WorldWideScience

Sample records for weatherproofing

  1. 30 CFR 57.12035 - Weatherproof lamp sockets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Weatherproof lamp sockets. 57.12035 Section 57.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12035 Weatherproof lamp sockets. Lamp sockets shall be of a weatherproof type...

  2. 30 CFR 56.12035 - Weatherproof lamp sockets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Weatherproof lamp sockets. 56.12035 Section 56.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL....12035 Weatherproof lamp sockets. Lamp sockets shall be of a weatherproof type where they are exposed to...

  3. Requirements for Weatherproofing Thin Shell Concrete Roofs. Proceedings of the Conference of Building Research Institute, Division of Engineering and Industrial Research (Spring 1961).

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC.

    Topics discussed include--(1) requirements for weatherproofing and sealant materials for thin shell concrete roof, (2) effect of physical factors on weatherproofing of thin shell concrete roofs, (3) problems and limitations imposed by thin shell concrete roofs and their effect on weatherproofing and sealant materials, and (4) properties and uses…

  4. The Influence of Different Recycling Scenarios on the Mechanical Design of an LED Weatherproof Light Fitting

    Directory of Open Access Journals (Sweden)

    Víctor Camañes

    2014-08-01

    Full Text Available This paper analyzes the high relevance of material selection for the sustainable development of an LED weatherproof light fitting. The research reveals how this choice modifies current and future end of life scenarios and can reduce the overall environmental impact. This life cycle assessment has been carried out with Ecotool, a software program especially developed for designers to assess the environmental performance of their designs at the same time that they are working on them. Results show that special attention can be put on the recycling and reusing of the product from the initial stages of development.

  5. Gigavision - A weatherproof, multibillion pixel resolution time-lapse camera system for recording and tracking phenology in every plant in a landscape

    Science.gov (United States)

    Brown, T.; Borevitz, J. O.; Zimmermann, C.

    2010-12-01

    We have a developed a camera system that can record hourly, gigapixel (multi-billion pixel) scale images of an ecosystem in a 360x90 degree panorama. The “Gigavision” camera system is solar-powered and can wirelessly stream data to a server. Quantitative data collection from multiyear timelapse gigapixel images is facilitated through an innovative web-based toolkit for recording time-series data on developmental stages (phenology) from any plant in the camera’s field of view. Gigapixel images enable time-series recording of entire landscapes with a resolution sufficient to record phenology from a majority of individuals in entire populations of plants. When coupled with next generation sequencing, quantitative population genomics can be performed in a landscape context linking ecology and evolution in situ and in real time. The Gigavision camera system achieves gigapixel image resolution by recording rows and columns of overlapping megapixel images. These images are stitched together into a single gigapixel resolution image using commercially available panorama software. Hardware consists of a 5-18 megapixel resolution DSLR or Network IP camera mounted on a pair of heavy-duty servo motors that provide pan-tilt capabilities. The servos and camera are controlled with a low-power Windows PC. Servo movement, power switching, and system status monitoring are enabled with Phidgets-brand sensor boards. System temperature, humidity, power usage, and battery voltage are all monitored at 5 minute intervals. All sensor data is uploaded via cellular or 802.11 wireless to an interactive online interface for easy remote monitoring of system status. Systems with direct internet connections upload the full sized images directly to our automated stitching server where they are stitched and available online for viewing within an hour of capture. Systems with cellular wireless upload an 80 megapixel “thumbnail” of each larger panorama and full-sized images are manually retrieved at bi-weekly intervals. Our longer-term goal is to make gigapixel time-lapse datasets available online in an interactive interface that layers plant-level phenology data with gigapixel resolution images, genomic sequence data from individual plants with weather and other abitotic sensor data. Co-visualization of all of these data types provides researchers with a powerful new tool for examining complex ecological interactions across scales from the individual to the ecosystem. We will present detailed phenostage data from more than 100 plants of multiple species from our Gigavision timelapse camera at our “Big Blowout East” field site in the Indiana Dunes State Park, IN. This camera has been recording three to four 700 million pixel images a day since February 28, 2010. The camera field of view covers an area of about 7 hectares resulting in an average image resolution of about 1 pixel per centimeter over the entire site. We will also discuss some of the many technological challenges with developing and maintaining these types of hardware systems, collecting quantitative data from gigapixel resolution time-lapse data and effectively managing terabyte-sized datasets of millions of images.

  6. Development of Army Facility Functionality Assessment Criteria and Procedures

    Science.gov (United States)

    2010-09-01

    connectivity to each workstation. Power poles shall not be used. Provide duplex receptacles adjacent to each duplex (voice/data) outlet and CATV outlet...Provide weatherproof lighting and weatherproof general purposes receptacles with GFCI. One duplex receptacle for every two columns Ext...Location one in repair area of each wing Wall Type 5𔃾" high CMU separation wall Repair and Maintenance Areas - Repair - Welding Area Components

  7. Radome electromagnetic theory and design

    CERN Document Server

    Shavit, Reuven

    2018-01-01

    Radome Electromagnetic Theory and Design explores the theoretical tools and methods required to design radomes that are fully transparent to the electromagnetic energy transmitted or received by the enclosed antenna. A radome is a weatherproof and camouflaged enclosure that protects the enclosed radar or communication antenna, and are typically used on a fixed or moving platform such as an aircraft, ship or missile.

  8. Design Information for Civil Works Housing.

    Science.gov (United States)

    1984-01-01

    tmm GUIDANCE Lawn Mower , Garden Equipment, Bicycles, etc. 20 ft ^ r" T STORAGE 1-STALL OARAGE 2-STALL QARAQE I I c COMMENTARY !A. Al A...Weatherproof 110-V outlets (as required per ap- plicable code). V. J 17 GUIDANCE Lawn Mower , Garden Equipment, and Bicycles 1-STALL CARPORT

  9. 49 CFR 173.197 - Regulated medical waste.

    Science.gov (United States)

    2010-10-01

    ... requirements of § 178.801(j) and record retention requirements of § 178.801(l) of this subchapter. Inner... constructed of metal or fiberglass and have a capacity of at least 3.5 cubic meters (123.6 cubic feet) and not... welded or seamless construction and a rigid, weatherproof top to prevent the intrusion of water (e.g...

