which includes the relativistic correction and the explicit use of running QCD coupling constants with flavors. The model was applied and tested in the past for the calculations of isodoublet mass splittings of several hadrons. Our theoretical result ( Δmth( Σc++- Σc0)≅1.5±0.2 MeV) is in agteement with the recent experimental result ( Δmex( Σc++- Σc0)=1.2±0.7±0.3 MeV) by the ARGUS Collaboration at the DORIS II storage ring.

  8. A fully integrated high-Q Whispering-Gallery Wedge Resonator

    CERN Document Server

    Ramiro-Manzano, F; Pavesi, L; Pucker, G; Ghulinyan, M

    2012-01-01

    Microresonator devices which posses ultra-high quality factors are essential for fundamental investigations and applications. Microsphere and microtoroid resonators support remarkably high Q's at optical frequencies, while planarity constrains preclude their integration into functional lightwave circuits. Conventional semiconductor processing can also be used to realize ultra-high-Q's with planar wedge-resonators. Still, their full integration with side-coupled dielectric waveguides remains an issue. Here we show the full monolithic integration of a wedge-resonator/waveguide vertically-coupled system on a silicon chip. In this approach the cavity and the waveguide lay in different planes. This permits to realize the shallow-angle wedge while the waveguide remains intact, allowing therefore to engineer a coupling of arbitrary strength between these two. The precise size-control and the robustness against post-processing operation due to its monolithic integration makes this system a prominent platform for indu...

  9. The synthesis and adsorption properties of some carbohydrate-terminated dendrimer wedges

    CERN Document Server

    Ainsworth, R L

    1997-01-01

    A range of dendritic molecules that are designed to bind to a cotton surface has been synthesised. The architecture of the molecules allows the location of various functional, property modifying units at the focus and the attachment of recognition groups at the periphery of a dendritic molecule with wedge topology. The synthesis and characterisation of dendrimer wedges up to the second generation using a divergent approach has been performed. These wedges are readily built up using a simple and efficient stepwise pathway from the central core, and surface recognising species are subsequently attached to the molecule utilising procedures developed in conjunction with Unilever Research Laboratories. Work has been carried out to assess their adsorption onto a cotton surface and the postulated adsorption mechanism is discussed.

  10. Open wedge metatarsal osteotomy versus crescentic osteotomy to correct severe hallux valgus deformity

    DEFF Research Database (Denmark)

    Wester, Jens Ulrik; Hamborg-Petersen, Ellen; Herold, Niels

    2016-01-01

    BACKGROUND: Different techniques of proximal osteotomies have been introduced to correct severe hallux valgus. The open wedge osteotomy is a newly introduced method for proximal osteotomy. The aim of this prospective randomized study was to compare the radiological and clinical results after...... operation for severe hallux valgus, comparing the open wedge osteotomy to the crescentic osteotomy which is our traditional treatment. METHODS: Forty-five patients with severe hallux valgus (hallux valgus angle >35̊, and intermetatarsal angle >15̊) were included in this study. The treatment was proximal...... open wedge osteotomy and fixation with plate (Hemax), group 1, or operation with proximal crescentic osteotomy and fixation with a 3mm cannulated screw, group 2. The mean age was 52 years (19-71). Forty-one females and four males were included. Clinical and radiological follow-ups were performed 4...

  11. Wedge Shock and Nozzle Exhaust Plume Interaction in a Supersonic Jet Flow

    Science.gov (United States)

    Castner, Raymond; Zaman, Khairul; Fagan, Amy; Heath, Christopher

    2014-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the nozzle exhaust plume. Aft body shock waves that interact with the exhaust plume contribute to the near-field pressure signature of a vehicle. The plume and shock interaction was studied using computational fluid dynamics and compared with experimental data from a coaxial convergent-divergent nozzle flow in an open jet facility. A simple diamond-shaped wedge was used to generate the shock in the outer flow to study its impact on the inner jet flow. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the opposite plume boundary. The sonic boom pressure signature of the nozzle exhaust plume was modified by the presence of the wedge. Both the experimental results and computational predictions show changes in plume deflection.

  12. Stress singularity in a top of composite wedge with internal functionally graded material

    Directory of Open Access Journals (Sweden)

    Victor V. Tikhomirov

    2015-10-01

    Full Text Available The antiplane problem of the composite wedge consisting of two homogeneous external wedge-shaped areas and an intermediate zone of the interphase is studied. The interphase material is assumed functionally graded. It is shown that the problem in each area is harmonic within the quadratic law of inhomogeneity of the material in the transverse direction. The influence of the interphase on the stress state at the top of the wedge is analyzed. As compared to the ideal contact of external materials, the presence of the interphase leads both to decrease and increase in the singularity exponent. Moreover, the stress asymptotic may have two singular terms for some values of the composite parameters.

  13. A quantum hybrid with a thin antenna at the vertex of a wedge

    Energy Technology Data Exchange (ETDEWEB)

    Carlone, Raffaele, E-mail: raffaele.carlone@unina.it [Università “Federico II” di Napoli, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, MSA, via Cinthia, I-80126, Napoli (Italy); Posilicano, Andrea, E-mail: andrea.posilicano@uninsubria.it [DiSAT, Università dell' Insubria, via Valleggio 11, I-22100, Como (Italy)

    2017-03-26

    We study the spectrum, resonances and scattering matrix of a quantum Hamiltonian on a “hybrid surface” consisting of a half-line attached by its endpoint to the vertex of a concave planar wedge. At the boundary of the wedge, outside the vertex, homogeneous Dirichlet conditions are imposed. The system is tunable by varying the measure of the angle at the vertex. - Highlights: • Spectral characterization of a quantum Hamiltonian on “hybrid surface” consisting of a halfline attached to the vertex of a concave planar wedge. • The system is tunable by varying the measure of the angle at the vertex. • Relation between the conduction properties inside the hybrid and formation of resonances. • Easy generalization of the results to more complicated structures.

