WorldWideScience

Sample records for weathered earth crust materials

  1. Lime-Crusted Rammed Earth: Materials Study

    OpenAIRE

    Mileto, Camilla; Vegas López-Manzanares, Fernando; Alejandre, Francisco Javier; Martín, Juan Jesús; Garcia Soriano, Lidia

    2013-01-01

    This study analyses the durability of rammed-earth wall construction techniques. The analysis focuses on three medieval masonry types from the Castle of Villavieja (Castellón, Spain) using two variations of lime-reinforced rammed earth in its walls: lime-crusted rammed earth and brick-reinforced rammed earth. Materials analysis reveals the good properties of the materials used in the outer wall facing despite its age. It also clearly shows how deterioration depends more on the construction t...

  2. Correlation analysis on partition of rare earth in ion-exchangeable phase from weathered crust ores

    Institute of Scientific and Technical Information of China (English)

    CHI Ru-an; DAI Zu-xu; XU Zhi-gao; WU Yuan-xin; WANG Cun-wen

    2006-01-01

    The rare earth(RE) in weathered crust ores mainly exists as ion-exchangeable phase, approximately 80%. The correlation analysis on partition of 376 samples in ion-exchangeable phase from weathered crust ores was conducted. The results show that partition both among heavy RE elements and light RE elements with high partition appears positive correlation, but partition sums between the heavy RE elements and the light RE elements appear close negative correlation obviously. Clear negative correlations exist between the light RE elements (except Ce) and yttrium(Y). Matrix of correlation analysis on this partition can be divided into three zones. The correlated coefficient variation from negative to positive in zones B and C occurs at Gd, so does that in zones B and A (except Ce, Eu, and Sm), suggesting that RE elements can be divided into two groups with Gd as border. This phenomenon is called Gadolinium-broken effect.

  3. Role of minerals properties on leaching process of weathered crust elution-deposited rare earth ore

    Institute of Scientific and Technical Information of China (English)

    肖燕飞; 刘向生; 冯宗玉; 黄小卫; 黄莉; 陈迎迎; 吴文远

    2015-01-01

    Granite belonged to intrusive rock and volcanic was extrusive rock. There may be many differences in their degree of weathering and mineral chemical composition. The present study investigated the minerals properties and the leaching mechanism of the granitic weathered crust elution-deposited rare earth ore from Longnan Rare Earth Mine area (LN ores) and volcanic weathered crust elution-deposited rare earth ore from Liutang Rare Earth Mine area (LT ores). The X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) were used to characterize the phase of rare earth ores. The particle size distributions and main composition of the ore were also presented in this paper. The leaching mechanisms of two kinds of rare earth ores were analyzed with different kinetics models and could be described by the shrinking-core model. They were all inner diffusion-controlled leaching processes. The leaching equation of the kinetics of the LN ores could be expressed as:4 LN LN 1.096 10 2/3 0.377 8.314 0 2 3=0.1061 (1 ) Tr e tη η×−−− − −, leaching equation of kinetics of LT ores was 3 LT LT 4.640 10 2/3 0.411 8.314 0 32 3=8.33 101 (1 ) Tr e tη η×−− −×− − −. The rare earth leaching rate of LT ores was always lower in the same condition, and it would need more time and more (NH4)2SO4 consump-tion to achieve the same rare earth leaching efficiency, which would lead to more serious ammonia-nitrogen pollution. Therefore, magnesium salt was proposed as the leaching agent to eliminate ammonia-nitrogen pollution and further studies would be taken in the future.

  4. Geochemistry of Rare Earth Elements (REE) in the Weathered Crusts from the Granitic Rocks in Sulawesi Island, Indonesia

    Institute of Scientific and Technical Information of China (English)

    Adi Maulana; Kotaro Yonezu; Koichiro Watanabe

    2014-01-01

    We report for the first time the geochemistry of rare earth elements (REE) in the weath-ered crusts of I-type and calc-alkaline to high-K (shoshonitic) granitic rocks at Mamasa and Palu re-gion, Sulawesi Island, Indonesia. The weathered crusts can be divided into horizon A (lateritic profile) and B (weathered horizon). Quartz, albite, kaolinite, halloysite and montmorrilonite prevail in the weathered crust. Both weathered profiles show that the total REE increased from the parent rocks to the horizon B but significantly decrease toward the upper part (horizon A). LREE are enriched toward the upper part of the profile as shown by La/YbN value. However, HREE concentrations are high in horizon B1 in Palu profile. The total REE content of the weathered crust are relatively elevated com-pared to the parent rocks, particularly in the lower part of horizon B in Mamasa profile and in horizon B2 in Palu profile. This suggests that REE-bearing accessory minerals may be resistant against weath-ering and may remain as residual phase in the weathered crusts. The normalized isocon diagram shows that the mass balance of major and REE components between each horizon in Mamasa and Palu weathering profile are different. The positive Ce anomaly in the horizon A of Mamasa profile indicated that Ce is rapidly precipitated during weathering and retain at the upper soil horizon.

  5. A new type of rare earth elements deposit in weathering crust of Permian basalt in western Guizhou, NW China

    Institute of Scientific and Technical Information of China (English)

    YANG Ruidong; WANG Wei; ZHANG Xiaodong; LIU Ling; WEI Huairui; BAO Miao; WANG Jingxin

    2008-01-01

    A new type of rare earth elements (REEs) deposit was discovered from the gaolinite mudstone in the weathering crust of Permian basalt, Bijie region, western Guizhou, China. It contained ∑-RE2O3 0.065%-1.086%. This type of REEs deposit was widely distributed with steady horizon and thickness of 3-4 m. The ore-bearing weathering crust (kaolinite) of the three discovered REEs deposits belonged to the third episode of the Emeishan basalt eruption. The new type of REEs deposit was suggested that basalt (tuff) weathering could lead to the en- richment of the rare earth elements. Therefore, it is of important economic significance to explore REEs deposits in the weathering crust of basalt (tufts) in Yunnan, Guizhou, and Sichuan Provinces.

  6. Study on Microbes and Their Effects on Rare Earth Extraction in Weathering Crust of Granite

    Institute of Scientific and Technical Information of China (English)

    陈炳辉; 毋福海; 刘琥琥

    2001-01-01

    Microbes were cultured from the samples at various depths in a weathering profile of RE-bearing granite in Gonghe RE mine, Guangdong Province. The cultured microbes, existing at a depth of 0.2~12 m and being more plentiful within 3 m in the profile,include bacteria (Bacillus,Enterobacter, Escherichia, Alkaligenes, Neisseria, Staphylococcus and anaerobic bacteria such as Clostridium), fungi (Aspergillus niger, Aspergillus flavus, Penicillium, Mucor and Saccharomycete) and actinomyces. Experiments were made under room temperature by using solutions of the cultured microbes and their metabolites, compared with distilled water and the culture solution without microbes, to leach RE from the sample of the weathering crust. The results are shown by the experiments: (1) The mixed microbes cultured from the profile and their metabolites increase the quantity of RE leached from the sample and reduce the pH of the solutions. (2) The ability to leach RE from the sample varies with various microbes, decreasing in a sequence of fungi (Mucor, saccharomycete, Aspegillus and Penicillium), zymotic bacilli (Enterobacter, Escherichia etc.), Staphylococcus, zymotic Bacillus, actinomyces and Alkaligenes. (3) The RE leached with bacteria is mainly related to the pH value of the solutions influenced by the metabolites of the bacteria; whereas that leached with fungi is mainly related to the adsorption and imbibition of RE by the fungi and the complexing of RE with their metabolites. (4) Compared with that leached with ammonium sulfate, the fractionation of the RE leached with microbes is characterized by higher δCe, lower δEu and lower ratios of NLa/Sm and NGd/Yb. The result of the fractionation of RE accords with the distribution of RE in the various layers of a profile of weathering crust of granite in South China. The experimental results indicate that microbes and their metabolites should play a positive role in the mobilization, migration and fractionation of RE in the

  7. The Impact of Guiding Materials on Students' Conceptual Understanding: The Case of "What Is the Earth's Crust Composed of?

    Science.gov (United States)

    Çoruhlu, Tülay Senel; Er Nas, Sibel

    2017-01-01

    The aim of this research is to determine the effect of the use of guidance material based on the 5E model on students' conceptual understanding of a topic entitled "What is the earth's crust composed of?" The sample consists of 40 students from the 5th grade (experimental group 20, control group 20). A concept test, a drawing test, and…

  8. Process optimization of rare earth and aluminum leaching from weathered crust elution-deposited rare earth ore with compound ammonium salts

    Institute of Scientific and Technical Information of China (English)

    何正艳; 张臻悦; 余军霞; 徐志高; 池汝安

    2016-01-01

    In order to intensify the leaching process of rare earth (RE) and reduce the impurities in the leachate, ammonium chloride (NH4Cl) and ammonium nitrate (NH4NO3) were mixed as a compound leaching agent to treat the weathered crust elution-deposited RE ore. Effects of molar ratio of NH4Cl and NH4NO3, ammonium (NH4+) concentration, leaching agent pH and flow rate on the leaching process of RE were studied and evaluated by the chromatographic plate theory. Leaching process of the main impurity alu-minium (Al) was also discussed in detail. Results showed that a higher initial ammonium concentration in a certain range could en-hance the mass transfer process of RE and Al by providing a driving force to overcome the resistance of diffusion. pH almost had no effects on the mass transfer efficiency of RE and Al in the range of 4 to 8. The relationship between the flow rate and height equiva-lent to a theoretical plate (HETP) could fit well with the Van Deemter equation, and the flow rate at the lowest HETP was determined. The optimum conditions of column leaching for RE and Al were 1:1 (molar ratio) of NH4Cl and NH4NO3, 0.2 mol/L of ammonium concentration, pH 4–8 of leaching agent and 0.5 mL/min of flow rate. Under this condition, the mass transfer efficiency of RE was improved, but no change was observed for Al compared with the most widely used ammonium sulfate. Moreover, the significant dif-ference value (around 20 mL) of retention volume at the peak concentration between RE and Al provided a possibility for their sepa-ration. It suggested the potential application of the novel compound leaching agent (NH4Cl/NH4NO3). It was found that the relative concentration of RE in the leachate could be easily obtained by monitoring the pH of leachate.

  9. Relamination of mafic subducting crust throughout Earth's history

    Science.gov (United States)

    Maunder, Ben; van Hunen, Jeroen; Magni, Valentina; Bouilhol, Pierre

    2016-09-01

    Earth has likely cooled by several hundred degrees over its history, which has probably affected subduction dynamics and associated magmatism. Today, the process of compositional buoyancy driven upwelling, and subsequent underplating, of subducted materials (commonly referred to as ;relamination;) is thought to play a role in the formation of continental crust. Given that Archean continental crust formation is best explained by the involvement of mafic material, we investigate the feasibility of mafic crust relamination under a wide range of conditions applicable to modern and early Earth subduction zones, to assess if such a process might have been viable in an early Earth setting. Our numerical parametric study illustrates that the hotter, thicker-crust conditions of the early Earth favour the upward relamination of mafic subducting crust. The amount of relaminating subducting crust is observed to vary significantly, with subduction convergence rate having the strongest control on the volume of relaminated material. Indeed, removal of the entire mafic crust from the subducting slab is possible for slow subduction (∼2 cm/yr) under Archean conditions. We also observe great variability in the depth at which this separation occurs (80-120 km), with events corresponding to shallower detachment being more voluminous, and that relaminating material has to remain metastably buoyant until this separation depth, which is supported by geological, geophysical and geodynamical observations. Furthermore, this relamination behaviour is commonly episodic with a typical repeat time of approximately 10 Myrs, similar to timescales of episodicity observed in the Archean rock record. We demonstrate that this relamination process can result in the heating of considerable quantities of mafic material (to temperatures in excess of 900 °C), which is then emplaced below the over-riding lithosphere. As such, our results have implications for Archean subduction zone magmatism, for

  10. Low-Reflectance Material in Mercury's Crust

    Science.gov (United States)

    Denevi, B. W.; Robinson, M. S.; Murchie, S. L.; Blewett, D. T.; Holsclaw, G. M.; McClintock, W. E.; McCoy, T. J.; McNutt, R. L.; Solomon, S. C.

    2008-12-01

    Mercury's reflectance and spectral slope are broadly similar to that of the lunar nearside. However, a host of Earth-based measurements and spacecraft data indicate that the composition and physical makeup of their surfaces may exhibit significant differences. Apollo samples and orbital remote sensing show that the lunar nearside surface is generally high in FeO (6 to 20 wt %) while the farside surface abundance is somewhat lower (3 to 10 wt %). Earth-based remote sensing of Mercury indicates that its surface contains less than 6 wt % FeO and perhaps even lower than 3 wt %. The reflectance of the Moon, and most likely Mercury, is controlled to first order by variations in iron and titanium abundances. If Mercury's ferrous iron content is much lower than that of the lunar nearside, then why is its reflectance comparable (0.019 vs. 0.021 at phase angle 65°, respectively)? Two-color vidicon observations by Mariner 10 revealed patchy low-reflectance, relatively blue units within Mercury's crust. Hapke and coworkers first speculated that opaque minerals (most likely ilmenite) could explain the color and reflectance of this low-reflectance component. Multispectral image data obtained by MESSENGER during its January 2008 flyby of Mercury covered new terrain and provided higher resolution, better signal-to-noise ratio, and extended wavelength coverage above that obtained by Mariner 10. The new data confirmed the existence of the low-reflectance material (LRM) and its relatively blue color and provide much better geologic context to interpret the origin of this material. MESSENGER multispectral data show the LRM to be widespread across the surface and to occur at depth within the crust. Three key observations show the vertical distribution of LRM. First the rims and floors of 100-km-scale craters within the Caloris basin are composed of LRM, streamers of LRM occur in ejecta traceable back to outcrops in crater floors (e.g. Mozart), and large continuous sections of ejecta

  11. Behavior of leaching and precipitation of weathering crust ion-absorbed type by magnetic field

    Institute of Scientific and Technical Information of China (English)

    QIU Tingsheng; FANG Xihui; CUI Lifeng; FANG Yanxi

    2008-01-01

    With weathering crust Ion-Absorbed Type Rare Earth (IATRE) ores in southern Jiangxi as an example, rare earth percolation leaching and leaching solution precipitation process research were carried out under conditions of magnetic field. The effect on the rare earth leaching process such as magnetic field strength, magnetization time, magnetization manner, and other factors were discussed. The effect on the mother rare earth liquor sedimentation rate, purity, and crystallization behavior such as magnetic field strength, magnetization time, and magnetization manner were investigated. Leaching and precipitation mechanism of magnetization on IATRE were analyzed. The results showed that the magnetic treatment can improve leaching rate of weathering crust IATRE and the sedimentation rate, and reduce consumption of reagents.

  12. Evolution of the earth's crust: Evidence from comparative planetology

    Science.gov (United States)

    Lowman, P. D., Jr.

    1973-01-01

    Geochemical data and orbital photography from Apollo, Mariner, and Venera missions were combined with terrestrial geologic evidence to study the problem of why the earth has two contrasting types of crust (oceanic and continental). The following outline of terrestrial crustal evolution is proposed. A global crust of intermediate to acidic composition, high in aluminum, was formed by igneous processes early in the earth's history; portions survive in some shield areas as granitic and anorthositic gneisses. This crust was fractured by major impacts and tectonic processes, followed by basaltic eruptions analogous to the lunar maria and the smooth plains of the north hemisphere of Mars. Seafloor spreading and subduction ensued, during which portions of the early continental crust and sediments derived therefrom were thrust under the remaining continental crust. The process is exemplified today in regions such as the Andes/Peru-Chile trench system. Underplating may have been roughly concentric, and the higher radioactive element content of the underplated sialic material could thus eventually cause concentric zones of regional metamorphism and magmatism.

  13. Fission Track Dating of Authigenic Quartz in Red Weathering Crusts of Carbonate Rocks in Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    LIU Xiuming; WANG Shijie; ZHANG Feng

    2004-01-01

    The Cenozoic evolution history of Guizhou Province, which is located on the southeastem flank of the Qinghai-Tibet Plateau, is unclear because of the lack of sedimentation records. The red weathering crusts widespread on the Yunnan-Guizhou Plateau may bear critical information about their evolution history. This work firstly determined the ages of four red weathering crusts in eastern, central and northern Guizhou. The material used in fission track dating is well-crystallized quartz occurring in many in-situ weathering crusts of carbonate rocks. The results showed that the fission track ages of quartz vary over a wide range from 1 to 25 Ma in the four profiles, significantly younger than the ages of the Triassic and Cambrian parent rocks. In combination with the evolution history of the regional geology during the period from 25 to 1 Ma, the ages of quartz can exclude the possibility that the origin of quartz has nothing to do with primary clastic minerals in parent rocks, authigenesis during diagenesis and hydrothermal precipitation or replacement by volcanic activities. It is deduced that the well-crystallized quartz was precipitated from Si-rich weathering fluids during the weathering process of carbonate rocks. The recorded ages of quartz from the four profiles are consistent with the episodes of the planation surfaces on the Qinghai-Tibet Plateau, the forming stages of red soil in the tropics of South China, the tectonically stable periods in Guizhou, and the ages of weathering in other parts of the world during the Cenozoic era. That is to say, the ages of authigenic quartz dated by the fission track method are well feasible and credible.

  14. Heterogeneity of Parent Rocks and Its Constraints on Geochemical Criteria in Weathering Crusts of Carbonate Rocks

    Institute of Scientific and Technical Information of China (English)

    WANG Shijie; FENG Zhigang

    2004-01-01

    Owing to the low contents of their acid-insoluble components, carbonate rocks tend to decrease sharply in volume in association with the formation of weathering crust. The formation of a 1 m-thick weathering crust would usually consume more than ten meters to several tens of meters of thickness of parent rocks. The knowledge of how to identify the homogeneity of parent rocks is essential to understand the formation mechanism of weathering crust in karst regions,especially that of thick-layered red weathering crust. In this work the grain-size analyses have demonstrated that the three profiles studied are the residual weathering crust of carbonate rocks and further showed that there objectively exists the heterogeneity of parent rocks in the three studied weathering crusts. The heterogeneity of parent rocks can also be reflected in geochemical parameters of major elements, just as the characteristics of frequency plot of grain-size distribution.Conservative trace element ratios Zr/Hf and Nb/Ta are proven to be unsuitable for tracing the heterogeneity of parent rocks of weathering crust, but its geochemical mechanism is unclear. The authors strongly suggest in this paper that the identification of the homogeneity of parent rocks of weathering crust in karst regions is of prime necessity.

  15. Energy conservation in the earth's crust and climate change.

    Science.gov (United States)

    Mu, Yao; Mu, Xinzhi

    2013-02-01

    Among various matters which make up the earth's crust, the thermal conductivity of coal, oil, and oil-gas, which are formed over a long period of geological time, is extremely low. This is significant to prevent transferring the internal heat of the earth to the thermal insulation of the surface, cooling the surface of the earth, stimulating biological evolution, and maintaining natural ecological balance as well. Fossil energy is thermal insulating layer in the earth's crust. Just like the function of the thermal isolation of subcutaneous fatty tissue under the dermis of human skin, it keeps the internal heat within the organism so it won't be transferred to the skin's surface and be lost maintaining body temperature at low temperatures. Coal, oil, oil-gas, and fat belong to the same hydrocarbons, and the functions of their thermal insulation are exactly the same. That is to say, coal, oil, and oil-gas are just like the earth's "subcutaneous fatty tissue" and objectively formed the insulation protection on earth's surface. This paper argues that the human large-scale extraction of fossil energy leads to damage of the earth's crust heat-resistant sealing, increasing terrestrial heat flow, or the heat flow as it is called, transferring the internal heat of the earth to Earth's surface excessively, and causing geotemperature and sea temperature to rise, thus giving rise to global warming. The reason for climate warming is not due to the expansion of greenhouse gases but to the wide exploitation of fossil energy, which destroyed the heat insulation of the earth's crust, making more heat from the interior of the earth be released to the atmosphere. Based on the energy conservation principle, the measurement of the increase of the average global temperature that was caused by the increase of terrestrial heat flow since the Industrial Revolution is consistent with practical data. This paper illustrates "pathogenesis" of climate change using medical knowledge. The

  16. Gold in meteorites and in the earth's crust

    Science.gov (United States)

    Jones, Robert Sprague

    1968-01-01

    The reported gold contents of meteorites range from 0.0003 to 8.74 parts per million. Gold is siderophilic, and the greatest amounts in meteorites are in the iron phases. Estimates ,of the gold content of the earth's crust are in the range of 0.001 to 0.006 parts per million.

  17. Earth materials and earth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K; Shankland, T. [and others

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  18. Continental crust formation on early Earth controlled by intrusive magmatism

    Science.gov (United States)

    Rozel, A. B.; Golabek, G. J.; Jain, C.; Tackley, P. J.; Gerya, T.

    2017-05-01

    The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the “Plutonic squishy lid” tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

  19. Continental crust formation on early Earth controlled by intrusive magmatism.

    Science.gov (United States)

    Rozel, A B; Golabek, G J; Jain, C; Tackley, P J; Gerya, T

    2017-05-18

    The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the "Plutonic squishy lid" tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

  20. Geological and Mineralogical-technological features chromite ore from nickel-weathering crusts Average Bug

    Directory of Open Access Journals (Sweden)

    Perkov E.S.

    2013-09-01

    Full Text Available Conditions of occurrence and distribution features of chromites ore bodies in the ultra-basic nickel bearing weathering crusts of Middle Bug Area are considered. Main types of exogenous chromites ores in weathering crusts and beyond of them are identified as well as mineralogical, chemical and grain features of mineralization are given. Obtained data are substantiated in order to apply them while developing the efficient schemes of mining and processing of exogenous chromites ores.

  1. The contribution of amphibole from deep arc crust to the silicate Earth's Nb budget

    Science.gov (United States)

    Tiepolo, Massimo; Vannucci, Riccardo

    2014-11-01

    The continental crust (CC) and the depleted mantle (DM) are generally assumed to be complementary reservoirs within the Earth. However, the mixture between CC and upper mantle does not generate the Nb/Ta and Nb/La ratios of chondrites. A reservoir with superchondritic ratios for Nb/Ta and Nb/La is thus required in the Earth's system. The occurrence of a hidden amphibole reservoir in the lower arc crust has been recently proposed. This, coupled with the capability of calcic amphibole to give rise to a superchondritic Nb/Ta and Nb/La reservoir, led us to determine to what extent amphibole-rich ultramafic rocks can account for the Nb (and Nb/Ta, Nb/La as well) imbalance on Earth. We have considered lower crust mafic and ultramafic amphibole-rich intrusive rocks from collisional settings worldwide. Because CC is considered to have primarily formed in collisional setting these rocks are important for its genetic model. We modeled Nb, Ta and La contents of the hidden Nb reservoir by mass balance calculations between continental crust, depleted mantle and primitive mantle. Modeling shows that amphibole-rich mafic lower crust can solve the so-called Nb paradox if large volumes of materials are supposed to be returned into the mantle during the Earth's history. A possible mechanism is recycling, particularly in Precambrian times, of eclogites that underwent pre-eclogitic melting in the amphibolite facies field and then recrystallized under eclogite-facies conditions.

  2. Synthetic petroleum stability under thermobaric conditions of the Earth crust

    Science.gov (United States)

    Serovaiskii, Aleksandr; Kolesnikov, Anton; Kutcherov, Vladimir

    2016-04-01

    Nowadays there are several dozens of large crude oil deposits at the depth more than 10 km (Kutcherov and Krayushkin, 2010). The existence of such deep oil fields at the depth exceeding conventional "oil window" could be explained by the migration of the deep fluid from the asthenosphere. This fluid migrates up to the surface and forms oil and gas deposits in different kind of rocks in the on various depths of the Earth's crust. Crude oil consists of a great numbers of different hydrocarbons. Its precise molecular composition is impossible to investigate nowadays. Instead of the natural hydrocarbons mixture synthetic petroleum with simpler composition was used in the experiments. The synthetic petroleum stability was investigated at the Earth crust thermobaric conditions corresponding to the depth down to 50 km. The experiments were carried out in Diamond Anvil Cells (DAC) with the internal resistive heating. Raman spectroscopy was used to analyse the petroleum composition. The analysis of the sample was made in situ during the experiment. Ruby and Sm:YAG Raman shifts were the controllers of the temperature and pressure inside the sample (Trots et al., 2012; Mao et al., 1986). Three series of the experiments were carried out at 320°C and 0.7GPa, 420°C and 1.2GPa, 450°C and 1.4GPa. After the experiment the Raman spectra of the sample was compared to the reference spectra of the petroleum before the experiment. The comparison showed no changes in the sample's composition after the experiment. Obtained data may explain the existence of deep oil fields located deeper than the "oil window". It can broaden the knowledge about the existing range of depths for the crude oil and natural gas deposits in the Earth crust. The evidence of the petroleum existence in the Earth low crust may support the existence of unconventional, deep abyssal hydrocarbons source.

  3. Morphodynamical geodiversity of the Earth's crust, relief, and landscapes

    Science.gov (United States)

    Lastochkin, Alexander; Zhirov, Andrey; Boltramovich, Sergei

    2014-05-01

    Morphodynamical geodiversity of the Earth's crust is determined by tectonic flows, which create various folded, faulted and injective dislocations. Folded dislocations (plicatives) correspond in plan to the eight types of conic cross-sections and in profile - to variation of the amplitudes. Faulted dislocations (disjunctives) are reflected in the angles of fault planes and the amplitudes of displacements. Injective dislocations vary in size and amplitudes of their vertical penetrations inside sedimentary layers and on the Earth's surface. In turn, surface and above-the-surface material and energy flows, or geoflows, create geotops - elementary landscapes that are tied up to corresponding elementary surfaces. Geotops are responsible for the morphodynamical geodiversity of relief and landscapes. Within the three-dimensional space of the geotop each geoflow can be divided into currents and links. The first of which are transverse to the front of the geoflow, the second - the longitudinal. Geotops and geoflows, mainly descending and lateral, influence each other according to their specifics: lithological, biological, hydrological, thermobaric features, etc. This interaction determines the geodiversity as a whole. By their altitude, gradient and dip azimuth, geotops can be classified as initial (upper), transit (slope) and terminal (lower) - with respect to descending geoflows. By their functional role, geotops can also be divided into: 1) flat-topped and flat-bottomed geotops that are out of the descending geoflows; 2) upper disintegrating geotops (apices, ridges); 3) translators (geotops of faces and feet); 4) vertical barriers (cliffs); 5) intermediate accumulators (terraces); 6) lower accumulators (basins) and conductors (valleys). Geotops and their elementary surfaces influence also the geometry of geoflows, performing the function of disintegrators (centrifugal and bilateral ones), concentrators (centripetal and bilateral ones) or just conductors (straight ones

  4. Insights into chemical weathering of the upper continental crust from the geochemistry of ancient glacial diamictites

    Science.gov (United States)

    Li, Su; Gaschnig, Richard M.; Rudnick, Roberta L.

    2016-03-01

    Glacial diamictites, with ages ranging from ∼2900 to 0.01 Ma, record the changing composition of the upper continental crust through time (Gaschnig et al., 2014). Li concentrations and isotopic compositions, combined with Pb isotopic compositions, chemical index of alteration (CIA) values and relative Sr concentrations are used here to assess the degree of chemical weathering recorded in these deposits and the origin of this signature. The δ7Li values of most of the diamictites (ranging from -3.9 to +3.5) are lower than those of mantle-derived basalts (+3.7 ± 2, 2σ), and the low δ7Li values are generally accompanied by high CIA and low Sr/Sr∗ values (or Sr depletion factor, Sr/Sr∗ = Sr/(Ce∗Nd)0.5), reflecting a weathering signature that may have derived from pre-depositional, syn-depositional, and/or post-depositional weathering processes. Profiles through three glacial diamictites with relatively high CIA (a fresh road cut of the Neoproterozoic Nantuo Formation (CIA = 62-69), and drill cores through the Paleoproterozoic Timeball Hill (CIA = 66-75) and Duitschland Formations (CIA = 84-91)) do not show evidence of significant post-depositional weathering. High Th/U, reflecting loss of uranium during oxidative weathering, is seen in all Paleozoic and Neoproterozoic diamictites and a few Paleoproterozoic deposits. Pb isotopic systematics suggest that this signature was largely inherited from preexisting crust, although a subset of samples (the Neoproterozoic Konnarock, Paleozoic Dwyka, and several of the Paleoproterozoic Duitschland samples) appears to have experienced post-depositional U loss. Modern glaciomarine sediments record little weathering (CIA = 47, Sr/Sr∗ = 0.7, δ7Li = +1.8), consistent with the cold temperatures accompanying glacial periods, and suggesting that limited syn-depositional weathering has occurred. Thus, the chemical weathering signature observed in ancient glacial diamictites appears to be largely inherited from the upper

  5. The Current Situation and Trends of the Technology for Impurity Removal of Weathering Crust Ion - absorbed Type Rare Earth Ores%风化壳淋积型稀土矿提取除杂技术现状及进展

    Institute of Scientific and Technical Information of China (English)

    邱廷省; 伍红强; 方夕辉; 李晓波

    2012-01-01

    On the basis of reviewing extensive literatures, the paper described the current situation of the technology for impurity removal of weathering crust ion - absorbed type rare earth ores,analyzed the main features of the technology,and proposed some problems existed in the process. Finally,the main future research directions were indicated on the theory research of the impurity removal technology, the development of new effective suppression agents for impurities, the optimization of process,the use of a combined flowsheet of mining,beneficiution and smelting,and so on.%在查阅大量文献资料的基础上,阐述了风化壳淋积型稀土矿除杂技术的研究现状,分析了目前风化壳淋积型稀土矿各种除杂技术的主要特点;提出了目前除杂技术中存在的一些问题;在风化壳淋积型稀土矿提取除杂技术的理论研究、开发新型的高效抑杂剂、优化工艺流程和运用采选冶联合流程等方面提出了今后的主要研究方向.

  6. Weathering of Carbonate Rocks by Biological Soil Crusts in Karst Areas

    Institute of Scientific and Technical Information of China (English)

    Ye Chen; Bin Lian; Zuoying Yin; Yuan Tang

    2014-01-01

    The weathering of carbonate rocks by biological soil crusts (BSC) in karst areas is very common. It is helpful to understand the weathering mechanisms and processes for avoiding karst rock-desertification. The weathering of carbonate rocks by BSC in karst areas, namely the expansion, contraction and curl resulting from environmental wetting-drying cycles, was investigated and ana-lyzed in this paper. The bulk density, area and thickness of BSC were determined and the weathering amount of limestone and dolomite per unit area of BSC was calculated as 3 700 and 3 400 g·m-2; the amount of biomass on the surface of limestone and dolomite was calculated as 1 146 and 1 301 g·m-2, respectively. Such an increased weathering amount was not only the result of chemical and physical weathering of BSC on carbonate rocks, but also the attachment and cementation of BSC to clay parti-cles, dust-fall, sand particles, solid particles brought by strong air currents, wind and other factors in the surrounding environment, which may also be related to the special environment and the special time period. Based on the results obtained, a weathering mode of BSC is studied, and the mechanisms of weathering by BSC are discussed. In conclusion, we suggest that the mechanical force exerted by the expansion and constriction of gelatinous and mucilaginous substances through wetting and drying of BSC play a significant role in the physical weathering process of the carbonate substrates.

  7. Enrichment and Release of Rare Earth Elements during Weathering of Sedimentary Rocks in Wujiang Catchments, Southwest China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Thirteen weathering profiles of sedimentary rocks such as limestone, dolomitic limestone, dolomite, sillicalite, black shale and purple sandrock from Wujiang catchments were selected for study on enrichment and release behavior of rare earth elements (REE) during weathering, and its impact on plant growth and riverine REE distribution in the catchments with methods of hierachical cluster analysis and mass balance calculation in order to set a basis for riverine material source research and agricultural production. The results show that the enrichment degree of REE in calcareous soils from the Wujiang catchments is much higher than that of limestone, yellow soil, upper continental crust (UCC), China soil (CS) and world soil (WS). The ability of enrichment and release of REE is partly controlled by distribution of REE in bedrocks, contents and adsorption ability of organic matters, clay minerals and Fe-oxides/hydroxides in weathering profiles. The REE released from weathering of carbonate rocks and clastic rocks can be absorbed and utilized by local plants. The results also reveal that release of REE and Fe mainly from weathering of carbonate rocks and partly from clastic rocks exerts an important control on riverine REE distribution.

  8. Visualizing Earth Materials

    Science.gov (United States)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  9. No evidence for Hadean continental crust within Earth's oldest evolved rock unit

    Science.gov (United States)

    Reimink, J. R.; Davies, J. H. F. L.; Chacko, T.; Stern, R. A.; Heaman, L. M.; Sarkar, C.; Schaltegger, U.; Creaser, R. A.; Pearson, D. G.

    2016-10-01

    Due to the acute scarcity of very ancient rocks, the composition of Earth's embryonic crust during the Hadean eon (>4.0 billion years ago) is a critical unknown in our search to understand how the earliest continents evolved. Whether the Hadean Earth was dominated by mafic-composition crust, similar to today's oceanic crust, or included significant amounts of continental crust remains an unsolved question that carries major implications for the earliest atmosphere, the origin of life, and the geochemical evolution of the crust-mantle system. Here we present new U-Pb and Hf isotope data on zircons from the only precisely dated Hadean rock unit on Earth--a 4,019.6 +/- 1.8 Myr tonalitic gneiss unit in the Acasta Gneiss Complex, Canada. Combined zircon and whole-rock geochemical data from this ancient unit shows no indication of derivation from, or interaction with, older Hadean continental crust. Instead, the data provide the first direct evidence that the oldest known evolved crust on Earth was generated from an older ultramafic or mafic reservoir that probably surfaced the early Earth.

  10. Abyssal Sequestration of Nuclear Waste in Earth's Crust

    Science.gov (United States)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2013-12-01

    This work outlines a new method for disposing of hazardous (e.g., nuclear) waste. The technique is called Abyssal Sequestration, and it involves placing the waste at extreme depths in Earth's crust where it could achieve the geologically-long period of isolation. Abyssal Sequestration involves storing the waste in hydraulic fractures driven by gravity, a process we term gravity fracturing. In short, we suggest creating a dense fluid (slurry) containing waste, introducing the fluid into a fracture, and extending the fracture downward until it becomes long enough to propagate independently. The fracture will continue to propagate downward to great depth, permanently isolating the waste. Storing solid wastes by mixing them with fluids and injecting them into hydraulic fractures is a well-known technology. The essence of our idea differs from conventional hydraulic fracturing techniques only slightly in that it uses fracturing fluid heavier than the surrounding rock. This difference is fundamental, however, because it allows hydraulic fractures to propagate downward and carry wastes by gravity instead of or in addition to being injected by pumping. An example of similar gravity-driven fractures with positive buoyancy is given by magmatic dikes that may serve as an analog of Abyssal Sequestration occurring in nature. Mechanics of fracture propagation in conditions of positive (diking) and negative (heavy waste slurry) buoyancy is similar and considered in this work for both cases. Analog experiments in gelatin show that fracture breadth (horizontal dimension) remains nearly stationary when fracturing process in the fracture 'head' (where breadth is 'created') is dominated by solid toughness, as opposed to the viscous fluid dissipation dominant in the fracture tail. We model propagation of the resulting 'buoyant' or 'sinking' finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response of the crack to fluid loading

  11. Constant presence of industrial fly-ash in superficial weathering black crusts of French monuments in compact limestone

    Energy Technology Data Exchange (ETDEWEB)

    Ausset, P.; Lefevre, R.; Philippon, J.; Venet, C.

    1994-02-17

    The fly-ash contents of the weathering black-crusts of six French monuments in compact limestone, located in diversely polluted environments, were studied by analytical scanning electron microscopy. They are compared to those from ambient air of one monument and to those sampled in the electrostatic precipitator of two EDF power stations, coal and heavy oil-fired. The various fly-ash populations are comparable in granulometry, morphology and elementary chemical composition. Their role in growth of weathering black crusts cannot be neglected.

  12. Thermochemical structure of the Earth's mantle and continental crust

    DEFF Research Database (Denmark)

    Guerri, Mattia

    task. In this thesis, I adopt a multidisciplinary approach geared towards the unification of geochemical and geophysical constraints within a framework provided by theoretical and experimental mineral and rock physics. In the first part, I focus on the Continental crust, assessing the relations between...... elastic properties and chemical composition taking into account the thermal and pressure effects. I found that even small amounts of H2O have an extremely high impact on the elastic properties of crustal rock. In addition, I show the potential that modifications in the stable mineralogical assemblage have...

  13. Thermochemical structure of the Earth's mantle and continental crust

    DEFF Research Database (Denmark)

    Guerri, Mattia

    A detailed knowledge of the Earth's thermal structure and chemical composition is fundamental in order to understand the processes driving the planet ormation and evolution. The inaccessibility of most of the Earth's interior makes the determination of its thermo-chemical conditions a challenging...... in determining crustal seismic discontinuities. In the second chapter, I deal about the possibility to disentangle the dynamic and isostatic contribution in shaping the Earth's surface topography. Dynamic topography is directly linked to mantle convection driven by mantle thermo-chemical anomalies, and can...... argue therefore that our understandings of the lithosphere density structure, needed to determine the isostatic topography, and of the mantle density and viscosity, required to compute the dynamic topography, are still too limited to allow a robust determination of mantle convection effects on the Earth...

  14. Existing State and Partitioning of Rare Earth on Weathered Ores

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The existing state and partitioning of rare earth (RE) on weathered ores in Longnan County (LN), Xingfeng County(XF) and Ninghua County(NH) were characterized systematically by standard geological analytical methods. It is found that RE in the weathered rare earth ores exist as four phases: (a) water soluble, (b) ion-exchangeable, (c) colloidal sediment (oxides), (d) minerals, in which mainly as ion exchangeable phase, accounting for nearly 80% of total RE,with about 20% in the form of colloid sediment phase and mineral phase, but very little as aqueous soluble phase. These rare earth partitioning were mainly chosen mid-heavy RE elements, occupying above 60%, but not equal in the four phases. The mid-heavy RE elements were primarily enriched in the ion exchangeable phase up to 40%, while the containment of cerium dioxide is below 2%. The cerium deficiency occurs in the ion exchangeable phase in weathered ore. It results from that the Ce3+ is oxidized into Ce4+ and changes into CeO2. For LN ore, the containment of Y is high in weathered ore because Y-minerals are abundant in original rock.

  15. A metasomatic mechanism for the formation of Earth's earliest evolved crust

    Science.gov (United States)

    Baker, Don R.; Sofonio, Kassandra

    2017-04-01

    Following giant impacts the early Hadean Earth was shrouded in a steam atmosphere for durations on the order of 1 Ma. In order to investigate the potential of this atmosphere to fractionate major elements between various silicate reservoirs and influence a planet's geochemical evolution, we performed experiments simulating the interaction of a post-giant-impact steam atmosphere with a bulk silicate Earth (BSE) composition. Our experiments indicate that the composition of the solute in a water-rich atmosphere at 10 MPa and ∼727 °C is remarkably similar to that of Earth's modern continental crust and would constitute up to 10% of the solution mass. This solute composition is similar to solute compositions previously measured at higher pressures, but distinct from those of near-solidus peridotite melts. Mass balance calculations based upon the hypothesis that Earth's initial water concentration was similar to that in CI carbonaceous chondrites, and that degassing and metasomatism produced the BSE, indicate that metasomatism could produce from 10 to 300% of the mass of the modern crust. If instead the amount of metasomatism is estimated by the difference between the water concentration in the BSE and in the depleted upper mantle, then a mass of up to approximately 4% of the current crust could be produced by metasomatism. Using results of earlier research we find that the solute is expected to have a smaller Sm/Nd ratio than the residual BSE, and if the solute was formed early in Earth's history its Nd isotopic signatures would be highly enriched. Although we cannot be certain that the metasomatic process created a significant fraction of Earth's crust in the early Hadean, our research indicates that it has the potential to form crustal nuclei and possibly was responsible for the production of incompatible-element enriched reservoirs in the early Earth, as seen in the isotopic signatures of Archean rocks.

  16. Emergence of blueschists on Earth linked to secular changes in oceanic crust composition

    Science.gov (United States)

    Palin, Richard M.; White, Richard W.

    2016-01-01

    The oldest blueschists--metamorphic rocks formed during subduction--are of Neoproterozoic age, and 0.7-0.8 billion years old. Yet, subduction of oceanic crust to mantle depths is thought to have occurred since the Hadean, over 4 billion years ago. Blueschists typically form under cold geothermal gradients of less than 400 °C GPa-1, so their absence in the ancient rock record is typically attributed to hotter pre-Neoproterozoic mantle prohibiting such low-temperature metamorphism; however, modern analogues of Archaean subduction suggest that blueschist-facies metamorphic conditions are attainable at the slab surface. Here we show that the absence of blueschists in the ancient geological record can be attributed to the changing composition of oceanic crust throughout Earth history, which is a consequence of secular cooling of the mantle since the Archaean. Oceanic crust formed on the hot, early Earth would have been rich in magnesium oxide (MgO). We use phase equilibria calculations to show that blueschists do not form in high-MgO rocks under subduction-related geothermal gradients. Instead, the subduction of MgO-rich oceanic crust would have created greenschist-like rocks--metamorphic rocks formed today at low temperatures and pressures. These ancient metamorphic products can hold about 20% more water than younger metamorphosed oceanic crust, implying that the global hydrologic cycle was more efficient in the deep geological past than today.