  10. Comparing Manned Aerial Surveys to Unmanned Aerial Surveys for Cetacean Monitoring in the Arctic: Field Report

    Science.gov (United States)

    2015-01-01

    disadvantages of using UAS relative to manned aircraft to collect data for estimating marine mammal density. DISTRIBUTION STATEMENT A: Approved...size, and detecting calves. Weatherproof UAS ( IFR capability, heated pitot tubes, wing/prop deicing capability) X X Would have been helpful for

  11. Demonstration and Validation of a Fractured Rock Passive Flux Meter

    Science.gov (United States)

    2015-04-01

    attenuation, and enhanced biodegradation as competitive remediation solutions to chlorinated ethene-contaminated fractured rock. The criteria and...located outside, then some form of weatherproofing for the gauges will be necessary. As a temporary measure, heavy-duty polyethylene bags , secured

  12. Durability of sealants exposed to outdoor weathering and hot compression cycles

    Science.gov (United States)

    Gregory T. Schueneman; Steven Lacher; Christopher G. Hunt; Christopher C. White; Donald L. Hunston

    2011-01-01

    Sealants play an important role in weatherproofing structures by filling gaps and preventing air and water intrusion. When incorrectly selected or improperly applied, they may fail quickly, compromising durability of the structure. To ensure reliability and prevent the need for costly repairs to structures, it is necessary to measure durability and predict life...

  13. Cimel Sunphotometer (CSPHOT) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, L

    2011-01-17

    The Cimel sunphotometer (CSPHOT) is a multi-channel, automatic sun-and-sky scanning radiometer that measures the direct solar irradiance and sky radiance at the Earth’s surface. Measurements are taken at pre-determined discrete wavelengths in the visible and near-IR parts of the spectrum to determine atmospheric transmission and scattering properties. This instrument is weather-proof and requires little maintenance during periods of adverse weather conditions. It takes measurements only during daylight hours (sun above horizon).

  14. Battery case. Batteriegehaeuse

    Energy Technology Data Exchange (ETDEWEB)

    Harnischmacher, F; Externbrink, H

    1982-08-28

    A battery cell for explosion proof or underground weatherproof portable lamps has a Kammerhof valve inserted in an opening in the cell lid. The Kammerhof valve is closed by means of a stopper made of sintered metal, whose outside dimensions are selected and whose pores are of such a size that the openings provided by the pores comply with VDE Regulation 0170/0171 regarding length and width. The stopper prevents ignition due to a short-circuit passing through to the outside into an environment containing explosive gas.

  15. Low-cost encapsulation materials for terrestrial solar cell modules

    Science.gov (United States)

    Cuddihy, E. F.; Baum, B.; Willis, P.

    1979-01-01

    The paper presents the findings of material surveys intended to identify low cost materials which could be functional as encapsulants (by 1986) for terrestrial solar cell modules. Economic analyses have indicated that in order to meet the low cost goal of $2.70 per sq m, some or all of the following material technologies must be developed or advanced: (1) UV screening outer covers; (2) elastomeric acrylics; (3) weatherproofing and waterproofing of structural wood and paper products; (4) transparent UV stabilizers for the UV-sensitive transparent pottants; and (5) cost-effective utilization of silicone and fluorocarbon materials.

  16. Energy Gaining Windows for Residental Buildings

    DEFF Research Database (Denmark)

    Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

    2008-01-01

    window is made of fiber-reinforced plastic (plastic reinforced by fine fibers made of glass). This composite material is a weatherproof material with very low thermal conductivity and high mechanical strength. These properties make the material very suitable for frame profiles due to lower heat loss...... minus the heat loss integrated over the heating season. It is assumed that in northern cold climates all of the solar gain during the heating season can be utilized for space heating. Problems with overheating in the summer period must be solved with overhang or moveable solar shading devices. Two...... and longer durability of the window. The glazing in these fiber reinforced polyester windows is both unsealed and sealed triple glazing units. To increase the net energy gain slim frame profiles have been developed to increase the glazing area and thereby the solar gain. The challenge when developing slim...

  17. Multi-detector environmental radiation monitor with multichannel data communication for Indian Environmental Radiation Monitoring Network (IERMON)

    International Nuclear Information System (INIS)

    Patel, M.D.; Ratheesh, M.P.; Prakasha, M.S.; Salunkhe, S.S.; Vinod Kumar, A.; Puranik, V.D.; Nair, C.K.G.

    2011-01-01

    A solar powered system for online monitoring of environmental radiation with multiple detectors has been designed, developed and produced. Multiple GM tube detectors have been used to extend the range of measurement from 50 nano Gy/hr to 20 Gy/hr and to enhance the reliability of the system. Online data communication using GSM based and direct LAN based communication has been incorporated. Options for use of power supply from mains powered and battery powered have been enabled. Care has been taken to make it weather-proof, compact, elegant and reliable. The development is a part of the ongoing program of country-wide deployment of radiation monitors under 'Indian Environmental Radiation MOnitoring Network' (IERMON). (author)

  18. Civil Engineering Construction of Underground Works

    CERN Document Server

    Rammer, H

    1999-01-01

    For the first time at CERN, new shafts and caverns will be excavated inside a surface building. The LHC civil engineering construction for the ATLAS experiment has been designed such that the experimental hall will be completed to the extent that it can provide a secure, weatherproof and sound insulated covering to the shaft excavation area. The construction of the two access shafts and the experimental cavern will follow and will be carried out inside the building. This unconventional method of working allows the excavation of the Molasse rock in the dry, which is essential for this type of rock, and ensures reduced environmental pollution by noise and dust. The paper will present the technical infrastructure required for this particular construction method, explain its advantages and disadvantages, and compare it with a conventional method of underground excavations to be used on the same work site for the construction of the service cavern.

  19. Intelligent RF-Based Gesture Input Devices Implemented Using e-Textiles

    Directory of Open Access Journals (Sweden)

    Dana Hughes

    2017-01-01

    Full Text Available We present an radio-frequency (RF-based approach to gesture detection and recognition, using e-textile versions of common transmission lines used in microwave circuits. This approach allows for easy fabrication of input swatches that can detect a continuum of finger positions and similarly basic gestures, using a single measurement line. We demonstrate that the swatches can perform gesture detection when under thin layers of cloth or when weatherproofed, providing a high level of versatility not present with other types of approaches. Additionally, using small convolutional neural networks, low-level gestures can be identified with a high level of accuracy using a small, inexpensive microcontroller, allowing for an intelligent fabric that reports only gestures of interest, rather than a simple sensor requiring constant surveillance from an external computing device. The resulting e-textile smart composite has applications in controlling wearable devices by providing a simple, eyes-free mechanism to input simple gestures.

  20. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Ootsuka, Masaharu; Uetake, Naoto; Ozawa, Yoshihiro.

    1984-01-01

    Purpose: To prepare radioactive solidified wastes excellent in strength, heat resistance, weather-proof, water resistance, dampproof and low-leaching property. Method: A hardening material reactive with alkali silicates to form less soluble salts is used as a hardener for alkali silicates which are solidification filler for the radioactive wastes, and mixed with cement as a water absorbent and water to solidify the radioactive wastes. The hardening agent includes, for example, CaCO 3 , Ca(ClO 4 ) 2 , CaSiF 6 and CaSiO 3 . Further, in order to reduce the water content in the wastes and reduce the gap ratio in the solidification products, the hardener adding rate, cement adding rate and water content are selected adequately. As the result, solidification products can be prepared with no deposition of easily soluble salts to the surface thereof, with extremely low leaching of radioactive nucleides. (Kamimura, M.)