  14. Pervasive seismic wave reflectivity and metasomatism of the Tonga mantle wedge.

    Science.gov (United States)

    Zheng, Yingcai; Lay, Thorne; Flanagan, Megan P; Williams, Quentin

    2007-05-11

    Subduction zones play critical roles in the recycling of oceanic lithosphere and the generation of continental crust. Seismic imaging can reveal structures associated with key dynamic processes occurring in the upper-mantle wedge above the sinking oceanic slab. Three-dimensional images of reflecting interfaces throughout the upper-mantle wedge above the subducting Tonga slab were obtained by migration of teleseismic recordings of underside P- and S-wave reflections. Laterally continuous weak reflectors with tens of kilometers of topography were detected at depths near 90, 125, 200, 250, 300, 330, 390, 410, and 450 kilometers. P- and S-wave impedances decreased at the 330-kilometer and 450-kilometer reflectors, and S-wave impedance decreased near 200 kilometers in the vicinity of the slab and near 390 kilometers, just above the global 410-kilometer increase. The pervasive seismic reflectivity results from phase transitions and compositional zonation associated with extensive metasomatism involving slab-derived fluids rising through the wedge.

  15. Growth of the deposit wedge in the mountain reservoir

    Science.gov (United States)

    Chen, Y.; Song, G.

    2011-12-01

    The sedimentary problem of mountain reservoirs in Taiwan is getting serious year by year.Due to eroded sediments enter downstream reservoirs,the loss of sediment transport capacity may cause deposition of sediment in reservoirs.This phenomenon make problems to small mountain reservoirs.To realize the interaction between deposit wedges and mountain reservoirs,we selected Wushe reservoir which is situated in central Taiwan for a case study. Wushe reservoir is long and narrow.In recent years,most sediment is introduced during rain events that now accompany climate change are very important in sediment supply.In this thesis,we collected data of underwater landform and sub-bottom bedding information by using high resolution Multibeam Survey System(MBS) and seismic-reflection system.Up to now,we already had the bathymetric data for more than ten years,moreover,in 2010,we used 3.5kHz sub-bottom seismic profiler to analysis the sedimentary bedding situation in this area.These methods provide us accurate reservoir topography,sediment accumulation and the major ways of sediment transportation.The study purposes are as follows: First,according to the available underwater data for last ten years,we recognize the geomorphological characters of sedimentation as well as complete the mappings.Comparing to bathymetric images each year,we evaluate the carried ways of sediment.The flow water which enters this area transports along the thalweg,which in eastern reservoir.The range of water level variation cause alteration of sedimentary morphology,it also affects the scope of alluvial fan.The alluvial fan is located in the middle of the reservoir,the edge of it had moved forward 500 meters for last ten years.The annual mean of forward velocity was 50 meters,the elevation of fan edge also accelerated 10 meters per year.In a word,the large volume of the sedimentary delta is in Wushe reservoir now. Second,trying to clarify the composition of sedimentation and explain the sub

  16. Quantitative comparisons of analogue models of brittle wedge dynamics

    Science.gov (United States)

    Schreurs, Guido

    2010-05-01

    Analogue model experiments are widely used to gain insights into the evolution of geological structures. In this study, we present a direct comparison of experimental results of 14 analogue modelling laboratories using prescribed set-ups. A quantitative analysis of the results will document the variability among models and will allow an appraisal of reproducibility and limits of interpretation. This has direct implications for comparisons between structures in analogue models and natural field examples. All laboratories used the same frictional analogue materials (quartz and corundum sand) and prescribed model-building techniques (sieving and levelling). Although each laboratory used its own experimental apparatus, the same type of self-adhesive foil was used to cover the base and all the walls of the experimental apparatus in order to guarantee identical boundary conditions (i.e. identical shear stresses at the base and walls). Three experimental set-ups using only brittle frictional materials were examined. In each of the three set-ups the model was shortened by a vertical wall, which moved with respect to the fixed base and the three remaining sidewalls. The minimum width of the model (dimension parallel to mobile wall) was also prescribed. In the first experimental set-up, a quartz sand wedge with a surface slope of ˜20° was pushed by a mobile wall. All models conformed to the critical taper theory, maintained a stable surface slope and did not show internal deformation. In the next two experimental set-ups, a horizontal sand pack consisting of alternating quartz sand and corundum sand layers was shortened from one side by the mobile wall. In one of the set-ups a thin rigid sheet covered part of the model base and was attached to the mobile wall (i.e. a basal velocity discontinuity distant from the mobile wall). In the other set-up a basal rigid sheet was absent and the basal velocity discontinuity was located at the mobile wall. In both types of experiments

  17. Balloon occlusion versus wedged hepatic venography using iodinated contrast for targeting the portal vein during TIPS.

    Science.gov (United States)

    Caporossi, J-M; Vidal, V; Jacquier, A; Reyre, A; Flavian, A; Muller, C; Gaubert, J-Y; Bartoli, J-M; Moulin, G; Varoquaux, A

    2015-04-01

    To assess the efficacy, safety and gain in procedure time of the technique of balloon occlusion hepatic venography with iodinated contrast used to target the portal vein during TIPS. The technique is assessed versus wedged hepatic venography. Fifty-eight TIPS were prospectively included. The portal vein was located in 30 cases by the wedged hepatic venography (group 1) and in 28 cases by balloon occlusion hepatic venography (group 2). To compare both techniques a "portogram quality" score was defined using a 5 points scale. The time required to achieve portal puncture was also recorded. The complications of both procedures were assessed and classified in groups as intrahepatic hematoma or intraperitoneal hemorrhage. The right portal vein was visualized in a significantly higher number of patients using balloon than with wedged retrograde venography 71.3% (20/28) versus 13.3% (4/30) respectively (P=0.002). The quality score for the portogram was significantly higher for balloon hepatic venography 2.21 than for wedged hepatic venography 1.07 (P=0.002). The mean time required to puncture the portal vein was significantly shorter when the right branch of the portal vein was visualized 21 min versus 33.5 min (P=0.046). We recorded one intrahepatic hematoma (3.3%) and 4 intraperitoneal hemorrhage (13.3%) secondary to wedged hepatic venography. There were no complications with balloon occlusion hepatic venography (P=0.053). The use of balloon occlusion hepatic venography improves the quality of the retrograde portal venography to target the portal vein and decreases procedure time. The balloon technique is also burdened with fewer complications than the standard wedged hepatic venography. Copyright © 2014 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  18. P-wave anisotropy, mantle wedge flow and olivine fabrics beneath Japan