  17. Freshly brewed continental crust

    Science.gov (United States)

    Gazel, E.; Hayes, J. L.; Caddick, M. J.; Madrigal, P.

    2015-12-01

    Earth's crust is the life-sustaining interface between our planet's deep interior and surface. Basaltic crusts similar to Earth's oceanic crust characterize terrestrial planets in the solar system while the continental masses, areas of buoyant, thick silicic crust, are a unique characteristic of Earth. Therefore, understanding the processes responsible for the formation of continents is fundamental to reconstructing the evolution of our planet. We use geochemical and geophysical data to reconstruct the evolution of the Central American Land Bridge (Costa Rica and Panama) over the last 70 Ma. We also include new preliminary data from a key turning point (~12-6 Ma) from the evolution from an oceanic arc depleted in incompatible elements to a juvenile continental mass in order to evaluate current models of continental crust formation. We also discovered that seismic P-waves (body waves) travel through the crust at velocities closer to the ones observed in continental crust worldwide. Based on global statistical analyses of all magmas produced today in oceanic arcs compared to the global average composition of continental crust we developed a continental index. Our goal was to quantitatively correlate geochemical composition with the average P-wave velocity of arc crust. We suggest that although the formation and evolution of continents may involve many processes, melting enriched oceanic crust within a subduction zone, a process probably more common in the Achaean where most continental landmasses formed, can produce the starting material necessary for juvenile continental crust formation.

  18. Temperature-dependent thermal diffusivity of the Earth's crust and implications for magmatism.

    Science.gov (United States)

    Whittington, Alan G; Hofmeister, Anne M; Nabelek, Peter I

    2009-03-19

    The thermal evolution of planetary crust and lithosphere is largely governed by the rate of heat transfer by conduction. The governing physical properties are thermal diffusivity (kappa) and conductivity (k = kapparhoC(P)), where rho denotes density and C(P) denotes specific heat capacity at constant pressure. Although for crustal rocks both kappa and k decrease above ambient temperature, most thermal models of the Earth's lithosphere assume constant values for kappa ( approximately 1 mm(2) s(-1)) and/or k ( approximately 3 to 5 W m(-1) K(-1)) owing to the large experimental uncertainties associated with conventional contact methods at high temperatures. Recent advances in laser-flash analysis permit accurate (+/-2 per cent) measurements on minerals and rocks to geologically relevant temperatures. Here we provide data from laser-flash analysis for three different crustal rock types, showing that kappa strongly decreases from 1.5-2.5 mm(2) s(-1) at ambient conditions, approaching 0.5 mm(2) s(-1) at mid-crustal temperatures. The latter value is approximately half that commonly assumed, and hot middle to lower crust is therefore a much more effective thermal insulator than previously thought. Above the quartz alpha-beta phase transition, crustal kappa is nearly independent of temperature, and similar to that of mantle materials. Calculated values of k indicate that its negative dependence on temperature is smaller than that of kappa, owing to the increase of C(P) with increasing temperature, but k also diminishes by 50 per cent from the surface to the quartz alpha-beta transition. We present models of lithospheric thermal evolution during continental collision and demonstrate that the temperature dependence of kappa and C(P) leads to positive feedback between strain heating in shear zones and more efficient thermal insulation, removing the requirement for unusually high radiogenic heat production to achieve crustal melting temperatures. Positive feedback between

  19. Weathering of Roofing Materials-An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Paul; Akbari, Hashem; Levinson, Ronnen; Miller, William A.

    2006-03-30

    An overview of several aspects of the weathering of roofing materials is presented. Degradation of materials initiated by ultraviolet radiation is discussed for plastics used in roofing, as well as wood and asphalt. Elevated temperatures accelerate many deleterious chemical reactions and hasten diffusion of material components. Effects of moisture include decay of wood, acceleration of corrosion of metals, staining of clay, and freeze-thaw damage. Soiling of roofing materials causes objectionable stains and reduces the solar reflectance of reflective materials. (Soiling of non-reflective materials can also increase solar reflectance.) Soiling can be attributed to biological growth (e.g., cyanobacteria, fungi, algae), deposits of organic and mineral particles, and to the accumulation of flyash, hydrocarbons and soot from combustion.

  20. Differentiation of crusts and cores of the terrestrial planets - Lessons for the early earth

    Science.gov (United States)

    Solomon, S. C.

    1980-01-01

    The extent and mechanisms of global differentiation and the early thermal and tectonic histories of the terrestrial planets are surveyed in order to provide constraints on the first billion years of earth history. Indirect and direct seismic evidence for crusts on the moon, Mars and Venus is presented, and it is pointed out that substantial portions of these crusts have been in place since the cessation of heavy bombardment of the inner solar system four billion years ago. Evidence for sizable cores on Mars and Mercury and a small core on the moon is also discussed, and the heat involved in core formation is pointed out. Examination of the volcanic and tectonic histories of planets lacking plate tectonics indicates that core formation was not closely linked to crust formation on the moon or Mars, with chemical differentiation restricted to shallow regions, and was much more extensive on Mercury. Extension of these considerations to the earth results in a model of a hot and vigorously convecting mantle with an easily deformable crust immediately following core formation, and the gradual development of a lithosphere and plates.

  1. ISS Charging Hazards and Low Earth Orbit Space Weather Effects

    Science.gov (United States)

    Minow, Joseph; Parker, L.; Coffey, V.; Wright K.; Koontz, S.; Edwards, D.

    2008-01-01

    Current collection by high voltage solar arrays on the International Space Station (ISS) drives the vehicle to negative floating potentials in the low Earth orbit daytime plasma environment. Pre-flight predictions of ISS floating potentials Phi greater than |-100 V| suggested a risk for degradation of dielectric thermal control coatings on surfaces in the U.S. sector due to arcing and an electrical shock hazard to astronauts during extravehicular activity (EVA). However, hazard studies conducted by the ISS program have demonstrated that the thermal control material degradation risk is effectively mitigated during the lifetime of the ISS vehicle by a sufficiently large ion collection area present on the vehicle to balance current collection by the solar arrays. To date, crew risk during EVA has been mitigated by operating one of two plasma contactors during EVA to control the vehicle potential within Phi less than or equal to |-40 V| with a backup process requiring reorientation of the solar arrays into a configuration which places the current collection surfaces into wake. This operation minimizes current collection by the solar arrays should the plasma contactors fail. This paper presents an analysis of F-region electron density and temperature variations at low and midlatitudes generated by space weather events to determine what range of conditions represent charging threats to ISS. We first use historical ionospheric plasma measurements from spacecraft operating at altitudes relevant to the 51.6 degree inclination ISS orbit to provide an extensive database of F-region plasma conditions over a variety of solar cycle conditions. Then, the statistical results from the historical data are compared to more recent in-situ measurements from the Floating Potential Measurement Unit (FPMU) operating on ISS in a campaign mode since its installation in August, 2006.

  2. Beyond the crust : journey closer to the centre of the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    2005-09-01

    Scientists of the Integrated Ocean Drilling Program (IODP) are targeting the thinnest layers of the Earth's crust under the ocean floor. The crust below the Earth's ocean is only about 6 to 10 km thick, compared to an average 35 km under the continents. The primary objective of the IODP is to learn about the evolution of oceanic crust formed at slow-spreading oceanic ridges and to gain a better understanding of the oceanic core complexes. However, a by-product of the research may be improved oil and gas exploration and production. Although the drilling program does not have a link with the petroleum industry, representatives from the oil and gas sector have provided guidance in technology development for the past decade. The role of the oil and gas industry may intensify in the near future because of its expertise in coring operations. IODP has avoided potential hydrocarbon intersections, but has been involved in developing their technology for gas hydrate research. IODP researchers have completed the third deepest well ever drilled into the basement from a vessel which drilled 1,415 metres below the seafloor. The gabbroic rocks recovered from the drilling program have compositions that represent some of the most primitive lower crust ever sampled. Sections of the rocks are very fresh, with less than 1 to 2 per cent alteration. Scientists have come to within 3,000 metres to the Mohorovicic Discontinuity, the boundary between the crust and the mantle.The Chikyu 57,500 ton, half-billion dollar deep-sea drilling vessel is expected to undergo experimental voyages in late 2005 and is expected to begin deep-sea drilling in 2007. This research vessel is the first to adopt the riser drilling system typically used by the oil industry. The first task of the vessel, which can drill 7,000 metres below the sea floor, will be to study plate tectonics off the coast of Japan. Scientists hope that it will eventually break-through into the mantle to provide information

  3. Identifying Severe Weather Impacts and Damage with Google Earth Engine

    Science.gov (United States)

    Molthan, A.; Burks, J. E.; Bell, J. R.

    2015-12-01

    Hazards associated with severe convective storms can lead to rapid changes in land surface vegetation. Depending upon the type of vegetation that has been impacted, their impacts can be relatively short lived, such as damage to seasonal crops that are eventually removed by harvest, or longer-lived, such as damage to a stand of trees or expanse of forest that require several years to recover. Since many remote sensing imagers provide their highest spatial resolution bands in the red and near-infrared to support monitoring of vegetation, these impacts can be readily identified as short-term and marked decreases in common vegetation indices such as NDVI, along with increases in land surface temperature that are observed at a reduced spatial resolution. The ability to identify an area of vegetation change is improved by understanding the conditions that are normal for a given time of year and location, along with a typical range of variability in a given parameter. This analysis requires a period of record well beyond the availability of near real-time data. These activities would typically require an analyst to download large volumes of data from sensors such as NASA's MODIS (aboard Terra and Aqua) or higher resolution imagers from the Landsat series of satellites. Google's Earth Engine offers a "big data" solution to these challenges, by providing a streamlined API and option to process the period of record of NASA MODIS and Landsat products through relatively simple Javascript coding. This presentation will highlight efforts to date in using Earth Engine holdings to produce vegetation and land surface temperature anomalies that are associated with damage to agricultural and other vegetation caused by severe thunderstorms across the Central and Southeastern United States. Earth Engine applications will show how large data holdings can be used to map severe weather damage, ascertain longer-term impacts, and share best practices learned and challenges with applying

  4. Material Properties of Marine Hydrogenous Ferromanganese Crust and Its Performance in Desulfurization

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Marine hydrogenous ferromanganese crust, an important metal resource in the future, has significant potential in various applications as a type of natural nano-structured material. By employing scanning electronic microscopy, nitrogen adsorption-desorption isotherm measurement, Xray fluorescence spectrometer and X-ray diffraction methods, the micro-structure, surface properties and chemical composition of several plate-like ferromanganese crusts sampled from the northwestern Pacific were investigated comprehensively. Although obvious differences were observed from different layers, the crust is a typical porous material with high specific surface area, unique pore structure and abundant transition elements. Furthermore, the performance of natural crust in desulfurization process was preliminarily tested in laboratory experiments. The sulfur capacities of the crust are 13.1%and 18.1% at room temperature and 350 ℃, respectively. The crust can be used not only as a metal resource, but also as an environmental material.

  5. New Aspects of Structure of Earth Crust (Based on Data of Super Deep Wells Kola and Saatly)

    Science.gov (United States)

    Galant, Yuri

    2013-04-01

    In order to ensure the sustainability of Planet Earth the latest information regarding the structure of the Earth is necessary. It common accepted that Earth Crust consists of 2 layers: granite and basalt. Unique depth 12 600 meter have been reached by unique drills Kola located on the Arhenian Baltic plate. But haven't passed/reached border of Conrad that expected to be on the 4 000 meters. In additions corroborate this fact Saatly super deep well haven't come out from basalt in spite of unique depth 8 600 meter in Kura rift Alpine geosynclinals belts. These facts from conversely different tectonic regions let to build new model structure of Earth Crust. Based on the seismic interpretations and the geological data analysis obtained from super deep drills Kola (12 600meters) and Saatly (8 280 meters), the comprehensive 1 layer geologic -geotectonic-geochemical model interruption-blocks structure of the Earth Crust has been created. Such model is leading to following reasoning. Geologic aspect: 1) Earth Crust on lateral. consists of separated blocks/domain of Granite and separated blocks/domain Basalt, lies directly on mantle.Tectonical aspects: 2) There is no subduction, 3) There is thrust 4) Earth Crust has separated into granite and basalts domains/blocks. Geochemical aspect: 5) Distribution of acid components in Earth Crust n prevailing on base components. 6) Power intensity degassation the depth increasing on old structure. Paleo- aspect: 7) Forming Earth crust began from forming the granites. Societal aspect: 8) Let us to build a new model of forming and development of atmosphere, hydrosphere and mineral fields.

  6. Earth's crust model of the South-Okhotsk Basin by wide-angle OBS data

    Science.gov (United States)

    Kashubin, Sergey N.; Petrov, Oleg V.; Rybalka, Alexander V.; Milshtein, Evgenia D.; Shokalsky, Sergey P.; Verba, Mark L.; Petrov, Evgeniy O.

    2017-07-01

    -waves velocity models of the sedimentary strata and the upper consolidated crust. Velocity values in the upper consolidated crust beneath the South-Okhotsk Basin (Vp = 5.50-5.80 km/s, Vp/Vs = 1.74-1.76) allow interpretation of this 2.5-3.5-km-thick layer to be consistent with a felsic (granodioritic) crust. These results suggest that the Earth's crust in this region can be considered continental in nature, rather than previously accepted oceanic crust. Even though, the crust is thinned and stretched at this location.

  7. Accelerated hydration of the Earth's deep crust induced by stress perturbations.

    Science.gov (United States)

    Jamtveit, B; Austrheim, H; Malthe-Sørenssen, A

    2000-11-01

    The metamorphic cycle associated with the formation of mountain belts produces a lower crust containing little or no free fluid. The introduction of external fluids to dry and impermeable volumes of the Earth's crust is thus a prerequisite for the retrogressive metamorphism later observed in such regimes. Such metamorphism can cause significant changes in the crust's physical properties, including its density, rheology and elastic properties. On a large scale, the introduction of fluids requires the presence of high-permeability channels, such as faults or fractures, which are the result of external tectonic stresses. But extensive interaction between externally derived fluids and the fractured rock requires efficient mass transport away from the initial fractures into the rock itself, and this transport often occurs over distances much longer than expected from grain-boundary diffusion. Here we present both field observations and a simple network model that demonstrate how the transport of fluids into initially dry rock can be accelerated by perturbations in the local stress field caused by reactions with fluids. We also show that the morphology of reaction fronts separating 'dry' from 'wet' rocks depends on the anisotropy of the external stress field.

  8. Space Weathering Experiments on Spacecraft Materials

    Science.gov (United States)

    Engelhart, D. P.; Cooper, R.; Cowardin, H.; Maxwell, J.; Plis, E.; Ferguson, D.; Barton, D.; Schiefer, S.; Hoffmann, R.

    2017-01-01

    A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers found in multi-layered spacecraft insulation (MLI) induced by electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons like those seen in orbit. These chemical changes have been shown to alter a material's optical reflectance, among other material properties. This paper presents the initial experimental results of MLI materials exposed to various fluences of high energy electrons, designed to simulate a portion of the geosynchronous Earth orbit (GEO) space environment. It is shown that the spectral reflectance of some of the tested materials changes as a function of electron dose. These results provide an experimental benchmark for analysis of aging effects on satellite systems which can be used to improve remote sensing and space situational awareness. They also provide preliminary analysis on those materials that are most likely to comprise the high area-to-mass ratio (HAMR) population of space debris in the geosynchronous orbit environment. Finally, the results presented in this paper serve as a proof of concept for simulated environmental aging of spacecraft polymers that should lead to more experiments using a larger subset of spacecraft materials.

  9. Learn about Earth Science: Weather. [CD-ROM].

    Science.gov (United States)

    2000

    This CD-ROM, designed for students in grades K-2, explores the world of weather. Students investigate weather to learn about climate and the seasons, how animals adapt to weather changes, how clouds tell us about conditions, and how weather plays a part in our everyday lives. The weather calendar lets students record and write about conditions…

  10. Local Doppler Effect, Index of Refraction through the Earth Crust, PDF and the CNGS Neutrino Anomaly?

    Directory of Open Access Journals (Sweden)

    Assis A. V. D. B.

    2012-04-01

    Full Text Available In this brief paper, we show the neutrino velocity discrepancy obtained in the OPERA experiment may be due to the local Doppler effect between a local clock attached to a given detector at Gran Sasso, say C G , and the respective instantaneous clock crossing C G , say C C , being this latter at rest in the instantaneous inertial frame having got the velocity of rotation of CERN about Earth’s axis in relation to the fixed stars. With this effect, the index of refraction of the Earth crust may accomplish a refractive effect by which the neutrino velocity through the Earth crust turns out to be small in relation to the speed of light in the empty space, leading to an encrusted discrepancy that may have contamined the data obtained from the block of detectors at Gran Sasso, leading to a time interval excess that did not provide an exact match between the shift of the protons PDF (probability distribution function by TOF c and the detection data at Gran Sasso via the maximum likelihood matching.

  11. Experimental Study on the Effects of Organic Acids on the Dissolution of REE in the Weathering Crust of Granite

    Institute of Scientific and Technical Information of China (English)

    陈炳辉; 毋福海; 刘琥琥

    2001-01-01

    The results of REE leached by some organic acids with various concentrations and water/rock ratios for different durations from a mixed sample of the weathering crust of a granite in Gonghe, Guangdong, China, showed that: 1 ) the contents of REE leached increase with increasing concentrations of the organic acids; 2) the contents of REE leached by 0.01 mol/L organic acids increase with increasing water/rock ratio; 3) the interaction between the organic acids and the samples enhances the pH value of the medium and the contents of REE leached tend to increase with decreasing pH value; and 4) compared with those leached by ammonia sulfate, the REE leached by the organic acids are characterized by a weaker negative Ce anomaly, a stronger negative Eu anomaly, and lower (La/Sm)N and (Gd/Yb)N ratios, indicating that the organic acids have made contributions to the fractionation of REE in the weathering crust.

  12. Experimental Study on the Effects of Organic Acids on the Dissolution of REE in the Weathering Crust of Granite

    Institute of Scientific and Technical Information of China (English)

    陈炳辉; 毋福海; 等

    2001-01-01

    The results of REE leached by some organic acids with various concentrations and water/rock ratios for different durations from a mixed samples of the weathering crust of a granite in Gonghe,Guangdong,China,showed that:1)the contents of REE leached increase with increasing concentrations of the organic acids;2) the contents of REE leached by 0.01mol/L organic acids increase with increasing water/rock ration;3) the interaction between the organic acids and the samples enhances the pH value of the medium and the contents of REE leached tend to increase with decreasing pH value;and 4) compared with those leached by ammonia sulfate,the REE leached by the organic acids are characterized by a weaker negative C e anomaly,a stronger negative Eu anomaly,and lower(La/Sm)N and (Gd/Yb)N ratios,indicating that the organic acids have made contributions to the fractionation of REE in the weathering crust.

  13. Leaching hydrodynamics of weathered elution-deposited rare earth ore

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Both porosity (φ) and permeability (k) of the weathered elution-deposited rare earth ores are basic hydrodynamic parameters for RE leaching. The relationship between k and φ of two typical rare earth ores of South China in the packed bed was investigated by measuring the flow (Q) under various leaching pressure difference (Δp). The experimental results show that the relationship between k and φ is unique, moreover the relationship between Q and Δp is in accord with the Darcy's law. The effects of the type of ores, the leaching reagents and its concentration, the granule ore size on the leaching permeability have also been investigated. It is demonstrated that kH (for heavy RE ore, kH=35.98 mm2)>kM-H (for middle-heavy RE ore,kM-H=28.50 mm2), whereas k(NH4NO3)>k(NH4Cl)>k[(NH4)2SO4], and the k value increases with increasing leaching reagents concentration and granule ore size(k0.60~0.75 mm=99.96 mm2,k0.125~0.60 mm=11.83 mm2, k0.074~0.125 mm=0.84 mm2).

  14. Modeling of Dynamic Deformation of The Earth Crust: A Tool For Evaluation of Future Earthquakes Parameters

    Science.gov (United States)

    Ovcharenko, A.; Sokolov, V.; Loh, C.-H.; Wen, K.-L.

    The method for evaluation of seismic and geodynamic hazard, which is based on the models of dynamic deformation of the Earth' crust, is proposed. The 4D-model of deformation (x, y, z, t - geographic coordinates, depth, time) is constructed on the basis the geophysical data: Global Positioning System (GPS) network, Persistent Sea Water Level (PSWL) monitoring and seismic catalogues. It is possible to utilize also other indirect geophysical data that reflect the dynamic process of the Earth' crust deformation. The process of deformation is considered in the form of interaction of slow-propagating waves of deformation, the moving velocities of which vary from 0.05 per year up to 300 km per year, and the effective widths of which are about sev- eral tens of kilometers. The main goal of the modeling is to determine characteristics of these waves (fronts) of dynamic deformation on the basis of observed data. The possible seismic events (earthquakes), on the one hand, could be revealed by analysis of distribution of deformation inside the Earth' crust. The recent 1999 Chi-Chi, Tai- wan, earthquake (M=7.6) is used as an example. On the other hand, it is proposed to consider seismic events as the peculiar points of the field of dynamic deformation - the moments of interaction of four and more fronts of deformation. The 5D-model (ge- ographic coordinates, depth, time, magnitude), which describes the seismic process statistically, is used for evaluation of the earthquakes magnitude. The 4D/5D-models are applied jointly for compilation of theoretical seismic catalogue for the nearest tens and hundreds years (future and past) that, in turn, is used for purposes of seismic zona- tion and hazard assessment. The process and results of the modeling are described for the case of Taiwan region. When comparing the real and modeled seismic catalogues, it has been shown that the standard errors of determination of the earthquake param- eters do not exceed 5-10 km by coordinates, 0

  15. Research on Rare Earth Encapsulated Luminescent Material

    Institute of Scientific and Technical Information of China (English)

    Yu Zhiwei; Liu Chengdong; Qi Xiaopeng

    2004-01-01

    A new method of preparation of irradiative material by using rare earth as luminophor and inorganic powder as base nucleus was presented.Rare earth was used to make colloid, which was mixed with base nucleus solution,where deposition/attachment reaction took place and rare earth was adhered onto the surface of base nucleus, hence yielding a new rare earth encapsulated irradiative material.Fluorescent spectrum analysis shows that this material possesses two emission peaks, one within 400 ~ 500 nm and the other within 580 ~ 700 nm, reflecting the luminous characteristics of original rare earth material.

  16. Aspects of mineral transformation during weathering of volcanic material (the microscopic and submicroscopic level).

    NARCIS (Netherlands)

    Jongmans, A.G.

    1994-01-01

    Mineral transformation at the earth surface is a complex process. In volcanic ejecta, such transformations tend to be fairly rapid. Many weathering studies on volcanic materials have been carried out at different scales of observations, mostly using bulk samples. However, to get a proper understandi

  17. Aspects of mineral transformation during weathering of volcanic materials : the microscopic and submicroscopic level

    NARCIS (Netherlands)

    Jongmans, A.G.

    1994-01-01

    Mineral transformation at the earth surface is a complex process. In volcanic ejecta, such transformations tend to be fairly rapid. Many weathering studies on volcanic materials have been carried out at different scales of observations, mostly using bulk samples. However, to get a proper

  18. Element geochemistry of weathering profile of dolomitite and its implications for the average chemical composition of the upper-continental crust--Case studies from the Xinpu profile,northern Guizhou Province,China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Geochemical behavior of chemical elements is studied in a dolomitite weathering profile in upland of karst terrain in northern Guizhou.Two stages can be recognized during the process of in situ weathering of dolomitite:the stage of sedentary accumulation of leaching residue of dolomitite and the stage of chemical weathering evolution of sedentary soil.Ni,Cr,Mo,W and Ti are the least mobile elements with reference to Al.The geochemical behavior of REE is similar to that observed in weathering of other types of rocks.Fractionation of REE is noticed during weathering,and the two layers of REE enrichments are thought to result from downward movement of the weathering front in response to changes in the environment.It is considered that the chemistry of the upper part of the profile,which was more intensively weathered,is representative of the mobile components of the upper curst at the time the dolomitite was formed,while the less weathered lower profile is chemically representative of the immobile constitution.Like glacial till and loess,the "insoluble" materials in carbonate rocks originating from chemical sedimentation may also provide valuable information about the average chemical composition of the upper continental crust.

  19. Seismic measurements to reveal short-term variations in the elastic properties of the Earth crust

    Science.gov (United States)

    Piccinini, Davide; Zaccarelli, Lucia; Pastori, Marina; Margheriti, Lucia; Pio Lucente, Francesco; De Gori, Pasquale; Faenza, Licia; Soldati, Gaia

    2013-04-01

    Since the late the late '60s-early '70s era seismologists started developed theories that included variations of the elastic property of the Earth crust and the state of stress and its evolution crust prior to the occurrence of a large earthquake. Among the others the theory of the dilatancy (Scholz et al., 1973): when a rock is subject to stress, the rock grains are shifted generating micro-cracks, thus the rock itself increases its volume. Inside the fractured rock, fluid saturation and pore pressure play an important role in earthquake nucleation, by modulating the effective stress. Thus measuring the variations of wave speed and of anisotropic parameter in time can be highly informative on how the stress leading to a major fault failure builds up. In 80s and 90s such kind of research on earthquake precursor slowed down and the priority was given to seismic hazard and ground motions studies, which are very important since these are the basis for the building codes in many countries. Today we have dense and sophisticated seismic networks to measure wave-fields characteristics: we archive continuous waveform data recorded at three components broad-band seismometers, we almost routinely obtain high resolution earthquake locations. Therefore we are ready to start to systematically look at seismic-wave propagation properties to possibly reveal short-term variations in the elastic properties of the Earth crust. One seismological quantity which, since the '70s, is recognized to be diagnostic of the level of fracturation and/or of the pore pressure in the rock, hence of its state of stress, is the ratio between the compressional (P-wave) and the shear (S-wave) seismic velocities, the Vp/Vs (Nur, 1972; Kisslinger and Engdahl, 1973). Variations of this ratio have been recently observed and measured during the preparatory phase of a major earthquake (Lucente et al. 2010). In active fault areas and volcanoes, tectonic stress variation influences fracture field orientation

  20. Effects of rare earth on inclusions and corrosion resistance of 10PCuRE weathering steel

    Institute of Scientific and Technical Information of China (English)

    YUE

    2010-01-01

    The types,morphologies and distributions of nonmetallic inclusions in Cu-P weathering steels with and without rare earth were analyzed through a quantitative image analyzer,scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS)attached to SEM.Solid-soluble content of rare earth in the steels was analyzed by non-aqua electroanalysis and ICP.The results showed that rare earth modified the types and the morphologies of inclusions in the weathering steels.The small spherical rare earth oxysulfides and rare earth sulphides replaced the elongated MnS inclusions in the RE weathering steels.The rare earth inclusions dispersedly distributed and most inclusions were smaller than 2 μm in size.The optimum content of RE was 0.0065%-0.016% for 10PCuRE weathering steels containing about0.002% oxygen and 0.004% sulfur.Solid-soluble content of rare earth in steels was(14-20)x 10-6,which can act as a micro-alloying element.The corrosion resistance of 10PCuRE weathering steels and Q235 were studied by dry-wet cyclic immersion test.Their corrosion rates were obtained respectively.The polarization curves and pitting corrosion behaviors of weathering steels with and without rare earth were measured by electrochemical methods.The corrosion resistance of Cu-P weathering steels was improved by adding an appropriate amount of rare earth.Less and fewer rare earth inclusions largely decreased pitting susceptibility and rate of pit propagation.The pitting potential and the resistance against pitting corrosion of the RE weathering steel were significantly improved due to the modification of rare earth to inclusions.

  1. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth

    Science.gov (United States)

    Chowdhury, Priyadarshi; Gerya, Taras; Chakraborty, Sumit

    2017-09-01

    The rock record and geochemical evidence indicate that continental recycling has been occurring since the early history of the Earth. The stabilization of felsic continents in place of Earth's early mafic crust about 3.0 to 2.0 billion years ago, perhaps due to the initiation of plate tectonics, implies widespread destruction of mafic crust during this time interval. However, the physical mechanisms of such intense recycling on a hotter, (late) Archaean and presumably plate-tectonic Earth remain largely unknown. Here we use thermomechanical modelling to show that extensive recycling via lower crustal peeling-off (delamination but not eclogitic dripping) during continent-continent convergence was near ubiquitous during the late Archaean to early Proterozoic. We propose that such destruction of the early mafic crust, together with felsic magmatism, may have caused both the emergence of silicic continents and their subsequent isostatic rise, possibly above the sea level. Such changes in the continental character have been proposed to influence the Great Oxidation Event and, therefore, peeling-off plate tectonics could be the geodynamic trigger for this event. A transition to the slab break-off controlled syn-orogenic recycling occurred as the Earth aged and cooled, leading to reduced recycling and enhanced preservation of the continental crust of present-day composition.

  2. Interconnection of tectonic stresses in the Earth's crust and dynamics of the groundwater basin functioning

    Science.gov (United States)

    Koneshov, Vycheslav; Trifonova, Tatiana; Trifonov, Dmitriy; Arakelian, Sergey

    2016-04-01

    1. Possible influence of tectonic stresses on the occurrence of catastrophic floods by the mechanism of modification of the 3D-cracknet of the rock formations and the transit of the groundwater in this natural transport system in the conditions of functioning of the river catchment basin is discussed. Several floods (not freshets) took place in 2013-2014, which probably could be associated with corresponding seismic processes in the Earth's crust, are considered. 2. A river basin formation in the mountain slope can be considered as a self-organizing staged process of its evolution passing through several non-equilibrium but steady-state conditions. The controlling parameter is the process of the crack spreading out. Crack development up the slope but downward substance transit, stipulates a feedback within the unified 3D-river basin system. 3. We have briefly described and rendered the mechanism of the influence of seismic activity on the occurrence of concrete floods with the use of combined maps of groundwater resources and the boundaries of lithospheric plates on the territory and the revealed regularities in seismic waves propagation and interaction with groundwater. 4. In the practical aspect a proposed hypothesis can be useful during the definition of potentially dangerous areas for catastrophic water events taking into account the interference of the state of the underground hydrosphere and the tectonic structure of the rheological section of bowels of the earth on the concrete territories under some adjustable (seismic) conditions.

  3. Influence of Earth crust composition on continental collision style in Precambrian conditions: Results of supercomputer modelling

    Science.gov (United States)

    Zavyalov, Sergey; Zakharov, Vladimir

    2016-04-01

    A number of issues concerning Precambrian geodynamics still remain unsolved because of uncertainity of many physical (thermal regime, lithosphere thickness, crust thickness, etc.) and chemical (mantle composition, crust composition) parameters, which differed considerably comparing to the present day values. In this work, we show results of numerical supercomputations based on petrological and thermomechanical 2D model, which simulates the process of collision between two continental plates, each 80-160 km thick, with various convergence rates ranging from 5 to 15 cm/year. In the model, the upper mantle temperature is 150-200 ⁰C higher than the modern value, while the continental crust radiogenic heat production is higher than the present value by the factor of 1.5. These settings correspond to Archean conditions. The present study investigates the dependence of collision style on various continental crust parameters, especially on crust composition. The 3 following archetypal settings of continental crust composition are examined: 1) completely felsic continental crust; 2) basic lower crust and felsic upper crust; 3) basic upper crust and felsic lower crust (hereinafter referred to as inverted crust). Modeling results show that collision with completely felsic crust is unlikely. In the case of basic lower crust, a continental subduction and subsequent continental rocks exhumation can take place. Therefore, formation of ultra-high pressure metamorphic rocks is possible. Continental subduction also occurs in the case of inverted continental crust. However, in the latter case, the exhumation of felsic rocks is blocked by upper basic layer and their subsequent interaction depends on their volume ratio. Thus, if the total inverted crust thickness is about 15 km and the thicknesses of the two layers are equal, felsic rocks cannot be exhumed. If the total thickness is 30 to 40 km and that of the felsic layer is 20 to 25 km, it breaks through the basic layer leading to

  4. Global variations in azimuthal anisotropy of the Earth's upper mantle and crust

    Science.gov (United States)

    Schaeffer, A. J.; Lebedev, S.

    2013-12-01

    Deformation within the Earth's crust and mantle often results in crystallographic preferred orientations that produce measurable seismic anisotropy. Shear wave splitting measurements have the benefit of excellent lateral resolution and are an unambiguous indicator of the presence of seismic anisotropy; however, they suffer from poor depth resolution (integrated measurement from CMB to surface), in addition to being geographically limited (measurements only made at seismometer locations). The analysis of surface wave propagation also provides insight into the azimuthal variations in wave-speed, but with significantly better depth resolution. Thanks to the rapid increase in the number of seismic stations around the world, increasingly accurate, high-resolution 3D models of azimuthal anisotropy can be calculated using surface-wave tomography. We present our new global, azimuthally anisotropic model of the upper mantle and the crust. Compared to its recent predecessor, SL2013sv (Schaeffer and Lebedev, 2013), it is constrained by an even larger waveform fit dataset (>900,000 versus 712,000 vertical-component seismograms, respectively) and was computed using a more precise regularization of anisotropy, tuned to honour the amplitude and orientation of the anisotropic terms uniformly, including near the poles. Automated, multimode waveform inversion was used to extract structural information from surface and S wave forms, yielding resolving power from the crust down to the transition zone. Our unprecedentedly large waveform dataset, with complementary high-resolution regional arrays (including USArray) and global network sub-sets within it, produces improved resolution of global azimuthal anisotropy patterns. The model also reveals smaller scale patterns of 3D anisotropy variations related to regional lithospheric deformation and mantle flow, in particular in densely sampled regions. In oceanic regions, we examine the strength of azimuthal anisotropy, as a function of

  5. The South India Precambrian crust and shallow lithospheric mantle: Initial results from the India Deep Earth Imaging Experiment (INDEX)

    Indian Academy of Sciences (India)

    S S Rai; Kajaljyoti Borah; Ritima Das; Sandeep Gupta; Shalivahan Srivastava; K S Prakasam; K Sivaram; Sudesh Kumar; Rishikesh Meena

    2013-12-01

    We present here the most comprehensive study of the thickness and composition (/ ratio) of the South India Precambrian crust and the nature of shallower mantle inferred from analysis of teleseismic receiver functions from 70 broad-band seismic stations operated as a part of the India Deep Earth Imaging Experiment (INDEX). South India could be broadly divided into regions with thin crust (32–38 km) and thick crust (38–54 km). Thin crust domains include the East Dharwar Craton (EDC), Cuddapah basin and Madurai/Kerala Khondalite Block. The thicker crust domain includes the Western Dharwar Craton (WDC) and northern part of Southern Granulite Terrain. The WDC shows progressive increase in thickness from 38 km in north to 46–54 km in south, compared to an almost flat Moho beneath the EDC. Compositionally, most of the crustal domains are felsic to intermediate (/ ∼ 1.69–1.75) except the mid Archean block in the southern WDC where it is mafic (/ < 1.81). Considering erosion depth in the WDC, we argue for Himalaya like ∼70 km thick crust beneath it during the Archean. Variation in crustal thickness does not have a first-order influence on regional topography in South India and suggests significant role for the crustal composition. We also present evidence of mid-lithospheric low velocity at ∼85–100 km beneath South India.

  6. How Does Boiling in the Earth's Crust Influence Metal Speciation and Transport?

    Science.gov (United States)

    Kam, K.; Lemke, K.

    2014-12-01

    The presence of large quantities of precious metals, such as gold and copper, near the Earth's surface (upper crust) is commonly attributed to transport in aqueous solution and precipitation upon variations in temperature and pressure. As a consequence, gold exploration is closely linked to solution chemistry, i.e. hydrothermal processes involving aqueous fluids with densities of around unity. However, as crustal fluids buoyantly ascend, boiling produces a coexisting low-density aqueous liquid with fundamentally different physical and chemical properties, and a, most importantly, a high affinity for coinage metals (Heinrich et al., Econ Geol., 1992, 87, 1566). From recent experimental studies of Au (Hurtig and Williams-Jones, 2014, Geochim. Cosmochim. Acta,, 127, 304), we know that metal speciation in this low-density phase differs fundamentally from that observed in bulk solution, clearly, with important implications for Au, and metal speciation in general, transport and ore concentrations processes (these processes would also be operable in industrial geothermal plants given the quite special solvent properties of steam). In brief, this study focuses on the speciation of select metal halides in bulk solution as well as in water vapor, and is driven by our need to understand the solvent properties of around 2.0x109 cubic kilometers of free water (or 2,500 times as much water as stored in all lakes and rivers) present in the Earth's crust. The scope of this study has particular applications in the geothermal and oil industries, as both deal with high temperature low-density aqueous fluids. Understanding how metal halide species behave upon boiling can also provide insight into how metals, such as copper and silver, coat turbine equipment and steam piping in geothermal plants, ultimately rendering these components inoperable. This study will also provide preliminary results from mass spectrometric experiments of transition metal halides, and will be augmented with

  7. New insight into Earth's weather through studies of Sun's magnetic fields

    Science.gov (United States)

    1990-01-01

    Solar Vector Magnetograph is used to predict solar flares, and other activities associated with sun spots. This research provides new understanding about weather on the Earth, and solar-related conditions in orbit.

  8. Exploring the Earth's crust: history and results of controlled-source seismology

    Science.gov (United States)

    Prodehl, Claus; Mooney, Walter D.

    2012-01-01

    This volume contains a comprehensive, worldwide history of seismological studies of the Earth’s crust using controlled sources from 1850 to 2005. Essentially all major seismic projects on land and the most important oceanic projects are covered. The time period 1850 to 1939 is presented as a general synthesis, and from 1940 onward the history and results are presented in separate chapters for each decade, with the material organized by geographical region. Each chapter highlights the major advances achieved during that decade in terms of data acquisition, processing technology, and interpretation methods. For all major seismic projects, the authors provide specific details on field observations, interpreted crustal cross sections, and key references. They conclude with global and continental-scale maps of all field measurements and interpreted Moho contours. An accompanying DVD contains important out-of-print publications and an extensive collection of controlled-source data, location maps, and crustal cross sections.

  9. Making Earth's earliest continental crust - an analogue from voluminous Neogene silicic volcanism in NE-Iceland

    Science.gov (United States)

    Berg, Sylvia E.; Troll, Valentin R.; Burchardt, Steffi; Riishuus, Morten S.; Deegan, Frances M.; Harris, Chris; Whitehouse, Martin J.; Gústafsson, Ludvik E.

    2014-05-01

    Borgarfjörður Eystri in NE-Iceland represents the second-most voluminous exposure of silicic eruptive rocks in Iceland and is a superb example of bimodal volcanism (Bunsen-Daly gap), which represents a long-standing controversy that touches on the problem of crustal growth in early Earth. The silicic rocks in NE-Iceland approach 25 % of the exposed rock mass in the region (Gústafsson et al., 1989), thus they significantly exceed the usual ≤ 12 % in Iceland as a whole (e.g. Walker, 1966; Jonasson, 2007). The origin, significance, and duration of the voluminous (> 300 km3) and dominantly explosive silicic activity in Borgarfjörður Eystri is not yet constrained (c.f. Gústafsson, 1992), leaving us unclear as to what causes silicic volcanism in otherwise basaltic provinces. Here we report SIMS zircon U-Pb ages and δ18O values from the region, which record the commencement of silicic igneous activity with rhyolite lavas at 13.5 to 12.8 Ma, closely followed by large caldera-forming ignimbrite eruptions from the Breiðavik and Dyrfjöll central volcanoes (12.4 Ma). Silicic activity ended abruptly with dacite lava at 12.1 Ma, defining a ≤ 1 Myr long window of silicic volcanism. Magma δ18O values estimated from zircon range from 3.1 to 5.5 (± 0.3; n = 170) and indicate up to 45 % assimilation of a low-δ18O component (e.g. typically δ18O = 0 ‰, Bindeman et al., 2012). A Neogene rift relocation (Martin et al., 2011) or the birth of an off-rift zone to the east of the mature rift associated with a thermal/chemical pulse in the Iceland plume (Óskarsson & Riishuus, 2013), likely brought mantle-derived magma into contact with fertile hydrothermally-altered basaltic crust. The resulting interaction triggered large-scale crustal melting and generated mixed-origin silicic melts. Such rapid formation of silicic magmas from sustained basaltic volcanism may serve as an analogue for generating continental crust in a subduction-free early Earth (e.g. ≥ 3 Ga, Kamber et

  10. Time Passes - Argon Isotopes as Tracers of Fluids in the Earth's Crust

    Science.gov (United States)

    Kelley, Simon P.