  1. Atmospheric Radiation Measurement Program facilities newsletter, January 2001.; TOPICAL

    International Nuclear Information System (INIS)

    Holdridge, D. J.

    2001-01-01

    In the realm of global climate modeling, numerous variables affect the state of the atmosphere and climate. One important area is soil moisture and temperature. The ARM Program uses several types of instruments to gather soil moisture information. An example is the soil water and temperature system (SWATS). A SWATS is located at each of 21 extended facility sites within the CART site boundary. Each system is configured to measure soil moisture and temperature at eight distinct subsurface levels. A special set of probes used in the SWATS measures soil temperature, soil-water potential, and volumetric water content. Sensors are placed at eight different depths below the soil surface, starting at approximately 5 cm (2 in.) below the surface and ending as deep as 175 cm (69 in.). Each site has two identical sets of probes buried 1 m (3.3 ft) apart, to yield duplicate measurements as a quality control measure. At some sites, impenetrable soil or rock layers prevented installation of probes at the deeper levels. The sensors are connected to an electronic data logger that collects and stores the data. Communication equipment transfers data from the site. All of the electronic equipment is housed in a weatherproof enclosure mounted on a concrete slab

  2. Portable gamma-ray detection system for location of radioactive sources

    International Nuclear Information System (INIS)

    Worth, G.M.; Henery, C.N.; Hastings, R.D.; France, S.W.

    1976-01-01

    A portable, battery-powered gamma radiation detection system, the RBM 1100 Road Block Monitor, is described. The detector is a 12.7-cm diameter by 2.54-cm thick NaI(Tl) integral assembly, housed in a weatherproof, insulated case with high and low voltage batteries, amplifier, lower level discriminator, low power CMOS logic electronics, and a VHF FM transmitter. Alarms indicating the presence of radioactive material are generated by a logic system that periodically stores a trip level based on an average background plus an internally calculated standard deviation. The operator may select the optimum counting time, the trip level in numbers of standard deviations above the average background, the background updating mode, and the method of alarm annunciation. Alarms may be indicated locally by panel indication and/or audible tone, or remotely via a VHF FM transmitter with a maximum range of 1.6-km line-of-sight to a suitable receiver. Count rate may be read on a top panel meter or recorded on a chart recorder. A single frame camera may be attached to provide a photographic record. Battery lifetime is 100 to 300 hours, depending on alarm rate and use of the transmitter

  3. Analyzing the Energy Performance, Wind Loading, and Costs of Photovoltaic Slat Modules on Commercial Rooftops

    Energy Technology Data Exchange (ETDEWEB)

    Van Geet, Otto D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, Kelsey A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); MacAlpine, Sara M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Silverman, Timothy J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-13

    NREL studied a new type of photovoltaic (PV) module configuration wherein multiple narrow, tilted slats are mounted in a single frame. Each slat of the PV slat module contains a single row of cells and is made using ordinary crystalline silicon PV module materials and processes, including a glass front sheet and weatherproof polymer encapsulation. Compared to a conventional ballasted system, a system using slat modules offer higher energy production and lower weight at lower LCOE. The key benefits of slat modules are reduced wind loading, improved capacity factor and reduced installation cost. First, the individual slats allow air to flow through, which reduce wind loading. Using PV performance modeling software, we compared the performance of an optimized installation of slats modules to a typical installation of conventional modules in a ballasted rack mounting system. Based on the results of the performance modeling two different row tilt and spacing were tested in a wind tunnel. Scaled models of the PV Slat modules were wind tunnel tested to quantify the wind loading of a slat module system on a commercial rooftop, comparing the results to conventional ballasted rack mounted PV modules. Some commercial roofs do not have sufficient reserve dead load capacity to accommodate a ballasted system. A reduced ballast system design could make PV system installation on these roofs feasible for the first time without accepting the disadvantages of penetrating mounts. Finally, technoeconomic analysis was conducted to enable an economic comparison between a conventional commercial rooftop system and a reduced-ballast slat module installation.

  4. Ambient krypton-85 air sampling at Hanford

    International Nuclear Information System (INIS)

    Trevathan, M.S.; Price, K.R.

    1985-01-01

    In the fall of 1982, the Environmental Evaluations Section of Pacific Northwest Laboratory (PNL) initiated a network of continuous 85 Kr air samplers located on and around the Hanford Site. This effort was in response to the resumption of operations at a nuclear fuel reprocessing plant located onsite where 85 Kr was to be released during fuel dissolution. Preoperational data were collected using noble gas samplers designed by the Environmental Protection Agency-Las Vegas (EPA-LV). The samplers functioned erratically resulting in excessive maintenance costs and prompted a search for a new sampling system. State-of-the-art 85 Dr sampling methods were reviewed and found to be too costly, too complex and inappropriate for field application, so a simple bag collection system was designed and field tested. The system is composed of a reinforced, heavy plastic bag, connected to a variable flow pump and housed in a weatherproof enclosure. At the end of the four week sampling period the air in the bag is transferred by a compressor into a pressure tank for easy transport to the laboratory for analysis. After several months of operation, the air sampling system has proven its reliability and sensitivity to ambient levels of 85 Kr

  5. Ambient krypton-85 air sampling at Hanford

    International Nuclear Information System (INIS)

    Trevathan, M.S.; Price, K.R.

    1984-10-01

    In the fall of 1982, the Environmental Evaluations Section of Pacific Northwest Laboratory (PNL) initiated a network of continuous krypton-85 air samplers located on and around the Hanford Site. This effort was in response to the resumption of operations at a nuclear fuel reprocessing plant located onsite where krypton-85 was to be released during fuel dissolution. Preoperational data were collected using noble gas samplers designed by the Environmental Protection Agency-Las Vegas (EPA-LV). The samplers functioned erratically resulting in excessive maintenance costs and prompted a search for a new sampling system. State of the art krypton-85 sampling methods were reviewed and found to be too costly, too complex and inappropriate for field application, so a simple bag collection system was designed and field tested. The system is composed of a reinforced, heavy plastic bag, connected to a variable flow pump and housed in a weatherproof enclosure. At the end of the four week sampling period the air in the bag is transferred by a compressor into a pressure tank for easy transport to the laboratory for analysis. After several months of operation, the air sampling system has proven its reliability and sensitivity to ambient levels of krypton-85. 3 references, 3 figures, 1 table