    Science.gov (United States)

    Liu, Xin; Zhao, Dapeng

    2017-09-01

    We present a new 3-D anisotropic P-wave velocity (Vp) model for the crust and upper mantle of the Japan subduction zone obtained by inverting a large number of high-quality P-wave traveltime data of local earthquakes and teleseismic events. By assuming orthorhombic anisotropy with a vertical symmetry axis existing in the modeling space, isotropic Vp tomography and 3-D Vp azimuthal and radial anisotropies are determined simultaneously. According to a simple flow field and the obtained Vp anisotropic tomography, we estimate the distribution of olivine fabrics in the mantle wedge. Our results show that the forearc mantle wedge above the subducting Pacific slab beneath NE Japan exhibits an azimuthal anisotropy with trench-parallel fast velocity directions (FVDs) and Vhf > Vv > Vhs (here Vv is Vp in the vertical direction, Vhf and Vhs are P-wave velocities in the fast and slow directions in the horizontal plane), where B-type olivine fabric with vertical trench-parallel flow may dominate. Such an anisotropic feature is not obvious in the forearc mantle wedge above the Philippine Sea (PHS) slab under SW Japan, probably due to higher temperatures and more fluids there associated with the young and warm PHS slab subduction. Trench-normal FVDs and Vhf > Vv > Vhs are generally revealed in the mantle wedge beneath the arc and backarc in Japan, where E-type olivine fabric with FVD-parallel horizontal flow may dominate. Beneath western Honshu, however, the mantle wedge exhibits an anisotropy of Vv > Vhf > Vhs and so C-type olivine fabric may dominate, suggesting that the water content is the highest there, because both the PHS and Pacific slabs exist there and their dehydration reactions release abundant fluids to the overlying mantle wedge.

  19. Tectonic and gravity extensional collapses in overpressured cohesive and frictional wedges

    Science.gov (United States)

    Yuan, X. P.; Leroy, Y. M.; Maillot, B.

    2015-03-01

    Two modes of extensional collapse in a cohesive and frictional wedge of arbitrary topography, finite extent, and resting on an inclined weak décollement are examined by analytical means. The first mode consists of the gravitational collapse by the action of a half-graben, rooting on the décollement and pushing seaward the frontal part of the wedge. The second mode results from the tectonics extension at the back wall with a similar half-graben kinematics and the landward sliding of the rear part of the wedge. The predictions of the maximum strength theorem, equivalent to the kinematic approach of limit analysis and based on these two collapse mechanisms, not only match exactly the solutions of the critical Coulomb wedge theory, once properly amended, but generalizes them in several aspects: wedge of finite size, composed of cohesive material and of arbitrary topography. This generalization is advantageous to progress in our understanding of many laboratory experiments and field cases. For example, it is claimed from analytical results validated by experiments that the stability transition for a cohesive, triangular wedge occurs with the activation of the maximum length of the décollement. It is shown that the details of the topography, for the particular example of the Mejillones peninsula (North Chile) is, however, responsible for the selection of a short length-scale, dynamic instability corresponding to a frontal gravitational instability. A reasonable amount of cohesion is sufficient for the pressures proposed in the literature to correspond to a stability transition and not with a dynamically unstable state.

  20. Impact of Degraded Communication on Interdependent Power Systems: The Application of Grid Splitting

    Directory of Open Access Journals (Sweden)

    Di-An Tian

    2016-08-01

    Full Text Available Communication is increasingly present for managing and controlling critical infrastructures strengthening their cyber interdependencies. In electric power systems, grid splitting is a topical communication-critical application. It amounts to separating a power system into islands in response to an impending instability, e.g., loss of generator synchronism due to a component fault, by appropriately disconnecting transmission lines and grouping synchronous generators. The successful application of grid splitting depends on the communication infrastructure to collect system-wide synchronized measurements and to relay the command to open line switches. Grid splitting may be ineffective if communication is degraded and its outcome may also depend on the system loading conditions. This paper investigates the effects of degraded communication and load variability on grid splitting. To this aim, a communication delay model is coupled with a transient electrical model and applied to the IEEE 39-Bus and the IEEE 118-Bus Test System. Case studies show that the loss of generator synchronism following a fault is mitigated by timely splitting the network into islands. On the other hand, the results show that communication delays and increased network flows can degrade the performance of grid splitting. The developed framework enables the identification of the requirements of the dedicated communication infrastructure for a successful grid-splitting procedure.

  1. Comparison of infinite and wedge fringe settings in Mach Zehnder interferometer for temperature field measurement

    Energy Technology Data Exchange (ETDEWEB)

    Haridas, Divya [Department of Physics, National Institute of Technology Calicut, Kerala, 673601 (India); P, Vibin Antony; Sajith, V.; Sobhan, C. B. [School of Nano Science and Technology, National Institute of Technology Calicut, Kerala, 673601 (India)

    2014-10-15

    Interferometric method, which utilizes the interference of coherent light beams, is used to determine the temperature distribution in the vicinity of a vertical heater plate. The optical components are arranged so as to obtain wedge fringe and infinite fringe patterns and isotherms obtained in each case were compared. In wedge fringe setting, image processing techniques has been used for obtaining isotherms by digital subtraction of initial parallel fringe pattern from deformed fringe pattern. The experimental results obtained are compared with theoretical correlations. The merits and demerits of the fringe analysis techniques are discussed on the basis of the experimental results.