    2016-04-01

    Recent experimental measurements of noble gas solubility in silicate minerals (e.g. Jackson et al. 2013, 2015) means that we can begin to explore the use of noble gas partition between minerals and fluids to understand their residence and transport in the Earth's crust. One starting point for this exploration is the distribution of noble gases and halogens in crustal fluids which was reviewed by Kendrick and Burnard (2013). In particular, K&B (2013) noted that time is a key parameter in understanding noble gas tracers in crustal processes; yielding information such as the residence time of water in a reservoir based on 4He acquired from aquifer rocks, and the 40Ar/39Ar age of fluid inclusions based on trapped fluid and minerals in quartz. Argon isotope variations in natural systems have been measured during studies of 40Ar/39Ar ages to quantify the rates and timescales of crustal processes. There are also studies of fluids in similar rocks, notably in fluid inclusions, providing the opportunity to quantify the variations in the crust. Partition of argon between mineral phases under conditions of varying fluid availability can be compared in systems where 40Ar/39Ar measurements indicate the preservation of non-radiogenic argon (both excess and atmospheric) in the minerals. Rather than a simple picture of radiogenic argon contents increasing with crustal age, and gradual depletion of atmospheric argon in deeper fluids, what emerges is a sometimes dynamic and sometimes static system in different zones of the crust. While it can be shown that the hydrous fluid in sandstone reservoirs contained excess argon, analyses of authigenic minerals rarely exhibit 40Ar/39Ar ages in excess of the growth age. In this scenario, the incompatible nature of argon means that the fluid acts as an effective infinite reservoir and radiogenic argon dominates the potassium rich authigenic minerals. The controls on noble gas distribution are also well illustrated by deep crustal rocks such as

  11. Geoacoustic method for continuous monitoring of stressed-strained state of Earth's crust

    Science.gov (United States)

    Verbitskiy, T. Z.

    1984-05-01

    Ceramic piezoelectric transducers with characteristic frequencies 10-15 KHz are used as sources and detectors of longitudinal waves in a geoacoustic measuring system. The source is excited by an alternating voltage of 150-300 V with a frequency of 1-10 KHz. The electric signals from the detectors are amplified and filtered for discriminating the frequency harmonics. The phase shift of the received signal of the fundamental frequency and the amplitude of oscillations of the fundamental and multiple frequencies are determined. The measured wave parameters are registered on punched tape, facilitating computer input. Measuring system stability is monitored. The supply voltage, as well as atmospheric pressure, humidity and temperature are continuously monitored. Measurements made in the Carpathian Geodynamic Polygon Carpathian reveal a substantial influence of tidal deformations of the Earth. It can be postulated that short anomalies are caused by the discharge of stresses in the investigated rock complex. More prolonged anomalies are caused by deformations of the crust accompanying preparation for tectonic earthquakes.

  12. Experimental space weathering of regolith material

    Science.gov (United States)

    McKay, D. S.; Allen, C. C.

    1994-07-01

    Significant advances in the understanding of space weathering processes were recently reported. Submicroscopic iron blebs were produced in lunar simulant glass and natural terrestrial minerals by high-temperature reduction in controlled atmosphere furnaces. These experiments altered the samples' optical properties and microtextures so that they resembled those of extremely mature lunar soil. The results contributed to a revised model for natural reduction in the regolith. Subsequently, supporting results were obtained by reduction of lunar samples. Research to date has focused on reduction of three lunar surface components: basalt, pyroclastic glass, and mare soil. An extensive set of H reduction experiments with simulants has led to a detailed understanding of reaction mechanisms and kinetics. Reduction experiments using lunar basalt were recently conducted by Carbotek. Reduced samples from these test were analyzed. Reduction experiments on lunar glass 74220 were run at temperatures of 900-1100 C. Reduction efficiency of volcanic glass proved to be a function of the sample's FeO abundance and reaction temperature. We also reduced mare soil 75061 at temperatures of 900-1050 C. Partial reduction of FeO in olivine and pyroxene occurred, but was slower and less complete than reduction of ilmenite. Our experiments on simulants and lunar samples have indicated that the most readily reduced phases in the regolith are ilmenite and glass. Based on initial tests with simulants we proposed refinements to the accepted model for space weathering of the regolith. The impact of a micrometeoroid flash heats and melts and ejects from the impact point a small volume of soil that contains trapped solar wind H and C. Reduction occurs rapidly, while the melt volume is still in motion. When a droplet encounters unmelted soil, it envelopes cold mineral grains. The melt is chilled rapidly. Our analyses of experimentally reduced lunar basalt, glass, and mare soil support the proposed

  13. Engaging Earth- and Environmental-Science Undergraduates Through Weather Discussions and an eLearning Weather Forecasting Contest

    Science.gov (United States)

    Schultz, David M.; Anderson, Stuart; Seo-Zindy, Ryo

    2013-06-01

    For students who major in meteorology, engaging in weather forecasting can motivate learning, develop critical-thinking skills, improve their written communication, and yield better forecasts. Whether such advances apply to students who are not meteorology majors has been less demonstrated. To test this idea, a weather discussion and an eLearning weather forecasting contest were devised for a meteorology course taken by third-year undergraduate earth- and environmental-science students. The discussion consisted of using the recent, present, and future weather to amplify the topics of the week's lectures. Then, students forecasted the next day's high temperature and the probability of precipitation for Woodford, the closest official observing site to Manchester, UK. The contest ran for 10 weeks, and the students received credit for participation. The top students at the end of the contest received bonus points on their final grade. A Web-based forecast contest application was developed to register the students, receive their forecasts, and calculate weekly standings. Students who were successful in the forecast contest were not necessarily those who achieved the highest scores on the tests, demonstrating that the contest was possibly testing different skills than traditional learning. Student evaluations indicate that the weather discussion and contest were reasonably successful in engaging students to learn about the weather outside of the classroom, synthesize their knowledge from the lectures, and improve their practical understanding of the weather. Therefore, students taking a meteorology class, but not majoring in meteorology, can derive academic benefits from weather discussions and forecast contests. Nevertheless, student evaluations also indicate that better integration of the lectures, weather discussions, and the forecasting contests is necessary.

  14. Simulation of seismic waves at the Earth crust (brittle-ductile transition) based on the Burgers model

    OpenAIRE

    Carcione, J.M.; Poletto, F.; B. Farina; A. Craglietto

    2014-01-01

    The Earth crust presents two dissimilar rheological behaviours depending on the in-situ stress-temperature conditions. The upper, cooler, part is brittle while deeper zones are ductile. Seismic waves may reveal the presence of the transition but a proper characterization is required. We first obtain a stress–strain relation including the effects of shear seismic attenuation and ductility due to shear deformations and plastic flow. The anelastic behaviour i...

  15. Simulation of seismic waves at the earth's crust (brittle–ductile transition) based on the Burgers model

    OpenAIRE

    Carcione, J.M.; Poletto, F.; B. Farina; A. Craglietto

    2014-01-01

    The earth's crust presents two dissimilar rheological behaviors depending on the in situ stress-temperature conditions. The upper, cooler part is brittle, while deeper zones are ductile. Seismic waves may reveal the presence of the transition but a proper characterization is required. We first obtain a stress–strain relation, including the effects of shear seismic attenuation and ductility due to shear deformations and plastic flow. The anelastic behavior is based on the Bur...

  16. Finding of ancient materials in Cathaysia and implication for the formation of Precambrian crust

    Institute of Scientific and Technical Information of China (English)

    YU JinHai; Y S O'REILLY; WANG LiJuan; W L GRIFFIN; JIANG ShaoYong; WANG RuCheng; XU XiSheng

    2007-01-01

    U-Pb dating for fifty-six detrital zircons from a paragneiss in Nanxiong area, northern Guangdong Province, indicates that the latest Neoproterozoic sediments in Cathaysia hinterland are composed of numerous Grenvillian and Neoarchaean clastic materials, as well as some Mesoproterozoic detritus. Minor Paleoarchaean (3.76 Ga) and Mesoarchaean (3.0-3.2 Ga) zircons, which are the oldest zircons in South China, also are firstly found in the sediments, suggesting that the Cathaysia Block may contain very old materials. The Hf isotope compositions of thirty-seven zircons reveal that these clastic materials have different origins. Minor zircons crystallized from magma generated from relatively juvenile crust, while the parental magma of most zircons was derived from ancient crust. Integration of U-Pb dating and Hf isotope analysis of these zircons suggests that the generation of juvenile crust in the Cathaysia block mainly occurred at 2.5-2.6 Ga. Mesoarchaean (3.0-3.3 Ga), late Paleoproterozoic (~1.8 Ga) and Paleoarchaean (~3.7 Ga) may also be important episodes of crustal growth. Grenvillian magmatism is extremely intense,but it mainly involved recycling of ancient crustal components with little formation of juvenile crust. The marked presence of ~2.1 Ga Hf model ages and the absence of the zircons with crystallization ages at ~2.1 Ga suggest that the parental magma of many zircons was probably derived from the mixed source consisting of Neoarchaean and late Paleoproterozoic materials.

  17. Space Weathering of Super-Earths: Model Simulations of Exospheric Sodium Escape from 61 Virgo b

    Science.gov (United States)

    Yoneda, M.; Berdyugina, S.; Kuhn, J.

    2017-10-01

    Rocky exoplanets are expected to be eroded by space weather in a similar way as in the solar system. In particular, Mercury is one of the dramatically eroded planets whose material continuously escapes into its exosphere and further into space. This escape is well traced by sodium atoms scattering sunlight. Due to solar wind impact, micrometeorite impacts, photo-stimulated desorption and thermal desorption, sodium atoms are released from surface regolith. Some of these released sodium atoms are escaping from Mercury’s gravitational-sphere. They are dragged anti-Sun-ward and form a tail structure. We expect similar phenomena on exoplanets. The hot super-Earth 61 Vir b orbiting a G3V star at only 0.05 au may show a similar structure. Because of its small separation from the star, the sodium release mechanisms may be working more efficiently on hot super-Earths than on Mercury, although the strong gravitational force of Earth-sized or even more massive planets may be keeping sodium atoms from escaping from the planet. Here, we performed model simulations for Mercury (to verify our model) and 61 Vir b as a representative super-Earth. We have found that sodium atoms can escape from this exoplanet due to stellar wind sputtering and micrometeorite impacts, to form a sodium tail. However, in contrast to Mercury, the tail on this hot super-Earth is strongly aligned with the anti-starward direction because of higher light pressure. Our model suggests that 61 Vir b seems to have an exo-base atmosphere like that of Mercury.

  18. Magma redox and structural controls on iron isotope variations in Earth's mantle and crust

    Science.gov (United States)

    Dauphas, N.; Roskosz, M.; Alp, E. E.; Neuville, D. R.; Hu, M. Y.; Sio, C. K.; Tissot, F. L. H.; Zhao, J.; Tissandier, L.; Médard, E.; Cordier, C.

    2014-07-01

    The heavy iron isotopic composition of Earth's crust relative to chondrites has been explained by vaporization during the Moon-forming impact, equilibrium partitioning between metal and silicate at core-mantle-boundary conditions, or partial melting and magma differentiation. The latter view is supported by the observed difference in the iron isotopic compositions of MORBS and peridotites. However, the precise controls on iron isotope variations in igneous rocks remain unknown. Here, we show that equilibrium iron isotope fractionation is mainly controlled by redox (Fe3+/Fetot ratio) and structural (e.g., polymerization) conditions in magmas. We measured, for the first time, the mean force constants of iron bonds in silicate glasses by synchrotron Nuclear Resonant Inelastic X-ray Scattering (NRIXS, also known as Nuclear Resonance Vibrational Spectroscopy - NRVS, or Nuclear Inelastic Scattering - NIS). The same samples were studied by conventional Mössbauer and X-ray Absorption Near Edge Structure (XANES) spectroscopy. The NRIXS results reveal a +0.2 to +0.4‰ equilibrium fractionation on 56Fe/54Fe ratio between Fe2+ and Fe3+ end-members in basalt, andesite, and dacite glasses at magmatic temperatures. These first measurements can already explain ∼1/3 of the iron isotopic shift measured in MORBs relative to their source. Further work will be required to investigate how pressure, temperature, and structural differences between melts and glasses affect equilibrium fractionation factors. In addition, large fractionation is also found between rhyolitic glass and commonly occurring oxide and silicate minerals. This fractionation reflects mainly changes in the coordination environment of Fe2+ in rhyolites relative to less silicic magmas and mantle minerals, as also seen by XANES. We provide a new calibration of XANES features vs. Fe3+/Fetot ratio determinations by Mössbauer to estimate Fe3+/Fetot ratio in situ in glasses of basaltic, andesitic, dacitic, and rhyolitic

  19. Neutron radiography and X-ray computed tomography for quantifying weathering and water uptake processes inside porous limestone used as building material

    Energy Technology Data Exchange (ETDEWEB)

    Dewanckele, J., E-mail: jan.dewanckele@gmail.com [Department of Geology and Soil Science—UGCT, Ghent University, Krijgslaan 281 S8, B-9000 Ghent (Belgium); De Kock, T. [Department of Geology and Soil Science—UGCT, Ghent University, Krijgslaan 281 S8, B-9000 Ghent (Belgium); Fronteau, G. [University of Reims Champagne-Ardenne (URCA), GEGENAA, EA3795 Reims (France); Derluyn, H. [Chair of Building Physics, ETH Zurich, HIL E 47.2, Wolfgang-Pauli-Strasse 15, 8093 Zürich Hönggerberg (Switzerland); Vontobel, P. [Spallation Neutron Source Division, Paul Scherrer Institut (PSI), Villigen (Switzerland); Dierick, M.; Van Hoorebeke, L. [Department of Physics and Astronomy—UGCT, Ghent University, Proeftuinstraat 86, B-9000 Ghent (Belgium); Jacobs, P.; Cnudde, V. [Department of Geology and Soil Science—UGCT, Ghent University, Krijgslaan 281 S8, B-9000 Ghent (Belgium)

    2014-02-15

    Euville and Savonnières limestones were weathered by acid test and this resulted in the formation of a gypsum crust. In order to characterize the crystallization pattern and the evolution of the pore structure below the crust, a combination of high resolution X-ray computed tomography and SEM–EDS was used. A time lapse sequence of the changing pore structure in both stones was obtained and afterwards quantified by using image analysis. The difference in weathering of both stones by the same process could be explained by the underlying microstructure and texture. Because water and moisture play a crucial role in the weathering processes, water uptake in weathered and non-weathered samples was characterized based on neutron radiography. In this way the water uptake was both visualized and quantified in function of the height of the sample and in function of time. In general, the formation of a gypsum crust on limestone slows down the initial water uptake in the materials. - Highlights: • Time lapse sequence in 3D of changing pore structures inside limestone • A combination of X-ray CT, SEM and neutron radiography was used. • Quantification of water content in function of time, height and weathering • Characterization of weathering processes due to gypsum crystallization.

  20. Geochemistry of rare earth elements in cobalt-rich crusts from the Mid-Pacific M seamount

    Institute of Scientific and Technical Information of China (English)

    CUI Yingchun; LIU Jihua; REN Xiangwen; SHI Xuefa

    2009-01-01

    Rare earth elements (REEs) and major elements of 25 cobalt-rich crusts obtained from different depths of Mid-Pacific M seamount were analyzed using inductively coupled plasma-atomic emission spectrometer and gravimetric method. The results showed that they were hydrogenous crusts with average ∑REE content of 2084.69 μg/g and the light REE (LREE)/heavy REE (HREE) ratio of 4.84. The shale-normalized REE patterns showed positive Ce anomalies. The total content of strictly trivalent REEs increased with water depth. The Ce content and LREE/HREE ratios in Fe-Mn crusts above 2000 m were lower than those below 2000 m. The change in REE with water depth could be explained by two processes: adsorptive scavenging by setting matters and behaviors of REE in seawater. However, the Ce abundance took no obvious correlation with water depth reflects the constant Ce flux. The Ce in crusts existed mainly as Ce(IV), implying that the oxidative-enriching process was controlled by kinetic factors.

  1. Planetary meteorology - A new perspective on the earth's weather

    Science.gov (United States)

    Joels, K.

    1976-01-01

    Meteorological observations of other planets which may contribute to an understanding of the meteorological processes on the earth are discussed. The high solar input and extremely low rotation rate of Venus simplify the analysis of the interaction of solar energy with the atmosphere. The dust present in the atmosphere of Mars may provide a useful model for studying the effects of anthropogenic aerosols in the atmosphere of earth. Observations of Mars may also be expected to yield information on the evolution of severe storms and on atmospheric tides. The belts and zones in the Jovian atmosphere bear some similarities to cyclones on earth, although they are produced differently; careful modeling of Jupiter's atmosphere may cast light on terrestrial cyclonic activity.

  2. FORMATION AND MINERALIZATION OF ARCHAISTIC WEATHERING CRUST IN THE ZHAISHANG AREA OF MINXIAN COUNTY, GANSU PROVINCE%甘肃省岷县寨上地区古风化壳形成与成矿作用初探

    Institute of Scientific and Technical Information of China (English)

    王增涛

    2011-01-01

    Discussions and researches on the formation mechanisms and the evolutionary process of the archaistic weathering crust in the Zhaishang area indicated that an archaistic weathering crust occurs under the Tertiary system and the outcrops of gassany gold ore bodies No. 16, 29 and 23 in the archaistic weathering crust should be of weathering crust gold deposit (lateritoid gold ore) .%文中探讨了寨上地区古风化壳形成机理和演化过程,认为在寨上矿区第三系地层以下存在古风化壳,寨上矿区王足路一带16、29、23号矿体头部的风化壳内的氧化铁帽型金矿为风化壳型金矿床(类红土型金矿)。

  3. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater

    Science.gov (United States)

    Bau, M.; Koschinsky, A.; Dulski, P.; Hein, J.R.

    1996-01-01

    In order to evaluate details of the partitioning behaviours of Y, rare earth elements (REEs), and Ti between inorganic metal oxide surfaces and seawater, we studied the distribution of these elements in hydrogenetic marine ferromanganese (Fe-Mn) crusts from the Central Pacific Ocean. Nonphosphatized Fe-Mn crusts display shale-normalized rare earths and yttrium (REYSN) patterns (Y inserted between Dy and Ho) that are depleted in light REEs (LREEs) and which show negative anomalies for YSN, and positive anomalies for LaSN, EuSN, GdSN, and in most cases, CeSN. They show considerably smaller Y/ Ho ratios than seawater or common igneous and clastic rocks, indicating that Y and Ho are fractionated in the marine environment. Compared to P-poor crusts, REYSN patterns of phosphatized Fe-Mn crusts are similar, but yield pronounced positive YSN anomalies, stronger positive LaSN anomalies, and enrichment of the HREEs relative to the MREEs. The data suggest modification of REY during phosphatization and indicate that studies requiring primary REY distributions or isotopic ratios should be restricted to nonphosphatized (layers of) Fe-Mn crusts. Apparent bulk coefficients, KMD, describing trace metal partitioning between nonphosphatized hydrogenetic Fe-Mn crusts and seawater, are similar for Pr to Eu and decrease for Eu to Yb. Exceptionally high values of KCeD, which are similar to those of Ti, result from oxidative scavenging of Ce and support previous suggestions that Ce(IV) is a hydroxide-dominated element in seawater. Yttrium and Gd show lower KD values than their respective neighbours in the REY series. Results of modelling the exchange equilibrium between REY dissolved in seawater and REY sorbed on hydrous Fe-Mn oxides corroborate previous studies that suggested the surface complexation of REY can be approximated by their first hydroxide binding constant. Negative "anomalies" occur for stabilities of bulk surface complexes of Gd, La, and particularly Y. The differences in

  4. A normalised seawater strontium isotope curve. Possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Shields, G.A. [Muenster Univ. (Germany). Geologisch-Palaeontologisches Inst.

    2007-07-01

    The strontium isotope composition of seawater is strongly influenced on geological time scales by changes in the rates of continental weathering relative to ocean crust alteration. However, the potential of the seawater {sup 87}Sr/{sup 86}Sr curve to trace globally integrated chemical weathering rates has not been fully realised because ocean {sup 87}Sr/{sup 86}Sr is also influenced by the isotopic evolution of Sr sources to the ocean. A preliminary attempt is made here to normalise the seawater {sup 87}Sr/{sup 86}Sr curve to plausible trends in the {sup 87}Sr/{sup 86}Sr ratios of the three major Sr sources: carbonate dissolution, silicate weathering and submarine hydrothermal exchange. The normalised curve highlights the Neoproterozoic-Phanerozoic transition as a period of exceptionally high continental influence, indicating that this interval was characterised by a transient increase in global weathering rates and/or by the weathering of unusually radiogenic crustal rocks. Close correlation between the normalised {sup 87}Sr/{sup 86}Sr curve, a published seawater {delta}{sup 34}S curve and atmospheric pCO{sub 2} models is used here to argue that elevated chemical weathering rates were a major contributing factor to the steep rise in seawater {sup 87}Sr/{sup 86}Sr from 650 Ma to 500 Ma. Elevated weathering rates during the Neoproterozoic-Cambrian interval led to increased nutrient availability, organic burial and to the further oxygenation of Earth's surface environment. Use of normalised seawater {sup 87}Sr/{sup 86}Sr curves will, it is hoped, help to improve future geochemical models of Earth System dynamics. (orig.)

  5. Space Weather Influence on the Earth wheat markets: past, present, and future.

    Science.gov (United States)

    Pustil'Nik, Lev

    We consider problem of a possible influence of unfavorable states of the space weather on agriculture market through chain of connections: "space weather"-"earth weather"-"agriculture crops"-"price reaction". We show that new manifestations of "space weather"-"earth weather" relations discovered in the last time allow to revise wide field of expected solar-terrestrial connections. In the previous works we proposed possible mechanisms of wheat market reaction in the form of price bursts on the specific unfavorable states of space weather. We show that implementation of considered "price reaction scenarios" is possible only for condition of simultaneous realization of several necessary conditions: high sensitivity of local earth weather in selected region to space weather; state of "high risk agriculture" in selected agriculture zone; high sensitivity of agricultural market to possible deficit of supply. Results of previous works (I, II) included application of this approach to wheat market in Medieval England and to modern USA durum market showed that real connection between wheat price bursts and space weather state is observed with high confidence level. The aim of present work is answer on the question, why wheat markets in one region are sensitive to space weather factor, while another regional wheat markets demonstrate absolute indifferent reaction on this factor. For this aim we consider distribution of sensitivity of wheat markets in Europe to space weather as function of localization in different climatic zones. We analyze giant database of 95 European wheat markets from 14 countries during about 600-year period (1260-1912). We show that observed sensitivity of wheat market to space weather effects controlled, first of all, by type of predominant climate in different zones of agriculture. Wheat markets in the North and part of Central Europe (England, Iceland, Holland) shows reliable sensitivity to space weather in minimum states of solar activity with low

  6. Jovian magnetospheric weathering of Europa's nonice surface material

    Science.gov (United States)

    Hibbitts, Charles A.; Paranicas, Christopher; Blaney, Diana L.; Murchie, Scott; Seelos, Frank

    2016-10-01

    Jovian plasma and energetic charged particles bombard the Galilean satellites. These satellites vary from volcanically active (Io) to a nearly primordial surface (Callisto). These satellites are imbedded in a harsh and complex particle radiation environment that weathers their surfaces, and thus are virtual laboratories for understanding how particle bombardment alters the surfaces of airless bodies. Europa orbits deeply in the Jovian radiation belts and may have an active surface, where space weathering and geologic processes can interact in complex ways with a range of timescales. At Europa's surface temperature of 80K to 130K, the hydrated nonice material and to a lesser extent, water ice, will be thermally stable over geologic times and will exhibit the effects of weathering. The ice on the surface of Europa is amorphous and contains trace products such as H2O2 [1] due to weathering. The nonice material, which likely has an endogenic component [2] may also be partially amorphous and chemically altered as a result of being weathered by electrons, Iogenic sulfur, or other agents [3]. This hydrated salt or frozen brine likely compositionally 'matures' over time as the more weakly bound constituents are preferentially removed compared with Ca and Mg [4]. Electron bombardment induces chemical reactions through deposition of energy (e.g., ionizations) possibly explaining some of the nonice material's redness [5,6]. Concurrently, micrometeroid gardening mixes the upper surface burying weathered and altered material while exposing both fresh material and previous altered material, potentially with astrobiological implications. Our investigation of the spectral alteration of nonice analog materials irradiated by 10s keV electrons demonstrates the prevalence of this alteration and we discuss relevance to potential measurements by the Europa MISE instrument.References: [1] Moore, M. and R. Hudson, (2000), Icarus, 145, 282-288; [2] McCord et al., (1998), Science, 280, 1242

  7. Structure and thickness of the Earth's crust in the northeastern part of the Indian Ocean

    Science.gov (United States)

    Schreider, A. A.; Mazo, E. L.; Kulikova, M. P.; Gilod, D. A.

    2008-10-01

    A digital database on the seismostratigraphy of the oceanic crust of the northeastern part of the Indian Ocean is compiled. In the first layer of the crust, the interval seismic wave velocities are 3.02 ± 0.16 km/s; in the second layer, they equal to 5.31 ± 0.27 km/s; and, in the third layer, the values are 6.46 ± 0.30 km/s. The bottom of the third seismic layer is represented by mantle rocks with an average velocity of 8.10 ± 0.16 km/s. Schemes of the distribution of the thicknesses of the second and third layers of the oceanic crust, of the total thickness of the crust, of the surface of the basement, and of the Mohorovicic discontinuity for the area considered are presented. The schemes compiled allow one to update and complement the ideas about the configuration of the major tectonic structures of the area.

  8. Crust behavior and erosion rate prediction of EPR sacrificial material impinged by core melt jet

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gen; Liu, Ming, E-mail: ming.liu@mail.xjtu.edu.cn; Wang, Jinshi; Chong, Daotong; Yan, Junjie

    2017-04-01

    Highlights: • A numerical code was developed to analyze melt jet-concrete interaction in the frame of MPS method. • Crust and ablated concrete layer at UO{sub 2}-ZrO{sub 2} melt and concrete interface periodically developed and collapsed. • Concrete surface temperature fluctuated around a low temperature and ablation temperature. • Concrete erosion by Fe-Zr melt jet was significantly faster than that by UO{sub 2}-ZrO{sub 2} melt jet. - Abstract: Sacrificial material is a special ferro-siliceous concrete, designed in the ex-vessel core melt stabilization system of European Pressurized water Reactor (EPR). Given a localized break of RPV lower head, the melt directly impinges onto the dry concrete in form of compact jet. The concrete erosion behavior influences the failure of melt plug, and further affects melt spreading. In this study, a numerical code was developed in the frame of Moving Particle Semi-implicit (MPS) method, to analyze the crust behavior and erosion rate of sacrificial concrete, impinged by prototypic melt jet. In validation of numerical modeling, the time-dependent erosion depth and erosion configuration matched well with the experimental data. Sensitivity study of sacrificial concrete erosion indicates that the crust and ablated concrete layer presented at UO{sub 2}-ZrO{sub 2} melt and concrete interface, whereas no crust could be found in the interaction of Fe-Zr melt with concrete. The crust went through stabilization-fracture-reformation periodic process, accompanied with accumulating and collapsing of molten concrete layer. The concrete surface temperature fluctuated around a low temperature and ablation temperature. It increased as the concrete surface layer was heated to melting, and dropped down when the cold concrete was revealed. The erosion progression was fast in the conditions of small jet diameter and large concrete inclination angle, and it was significantly faster in the erosion by metallic melt jet than by oxidic melt jet.

  9. Physics and Chemistry of Earth Materials

    Science.gov (United States)

    Navrotsky, Alexandra

    1994-11-01

    Stressing the fundamental solid state behavior of minerals, and emphasizing both theory and experiment, this text surveys the physics and chemistry of earth materials. The author begins with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how to obtain structural and thermodynamic information experimentally. Dr. Navrotsky also reviews the quantitative concepts of chemical bonding--band theory, molecular orbit and ionic models. She then covers physical properties and relates microscopic features to macroscopic thermodynamic behavior and treats high pressure phase transitions, amorphous materials and solid state reactions. The author concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book fills the gap between undergraduate texts and specialized review volumes and is appropriate for students and researchers in earth science and materials science.

  10. Space Weather Influence on the Earth Climate: Possible Manifestations in Wheat Markets Reaction

    Science.gov (United States)

    Pustilnik, Lev; Yom Din, Gregory; Zagnetko, Alexander

    We consider problem of a possible influence of unfavorable states of the space weather on agri-culture market through chain of connections: "space weather"-"earth weather"-"agriculture crops"-"price reaction". We show that new manifestations of "space weather"-"earth weather" relations discovered in the last time allow to revise wide field of expected solar-terrestrial con-nections. In the previous works we proposed possible mechanisms of wheat market reaction in the form of price bursts on the specific unfavorable states of space weather. We show that implementation of considered "price reaction scenarios" is possible only for condition of simul-taneous realization of several necessary conditions: high sensitivity of local earth weather in selected region to space weather; state of "high risk agriculture" in selected agriculture zone; high sensitivity of agricultural market to possible deficit of supply. Results of previous works included application of this approach to wheat market in Medieval England and to modern USA durum market showed that real connection between wheat price bursts and space weather state is observed with high confidence level. The aim of present work is answer on the ques-tion, why wheat markets in one region are sensitive to space weather factor, while another regional wheat markets demonstrate absolute indifferent reaction on this factor. For this aim we consider distribution of sensitivity of wheat markets in Europe to space weather as function of localization in different climatic zones. We analyze giant database of 95 European wheat markets from 14 countries during about 600-year period (1260-1912). We show that observed sensitivity of wheat market to space weather effects controlled, first of all, by type of predomi-nant climate in different zones of agriculture. Wheat markets in the North and part of Central Europe (England, Iceland, Holland) shows reliable sensitivity to space weather in minimum states of solar activity with low

  11. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean

    Science.gov (United States)

    Hein, James R.; Conrad, Tracey; Mizell, Kira; Banakar, Virupaxa K.; Frey, Frederick A.; Sager, William W.

    2016-04-01

    A reconnaissance survey of Fe-Mn crusts from the 5000 km long (~31°S to 10°N) Ninetyeast Ridge (NER) in the Indian Ocean shows their widespread occurrence along the ridge as well as with water depth on the ridge flanks. The crusts are hydrogenetic based in growth rates and discrimination plots. Twenty samples from 12 crusts from 9 locations along the ridge were analyzed for chemical and mineralogical compositions, growth rates, and statistical relationships (Q-mode factor analysis, correlation coefficients) were calculated. The crusts collected are relatively thin (maximum 40 mm), and those analyzed varied from 4 mm to 32 mm. However, crusts as thick as 80 mm can be expected to occur based on the age of rocks that comprise the NER and the growth rates calculated here. Growth rates of the crusts increase to the north along the NER and with water depth. The increase to the north resulted from an increased supply of Mn from the oxygen minimum zone (OMZ) to depths below the OMZ combined with an increased supply of Fe at depth from the dissolution of biogenic carbonate and from deep-sourced hydrothermal Fe. These increased supplies of Fe increased growth rates of the deeper-water crusts along the entire NER. Because of the huge terrigenous (rivers, eolian, pyroclastic) and hydrothermal (three spreading centers) inputs to the Indian Ocean, and the history of primary productivity, Fe-Mn crust compositions vary from those analyzed from open-ocean locations in the Pacific. The sources of detrital material in the crusts change along the NER and reflect, from north to south, the decreasing influence of the Ganga River system and volcanic arcs located to the east, with increasing influence of sediment derived from Australia to the south. In addition, weathering of NER basalt likely contributed to the aluminosilicate fraction of the crusts. The southernmost sample has a relatively large detrital component compared to other southern NER crust samples, which was probably

  12. Geodynamics and Stress State of the Earth's Crust in the Greater and Lesser Caucasus (Azerbaijan) collision region

    Science.gov (United States)

    Babayev, Gulam; Akhmedova, Elnare; Babayev, Elvin

    2017-04-01

    The current study researches the present-day stress state of the Earth's crust within the territory of Azerbaijan by using the database of the international research project "World Stress Map" (WSM). The present stress state was also assessed by exploring the effects of the contemporary topographic properties of Caucasus in three-dimensional frame. Aiming to explore the relative roles of regional tectonic conditions in the definition of stress state of Greater and Lesser Caucasus, stress distribution model was developed by the earthquake data (1998-2016) and by the standard techniques of stress field calculation. The results show that the stress orientations are influenced also by the combination of topography and crust thickness distribution even at very large depth. Stress data and earthquake focal mechanisms indicate that the stress state of the Earth's crust of the Greater and Lesser Caucasus is characterized by the compression predominantly oriented across the regional strike. The model results suggest that the Lesser Caucasus and Kur depression are rotating coherently, with little or no internal deformation in a counter-clockwise rotation located near the north-eastern corner of the Black Sea. Orientation of stress axes well consistent with earthquake focal mechanisms revealed that within Upper and Lower Crusts, earthquakes are predominantly thrust-faulting with a number of normal-faulting and some strike-slip faulting. The map of the focal mechanisms and stress distribution suggests that the research area is characterized by the thrust of horizontal compression trending north-north-east in the western part of the southern Caucasus. In the western part of Azerbaijan, the compression takes place between the Main Caucasus Fault and the Kur depression, which strikes south along the northern margin of the mountain range. In addition, a clear transition from the left-lateral strike slip to the predominantly right-lateral strike slip is observed in the southern of

  13. Resistivity and heterogeneity of Earth crust in an active tectonic region, Southern Tuscany (Italy

    Directory of Open Access Journals (Sweden)

    A. Manzella

    2004-06-01

    Full Text Available Southern Tuscany, belonging to the inner zone of the Northern Apennines, Italy, is an ideal laboratory for observing the physical features of the lithosphere and their evolution in tectonically active regions. Here the crust is very thin, with a thickness of less than 25 km, and heat flow is very high, hence only very shallow depths of exploration are needed to investigate many of the middle-deep crustal features that are common to many other parts of the world. The magnetotelluric (MT surveys performed in this region have provided information on the resistivity structure, which is related to the extent and distribution of free fluids and to the partial melts in the crust. The picture emerging from these MT surveys is that of a resistivity structure that is only partly related to the heat flow regime of the area. A very low resistivity was found below the vapour-dominated geothermal system of Larderello and below areas that have no clear connection to any geothermal system, whereas this reduction of resistivity is less conspicuous below the water-dominated geothermal system of Mt. Amiata.

  14. The Behaviour of Rare—Earth Elements(REE) During Weathering of Granites in Southern Guangxi,China

    Institute of Scientific and Technical Information of China (English)

    郑作平; 林传仙

    1996-01-01

    The behaviour of the rare-earth elements(REE)during the weathering of granites was studied in southern Guangxi,China.Based on the study of the weathering profiles,the soil,weathered and sub-weatereb zones are identified with different REE geochemical behaviours throug the weathering profiles of granite.The Ce anomalies of the weathering profiles cover a large range of values with most falling between 1.02 and 1.43in the soil zone and 0.16and 0.40in the weathered and sub-weathered zones.Light rare-earth elements(LREE) and heavy rare-earth elements(HREE)are enriched to varying degree in the weathering profiles as compared to host granites.In the soil zone,more HREEs are leached than LREEs,and HREEs are more enriched than LREE in the weathered and sub-weathered zones.It is considered that infiltration and adsorption on clays are two processes controlling the enrichment and formation of REE deposits in the weathering profiles of granite.

  15. The characteristics and sources of natural gases from Ordovician weath-ered crust reservoirs in the Central Gas Field in the Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    LI Xianqing; HU Guoyi; LI Jian; HOU Dujie; DONG Peng; SONG Zhihong; YANG Yunfeng

    2008-01-01

    The Central Gas Field is a famous large-sized gas field in the Ordos Basin of China. However, identification of main gas sources of the Ordovician reservoirs in this gas field remains puzzling. On the basis of a lot of geochemical data and geological research on natural gases, the characteristics and sources of natural gases from Ordovician weathered crust reservoirs in the Central Gas Field in the Ordos Basin were studied. The results indicated that natural gases from Ordovician weathered crust reservoirs in the Central Gas Field in the Ordos Basin have similar chemical and isotopic com-positions to highly mature and over-mature dry gases. Both coal-derived gases and oil-type gases coexist in the Central Gas Field in the Ordos Basin. The former was derived mainly from Carboniferous-Permian coal measures and the latter from Lower Paleozoic marine carbonates. It is suggested that coal-derived gases occur in the eastern part of the Central Gas Field while oil-type gases may be pro-duced mainly in the northern, western and southern parts of the Central Gas Field in the Ordos Basin.

  16. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Directory of Open Access Journals (Sweden)

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  17. The Ghost in the Machine: Fracking in the Earth's Complex Brittle Crust

    Science.gov (United States)

    Malin, P. E.

    2015-12-01

    This paper discusses in the impact of complex rock properties on practical applications like fracking and its associated seismic emissions. A variety of borehole measurements show that the complex physical properties of the upper crust cannot be characterized by averages on any scale. Instead they appear to follow 3 empirical rule: a power law distribution in physical scales, a lognormal distribution in populations, and a direct relation between changes in porosity and log(permeability). These rules can be directly related to the presence of fluid rich and seismically active fractures - from mineral grains to fault segments. (These are the "ghosts" referred to in the title.) In other physical systems, such behaviors arise on the boundaries of phase changes, and are studied as "critical state physics". In analogy to the 4 phases of water, crustal rocks progress upward from a un-fractured, ductile lower crust to nearly cohesionless surface alluvium. The crust in between is in an unstable transition. It is in this layer methods such as hydrofracking operate - be they in Oil and Gas, geothermal, or mining. As a result, nothing is predictable in these systems. Crustal models have conventionally been constructed assuming that in situ permeability and related properties are normally distributed. This approach is consistent with the use of short scale-length cores and logs to estimate properties. However, reservoir-scale flow data show that they are better fit to lognormal distributions. Such "long tail" distributions are observed for well productivity, ore vein grades, and induced seismic signals. Outcrop and well-log data show that many rock properties also show a power-law-type variation in scale lengths. In terms of Fourier power spectra, if peaks per km is k, then their power is proportional to 1/k. The source of this variation is related to pore-space connectivity, beginning with grain-fractures. We then show that a passive seismic method, Tomographic Fracture

  18. Weathering Pathways and Limitations in Biogeochemical Models: Application to Earth System Evolution

    OpenAIRE

    Mills, Benjamin

    2012-01-01

    Current biogeochemical box models for Phanerozoic climate are reviewed and reduced to a robust, modular system, allowing application to the Precambrian. It is shown that stabilisation of climate following a Neoproterozoic snowball Earth should take more than 10(7) years, due to long-term geological limitation of global weathering rates. The timescale matches the observed gaps between extreme glaciations at this time, suggesting that the late Neoproterozoic system was oscillating around a s...

  19. First Exploratory Study on the Ageing of Rammed Earth Material

    Directory of Open Access Journals (Sweden)

    Quoc-Bao Bui

    2014-12-01

    Full Text Available Rammed earth (RE is attracting renewed interest throughout the world thanks to its “green” characteristics in the context of sustainable building. In this study, the ageing effects on RE material are studied on the walls which have been constructed and exposed for 22 years to natural weathering. First, mechanical characteristics of the “old” walls were determined by two approaches: in-situ dynamic measurements on the walls; laboratory tests on specimens which had been cut from the walls. Then, the walls’ soil was recycled and reused for manufacturing of new specimens which represented the initial state. Comparison between the compressive strength, the Young modulus of the walls after 22 years on site and that of the initial state enables to assess the ageing of the studied walls.

  20. First Exploratory Study on the Ageing of Rammed Earth Material.

    Science.gov (United States)

    Bui, Quoc-Bao; Morel, Jean-Claude

    2014-12-23

    Rammed earth (RE) is attracting renewed interest throughout the world thanks to its "green" characteristics in the context of sustainable building. In this study, the ageing effects on RE material are studied on the walls which have been constructed and exposed for 22 years to natural weathering. First, mechanical characteristics of the "old" walls were determined by two approaches: in-situ dynamic measurements on the walls; laboratory tests on specimens which had been cut from the walls. Then, the walls' soil was recycled and reused for manufacturing of new specimens which represented the initial state. Comparison between the compressive strength, the Young modulus of the walls after 22 years on site and that of the initial state enables to assess the ageing of the studied walls.

  1. Is lithostatic loading important for the slip behavior and evolution of normal faults in the Earth's crust?

    Energy Technology Data Exchange (ETDEWEB)

    Kattenhorn, Simon A. [Department of Geological and Environmental Sciences, Stanford University, Stanford, California (United States); Pollard, David D. [Department of Geological and Environmental Sciences, Stanford University, Stanford, California (United States)

    1999-12-10

    Normal faults growing in the Earth's crust are subject to the effects of an increasing frictional resistance to slip caused by the increasing lithostatic load with depth. We use three-dimensional (3-D) boundary element method numerical models to evaluate these effects on planar normal faults with variable elliptical tip line shapes in an elastic solid. As a result of increasing friction with depth, normal fault slip maxima for a single slip event are skewed away from the fault center toward the upper fault tip. There is a correspondingly greater propagation tendency at the upper tip. However, the tall faults that would result from such a propagation tendency are generally not observed in nature. We show how mechanical interaction between laterally stepping fault segments significantly competes with the lithostatic loading effect in the evolution of a normal fault system, promoting lateral propagation and possibly segment linkage. Resultant composite faults are wider than they are tall, resembling both 3-D seismic data interpretations and previously documented characteristics of normal fault systems. However, this effect may be greatly complemented by the influence of a heterogeneous stratigraphy, which can control fault nucleation depth and inhibit fault propagation across the mechanical layering. Our models demonstrate that although lithostatic loading may be an important control on fault evolution in relatively homogeneous rocks, the contribution of lithologic influences and mechanical interaction between closely spaced, laterally stepping faults may predominate in determining the slip behavior and propagation tendency of normal faults in the Earth's crust. (c) 1999 American Geophysical Union.