  6. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Development of thin-film solar cell manufacturing technology (Development of material/substrate manufacturing technology - Development of amorphous silicon-based high-quality material/substrate manufacturing technology); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu (zairyo kiban seizo gijutsu kaihatsu - amorphous silicon kei kohinshitsu zairyo kiban no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The project aims to enhance the stability of amorphous solar cells. For elevating TCO (transparent conductive oxide) substrate transmittance to an ultrahigh level and for obtaining amorphous layers less to suffer photodegradation, efforts were made to develop substrate materials stable upon exposure to plasma and low in defect density. In the study of TCO, a high-transmittance glass substrate was employed and TCO was made thinner, and the specimen achieved transmittance of 91.3% or 6.3% over that of the conventional type. In the study of low reflection films, it was found that their transmittance came to be stable and remain so after 150 days after a weatherproof test. In the study for stability enhancement, optimization was carried out for a plasma resisting Ga{sub 2}O{sub 3}-added ZnO film for the manufacture of a substrate material capable of properly behaving in a high-speed a-Si film fabrication process. Low-temperature film fabrication was studied to enable low-cost manufacturing, and it was learned that a 4 times 10{sup -4} ohm/cm low-resistance film was obtained by sputtering Ga{sub 2}O{sub 3}-added ZnO where magnetism was intensive at room temperature, that films excellent in crystallinity were obtained by the same method even at low temperatures, and so forth. (NEDO)

  7. Experimental Evaluation of the "Polished Panel Optical Receiver" Concept on the Deep Space Network's 34 Meter Antenna

    Science.gov (United States)

    Vilnrotter, Victor A.

    2012-01-01

    The potential development of large aperture ground-based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation proposes to polish the aluminum reflector panels of 34-meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by even state-of-the-art polished aluminum panels. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. A custom designed aluminum panel has been mounted on the 34 meter research antenna at Deep-Space Station 13 (DSS-13), and a remotely controlled CCD camera with a large CCD sensor in a weather-proof container has been installed next to the subreflector, pointed directly at the custom polished panel. Using the planet Jupiter as the optical point-source, the point-spread function (PSF) generated by the polished panel has been characterized, the array data processed to determine the center of the intensity distribution, and expected communications performance of the proposed polished panel optical receiver has been evaluated.

  8. Bring your own camera to the trap: An inexpensive, versatile, and portable triggering system tested on wild hummingbirds.

    Science.gov (United States)

    Rico-Guevara, Alejandro; Mickley, James

    2017-07-01

    The study of animals in the wild offers opportunities to collect relevant information on their natural behavior and abilities to perform ecologically relevant tasks. However, it also poses challenges such as accounting for observer effects, human sensory limitations, and the time intensiveness of this type of research. To meet these challenges, field biologists have deployed camera traps to remotely record animal behavior in the wild. Despite their ubiquity in research, many commercial camera traps have limitations, and the species and behavior of interest may present unique challenges. For example, no camera traps support high-speed video recording. We present a new and inexpensive camera trap system that increases versatility by separating the camera from the triggering mechanism. Our system design can pair with virtually any camera and allows for independent positioning of a variety of sensors, all while being low-cost, lightweight, weatherproof, and energy efficient. By using our specialized trigger and customized sensor configurations, many limitations of commercial camera traps can be overcome. We use this system to study hummingbird feeding behavior using high-speed video cameras to capture fast movements and multiple sensors placed away from the camera to detect small body sizes. While designed for hummingbirds, our application can be extended to any system where specialized camera or sensor features are required, or commercial camera traps are cost-prohibitive, allowing camera trap use in more research avenues and by more researchers.

  9. Ukpik: testbed for a miniaturized robotic astronomical observatory on a high Arctic mountain

    Science.gov (United States)

    Steinbring, Eric; Leckie, Brian; Hardy, Tim; Caputa, Kris; Fletcher, Murray

    2012-09-01

    Mountains along the northwestern coast of Ellesmere Island, Canada, possess the highest peaks nearest the Pole. This geography, combined with an atmospheric thermal inversion restricted to below ~1000 m during much of the long arctic night, provides excellent opportunities for uninterrupted cloud-free astronomy - provided the challenges of these incredibly remote locations can be overcome. We present a miniaturized robotic observatory for deployment on a High Arctic mountaintop. This system tested the operability of precise optical instruments during winter, and the logistics of installation and maintenance during summer. It is called Ukpik after the Inuktitut name for the snowy owl, and was deployed at two sites accessible only by helicopter, each north of 82 degrees latitude; one on rock at 1100 m elevation and another on a glacier at 1600 m. The instrument suite included at first an all-sky-viewing camera, with the later addition of a small telescope to monitor Polaris, both protected by a retractable weather-proof enclosure. Expanding this to include a narrow-field drift-scanning camera for studying extra-solar planet transits was also investigated, but not implemented. An unique restriction was that all had to be run on batteries recharged primarily by a wind turbine. Supplementary power came from a methanol fuel-cell electrical generator. Communications were via the Iridium satellite network. The system design, and lessons learned from three years of operation are discussed, along with prospects for time-domain astronomy from isolated, high-elevation polar mountaintops.

  10. Open areas and open access

    International Nuclear Information System (INIS)

    Thorndike, A.M.

    1979-01-01

    The main objective of the two open areas in the present ISABELLE design has been to provide flexibility with respect to the size and shape of experimental equipment that would eventually be installed there. No permanent building would be installed initially. One possibility would be to enclose each experiment in a temporary structure that would provide weatherproofing and shielding; another possibility would be to erect a permanent building at a later time, when experience has made the needs clearer than they are at present. The secondary objective of the design of open areas has been to keep initial costs as low as practicable. Another objective might be added, however, which we indicate by the term ''open access.'' This note will explore this idea and some design concepts based on it. In the ISABELLE 1977 summer workshop there was considerable discussion of the importance of techniques for inserting large pieces of experimental equipment quickly and removing them with equal ease and speed. Since enclosed halls have certain restrictions in this respect, open areas may be helpful in providing this feature. If the mechanical and electrical aspects could be handled quickly, one might even attempt to reduce the time spent on bureaucratic procedures in order to expedite the introduction of new experiments and new ideas in these areas

  11. Field Trial of an Aerially-Distributed Tuberculosis Vaccine in a Low-Density Wildlife Population of Brushtail Possums (Trichosurus vulpecula).