  2. Molecular depth profiling with cluster secondary ion mass spectrometry and wedges.

    Science.gov (United States)

    Mao, Dan; Wucher, Andreas; Winograd, Nicholas

    2010-01-01

    Secondary ion mass spectrometry and atomic force microscopy are employed to characterize a wedge-shaped crater eroded by 40 keV C(60)(+) bombardment of a 395 nm thin film of Irganox 1010 doped with four delta layers of Irganox 3114. The wedge structure creates a laterally magnified cross section of the film. From an examination of the resulting surface, information about depth resolution, topography, and erosion rate can be obtained as a function of crater depth in a single experiment. This protocol provides a straightforward way to determine the parameters necessary to characterize molecular depth profiles and to obtain an accurate depth scale for erosion experiments.

  3. Global Solutions of Shock Reflection by Wedges for the Nonlinear Wave Equation

    Institute of Scientific and Technical Information of China (English)

    Xuemei DENG; Wei XIANG

    2011-01-01

    When a plane shock hits a wedge head on,it experiences a reflection-diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time.In this paper,shock reflection by large-angle wedges for compressible flow modeled by the nonlinear wave equation is studied and a global theory of existence,stability and regularity is established.Moreover,C0,1 is the optimal regularity for the solutions across the degenerate sonic boundary.

  4. Laparoscopic wedge resection of synchronous gastric intraepithelial neoplasia and stromal tumor: a case report.

    Science.gov (United States)

    Mou, Yi-Ping; Xu, Xiao-Wu; Xie, Kun; Zhou, Wei; Zhou, Yu-Cheng; Chen, Ke

    2010-10-21

    Synchronous occurrence of epithelial neoplasia and gastrointestinal stromal tumor (GIST) in the stomach is uncommon. Only rare cases have been reported in the literature. We present here a 60-year-old female case of synchronous occurrence of gastric high-level intraepithelial neoplasia and GIST with the features of 22 similar cases and detailed information reported in the English-language literature summarized. In the present patient, epithelial neoplasia and GIST were removed en bloc by laparoscopic wedge resection. To the best of our knowledge, this is the first reported case treated by laparoscopic wedge resection.

  5. RESEARCH ON THE MOTION CHARACTERISTICS OF FIBER SUSPENSIONS IN A WEDGE-SHAPED FLOW

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper the motion of cylindrical particles in a wedge-shaped flow was studied. The velocity distribution of wedge-shaped flow was simulated first, then the Euler-Lagrange model used to calculate the motion of cylindrical particles. The evolution of particle location, velocity and orientation with time was examined. The trajectories of the particles with different particle Stokes number, rate of flow and initial particle orientation were drawn. The results indicate that the Stokes number and initial orientation are important parameters which affect the particle motion. The conclusions are helpful to the engineering applications.

  6. Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality

    Science.gov (United States)

    Dong, Xi; Harlow, Daniel; Wall, Aron C.

    2016-07-01

    In this Letter we prove a simple theorem in quantum information theory, which implies that bulk operators in the anti-de Sitter/conformal field theory (AdS/CFT) correspondence can be reconstructed as CFT operators in a spatial subregion A , provided that they lie in its entanglement wedge. This is an improvement on existing reconstruction methods, which have at most succeeded in the smaller causal wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Maldacena, and Suh on the quantum relative entropy of a CFT subregion with earlier ideas interpreting the correspondence as a quantum error correcting code.

  7. Bulk Reconstruction in the Entanglement Wedge in AdS/CFT

    CERN Document Server

    Dong, Xi; Wall, Aron C

    2016-01-01

    In this note we prove a simple theorem in quantum information theory, which implies that bulk operators in the Anti-de Sitter / Conformal Field Theory (AdS/CFT) correspondence can be reconstructed as CFT operators in a spatial subregion $A$, provided that they lie in its entanglement wedge. This is an improvement on existing reconstruction methods, which have at most succeeded in the smaller causal wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Maldacena, and Suh on the quantum relative entropy of a CFT subregion with earlier ideas interpreting the correspondence as a quantum error correcting code.

  8. Unbiased split variable selection for random survival forests using maximally selected rank statistics.

    Science.gov (United States)

    Wright, Marvin N; Dankowski, Theresa; Ziegler, Andreas

    2017-04-15

    The most popular approach for analyzing survival data is the Cox regression model. The Cox model may, however, be misspecified, and its proportionality assumption may not always be fulfilled. An alternative approach for survival prediction is random forests for survival outcomes. The standard split criterion for random survival forests is the log-rank test statistic, which favors splitting variables with many possible split points. Conditional inference forests avoid this split variable selection bias. However, linear rank statistics are utilized by default in conditional inference forests to select the optimal splitting variable, which cannot detect non-linear effects in the independent variables. An alternative is to use maximally selected rank statistics for the split point selection. As in conditional inference forests, splitting variables are compared on the p-value scale. However, instead of the conditional Monte-Carlo approach used in conditional inference forests, p-value approximations are employed. We describe several p-value approximations and the implementation of the proposed random forest approach. A simulation study demonstrates that unbiased split variable selection is possible. However, there is a trade-off between unbiased split variable selection and runtime. In benchmark studies of prediction performance on simulated and real datasets, the new method performs better than random survival forests if informative dichotomous variables are combined with uninformative variables with more categories and better than conditional inference forests if non-linear covariate effects are included. In a runtime comparison, the method proves to be computationally faster than both alternatives, if a simple p-value approximation is used. Copyright © 2017 John Wiley & Sons, Ltd.