  2. Can anisotropic conductivity in the lower ionosphere and in the Earth's crust be studied by Schumann resonance transients?

    Science.gov (United States)

    Ludván, Brigitta; Bór, József; Steinbach, Péter; Novák, Attila; Sátori, Gabriella

    2015-04-01

    Schumann resonance transients (SRTs) are extremely low frequency (ELF, 3-3000 Hz) wave packets of high amplitude electromagnetic (EM) waves produced by intense lightning discharges worldwide. Near the lower end of the ELF band, frequencies are close to the lowest spherical eigenfrequencies of the closed EM waveguide formed by the surface of the Earth and the lower ionosphere. Therefore, these waves suffer little attenuation during their propagation and can be detected globally at any point on Earth. SRTs detected both in the vertical electric and in the horizontal magnetic components of the atmospheric EM field at the Széchenyi István Geophysical Observatory (NCK, 16.7 E, 47.6 N) on 1st and 2nd August, 2012 have been analyzed. Azimuths of their parent lightning discharges were calculated from the horizontal components of the corresponding Poynting vector. Parent lightning strokes of the considered SRTs (342 and 245 events on the first and on the second day, respectively) have been identified in the records of the World Wide Lightning Location Network (WWLLN) using the detection times of the events in the two datasets. It was found that the azimuths of the sources at NCK station deduced from ELF records systematically differ from source azimuths calculated using WWLLN provided lightning locations. The difference between the corresponding azimuth values from the two methods shows the same pattern on both examined days when it is plotted as function of the WWLLN data based source azimuth. The symmetry of this pattern agrees well with the symmetry of the conductivity variations of the Earth's crust determined by independent magnetotelluric methods at NCK station. The differences have similar diurnal variation, too, on the two days with the largest difference occurring near midnight, local time. Our results agree well with findings of Füllekrug and Sukhorukov (GRL, 1999) and support the idea that the azimuthal dependence of source azimuth differences can be related

  3. Compilation of 3D global conductivity model of the Earth for space weather applications

    Science.gov (United States)

    Alekseev, Dmitry; Kuvshinov, Alexey; Palshin, Nikolay

    2015-07-01

    We have compiled a global three-dimensional (3D) conductivity model of the Earth with an ultimate goal to be used for realistic simulation of geomagnetically induced currents (GIC), posing a potential threat to man-made electric systems. Bearing in mind the intrinsic frequency range of the most intense disturbances (magnetospheric substorms) with typical periods ranging from a few minutes to a few hours, the compiled 3D model represents the structure in depth range of 0-100 km, including seawater, sediments, earth crust, and partly the lithosphere/asthenosphere. More explicitly, the model consists of a series of spherical layers, whose vertical and lateral boundaries are established based on available data. To compile a model, global maps of bathymetry, sediment thickness, and upper and lower crust thicknesses as well as lithosphere thickness are utilized. All maps are re-interpolated on a common grid of 0.25×0.25 degree lateral spacing. Once the geometry of different structures is specified, each element of the structure is assigned either a certain conductivity value or conductivity versus depth distribution, according to available laboratory data and conversion laws. A numerical formalism developed for compilation of the model, allows for its further refinement by incorporation of regional 3D conductivity distributions inferred from the real electromagnetic data. So far we included into our model four regional conductivity models, available from recent publications, namely, surface conductance model of Russia, and 3D conductivity models of Fennoscandia, Australia, and northwest of the United States.

  4. 10 CFR 440.21 - Weatherization materials standards and energy audit procedures.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Weatherization materials standards and energy audit procedures. 440.21 Section 440.21 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION WEATHERIZATION ASSISTANCE FOR LOW-INCOME PERSONS § 440.21 Weatherization materials standards and energy audit procedures....

  5. Widespread mixing and burial of Earth's Hadean crust by asteroid impacts.

    Science.gov (United States)

    Marchi, S; Bottke, W F; Elkins-Tanton, L T; Bierhaus, M; Wuennemann, K; Morbidelli, A; Kring, D A

    2014-07-31

    The history of the Hadean Earth (∼4.0-4.5 billion years ago) is poorly understood because few known rocks are older than ∼3.8 billion years old. The main constraints from this era come from ancient submillimetre zircon grains. Some of these zircons date back to ∼4.4 billion years ago when the Moon, and presumably the Earth, was being pummelled by an enormous flux of extraterrestrial bodies. The magnitude and exact timing of these early terrestrial impacts, and their effects on crustal growth and evolution, are unknown. Here we provide a new bombardment model of the Hadean Earth that has been calibrated using existing lunar and terrestrial data. We find that the surface of the Hadean Earth was widely reprocessed by impacts through mixing and burial by impact-generated melt. This model may explain the age distribution of Hadean zircons and the absence of early terrestrial rocks. Existing oceans would have repeatedly boiled away into steam atmospheres as a result of large collisions as late as about 4 billion years ago.

  6. A survey of lunar rock types and comparison of the crusts of earth and moon

    Science.gov (United States)

    Wood, J. A.

    1977-01-01

    The principal known types of lunar rocks are briefly reviewed, and their chemical relationships discussed. In the suite of low-KREEP highland rocks, Fe/(Fe + Mg) in the normative mafic minerals increases and the albite content of normative plagio-clase decreases as the total amount of normative plagioclase increases, the opposite of the trend predicted by the Bowen reaction principle. The distribution of compositions of rocks from terrestrial layered mafic intrusives is substantially different: here the analyses fall in several discrete clusters (anorthositic rocks, norites, granophyres and ferrogabbros, ultramafics), and the chemical trends noted above are not reproduced. It is suggested that the observed trends in lunar highland rocks could be produced by crystal fractionation in a deep global surface magma system if (1) plagiociase tended to float, upon crystallization, and (2) the magma was kept agitated and well mixed (probably by thermal convection) until crystallization was far advanced and relatively little residual liquid was left. After the crustal system solidified, but before extensive cooling had developed a thick, strong lithosphere, mantle convection was able to draw portions of the lunar anorthositic crust down into the mantle.

  7. Critical Zone Weathering and Your Smartphone: Understanding How Mineral Decomposition and Colloid Redistribution Can Generate Rare Earth Element Deposits

    Science.gov (United States)

    Bern, C.; Foley, N.

    2014-12-01

    Rare earth elements (REE's) are crucial in the manufacture of smartphones and many other high tech devices. Increasing global demand and relatively narrow geographic sourcing have promoted interest in understanding REE deposit genesis and distribution. Highly weathered, clay-hosted, ion-exchange type deposits in southern China are the source of much of the world's production of the more valuable heavy REEs. Such deposits form as REE-bearing minerals weather and REEs released to solution in ionic form are retained by negatively charged exchange sites on clay minerals. We are investigating the potential for ion-exchange REE deposits in the Piedmont of the southeastern United States, where slow erosion rates have preserved thick (up to 20 m) regolith, as required for such deposits. The Liberty Hill pluton outcrops as coarse-grained biotite-amphibole granite and quartz monzonite over nearly 400 km2 in South Carolina, and has an age of 305 Ma (new SHRIMP ion microprobe zircon age). In weathered profiles over the pluton, ion-exchangeable REE content ranges from 8 to 580 ppm and accounts for 2 to 80% of bulk REE content. Elemental and heavy mineral distributions suggest the wide ranging differences in leachability may be attributable to the amount and distribution of resistant REE-bearing phases (e.g., monazite) relative to more easily weathered phases (e.g., allanite) in the parent granite. The REEs show little mobility within the regolith, indicating the effectiveness of the ion-exchange retention mechanism. In contrast, vertical redistribution of colloidal material shows maximum accumulations at ~1 m depth, as traced by the newly developed dual-phase (colloids vs. solution) mass balance model. The contrast suggests redistributed colloidal material has minimal influence on REE mobilization or retention. Conditions and processes necessary for ion-exchange REE deposit development exist in the Piedmont, but their presence will depend upon favorable parent rock mineralogy.

  8. Raising the continental crust

    Science.gov (United States)

    Campbell, Ian H.; Davies, D. Rhodri

    2017-02-01

    The changes that occur at the boundary between the Archean and Proterozoic eons are arguably the most fundamental to affect the evolution of Earth's continental crust. The principal component of Archean continental crust is Granite-Greenstone Terranes (GGTs), with granites always dominant. The greenstones consist of a lower sequence of submarine komatiites and basalts, which erupted onto a pre-existing Tonalite-Trondhjemite-Granodiorite (TTG) crust. These basaltic rocks pass upwards initially into evolved volcanic rocks, such as andesites and dacites and, subsequently, into reworked felsic pyroclastic material and immature sediments. This transition coincides with widespread emplacement of granitoids, which stabilised (cratonised) the continental crust. Proterozoic supra-crustal rocks, on the other hand, are dominated by extensive flat-lying platform sequences of mature sediments, which were deposited on stable cratonic basements, with basaltic rocks appreciably less abundant. The siliceous TTGs cannot be produced by direct melting of the mantle, with most hypotheses for their origin requiring them to be underlain by a complimentary dense amphibole-garnet-pyroxenite root, which we suggest acted as ballast to the early continents. Ubiquitous continental pillow basalts in Archean lower greenstone sequences require the early continental crust to have been sub-marine, whereas the appearance of abundant clastic sediments, at higher stratigraphic levels, shows that it had emerged above sea level by the time of sedimentation. We hypothesise that the production of komatiites and associated basalts, the rise of the continental crust, widespread melting of the continental crust, the onset of sedimentation and subsequent cratonisation form a continuum that is the direct result of removal of the continent's dense amphibole-garnet-pyroxenite roots, triggered at a regional scale by the arrival of a mantle plume at the base of the lithosphere. Our idealised calculations suggest

  9. Heatflow in Young Oceanic Crust. Is Earth's Heat Flux 44 TW or 31 TW?

    Science.gov (United States)

    Gosnold, W. D.

    2008-05-01

    We address the question of heat flow in young oceanic crust using a 2-D finite difference heat flow model of sea floor spreading. The model parameters include thermal conductivity variation with temperature, a fixed T-z profile at the ridge that follows the mantle liquidus, constant spreading rate, and constant heat flow into the base of the lithosphere. The output of the model is a 2-D temperature-depth grid that provides a comparison with various analytical models of oceanic heat flow. We tested the reliability of the computations using different half-spreading rates and different node spacings and verified that the models yield equivalent results at equivalent times and depths. To address the question of global heat flux with respect to heat flow at oceanic spreading centers, we summed heat flux on the oceanic ridge system assuming a length of 65000 km and a half-spreading rate of 2.5 cm/y. Our results show that the GDH1, HSC, and PSM models overestimate heat flow close to the ridge, but the differences are less than 5 percent beyond 2 ma. Our model converges with GDH1 at a young age of 4.32 my and actually shows slightly lower heat flow than HSC and PSM models for ages greater than 5 ma. Total heat flux for GDH1 between 80ky and 2.32 my is 6.24 TW and our model yields 5.56 TW. Assuming agreement with heat flux over the rest of the globe, our model is only 0.68 TW different from 44TW. However, our result for heat flux in a 2 km wide section over the global ridge crest is 0.161 TW while the analytical models predict infinite heat flow.

  10. Naturally occurring radionuclides and rare earth elements in weathered Japanese soil samples

    Science.gov (United States)

    Sahoo, Sarata; Hosoda, Masahiro; Prasad, Ganesh; Takahashi, Hiroyuki; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji; Uchida, Shigeo

    2013-08-01

    The activity concentrations of 226Ra and 228Ac in weathered Japanese soils from two selected prefectures have been measured using a γ-ray spectroscopy system with high purity germanium detector. The uranium, thorium, and rare earth elements (REEs) concentrations were determined from the same soil samples using inductively coupled plasma mass spectrometry (ICP-MS). For example, granitic rocks contain higher amounts of U, Th, and light REEs compared to other igneous rocks such as basalt and andesites. Therefore, it is necessary to understand the interaction between REEs and nature of soils since soils are complex heterogeneous mixture of organic and inorganic solids, water, and gases. In this paper, we will discuss about distribution pattern of 238U and 232Th along with REEs in soil samples of weathered acid rock (granite) collected from two prefectures of Japan: Hiroshima and Miyagi.

  11. Global redox cycle of biospheric carbon: Interaction of photosynthesis and earth crust processes.

    Science.gov (United States)

    Ivlev, Alexander A

    2015-11-01

    A model of the natural global redox cycle of biospheric carbon is introduced. According to this model, carbon transfer between biosphere and geospheres is accompanied by a conversion of the oxidative forms, presented by CO2, bicarbonate and carbonate ions, into the reduced forms, produced in photosynthesis. The mechanism of carbon transfer is associated with two phases of movement of lithospheric plates. In the short-term orogenic phase, CO2 from the subduction (plates' collisions) zones fills the "atmosphere-hydrosphere" system, resulting in climate warming. In the long-term quiet (geosynclynal) phase, weathering and photosynthesis become dominant depleting the oxidative forms of carbon. The above asymmetric periodicity exerts an impact on climate, biodiversity, distribution of organic matter in sedimentary deposits, etc. Along with photosynthesis expansion, the redox carbon cycle undergoes its development until it reaches the ecological compensation point, at which CO2 is depleted to the level critical to support the growth and reproduction of plants. This occurred in the Permo-Carboniferous time and in the Neogene. Shorter-term perturbations of the global carbon cycle in the form of glacial-interglacial oscillations appear near the ecological compensation point.

  12. The Gassmann-Burgers Model to Simulate Seismic Waves at the Earth Crust And Mantle

    Science.gov (United States)

    Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Craglietto, Aronne

    2016-12-01

    The upper part of the crust shows generally brittle behaviour while deeper zones, including the mantle, may present ductile behaviour, depending on the pressure-temperature conditions; moreover, some parts are melted. Seismic waves can be used to detect these conditions on the basis of reflection and transmission events. Basically, from the elastic-plastic point of view the seismic properties (seismic velocity and density) depend on effective pressure and temperature. Confining and pore pressures have opposite effects on these properties, such that very small effective pressures (the presence of overpressured fluids) may substantially decrease the P- and S-wave velocities, mainly the latter, by opening of cracks and weakening of grain contacts. Similarly, high temperatures induce the same effect by partial melting. To model these effects, we consider a poro-viscoelastic model based on Gassmann equations and Burgers mechanical model to represent the properties of the rock frame and describe ductility in which deformation takes place by shear plastic flow. The Burgers elements allow us to model the effects of seismic attenuation, velocity dispersion and steady-state creep flow, respectively. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. Effective pressure effects are taken into account in the dry-rock moduli using exponential functions whose parameters are obtained by fitting experimental data as a function of confining pressure. Since fluid effects are important, the density and bulk modulus of the saturating fluids (water and steam) are modeled using the equations provided by the NIST website, including supercritical behaviour. The theory allows us to obtain the phase velocity and quality factor as a function of depth and geological pressure and temperature as well as time frequency. We then obtain the PS and SH

  13. The Gassmann-Burgers Model to Simulate Seismic Waves at the Earth Crust And Mantle

    Science.gov (United States)

    Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Craglietto, Aronne

    2017-03-01

    The upper part of the crust shows generally brittle behaviour while deeper zones, including the mantle, may present ductile behaviour, depending on the pressure-temperature conditions; moreover, some parts are melted. Seismic waves can be used to detect these conditions on the basis of reflection and transmission events. Basically, from the elastic-plastic point of view the seismic properties (seismic velocity and density) depend on effective pressure and temperature. Confining and pore pressures have opposite effects on these properties, such that very small effective pressures (the presence of overpressured fluids) may substantially decrease the P- and S-wave velocities, mainly the latter, by opening of cracks and weakening of grain contacts. Similarly, high temperatures induce the same effect by partial melting. To model these effects, we consider a poro-viscoelastic model based on Gassmann equations and Burgers mechanical model to represent the properties of the rock frame and describe ductility in which deformation takes place by shear plastic flow. The Burgers elements allow us to model the effects of seismic attenuation, velocity dispersion and steady-state creep flow, respectively. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. Effective pressure effects are taken into account in the dry-rock moduli using exponential functions whose parameters are obtained by fitting experimental data as a function of confining pressure. Since fluid effects are important, the density and bulk modulus of the saturating fluids (water and steam) are modeled using the equations provided by the NIST website, including supercritical behaviour. The theory allows us to obtain the phase velocity and quality factor as a function of depth and geological pressure and temperature as well as time frequency. We then obtain the PS and SH

  14. Early history of Earth's crust-mantle system inferred from hafnium isotopes in chondrites

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Haack, Henning; Rosing, M.;

    2003-01-01

    depleted mantle reservoir. Here we report Lu-Hf isotope measurements of different Solar System objects including chondrites and basaltic eucrites. The chondrites define a Lu-Hf isochron with an initial Hf/Hf ratio of 0.279628 ± 0.000047, corresponding to ¿176 = 1.983 ± 0.033 x 10yr using an age of 4.56 Gyr...... for the chondrite-forming event. This ¿176 value indicates that Earth's oldest minerals were derived from melts of a mantle source with a time-integrated history of depletion rather than enrichment. The depletion event must have occurred no later than 320 Myr after planetary accretion, consistent with timing...

  15. Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage

    Science.gov (United States)

    Burks, J. E.; Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Angle, K.

    2015-12-01

    In 2014, collaborations between the Short-term Prediction Research and Transition (SPoRT) Center at NASA Marshall Space Flight Center, the National Weather Service (NWS), and the USGS led to the incorporation of Earth remote sensing imagery within the NOAA/NWS Damage Assessment Toolkit (DAT). The DAT is a smartphone, tablet, and web-based application that allows NWS meteorologists to acquire, quality control, and manage various storm damage indicators following a severe weather event, such as a tornado, occurrence of widespread damaging winds, or significant hail. Earth remote sensing supports the damage assessment process by providing a broad overview of how various acquired damage indicators relate to scarring visible from space, ranging from high spatial resolution commercial imagery (~1-4m) acquired via USGS and in collaboration with other federal and private sector partners, to moderate resolution imaging from NASA sensors (~15-30m) such as those aboard Landsat 7 and 8 and Terra's ASTER, to lower resolution but routine imaging from NASA's Terra and Aqua MODIS, or the Suomi-NPP VIIRS instrument. In several cases, the acquisition and delivery of imagery in the days after a severe weather event has proven helpful in confirming or in some cases adjusting the preliminary damage track acquired during a ground survey. For example, limited road networks and access to private property may make it difficult to observe the entire length of a tornado track, while satellite imagery can fill in observation gaps to complete a more detailed damage track assessment. This presentation will highlight successful applications of Earth remote sensing for the improvement of damage surveys, discuss remaining challenges, and provide direction on future efforts that will improve the delivery of remote sensing data and use through new automation processes and training opportunities.

  16. Microstructural Studies of Space Weathering Effects in Lunar Materials

    Science.gov (United States)

    Keller, L. P.

    2002-01-01

    Space weathering is a term used to include all of the processes which act on material exposed at the surface of a planetary or small body. In the case of the moon, it includes a variety of processes which have formed the lunar regolith, caused the maturation of lunar soils, and formed patina on rock surfaces. The processes include micrometeorite impact and reworking, implantation of solar wind and flare particles, radiation damage and chemical effects from solar particles and cosmic rays, interactions with the lunar atmosphere, and sputtering erosion and deposition. Space weathering effects collectively result in a reddened continuum slope, lowered albedo, and attenuated absorption features in reflectance spectra of lunar soils as compared to finely comminuted rocks from the same Apollo sites. However, the regolith processes that cause these effects are not well known, nor is the petrographic setting of the products of these processes fully understood. An interesting confluence of events occurred in the early 1990s. First, came the discovery of vapor deposited coatings on lunar regolith grains by Keller and McKay, who showed that amorphous coatings from 50-100 nm thick containing fine-grained Fe metal (1-10 nm in diameter) were common in the fine size fraction of several mature lunar soils. The other discovery was the recognition that the optical properties of lunar soils were dominated by fine grain sized material (less than 45 micrometer fraction) by Pieters and coworkers. These discoveries led to coordinated studies that looked at the mineralogy, chemistry, and optical properties of lunar soils as function of composition, maturity, and grain size fraction. One of the major revelations from these studies was the recognition that much of the nanophase Fe metal is surface-correlated especially in the finest size fractions, and that it was this nanophase Fe that dominated the optical properties of the soil.

  17. A much warmer Earth surface for most of geologic time: implications to biotic weathering

    Science.gov (United States)

    Schwartzman, D. W.; McMenamin, M.

    1993-01-01

    The authors present two scenarios for the temperature history of Earth. One scenario is conventional, the other relies on a warmer history. Both scenarios include surface cooling determined by the evolution of the biosphere and are similar until the Proterozoic period. The warmer scenario requires a higher plant/lichen terrestrial biota to increase weathering intensity. Justification for a warmer surface includes period temperatures from the oxygen isotope record of coexisting phosphates and cherts, an upper limit of 58 degrees C from primary gypsum precipitation, and the lack of fractionation of sulfur isotopes between sulfide and sulfates in Archean sediments.

  18. A much warmer Earth surface for most of geologic time: implications to biotic weathering

    Science.gov (United States)

    Schwartzman, D. W.; McMenamin, M.

    1993-01-01

    The authors present two scenarios for the temperature history of Earth. One scenario is conventional, the other relies on a warmer history. Both scenarios include surface cooling determined by the evolution of the biosphere and are similar until the Proterozoic period. The warmer scenario requires a higher plant/lichen terrestrial biota to increase weathering intensity. Justification for a warmer surface includes period temperatures from the oxygen isotope record of coexisting phosphates and cherts, an upper limit of 58 degrees C from primary gypsum precipitation, and the lack of fractionation of sulfur isotopes between sulfide and sulfates in Archean sediments.

  19. Climate and weather of the Sun-Earth system (CAWSES) highlights from a priority program

    CERN Document Server

    Lübken, Franz-Josef

    2012-01-01

    CAWSES (Climate and Weather of the Sun-Earth System) is the most important scientific program of SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). CAWSES has triggered a scientific priority program within the German Research Foundation for a period of 6 years. Approximately 30 scientific institutes and 120 scientists were involved in Germany with strong links to international partners. The priority program focuses on solar influence on climate, atmospheric coupling processes, and space climatology. This book summarizes the most important results from this program covering some impor

  20. Modeling electrical dispersion phenomena in Earth materials

    Directory of Open Access Journals (Sweden)

    D. Patella

    2008-06-01

    Full Text Available It is illustrated that IP phenomena in rocks can be described using conductivity dispersion models deduced as solutions to a 2nd-order linear differential equation describing the motion of a charged particle immersed in an external electrical field. Five dispersion laws are discussed, namely: the non-resonant positive IP model, which leads to the classical Debye-type dispersion law and by extension to the Cole-Cole model, largely used in current practice; the non-resonant negative IP model, which allows negative chargeability values, known in metals at high frequencies, to be explained as an intrinsic physical property of earth materials in specific field cases; the resonant flat, positive or negative IP models, which can explain the presence of peak effects at specific frequencies superimposed on flat, positive or negative dispersion spectra.

  1. An Experimental Study on the Effects of Microbes on the Migration and Accumulation of REE in the Weathering Crust of Granite

    Institute of Scientific and Technical Information of China (English)

    陈炳辉; 王智美; 等

    2000-01-01

    Microbes were cultured and identified from the saples collected at various depths in 4 weathering profiles of REE-bearing granites in Gonghe,Guangdong,The microbes were found existing at the depth of 0-5m in all the profiles.The main microbes include coccus (Staphylococcus,Streptococcus),bacillus(Bacillus,Clostridium and Escherichia Coli),actinmyces and fungi(Saccharomycete,Penicillium,Fusarium,Aspergillus Aiger and Mucor),The number of colonies decreases downwards in the profiles.Experimental studies show that all the microbes used in the experiment can accelerate downward migation of REE in the experimental tubes.,The ability to accelerate the migration of REE decreases in a sequence of fungi→actinomyces→acillus→coccus.The microbes can change the modes of occurrence of REE in the weathering crust.The coccus,bacillus and actinomyces can increase the amounts of REE in ion state,whereas the fungi have a stronger ability to from organic compounding REE and accumulate REE than the bacteria do.

  2. Simulation of seismic waves at the Earth crust (brittle-ductile transition based on the Burgers model

    Directory of Open Access Journals (Sweden)

    J. M. Carcione

    2014-06-01

    Full Text Available The Earth crust presents two dissimilar rheological behaviours depending on the in-situ stress-temperature conditions. The upper, cooler, part is brittle while deeper zones are ductile. Seismic waves may reveal the presence of the transition but a proper characterization is required. We first obtain a stress–strain relation including the effects of shear seismic attenuation and ductility due to shear deformations and plastic flow. The anelastic behaviour is based on the Burgers mechanical model to describe the effects of seismic attenuation and steady-state creep flow. The shear Lamé constant of the brittle and ductile media depends on the in-situ stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. The P- and S-wave velocities decrease as depth and temperature increase due to the geothermal gradient, an effect which is more pronounced for shear waves. We then obtain the P-S and SH equations of motion recast in the velocity-stress formulation, including memory variables to avoid the computation of time convolutions. The equations correspond to isotropic anelastic and inhomogeneous media and are solved by a direct grid method based on the Runge–Kutta time stepping technique and the Fourier pseudospectral method. The algorithm is tested with success against known analytical solutions for different shear viscosities. A realistic example illustrates the computation of surface and reverse-VSP synthetic seismograms in the presence of an abrupt brittle-ductile transition.

  3. Application progress of rare earth nano-materials

    Institute of Scientific and Technical Information of China (English)

    Xiao Zhe

    2009-01-01

    @@ Total rare earth consumption exceeded 72,600 tREO domestically in China in 2007, among which over 38,500 tREO were consumed in functional materials like permanent magnetic materials, fluorescent materials, hydrogen storage materials, catalytic materials and polishing powders,representing 53% of total RE consumption. Production and application of RE performance materials have been the main force promoting the development of China rare earth industry.

  4. Geochemistry of U and Th and its Influence on the Origin and Evolution of the Crust of Earth and the Biological Evolution

    CERN Document Server

    Bao, Xuezhao

    1998-01-01

    We have investigated the migration behaviors of uranium (U) and thorium (Th) in the Earth and other terrestrial planets. Theoretical models of U and Th migration have been proposed. These models suggest that the unique features of the Earth are closely connected with its unique U and Th migration models and distribution patterns. In the Earth, U and Th can combine with oxidative volatile components and water, migrate up to the asthenosphere position to form an enrichment zone (EZ) of U and Th first, and then migrate up further to the crusts through magmatism and metamorphism. We emphasize that the formation of an EZ of U, Th and other heat-producing elements is a prerequisite for the formation of a plate tectonic system. The heat-producing elements, currently mainly U and Th, in the EZ are also the energy sources that drive the formation and evolution of the crust of Earth and create special granitic continental crusts. In other terrestrial planets, including Mercury, Venus, and Mars, an EZ can not be formed ...

  5. Engaging Earth- and Environmental-Science Undergraduates through Weather Discussions and an eLearning Weather Forecasting Contest

    Science.gov (United States)

    Schultz, David M.; Anderson, Stuart; Seo-Zindy, Ryo

    2013-01-01

    For students who major in meteorology, engaging in weather forecasting can motivate learning, develop critical-thinking skills, improve their written communication, and yield better forecasts. Whether such advances apply to students who are not meteorology majors has been less demonstrated. To test this idea, a weather discussion and an eLearning…

  6. Engaging Earth- and Environmental-Science Undergraduates through Weather Discussions and an eLearning Weather Forecasting Contest

    Science.gov (United States)

    Schultz, David M.; Anderson, Stuart; Seo-Zindy, Ryo

    2013-01-01

    For students who major in meteorology, engaging in weather forecasting can motivate learning, develop critical-thinking skills, improve their written communication, and yield better forecasts. Whether such advances apply to students who are not meteorology majors has been less demonstrated. To test this idea, a weather discussion and an eLearning…

  7. Velocity characteristics of the earth crust in the Issyk-Kul'sk depresion as recorded from explosion and earthquake data

    Energy Technology Data Exchange (ETDEWEB)

    Moldobekov, K.; Sadybakasov, I.

    1979-01-01

    Results are given for studies of wave field change in the aforementioned region on the basis of earthquakes and explosions. Station anomalies are studied as well on the basis of experimental and theoretical studies. A velocity model of earth crust region is constructed from experimental hodographs, whose probability was found to be +-0.5 divided by +-1.0 second between the observed and computed gap time of total seismic waves. 5 references, 4 figures.

  8. Deep observation and sampling of the earth's continental crust (DOSECC): Continental scientific drilling workshop

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Research summaries are presented of ongoing or proposed deep drilling programs to explore hydrothermal systems, buried astroblemes, continental crust, magma systems, mountain belt tectonics, subduction zones, and volcanoes. Separate abstracts have been prepared for individual papers. (ACR)

  9. Sensitivity of Earth Wheat Markets to Space Weather: Comparative Analysis based on data from Medieval European Markets

    Science.gov (United States)

    Pustil'Nik, Lev

    We consider a problem of the possible influence of unfavorable states of the space weather on agriculture markets through the chain of connections: "space weather"-"earth weather"- "agriculture crops"-"price reaction". We show that new manifestations of "space weather"- "earth weather" relations discovered in the recent time allow revising a wide range of the expected solar-terrestrial connections. In the previous works we proposed possible mechanisms of wheat market reaction on the specific unfavorable states of space weather in the form of price bursts and price asymmetry. We point out that implementation of considered "price reaction scenarios" is possible only for the case of simultaneous realization of several necessary conditions: high sensitivity of local earth weather in the selected region to space weather; the state of "high risk agriculture" in the selected agriculture zone; high sensitivity of agricultural market to a possible deficit of yield. Results of our previous works (I, II), including application of this approach to the Medieval England wheat market (1250-1700) and to the modern USA durum market (1910-1992), showed that connection between wheat price bursts and space weather state in these cases was absolutely real. The aim of the present work is to answer the question why wheat markets in one selected region may be sensitive to a space weather factor, while in other regions wheat markets demonstrate absolutely indifferent reaction on the space weather. For this aim, we consider dependence of sensitivity of wheat markets to space weather as a function of their location in different climatic zones of Europe. We analyze a database of 95 European wheat markets from 14 countries for the 600-year period (1260-1912). We show that the observed sensitivity of wheat markets to space weather effects is controlled, first of all, by a type of predominant climate in different zones of agricultural production. Wheat markets in the Northern and, partly, in

  10. Caught in the Solar Wind: A Study of Space Weather and its Influence on Earth

    Science.gov (United States)

    Hill, R.; Chuckran, A.; Erickson, P. J.

    2007-12-01

    Space weather is a phenomenon that is becoming more familiar to the general public. As people are increasingly reliant on 21st century technology, the potential for disruption to their daily lives also rises. As the sun approaches its next solar maximum in 2011 or 2012, the peak of Cycle 24 is expected to be the highest of the satellite age, perhaps surpassing that of Cycle 19 in 1957-58. In this teaching unit, we have attempted to create a series of lessons that sheds light on the concept of space weather and the sun's influences on earth's magnetic field and upper atmosphere. Within this unit, we have provided ample opportunities for students to access and interpret real scientific data from a variety of sources. The main location is the web site www.spaceweather.com , which has near real time data from satellites such as SOHO, STEREO, ACE and POES. This data is easily viewed and explained within the site, and with appropriate instruction, students can regularly gather data, make predictions, and draw conclusions based on the current behavior of the sun. Examples include sunspot number and development, speed and density of solar wind, orientation and strength of the interplanetary magnetic field, location of coronal holes, planetary K index and X-ray solar flares. Depending on the level of the students, some or all of this data can be compiled over a period of time to better understand the behavior of the sun as well as its influence on Earth. The goal of this unit is to provide a vehicle for students to understand how data is used by scientists. Once they have the base knowledge, students may be able to construct their own questions and follow through with research. An inquiry-based approach is incorporated whenever possible. With the onset of a potentially active solar cycle in the near future, teachers have the opportunity to make a dramatic connection between the natural world and their daily lives. Solar storms can cause disruption to telephone communication

  11. Earth surface erosion and weathering from the 10Be (meteoric)/9Be ratio

    Science.gov (United States)

    von Blanckenburg, F.; Bouchez, J.; Wittmann, H.; Dannhaus, N.

    2012-12-01

    A perfect clock of the stability of the Earth surface is one that combines a first isotope the flux of which depends on the release rate during erosion, and a second isotope produced at constant rate. The ratio of the meteoric cosmogenic nuclide 10Be to stable 9Be is such a system. We provide a quantitative framework for its use. In a weathering zone some of the 9Be, present typically in 2.5ppm concentrations in silicate minerals, is released and partitioned between a reactive phase (adsorbed to clay and hydroxide surfaces, given the high partition coefficients at intermediate pH), and into the dissolved phase. The combined mass flux of both phases is defined by the soil formation rate and a mineral dissolution rate - and is hence proportional to the chemical weathering rate and the denudation rate. At the same time, the surface of the weathering zone is continuously exposed to fallout of meteoric 10Be. This 10Be percolates into the weathering zone where it mixes with dissolved 9Be. Both isotopes may exchange with the adsorbed Be, given that equilibration rate of Be is fast relative to soil residence times. Hence a 10Be/9Be(reactive) ratio results in soils from which the total denudation rate can be calculated. A prerequisite is that the flux of meteoric 10Be is known from field experiments or from global production models [1], that the 9Be concentration in bedrock (mostly 2.5ppm) is known [2], and that the reactive Be can be chemically extracted from soil or sediment [3]. In rivers, when reactive Be and dissolved Be equilibrate, a catchment-wide denudation rate can be determined from both sediment and a sample of filtered river water, where the sediment 10Be/9Be ratio is independent of grain size. We have tested this approach in sediment-bound Be and dissolved Be in water of the Amazon and Orinoco basin. The reactive Be was extracted from sediment by combined hydroxylamine and HCl leaches [2]. In the Amazon trunk stream, the Orinoco, Apure, and La Tigra river 10Be

  12. Mission to the Sun-Earth L5 Lagrangian Point: An Optimal Platform for Space Weather Research

    Science.gov (United States)

    Vourlidas, Angelos

    2015-04-01

    The Sun-Earth Lagrangian L5 point is a uniquely advantageous location for space weather research and monitoring. It covers the "birth-to-impact" travel of solar transients; it enables imaging of solar activity at least 3 days prior to a terrestrial viewpoint and measures the solar wind conditions 4-5 days ahead of Earth impact. These observations, especially behind east limb magnetograms, will be a boon for background solar wind models, which are essential for coronal mass ejection (CME) and shock propagation forecasting. From an operational perspective, the L5 orbit is the space weather equivalent to the geosynchronous orbit for weather satellites. Optimal for both research and monitoring, an L5 mission is ideal for developing a Research-to-Operations capability in Heliophysics.

  13. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population

    Science.gov (United States)

    Ozheredov, V. A.; Chibisov, S. M.; Blagonravov, M. L.; Khodorovich, N. A.; Demurov, E. A.; Goryachev, V. A.; Kharlitskaya, E. V.; Eremina, I. S.; Meladze, Z. A.

    2017-05-01

    There are many references in the literature related to connection between the space weather and the state of human organism. The search of external factors influence on humans is a multi-factor problem and it is well known that humans have a meteo-sensitivity. A direct problem of finding the earth weather conditions, under which the space weather manifests itself most strongly, is discussed in the present work for the first time in the helio-biology. From a formal point of view, this problem requires identification of subset (magnetobiotropic region) in three-dimensional earth's weather parameters such as pressure, temperature, and humidity, corresponding to the days when the human body is the most sensitive to changes in the geomagnetic field variations and when it reacts by statistically significant increase (or decrease) of a particular physiological parameter. This formulation defines the optimization of the problem, and the solution of the latter is not possible without the involvement of powerful metaheuristic methods of searching. Using the algorithm of differential evolution, we prove the existence of magnetobiotropic regions in the earth's weather parameters, which exhibit magneto-sensitivity of systolic, diastolic blood pressure, and heart rate of healthy young subjects for three weather areas (combinations of atmospheric temperature, pressure, and humidity). The maximum value of the correlation confidence for the measurements attributable to the days of the weather conditions that fall into each of three magnetobiotropic areas is an order of 0.006, that is almost 10 times less than the confidence, equal to 0.05, accepted in many helio-biological researches.

  14. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population

    Science.gov (United States)

    Ozheredov, V. A.; Chibisov, S. M.; Blagonravov, M. L.; Khodorovich, N. A.; Demurov, E. A.; Goryachev, V. A.; Kharlitskaya, E. V.; Eremina, I. S.; Meladze, Z. A.

    2016-11-01

    There are many references in the literature related to connection between the space weather and the state of human organism. The search of external factors influence on humans is a multi-factor problem and it is well known that humans have a meteo-sensitivity. A direct problem of finding the earth weather conditions, under which the space weather manifests itself most strongly, is discussed in the present work for the first time in the helio-biology. From a formal point of view, this problem requires identification of subset (magnetobiotropic region) in three-dimensional earth's weather parameters such as pressure, temperature, and humidity, corresponding to the days when the human body is the most sensitive to changes in the geomagnetic field variations and when it reacts by statistically significant increase (or decrease) of a particular physiological parameter. This formulation defines the optimization of the problem, and the solution of the latter is not possible without the involvement of powerful metaheuristic methods of searching. Using the algorithm of differential evolution, we prove the existence of magnetobiotropic regions in the earth's weather parameters, which exhibit magneto-sensitivity of systolic, diastolic blood pressure, and heart rate of healthy young subjects for three weather areas (combinations of atmospheric temperature, pressure, and humidity). The maximum value of the correlation confidence for the measurements attributable to the days of the weather conditions that fall into each of three magnetobiotropic areas is an order of 0.006, that is almost 10 times less than the confidence, equal to 0.05, accepted in many helio-biological researches.

  15. Polymer-in-a-Silica-Crust Membranes: Macroporous Materials with Tunable Surface Functionality

    NARCIS (Netherlands)

    Urmenyi, Ana M.; Philipse, Albert P.; Lammertink, Rob G.H.; Wessling, Matthias

    2006-01-01

    We report on alkaline hydrolysis of tetraethoxysilane (Stöber synthesis) inside a macroporous polymer matrix resulting in a homogeneous coverage of silica onto the polymer surface. The encapsulation of the polymer struts by a continuous silica crust allows further functionalization with hydrophilic

  16. Advances in Rare Earth Application to Semiconductor Materials and Devices

    Institute of Scientific and Technical Information of China (English)

    屠海令

    2004-01-01

    The development of rare earths (RE) applications to semiconductor materials and devices is reviewed. The recent advances in RE doped silicon light emitting diodes (LED) and display materials are described. The various technologies of incorporating RE into semiconductor materials and devices are presented. The RE high dielectric materials, RE silicides and the phase transition of RE materials are also discussed. Finally, the paper describes the prospects of the RE application to semiconductor industry.

  17. Science Results from Colorado Student Space Weather Experiment (CSSWE): Energetic Particle Distribution in Near Earth Environment

    Science.gov (United States)

    Li, Xinlin

    2013-04-01

    The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the National Science Foundation, launched into a low-Earth, polar orbit on 13 September 2012 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. The science objectives of CSSWE are to investigate the relationship of the location, magnitude, and frequency of solar flares to the timing, duration, and energy spectrum of solar energetic particles reaching Earth, and to determine the precipitation loss and the evolution of the energy spectrum of trapped radiation belt electrons. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a miniaturization of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics for NASA/Van Allen Probes mission, which consists of two identical spacecraft, launched 30 August 2012, that traverse the heart of the radiation belts in a low inclination orbit. CSSWE's REPTile is designed to measure the directional differential flux of protons ranging from 10 to 40 MeV and electrons from 0.5 to >3.3 MeV. The commissioning phase was completed and REPTile was activated on 4 October 2012. The data are very clean, far exceeding expectations! A number of engineering challenges had to be overcome to achieve such clean measurements under the mass and power limits of a CubeSat. The CSSWE is also an ideal class project, providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project.

  18. Field Guide to Rock Weathering. Earth Science Curriculum Project Pamphlet Series PS-1.

    Science.gov (United States)

    Boyer, Robert E.

    Highlighted are the effects of weathering through field investigations of the environment, both natural rocks, and the urban environment's pavements, buildings, and cemeteries. Both physical weathering and chemical weathering are discussed. Questions are presented for post-field trip discussion. References and a glossary are provided. (Author/RE)

  19. Seafloor Weathering As a Long-Term Climate Regulation Mechanism

    Science.gov (United States)

    Farahat, N. X.; Abbot, D. S.; Archer, D. E.