    Science.gov (United States)

    Nugent, Graham; Yockney, Ivor J; Whitford, E Jackie; Cross, Martin L; Aldwell, Frank E; Buddle, Bryce M

    2016-01-01

    Oral-delivery Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine in a lipid matrix has been shown to confer protection against M. bovis infection and reduce the severity of tuberculosis (TB) when fed to brushtail possums (Trichosurus vulpecula), the major wildlife vector of bovine TB in New Zealand. Here we demonstrate the feasibility of aerial delivery of this live vaccine in bait form to an M. bovis-infected wild possum population, and subsequently assess vaccine uptake and field efficacy. Pre-trial studies indicated a resident possum population at very low density (matrix baits in weather-proof sachets could be successfully sown aerially via helicopter and were palatable to, and likely to be consumed by, a majority of wild possums under free-choice conditions. Subsequently, sachet-held lipid baits containing live BCG vaccine were sown at 3 baits/ha over a 1360 ha area, equating to >5 baits available per possum. Blood sampling conducted two months later provided some evidence of vaccine uptake. A necropsy survey conducted one year later identified a lower prevalence of culture-confirmed M. bovis infection and/or gross TB lesions among adult possums in vaccinated areas (1.1% prevalence; 95% CI, 0-3.3%, n = 92) than in unvaccinated areas (5.6%; 0.7-10.5%, n = 89); P = 0.098. Although not statistically different, the 81% efficacy in protecting possums against natural infection calculated from these data is within the range of previous estimates of vaccine efficacy in trials where BCG vaccine was delivered manually. We conclude that, with further straightforward refinement to improve free-choice uptake, aerial delivery of oral BCG vaccine is likely to be effective in controlling TB in wild possums. We briefly discuss contexts in which this could potentially become an important complementary tool in achieving national eradication of TB from New Zealand wildlife.

  12. Lipid-formulated bcg as an oral-bait vaccine for tuberculosis: vaccine stability, efficacy, and palatability to brushtail possums (Trichosurus vulpecula) in New Zealand.

    Science.gov (United States)

    Cross, Martin L; Henderson, Ray J; Lambeth, Matthew R; Buddle, Bryce M; Aldwell, Frank E

    2009-07-01

    Bovine tuberculosis (Tb), due to infection with virulent Mycobacterium bovis, represents a threat to New Zealand agriculture due to vectorial transmission from wildlife reservoir species, principally the introduced Australian brushtail possum (Trichosurus vulpecula). An oral-delivery wildlife vaccine has been developed to immunize possums against Tb, based on formulation of the human Tb vaccine (M. bovis BCG) in edible lipid matrices. Here BCG bacilli were shown to be stable in lipid matrix formulation for over 8 mo in freezer storage, for 7 wk under room temperature conditions, and for 3-5 wk under field conditions in a forest/pasture margin habitat (when maintained in weatherproof bait-delivery sachets). Samples of the lipid matrix were flavored and offered to captive possums in a bait-preference study: a combination of 10% chocolate powder with anise oil was identified as the most effective attractant/palatability combination. In a replicated field study, 85-100% of wild possums were shown to access chocolate-flavored lipid pellets, when baits were applied to areas holding approximately 600-800 possums/km(2). Finally, in a controlled vaccination/challenge study, chocolate-flavored lipid vaccine samples containing 10(8) BCG bacilli were fed to captive possums, which were subsequently challenged via aerosol exposure to virulent M. bovis: vaccine immunogenicity was confirmed, and protection was identified by significantly reduced postchallenge weight loss in vaccinated animals compared to nonvaccinated controls. These studies indicate that, appropriately flavored, lipid delivery matrices may form effective bait vaccines for the control of Tb in wildlife.

  13. TruckWeight wireless onboard scale helps oilfield services fleet find profit, compliance

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2007-05-15

    This article presented a wireless scale that measures temperature and pressure changes in a vehicle's air suspension. The instrument is being used by Alberta-based Rusch Inc., an operator of tank trucks and pup trailers which haul potassium chloride solution, methanol, frac oil, crude oil and other fluids. Made by TruckWeight Inc., the Smart Scale relays data to a handheld receiver using a low-powered safe radio transmitter. It is designed so its power output is not high enough to ignite gases in the atmosphere near wellheads. The information from the Smart Scale is interpreted by a small computer in a handheld receiver. The axle weight and gross vehicle weight measurement is accurate to within 150 pounds. Rusch trucks operate on steep grades all year, encountering soft ground in the summer, and frozen terrain in the winter. When loading is done in the bush, it is impossible to reliably weigh the trucks, whose licensed gross combination weight is 51,300 kilograms. In Alberta, an overweight fine can trigger an audit of a company's safety record and operating practices. Running overweight also places stress on axles, suspensions, wheel-end components tires and brakes. Therefore, adhering to the rated weight is essential. In 2006, Rusch Inc. installed the Smart Scale wireless on-board scale for trucks, tractors and trailers with air suspension. The scale includes a sensor with an integrated antenna and DOT fittings for the vehicle's airline. While the truck is being loaded, the scale produces readings every 3 seconds. This maintenance-free instrument is accurate in temperature extremes ranging from -40 F to 158 F and uses common AA batteries. It is waterproof, weatherproof, shock resistant and non-corrosive. The cost to equip a tractor and trailer with a Smart Scale is $1,590 US, half the cost of a hard-wired scale. 5 figs.

  14. Compressive strength and initial water absorption rate for cement brick containing high-density polyethylene (HDPE) as a substitutional material for sand

    Science.gov (United States)

    Ali, Noorwirdawati; Din, Norhasmiza; Sheikh Khalid, Faisal; Shahidan, Shahiron; Radziah Abdullah, Siti; Samad, Abdul Aziz Abdul; Mohamad, Noridah

    2017-11-01

    The rapid growth of today’s construction sector requires high amount of building materials. Bricks, known to have solid properties and easy to handle, which leads to the variety of materials added or replaced in its mixture. In this study, high density polyethylene (HDPE) was selected as the substitute materials in the making of bricks. The reason behind the use of HDPE is because of its recyclable properties and the recycling process that do not emit hazardous gases to the atmosphere. Other than that, the use of HDPE will help reducing the source of pollution by avoiding the millions of accumulated plastic waste in the disposal sites. Furthermore, the material has high endurance level and is weatherproof. This study was carried out on experimenting the substitute materials in the mixture of cement bricks, a component of building materials which is normally manufactured using the mixture of cement, sand and water, following a certain ratios, and left dried to produce blocks of bricks. A series of three different percentages of HDPE were used, which were 2.5%, 3.0% and 3.5%. Tests were done on the bricks, to study its compressive strength and the initial water absorption rate. Both tests were conducted on the seventh and 28th day. Based on the results acquired, for compressive strength tests on the 28th day, the use of 2.5% of HDPE shown values of 12.6 N/mm2 while the use of 3.0% of HDPE shown values of 12.5 N/mm2. Onto the next percentage, 3.5% of HDPE shown values of 12.5 N/mm2.

  15. A Mobile Sensor Network to Map CO2 in Urban Environments

    Science.gov (United States)

    Lee, J.; Christen, A.; Nesic, Z.; Ketler, R.