  9. 76 FR 24856 - Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges, and Picks...

    Science.gov (United States)

    2011-05-03

    ..., and Picks & Mattocks) From the People's Republic of China: Final Results of the Expedited Sunset... & Adzes, Bars & Wedges, Hammers & Sledges, and Picks & Mattocks) from the People's Republic of China..., track tools and wedges; (3) picks and mattocks; and (4) axes, adzes and similar hewing tools. Hand...

  10. 76 FR 52313 - Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges, and Picks...

    Science.gov (United States)

    2011-08-22

    ..., and Picks & Mattocks) From the People's Republic of China: Continuation of Antidumping Duty Orders... & Adzes, Bars & Wedges, Hammers & Sledges, and Picks & Mattocks) (``Hand Tools'') from the People's... & Wedges, Hammers & Sledges, and Picks & Mattocks) From the People's Republic of China: Final Results...

  11. Determination of refractive index of a simple negative, positive, or zero power lens using wedged plated interferometer

    Science.gov (United States)

    Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, P.

    1990-01-01

    A nondestructive technique for measuring the refractive index of a negative lens using a wedged plate interferometer is described. The method can be also used for measuring the refractive index of convex or zero power lenses. Schematic diagrams are presented for the use of a wedged plate interferometer for measuring the refractive index of a concave lens and of a convex lens.

  12. Semi-infinite $q$-wedge construction of the level 2 Fock Space of $U_q(\\widehat{sl}_2)$

    CERN Document Server

    Petersen, J U H

    1997-01-01

    In this proceedings a particular example from \\cite{KMPY} (q-alg/9603025) is presented: the construction of the level 2 Fock space of $\\U_q(\\affsl{2})$. The generating ideal of the wedge relations is given and the wedge space defined. Normal ordering of wedges is defined in terms of the energy function. Normally ordered wedges form a base of the wedge space. The q-deformed Fock space is defined as the space of semi-infinite wedges with a finite number of vectors in the wedge product differing from a ground state sequence, and endowed with a separated q-adic topology . Normally ordered wedges form a base of the Fock space. The action of $\\U_q(\\affsl{2})$ on the Fock space converges in the q-adic topology. On the Fock space the action of bosons, which commute with the $\\U_q(\\affsl{2})$-action, also converges in the q-adic topology. Hence follows the decomposition of the Fock space into irreducible $\\U_q(\\affsl{2})$-modules.

  13. The effects of various kinds of lateral wedge insoles on performance of individuals with knee joint osteoarthritis

    Directory of Open Access Journals (Sweden)

    Masoud Rafiaee

    2012-01-01

    Conclusion: Using lateral wedge insole is a simple, inexpensive therapy for decreasing pain and improving quality of life; however, most research must be carried out to find the effects of lateral wedge on severity of knee joint OA and aligning TFA.

  14. Accuracy and initial stability of open- and closed-wedge high tibial osteotomy: a cadaveric RSA study.

    NARCIS (Netherlands)

    Gaasbeek, R.D.A.; Welsing, R.T.C.; Verdonschot, N.J.J.; Rijnberg, W.J.; Loon, C.J.M. van; Kampen, A. van

    2005-01-01

    We analyzed the difference in angle-correction accuracy and initial stability between open-wedge (OWO) and closed-wedge tibial valgus osteotomy (CWO). Five fresh-frozen pairs of human cadaver lower limbs were used; their bone mineral density (BMD) was measured with DEXA and a planned 7 degrees valgu

  15. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang

    2013-11-01

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  16. Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure.

    Science.gov (United States)

    Wu, Yun-Ben; Yang, Wen; Wang, Tong-Biao; Deng, Xin-Hua; Liu, Jiang-Tao

    2016-02-11

    The light absorption of a monolayer graphene-molybdenum disulfide photovoltaic (GM-PV) cell in a wedge-shaped microcavity with a spectrum-splitting structure is investigated theoretically. The GM-PV cell, which is three times thinner than the traditional photovoltaic cell, exhibits up to 98% light absorptance in a wide wavelength range. This rate exceeds the fundamental limit of nanophotonic light trapping in solar cells. The effects of defect layer thickness, GM-PV cell position in the microcavity, incident angle, and lens aberration on the light absorptance of the GM-PV cell are explored. Despite these effects, the GM-PV cell can still achieve at least 90% light absorptance with the current technology. Our proposal provides different methods to design light-trapping structures and apply spectrum-splitting systems.

  17. Controllable valley splitting in silicon quantum devices

    Science.gov (United States)

    Goswami, Srijit; Slinker, K. A.; Friesen, Mark; McGuire, L. M.; Truitt, J. L.; Tahan, Charles; Klein, L. J.; Chu, J. O.; Mooney, P. M.; van der Weide, D. W.; Joynt, Robert; Coppersmith, S. N.; Eriksson, Mark A.

    2007-01-01

    Silicon has many attractive properties for quantum computing, and the quantum-dot architecture is appealing because of its controllability and scalability. However, the multiple valleys in the silicon conduction band are potentially a serious source of decoherence for spin-based quantum-dot qubits. Only when a large energy splits these valleys do we obtain well-defined and long-lived spin states appropriate for quantum computing. Here, we show that the small valley splittings observed in previous experiments on Si-SiGe heterostructures result from atomic steps at the quantum-well interface. Lateral confinement in a quantum point contact limits the electron wavefunctions to several steps, and enhances the valley splitting substantially, up to 1.5meV. The combination of electrostatic and magnetic confinement produces a valley splitting larger than the spin splitting, which is controllable over a wide range. These results improve the outlook for realizing spin qubits with long coherence times in silicon-based devices.