    2014-12-01

    The global carbon cycle determines the distribution of carbon between the atmosphere, ocean, and solid earth. Carbon from the mantle enters the Earth's surficial environment as CO2 by volcanic outgassing, and carbon is buried in the oceanic crust as carbonate rocks during silicate rock weathering. The subduction of carbonate-rich oceanic plates returns carbon to the mantle, closing the cycle. Subtle adjustments in continental silicate weathering, widely held to consume atmospheric CO2 at a rate controlled by climate, are believed to have maintained habitable conditions throughout Earth's history. This long term climate regulation mechanism is known as a climate-weathering feedback. Seafloor weathering, low-temperature basalt alteration and carbonate precipitation in the permeable upper oceanic crust, has been proposed as a climate-weathering feedback as well, but the link to climate is presently poorly understood. Such a climate regulation mechanism would be particularly important on waterworld planets where continental silicate weathering cannot regulate climate. It has so far not been possible to determine whether changes in seafloor weathering could contribute to climate regulation on Earth or in a waterworld scenario because the necessary modeling framework has not yet been developed. However, advances in porous media flow modeling and reactive transport modeling, as well as the availability of inexpensive computational power, allow the seafloor weathering problem to be looked at in greater detail. We have developed a spatially resolved two-dimmensional (2D) numerical model of seafloor weathering in the permeable upper oceanic crust. This model simulates 2D off-axis hydrothermal flow coupled to geochemical alteration of seafloor basalt by modeling reactive transport of chemical species in seawater-derived hydrothermal fluids. The focus of this research is to use the model to determine the effect of geological and climatic factors on seafloor weathering, which

  20. CHEMICAL BEHAVIOR OF CERIUM ELEMENT IN ROCK WEATHERING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A study on existing valence state and chemical behavior of cerium element in two categories of rock weathering system in China has been carried out. In the granitoid weathering crust of Southern China,cerium as tetravalent hydroxide absorbed on clay minerals occupies 62.58 % of total amount of cerium and the cerium partitioning in the phase is 69.58 %. The depositing cerium stops its mobility downward, resulting in rare earth partitioning variation, the light rare earth partitioning is high at upper layer of weathering crust, the heavy rare earth partitioning is high at bottom layer of weathering crust, and the extracted product exists cerium lose effect. For Mn2+ as reducing agent existing in black weathering earth of Maoniuping rare earth ore,cerium is trivalent and absorbed on Mn-Fe oxide as colloid phase sediment. Colloid sediment phase can be divided into Mn-Fe combined phase and hydroxide sediment phase with cerium contents of 19.77% and 48.30%, and their cerium partitionings are 80.72% and 37.38% respectively. The Mn-Fe combined phase can selectively absorb cerium.

  1. Recent structures and tectonic regimes of the stress-strain state of the Earth's crust in the northeastern sector of the Russian Arctic region

    Science.gov (United States)

    Imaeva, L. P.; Imaev, V. S.; Mel'nikova, V. I.; Koz'min, B. M.

    2016-11-01

    A comprehensive investigation aimed at determining seismotectonic types of destruction and the stress-strain state of the Earth's crust in the main seismogenerating structures of the Arctic-Asian seismic belt is conducted for the territory of the northeastern sector of the Russian Arctic region. Based on the degree of activity of geodynamical processes, the regional principles for ranking neotectonic structures are elaborated, and neotectonic zoning is carried out based on the substantiated differentiation of the corresponding classes. Within the limits of the Laptev Sea, Kharaulakh, and Lena-Anabar segments, we analyzed I the structural-tectonic position of the most recent structures, II the deep structure parameters, III the parameters of the active fault system, and IV the parameters of the tectonic stress field, as revealed from tectonophysical analysis of Late Cenozoic fault and fold deformations. Based on the seismological data, the mean seismotectonic deformation tensors are calculated to determine, in combination with geological and geophysical data, the orientations of the principal stress axes and to reveal the structural-tectonic regularity for tectonic regimes of the stress-strain state of the Earth's crust in the Arctic sector of the boundary between the Eurasian and North American lithospheric plates.

  2. Spectroscopic properties of rare earths in optical materials

    CERN Document Server

    Parisi, Jürgen; Osgood, R; Warlimont, Hans; Liu, Guokui; Jacquier, Bernard

    2005-01-01

    Aimed at researchers and graduate students, this book provides up-to-date information for understanding electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties include electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions on materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.

  3. Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Hausrath, E.M.; Navarre-Sitchler, A.K.; Sak, P.B.; Steefel, C.; Brantley, S.L.

    2008-03-15

    Where Martian rocks have been exposed to liquid water, chemistry versus depth profiles could elucidate both Martian climate history and potential for life. The persistence of primary minerals in weathered profiles constrains the exposure time to liquid water: on Earth, mineral persistence times range from {approx}10 ka (olivine) to {approx}250 ka (glass) to {approx}1Ma (pyroxene) to {approx}5Ma (plagioclase). Such persistence times suggest mineral persistence minima on Mars. However, Martian solutions may have been more acidic than on Earth. Relative mineral weathering rates observed for basalt in Svalbard (Norway) and Costa Rica demonstrate that laboratory pH trends can be used to estimate exposure to liquid water both qualitatively (mineral absence or presence) and quantitatively (using reactive transport models). Qualitatively, if the Martian solution pH > {approx}2, glass should persist longer than olivine; therefore, persistence of glass may be a pH-indicator. With evidence for the pH of weathering, the reactive transport code CrunchFlow can quantitatively calculate the minimum duration of exposure to liquid water consistent with a chemical profile. For the profile measured on the surface of Humphrey in Gusev Crater, the minimum exposure time is 22 ka. If correct, this estimate is consistent with short-term, episodic alteration accompanied by ongoing surface erosion. More of these depth profiles should be measured to illuminate the weathering history of Mars.

  4. Long-term changes in space weather effects on the Earth's ionosphere

    Science.gov (United States)

    Tsagouri, Ioanna; Galkin, Ivan; Asikainen, Timo

    2017-01-01

    Certain limitations that have been identified in existing ionospheric prediction capabilities indicate that the deeper understanding and the accurate formulation of the ionospheric response to external forcing remain always high priority tasks for the research community. In this respect, this paper attempts an investigation of the long-term behavior of the ionospheric disturbances from the solar minimum between the solar cycles 23 and 24 up to the solar maximum of solar cycle 24. The analysis is based on observations of the foF2 critical frequency and the hmF2 peak electron density height obtained in the European region, records of the Dst and AE indices, as well as measurements of energetic particle fluxes from NOAA/POES satellites fleet. The discussion of the ionospheric behavior in a wide range of geophysical conditions within the same solar cycle facilitates the determination of general trends in the ionospheric response to different faces of space weather driving. According to the evidence, the disturbances in the peak electron density reflect mainly the impact of geoeffective solar wind structures on the Earth's ionosphere. The intensity of the disturbances may be significant (greater than 20% with respect to normal conditions) in all cases, but the ionospheric response tends to have different characteristics between solar minimum and solar maximum conditions. In particular, in contrast to the situation in solar maximum, in solar minimum years the solar wind impact on the Earth's ionosphere is mainly built on the occurrence of ionization increases, which appear more frequent and intense than ionization depletions. The ionization enhancements are apparent in all local time sectors, but they peak in the afternoon hours, while a significant part of them seems not related with an F2 layer uplifting. Taking into account the main interplanetary drivers of the disturbances in each case, i.e. high speed streams (HSSs) and corotating interaction regions (CIRs) in

  5. Application of Rare Earths in Thermal Barrier Coating Materials

    Institute of Scientific and Technical Information of China (English)

    Xueqiang CAO

    2007-01-01

    Rare earths are a series of minerals with special properties that make them essential for applications including miniaturized electronics, computer hard disks, display panels, missile guidance, pollution controlling catalysts,H2-storage and other advanced materials. The use of thermal barrier coatings (TBCs) has the potential to extend the working temperature and the life of a gas turbine by providing a layer of thermal insulation between the metallic substrate and the hot gas. Yttria (Y2O3), as one of the most important rare earth oxides, has already been used in the typical TBC material YSZ (yttria stabilized zirconia). In the development of the TBC materials, especially in the latest ten years, rare earths have been found to be more and more important. All the new candidates of TBC materials contain a large quantity of rare earths, such as R2Zr2O7 (R=La, Ce, Nd,Gd), CeO2-YSZ, RMeAI11O19 (R=La, Nd; Me=Mg, Ca, Sr) and LaPO4. The concept of double-ceramiclayer coatings based on the rare earth materials and YSZ is effective for the improvement of the thermal shock life of TBCs at high temperature.

  6. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics.

    Science.gov (United States)

    Tang, Ming; Chen, Kang; Rudnick, Roberta L

    2016-01-22

    The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago. Copyright © 2016, American Association for the Advancement of Science.

  7. Early formation of evolved asteroidal crust.

    Science.gov (United States)

    Day, James M D; Ash, Richard D; Liu, Yang; Bellucci, Jeremy J; Rumble, Douglas; McDonough, William F; Walker, Richard J; Taylor, Lawrence A

    2009-01-08

    Mechanisms for the formation of crust on planetary bodies remain poorly understood. It is generally accepted that Earth's andesitic continental crust is the product of plate tectonics, whereas the Moon acquired its feldspar-rich crust by way of plagioclase flotation in a magma ocean. Basaltic meteorites provide evidence that, like the terrestrial planets, some asteroids generated crust and underwent large-scale differentiation processes. Until now, however, no evolved felsic asteroidal crust has been sampled or observed. Here we report age and compositional data for the newly discovered, paired and differentiated meteorites Graves Nunatak (GRA) 06128 and GRA 06129. These meteorites are feldspar-rich, with andesite bulk compositions. Their age of 4.52 +/- 0.06 Gyr demonstrates formation early in Solar System history. The isotopic and elemental compositions, degree of metamorphic re-equilibration and sulphide-rich nature of the meteorites are most consistent with an origin as partial melts from a volatile-rich, oxidized asteroid. GRA 06128 and 06129 are the result of a newly recognized style of evolved crust formation, bearing witness to incomplete differentiation of their parent asteroid and to previously unrecognized diversity of early-formed materials in the Solar System.

  8. LITHO1.0 - An Updated Crust and Lithospheric Model of the Earth Developed Using Multiple Data Constraints

    Science.gov (United States)

    Pasyanos, M. E.; Masters, G.; Laske, G.; Ma, Z.

    2012-12-01

    Models such as CRUST2.0 (Bassin et al., 2000) have proven very useful to many seismic studies on regional, continental, and global scales. We have developed an updated, higher resolution model called LITHO1.0 that extends deeper to include the lithospheric lid, and includes mantle anisotropy, potentially making it more useful for a wider variety of applications. The model is evolving away from the crustal types strongly used in CRUST5.1 (Mooney et al., 1998) to a more data-driven model. This is accomplished by performing a targeted grid search with multiple data inputs. We seek to find the most plausible model which is able to fit multiple constraints, including updated sediment and crustal thickness models, upper mantle velocities derived from travel times, and surface wave dispersion. The latter comes from a new, very large, global surface wave dataset built using a new, efficient measurement technique that employs cluster analysis (Ma et al., 2012), and includes the group and phase velocities of both Love and Rayleigh waves. We will discuss datasets and methodology, highlight significant features of the model, and provide detailed information on the availability of the model in various formats.

  9. Weathering rinds on clasts: Examples from Earth and Mars as short and long term recorders of paleoenvironment

    Science.gov (United States)

    Mahaney, W. C.; Fairén, Alberto G.; Dohm, James M.; Krinsley, D. H.

    2012-12-01

    Weathering rinds on clasts of different lithologic species are an underappreciated inventory of paleoenvironmental information and, as recorders of long term exposure to the subaerial atmosphere and in some cases to burial and influx of groundwater followed by exhumation, they provide logged information over varying planetary time spans. Whereas weathered coatings of nanometer thickness have been explored by numerous workers, rinds in cold environments have not received much attention except as relative-age indicators. Rinds in terrestrial materials in certain circumstances may reveal weathering trends over time, snapshots often extending back millions of years and containing weathering zones not unlike horizons in paleosols. Wetting ‘fronts’ in rinds on coarse clastic debris (i.e. boulder, cobble, and pebble grade size material) are similar to wetting ‘depths’ in similar chemically-energized paleosols resident in moraines or mass wasted debris. Even considering erosion along terrestrial clast surfaces, new data reveal variations in primary mineral alteration, development of secondary mineral complexes, embedded pollen, fossil microbes, and various internal distributions of Fe oxides. Similar long-range recorders of paleoenvironment deduced from meteorites analyzed by the Opportunity rover on Meridiani Planum provide evidence of weathering over a ∼Gy time frame in the humid Noachian paleoenvironment of Early Mars followed by subsequent burial and later exhumation. Despite lithological variations between different sets of clasts-terrestrial and Martian-the retention of rinds as paleoweathering recorders over long and short time frames illustrates their value in paleoenvironmental reconstruction.

  10. The Spanish Space Weather Service SeNMEs. A Case Study on the Sun-Earth Chain

    Science.gov (United States)

    Palacios, J.; Cid, C.; Guerrero, A.; Saiz, E.; Cerrato, Y.; Rodríguez-Bouza, M.; Rodríguez-Bilbao, I.; Herraiz, M.; Rodríguez-Caderot, G.

    2016-04-01

    The Spanish Space Weather Service SeNMEs, www.senmes.es, is a portal created by the SRG-SW of the Universidad de Alcalá, Spain, to meet societal needs of near real-time space weather services. This webpage-portal is divided in different sections to fulfill users needs about space weather effects: radio blackouts, solar energetic particle events, geomagnetic storms and presence of geomagnetically induced currents. In less than one year of activity, this service has released a daily report concerning the solar current status and interplanetary medium, informing about the chances of a solar perturbation to hit the Earth's environment. There are also two different forecasting tools for geomagnetic storms, and a daily ionospheric map. These tools allow us to nowcast a variety of solar eruptive events and forecast geomagnetic storms and their recovery, including a new local geomagnetic index, LDiñ, along with some specific new scaling. In this paper we also include a case study analysed by SeNMEs. Using different high resolution and cadence data from space-borne solar telescopes SDO, SOHO and GOES, along with ionospheric and geomagnetic data, we describe the Sun-Earth feature chain for the event.

  11. Influences of air pollutants on polymeric materials. Natural weathering of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, T.F.R. [Fraunhofer-Institut fuer Chemische Technologie, Pfinztal-Berghausen (Germany)

    1995-12-31

    Polymeric materials are affected during their entire service life by a number of environmental influences. These originate from both man made and natural sources. Such environmental influences include solar radiation, temperature, humidity and air pollutant effects. They all act together, some independently and some synergistically, to influence material properties, as well as functionality, service life, quality and reliability of the poly materials and systems. The main degradation process is chain scission with loss of molecular weight and oxidation, followed by fading of colours and loss of gloss and mechanical strength. Due to the large number of different types of polymers there are many types of degradation processes and it is difficult to generalise about the effects of the environment on organic materials. Materials, as opposed to organisms, have no self-repair mechanism which allows them to tolerate a certain level of stress. In principle, therefore, it is not possible to define critical levels for the effects of pollutants on materials below which no deterioration occurs. Material deterioration by weathering is normally a very slow process lasting some or more years. Therefore attempts have been made to produce deterioration in short-term experiments by using high stress levels. The limits for the high stress levels are given by the comparability of the obtained damage from artificially accelerated weathering with these from real natural weathering. To investigate the damage caused by air pollutants on polymeric materials, samples were natural weathered with some light exposed and some dark stored samples in different climatic and polluted areas of Germany. The weathering stations are closed to the continuously measuring stations for air quality

  12. Space Weather Monitors -- Preparing to Distribute Scientific Devices and Classroom Materials Worldwide for the IHY 2007

    Science.gov (United States)

    Scherrer, D. K.; Burress, B.

    2006-05-01

    Stanford's Solar Center, in conjunction with the Space, Telecommunications and Radioscience Laboratory and local educators, have developed inexpensive Space Weather Monitors that students around the world can use to track solar-induced changes to the Earth's ionosphere. Through the United Nations Basic Space Science Initiative (UNBSSI) and the IHY Education and Public Outreach Program, our Monitors have been designated for deployment to 191 countries for the International Heliophysical Year, 2007. In partnership with Chabot Space and Science Center, we are designing and developing classroom and educator support materials to accompany distribution of the monitors worldwide. Earth's ionosphere reacts strongly to the intense x-ray and ultraviolet radiation released by the Sun during solar events and by lightning during thunderstorms. Students anywhere in the world can directly monitor and track these sudden ionospheric disturbances (SIDs) by using a VLF radio receiver to monitor the signal strength from distant VLF transmitters and noting unusual changes as the waves bounce off the ionosphere. High school students "buy in" to the project by building their own antenna, a simple structure costing little and taking a couple hours to assemble. Data collection and analysis are handled by a local PC. Stanford is providing a centralized data repository where students and researchers can exchange and discuss data. Chabot Space & Science Center is an innovative teaching and learning center focusing on astronomy and the space sciences. Formed as a Joint Powers Agency with the City of Oakland (California), the Oakland Unified School District, the East Bay Regional Park District, and in collaboration with the Eastbay Astronomical Society, Chabot addresses the critical issue of broad access to the specialized information and facilities needed to improve K-12 science education and public science literacy. Up to 2,000 K-12 teachers annually take part in Chabot's professional

  13. Primary Results of New Rare Earth Materials for Hongti Grape

    Institute of Scientific and Technical Information of China (English)

    He Qiong; Gu Jiangyuan; Wang Jiachen

    2004-01-01

    New rare earth (RE) materials including RE phosphate as base fertilizer, bioactive RE micro-fertilizer and RE entire plant nutrition agent as topdressing fertilizer are treated on Hongti grope.The result showes that the plant leaves become thicker, the color is dark green, the plant disease index is lower, and the sugar content significantly increases.

  14. Overview of naturally occurring Earth materials and human health concerns

    Science.gov (United States)

    Ernst, W. G.

    2012-10-01

    The biosphere and the Earth's critical zone have maintained a dynamic equilibrium for more than 3.5 billion years. Except for solar energy, almost all terrestrial substances necessary for life have been derived from near-surface portions of the land, hydrosphere, and atmosphere. If aggregate biological activities are less than the rate of nutrient supply and/or resource renewal, sustained population growth is possible. Where the replenishment rate of a life-sustaining Earth material is finite, usage may reach a condition of dynamic equilibrium in which biological consumption equals but on average cannot exceed the overall supply. Although large, most natural resources are present in finite abundances; for such commodities, excessive present-day human utilization reduces future availability, and thus the ultimate planetary carrying capacity for civilization. Intensive use of Earth materials has enhanced the quality of life, especially in the developed nations. Still, natural background levels, and Earth processes such as volcanic eruptions, as well as human activities involving agriculture, construction, and the extraction, refining, and transformation of mineral resources have led to harmful side effects involving environmental degradation and public health hazards. Among naturally and anthropogenically induced risks are bioaccessible airborne dusts and gases, soluble pollutants in agricultural, industrial, and residential waters, and toxic chemical species in foods and manufactured products. At appropriate levels of ingestion, many Earth materials are necessary for existence, but underdoses and overdoses have mild to serious consequences for human health and longevity. This overview briefly sketches several natural resource health hazards. Included are volcanic ash + aerosols + gases, mineral dusts, non-volcanic aerosols + nanoparticles, asbestos + fibrous zeolites, arsenic, fluorine, iodine, uranium + thorium + radium + radon + polonium, selenium, mercury, copper

  15. Capture of Asteroids and Transport of Asteroid Materials to Earth

    Science.gov (United States)

    Chiu, Hong-Yee; no Team

    2014-01-01

    Recently there has been much discussion on the capture of asteroids or mining the asteroids. While the technology might be years away, in this paper we will discuss an energy efficient method to transport either a small asteroid or materials gathered from asteroids to the Earth. In particular, I will concentrate on a large and nearby asteroid, 8 Flora in the Flora Family. Generally, asteroids are located between 2 to 3 AU (astronomical unit) from the Earth, and in transporting materials from asteroids to the Earth, an energy equivalent of the gravitational potential energy difference between the Earth and the asteroids to the Sun. This amount of potential energy is a sizable fraction of the orbital kinetic energy of the Earth around the Sun. This amount of energy is considerable. In this paper I propose to use the planet Mars as a medium to remove much of the gravitational energy difference. In the case of the asteroid 8 Flora, it is only necessary to decelerate the asteroid mate- rials by a small decrement, of the order of 3 km/sec. This decrement could even be achieved (pending on the availability of technology) by mechanical devices such as catapults on 8 Flora. It is also proposed to separate a pair of contact asteroid binaries by using impulse propulsion, and to propel one component of the separated asteroids to pass by Mars to be decelerated to reach the Earth orbit and captured by the Earth or the Moon. The plausibility of this ambitious project will be discussed. The author is NASA-GSFC Astrophysicist, Retired.

  16. A Space weather information service based upon remote and in-situ measurements of coronal mass ejections heading for Earth

    Directory of Open Access Journals (Sweden)

    Ritter Birgit

    2015-01-01

    Full Text Available The Earth’s magnetosphere is formed as a consequence of interaction between the planet’s magnetic field and the solar wind, a continuous plasma stream from the Sun. A number of different solar wind phenomena have been studied over the past 40 years with the intention of understanding and forecasting solar behavior. One of these phenomena in particular, Earth-bound interplanetary coronal mass ejections (CMEs, can significantly disturb the Earth’s magnetosphere for a short time and cause geomagnetic storms. This publication presents a mission concept consisting of six spacecraft that are equally spaced in a heliocentric orbit at 0.72 AU. These spacecraft will monitor the plasma properties, the magnetic field’s orientation and magnitude, and the 3D-propagation trajectory of CMEs heading for Earth. The primary objective of this mission is to increase space weather forecasting time by means of a near real-time information service, that is based upon in-situ and remote measurements of the aforementioned CME properties. The obtained data can additionally be used for updating scientific models. This update is the mission’s secondary objective. In-situ measurements are performed using a Solar Wind Analyzer instrumentation package and fluxgate magnetometers, while for remote measurements coronagraphs are employed. The proposed instruments originate from other space missions with the intention to reduce mission costs and to streamline the mission design process. Communication with the six identical spacecraft is realized via a deep space network consisting of six ground stations. They provide an information service that is in uninterrupted contact with the spacecraft, allowing for continuous space weather monitoring. A dedicated data processing center will handle all the data, and then forward the processed data to the SSA Space Weather Coordination Center which will, in turn, inform the general public through a space weather forecast. The data

  17. The Medical Geochemistry of Dusts, Soils, and Other Earth Materials

    Science.gov (United States)

    Plumlee, G. S.; Ziegler, T. L.

    2003-12-01

    "Town clenched in suffocating grip of asbestos"USA Today, article on Libby,Montana, February, 2000"Researchers find volcanoes are bad for your health… long after they finish erupting"University of WarwickPress Release, 1999"Toxic soils plague city - arsenic, lead in 5 neighborhoods could imperil 17,000 residents"Denver Post, 2002"Ill winds - dust storms ferry toxic agents between countries and even continents"Science News, 2002A quick scan of newspapers, television, science magazines, or the internet on any given day has a fairly high likelihood of encountering a story (usually accompanied by a creative headline such as those above) regarding human health concerns linked to dusts, soils, or other earth materials. Many such concerns have been recognized and studied for decades, but new concerns arise regularly.Earth scientists have played significant roles in helping the medical community understand some important links between earth materials and human health, such as the role of asbestos mineralogy in disease (Skinner et al., 1988; Ross, 1999; Holland and Smith, 2001), and the role of dusts generated by the 1994 Northridge, California, earthquake in an outbreak of Valley Fever ( Jibson et al., 1998; Schneider et al., 1997).Earth science activities tied to health issues are growing (Skinner and Berger, 2003), and are commonly classified under the emerging discipline of medical geology (Finkelman et al., 2001; Selinus and Frank, 2000; Selinus, in press).Medical geochemistry (also referred to as environmental geochemistry and health: Smith and Huyck (1999), Appleton et al. (1996)) can be considered as a diverse subdiscipline of medical geology that deals with human and animal health in the context of the Earth's geochemical cycle ( Figure 1). Many medical geochemistry studies have focused on how chemical elements in rocks, soils, and sediments are transmitted via water or vegetation into the food chain, and how regional geochemical variations can result in disease

  18. Cometary material and the origins of life on earth

    Science.gov (United States)

    Lazcano-Araujo, A.; Oro, J.

    1981-01-01

    The role of cometary material in determining the environmental conditions of the prebiotic earth is reviewed. The organic synthesis pathways that occur in dense interstellar clouds and in comets are examined, and complex organic molecules believed to exist (amino acids, carboxylic acids, purines, pyrimidines and hydrocarbons) based on spectral detections of degradation products are noted. Estimates of the amount of terrestrial volatiles of cometary origin that may have been acquired in collisions during the early history of the earth are considered, and shown to dominate any estimated contributions to terrestrial carbon from other extraterrestrial sources. Current evidence that the origin and early evolution of life began about four billion years ago is discussed in relation to the cometary bombardment processes occurring at the time and the resultant shock waves, reducing atmospheres and reactive chemical species. It is thus concluded that comets contributed significantly to the processes of chemical evolution necessary for the emergence of life on earth.

  19. Vestas Pinaria Region: Original Basaltic Achondrite Material Derived from Mixing Upper and Lower Crust

    Science.gov (United States)

    Mcfadden, L. A.; Combe, Jean-Philippe; Ammannito, Eleonora; Frigeri, Alessandro; Stephan, Katrin; Longobardo, Andrea; Palomba, Ernesto; Tosi, Federico; Zambon, Francesca; Krohn, Katrin; DeSanctis, Cristina M.; Reddy, Vishnu; LeCorre, Lucille; Nathues, Andreas; Pieters, Carle M.; Prettyman, Thomas; Raymond, C. A.; Russell, C. T.

    2015-01-01

    Analysis of data from the Dawn mission shows that the Pinaria region of Vesta spanning a portion of the rim of the Rheasilvia basin is bright and anhydrous. Reflectance spectra, absorption band centers, and their variations, cover the range of pyroxenes from diogenite-rich to howardite and eucrite compositions, with no evidence of olivine in this region. By examining band centers and depths of the floor, walls and rims of six major craters in the region, we find a lane of diogenite-rich material next to howardite-eucrite material that does not follow the local topography. The source of this material is not clear and is probably ejecta from post-Rheasilvia impacts. Material of a howardite-eucrite composition originating from beyond the Rheasilvia basin is evident on the western edge of the region. Overall, the Pinaria region exposes the complete range of basaltic achondrite parent body material, with little evidence of contamination of non-basaltic achondrite material. With both high reflectance and low abundance of hydrated material, this region of Vesta may be considered the "Pinaria desert".

  20. Upper-atmospheric Space and Earth Weather eXperiment (USEWX)

    Science.gov (United States)

    Wiley, Scott Lee

    2014-01-01

    This presentation is an update from the 2011 and 2012 talks given to Teachers in Space. These slides include some recent space weather issues that are hot topics, including the adding our USEWX and USEWX partners, and information relevant to GSFC researchers.

  1. A Space Weather Information Service Based Upon Remote and In-Situ Measurements of Coronal Mass Ejections Heading for Earth

    CERN Document Server

    Ritter, Birgit; Miles, Oscar; Rußwurm, Michael; Scully, Stephen; Roldán, Andrés; Hartkorn, Oliver; Jüstel, Peter; Réville, Victor; Lupu, Sorina; Ruffenach, Alexis

    2015-01-01

    The Earth's magnetosphere is formed as a consequence of interaction between the planet's magnetic field and the solar wind, a continuous plasma stream from the Sun. A number of different solar wind phenomena have been studied over the past forty years with the intention of understanding and forecasting solar behavior. One of these phenomena in particular, Earth-bound interplanetary coronal mass ejections (CMEs), can significantly disturb the Earth's magnetosphere for a short time and cause geomagnetic storms. This publication presents a mission concept consisting of six spacecraft that are equally spaced in a heliocentric orbit at 0.72 AU. These spacecraft will monitor the plasma properties, the magnetic field's orientation and magnitude, and the 3D-propagation trajectory of CMEs heading for Earth. The primary objective of this mission is to increase space weather (SW) forecasting time by means of a near real-time information service, that is based upon in-situ and remote measurements of the aforementioned CM...

  2. Rare-earth-element minerals in martian breccia meteorites NWA 7034 and 7533: Implications for fluid-rock interaction in the martian crust

    Science.gov (United States)

    Liu, Yang; Ma, Chi; Beckett, John R.; Chen, Yang; Guan, Yunbin

    2016-10-01

    Paired martian breccia meteorites, Northwest Africa (NWA) 7034 and 7533, are the first martian rocks found to contain rare-earth-element (REE) phosphates and silicates. The most common occurrence is as clusters of anhedral monazite-(Ce) inclusions in apatite. Occasionally, zoned, irregular merrillite inclusions are also present in apatite. Monazite-bearing apatite is sometimes associated with alkali-feldspar and Fe-oxide. Apatite near merrillite and monazite generally contains more F and OH (F-rich region) than the main chlorapatite host and forms irregular boundaries with the main host. Locally, the composition of F-rich regions can reach pure fluorapatite. The chlorapatite hosts are similar in composition to isolated apatite without monazite inclusions, and to euhedral apatite in lithic clasts. The U-Th-total Pb ages of monazite in three apatite are 1.0 ± 0.4Ga (2σ), 1.1 ± 0.5Ga (2σ), and 2.8 ± 0.7Ga (2σ), confirming a martian origin. The texture and composition of monazite inclusions are mostly consistent with their formation by the dissolution of apatite and/or merrillite by fluid at elevated temperatures (>100 °C). In NWA 7034, we observed a monazite-chevkinite-perrierite-bearing benmoreite or trachyandesite clast. Anhedral monazite and chevkinite-perrierite grains occur in a matrix of sub-micrometer REE-phases and silicates inside the clast. Monazite-(Ce) and -(Nd) and chevkinite-perrierite-(Ce) and -(Nd) display unusual La and Ce depletion relative to Sm and Nd. In addition, one xenotime-(Y)-bearing pyrite-ilmenite-zircon clast with small amounts of feldspar and augite occurs in NWA 7034. One xenotime crystal was observed at the edge of an altered zircon grain, and a cluster of xenotime crystals resides in a mixture of alteration materials. Pyrite, ilmenite, and zircon in this clast are all highly altered, zircon being the most likely source of Y and HREE now present in xenotime. The association of xenotime with zircon, low U and Th contents, and the

  3. Rare earth elements as reactive tracers of biogeochemical weathering in the Jemez River Basin Critical Zone Observatory

    Science.gov (United States)

    Vazquez, A.; Perdrial, J. N.; Harpold, A. A.; Zapata, X.; Rasmussen, C.; McIntosh, J. C.; Schaap, M. G.; Pelletier, J. D.; Amistadi, M.; Chorover, J.

    2012-12-01

    Rare earth elements (REE) are evaluated as potential tracers to elucidate biogeochemical weathering processes occurring during snowmelt in the Valles Caldera, New Mexico at pedon, hillslope, and catchment scales. We investigated time series of REE patterns in precipitation, soil pore water, ground water, and stream water, and related these data to REE composition of soil, rock and atmospheric dust. REE signatures in stream waters are dynamic, reflecting processes that occur along various hydrologic flowpaths during their transport to the stream, including those of parent rock weathering, water/soil interaction, and atmospheric deposition. REE patterns in stream waters during initial snowmelt reflect a signature similar to snow and soil solutions, consistent with shallow subsurface flow. REE patterns reflective of deep groundwater contribution increases during the recession of the snowmelt event. Rare earth elements and dissolved organic carbon concentrations (DOC) were positively correlated during snowmelt, consistent with REE complexation and mobilization in association with organic ligands during the period of shallow subsurface flow. Most annual (bio)chemical denudation of REE occurs during the snowmelt-derived DOC pulse. The use of Eu-anomalies allows us to elucidate what sources are contributing to the REE budget in Jemez River Basin Critical Zone Observatory (JRB-CZO). Weighted rhyodacite-tuff normalized REE distribution patterns reveal positive Eu-anomalies in the soil matrix, soil solutions, and stream waters and the anomalies were attributed to: 1) weathering of plagioclase feldspars, 2) colloidal transport, and 3) atmospheric deposition. Nd-anomalies in waters are consistent with the prevalence of subsurface flow. Pronounced negative Nd-anomalies observed in water samples collected from subsurface soil horizons and at the outlet of nested catchments within the East Fork Jemez watershed were attributed to preferential Nd adsorption by clays in the

  4. Mirador - Weather

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. Our weather system includes the dynamics of the atmosphere and its interaction with the oceans and land. The improvement of...

  5. Teleconferences and Audiovisual Materials in Earth Science Education

    Science.gov (United States)

    Cortina, L. M.

    2007-05-01

    Unidad de Educacion Continua y a Distancia, Universidad Nacional Autonoma de Mexico, Coyoaca 04510 Mexico, MEXICO As stated in the special session description, 21st century undergraduate education has access to resources/experiences that go beyond university classrooms. However in some cases, resources may go largely unused and a number of factors may be cited such as logistic problems, restricted internet and telecommunication service access, miss-information, etc. We present and comment on our efforts and experiences at the National University of Mexico in a new unit dedicated to teleconferences and audio-visual materials. The unit forms part of the geosciences institutes, located in the central UNAM campus and campuses in other States. The use of teleconference in formal graduate and undergraduate education allows teachers and lecturers to distribute course material as in classrooms. Course by teleconference requires learning and student and teacher effort without physical contact, but they have access to multimedia available to support their exhibition. Well selected multimedia material allows the students to identify and recognize digital information to aid understanding natural phenomena integral to Earth Sciences. Cooperation with international partnerships providing access to new materials and experiences and to field practices will greatly add to our efforts. We will present specific examples of the experiences that we have at the Earth Sciences Postgraduate Program of UNAM with the use of technology in the education in geosciences.

  6. The Effects of Weathering on Mechanical Properties of Glass Fiber Reinforced Plastics (Grp) Materials

    OpenAIRE

    Abdullah, H.; S. Al Araimi and R. A. Siddiqui

    2012-01-01

    Glass fiber reinforced plastics composite is extensively used as a structural material for pools, oil pipes and tanks because it has good corrosion resistance properties.  The effects of weathering on the mechanical properties of glass fiber reinforced plastics (GRP) in the Sultanate of Oman have been studied.  The tensile and three point bend specimens were exposed to outdoor conditions (open atmosphere) in sunlight and tested for various intervals of time.  It was observed th...

  7. [Broad excitation band alkaline-earth silicate luminescent materials activated by rare earth and its applications].

    Science.gov (United States)

    Xia, Wei; Lei, Ming-Kai; Luo, Xi-Xian; Xiao, Zhi-Guo

    2008-01-01

    Series of novel broad excitation band phosphors M2 MgSis O7 : Eu, Dy(M = Ca, Sr) were prepared by a high temperature solid-state reaction method. The crystal structure of compound was characterized. And the effects of part substitution of alkaline-earth on crystal structure, photoluminescence spectra and luminescence properties were also investigated. It is found that the excitation band of silicate luminescent materials extend to visible region and they exhibit yellow, green and blue long after-glow luminescence after excited by ultraviolet or visible light. Ca MgSi O7 : Eu, Dy luminescent materials can be excited effectively under the 450-480 nm range and exhibit a strong emission at 536 nm, nicely combining with blue light emitted by InGaN chips to produce white light. This promises the silicate luminescent materials a potential yellow phosphor for white LED.

  8. Electromagnetic sounding of the Earth's crust in the vicinities of the SG-6 and SG-7 superdeep boreholes in the fields of natural and powerful controlled sources

    Science.gov (United States)

    Zhamaletdinov, A. A.; Petrishchev, M. S.; Shevtsov, A. N.; Kolobov, V. V.; Selivanov, V. N.; Esipko, O. A.; Kopytenko, E. A.; Grigorjev, V. F.

    2012-07-01

    The results of electromagnetic sounding of the Earth's crust in the vicinities of the SG-6 and SG-7 superdeep boreholes (Yamal-Nenets Autonomous Okrug) are presented. The studies were conducted in the fields of natural sources (AMT-MTS) and in the field of the Zevs ULF antenna located at a distance of more than 2000 km from the receiver points. In the vicinity of the SG-7 superdeep borehole, where the small industrial noise was observed, the results of inverse problem solution are completely consistent with the electric logging data. The conducting layers have been identified at the depths of 150 m and 1.1 km. The roof of rocks having small electrical conductivity and belonging to the Permian-Triassic trappean complex has been found at the depth of about 7 km. The response of the Zevs signal (the frequency range of 44-182 Hz) has indicated the properties of the upper part of the geoelectrical section better than audiomagnetotelluric sounding for both boreholes. Based on the sounding in the vicinity of the SG-6 superdeep borehole, with the data of the Novosobirsk observatory taken into account, the distribution of resistivity down to about 800 km depth has been obtained. This distribution can serve as additional information in calculation of the temperature and rheological regime of the lithosphere and the upper mantle in the region of Western Siberia.

  9. Searching for cavities of various densities in the Earth's crust with a low-energy electron-antineutrino beta-beam

    CERN Document Server

    Argüelles, C A; Gago, A M

    2012-01-01

    We propose searching for deep underground cavities of different densities in the Earth's crust using a long-baseline electron-antineutrino disappearance experiment, realised through a low-energy beta-beam with highly enhanced luminosity. We focus on four real-world cases: water-filled cavities, iron-banded formations, heavier mineral deposits, and regions of abnormal charge accumulation that, supposedly, appear prior to the occurrence of an intense earthquake. The sensitivity to identify cavities attains confidence levels higher than 3$\\sigma$ and 5$\\sigma$ for exposures times of 3 months and 1.5 years, respectively, and cavity densities below 1 g cm$^{-3}$ or above 5 g cm$^{-3}$, with widths greater than 200 km. We reconstruct the cavity density, width, and position, assuming one of them known while keeping the other two free, in each of the aforementioned cases. Finally, we introduce an observable to quantify the presence of a cavity by changing the orientation of the electron-antineutrino beam.

  10. Recent Progress on Nanoscale Rare Earth Luminescent Materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results The size of nanoscale rare earth luminescent materials is often smaller than that of the excitement or emission wavelength,and it has amazing surface state density. Therefore,it shows a lot of new luminescent phenomena such as the shift of CTS,the broadening of emission peaks,the variation of fluorescent lifetimes and quantum efficiency,and the increase of quenching concentration.It is not only of academic interest but also of technological importance for advanced phosphor applications to rese...

  11. USING ELASTIC WAVE VELOCITY ON CLASSIFICATION WEATHERING ROCK MATERIALS AND PREDICTION OF ENGINEERING PROPERTIES IN KURTUN GRANODIORITE

    Directory of Open Access Journals (Sweden)

    Şener CERYAN

    2007-02-01

    Full Text Available A great number of landslides occurred in weathered granites outcropped the area in which Kurtun Dams with reservoirs and Gümüshane-Giresun highways pass trough. For this, weathering effect on the rock materials of the Kurtun granodiorite was investigated. In this study, both physical and mineralogical changes on the granitic materials due to weathering are described separately using P- wave velocity in rocks materials. Mineralogical Change Parameter and Physical Parameter defined based on P- wave velocity in rocks materials are applied on the samples from the selected weathering profiles, for the estimation of the effects of weathering on the physicomechanical properties of rock materials. The relative variation of mechanical properties and these indices display a statistically significant correlation. Besides, it is shown that P wave velocity in the solid parts of the samples. and Quantitative Weathering index originally defined Ceryan (1999a as based on slake-durability index, Mineralogical Change Parameter and Physical Parameter can be used together to evaluate the effect of weathering on the mechanical behavior of rocks material from Kürtün granodiorite.

  12. Simulation of the 23 July 2012 Extreme Space Weather Event: What if This Extremely Rare CME Was Earth Directed?

    Science.gov (United States)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Mays, M. Leila; Kuznetsova, Maria M.; Galvin, A. B.; Simunac, Kristin; Baker, Daniel N.; Li, Xinlin; Zheng, Yihua; Glocer, Alex

    2013-01-01

    Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (approx. 1 AU) in about 19 h. Here we use the SpaceWeather Modeling Framework (SWMF) to perform a simulation of this rare CME.We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids.