    2014-12-01

    Globally, an estimated 80% of all fuel-based CO2 emissions into the atmosphere are attributable to cities, but there is still a lack of tools to map, visualize and monitor emissions to the scales at which emissions reduction strategies can be implemented - the local and urban scale. Mobile CO2 sensors, such as those attached to taxis and other existing mobile platforms, may be a promising way to observe and map CO2 mixing ratios across heterogenous urban environments with a limited number of sensors. Emerging modular open source technologies, and inexpensive compact sensor components not only enable rapid prototyping and replication, but also are allowing for the miniaturization and mobilization of traditionally fixed sensor networks. We aim to optimize the methods and technologies for monitoring CO2 in cities using a network of CO2 sensors deployable on vehicles and bikes. Our sensor technology is contained in a compact weather-proof case (35.8cm x 27.8cm x 11.8cm), powered independently by battery or by car, and includes the Li-Cor Li-820 infrared gas analyzer (Licor Inc, lincoln, NB, USA), Arduino Mega microcontroller (Arduino CC, Italy) and Adafruit GPS (Adafruit Technologies, NY, USA), and digital air temperature thermometer which measure CO2 mixing ratios (ppm), geolocation and speed, pressure and temperature, respectively at 1-second intervals. With the deployment of our sensor technology, we will determine if such a semi-autonomous mobile approach to monitoring CO2 in cities can determine excess urban CO2 mixing ratios (i.e. the 'urban CO2 dome') when compared to values measured at a fixed, remote background site. We present results from a pilot study in Vancouver, BC, where the a network of our new sensors was deployed both in fixed network and in a mobile campaign and examine the spatial biases of the two methods.

  16. Experimental Evaluation of Optically Polished Aluminum Panels on the Deep Space Network's 34 Meter Antenna

    Science.gov (United States)

    Vilnrotter, V.

    2011-01-01

    The potential development of large aperture ground?based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation is to polish the aluminum reflector panels of 34?meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by state of?the?art polished aluminum panels. Theoretical analyses of receiving antenna pointing, temporal synchronization and data detection have been addressed in previous papers. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. Two polished aluminum panels (a standard DSN panel polished to high reflectance, and a custom designed aluminum panel with much better surface quality) have been mounted on the 34 meter research antenna at Deep?Space Station 13 (DSS?13), and a remotely controlled CCD camera with a large CCD sensor in a weather?proof container has been installed next to the subreflector, pointed directly at the custom polished panel. The point?spread function (PSF) generated by the Vertex polished panel has been determined to be smaller than the sensor of the CCD camera, hence a detailed picture of the PSF can be obtained every few seconds, and the sensor array data processed to determine the center of the intensity distribution. In addition to estimating the center coordinates, expected communications performance can also been evaluated with the recorded data. The results of preliminary pointing experiments with the Vertex polished panel receiver using the planet Jupiter to simulate the PSF generated by a deep?space optical transmitter are presented and discussed in this paper.

  17. Process for producing a grafted thermoplastic resin having a multiple constituent

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T; Nomura, T; Higasa, A; Ito, I

    1964-05-15

    A process for producing a thermoplastic graft copolymer having a multiple constituent is provided to obtain a stable, weather-proof resin with high impact strength by irradiating with high energy radiations an aqueous solution composed of: (1) a polymer or copolymer of isobutylene or a mixture thereof, (2) at least one aromatic vinyl monomer, (3) at least one acrylic monomer having no carboxylic radicals, and (4) at least one unsaturated carboxylic acid. The preferable proportions of the abovesaid materials are: (1) 10% to 40%, (2) 25% to 65%, (3) 10% to 45% and (4) 3% to 20%. The resin is suitable for high impact resistant materials for use in vehicles business machines, electric appliances, housing, pipes and the like. The concentration of monomers or polymers in the total emulsified solution may generally be 10% to 80%, but 30% to 60% is preferable. The concentration of the emulsifying agent may be 0.1% to 10%, preferably 1% to 5%. The range of the radiation doses is 1 x 10/sup 4/ to 5 x 10/sup 7/ rad. A dose rate of 1 x 10/sup 3/ to 1 x 10/sup 8/ rad/hr is preferred. The irradiation temperature may be 0/sup 0/ to about 100/sup 0/C, preferably room temperature to 80/sup 0/C. The irradiation time is several minutes to some ten minutes. In one of the examples, a graft copolymer thus produced had the following composition: 27% of isobutylene, 54% of styrene, 13% of acrylonitrile and 6% of maleic acid; and it showed a tensile strength of 293 kg/cm/sup 2/, a hardness of 93R and an impact strength of 0.572 kg.m/cm/sup 2/.

  18. A low-cost particulate matter (PM2.5) monitor for wildland fire smoke

    Science.gov (United States)

    Kelleher, Scott; Quinn, Casey; Miller-Lionberg, Daniel; Volckens, John

    2018-02-01

    Wildfires and prescribed fires produce emissions that degrade visibility and are harmful to human health. Smoke emissions and exposure monitoring is critical for public and environmental health protection; however, ground-level measurements of smoke from wildfires and prescribed fires has proven difficult, as existing (validated) monitoring technologies are expensive, cumbersome, and generally require line power. Few ground-based measurements are made during fire events, which limits our ability to assess the environmental and human health impacts of wildland fire smoke. The objective of this work was to develop and validate an Outdoor Aerosol Sampler (OAS) - a filter-based air sampler that has been miniaturized, solar powered, and weatherproofed. This sampler was designed to overcome several of the technical challenges of wildland fire monitoring by being relatively inexpensive and solar powered. The sampler design objectives were achieved by leveraging low-cost electronic components, open-source programming platforms, and in-house fabrication methods. A direct-reading PM2.5 sensor was selected and integrated with the OAS to provide time-resolved concentration data. Cellular communications established via short message service (SMS) technology were utilized in transmitting online sensor readings and controlling the sampling device remotely. A Monte Carlo simulation aided in the selection of battery and solar power necessary to independently power the OAS, while keeping cost and size to a minimum. Thirteen OAS were deployed to monitor smoke concentrations downwind from a large prescribed fire. Aerosol mass concentrations were interpolated across the monitoring network to depict smoke concentration gradients in the vicinity of the fire. Strong concentration gradients were observed (spatially and temporally) and likely present due to a combination of changing fire location and intensity, topographical features (e.g., mountain ridges), and diurnal weather patterns

  19. Cloud Occurrence Measurements Over Sea during the 2nd 7 Southeast Asian Studies (7SEAS) Field Campaign in Palawan Archipelago

    Science.gov (United States)

    Antioquia, C. T.; Uy, S. N.; Caballa, K.; Lagrosas, N.