  18. Technical Skills Required in Split Liver Transplantation.

    Science.gov (United States)

    Liu, Huanqiu; Li, Ruijun; Fu, Jinling; He, Qianyan; Li, Ji

    2016-07-01

    The number of liver grafts obtained from a cadaver can be greatly increased with the application of split liver transplantation. In the last 10 years, pediatric waiting list mortality has been reduced significantly with the use of this form of liver transplantation, which has 2 major forms. In its most commonly used form, the liver can be transplanted into 1 adult and 1 child by splitting it into a right extended and a left lateral graft. For adult and pediatric recipients, the results of this procedure are comparable to those of whole-organ techniques. In another form, 2 hemi-grafts are obtained by splitting the liver, which can be transplanted into a medium-sized adult (the right side) and a large child/small adult (the left side). The adult liver graft pool is expanded through the process of full right/full left splitting; but it is also a critical technique when one considers the knowledge required of the potential anatomic variations and the high technical skill level needed. In this review, we provide some basic insights into the technical and anatomical aspects of these 2 forms of split liver transplantation and present an updated summary of both forms.

  19. Spin splitting in 2D monochalcogenide semiconductors

    Science.gov (United States)

    Do, Dat T.; Mahanti, Subhendra D.; Lai, Chih Wei

    2015-11-01

    We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D’yakonov-Perel’ spin relaxation mechanism is also suppressed.

  20. Fano resonance Rabi splitting of surface plasmons.

    Science.gov (United States)

    Liu, Zhiguang; Li, Jiafang; Liu, Zhe; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2017-08-14

    Rabi splitting and Fano resonance are well-known physical phenomena in conventional quantum systems as atoms and quantum dots, arising from strong interaction between two quantum states. In recent years similar features have been observed in various nanophotonic and nanoplasmonic systems. Yet, realization of strong interaction between two or more Fano resonance states has not been accomplished either in quantum or in optical systems. Here we report the observation of Rabi splitting of two strongly coupled surface plasmon Fano resonance states in a three-dimensional plasmonic nanostructure consisting of vertical asymmetric split-ring resonators. The plasmonic system stably supports triple Fano resonance states and double Rabi splittings can occur between lower and upper pairs of the Fano resonance states. The experimental discovery agrees excellently with rigorous numerical simulations, and is well explained by an analytical three-oscillator model. The discovery of Fano resonance Rabi splitting could provide a stimulating insight to explore new fundamental physics in analogous atomic systems and could be used to significantly enhance light-matter interaction for optical sensing and detecting applications.

  1. Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations

    Science.gov (United States)

    Gassner, Gregor J.; Winters, Andrew R.; Kopriva, David A.

    2016-12-01

    Fisher and Carpenter (2013) [12] found a remarkable equivalence of general diagonal norm high-order summation-by-parts operators to a subcell based high-order finite volume formulation. This equivalence enables the construction of provably entropy stable schemes by a specific choice of the subcell finite volume flux. We show that besides the construction of entropy stable high-order schemes, a careful choice of subcell finite volume fluxes generates split formulations of quadratic or cubic terms. Thus, by changing the subcell finite volume flux to a specific choice, we are able to generate, in a systematic way, all common split forms of the compressible Euler advection terms, such as the Ducros splitting and the Kennedy and Gruber splitting. Although these split forms are not entropy stable, we present a systematic way to prove which of those split forms are at least kinetic energy preserving. With this, we construct a unified high-order split form DG framework. We investigate with three dimensional numerical simulations of the inviscid Taylor-Green vortex and show that the new split forms enhance the robustness of high-order simulations in comparison to the standard scheme when solving turbulent vortex dominated flows. In fact, we show that for certain test cases, the novel split form discontinuous Galerkin schemes are more robust than the discontinuous Galerkin scheme with over-integration.

  2. Long range hybrid tube-wedge plasmonic waveguide with extreme light confinement and good fabrication error tolerance.

    Science.gov (United States)

    Ding, Li; Qin, Jin; Xu, Kai; Wang, Liang

    2016-02-22

    We studied a novel long range hybrid tube-wedge plasmonic (LRHTWP) waveguide consisting of a high index dielectric nanotube placed above a triangular metal wedge substrate. Using comprehensive numerical simulations on guiding properties of the designed waveguide, it is found that extreme light confinement and low propagation loss are obtained due to strong coupling between dielectric nanotube mode and wedge plasmon polariton. Comparing with previous studied hybrid plasmonic waveguides, the LRHTWP waveguide has longer propagation length and tighter mode confinement. In addition, the LRHTWP waveguide is quite tolerant to practical fabrication errors such as variation of the wedge tip angle and the horizontal misalignment between the nanotube and the metal wedge. The proposed LRHTWP waveguide could have many application potentials for various high performance nanophotonic components.

  3. The distribution and depth of ion doses implanted into wedges by plasma immersion ion implantation in drifting and stationary plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tarrant, R N; Devasahayam, S; McKenzie, D R; Bilek, M M M [School of Physics (A28), University of Sydney, NSW 2006 (Australia)

    2006-08-15

    The distribution of ion dose arising from plasma immersion ion implantation (PIII) of a complex shape in the form of a wedge is measured. Two types of plasma are considered: a drifting titanium plasma derived from a pulsed cathodic arc and a stationary plasma generated by PIII pulses in oxygen or nitrogen gas. The distributions of the implanted material over the surface of the aluminium wedge were studied using secondary ion mass spectroscopy and Rutherford backscattering. The effects of varying the apex angles of the wedge and the plasma density are investigated. We conclude that ion-focusing effects at the apex of the wedge were more important for the drifting plasma than for the stationary plasmas. In a drifting plasma, the ion drift velocity directed towards the apex of the wedge compresses the sheath close to the apex and enhances the concentration of the dose. For the stationary plasma, the dose is more uniform.

  4. Effects of two different degrees of lateral-wedge insoles on unilateral lower extremity load-bearing line in patients with medial knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Bilge Yılmaz

    2016-08-01

    Conclusion: Both wedge insoles was effective in moving of the unilateral lower extremity load carrying line to the lateral. Lateral wedged insoles are biomechanically effective and reduce loading of the medial compartment in patients with medial knee osteoarthritis.