  13. On mega-undations: A new model for the earth's evolution

    NARCIS (Netherlands)

    Bemmelen, R.W. van

    Two fundamentally different views on the origin of the sialic crust of the earth are possible. According to one view the sialic crust has been produced from the inside by progressive physico-chemical differentiation of the earth's material into concentric spheres. Such an endogenic origin of the

  14. On mega-undations: A new model for the earth's evolution

    NARCIS (Netherlands)

    Bemmelen, R.W. van

    1966-01-01

    Two fundamentally different views on the origin of the sialic crust of the earth are possible. According to one view the sialic crust has been produced from the inside by progressive physico-chemical differentiation of the earth's material into concentric spheres. Such an endogenic origin of the cru

  15. A small mission concept to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science

    Science.gov (United States)

    Lavraud, B.; Liu, Y.; Segura, K.; He, J.; Qin, G.; Temmer, M.; Vial, J.-C.; Xiong, M.; Davies, J. A.; Rouillard, A. P.; Pinto, R.; Auchère, F.; Harrison, R. A.; Eyles, C.; Gan, W.; Lamy, P.; Xia, L.; Eastwood, J. P.; Kong, L.; Wang, J.; Wimmer-Schweingruber, R. F.; Zhang, S.; Zong, Q.; Soucek, J.; An, J.; Prech, L.; Zhang, A.; Rochus, P.; Bothmer, V.; Janvier, M.; Maksimovic, M.; Escoubet, C. P.; Kilpua, E. K. J.; Tappin, J.; Vainio, R.; Poedts, S.; Dunlop, M. W.; Savani, N.; Gopalswamy, N.; Bale, S. D.; Li, G.; Howard, T.; DeForest, C.; Webb, D.; Lugaz, N.; Fuselier, S. A.; Dalmasse, K.; Tallineau, J.; Vranken, D.; Fernández, J. G.

    2016-08-01

    We present a concept for a small mission to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. The proposed INvestigation of Solar-Terrestrial Activity aNd Transients (INSTANT) mission is designed to identify how solar coronal magnetic fields drive eruptions, mass transport and particle acceleration that impact the Earth and the heliosphere. INSTANT is the first mission designed to (1) obtain measurements of coronal magnetic fields from space and (2) determine coronal mass ejection (CME) kinematics with unparalleled accuracy. Thanks to innovative instrumentation at a vantage point that provides the most suitable perspective view of the Sun-Earth system, INSTANT would uniquely track the whole chain of fundamental processes driving space weather at Earth. We present the science requirements, payload and mission profile that fulfill ambitious science objectives within small mission programmatic boundary conditions.

  16. The Effects of Weathering on Mechanical Properties of Glass Fiber Reinforced Plastics (Grp Materials

    Directory of Open Access Journals (Sweden)

    H. Abdullah

    2012-08-01

    Full Text Available Glass fiber reinforced plastics composite is extensively used as a structural material for pools, oil pipes and tanks because it has good corrosion resistance properties.  The effects of weathering on the mechanical properties of glass fiber reinforced plastics (GRP in the Sultanate of Oman have been studied.  The tensile and three point bend specimens were exposed to outdoor conditions (open atmosphere in sunlight and tested for various intervals of time.  It was observed that as the exposure time to sunlight, ultraviolet radiation and dust increases the mechanical properties of GRP materials decrease.  The effects of relative humidity (%RH on the mechanical properties were also studied. It was found that as the relative humidity increased in the atmosphere during the exposure time, the tensile strength, flexural strength and modulus of elasticity are lowered. This work has revealed that the decrease in the mechanical properties of GRP under weathering conditions is subjected to atmospheric conditions such as humidity, temperature, ultraviolet radiation and pollutant.Key Words: Weathering, Glass-Fiber Reinforced Plastics, Degradation

  17. Rare earth boride electron emitter materials fabrication and evaluation

    Science.gov (United States)

    Swanson, L. W.; Davis, P. R.; Gesley, M. A.

    1982-03-01

    Techniques were developed for routine preparation of single crystal rods of LaB6, CeB6 and PrB6 by arc float zone refining. Single crystal, oriented samples were prepared from these rods and mounted as cathodes for testing. Several mounting systems were used, and flat, pointed cone and truncated cone thermionic cathodes were studied. Pointed field emitters of LaB6(100) were also investigated. Variation of thermionic emitted current density and thermal stability of materials were studied as functions of rare earth element, bulk stoichiometry and crystal orientation. Life tests were performed on several different LaB6(100) cathodes. One such cathode operated for over 3000 hours at approximately 10 A/sq cm emitted current density with no serious physical degradation. Surface properties of the materials were investigated by various surface analysis techniques.

  18. MICROBIALLY MEDIATED LEACHING OF RARE EARTH ELEMENTS FROM RECYCLABLE MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D. W.; Fujita, Y.; Daubaras, D. L.; Bruhn, D. F.; Reiss, J. H.; Thompson, V. S.; Jiao, Y.

    2016-09-01

    Bioleaching offers a potential approach for recovery of rare earth elements (REE) from recyclable materials, such as fluorescent lamp phosphors or degraded industrial catalysts. Microorganisms were enriched from REE-containing ores and recyclable materials with the goal of identifying strains capable of extracting REE from solid materials. Over 100 heterotrophic microorganisms were isolated and screened for their ability to produce organic acids capable of leaching REE. The ten most promising isolates were most closely related to Pseudomonas, Acinetobacter and Talaromyces. Of the acids produced, gluconic acid appeared to be the most effective at leaching REE (yttrium, lanthanum, cerium, europium, and terbium) from retorted phosphor powders (RPP), fluidized cracking catalyst (FCC), and europium-doped yttrium oxide (YOEu). We found that an Acinetobacter isolates, BH1, was the most capable strain and able to leach 33% of the total REE content from the FCC material. These results support the continuing evaluation of gluconic acid-producing microbes for large-scale REE recovery from recyclable materials.

  19. Geochemical and mineralogical constraints on the distribution and enrichment of the rare earth elements during pedogenesis and tropical weathering

    Science.gov (United States)

    Hardy, Liam; Smith, Martin; Moles, Norman; Marsellos, Antonios

    2015-04-01

    Current European manufacturing relies heavily on imports from the USA & China for unprocessed rare earth elements (REEs) and rare earth oxides (REOs). It has been suggested that the EU holds viable reserves of REEs that, with adequate research, could satisfy 10% of EU industrial demand, by the recycling of mine waste from bauxite production (red muds) alone (Deady, E. (BGS), 2014). Focus has been turned to the potential for Mount Weld type laterite deposits being exploited in the EU, but limited exploration and understanding of EU laterite (& paleo laterite) formations currently makes them unattractive to investment. Although previously researched, the full range of factors influencing the transition of rare earth (primarily lanthanide series, Y & Sc) elements between mineral and clay phases in allochthonous soils, saprolites and laterites is not fully understood, especially in present and Paleo-European environments (Herrington, Boni, Skarpelis, & Large, 2007) (Deady, E. (BGS), 2014) but several deposits globally are suggested to have formed at economically viable concentrations due to this secondary remobilisation & transition from mineral to clay phase and subsequent seasonal leaching and evaporation system, to form depositional buffer zones other than the soil base. (Hoatson, Jaireth, & Miezitis, 2011) (Berger, Janots, Gnos, Frei, & Bernier, 2014). This project intends to use new techniques in sequential extractions, ICP-MS, Quantitative XRD & SEM analysis to expand current knowledge around lateritic & allochtonous ore forming, & weathering processes. Heavy REE content and mineralogical variations in clays will be examined, with examples from a selection of profiles across Southern Europe (and potentially paleo soils from Scandinavia) to define the main influencing factors on REE concentration. Are the specific sites enriched simply by the nature of their source rock (protolith), by the soil formation (pedogenesis), or by biogenic & meteorological factors

  20. Partitioning properties of rare earth ores in China

    Institute of Scientific and Technical Information of China (English)

    CHI Ru'an; LI Zhongjun; PENG Cui; ZHU Guocai; XU Shengming

    2005-01-01

    The properties of rare earth partitioning in Chinese industrial rare earth ores were analyzed. Rare earth ores can be divided into the single-mineral type ore with bastnaesite, the multi-mineral type ore with bastnaesite and monazite, and the weathering crust type. Both the Bayan Obo rare earth ore and the Zhushan rare earth ore are a kind of mixed ore, consisting of bastnaesite and monazite. Their rare earth partitionings are strongly enriched in light rare earths, where CeO2 is 50% and the light rare earth partitioning is totally over 95%. The Mianning rare earth ore as well as the Weishan rare earth is a kind of rare earth ore only having bastnaesite. Their rare earth partitionings are also strongly enriched in light rare earths,in which CeO2 is 47% and the light rare earth partitioning is totally over 94%. For the weathering crust type rare earth ore,there are the Longnan rare earth ore, the Xunwu rare earth ore, and the middle yttrium and rich europium ore. In the Longnan rare earth ore, which is strongly enriched in heavy rare earths, Y2O3 is 64.83%, and the heavy and light rare earth partitionings are 89.40% and 10.53%, respectively. In the Xunwu rare earth ore, which is strongly enriched in light rare earths, CeO2 is 47.16%, and the light rare earth partitioning is totally 93.25%. Y and Eu are enriched in the middle yttrium and rich europium ore. Its middle rare earth partitioning is totally over 10%, and Eu2O3 and Y2O3 are over 0.5% and 20%,respectively, which are mainly industrial resources of the middle and the heavy rare earths.

  1. The Natural Enrichment of Stable Cesium in Weathered Micaceous Materials and Its Implications for 137Cs Sorption.

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, W. Crawford [Georgia State Univ., Atlanta, GA (United States); Kahn, Bernd [Georgia State Univ., Atlanta, GA (United States); Rosson, Robert [Georgia State Univ., Atlanta, GA (United States); Wampler, J. Marion [Georgia State Univ., Atlanta, GA (United States); Rose, Seth E. [Georgia State Univ., Atlanta, GA (United States); Krogstad, Eirik J. [Georgia State Univ., Atlanta, GA (United States); Kaplan, Daniel [Georgia State Univ., Atlanta, GA (United States)

    2011-11-14

    In this exploratory project, we are testing two interrelated hypotheses about the sorption of Cs within weathered micaceous materials in subsurface regolith materials from the Savannah River Site (SRS) located on the Atlantic Coastal Plain: 1) that stable cesium has become significantly enriched relative to potassium in subsurface micaceous particles as a result of chemical weathering processes; and 2) that the Cs so present is sufficient to be a major factor determining the ability of the subsurface materials to take up and hold 137Cs. To test these hypotheses, we collected by hand augur soil samples corresponding to soils representative at the SRS: upland regolith (Fuquay series); soils formed on Tobacco Road Sandstone; and, soils formed on Quaternary Alluvium. From our data, the quantification of the amounts of stable cesium concentrated in various sites within 2:1 phyllosilicates by natural processes is highly relevant toward understanding the future sorption of 137Cs by the mica, illite, vermiculite, and hydroxyl interstratified vermiculite (HIV) phases present in the subsurface at and in proximity to SRS. Studying sorption and fixation of Cs in these micaceous phases interlayers potentially leads to increased knowledge to the extent that stable Cs resists exchange with ion exchange cations (Mg, NH4, or even alkyl ammonium compounds) and to the extent that Cs can become fixed over the long term. Such knowledge will help in the development of 137Cs remediation strategies for the long-term, which is a critical aspect of the SBR goals. We characterized the mineralogy, K-Ar ages of the soil and soil clay fractions (before and after acid treatment), and alkali element chemistry (K, Rb, Cs) of the clay fractions of soils collected from these three different types of soils. The clay fractions of the Fuquay soils are composed of kaolinite, and hydroxy interstratified vermiculite (HIV). Kaolinite, HIV, quartz, gibbsite and illite are

  2. The Natural Enrichment of Stable Cesium in Weathered Micaceous Materials and Its Implications for 137Cs Sorption.

    Energy Technology Data Exchange (ETDEWEB)

    ELLIOTT, W CRAWFORD; KAHN, BERND; ROSSON, ROBERT; WAMPLER, J MARION; ROSE, SETH E; KROGSTAD, EIRIK J; KAPLAN, DANIEL; ZAUNBRECHER, LAURA

    2011-11-14

    In this exploratory project, we are testing two interrelated hypotheses about the sorption of Cs within weathered micaceous materials in subsurface regolith materials from the Savannah River Site (SRS) located on the Atlantic Coastal Plain: 1) that stable cesium has become significantly enriched relative to potassium in subsurface micaceous particles as a result of chemical weathering processes; and 2) that the Cs so present is sufficient to be a major factor determining the ability of the subsurface materials to take up and hold 137Cs. To test these hypotheses, we collected by hand augur soil samples corresponding to soils representative at the SRS: upland regolith (Fuquay series); soils formed on Tobacco Road Sandstone; and, soils formed on Quaternary Alluvium. From our data, the quantification of the amounts of stable cesium concentrated in various sites within 2:1 phyllosilicates by natural processes is highly relevant toward understanding the future sorption of 137Cs by the mica, illite, vermiculite, and hydroxyl interstratified vermiculite (HIV) phases present in the subsurface at and in proximity to SRS. Studying sorption and fixation of Cs in these micaceous phases interlayers potentially leads to increased knowledge to the extent that stable Cs resists exchange with ion exchange cations (Mg, NH4, or even alkyl ammonium compounds) and to the extent that Cs can become fixed over the long term. Such knowledge will help in the development of 137Cs remediation strategies for the long-term, which is a critical aspect of the SBR goals. We characterized the mineralogy, K-Ar ages of the soil and soil clay fractions (before and after acid treatment), and alkali element chemistry (K, Rb, Cs) of the clay fractions of soils collected from these three different types of soils. The clay fractions of the Fuquay soils are composed of kaolinite, and hydroxy interstratified vermiculite (HIV). Kaolinite, HIV, quartz, gibbsite and illite are found in the quaternary soils

  3. Building materials as intrinsic sources of sulphate: A hidden face of salt weathering of historical monuments investigated through multi-isotope tracing (B, O, S)

    Energy Technology Data Exchange (ETDEWEB)

    Kloppmann, W., E-mail: w.kloppmann@brgm.fr [BRGM, BP 6009, F-45060 Orleans cedex 2 (France); Bromblet, P.; Vallet, J.M. [CICRP, 21, rue Guibal, F-13003 Marseille (France); Verges-Belmin, V. [LRMH, 29, rue de Paris, F-77420 Champs sur Marne (France); Rolland, O. [Independent restorer, 3, rue du Gue, 37270 Montlouis s/Loire (France); Guerrot, C. [BRGM, BP 6009, F-45060 Orleans cedex 2 (France); Gosselin, C. [BRGM, BP 6009, F-45060 Orleans cedex 2 (France); LRMH, 29, rue de Paris, F-77420 Champs sur Marne (France)

    2011-04-01

    Sulphate neoformation is a major factor of degradation of stone monuments. Boron, sulphur and oxygen isotope signatures were investigated for five French historical monuments (Bourges, Chartres and Marseille cathedrals, Chenonceau castle, and Versailles garden statues) to investigate the role of intrinsic sulphate sources (gypsum plasters and mortars) in stone degradation, compared to the influence of extrinsic sources such as atmospheric pollution. Gypsum plasters and gypsum-containing mortars fall systematically in the {delta}{sup 34}S and {delta}{sup 18}O range of Paris Basin Eocene evaporites indicating the origin of the raw materials (so-called 'Paris plaster'). Black crusts show the typical S and O isotope signatures observed elsewhere in Europe that can be attributed to atmospheric pollution, together with a marine component for Marseille. Boron isotopes for black crusts indicate coal combustion as principal boron source. Mortar isotope compositions discriminate three types, one similar to gypsum plasters, one strongly depleted in {sup 34}S, attributed to pyrite oxidation, and a third one close to atmospheric sulphates. The isotopic composition of sulphates and boron of most degraded building stones of the different monuments is well explained by the identified sulphate sources. In several cases (in particular for Chenonceau and Bourges, to some extent for Chartres), the impact of gypsum plaster as building and restoration material on the degradation of the stones in its vicinity was clearly demonstrated. The study illustrates the usefulness of multi-isotope studies to investigate stone degradation factors, as the combination of several isotope systematics increases the discriminatory power of isotope studies with respect to contaminant sources. - Research Highlights: {yields} Insight in stone weathering mechanisms by multi-isotope fingerprinting (B, S, O). {yields} Intrinsic sulphate sources (gypsum plaster, mortar) contribute to stone degradation

  4. Nd and Sr isotopic compositions of sediments from the Yellow and Yangtze Rivers: Implications for partitioning tectonic terranes and crust weathering of the Central and Southeast China

    Institute of Scientific and Technical Information of China (English)

    Xianwei MENG; Yanguang LIU; Xuefa SHI; Dewen DU

    2008-01-01

    New Nd and Sr isotope data are presented in this paper for sediments from the Yellow and Yangtze River drainage basins. The average 143Nd/144Nd isotope compositions of fine-grained sediments from two drain-age basins seem similar. The TNdDMages of sediments from the two drainage basins are relatively uniform but exhibit subtle differences. This reflects the different underlying bedrocks, in association with the unique tectonic terranes that comprise central and southeastern China, including the North China Block, the Yangtze Block, the South China Block, the Tibet Plateau and the Qinling-Dabie Orogenic Belt. In contrast, there is an obvious difference in the 878r/86Sr ratios between fine-grained sediments of the Yellow and Yangtze Rivers, which actually reflects an increase in chemical weathering intensity from northwes-tern to southeastern China.

  5. Effect of rare earth substitution in cobalt ferrite bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Bulai, G., E-mail: georgiana.bulai@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, nr. 11, 700506 Iasi (Romania); Diamandescu, L. [National Institute of Material Physics, P.O. Box MG-7, 07125 Bucharest (Romania); Dumitru, I.; Gurlui, S. [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, nr. 11, 700506 Iasi (Romania); Feder, M. [National Institute of Material Physics, P.O. Box MG-7, 07125 Bucharest (Romania); Caltun, O.F. [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, nr. 11, 700506 Iasi (Romania)

    2015-09-15

    The study was focused on the influence of small amounts of rare earth (RE=La, Ce, Sm, Gd, Dy, Ho, Er, Yb) addition on the microstructure, phase content and magnetic properties of cobalt ferrite bulk materials. The X-Ray diffraction measurements confirmed the formation of the spinel structure but also the presence of secondary phases of RE oxides or orthoferrite in small percentages (up to 3%). Density measurements obtained by Archimedes method revealed a ~1 g cm{sup −3} decrease for the RE doped cobalt ferrite samples compared with stoichiometric one. Both the Mössbauer and Fourier Transform Infrared Spectrocopy analysis results confirmed the formation of the spinel phase. The saturation magnetization and coercive field values of the doped samples obtained by Vibrating Sample Magnetometry were close to those of the pure cobalt ferrite. For magnetostrictive property studies the samples were analyzed using the strain gauge method. Higher maximum magnetostriction coefficients were found for the Ho, Ce, Sm and Yb doped cobalt ferrite bulk materials as related to the stoichiometric CoFe{sub 2}O{sub 4} sample. Moreover, improved strain derivative was observed for these samples but at higher magnetic fields due to the low increase of the coercive field values for doped samples. - Highlights: • Substitution by a large number of rare earth elements was investigated. • First reported results on magnetostriction measurements of RE doped cobalt ferrite. • The doped samples presented an increased porosity and a decreased grain size. • Increased magnetostrctive response was observed for several doped samples.

  6. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for Improved Regional Weather Prediction and Monitoring of Greenhouse Gases

    Science.gov (United States)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-01-01

    Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  7. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for improved regional weather prediction and monitoring of greenhouse gases

    Science.gov (United States)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-12-01

    Hyperspectral infrared atmospheric sounders (e.g. the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast1. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  8. Parallels among the ``music scores'' of solar cycles, space weather and Earth's climate

    Science.gov (United States)

    Kolláth, Zoltán; Oláh, Katalin; van Driel-Gesztelyi, Lidia

    2012-07-01

    Solar variability and its effects on the physical variability of our (space) environment produces complex signals. In the indicators of solar activity at least four independent cyclic components can be identified, all of them with temporal variations in their timescales. Time-frequency distributions (see Kolláth & Oláh 2009) are perfect tools to disclose the ``music scores'' in these complex time series. Special features in the time-frequency distributions, like frequency splitting, or modulations on different timescales provide clues, which can reveal similar trends among different indices like sunspot numbers, interplanetary magnetic field strength in the Earth's neighborhood and climate data. On the pseudo-Wigner Distribution (PWD) the frequency splitting of all the three main components (the Gleissberg and Schwabe cycles, and an ~5.5 year signal originating from cycle asymmetry, i.e. the Waldmeier effect) can be identified as a ``bubble'' shaped structure after 1950. The same frequency splitting feature can also be found in the heliospheric magnetic field data and the microwave radio flux.

  9. Weathering of rock 'Ginger'

    Science.gov (United States)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  10. Effects of Rare Earths on Properties and Microstructure of Automotive Friction Materials

    Institute of Scientific and Technical Information of China (English)

    Xu Yue; Lu Liguo; Bai Jing

    2007-01-01

    Rare earth compounds as modifiers used widely in modern friction materials can enhance the interracial binding of constituents of materials and improve the comprehensive properties of materials evidently. However, there are still few reports on application of rare earth in automotive friction materials. In order to study the effect mechanism of rare earths in friction materials, a rare earth compound was selected as additive and the effects of materials doped with or without rare earth on friction and wear properties of materials were studied. The microstructure and worn surface morphology were observed by scanning electron microscopy and the macro performance was discussed. Worn surface element constitution of materials was analyzed by energy dispersive spectroscopy. Effect mechanism of rare earths on friction and wear behaviors of friction materials were discussed. The results show that doping rare earths in friction materials can stabilize friction Coefficient, lower the wear rate of materials and increase the impact strength of materials. The flexibility and fracture resistance of materials is greatly improved. Worn surface of materials doped with rare earth is compact and the surface adhesion is greatly enhanced.

  11. Periodic components of the atmospheric drag of Earth artificial satellites and their dependence on the state of space weather

    Science.gov (United States)

    Komendant, Volodymyr; Koshkin, Nikolay; Ryabov, Mikhail

    2016-07-01

    Based on the accumulated in the University Observatory extensive database of evolving orbital elements of low-orbit satellites, the behavior of the parameterwas studied, which characterizes their drag in the atmosphere of the Earth. The time spectra structure of drag of 25 artificial satellites is being studied by applying various methods of spectral analysis. Fifteen artificial satellites with circular orbits and ten artificial satellites with elliptical orbits are studied. The processed information includes ten years of observations that covers: declining and minimum phases of 23 ^{rd}(2005-2008) solar cycle; phases of rise and maximum of 24th(2009-2014) solar cycle. Time-frequency analysis of solar and geomagnetic activity indexes has been conducted. These indexes are: W - Wolf numbers; Sp - the total area of sunspot groups of the northern and southern hemispheres of the Sun, F10.7 - the solar radio flux at 10,7 cm; E - electron flux with energies more than 0,6 MeV i 2 MeV; planetary, high latitude and middle latitude geomagnetic index Ap. Periodograms of satellite's drag data, solar and geomagnetic activity indexes were constructed. In the atmospheric drag dynamics of satellites,the following periodswere detected: 6-year, 2.1-year, annual, semi-annual, 27-days, 13- and 11-days. Similar periods are identified in indexes of solar and geomagnetic activity. The ratios of the amplitudes of the spectral power of these periods vary in different phases of the solar cycle. The tables of the main periods in the drag of the artificial satellites and the main periods in the solar and geomagnetic activity indexes were obtained with the help of spectrograms. Their presence in certain phases of the solar cycle was researched. The calculation of multiple correlation' models of the orbital parameter characterizing the drag of satellites on various orbits, depending on the basic parameters of space weather has been done. These results have practical application for models

  12. Google Earth as a Vehicle to Integrating Multiple Layers of Environmental Satellite Data for Weather and Science Applications

    Science.gov (United States)

    Turk, F. J.; Miller, S. D.

    2007-12-01

    satellite data would be utilized within a geobrowser in a near real-time setting, we present a demonstration from the 2007 hurricane season, developed within the Google Earth framework. A menu of imagery based sequential satellite overpasses (GOES and other geostationary satellites, TRMM, CloudSat, Terra, Aqua, DMSP, NOAA, QuikScat) during the storm lifecycle, are presented to the Earth client in an structured folder format. The remapping of these satellite data follows the hurricane track, enabling the user to view, animate, zoom, overlay and combine visible, infrared and passive microwave imagery and combine with other data (surface reports, forecasts, surface winds, ground and spaceborne radars, etc.) at various stages of the hurricane lifecycle. Pop-up balloons provide training that explains the properties and capabilities of the satellite datasets and what components of the underlying weather are represented. Future satellite overpass tracks are provided so that the user can anticipate imagery updates several days in advance (e.g., as a hurricane approaches landfall). This combination of geo-navigable data provides a convenient framework for efficiently demonstrating meteorological, oceanographic and weather and climate concepts to students, planners, and the public at large.

  13. SALSA3D - A Global 3D P-Velocity Model of the Earth's Crust and Mantle for Improved Event Location

    Science.gov (United States)

    Ballard, S.; Begnaud, M. L.; Young, C. J.; Hipp, J. R.; Chang, M.; Encarnacao, A. V.; Rowe, C. A.; Phillips, W. S.; Steck, L.

    2010-12-01

    To test the hypothesis that high quality 3D Earth models will produce seismic event locations which are more accurate and more precise, we are developing a global 3D P wave velocity model of the Earth’s crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D version 1.5, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. Our model is derived from the latest version of the Ground Truth (GT) catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is ~50%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions.. For our starting model, we use a simplified two layer crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only around areas with significant velocity changes from the starting model. At each grid refinement level except the last one we limit the number of iterations to prevent convergence thereby preserving aspects of broad features resolved at coarser resolutions. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a distributed computing framework based on the Java Parallel Processing Framework, providing us with ~400 processors. Resolution of our model is assessed using a

  14. Effects of Low Earth Orbit on Docking Seal Materials

    Science.gov (United States)

    Imka, Emily C.; Asmar, Olivia C.; deGroh, Henry C., III; Banks, Bruce A.

    2014-01-01

    Spacecraft docking seals are typically made of silicone elastomers. When such seals are exposed to low Earth orbit (LEO) conditions, they can suffer damage from ultraviolet (UV) radiation and atomic oxygen (AO, or monoatomic oxygen, the predominant oxygen species in LEO). An experiment flew on the International Space Station (ISS) to measure the effects of LEO on seal materials S0383-70 and ELA-SA-401 and various mating counterface materials which included anodized aluminum. Samples flown in different orientations received different amounts of UV and AO. The hypotheses were that most of the damage would be from UV, and 10 days or more of exposure in LEO would badly damage the seals. Eighteen seals were exposed for 543 days in ram (windward), zenith (away from Earth), or wake (leeward) orientations, and 15 control samples (not flown) provided undamaged baseline leakage. To determine post-flight leak rates, each of the 33 seals were placed in an O-ring groove of a leak test fixture and pressure tested over time. Resistance temperature detectors (RTDs), pressure transducers, and LabVIEW (National Instruments) programs were used to measure and analyze the temperature and pressure and calculate leakage. Average leakage of control samples was 2.6 x 10(exp -7) lbs/day. LEO exposure did not considerably damage ELA-SA-401. The S0383-70 flight samples leaked at least 10 times more than ELA-SA-401 in all cases except one, demonstrating that ELA-SA-401 may be a more suitable sealing material in LEO. AO caused greater damage than UV; samples in ram orientation (receiving an AO fluence of 4.3 x 10(exp 21) atoms/(sq cm) and in wake (2.9x 10(exp 20) atoms/(sq cm)) leaked more than those in zenith orientation (1.58 x 10(exp 20) atoms/(sq cm)), whereas variations in UV exposure did not seem to affect the samples. Exposure to LEO did less damage to the seals than hypothesized, and the data did not support the conjecture that UV causes more damage than AO.

  15. Rare earth-doped materials with enhanced thermoelectric figure of merit

    Science.gov (United States)

    Venkatasubramanian, Rama; Cook, Bruce Allen; Levin, Evgenii M.; Harringa, Joel Lee

    2016-09-06

    A thermoelectric material and a thermoelectric converter using this material. The thermoelectric material has a first component including a semiconductor material and a second component including a rare earth material included in the first component to thereby increase a figure of merit of a composite of the semiconductor material and the rare earth material relative to a figure of merit of the semiconductor material. The thermoelectric converter has a p-type thermoelectric material and a n-type thermoelectric material. At least one of the p-type thermoelectric material and the n-type thermoelectric material includes a rare earth material in at least one of the p-type thermoelectric material or the n-type thermoelectric material.

  16. Rare earth elements exploitation, geopolitical implications and raw materials trading

    Science.gov (United States)

    Chemin, Marie-Charlotte

    2015-04-01

    Rare earth elements (REE) correspond to seventeen elements of the periodic table. They are used in high technology, cracking, electric cars' magnet, metal alloy for batteries, and also in phone construction or ceramics for electronic card. REEs are an important resource for high technology. This project targets 16 years old students in the subject "personalized aid" and will last six weeks. The purpose of this project is to develop autonomy and research in groups for a transdisciplinary work. This project gathers knowledge in geology, geography and economics. During the first session students analyze the geology applications of the REE. They begin the analysis with learning the composition in different rocks such as basalt and diorite to make the link with crystallization. Then they compare it with adakite to understand the formation of these rocks. In the second session, they study REE exploitation. We can find them as oxides in many deposits. The principal concentrations of rare earth elements are associated with uncommon varieties of igneous rocks, such as carbonatites. They can use Qgis, to localize this high concentration. In the third session, they study the environmental costs of REE exploitation. Indeed, the exploitation produces thorium and carcinogenic toxins: sulphates, ammonia and hydrochloric acid. Processing one ton of rare earths produces 2,000 tons of toxic waste. This session focuses, first, on Baotou's region, and then on an example they are free to choose. In the fourth session, they study the geopolitical issues of REE with a focus on China. In fact this country is the largest producer of REE, and is providing 95% of the overall production. REE in China are at the center of a geopolitical strategy. In fact, China implements a sort of protectionism. Indeed, the export tax on REE is very high so, as a foreign company, it is financially attractive to establish a manufacturing subsidiary in China in order to use REE. As a matter of fact

  17. Control of the Earth's electric field intensity through solar wind modulation of galactic cosmic radiation: Support for a proposed atmospheric electrical sun-weather mechanism

    Science.gov (United States)

    Markson, R.

    1980-01-01

    The ionospheric potential and galactic cosmic radiation, found to be inversely correlated with the solar wind velocity are examined as being germane to weather modification. Since the ionospheric potential is proportional to the fair weather electric field intensity and cosmic radiation is the dominant source of atmospheric ionization, it is concluded that the Earth's overall electric field varies in phase with atmospheric ionization and that the latter is modulated by the solar wind. A proposed mechanism, in which solar control of ionizing radiation influences atmospheric electrification and thus possibly cloud physical processes is discussed. An experimental approach to critically test the proposed mechanism through comparison of the temporal variation of the Earth's electric field with conditions in the interplanetary medium is outlined.

  18. Composition, Processing Technology and Property of Ceramic Die Materials Containing Rare Earth Additives

    Institute of Scientific and Technical Information of China (English)

    Xiao Guangchun; Xu Chonghai; Fang Bin

    2007-01-01

    Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the ceramic materials such as cermet, ZTA, TZP, TZP/Al2O3, TZP/TiC/Al2O3, PSZ and Sialon, etc., with rare earth yttrium, lanthanum and cerium, and so on working as additives, were investigated and analyzed in the present study. Problems existed in the research and application of rare earth ceramic die materials were discussed. Rare earth additives can effectively improve the mechanical property and engineering performance of ceramic die materials. Thus, it will have further perspectives of wider application. More attention should be paid in the future to the toughening and strengthening of the ceramic die materials, the adding forms and kinds of rare earth elements and acting mechanisms of rare earth additives in ceramic die materials.

  19. Methods applied in determining the variations of strength and srtucture of plutonic rock material exposed to artificial weathering treatment

    Directory of Open Access Journals (Sweden)

    Ihalainen, P.

    1993-12-01

    Full Text Available In this study the most significant factors determining the weathering of natural rock material proved to be the water saturation of the samples and the chemical composition of the pore water. The action of hydrolysis caused by the acidity of the pore water, combined with repeated freezing and thawing in 100% relative humidity proved to be the most significant factor in the alteration of the strength and structure of the studied material, the Inari anorthosite. The action of these methods disintegrated the rock material more than any other weathering treatment or any other combination of the treatments used in this study. The changes in the strength of the rock material were most reliably illustrated by the changes in tensile strength, measured by the changes in the modulus of rupture and the point load index. In several cases the standard deviations of the results exceeded the absolute changes of the corresponding parameter value. By progressing weathering, the porosity of the Inari anorthosite changed in such a way that both the frost and salt weathering increased primarily the proportion of the large pores while the hydrolysis increased the proportion of the small pores of the total porosity. It is rather difficult to simulate in the laboratory the changes in strength and structure of building stone caused by natural weathering, since the effectiveness of the climatic and environmental factors affecting the rock surface in real conditions varies from case to case and according to the duration of the weathering action. An unweathered firm silicate rock with low porosity, such as the Inari anorthosite, has such a resistance against weathering that the necessary series of laboratory experiments to determine the changes in strength inevitably take several months.

  20. Dynamics of Pre-3 Ga Crust-Mantle Evolution

    Science.gov (United States)

    Patchett, P. J.; Chase, C. G.; Vervoort, J. D.

    2004-05-01

    During 3.0 to 2.7 Ga, the Earth's crust underwent a non-uniformitarian change from a pre-3.0 Ga environment where long-term preservation of cratons was rare and difficult, to post-2.7 Ga conditions where cratons were established and new continental crust generation took place largely at craton margins. Many models view the Earth's surface during pre-3 Ga time as broadly equivalent to the post 2.7 Ga regime. Any such uniformitarian or gradual evolution cannot explain the conundrum that only a tiny amount of pre-3 Ga crust is preserved today coupled with the fact that very little pre-3 Ga crust was incorporated into the large amount of new craton that came into existence during 3.0-2.7 Ga. If large volumes of pre-3 Ga continental crust existed, it disappeared either just prior to 3 Ga, or during 3.0-2.7 Ga. To explain sudden appearance of surviving but dominantly juvenile continental crust in a model where continents were large prior to 3 Ga, it would be necessary either that pre-3 Ga continent was recycled into the mantle at sites systematically different from those where new 3.0-2.7 Ga crust was made, or that widespread continent destruction preceded the 3.0-2.7 Ga crustal genesis. From expected mantle overturn in response to the heat budget, it is likely that most pre-3 Ga crust was both more mafic and shorter-lived than after 3 Ga. Although Nd and Hf ratios for pre-3 Ga rocks are uncertain due to polymetamorphism, it appears that depleted upper mantle was widespread by 2.7 Ga, even pre-3 Ga. Depletion may have been largely achieved by formation, subduction and storage of mafic crust for periods of 200-500 m.y. The rapid change to large surviving continents during 3.0-2.7 Ga was due to declining mantle overturn, and particularly to development of the ability to maintain subduction in one zone of the earth's surface for the time needed to allow evolution to felsic igneous rock compositions. In as much as storage of subducted slabs is probably occurring today, and

  1. Primary Study on Effects of New Rare Earth Agro-Materials on Potato

    Institute of Scientific and Technical Information of China (English)

    Yang Qifeng; Mao Wanhu; Wang Jiachen; Xing Guo; Yang Jun; Liu Xiangsheng

    2004-01-01

    Using common phosphate as a check, we studied the growth and yield of potato by new rare earth agro-materials including rare earth phosphate (base fertilizer), rare earth whole plant nutrient fertilizer, and amino acid chelated rare earth ( top dressing), which were used in a single or mixed way in Dingxi city, Gansu Province.The results are as follows that ( 1 ) After using new rare earth materials, the plant height increases by 0.4 ~ 5.6 cm and the ripen period is delayed by 4 ~ 9 d.(2) They can improve the potato economic characteristics, enhance productivity, decrease black leg and late blight.The disease index is decreased by 1.6% ~ 10.6%, single plant potato number increases by 0.3 ~ 0.5, and single plant yield increases by 80 g ~ 130 g.(3) The effect of increased yield is significant, and mixed use is better than single use.In the single material treatments, rare earth phosphate is the best, rare earth whole plant nutrient fertilizer and amino acid chelated rare earth are the second, and the increased rate are 14.5%, 8.4%, 9.2% so the material mixture-rare earth phosphate mixed of rare earth whole plant nutrient fertilizer or with amino acid chelated rare earth is economically useable, and increase rate are 25.2% and 24.4% compared with common phosphate.

  2. Paleo-weathering Crust at the Top of the Changxing Formation in Huangzhishan Section, Huzhou, Zhejiang, and Its Geological Significance%浙江湖州黄芝山剖面长兴组顶部古剥蚀面的识别及其地质意义

    Institute of Scientific and Technical Information of China (English)

    杜永灯; 张磊; 王伟洁; 冯庆来

    2009-01-01

    通过浙江湖州黄芝山剖面的研究,发现其长兴组顶部存在清晰古风化壳残积物,本文描述了该古风化壳的沉积特征.精细的牙形石古生物地层学研究表明,该古风化壳代表的平行不整合面位于Clarkina meishanensis meishanensis带的底部,其层位相当于浙江煤山D剖面的25层底部,与二叠纪末生物集群灭绝主灭绝期层位基本一致.所以深入研究该古风化壳对探讨二叠纪末海平面变化和生物集群灭绝具有重要意义.%Well-preserved weathering crust is discovered at the top of the Changxing Formation in Huangzhishan section? Huzhou? Zhejiang. The characteristics of the weathering crust are described in this paper. The unconformity represented by the weathering crust is located at the lowermost part of Clarkina meishanensis meishanensis Zone. In stratigraphic horizon, it can be correlated with the bottom of the Bed 25 at the Meishan Section D and is coincident with the main episode of the mass extinction at the end-Permian. Therefore, it is very significative for discussing the sea-level change and the causes of the mass extinction at the end-Permian to study the weathering crust in detail.

  3. The Earth's early evolution.

    Science.gov (United States)

    Bowring, S A; Housh, T

    1995-09-15

    The Archean crust contains direct geochemical information of the Earth's early planetary differentiation. A major outstanding question in the Earth sciences is whether the volume of continental crust today represents nearly all that formed over Earth's history or whether its rates of creation and destruction have been approximately balanced since the Archean. Analysis of neodymium isotopic data from the oldest remnants of Archean crust suggests that crustal recycling is important and that preserved continental crust comprises fragments of crust that escaped recycling. Furthermore, the data suggest that the isotopic evolution of Earth's mantle reflects progressive eradication of primordial heterogeneities related to early differentiation.

  4. Atmospheric dispersion characteristics of radioactive materials according to the local weather and emission conditions

    Energy Technology Data Exchange (ETDEWEB)

    An, Hye Yeon; Kang, Yoon Hee; Kim, Yoo Keun [Pusan National University, Busan (Korea, Republic of); Song, Sang Keun [Jeju National University, Jeju (Korea, Republic of)

    2016-12-15

    This study evaluated the atmospheric dispersion of radioactive material according to local weather conditions and emission conditions. Local weather conditions were defined as 8 patterns that frequently occur around the Kori Nuclear Power Plant and emission conditions were defined as 6 patterns from a combination of emission rates and the total number of particles of the {sup 137}Cs, using the WRF/HYSPLIT modeling system. The highest mean concentration of {sup 137}Cs occurred at 0900 LST under the ME4{sub 1} (main wind direction: SSW, daily average wind speed: 2.8 ms{sup -1}), with a wide region of its high concentration due to the continuous wind changes between 0000 and 0900 LST; under the ME3 (NE, 4.1 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 1500 and 2100 LST with a narrow dispersion along a strong northeasterly wind. In the case of ME4{sub 4} (S, 2.7 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 0300 LST because {sup 137}Cs stayed around the KNPP under low wind speed and low boundary layer height. As for the emission conditions, EM1{sub 3} and EM2{sub 3} that had the maximum total number of particles showed the widest dispersion of {sup 137}Cs, while its highest mean concentration was estimated under the EM1{sub 1} considering the relatively narrow dispersion and high emission rate. This study showed that even though an area may be located within the same radius around the Kori Nuclear Power Plant, the distribution and levels of {sup 137}Cs concentration vary according to the change in time and space of weather conditions (the altitude of the atmospheric boundary layer, the horizontal and vertical distribution of the local winds, and the precipitation levels), the topography of the regions where {sup 137}Cs is dispersed, the emission rate of {sup 137}Cs, and the number of emitted particles.

  5. The role of weathering in the formation of bedrock valleys on Earth and Mars: A numerical modeling investigation

    Science.gov (United States)

    Pelletier, Jon D.; Baker, Victor R.

    2011-11-01

    Numerical models of bedrock valley development generally do not include weathering explicitly. Nevertheless, weathering is an essential process that acts in concert with the transport of loose debris by seepage and runoff to form many bedrock valleys. Here we propose a numerical model for bedrock valley development that explicitly distinguishes weathering and the transport of loose debris and is capable of forming bedrock valleys similar to those observed in nature. In the model, weathering rates are assumed to increase with increasing water availability, a relationship that data suggest likely applies in many water-limited environments. We compare and contrast the model results for cases in which weathering is the result of runoff-induced infiltration versus cases in which it is the result of seepage- or subsurface-driven flow. The surface flow-driven version of our model represents an alternative to the stream-power model that explicitly shows how rates of both weathering and the transport of loose debris are related to topography or water flow. The subsurface flow-driven version of our model can be solved analytically using the linearized Boussinesq approximation. In such cases the model predicts theater-headed valleys that are parabolic in planform, a prediction broadly consistent with the observed shapes of theater-headed bedrock valleys on Mars that have been attributed to a combination of seepage weathering and episodic removal of weathered debris by runoff, seepage, and/or spring discharge.