    2014-12-01

    Ground based sky imaging cameras have been used to measure cloud cover over an area to aid in radiation budget models. During daytime, certain clouds tend to help decrease atmospheric temperature by obstructing sunrays in the atmosphere. Thus, the detection of clouds plays an important role in the formulation of radiation budget in the atmosphere. In this study, a wide angled sky imager (GoPro Hero 2) was brought on board M/Y Vasco to detect and quantity cloud occurrence over sea during the 2nd 7SEAS field campaign. The camera is just a part of a number of scientific instruments used to measure weather, aerosol chemistry and solar radiation among others. The data collection started during the departure from Manila Bay on 05 September 2012 and went on until the end of the cruise (29 September 2012). The camera was placed in a weather-proof box that is then affixed on a steel mast where other instruments are also attached during the cruise. The data has a temporal resolution of 1 minute, and each image is 500x666 pixels in size. Fig. 1a shows the track of the ship during the cruise. The red, blue, hue, saturation, and value of the pixels are analysed for cloud occurrence. A pixel is considered to "contain" thick cloud if it passes all four threshold parameters (R-B, R/B, R-B/R+B, HSV; R is the red pixel color value, blue is the blue pixel color value, and HSV is the hue saturation value of the pixel) and considered thin cloud if it passes two or three parameters. Fig. 1b shows the daily analysis of cloud occurrence. Cloud occurrence here is quantified as the ratio of the pixels with cloud to the total number of pixels in the data image. The average cloud cover for the days included in this dataset is 87%. These measurements show a big contrast when compared to cloud cover over land (Manila Observatory) which is usually around 67%. During the duration of the cruise, only one day (September 6) has an average cloud occurrence below 50%; the rest of the days have

  20. Continuous Eddy Covariance Measurements of N2O Emissions and Controls from an Intensively Grazed Dairy Farm

    Science.gov (United States)

    Schipper, L. A.; Liang, L. L.; Wall, A.; Campbell, D.

    2017-12-01

    New Zealand's greenhouse gas (GHG) inventory is disproportionally dominated by methane and nitrous oxide which account for 54% of emissions. These GHGs are derived from pastoral agriculture that supports dairying and meat production. To date, most studies on quantifying or mitigating agricultural N2O emissions have used flux chamber measurements. Recent advances in detector technology now means that routine field-to-farm scale measurements of N2O emissions might be possible using the eddy covariance technique. In late 2016, we established an eddy covariance tower that measured N2O emissions from a dairy farm under year-round grazing. An Aerodyne quantum cascade laser (QCL) was used to measure N2O, CH4 and H2O concentration at 10 Hz and housed in a weatherproof and insulated enclosure (0.9 m ´ 1.2 m) and powered by mains power (240 VAC). The enclosure maintained a stable setpoint temperature (30±0.2°C) by using underground cooling pipes, fans and recirculating instrument heat. QCL (true 10 Hz digital) and CSAT3B sonic anemometer high frequency data are aligned using Network Time Protocol and EddyPro covariance maximisation during flux processing. Fluxes generally integrated over about 6-8 ha. Stable summertime baseline N2O fluxes (FN2O) were around 12-24 g N2O-N ha-1 d-1 (0.5-1.0 nmol N2O m-2 s-1). Grazing by cows during dry summer resulted in only modest increases in FN2O to 24-48 g N2O-N ha-1 d-1 (1.0-2.0 nmol N2O m-2 s-1). However, the first rain events after grazing resulted in large, short-lived (1-3 days) FN2O pulses reaching peaks of 144-192 g N2O-N ha-1 d-1 (6-8 nmol N2O m-2 s-1). During these elevated N2O emissions, FN2O displayed a significant diurnal signal, with peak fluxes mid-afternoon which was best explained by variation in shallow soil temperature in summer. In winter (both cooler and wetter) FN2O were not as easily explained on a daily basis but were generally greater than summer. Throughout the year, FN2O was strongly dependent on water filled

  1. Long Term Geoelectrical Monitoring of Deep-water Horizon Oil Spill in the Gulf Coast

    Science.gov (United States)

    Heenan, J. W.; Ntarlagiannis, D.; Slater, L. D.; Atekwana, E. A.; Ross, C.; Nolan, J. T.; Atekwana, E. A.

    2011-12-01

    In the aftermath of the catastrophic Deep-water Horizon (DWH) spill in the Gulf Coast, opportunities exist to study the evolution of fresh crude oil contamination in beach sediments and marshes. Grand Terre 1 Island, off the coast of Grand Isle in southern Louisiana, is an uninhabited barrier island, heavily impacted by the DWH spill, and ideal for undisturbed long term monitoring of crude oil degradation processes. A 10 channel Syscal-Pro resistivity / IP instrument (IRIS Instruments, France) is the heart of the fully autonomous geoelectrical monitoring system; the system, which is housed in a weatherproof container, relies solely on solar power, is controlled by an energy efficient PC and can be accessed remotely via web tools. The monitoring scheme involves collecting bi-daily resistivity measurements from surface and shallow boreholes, ranging from January 2011 to the present; environmental parameters, such as T, are continuously recorded at several depths. During regular field trips we perform larger scale geophysical surveys, and geochemical measurements (pH, DO, T, fluid C) to support the continuous geophysical monitoring. The contaminated layer on site is a visually distinctive layer of crude oil, isolated by cleaner sands above and below which is identified by a clear and obvious resistive anomaly in preliminary surveys. Early results show a decrease in average of the resistance values of each dataset over time. Further processing of the data yields a linearly shaped resistive anomaly, which coincides with the location of the oil layer. The changes in subsurface resistivity appear to be focused within this anomaly. Time filtering of the data by the time that they were collected, morning or evening, reveals a diurnal variation. While both time frames follow the same overall trend, the measurements in the morning are slightly more resistive than those in the evening. This indicates that there are environmental factors, such as temperature, that need to be

  2. Algolcam: Low Cost Sky Scanning with Modern Technology

    Science.gov (United States)

    Connors, Martin; Bolton, Dempsey; Doktor, Ian

    2016-01-01

    Low cost DSLR cameras running under computer control offer good sensitivity, high resolution, small size, and the convenience of digital image handling. Recent developments in small single board computers have pushed the performance to cost and size ratio to unprecedented values, with the further advantage of very low power consumption. Yet a third technological development is motor control electronics which is easily integrated with the computer to make an automated mount, which in our case is custom built, but with similar mounts available commercially. Testing of such a system under a clear plastic dome at our auroral observatory was so successful that we have developed a weatherproof housing allowing use during the long, cold, and clear winter nights at northerly latitudes in Canada. The main advantage of this housing should be improved image quality as compared to operation through clear plastic. We have improved the driving software to include the ability to self-calibrate pointing through the web API of astrometry.net, and data can be reduced automatically through command line use of the Muniwin program. The mount offers slew in declination and RA, and tracking at sidereal or other rates in RA. Our previous tests with a Nikon D5100 with standard lenses in the focal length range 50-200 mm, operating at f/4 to f/5, allowed detection of 12th magnitude stars with 30 second exposure under very dark skies. At 85 mm focal length, a field of 15° by 10° is imaged with 4928 by 3264 color pixels, and we have adopted an 85 mm fixed focal length f/1.4 lens (as used by Project Panoptes), which we expect will give a limited magnitude approaching 15. With a large field of view, deep limiting magnitude, low cost, and ease of construction and use, we feel that the Algolcam offers great possibilities in monitoring and finding changes in the sky. We have already applied it to variable star light curves, and with a suitable pipeline for detection of moving or varying objects

  3. Changes in the chemical composition of the light crude by short-term weathering

    International Nuclear Information System (INIS)

    Luo, X.; Ma, Q.M.