  5. Inorganic photocatalysts for overall water splitting.

    Science.gov (United States)

    Xing, Jun; Fang, Wen Qi; Zhao, Hui Jun; Yang, Hua Gui

    2012-04-01

    Photocatalytic water splitting using semiconductor photocatalysts has been considered as a "green" process for converting solar energy into hydrogen. The pioneering work on electrochemical photolysis of water at TiO(2) electrode, reported by Fujishima and Honda in 1972, ushered in the area of solar fuel. As the real ultimate solution for solar fuel-generation, overall water splitting has attracted interest from researchers for some time, and a variety of inorganic photocatalysts have been developed to meet the challenge of this dream reaction. To date, high-efficiency hydrogen production from pure water without the assistance of sacrificial reagents remains an open challenge. In this Focus Review, we aim to provide a whole picture of overall water splitting and give an outlook for future research.

  6. Harvesting split thickness costal cartilage graft

    Directory of Open Access Journals (Sweden)

    Sunil Gaba

    2017-01-01

    Full Text Available Aim: There are few complications associated with harvesting of full thickness coastal cartilage grafts i.e., pneumothorax (0.9%, contour deformities and prolonged post-operative pain. To address these issues, authors devised special scalpel to harvest split-thickness costal cartilage grafts. Materials and Methods: Standard inframammary incision was used for harvesting rib. Incision was made directly over the desired rib. Specially designed scalpel was used to cut through the rib cartilage to the half of the thickness. The study was conducted in two parts – cadaveric and clinical. Results: There was significantly less pain and no pneumothorax in the patients in whom the split thickness graft was harvested. Wounds healed without any complication. Discussion: Thus, newly devised angulated scalpel used in the current study, showed the potential to supply the reconstructive surgeon with split thickness rib graft without risk of complications such as pneumothorax or warping contour deformities and post-operative pain.

  7. Multiple spectral splits of supernova neutrinos.

    Science.gov (United States)

    Dasgupta, Basudeb; Dighe, Amol; Raffelt, Georg G; Smirnov, Alexei Yu

    2009-07-31

    Collective oscillations of supernova neutrinos swap the spectra f(nu(e))(E) and f(nu[over ](e))(E) with those of another flavor in certain energy intervals bounded by sharp spectral splits. This phenomenon is far more general than previously appreciated: typically one finds one or more swaps and accompanying splits in the nu and nu[over ] channels for both inverted and normal neutrino mass hierarchies. Depending on an instability condition, swaps develop around spectral crossings (energies where f(nu(e))=f(nu(x)), f(nu[over ](e))=f(nu[over ](x)) as well as E-->infinity where all fluxes vanish), and the widths of swaps are determined by the spectra and fluxes. Washout by multiangle decoherence varies across the spectrum and splits can survive as sharp spectral features.

  8. Trap split with Laguerre-Gaussian beams

    CERN Document Server

    Kazemi, Seyedeh Hamideh; Mahmoud, Mohammad

    2016-01-01

    The optical trapping techniques have been extensively used in physics, biophysics, micro-chemistry, and micro-mechanics to allow trapping and manipulation of materials ranging from particles, cells, biological substances, and polymers to DNA and RNA molecules. In this Letter, we present a convenient and effective way to generate a novel phenomenon of trapping, named trap split, in a conventional four-level double-$\\Lambda$ atomic system driven by four femtosecond Laguerre-Gaussian laser pulses. We find that trap split can be always achieved when atoms are trapped by such laser pulses, as compared to Gaussian ones. This work would greatly facilitate the trapping and manipulating the particles and generation of trap split. It may also suggest the possibility of extension into new research fields, such as micro-machining and biophysics.

  9. Analysis on electromagnetic scattering by a wedge with impedance faces under exact impedance boundary

    Institute of Scientific and Technical Information of China (English)

    吴良超; 汪茂光

    1995-01-01

    Under the exact impedance boundary condition (EIBC), by using wave equations and the longitudinal field method, the electromagnetic scattenng by an impedance wedge has been analysed in detail, following the Maliuzhinets approach, and the uniform diffraction coefficient of the diffracted field has been presented.

  10. Estimation of treatment efficacy with complier average causal effects (CACE) in a randomized stepped wedge trial.

    Science.gov (United States)

    Gruber, Joshua S; Arnold, Benjamin F; Reygadas, Fermin; Hubbard, Alan E; Colford, John M

    2014-05-01

    Complier average causal effects (CACE) estimate the impact of an intervention among treatment compliers in randomized trials. Methods used to estimate CACE have been outlined for parallel-arm trials (e.g., using an instrumental variables (IV) estimator) but not for other randomized study designs. Here, we propose a method for estimating CACE in randomized stepped wedge trials, where experimental units cross over from control conditions to intervention conditions in a randomized sequence. We illustrate the approach with a cluster-randomized drinking water trial conducted in rural Mexico from 2009 to 2011. Additionally, we evaluated the plausibility of assumptions required to estimate CACE using the IV approach, which are testable in stepped wedge trials but not in parallel-arm trials. We observed small increases in the magnitude of CACE risk differences compared with intention-to-treat estimates for drinking water contamination (risk difference (RD) = -22% (95% confidence interval (CI): -33, -11) vs. RD = -19% (95% CI: -26, -12)) and diarrhea (RD = -0.8% (95% CI: -2.1, 0.4) vs. RD = -0.1% (95% CI: -1.1, 0.9)). Assumptions required for IV analysis were probably violated. Stepped wedge trials allow investigators to estimate CACE with an approach that avoids the stronger assumptions required for CACE estimation in parallel-arm trials. Inclusion of CACE estimates in stepped wedge trials with imperfect compliance could enhance reporting and interpretation of the results of such trials.