  6. Effects of crust and cracks on simulated catchment discharge and soil loss

    NARCIS (Netherlands)

    Stolte, J.; Ritsema, C.J.; Roo, de A.P.J.

    1997-01-01

    Sealing, crusting and cracking of crusts of the soil surface has been observed in many parts of the world in areas with sandy, silty and loamy soils. Sealing and crust formation occurs under the influence of rain storm and drying weather. With prolonged drying, surface crusts might crack, leading to

  7. Granitic Perspectives on the Generation and Secular Evolution of the Continental Crust

    Science.gov (United States)

    Kemp, A. I. S.; Hawkesworth, C. J.

    2003-12-01

    Every geologist is acquainted with the principle of "uniformitarianism," which holds that present-day processes are the key to those that operated in the past. But the extent this applies to the processes driving the growth and differentiation of the Earth's continental crust remains a matter of debate. Unlike its dense oceanic counterpart, which is recycled back into the mantle by subduction within 200 Ma (see Chapter 3.13), the continental crust comprises buoyant quartzofeldspathic materials and is difficult to destroy by subduction. The continental crust is, therefore, the principal record of how conditions on the Earth have changed, and how processes of crust generation have evolved through geological time. It preserves evidence of secular variation in crustal compositions, and thus the way in which the crust has formed throughout Earth's history. Exploring the nature and origin of these variations is the focus of this chapter.Continental rocks are highly differentiated, and so the crust is enriched in incompatible components compared to the primeval chondritic composition (see Chapter 3.01). Of these, water is perhaps the most relevant, both for the origin and evolution of life, and also for many models of crust generation and differentiation. Similarly, the mass of continental crust is just 0.57% of the silicate Earth, and yet it contains ˜35% of the potassium (using the crustal composition estimates in Table 1). Continental rocks comprise the buoyant shell that was once thought to float on a basaltic substratum, inferred from the wide distribution of chemically similar continental flood basalts (von Cotta, 1858). The links with the adjacent oceans were perhaps unclear, "the greatest mountains confront the widest oceans" ( Dana, 1873). Yet, it has long been argued that the rock that has the most similar composition to the average continental crust, andesite, may be generated by fractional crystallization of basalt ( Daly (1914) and Bowen (1928); but see the

  8. Thermal regime along the Antilles subduction zone: Influence of the oceanic lithosphere materials subducted in the oceanic crust

    Science.gov (United States)

    Biari, Youssef; Marcaillou, Boris; Klingelhoefer, Frauke; Francis, Lucazeau; Fréderique, Rolandone; Arnauld, Heuret; Thibaud, Pichot; Hélène, Bouquerel

    2017-04-01

    Heat-flow measurements acquired during the Antithesis Cruise in the Northern Lesser Antilles reveal an atypical heat-flow trend, from the trench to the margin forearc, where the subducting crust consists of exhumed and serpentinized mantle rocks (see Marcaillou et al. same session). We investigate the thermal structure of the Lesser Antilles subduction zone along two transects perpendicular to the margin located off Antigua and Martinique Islands. We perform 2-D steady-state finite elements thermal modelling constrained by newly-recorded and existing data: heat flow measurements, deep multichannel reflection and wide angle seismic data as well as earthquake hypocenters location at depth. Along the Martinique profile, the heat-flow decreases from the trench (45 mW.m-2) to minimum in the outer fore-arc (30 mW.m-2) and increases to a plateau (50 mW.m-2) toward the back-arc area. These trend and values are typical for the subduction of a steep 80-MYr old oceanic plate beneath an oceanic margin. As a result, the 150°-350°C temperature range along the interplate contact, commonly associated to the thermally-defined seismogenic zone, is estimated to be located between 200 - 350km from the trench. In contrast, along the Antigua profile, the heat-flow shows an atypical "flat" trend at 40 ± 15 mW.m-2 from the trench to the inner forearc. Purely conductive thermal models fail at fitting both the measured values and the flat trend. We propose that the subducting crust made of serpentinized exhumed mantle rock strongly affecting the heat-flow at the surface and the margin thermal structure. The geothermal gradient in the 5-km-thick serpentinized layer is expected to be low compared to "normal" oceanic crust because of cold water percolation and peridotite alteration. Moreover, from 50km depth, serpentine dehydration reactions provide significant amounts of hot water expelled toward the upper plate, generated heat beneath the forearc. As a result, in our preferred model: 1/ A

  9. Formation of hybrid arc andesites beneath thick continental crust

    Science.gov (United States)

    Straub, Susanne M.; Gomez-Tuena, Arturo; Stuart, Finlay M.; Zellmer, Georg F.; Espinasa-Perena, Ramon; Cai, Yue; Iizuka, Yoshiyuki

    2011-03-01

    Andesite magmatism at convergent margins is essential for the differentiation of silicate Earth, but no consensus exists as to andesite petrogenesis. Models proposing origin of primary andesite melts from mantle and/or slab materials remain in deadlock with the seemingly irrefutable petrographic and chemical evidence for andesite formation through mixing of basaltic mantle melts with silicic components from the overlying crust. Here we use 3He/4He ratios of high-Ni olivines to demonstrate the mantle origin of basaltic to andesitic arc magmas in the central Mexican Volcanic Belt (MVB) that is constructed on ~ 50 km thick continental crust. We propose that the central MVB arc magmas are hybrids of high-Mg# > 70 basaltic and dacitic initial mantle melts which were produced by melting of a peridotite subarc mantle interspersed with silica-deficient and silica-excess pyroxenite veins. These veins formed by infiltration of reactive silicic components from the subducting slab. Partial melts from pyroxenites, and minor component melts from peridotite, mix in variable proportions to produce high-Mg# basaltic, andesitic and dacitic magmas. Moderate fractional crystallization and recharge melt mixing in the overlying crust produces then the lower-Mg# magmas erupted. Our model accounts for the contrast between the arc-typical SiO2 variability at a given Mg# and the strong correlation between major element oxides SiO2, MgO and FeO which is not reproduced by mantle-crust mixing models. Our data further indicate that viscous high-silica mantle magmas may preferentially be emplaced as intrusive silicic plutonic rocks in the crust rather than erupt. Ultimately, our results imply a stronger turnover of slab and mantle materials in subduction zones with a negligible, or lesser dilution, by materials from the overlying crust.

  10. Effect of Rare Earth Phosphate Composite Materials on Cleanout Oil-Dirty Property of Ceramics

    Institute of Scientific and Technical Information of China (English)

    Liang Jinsheng; Zhang Jin; Liang Guangchuan; Wang Lijuan; Li Guosheng; Meng Junping; Pan Yanfen

    2004-01-01

    The ceramics with cleaning easily up oil-dirty property were prepared by doping enamel slurry with rare earth elements phosphate composite materials, and then the influence mechanisms of rare earth elements phosphate composite materials on the cleaning easily up oil-dirty property of ceramic were studied by testing the surface tension and contact angle of water, latex stability inside of ceramic product. Results that the ceramic doped enamel slurry with rare earth phosphate composite materials can reduce obviously the surface tension and contact angle of water, and make latex more stable, and so the ceramics possess excellent cleanout oil-dirty property.

  11. Quaternary deposits and weathered bedrock material as a source of dangerous radon emissions in Estonia

    Directory of Open Access Journals (Sweden)

    Petersell Valter

    2015-06-01

    Full Text Available The risk of dangerous radon emissions in Estonia is high, being among the highest in Europe. In almost 33 per cent of Estonian land area, the content of radon in soil-contained air exceeds the safe limit for unrestricted construction (50 kBq/m3. In such high radon-risk areas the concentration of radon in soil-contained air ranges from 50 to 400 kBq/m3, in a few cases reaching up to 2,100 kBq/m3 exceeding the permitted level for residential areas. The situation is particularly serious in the northernmost part of the country, where uranium-rich graptolite argillite (Dictyonema shale and the Obolus phosphorite are close to ground surface and their particles are constituent parts of Quaternary deposits. Radon emissions from bedrock have been investigated in detail, but to date Quaternary strata as a source of radon emissions are poorly studied. According to our measurements the highest concentrations of radon are related to tills containing clasts and fines of graptolite argillite and phosphorite. Glacial deposits include also granitoidal material, containing U, Th and K, which have been transported by glaciers from the outcrop areas of crystalline basement rocks in Finland and the Gulf of Finland. Due to weathering, outwash and repeated redeposition other genetic types are poorer in radioactive elements and they are weaker sources of radon.

  12. Use of weathered diesel oil as a low-cost raw material for biosurfactant production

    Directory of Open Access Journals (Sweden)

    A. P. Mariano

    2008-06-01

    Full Text Available This work aimed to investigate the capability of biosurfactant production by Staphylococcus hominis, Kocuria palustris and Pseudomonas aeruginosa LBI, using weathered diesel oil from a long-standing spillage as raw material. The effect of the culture media (Robert or Bushnell-Haas and of the carbon source (spilled diesel oil or commercial diesel oil on biosurfactant production was evaluated. Erlenmeyer flasks (250 mL containing the cell broth were agitated (240 rpm for 144 h at 27±2ºC. Biosurfactant production was monitored according to the De Nöuy ring method using a Krüss K6 tensiometer. Considering the possibility of intracellular storage of biosurfactant in the cell wall of the cultures S. hominis and K. palustris, experiments were also done applying ultrasound as a way to rupture the cells. For the conditions studied, the cultures did not indicate production of biosurfactants. Results obtained with a hydrocarbon biodegradability test based on the redox indicator 2,6-dichlorophenol indophenol showed that only the commercial diesel was biodegraded by the cultures.

  13. Physical Oceanography: Project Earth Science. Material for Middle School Teachers in Earth Science.

    Science.gov (United States)

    Ford, Brent A.; Smith, P. Sean

    This book is one in a series of Earth science books and contains a collection of 18 hands-on activities/demonstrations developed for the middle/junior high school level. The activities are organized around three key concepts. First, students investigate the unique properties of water and how these properties shape the ocean and the global…

  14. Prebiotic materials from on and off the early Earth

    Science.gov (United States)

    Bernstein, Max

    2006-01-01

    One of the great puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in compounds made mostly of carbon, the kind of which we are currently composed. Where did these organic molecules come from? In this talk I will review proposed contributions to pre-biotic organic chemistry from both terrestrial processes (i.e., hydrothermal vents, Miller-Urey syntheses) and also from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, and there is a growing consensus among scientists that molecules from space played an important role in making the Earth habitable, and perhaps even provided specific compounds that were directly related to the origin of life.

  15. Prebiotic materials from on and off the early Earth.

    Science.gov (United States)

    Bernstein, Max

    2006-10-29

    One of the greatest puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in carbon compounds, but from where did these organic molecules come? In this article, I will review proposed terrestrial sources of prebiotic organic molecules, such as Miller-Urey synthesis (including how they would depend on the oxidation state of the atmosphere) and hydrothermal vents and also input from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, therefore this flux of reduced carbon from space probably also played a role in making the Earth habitable. We will compare and contrast the types and abundances of organics from on and off the Earth given standard assumptions. Perhaps each process provided specific compounds (amino acids, sugars, amphiphiles) that were directly related to the origin or early evolution of life. In any case, whether planetary, nebular or interstellar, we will consider how one might attempt to distinguish between abiotic organic molecules from actual signs of life as part of a robotic search for life in the Solar System.

  16. Experiments of Applying the Rare-Earth Modifying Agents in New Dental Materials Preparation

    Institute of Scientific and Technical Information of China (English)

    Chen Xiaohu; Wang Hua; Wang Qin; Li Xiaodi; Ma Rui

    2007-01-01

    Harmless rare-earth modifying agents were prepared by orthogonal experiments. A new resin material was synthesized with the qualities such as rigidity, rubbing abrasion, aging, luster and plasticity better than the dental resin materials in common used. It could be used as the substitutes for the applied resin teeth materials.

  17. Weathering processes and the composition of inorganic material transported through the orinoco river system, Venezuela and Colombia

    Science.gov (United States)

    Stallard, R.F.; Koehnken, L.; Johnsson, M.J.

    1991-01-01

    The composition of river-borne material in the Orinoco River system is related primarily to erosion regime, which in turn is related to tectonic setting; especially notable is the contrast between material derived from tectonically active mountain belts and that from stable cratonic regions. For a particular morpho-tectonic region, the compositional suites of suspended sediment, bed material, overback deposits, and dissolved phases are fairly uniform are are typically distinct from whose of other regions. For each region, a consistent set of chemical weathering reactions can be formulated to explain the composition of dissolved and solid loads. In developing these formulations, erosion on slopes and storage of solids in soils and alluvial sediments are important considerations. Compositionally verymature sediment is derived from areas of thick soils where erosion is transport limited and from areas where sediments are stored for extended periods of time in alluvial deposits. Compositionally immature sediments are derived from tectonically active mountain belts where erosion is weathering limited. Weathering-limited erosion also is important in the elevated parts of the Guayana Shield within areas of sleep topography. Compared to the mountain belts, sediments derived from elevated parts of the Shield are more mature. A greater degree of chemical weathering seems to be needed to erode the rock types typical of the Shield. The major-element chemistry and mineral composition of sediment delivered by the Orinoco River to the ocean are controlled by rivers that have their headwaters in mountain belts and cross the Llanos, a region of alluvial plains within the foreland basin. The composition of sediments in rivers that drain the Shield seems to be established primarily at the site of soil formation, whereas for rivers that drain the mountain belts, additional weathering occurs during s episodes of storage on alluvial plains as sediments are transported across the Llanos

  18. Estimation of a stress field in the earth`s crust using drilling-induced tensile fractures observed at well WD-1 in the Kakkonda geothermal field; Kakkonda WD-1 sei de kansokusareta drilling induced tensile fracture ni yoru chikaku oryokuba no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Okabe, T. [GERD Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Hayashi, K. [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science; Kato, O.; Doi, N.; Miyazaki, S. [Japan Metals and Chemicals Co. Ltd., Tokyo (Japan); Uchida, T. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-05-27

    This paper describes estimation of a stress field in the earth`s crust in the Kakkonda geothermal field. Formation micro imager (FMI) logging known as a crack detecting logging was performed in the well WD-1. This FMI logging has made observation possible on cracks along well axis thought to indicate size and direction of the crust stress, and drilling-induced tensile fractures (DTF). It was verified that these DTFs are generated initially in an azimuth determined by in-situ stress (an angle up to the DTF as measured counterclockwise with due north as a starting point, expressed in {theta}) in the well`s circumferential direction. It was also confirmed that a large number of cracks incline at a certain angle to the well axis (an angle made by the well axis and the DTF, expressed in {gamma}). The DTF is a crack initially generated on well walls as a result of such tensile stresses as mud pressure and thermal stress acting on the well walls during well excavation, caused by the in-situ stress field. Measurement was made on the {theta} and {gamma} from the FMI logging result, and estimation was given on a three-dimensional stress field. Elucidating the three-dimensional crust stress field in a geothermal reservoir is important in making clear the formation mechanism thereof and the growth of water-permeable cracks. This method can be regarded as an effective method. 9 refs., 8 figs., 1 tab.

  19. Rare-Earth Minerals in Martian Meteorite NWA 7034/7533: Evidence for Fluid-Rock Interaction in the Martian Crust

    OpenAIRE

    Liu, Yang; Ma, Chi; Chen, Yang; Beckett, John; Guan, Yunbin

    2015-01-01

    Monazite, chevkinite-perrierite and xenotime are common rare-earth minerals in terrestrial rocks and important repositories for the rare-earth-elements (REE). Liu and Ma [1-2] reported finding monazite, chevkinite-perrierite and xenotime in NWA 7034/7533, the ‘Black Beauty’ meteorite. Here, we provide a more detailed textural and compositional analysis of these minerals; our results suggest an origin via fluid-rock interaction.

  20. Effects of rare earth element lanthanum on the microstructure of copper matrix diamond tool materials

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Effects of rare earth element La on the microstructure of Cu matrix diamond tools were researched under the conditions of various materials componentsand the process parameters in order to improve materials properties. SEM, XPS and X-ray were used to investigate the fracture section, microstructure and the element valence in materials. The results shown that the combination of rare earth element La and transition element Ti is advantageous to the bonding state between diamond particles and matrix, so it can improve the materials properties. Suitable sintering temperature is 790℃.

  1. Preparation and Characterization of Rare Earth Composite Materials Radiating Far Infrared for Activating Liquefied Petroleum Gas

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Rare earth composite materials radiating far-infrared rays were prepared according to far infrared absorption spectrum of main component in liquefied petroleum gas (LPG). The composite materials were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transformed infrared spectra(FTIR). The results show that after the composite materials were calcined at 873 K for 4 h, FTIR spectra of rare earth composite materials display two new peaks at 1336 and 2926 cm-1 available for activating LPG.

  2. Jerks as Guiding Influences on the Global Environment: Effects on the Solid Earth, Its Angular Momentum and Lithospheric Plate Motions, the Atmosphere, Weather, and Climate

    Science.gov (United States)

    Quinn, J. M.; Leybourne, B. A.

    2010-12-01

    Jerks are thought to be the result of torques applied at the core-mantle boundary (CMB) caused by either of two possible processes, working together or separately: 1) Electromagnetic Induction and 2) Mechanical Slippage. In the first case, it is thought that electromagnetic energy slowly builds-up at the CMB, reaches some critical level, and is then suddenly released, causing a geomagneticly induced torque at the CMB due to the differential electrical conductivity between the lower mantle and the surface of the outer core. The second case is driven by stress and strain increases that buildup mechanical potential energy, which is released when a critical level is reached, thereby generating a torque at the CMB. Generally, a trigger is required to start the Jerk process in motion. In the electromagnetic case, it is suggested that energy from the Sun may supply the requisite energy buildup that is subsequently released by a magnetic storm trigger, for instance. In the case of mechanical slippage, bari-center motion among the Earth, Moon, and Sun, as well as tidal forces and mass redistributions through Earth's wobbles combine to provide the accumulated stress/strain buildup and subsequent trigger. The resulting fluid flow changes at the CMB result in geomagnetic field changes and Joule heating throughout the solid Earth, its oceans, and atmosphere. It is shown that the Global Temperature Anomaly (GTA), which is measured at Earth's surface, correlates with changes in the geomagnetic non-dipole moment, and thus with core fluid motions. This links Global Warming and weather with core processes, important examples being the 1930's Dust Bowl Era and the 1947 Impulse. The CMB torque also affects Earth's angular momentum. But it appears that magnetic storms can as well. As a consequence, the Jet Stream, atmospheric circulation patterns, and the Global Oscillation System (i.e., El-Nino/Southern-Oscillation, North Atlantic Oscillation, the Pacific Decade Oscillation, etc.) are

  3. Effect of Rare Earth Composite Ceramic Materials on Oil Combustion of Oil-Burning Boiler

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The rare earth composite ceramic materials were prepared using rare earths and far infrared natural mineral. The effects of the as-prepared ceramic materials on the oil consumption and air pollutants emissions of oil-burning boiler were investigated. The results show that the composite ceramic materials can radiate higher intensity of far infrared. The molecular movement is strengthened and the chemical bonds of the molecules are easily ruptured when the diesel oil is dealt with the composite materials. The oil-saving rate of the RBS·VH-1.5 boiler dealt with the rare earth composite ceramic materials is 3.49%, and the reducing rates of CO and NO in the exhaust gas are 25.4% and 9.7%, respectively.

  4. Photo-Catalyzed Rare Earth Materials with Ability to Translate Free Radicals into Negative Ions

    Institute of Scientific and Technical Information of China (English)

    Jin Zongzhe; Zhang Zhili; Wei Gang; Huang Lirong

    2005-01-01

    Materials with function of producing negative ions effection,containing valency-variable rare earth elements and semiconductor oxide,were fabricated.Free radicals produced by the materials were tested.The result shows that the materials can produce quite a few free radicals as·O-2 no matter whether they are under illumination of ultraviolet radiation or under visible light radiation,or under no light radiation, demonstrating semiconductor oxide can be catalysed under the visible light radiation.At the same time the result shows there is direct relation between the number of free radicals and of the negative ion produced by the materials,which meant that during photo-catalyzed and redox process of valency-variable rare earth elements free radicals translate into negative ions. A circular model is presented involving circulating change of valency-variable rare earth elements and water and oxygen absorbed on the surface of materials under the condition of photocatalysis.

  5. Using Lunar Impact Glasses to Inform the Amount of Organic Material Delivered to the Early Earth

    Science.gov (United States)

    Nguyen, Pham; Zellner, Nicolle

    2017-01-01

    The delivery of organic material via comets and asteroids during the early history of Earth plays an important role in some theories about the origin of life on Earth. Given the close proximity of the Moon to the Earth, the Moon’s impact history can be used to estimate the amount of organic material delivered to the early Earth. Analysis of lunar impact glasses, derived from energetic impacts on the Moon, provide valuable data that can be used to interpret the Moon’s impact flux. Here we present the results of a study of the non-volatile lithophile element compositions of over 500 impact glass samples from the Apollo 14, 16, and 17 landing sites, along with associated ages of a subset of them. Our analyses show that many of the impact glasses possess compositions exotic to the local regolith in which they were found. Coupled with their ages, these glasses suggest material transport from distant regions of the Moon and may allow an estimate of the number of lunar (and terrestrial) impactors in a given time period. These results have important implications for constraining the Moon’s impact flux and also the amount of organic material delivered to the early Earth. Results of our preliminary study, which investigates the amounts of organic material delivered by comets and asteroids to the Moon (and Earth), will be presented.

  6. Structure of the earth's crust in the northern Apennines and neighbouring areas with particular regard to geothermal anomaly in Tuscany. Die Krustenstruktur des Nordapennins und angrenzender Gebiete mit besonderer Beruecksichtigung der geothermischen Anomalie der Toskana

    Energy Technology Data Exchange (ETDEWEB)

    Wigger, P.J.

    1984-01-01

    This study describes the constitution and structure of the earth's crust for the area extending from the western and northwestern boundary of the Adriatic plate to the foredeeps north and east of the Apennines, as well as to the European plate at the Western Alps and the Ligurian Sea region. The basis for analysis and interpretation is all the deep seismic sounding data available from this area. As well as my own results, I have also made use of already published results to describe the crustal structure of the adjacent regions. The results are summarized in a contour map of the Mohorovicic discontinuity as well as in crustal sections. The crustal structure of the area under study is very heterogeneous and the deduced velocity-depth functions vary greatly. Main characteristics include lateral changes in the crustal structure. A differentiation and classification of the resulting crustal types has been undertaken. 69 figures.

  7. Similar quartz crystallographic textures in rocks of continental earth's crust (by neutron diffraction data): II. Quartz textures in monophase rocks

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, A. N., E-mail: nikitin@nf.jinr.ru; Ivankina, T. I. [Joint Institute for Nuclear Research (Russian Federation); Ullemeyer, K. [Universitaet Kiel, Institut fuer Geowissenschaften (Germany); Vasin, R. N. [Joint Institute for Nuclear Research (Russian Federation)

    2008-09-15

    The types of quartz textures found in a large collection of multiphase rocks from different regions of the earth are analyzed. Crystallographic textures of granulite, amphibolite, slate, and gneiss samples are measured, classified, and compared with the similar textures of monomineral rocks.

  8. NREL Explores Earth-Abundant Materials for Future Solar Cells (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-10-01

    Researchers at the National Renewable Energy Laboratory (NREL) are using a theory-driven technique - sequential cation mutation - to understand the nature and limitations of promising solar cell materials that can replace today's technologies. Finding new materials that use Earth-abundant elements and are easily manufactured is important for large-scale solar electricity deployment.

  9. Study on preparation and application performance of blue sky rare earth light storage and emission material

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Shao-hui; NI; Hai-yong; HUANG; Zhao-hui; LI; Xu-bo; DING; Jian-hong; ZHANG; Zhen

    2005-01-01

    Under reduction atmosphere, a blue sky rare earth silicate light storage and emission material was prepared by high temperature solid phase synthesis. The best constituent ratio of this material was determined through orthogonal experiment, and its excitation and emission spectra and X-ray diffraction patterns were measured. And a comparative study was conducted on its application properties.

  10. If ionospheric and geomagnetic disturbances observed before strong earthquakes may result from simultaneous impact of space weather on all geospheres including solid earth

    Science.gov (United States)

    Khachikyan, Galina

    2016-07-01

    It is revealed in previous decades that ionospheric disturbances precede strong earthquakes, thus, the ionospheric precursors of strong earthquakes are now under developing [Pulinets and Boyarchuk, 2004]. Simultaneously, it is revealed that strong earthquakes may be preceded by geomagnetic disturbances as well, as a result, the geomagnetic variations, for example, in the ULF band, are considered now as precursory signals [Fraser-Smith, 1990, doi/10.1029/GL017i009p01465]. At the same time, there is currently no reliable theory nor for ionospheric or to magnetic precursors of earthquakes. Moreover, several researches have reexamined some of above results and concluded that observed magnetic disturbances before strong earthquakes could be generated by other sources, such as global magnetic activity [e.g. Campbell, 2009, doi/10.1029/2008JA013932], and that ionospheric anomalies can also be an effect of the increase of the global magnetic activity [e. g. Masci and Thomas, 2015, doi:10.1002/2015RS005734]. Taking into account such conclusions, one may suggest that the observed ionospheric and geomagnetic disturbances before strong earthquakes might be due to simultaneous influence of a space weather on the complicated surrounding system including the solid earth. This report presents some statistical results to prove such suggestion. In particular, it is shown [Khachikyan et al., 2012, doi:10.4236/ijg.2012.35109] that maximal possible earthquake magnitude (seismic potential) can be determined, in first approximation, on the base of geomagnetic Z-component measured in the Geocentric Solar Magnetosphere (GSM) coordinate system, in which the space weather impact on the earth's environment, due to reconnection of the solar wind magnetic field with the earth's magnetic field, is more ordered.

  11. Analysis of the black crust on Saint Michael's Church

    Science.gov (United States)

    Popister, I.; Zeman, A.

    2012-04-01

    The goal of the present study is to characterize the black crust on the main stone used at Saint Michael's Church in Cluj-Napoca, Romania. The gases in the atmosphere, along with natural and artificial pollutants can cause damage the integrity of the stone when it comes in contact with the stone's chemistry. In order to explain the mechanism of stone decay due to black crust it is necessary to know what "weathering" means, so it must be seen as a complex process that consists of: type of material, the environment in which the material is located, and the amount of time required for the process to take place. Each material has particular properties, due to its composition and genesis. When it comes in contact with the acidity of the "acid rain" (caused by sulphur, nitrogen oxides and carbon dioxide), the rain penetrates into the pore structure, corroding it and "allowing" the atmospheric particles to penetrate the stone. St. Michael's Church is one of the oldest Gothic architectural monuments in Cluj, Romania, being built predominantly from Cenozoic (Upper Eocene) limestone, locally known as the Cluj Limestone. The main quarry was in Baciu, near Cluj. The samples that were collected from the Saint Michael's Church were characterized by means of: optical microscope, Scattering Electronic Microscope, thin sections, EDS The samples that were collected from the Saint Michael's Church went through a series of tests: optical microscope, Scattering Electronic Microscope, thin sections, EDX, and cross-section. The optical microscope analysis of the thin sections revealed that the black crust layer is approximately 0.01mm, and in the sample there are perfectly shaped ooides, which is characteristic to this type of limestone. The SEM analysis shows a resedimentation layer on the surface of the black crust, which occurred probably due to the effect of acid rain. Further information regarding the results of the test will be presented on the poster.

  12. Zinc Isotopic Signatures of the Upper Continental Crust

    Science.gov (United States)

    Xia, Y.; Zhang, X.; Zhang, H.; Huang, F.

    2016-12-01

    To examine the Zn isotope systematics within the Upper Continental Crust (UCC), and isotope fractionation during chemical weathering in large spatial and temporal scales, we analyzed Zn isotopic compositions of loess, glacial diamictites, river sediments, and igneous rocks (samples in total 77). The Zn isotopic compositions (δ66Zn relative to JMC-Lyon) of loess display a limited variation (0.17‰ to 0.29‰), which is negatively correlated with Zn content and proxies for chemical weathering (e.g. CIA values), reflect the impact of chemical weathering. Glacial diamictites have more variable δ66Zn (0.09‰ to 0.48‰), but the average δ66Zn (0.29±0.03‰, 2SD) is similar to loess. δ66Zn of glacial diamictites correlate roughly negatively with CIA values, but have no correlation with Zn content, implying source heterogeneity and effect from chemical weathering. δ66Zn of A-type (0.39‰ to 0.45‰) and S-type (0.28‰ to 0.35‰) granites are both homogeneous, but the latter have systematically lighter δ66Zn. This may reflect no Zn isotopic fractionation during magmatic processes and involvement of isotopically light meta-sedimentary into the sources of S-type granites. Furthermore, δ66Zn in riverine sediments display a small variation from 0.23‰ to 0.37‰, while δ66Zn of the the shales vary from 0.14‰ to 0.53‰, which could result from a combination of processes, such as biological cycling and chemical weathering. Overall, our data suggest that incipient chemical weathering can fractionate Zn isotopes significantly, meanwhile, during this process, heavy Zn are released preferentially. The UCC is estimated to have an average δ66Zn of 0.30 ±0.03‰ (2SD) with data collected in this study, which is similar to the estimated value of Bulk Silicate Earth (0.28±0.05‰)[1] and mean dissolved riverine flux (0.33‰)[2], but distinctly lighter than the bulk composition of dissolved Zn in the ocean (0.51‰)[2]. [1] Chen et al., Zinc isotope fractionation

  13. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago.

    Science.gov (United States)

    Greber, Nicolas D; Dauphas, Nicolas; Bekker, Andrey; Ptáček, Matouš P; Bindeman, Ilya N; Hofmann, Axel

    2017-09-22

    Earth exhibits a dichotomy in elevation and chemical composition between the continents and ocean floor. Reconstructing when this dichotomy arose is important for understanding when plate tectonics started and how the supply of nutrients to the oceans changed through time. We measured the titanium isotopic composition of shales to constrain the chemical composition of the continental crust exposed to weathering and found that shales of all ages have a uniform isotopic composition. This can only be explained if the emerged crust was predominantly felsic (silica-rich) since 3.5 billion years ago, requiring an early initiation of plate tectonics. We also observed a change in the abundance of biologically important nutrients phosphorus and nickel across the Archean-Proterozoic boundary, which might have helped trigger the rise in atmospheric oxygen. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Decoupled Rb-Sr and Sm-Nd isotopic evolution of the continental crust

    Science.gov (United States)

    Goldstein, S. L.

    1988-01-01

    Evidence was presented that the Rb-Sr and Sm-Nd isotopic systems are decoupled in crust-mantle evolution. Rare earth element (including Sm and Nd) residue principally in silicates, and are resistant to mobilization by weathering and metamorphism. In contrast, Rb and Sr are easily fractionated by crustal processes and residue in carbonates as well as in silicates. As a result, continental Sr, but not Nd, can be recycled into the mantle by exchange of seawater with basalt at spreading ridges and by subduction of carbonates associated with ridge processes. These effects result in mean Rb-Sr ages of the continental crust and of the upper mantle that are too young. Crustal growth curves based largely on Rb-Sr data, such that of Hurley and Rand, are therefore incorrect.

  15. Effect of woody and herbaceous plants on chemical weathering of basalt material

    Science.gov (United States)

    Mark, N.; Dontsova, K.; Barron-Gafford, G. A.

    2011-12-01

    Worldwide, semi-arid landscapes are transitioning from shallow-rooted grasslands to mixed vegetation savannas composed of deeper-rooted shrubs. These contrasting growth forms differentially drive below-ground processes because they occupy different soil horizons, are differentially stressed by periods of drought, and unequally stimulate soil weathering. Our study aims to determine the effect of woody and herbaceous plants on weathering of granular basalt serving as a model for soil. We established pots with velvet mesquite (Prosopis veluntina), sideoats grama (Bouteloua curtipendula), and bare-soil pots within two temperature treatments in University of Arizona Biosphere 2. The Desert biome served as the ambient temperature treatment, while the Savanna biome was maintained 4°C warmer to simulate projected air temperatures if climate change continues unabated. Rhizon water samplers were installed at a depth of one inch from the soil surface to monitor root zone exudates (total dissolved carbon and nitrogen), dissolved inorganic carbon, and lithogenic elements resulting from basalt weathering. Soil leachates were collected through the course of the experiment. The anion content of the leachates was determined using the ICS-5000 Reagent-Free ion chromatography system. Dissolved carbon and nitrogen were analyzed by combustion using the Shimadzu TOC-VCSH with TN module. Metals and metalloids were measured using inductively coupled plasma mass spectrometry. Irrigation of the pots was varied in time to simulate periods of drought and determine the effect of stress on root exudation. Leachates from all treatments displayed higher pH and electrical conductivity than water used for irrigation indicating weathering. On average, leachates from the potted grasses displayed higher pH and electrical conductivity than mesquites. This agreed with higher concentrations of organic carbon, a measure of root exudation, and inorganic carbon, measure of soil respiration. Both organic

  16. Theoretical and Computational Studies of Rare Earth Substitutes: A Test-bed for Accelerated Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, Lorin X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Hard permanent magnets in wide use typically involve expensive Rare Earth elements. In this effort, we investigated candidate permanent magnet materials which contain no Rare Earths, while simultaneously exploring improvements in theoretical methodology which enable the better prediction of magnetic properties relevant for the future design and optimization of permanent magnets. This included a detailed study of magnetocrystalline anisotropy energies, and the use of advanced simulation tools to better describe magnetic properties at elevated temperatures.

  17. What characterizes planetary space weather?

    OpenAIRE

    2014-01-01

    International audience; Space weather has become a mature discipline for the Earth space environment. With increasing efforts in space exploration, it is becoming more and more necessary to understand the space environments of bodies other than Earth. This is the background for an emerging aspect of the space weather discipline: planetary space weather. In this article, we explore what characterizes planetary space weather, using some examples throughout the solar system. We consider energy s...

  18. Molycorp to acquire leading rare earth processor Neo Material Technologies in $1.3 Billion Deal

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Molycorp, Inc. ("Molycorp") and /Neo Material Technologies Inc. ("Neo Materials,' or "Neo") announced on March 8th the signing of a definitive agreement under which Molycorp will acquire Neo Materials for approximately CDN $1.3 billion. This will create one of the most technologically advanced, vertically integrated rare earth companies in the world.

  19. Standard Practice for Exposure of Cover Materials for Solar Collectors to Natural Weathering Under Conditions Simulating Operational Mode

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This practice provides a procedure for the exposure of cover materials for flat-plate solar collectors to the natural weather environment at temperatures that are elevated to approximate operating conditions. 1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials. 1.3 This practice does not apply to cover materials for evacuated collectors or photovoltaics. 1.4 The values stated in SI units are to be regarded as the standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  20. Enhanced Photoactivity of Layered Nanocomposite Materials Containing Rare Earths, Titanium Dioxide and Clay

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The nanocomposite materials containing rare earths, titanium dioxide and clay (RE/TiO2/Clay) were characterized and tested for the photocatalytic decomposition of formaldehyde. The results show that nanocomposite materials prepared by doping appropriate rare earth elements have better photocatalytic properties than that prepared by doping excessive rare earth elements. The photocatalytic mechanism of composite materials was studied by integrating the theory of photocatalysis with experiment results. Because the site of photocatalytic reaction was limited in the interspace of clay, photocatalytic reaction occurred by two steps: firstly, organic molecules dispersed into the interlayers of clay; secondly, organic molecules and photocatalyst of RE/TiO2 occurred photocatalytic reaction, resulting in forming carbon dioxide.

  1. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  2. Hyper-Raman spectroscopy of Earth related materials

    Science.gov (United States)

    Hellwig, H.

    2004-12-01

    Raman and infrared spectroscopy proved extremely successful in obtaining structural information and thermodynamic data on samples under high pressure conditions in a diamond anvil cell [1,2]. With substantial advances in CCD detector technology and the possibility to focus visible laser light down to several microns, Raman spectroscopy can nowadays be regarded one of the standard techniques for diamond anvil cell investigations. Nevertheless, Raman scattering suffers from often strong fluorescence and the strong Raman signal of the diamonds. Infrared spectroscopy is limited by the sample size and the diffraction limit of mid- or far-infrared radiation. With increasing pressure, diamonds also show strong infrared activity, which can interfere with the signal from the sample. Detectors in the mid- and far-infrared are inherently noisy, often leading to low signal-to-noise ratios for infrared measurements. With new techniques and instrumentation available, such as low noise CCD cameras and stable diode-pumped solid state laser systems, more demanding techniques become feasible as well. Especially hyper-Raman scattering, a nonlinear optical variant of infrared spectroscopy, can be used on a more routine basis for the first time. Pioneering work in the 70s and 80s have explored some of the capabilities of Hyper-Raman spectroscopy [3]. Unlike infrared spectroscopy, Hyper-Raman is not limited by the diffraction limit of mid- or far-infrared radiation, typically restricting the lower frequency limit to several hundred wave numbers. The major advantages of hyper-Raman are essentially background free spectra and the use of wavelengths in the near-infrared and visible, making possible micro focusing and taking advantage of high efficiencies, low noise, and smooth wavelength dependencies of CCD detectors. Hyper-Raman does not suffer from saturation caused by strong absorption in the infrared and is therefore less sensitive to surface effects. For centrosymmetric materials

  3. Applications of seismic pattern recognition and gravity inversion techniques to obtain enhanced subsurface images of the Earth's crust under the Central Metasedimentary Belt, Grenville Province, Ontario

    Science.gov (United States)

    Roy, Baishali; Mereu, R. F.

    2000-12-01

    Project Lithoprobe's Abitibi-Grenville transect seismic reflection lines 32 and 33 traverse the exposed Central Metasedimentary Belt (CMB) located in the Grenville province of the Precambrian Shield of Canada in southern Ontario. These seismic lines image a zone with a protracted deformational history spanning more than 300Myr. Detailed examination of the commercially processed stacked sections reveals a number of significant deficiencies in some important areas. The image quality in these zones of reduced coherency needs to be enhanced to examine specific features and their relation to the surface geology. Examination of near-vertical seismic data from Lines 32 and 33 revealed that the signal-to-noise ratio was not improved by stacking, due to misalignment of signals even after static, normal moveout corrections and residual static corrections. The presumed reason is that reflected seismic energy following long ray paths in heterogeneous media suffers from relative advances and delays in its propagation, and hence arrives at slightly different times at the receivers, tending to be poorly aligned relative to its theoretical traveltime curves. A pattern recognition (PR) method for signal enhancement followed by energy stacking in moving time windows was used in this study to improve the images in spite of misalignments. Reprocessing has refined the geometry of the reflection profiles. The objective of this paper is to use enhanced images of the seismic reflection data obtained by using a PR approach together with gravity data, using 2.5-D forward and 3-D inversion routines, to give an improved model of subsurface structure in the vicinity of lines 32 and 33. Line 32 is dominated by southeast-dipping reflectors soling into the lower crust. The listric geometry of the strong reflection packages of the CMB boundary thrust zone is interpreted to represent a crustal-scale ramp-flat geometry that accommodated northwest-directed tectonic transport of the CMB. This

  4. Localized Electron Trap Modification as a Result of Space Weather Exposure in Highly Disordered Insulating Materials

    Science.gov (United States)

    2017-03-06

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0064 TR-2017-0064 LOCALIZED ELECTRON TRAP MODIFICATION AS A RESULT OF SPACE WEATHER EXPOSURE IN HIGHLY DISORDERED... foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil). AFRL-RV-PS-TR-2017-0064 HAS...AFRL Battlespace Environment Division This report is published in the interest of scientific and technical information exchange , and its

  5. Distributing space weather monitoring instruments and educational materials worldwide for IHY 2007: The AWESOME and SID project

    Science.gov (United States)

    Scherrer, Deborah; Cohen, Morris; Hoeksema, Todd; Inan, Umran; Mitchell, Ray; Scherrer, Philip

    2008-12-01

    The International Heliophysical Year (IHY) aims to advance our understanding of the fundamental processes that govern the Sun, Earth, and heliosphere. The IHY Education and Outreach Program is dedicated to inspiring the next generation of space and Earth scientists as well as spreading the knowledge, beauty, and relevance of our solar system to the people of the world. In our Space Weather Monitor project we deploy a global network of sensors to high schools and universities to provide quantitative diagnostics of solar-induced ionospheric disturbances, thunderstorm intensity, and magnetospheric activity. We bring real scientific instruments and data in a cost-effective way to students throughout the world. Instruments meet the objectives of being sensitive enough to produce research-quality data, yet inexpensive enough for placement in high schools and universities. The instruments and data have been shown to be appropriate to, and usable by, high school age and early university students. Data contributed to the Stanford data center is openly shared and partnerships between groups in different nations develop naturally. Students and teachers have direct access to scientific expertise. The result is a world-wide collaboration of scientists, teachers, and students to investigate the variability of the ionosphere. The research-quality AWESOME (Atmospheric Weather Electromagnetic System of Observation, Modeling, and Education) instruments have been selected as a participating program by the United Nations Basic Space Science Initiative (UNBSSI). The IHY Committee for International Education and Public Outreach has designated the simpler SID (Sudden Ionospheric Disturbance) monitors to be provided to teacher/student teams in each of the 192 countries of the world.