    2006-01-01

    In the event of an oil spill, it is important to unambiguously identify the oil and link it to the known source in order to determine environmental impact and legal liability. The fate and behaviour of spilled oil depends on several physical, chemical and biological factors such as evaporation, dissolution, microbial degradation and photooxidation. The chemical composition of the spilled oil changes with weathering. The changes can have a significant effect on the oil's toxicity and can add to the difficulty of identifying spilled oil. This paper presents the results of changes in chemical composition of light crude oil by weathering under natural environmental conditions. Oil samples were analyzed on a gas chromatograph equipped with a mass selective detector. Light crude oil was obtained from the oil cabin of a tanker which spilled oil near the Dalian Sea near China in April 2005. It was shown that the saturated hydrocarbons of light crude oil distribute between n-C 8 and n-C 23 . The most abundant n-alkanes are found in the n-C 10 to n-C 16 . The main chemical compositions of the light crude oil are the n-alkanes and the isoprenoids. The aromatic compounds are subordinate chemical compositions of the light crude oil. A simulated weathering experiment showed that less than n-C 12 of the n-alkanes, toluene, 1,3-dimethyl benzene is lost after 1 day of weathering. The n-C 13 , n-C 14 , naphthalene and 2-methyl-naphthalene are lost on the fifth day of weathering. N-C 15 alkane composition indicates some weatherproof capability. The ratios of n-C 17 /pristine and n-C 18 /phytane were unchanged and useful in identifying the source of the light crude oil during the first 8-day weathering period. By the twenty-first day of weathering, the chemical composition underwent extreme alteration, and the source of the pollution could not be determined by the ratios of pristine/phytane. 12 refs., 3 tabs., 7 figs

  4. A low-cost particulate matter (PM2.5 monitor for wildland fire smoke

    Directory of Open Access Journals (Sweden)

    S. Kelleher

    2018-02-01

    Full Text Available Wildfires and prescribed fires produce emissions that degrade visibility and are harmful to human health. Smoke emissions and exposure monitoring is critical for public and environmental health protection; however, ground-level measurements of smoke from wildfires and prescribed fires has proven difficult, as existing (validated monitoring technologies are expensive, cumbersome, and generally require line power. Few ground-based measurements are made during fire events, which limits our ability to assess the environmental and human health impacts of wildland fire smoke. The objective of this work was to develop and validate an Outdoor Aerosol Sampler (OAS – a filter-based air sampler that has been miniaturized, solar powered, and weatherproofed. This sampler was designed to overcome several of the technical challenges of wildland fire monitoring by being relatively inexpensive and solar powered. The sampler design objectives were achieved by leveraging low-cost electronic components, open-source programming platforms, and in-house fabrication methods. A direct-reading PM2.5 sensor was selected and integrated with the OAS to provide time-resolved concentration data. Cellular communications established via short message service (SMS technology were utilized in transmitting online sensor readings and controlling the sampling device remotely. A Monte Carlo simulation aided in the selection of battery and solar power necessary to independently power the OAS, while keeping cost and size to a minimum. Thirteen OAS were deployed to monitor smoke concentrations downwind from a large prescribed fire. Aerosol mass concentrations were interpolated across the monitoring network to depict smoke concentration gradients in the vicinity of the fire. Strong concentration gradients were observed (spatially and temporally and likely present due to a combination of changing fire location and intensity, topographical features (e.g., mountain ridges, and

  5. Novel Infiltration Diagnostics based on Laser-line Scanning and Infrared Temperature Field Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinwei [Iowa State Univ., Ames, IA (United States)

    2017-12-08

    This project targets the building energy efficiency problems induced by building infiltration/leaks. The current infiltration inspection techniques often require extensive visual inspection and/or whole building pressure test. These current techniques cannot meet more than three of the below five criteria of ideal infiltration diagnostics: 1. location and extent diagnostics, 2. building-level application, 3. least surface preparation, 4. weather-proof, and 5. non-disruption to building occupants. These techniques are either too expensive or time consuming, and often lack accuracy and repeatability. They are hardly applicable to facades/facades section. The goal of the project was to develop a novel infiltration diagnostics technology based on laser line-scanning and simultaneous infrared temperature imaging. A laboratory scale experimental setup was designed to mimic a model house of well-defined pressure difference below or above the outside pressure. Algorithms and Matlab-based programs had been developed for recognition of the hole location in infrared images. Our experiment based on laser wavelengths of 450 and 1550 nm and laser beam diameters of 4-25 mm showed that the location of the holes could be identified using laser heating; the diagnostic approach however could not readily distinguish between infiltration and non-infiltration points. To significantly improve the scanning throughput and recognition accuracy, a second approach was explored, developed, and extensively tested. It incorporates a liquid spray on the surface to induce extra phase change cooling effect. In this spray method, we termed it as PECIT (Phase-change Enhanced Cooling Infrared Thermography), phase-change enhanced cooling was used, which significantly amplifies the effect of air flow (infiltration and exfiltration). This heat transfer method worked extremely well to identify infiltration and exfiltration locations with high accuracy and increased throughput. The PECIT technique was

  6. Plant Breeding and Genetics Newsletter, No. 25, July 2010

    International Nuclear Information System (INIS)

    2010-07-01

    This new biennium 2010-2011 will be characterized by a strengthened attention focusing on climate variability and change. In the next 50 years, global population and economic trends will exert increasing pressure on crop production and vital natural resources such as land and water through expanding demands for food, feed, fibre and energy. These trends will be compounded by the intensifying effects of climate change, which is negatively impacting crop productivity and land and water resources through increasingly variable and extreme conditions. These include elevated temperatures, irregular precipitation patterns and outbreaks of global pest epidemics. Thus, a major challenge to agriculture is to weather-proof the existing crop production systems. In order to make better use of both productive and marginal lands, it is paramount to select, evaluate and develop crop genotypes that can produce under conditions of high temperatures and low rainfall, or where soils suffer from salinity or acidity or have been 'mined' of nutrients. Producing not only more but better quality food with enhanced nutritive value is an important pathway towards reducing hunger and malnutrition thus enhancing human health and disease-resistance and ultimately contributing to the achievement of goal one of the UN Millennium Development Goals. Significant opportunities exist for meeting this challenge by harnessing nuclear techniques in conjunction with newly emerging techniques in cellular and molecular biology. Innovative soil and water technologies will be integrated with newly developed mutant crop varieties with enhanced adaptability to climate change and variability. This integrated approach is important in the adoption of mutant varieties to field conditions to meet the increasing global demand on the quantity and quality of food within the next 50 years as well as to ensure the conservation of natural (e.g. soil and water) and agricultural (e.g. fertilizers) resources in highly