  11. Nanoscale guiding for cold atoms based on surface plasmons along the tips of metallic wedges

    Institute of Scientific and Technical Information of China (English)

    Wang Zheng-Ling; Tang Wei-Min; Zhou Ming; Gao Chuan-Yu

    2013-01-01

    We propose a novel scheme to guide neutral cold atoms in a nanoscale region based on surface plasmons (SPs) of one pair and two pairs of tips of metallic wedges with locally enhanced light intensity and sub-optical wavelength resolution.We analyze the near-field intensity distribution of the tip of the metallic wedge by the FDTD method,and study the total intensity as well as the total potential of optical potentials and van der Waals potentials for 87Rb atoms in the light field of one pair and two pairs of tips of metallic wedges.It shows that the total potentials of one pair and two pairs of tips of metallic wedges can generate a gravito-optical trap and a dark closed trap for nanoscale guiding of neutral cold atoms.Guided atoms can be cooled with efficient intensity-gradient Sisyphus cooling by blue-detuned light field.This provides an important step towards the generation of hybrid systems consisting of isolated atoms and solid devices.

  12. Numerical Simulation and Experimental Validation of an Integrated Sleeve-Wedge Anchorage for CFRP Rods

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Smith, Scott T.; Täljsten, Björn

    2011-01-01

    The tensioning of carbon fibre-reinforced polymer (CFRP) rods for prestressed concrete applications or post-tensioning repair and strengthening has met with mixed success. This is primarily due to limitations inherent in the use of traditional wedge anchors typically used for steel tendons. Recen...

  13. Impingement of water droplets on wedges and diamond airfoils at supersonic speeds

    Science.gov (United States)

    Serafini, John S

    1953-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees to 460 degrees R. Also, free-stream Mach numbers from 1.1 to 2.0, semi-apex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  14. Optical necklaces generated by the diffraction on a stack of dielectric wedges

    Energy Technology Data Exchange (ETDEWEB)

    Izdebskaya, Yana [Nonlinear Physics Centre, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia); Department of Physics, V.I. Vernandsky Taurida National University, Simferopol 95007, Crimea (Ukraine)], E-mail: yvi124@rsphysse.anu.edu.au

    2008-05-19

    We demonstrate that the regular ring-shaped arrays of Gaussian beams, or optical necklaces, can be generated using diffraction on a stack of dielectric wedges. A condition for self-similarity and structural stability of the beams has been derived and shows good comparison with experimental data.

  15. On the role of lateral waves in the radiation from the dielectric wedge

    DEFF Research Database (Denmark)

    Balling, Peter

    1973-01-01

    The field on the dielectric wedge is approximated by a plane-wave expansion as in [1]. Contributions from this solution to both the surface field and the radiation field are examined. Finally, an experimental radiation field is compared with the plane-wave solution and with a geometric-optical di...

  16. On the shape of a droplet in a wedge: new insight from electrowetting

    NARCIS (Netherlands)

    Baratian, D.; Cavalli, A.; Ende, van den H.T.M.; Mugele, F.

    2015-01-01

    The equilibrium morphology of liquid drops exposed to geometric constraints can be rather complex. Even for simple geometries, analytical solutions are scarce. Here, we investigate the equilibrium shape and position of liquid drops confined in the wedge between two solid surfaces at an angle α. Usin

  17. Quantitative planar Raman imaging through a spectrograph: visualisation of a supersonic wedge flow

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter; Bakker, P.G.

    2005-01-01

    Planar Raman imaging through a spectrograph is demonstrated as a diagnostic tool for quantitative flow visualisation of internal supersonic wedge flow. A dedicated Bayesian deconvolution filter is used to remove the spectral structure that is introduced by the spectrograph. The 2D density field is d

  18. Thick-Walled Cylinder Theory Applied on a Conical Wedge Anchorage

    DEFF Research Database (Denmark)

    Bennitz, Anders; Grip, Niklas; Schmidt, Jacob Wittrup

    2011-01-01

    Conical wedge anchorages are frequently used to anchor steel tendons in prestressing applications within the construction industry. To replace the steel tendons with non-corrosive and low weight FRPs (Fiber Reinforced Polymers), the different mechanical interactions between the steel and FRPs call...

  19. Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw

    NARCIS (Netherlands)

    Vonk, J. E.; Mann, P. J.; Dowdy, K. L.; Davydova, A.; Davydov, S. P.; Zimov, N.; Spencer, R. G. M.; Bulygina, E. B.; Eglinton, T. I.; Holmes, R. M.

    2013-01-01

    Pleistocene Yedoma permafrost contains nearly a third of all organic matter (OM) stored in circum-arctic permafrost and is characterized by the presence of massive ice wedges. Due to its rapid formation by sediment accumulation and subsequent frozen storage, Yedoma OM is relatively well preserved an

  20. A Novel Continuous Extrusion Process to Fabricate Wedge-Shaped Light Guide Plates

    Directory of Open Access Journals (Sweden)

    Wen-Tse Hsiao

    2013-01-01

    Full Text Available Backlight modules are key components in thin-film transistor liquid crystal displays (TFT-LCD. Among the components of a backlight module, the light guide plate (LGP plays the most important role controlling the light projected to the eyes of users. A wedge-shaped LGP, with its asymmetrical structure, is usually fabricated by an injection proces, but the fabrication time of this process is long. This study proposes a continuous extrusion process to fabricate wedge-shaped LGPs. This continuous process has advantages for mass production. Besides a T-die and rollers, this system also has an in situ monitor of the melt-bank that forms during the extrusion process, helping control the plate thickness. Results show that the melt bank has a close relationship with the plate thickness. The temperature of the bottom heater and roller was adjusted to reduce the surface deformation of the wedge-shaped plate. This continuous extrusion system can successfully manufacture wedge-shaped LGPs for mass production.