  6. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Composite Material

    Institute of Scientific and Technical Information of China (English)

    JIA You-Hua; ZHONG Biao; JI Xian-Ming; YIN Jian-Ping

    2008-01-01

    We predict enhanced laser cooling performance of rare-earth-ions-doped glasses containing nanometre-sized ultrafine particles, which can be achieved by the enhancement of local field around rare earth ions, owing to the surface plasma resonance of small metallic particles. The influence of energy transfer between ions and the particle is theoretically discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption is predicted. It is concluded that the absorption are greatly enhanced in these composite materials, the cooling power is increased as compared to the bulk material.

  7. Solid-State Lasers for Bathymetry and Communications. Studies of Four Rare-Earth Materials.

    Science.gov (United States)

    1983-01-03

    The envelope was cerium -doped quartz, to reduce UV emission. The lamp was operated in simmer mode. The pulse forming network contained a 50-PF...class of solid state lasing materials called rare-earth fluorides . In these materials, the host lattice is LiYF4 (often called YLF), and the active...1971-1973 in which terbium-doped rare-earth fluorides were grown, and spectroscopy and lasing measurements conducted. A sample of Tb:LiGdF4 was lased

  8. Salt-enhanced chemical weathering of building materials and bacterial mineralization of calcium carbonate as a treatment

    Science.gov (United States)

    Schiro, M.; Ruiz-Agudo, E.; Jroundi, F.; Gonzalez-Muñoz, M. T.; Rodriguez-Navarro, C.

    2012-04-01

    Salt weathering is an important mechanism contributing to the degradation and loss of stone building materials. In addition to the physical weathering resulting from crystallization pressure, the presence of salts in solution greatly enhances the chemical weathering potential of pore waters. Flow through experiments quantify the dissolution rates of calcite and quartz grains (63-125 micrometer diameter) when subjected to 1.0 ionic strength solutions of MgSO4, MgCl, Na2SO4 or NaCl. Results indicate that the identity of the cation is the primary control over the dissolution rate of both calcite and quartz substrates, with salt-enhanced dissolution occurring most rapidly in Mg2+ bearing solutions. It has been observed that weathering rates of rocks in nature, as well as building stones, are slowed down by naturally occurring or artificially produced patinas. These tend to be bacterially produced, durable mineralized coatings that lend some degree of protection to the underlying stone surface [1]. Our research shows that bacterially produced carbonate coatings can be quite effective at reducing chemical weathering of stone by soluble salts. The calcite-producing-bacteria used in this study were isolated from stone monuments in Granada, Spain [2] and cultivated in an organic-rich culture medium on a variety of artificial and natural substrates (including limestone, marble, sandstone, quartz, calcite single crystals, glass cover-slips, and sintered porous glass). Scanning electron microscopy (FESEM) was used to image bacterial calcite growth and biofilm formation. In-situ atomic force microscopy (AFM) enabled calculation of dissolution rates of untreated and bacterially treated surfaces. 2D-XRD showed the mineralogy and crystallographic orientation of bacterial calcium carbonate. Results indicate that bacterially produced calcite crystals form a coherent, mechanically resistant surface layer in perfect crystallographic continuity with the calcite substrate (self

  9. An Integrative Approach to Improving an Introductory Weather & Climate Course and Developing an Allied NASA Earth & Space Science Certificate Program for Pre-service Secondary Teachers (Invited)

    Science.gov (United States)

    Morrow, C. A.; Martin-Hansen, L.; Diem, J.; Elliott, W.

    2009-12-01

    An Atlanta-based partnership made up of leaders in science, education, and Georgia’s state-wide STEM Education Initiative are creating an enduring legacy of climate science education for pre-service and in-service teachers in Georgia as well as for underrepresented high school students who participate in an "Early College" program with Georgia State University (GSU). The core elements of our NASA-funded program are to infuse NASA global climate change resources and best pedagogical practice into a popular 4-credit lecture/lab course called “Introduction to Weather & Climate” (GEOG 1112) at GSU, and to establish a sustainable academic program for pre-service teachers in the College of Education called the NASA Earth & Space Science (ESS) Teacher Certificate. The NASA ESS Certificate will require candidates to accomplish the following as part of (or in addition to) standard degree and licensure requirements: 1. successfully complete a graduate section of “Introduction to Weather and Climate” (GEOG 7112), which requires lesson planning related to course content and engagement with GSU's new CO2 monitoring station whose research-quality data will provide unique hands-on opportunities for Metro Atlanta students and teachers; 2) complete an additional advanced course in climate change (GEOG 6784) plus elective hours in physical science disciplines (e.g. astronomy and physics); 3) serve as a lab teaching assistant for GEOG 1112 and a coach for a cadre of Carver Early College students who are taking the course; 4) make at least one of two teaching practica at a Georgia-based NASA Explorer School; and 5) participate or co-present in a week-long, residential, field-based, Summer Institute in Earth & Space Science intended to increase the interest, knowledge, and ability of in-service secondary science educators to fulfill climate-related standards in Earth Science and Earth Systems Science. We will evaluate, document, and disseminate (to the University System of

  10. Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications

    Science.gov (United States)

    Escudero, Alberto; Becerro, Ana I.; Carrillo-Carrión, Carolina; Núñez, Nuria O.; Zyuzin, Mikhail V.; Laguna, Mariano; González-Mancebo, Daniel; Ocaña, Manuel; Parak, Wolfgang J.

    2017-06-01

    Rare earth based nanostructures constitute a type of functional materials widely used and studied in the recent literature. The purpose of this review is to provide a general and comprehensive overview of the current state of the art, with special focus on the commonly employed synthesis methods and functionalization strategies of rare earth based nanoparticles and on their different bioimaging and biosensing applications. The luminescent (including downconversion, upconversion and permanent luminescence) and magnetic properties of rare earth based nanoparticles, as well as their ability to absorb X-rays, will also be explained and connected with their luminescent, magnetic resonance and X-ray computed tomography bioimaging applications, respectively. This review is not only restricted to nanoparticles, and recent advances reported for in other nanostructures containing rare earths, such as metal organic frameworks and lanthanide complexes conjugated with biological structures, will also be commented on.

  11. Large-scale subduction of continental crust implied by India-Asia mass-balance calculation

    Science.gov (United States)

    Ingalls, Miquela; Rowley, David B.; Currie, Brian; Colman, Albert S.

    2016-11-01

    Continental crust is buoyant compared with its oceanic counterpart and resists subduction into the mantle. When two continents collide, the mass balance for the continental crust is therefore assumed to be maintained. Here we use estimates of pre-collisional crustal thickness and convergence history derived from plate kinematic models to calculate the crustal mass balance in the India-Asia collisional system. Using the current best estimates for the timing of the diachronous onset of collision between India and Eurasia, we find that about 50% of the pre-collisional continental crustal mass cannot be accounted for in the crustal reservoir preserved at Earth's surface today--represented by the mass preserved in the thickened crust that makes up the Himalaya, Tibet and much of adjacent Asia, as well as southeast Asian tectonic escape and exported eroded sediments. This implies large-scale subduction of continental crust during the collision, with a mass equivalent to about 15% of the total oceanic crustal subduction flux since 56 million years ago. We suggest that similar contamination of the mantle by direct input of radiogenic continental crustal materials during past continent-continent collisions is reflected in some ocean crust and ocean island basalt geochemistry. The subduction of continental crust may therefore contribute significantly to the evolution of mantle geochemistry.

  12. Temporal Evolution of the Upper Continental Crust: Implications for the Mode of Crustal Growth and the Evolution of the Hydrosphere

    Science.gov (United States)

    Rudnick, R. L.; Gaschnig, R. M.; Li, S.; Tang, M.; Qiu, L.; Valley, J. W.; Zurkowski, C.; McDonough, W. F.

    2014-12-01

    The upper continental crust (UCC), the interface between the atmosphere and solid Earth, is the site of weathering that produces sedimentary rocks, influences ocean chemistry through runoff of soluble elements, and affects climate through CO2 draw-down. The UCC also contains more than 50% of the crust's highly incompatible element budget (including K, Th, and U). Therefore, understanding its composition and evolution provides insight into how continents have formed, evolved, and interacted with the hydrosphere. New major and trace element compositions of >100 glacial diamictites and >100 Archean shales, plus δ7Li and δ18O for a subset of these samples, combined with data from the literature, show that the average composition of the UCC has changed through time, reflecting both the rise of atmospheric oxygen and its attendant effects on weathering, as well as the mode of crust formation and differentiation. Some changes that occur as a step function near the Archean/Proterozoic boundary (increased Th/U, decreased Mo/Pr, V/Lu) reflect the rise of oxygen at the great oxidation event (GOE) and its influence on chemical weathering signatures in the UCC. Other changes are more gradual with time (e.g., higher Th/Sc and δ18O, lower Ni/Co, La/Nb, Eu/Eu* and transition metal abundances) and reflect an UCC that has transitioned from a more mafic to a more felsic bulk composition, and which experienced increased interaction with the hydrosphere with time. The gradual nature of these compositional changes likely reflects the waning heat production of the Earth, rather than an abrupt change in tectonics or style of crust formation. These more gradual changes in crust composition, which contrast with the abrupt changes associated with the GOE, suggest that a fundamental change in the nature of crust differentiation is unlikely to be responsible for the rise of atmospheric oxygen (cf. Keller and Schoene, 2012). Indeed, it appears that the opposite may be true: that the rise of

  13. Using Federally Funded Curricular Materials to meet Next Geneartion Science Standards in Earth System Science

    Science.gov (United States)

    McAuliffe, C.

    2015-12-01

    The Next Generation Science Standards (NGSS) describe teaching and learning goals for Earth system science at all levels of K-12, including elementary, middle school, and high school. Teachers must consider science and engineering practices, cross-cutting concepts, and disciplinary core ideas. The National Science Foundation and other federal organizations have supported the development of reformed curricular materials at the K-12 level for many years. Although developed before the adoption of NGSS, many of these Earth system science resources are, in fact, NGSS congruent. Such resources include those developed by TERC, SERC, EDC, NASA, NOAA, USGS, and others. This session features NGSS congruent materials, carefully examining and dissecting the performance expectations that embody these materials. It also shares a process of tagging these materials via NSTA's, NGSS portal guidelines.

  14. Tabique walls composite earth-based material characterization in the Alto Douro wine region, Portugal

    Directory of Open Access Journals (Sweden)

    Rui CARDOSO

    2015-12-01

    Full Text Available The Alto Douro Wine Region, located in the northeast of Portugal, a UNESCO World Heritage Site, presents a relevant tabique building stock, a traditional vernacular building technology. A technology based on a timber framed structure filled with a composite earth-based material. Meanwhile, previous research works have revealed that, principally in rural areas, this Portuguese heritage is highly deteriorated and damaged because of the rareness of conservation and strengthening works, which is partly related to the non-engineered character of this technology and to the growing phenomenon of rural to urban migration. Those aspects associated with the lack of scientific studies related to this technology motivated the writing of this paper, whose main purpose is the physical and chemical characterization of the earth-based material applied in the tabique buildings of that region. Consequently, an experimental work was conducted and the results obtained allowed, among others, the proposal of a particle size distribution envelope in respect to this material. This information will provide the means to assess the suitability of a given earth-based material in regard to this technology. The knowledge from this study could be very useful for the development of future normative documents and as a reference for architects and engineers that work with earth to guide and regulate future conservation, rehabilitation or construction processes helping to preserve this fabulous legacy.

  15. When materials become critical : lessons from the 2010 rare earth crisis

    NARCIS (Netherlands)

    Sprecher, B.

    2016-01-01

    This dissertation is the culmination of over four years research on the rare earth element neodymium in the context of the 2010 REE crisis. Neodymium is a generally recognized ‘critical’ material with a relevant application in the form of NdFeB magnets, both for sustainable energy technologies as we

  16. Celebrate with SATELLITES: An International Polar Year Partnership to Study Earth's Materials

    Science.gov (United States)

    Hedley, Mikell Lynne; Czajkowski, Kevin; Struble, Janet; Benko, Terri; Shellito, Brad; Sheridan, Scott; Stasiuk, Mandy Munroe

    2009-01-01

    The SATELLITES program uses geospatial technologies to study surface temperatures of Earth's materials, such as sand, soil, grass, and water. Data are collected using Global Learning and Observations to Benefit the Environment (GLOBE) protocols, which are then used in research projects that are a part of the International Polar Year (IPY).…

  17. A captured asteroid : Our David's stone for shielding earth and providing the cheapest extraterrestrial material

    Science.gov (United States)

    Massonnet, Didier; Meyssignac, Benoît

    2006-07-01

    The issue of protecting the Earth against an asteroid impact is very popular and many concepts have been proposed to fulfil this objective. In this paper, we develop the idea of capturing a small size asteroid from an orbit close to Earth's in terms of energy and placing it into a loose Earth-bound orbit in order to use it as a shield by engineering its collision with any incoming, threatening body prior to its impact with the Earth. The operations for turning the captured asteroid into an efficient shield appear to be quicker, easier, cheaper and safer than an mission aimed at landing on an incoming impact-bound asteroid either for altering its trajectory or attempting to destroy it. The aim is an asteroid typically 20 40 m in diameter, too small to cause damage on Earth if an improper management leads to its crash, but big enough to destroy and deviate any incoming body if a collision is engineered with it preferably at more than one million km from Earth. Such a collision could be implemented within a 8 month time frame. Such an asteroid would also be a source of material such as liquid oxygen for exploratory missions. We show that the production of this material is much more efficient from an asteroid's surface than from the Moon's. As the celestial surface most accessible from Earth, a captured asteroid is also easier to engineer. Several thousands of tons of oxygen might become available sitting on the outer rim of Earth's gravity field. We examine the advantages and drawbacks of this concept and we propose a stepped approach for making it a reality within a foreseeable future. Key factors are first the detection of a candidate, whose small size make it difficult to spot, among a population of asteroids easy to reach from the Earth. We have identified such a potential candidate in 2000SG344 and describe the parameters of its capture. The second key point is how to deviate the candidate into an loose Earth bound orbit. Our preferred concept is to deposit a

  18. Microbial community on oceanic ferro-manganese crusts from Takuyo-Daigo Seamount and Ryusei Seamount

    Science.gov (United States)

    Nitahara, S.; Kato, S.; Yamagishi, A.

    2012-12-01

    Background and Purpose Iron and manganese oxide deposits are often found on deep seafloor. Rocks covered with these oxides are called ferro-manganese crusts (Mn crusts), and are ubiquitously distributed on deep seafloor (Rona 2003). Because Mn crusts contain rare metals such as Co, Pt and rare earth element, it can be resources in the future. Mn crusts and microbes on Mn crusts may contribute to material, especially carbon and nitrogen circulation between hydrosphere and lithosphere. Mechanism of Mn crust formation is not completely understood. Wang et al. propose a model that microorganisms associate with initial Mn mineral deposition (Wang et al., 2011). There is a possibility that microbes may contribute to formation of Mn crust relying on their ability to oxidize Fe and Mn. However, there is limited information about diversity, spatial distribution and abundance of microbes on Mn crust surface. Our purpose is to clarify microbial community composition, spatial distribution, diversity and abundance of microbes on Mn crusts collected from Takuyo-Daigo seamount and Ryusei seamount. Method We collected Mn crusts, sediments and ambient seawater from Takuyo-Daigo seamount at the depth of 1200 m, 1419 m, 2209 m and 2991 m during NT09-02 cruise in Feb 2009 and Ryusei seamount at the depth of 1194 m, 2079 m during KY11-02 in Feb 2011 with remotely operated vehicle Hyper-Dolphin (JAMSTEC). Genomic DNA was extracted from each sample using Fast DNA kit for soil (Qbiogene). Partial 16S rRNA gene and amoA gene were amplified by PCR with prokaryote-universal primer set (Uni516F-Uni1407R) and bacterial and archaeal amoA specific primer sets. PCR products were cloned. The nucleotide sequences of randomly selected clones were determined. We performed phylogenetic and statistical analysis to determine microbial community compositions, and estimated diversity indices. We also estimated the copy numbers of 16S rRNA and amoA genes of Bacteria and Archaea by quantitative PCR. Results

  19. Chemical analysis of black crust on the Angkor sandstone at the Bayon temple, Cambodia

    Science.gov (United States)

    Song, Wonsuh; Oguchi, Chiaki; Waragai, Tetsuya

    2014-05-01

    The Angkor complex is the one of the greatest cultural heritages in the world. It is constructed in the early 12th century, designated as a world cultural heritage by UNESCO in 1992. The temples at the Angkor complex are mainly made of sandstone and laterite. However, due to the tropical climate, plants, lichens and various microorganisms are growing well on the rock surface. Black crusts are also easily found on the stone surface. The 21st technical session of the International Coordinating Committee for the Safeguarding and Development of the Historic Site of Angkor (ICC-Angkor) held in 2012 recommended that to preserve both the biofilms and the forest cover and to prohibit the biocides (chlorine-based) and organic biocides. However, there are many reports that lichens and microorganisms accelerate rock weathering. It is important to clarify that how the biofilm on the Angkor temples affect Angkor sandstones. We sampled Angkor sandstone covered by black crust at the Bayon temple, Angkor complex, and observed the section and the surface of the rock sample by using SEM. Surfaces of the samples are not polished in order to observe the original condition. The samples are coated with gold for 180 seconds. The depth of the black crust is up to 1 mm. Many filamentous materials were found on the black crust. Average energy-dispersive X-ray spectroscopy data of the five areas of ca. 20 μm ×15 μm in the black crusts shows that over 80 % of the filamentous materials are compounds of carbon. It seems that these materials are hyphae. The shape of the hypha is like a thread and its size is few μm in diameter and up to several centimeters in length. Black crusts are consisted of elements and compounds of carbon, Na, Mg, Al, Si, Cl, K, Ca, and Fe. Further research has to be done to find out the better and proper way of conservation for the Angkor complex.

  20. Water mass circulation and weathering inputs in the Labrador Sea based on coupled Hf-Nd isotope compositions and rare earth element distributions

    Science.gov (United States)

    Filippova, Alexandra; Frank, Martin; Kienast, Markus; Rickli, Jörg; Hathorne, Ed; Yashayaev, Igor M.; Pahnke, Katharina

    2017-02-01

    The Labrador Sea is one of the key areas for deep water formation driving the Atlantic thermohaline circulation and thus plays an important role in Northern Hemisphere climatic fluctuations. In order to better constrain the overturning processes and the origins of the distinct water masses, combined dissolved Hf-Nd isotopic compositions and rare earth element (REE) distribution patterns were obtained from four water depth profiles along a section across the Labrador Sea. These were complemented by one surface sample off the southern tip of Greenland, three shallow water samples off the coast of Newfoundland, and two deep water samples off Nova Scotia. Although light REEs are markedly enriched in the surface waters off the coast of Newfoundland compared to north Atlantic waters, the REE concentration profiles are essentially invariant throughout the water column across the Labrador Sea. The hafnium concentrations of surface waters exhibit a narrow range between 0.6 and 1 pmol/kg but are not significantly higher than at depth. Neodymium isotope signatures (ɛNd) vary from unradiogenic values between -16.8 and -14.9 at the surface to more radiogenic values near -11.0 at the bottom of the Labrador Sea mainly reflecting the advection of the Denmark Strait Overflow Water and North East Atlantic Deep Water, the signatures of which are influenced by weathering contributions from Icelandic basalts. Unlike Nd, water column radiogenic Hf isotope signatures (ɛHf) are more variable representing diverse weathering inputs from the surrounding landmasses. The least radiogenic seawater ɛHf signatures (up to -11.7) are found in surface waters close to Greenland and near the Canadian margin. This reflects the influence of recirculating Irminger Current Waters, which are affected by highly unradiogenic inputs from Greenland. A three to four ɛHf unit difference is observed between Denmark Strait Overflow Water (ɛHf ∼ -4) and North East Atlantic Deep Water (ɛHf ∼ -0

  1. 10 CFR Appendix A to Part 440 - Standards for Weatherization Materials

    Science.gov (United States)

    2010-01-01

    ..., Code of Federal Regulations: Thermal Insulating Materials for Building Elements Including Walls, Floors... 1209; Fire Safety Requirements for Thermal Insulating Materials According to Insulation Use—Attic Floor... 20585; (202) 586-2207. Thermal Insulating Materials for Building Elements Including Walls,...

  2. Rare-earth-doped materials for applications in quantum information storage and signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, C.W., E-mail: thiel@physics.montana.ed [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Boettger, Thomas, E-mail: tbottger@usfca.ed [Department of Physics and Astronomy, University of San Francisco, 2130 Fulton St., San Francisco, CA 94117 (United States); Cone, R.L., E-mail: cone@montana.ed [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2011-03-15

    Realization of practical quantum memory and optical signal processing systems critically depends on suitable materials that offer specific combinations of properties. Solid-state materials such as rare-earth ions doped into dielectric crystals are one of the most promising candidates for several quantum information storage protocols, including quantum storage of single photons. This article provides an overview of rare-earth-doped material properties and summarizes some of the most promising materials studied in our laboratory and by other groups for applications in quantum information storage and for ultra-wide bandwidth signal processing. Understanding and controlling spectral diffusion in these materials, which ultimately limits the achievable performance of any quantum memory system, is also briefly reviewed. Applications in quantum information impose stringent requirements on laser phase and frequency stability, and employing a narrow spectral hole in the inhomogeneous absorption profile in these materials as a frequency reference can dramatically improve laser stability. We review our work on laser frequency and phase stabilization and report our recent results on using a narrow spectral hole as a passive dynamic spectral filter for laser phase noise suppression, which can dramatically narrow the laser linewidth with or without the requirement of active feedback. - Research highlights: Rare-earth materials offer key properties for quantum memory and signal processing. Physics and properties of rare-earth optical transitions in solids are reviewed. Details of 47 promising optical transitions are tabulated and compared. A new narrow-band dynamic filtering method using spectral hole burning is discussed. Results of successful passive laser phase noise suppression are presented.

  3. Space weather and dangerous phenomena on the Earth: principles of great geomagnetic storms forcasting by online cosmic ray data

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available According to NOAA space weather scales, geomagnetic storms of scales G5 (3-h index of geomagnetic activity Kp=9, G4 (Kp=8 and G3 (Kp=7 are dangerous for satellites, aircrafts, and even for technology on the ground (influence on power systems, on spacecraft operations, on HF radio-communications and others. We show on the basis of statistical data, that these geomagnetic storms, mostly accompanied by cosmic ray (CR Forbush-decreases, are also dangerous for people's health on spacecraft and on the ground (increasing the rate of myocardial infarctions, brain strokes and car accident road traumas. To prevent these serious damages it is very important to forecast dangerous geomagnetic storms. Here we consider the principles of using CR measurements for this aim: to forecast at least 10-15h before the sudden commencement of great geomagnetic storms accompanied by Forbush-decreases, by using neutron monitor muon telescope worldwide network online hourly data. We show that for this forecast one may use the following features of CR intensity variations connected with geomagnetic storms accompanied by Forbush-decreases: 1 CR pre-increase, 2 CR pre-decrease, 3 CR fluctuations, 4 change in the 3-D CR anisotropy.

  4. Scales of Heterogeneities in the Continental Crust and Upper Mantle

    OpenAIRE

    M. Tittgemeyer; F. Wenzel; Trond Ryberg; Fuchs, K

    1999-01-01

    A seismological characterization of crust and upper mantle can refer to large-scale averages of seismic velocities or to fluctuations of elastic parameters. Large is understood here relative to the wavelength used to probe the earth. In this paper we try to characterize crust and upper mantle by the fluctuations in media properties rather than by their average velocities. As such it becomes evident that different scales of heterogeneities prevail in different layers of crust mantle. Although ...

  5. Paleoenvironmental implications of high-density records in Co-rich seamount crusts from the Pacific Ocean

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Co-rich seamount crusts have been shown to possess great potential for providing information on paleoceanographic and paleoclimatic changes. High resolution data are essential to decipher and correctly understand such high-density records. With the development of modern microprobe techniques, detailed sampling of crusts can be performed and it is possible to retrieve detailed information about envi- ronmental changes recorded in the seamount crusts. We report here geochemical results of more than 40 elements (including all rare earth elements) of four Co-rich seamount crust samples, which were collected from seamounts in the central and western Pacific Ocean. These data were obtained with two micro-probe techniques: Electron Probe Micro Analyzer and Laser Ablation Inductively Coupled Plasma Mass Spectrometry. The chronological framework of the seamount crust samples was determined using the cos- mogenic 10Be and the Co-chronometer. Records of elemental composition, P, and Al/(Fe + Mn) and Y/Ho ratios across the sections of the four samples are used to identify paleoceanographic and paleoclimatic events over the past ~30 Ma. These data show that: (1) Al/(Fe + Mn) in the western Pacific seamount crust is a useful proxy for the assessment of changes of source materials related to the variability of the Asian monsoon; (2) P and Y/Ho can be used as proxies to infer biogenic episodes. Finally we discuss the methodology related to dating and micro-probe analysis used in crust study.

  6. Paleoenvironmental implications of high-density records in Co-rich seamount crusts from the Pacific Ocean

    Institute of Scientific and Technical Information of China (English)

    WANG XiaoHong; ZHOU LiPing; WANG YiMin; ZHANG XueHua; LIU XiaoMing; FAN XingTao; LIU KeXin; ZHOU JianXiong

    2008-01-01

    Co-rich seamount crusts have been shown to possess great potential for providing information on paleoceanographic and paleoclimatic changes. High resolution data are essential to decipher and correctly understand such high-density records. With the development of modern micro-probe techniques, detailed sampling of crusts can be performed and it is possible to retrieve detailed information about environmental changes recorded in the seamount crusts. We report here geochemical results of more than 40elements (including all rare earth elements) of four Co-rich seamount crust samples, which were collected from seamounts in the central and western Pacific Ocean. These data were obtained with two micro-probe techniques: Electron Probe Micro Analyzer and Laser Ablation Inductively Coupled Plasma Mass Spectrometry. The chronological framework of the seamount crust samples was determined using the cosmogenic 10Be and the Co-chronometer. Records of elemental composition, P, and Al/(Fe + Mn) and Y/Ho ratios across the sections of the four samples are used to identify paleoceanographic and paleoclimatic events over the past -30 Ma. These data show that: (1) AI/(Fe + Mn) in the western Pacific seamount crust is a useful proxy for the assessment of changes of source materials related to the variability of the Asian monsoon; (2) P and Y/Ho can be used as proxies to infer biogenic episodes. Finally we discuss the methodology related to dating and micro-probe analysis used in crust study.

  7. Development and Application of Rare Earth Permanent Magnet (REPM) Material in Electric Machines

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    With the development of permanent materials, the development and application of permanent material electric machine (REPM) have been more mature. At first the state of development and application of REPM electric machine is presented in this paper, many RMEM have been produced in volume such as the pilot exciter used for power set of large-scale thermal power station, the special RMEM synchronous motor for textile, the starter motor for automobile, the brushless permanent magnet DC motor for electric facilities, permanent magnet servomotor for numerical controlled machine tool, rare-earth torque motor, special micro-motor for automobile and so on. Secondly the field of application of REPM electric machine and remaining problems is analyzed, because of the price of the rare-earth permanent magnet materials, the cost of RMEM is currently higher than that of induction machine, on the other side the dispersibility of performance of rare-earth permanent magnet materials and the limitation of technique of integral excitation are also remaining problems, above-mentioned problems handicapped the popularization of REPMEM. At last the developing prospect and trend of REPM electric machines is described, there are four promising types of PMEM: economical type, high performance type, high efficiency and energy-saving type, micromation, intelligibility type. With the appearance of new REPM material and the improvement of its performance and the continuous perfection of performance of electric-power electronic components, the development and the application of REPM electric machines will be further progressed.

  8. Sustainability of earth building materials - Environmental product declarations as an instrument of competition in building material industry

    Directory of Open Access Journals (Sweden)

    Horst Schroeder

    2015-12-01

    Full Text Available The evaluation of the building process in terms of their environmental impact in all life cycle phases of a building leads to the key principle of sustainable building: the analysis of the life cycle of the materials used in a building. The goal of this analysis is to reduce waste and keep the environmental impact as low as possible by “closing” the cycle. During an inventory, the entire life cycle is assessed. This includes the sourcing and extracting of the raw material, the use of the raw material to produce building products, elements and structures, the use in finished buildings including emission of pollutants, decay and maintenance, and, finally, the demolition of the building and the recycling of the demolition materials. Transportation between the individual phases as well as production-related material and energy flows are also included in this evaluation. Several European and national norms and regulations define core rules and a special instrument for the evaluation of the sustainable quality of a building product based on a quantitative analysis of the life cycle of the materials used in a building: the Environmental Product Declaration EPD. These documents are voluntary standards, commitments or guarantees for building products. They are provided by producers, organizations and quality assurance associations in order to establish the “environmental performance” of buildings in the form of a certificate. Such declarations must fully include all phases of the life cycle of a product by describing the environmental impact during production and use as well as possible health hazards for the users. Until now, EPDs for earth building products do not exist. This paper will give current information about a project for developing EPDs for earth mortars and earth blocks started by the German Dachverband Lehm e.V. (DVL.

  9. Improving solar wind persistence forecasts: Removing transient space weather events, and using observations away from the Sun-Earth line

    Science.gov (United States)

    Kohutova, Petra; Bocquet, François-Xavier; Henley, Edmund M.; Owens, Matthew J.

    2016-10-01

    This study demonstrates two significant ways of improving persistence forecasts of the solar wind, which exploit the relatively unchanging nature of the ambient solar wind to provide 27 day forecasts, when using data from the Lagrangian L1 point. Such forecasts are useful as a prediction tool for the ambient wind, and for benchmarking of solar wind models. We show that solar wind persistence forecasts can be improved by removing transient solar wind features such as coronal mass ejections (CMEs). Using CME indicators to automatically identify CME-contaminated periods in ACE data from 1998 to 2011, and replacing these with solar wind from a previous synodic rotation, persistence forecasts improve (relative to a baseline): skill scores for Bz, a crucial parameter for determining solar wind geoeffectiveness, improve by 7.7 percentage points when using a proton temperature-based indicator with good operational potential. We also show that persistence forecasts can be improved by using measurements away from L1, to reduce the requirement on coronal stability for an entire synodic period, at the cost of reduced lead time. Using STEREO-B data from 2007 to 2013 to create such a reduced lead time persistence forecast, we show that Bz skill scores improve by 17.1 percentage points relative to ACE. Finally, we report on implications for persistence forecasts from any future missions to the L5 Lagrangian point and on the successful operational implementation (in spring 2015) of the normal (ACE-based) and reduced lead time (STEREO-based) persistence forecasts in the Met Office's Space Weather Operations Centre, as well as plans for future improvements.

  10. Preface to the Special Issue on "Connection of Solar and Heliospheric Activities with Near-Earth Space Weather: Sun-Earth Connection"

    Directory of Open Access Journals (Sweden)

    Chin-Chun Wu Sunny W. Y. Tam

    2013-01-01

    Full Text Available This special issue of the Terrestrial, Atmospheric and Oceanic Sciences (TAO presents a small collection of the materials presented at the 2011 International Space Plasma Symposium (ISPS, held at National Cheng-Kung University (NCKU in Tainan, Taiwan, Republic of China (ROC, from August 15 - 19, 2011. The purpose of the Symposium was to bring space physicists together to present their recent research results and discuss some outstanding questions in, but not limited to, the solar corona, interplanetary medium, planetary magnetosphere and ionospheres. A total number of 59 papers were presented at the Symposium by scientists from 11 countries and regions.

  11. Research on toughening mechanisms of alumina matrix ceramic composite materials improved by rare earth additive

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xihua; LIU Changxia; LI Musen; ZHANG Jianhua

    2008-01-01

    Mixed rare earth elements were incorporated into alumina ceramic materials. Hot-pressing was used to fabricate alumina matrix composites in nitrogen atmosphere protection. Microstructures and mechanical properties of the composites were tested. It was indicated that the bending strength and fracture toughness of alumina matrix ceramic composites sintered at 1550℃ and 28 Mpa for 30 min were improved evidently. Besides mixed rare earth elements acting as a toughening phase, AlTiC master alloys were also added in as sintering assistants, which could prompt the formation of transient liquid phase, and thus nitrides of rare earth elements were produced. All of the above were beneficial for improving the mechanical properties of alumina matrix ceramic composites.

  12. Topographic imprint on chemical weathering in deeply weathered soil-mantled landscapes (southern Brazil)

    Science.gov (United States)

    Vanacker, Veerle; Schoonejans, Jerome; Ameijeiras-Marino, Yolanda; Opfergelt, Sophie; Minella, Jean

    2017-04-01

    The regolith mantle is defined as the thin layer of unconsolidated material overlaying bedrock that contributes to shape the Earth's surface. The development of the regolith mantle in a landscape is the result of in-situ weathering, atmospheric input and downhill transport of weathering products. Bedrock weathering - the physical and chemical transformations of rock to soil - contributes to the vertical development of the regolith layer through downward propagation of the weathering front. Lateral transport of soil particles, aggregates and solutes by diffusive and concentrated particle and solute fluxes result in lateral redistribution of weathering products over the hillslope. In this study, we aim to expand the empirical basis on long-term soil evolution at the landscape scale through a detailed study of soil weathering in subtropical soils. Spatial variability in chemical mass fluxes and weathering intensity were studied along two toposequences with similar climate, lithology and vegetation but different slope morphology. This allowed us to isolate the topographic imprint on chemical weathering and soil development. The toposequences have convexo-concave slope morphology, and eight regolith profiles were analysed involving the flat upslope, steep midslope and flat toeslope part. Our data show a clear topographic imprint on soil development. Along hillslope, the chemical weathering intensity of the regolith profiles increases with distance from the crest. In contrast to the upslope positions, the soils in the basal concavities develop on in-situ and transported regolith. While the chemical weathering extent on the slope convexities (the upslope profiles) is similar for the steep and gentle toposequence, there is a clear difference in the rate of increase of the chemical weathering extent with distance from the crest. The increase of chemical weathering extent along hillslope is highest for the steep toposequence, suggesting that topography enhances soil particle

  13. Geological cycles and a two-stage history of the Continental Crust (Robert Wilhelm Bunsen Medal Lecture)

    Science.gov (United States)

    Hawkesworth, Chris J.; Cawood, Peter A.; Dhuime, Bruno

    2014-05-01

    The continental crust is the archive of Earth history, and the apparently cyclical nature of geological evolution is a feature of the geological record. The advent of radiometric ages has highlighted that the spatial and temporal distribution of the Earth's record of rock units and events is heterogeneous with distinctive peaks and troughs in the distribution of ages of igneous crystallization, metamorphism, continental margins and mineralization. It is argued that the temporal distribution largely reflects the different preservation potential of rocks generated in different tectonic settings, rather than fundamental pulses of activity, and the peaks of ages are linked to the timing of supercontinent assembly. In contrast there are other signals, such as the Sr isotope ratios of seawater, mantle temperatures, and redox conditions on the Earth, where the records are regarded as primary because they are not sensitive to the numbers of samples of different ages that have been analysed. Models based on the U-Pb, Hf and O isotope ratios of detrital zircons suggest that at least ~60-70% of the present volume of the continental crust had been generated by 3 Ga. The sedimentary record is biased by preferential sampling of relatively young material in their source terrains. The implication is that there were greater volumes of continental crust in the Archaean than might be inferred from the compositions of detrital zircons and sediments. The growth of continental crust was a continuous rather than an episodic process, but the rates of continental growth were significantly higher before 3 Ga than subsequently. The time-integrated Rb/Sr ratios, and the average SiO2 contents, indicate that new continental crust was largely mafic over the first 1.5 Ga of Earth's evolution, and that significant volumes of pre-3 Ga crust may have been associated with intraplate magmatism. Since ~3 Ga there has been an increase in Rb/Sr, SiO2, and the inferred thickness of new crust, consistent

  14. Standard Practice for Exposure of Solar Collector Cover Materials to Natural Weathering Under Conditions Simulating Stagnation Mode

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 This practice covers a procedure for the exposure of solar collector cover materials to the natural weather environment at elevated temperatures that approximate stagnation conditions in solar collectors having a combined back and edge loss coefficient of less than 1.5 W/(m2 · °C). 1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials. 1.3 This practice does not apply to cover materials for evacuated collectors, photovoltaic cells, flat-plate collectors having a combined back and edge loss coefficient greater than 1.5 W/(m2 ·° C), or flat-plate collectors whose design incorporates means for limiting temperatures during stagnation. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard t...

  15. Uranium isotope composition of a laterite profile during extreme weathering of basalt in Guangdong, South China

    Science.gov (United States)

    Huang, J.; Zhou, Z.; Gong, Y.; Lundstrom, C.; Huang, F.

    2015-12-01

    Rock weathering and soil formation in the critical zone are important for material cycle from the solid Earth to superficial system. Laterite is a major type of soil in South China forming at hot-humid climate, which has strong effect on the global uranium cycle. Uranium is closely related to the environmental redox condition because U is stable at U(Ⅳ) in anoxic condition and U(Ⅵ) as soluble uranyl ion (UO22+) under oxic circumstance. In order to understand the behavior of U isotopes during crust weathering, here we report uranium isotopic compositions of soil and base rock samples from a laterite profile originated from extreme weathering of basalt in Guangdong, South China. The uranium isotopic data were measured on a Nu Plasma MC-ICP-MS at the University of Illinois at Urbana-Champaign using the double spike method. The δ238U of BCR-1 is -0.29±0.03‰ (relative to the international standard CRM-112A), corresponding to a 238U/235U ratio of 137.911±0.004. Our result of BCR-1 agrees with previous analyses (e.g., -0.28‰ in Weyer et al. 2008) [1]. U contents of the laterite profile decrease from 1.9 ppm to 0.9 ppm with depth, and peak at 160 - 170 cm (2.3 ppm), much higher than the U content of base rocks (~0.5 ppm). In contrary, U/Th of laterites is lower than that of base rock (0.27) except the peak at the depth of 160-170 cm (0.38), indicating significant U loss during weathering. Notably, U isotope compositions of soils show a small variation from -0.38 to -0.28‰, consistent with the base rock within analytical error (0.05‰ to 0.08‰, 2sd). Such small variation can be explained by a "rind effect" (Wang et al., 2015) [2], by which U(Ⅳ) can be completely oxidized to U(VI) layer by layer during basalt weathering by dissolved oxygen. Therefore, our study indicates that U loss during basalt weathering at the hot-humid climate does not change U isotope composition of superficial water system. [1] Weyer S. et al. (2008) Natural fractionation of 238U/235

  16. Geomodel constructs of the Earth's crust for water continuation of the Korotaikha depression from gravity and magnetic data for revealing promising areas of oil and gas accumulation

    Science.gov (United States)

    Litvinova, Tamara; Kudryavtsev, Ivan

    2016-04-01

    The paper considers the results of re-interpretation of geophysical data within the water continuation of the Korotaikha depression. To solve the issue of identifying promising areas of oil and gas accumulation in the region, magnetic and gravity materials were reprocessed: digital maps of potential fields at 1: 500 000 scale were compiled on a frame network of seismic lines (3 lines on land and 3 lines in water area) made by reflection-CDP, density models to a depth of 20 km by solving the direct problem of gravity prospecting in GM-SYS module (Geosoft) in 2D formulation were constructed. Deep reflection-CDP seismic sections specified according to the deep wells were used as starting models. Correctness of the selected density models was controlled by comparing the theoretical curve with the values interpolated on the profile line from the digital model of gravity anomaly (Bouguer, density of the intermediate layer of 2.67 g/cm3). Magnetic modeling was performed using geometry of blocks from the obtained density models to a depth of 20 km and is based on selection of local anomaly sources in the upper section (in the Triassic strata). Blocks of the Precambrian basement were used as sources of regional magnetic anomalies in the considered models. Modeling constructs show the defining role of the topography of terrigenous and carbonate complex boundary within the Paleozoic section as a source of gravity anomalies for the region under study. These findings are confirmed by comparison of gravity and seismic data (maps of local gravity anomalies and structural maps of reflecting horizons) and additionally substantiated by analysis of the nature of local magnetic anomalies distribution. The latter are associated with the Triassic basalt horizons at the top of the terrigenous complex and thus also reflect structures of the sedimentary cover, which are registered independently by gravity data.

  17. First Results from Colorado Student Space Weather Experiment (CSSWE): Differential Flux Measurements of Energetic Particles in a Highly Inclined Low Earth Orbit

    Science.gov (United States)

    Li, X.; Palo, S. E.; Kohnert, R.; Gerhardt, D.; Blum, L. W.; Schiller, Q.; Turner, D. L.; Tu, W.

    2012-12-01

    The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the National Science Foundation, scheduled for launch into a low-Earth, polar orbit after August 14th, 2012 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. The science objectives of CSSWE are to investigate the relationship of the location, magnitude, and frequency of solar flares to the timing, duration, and energy spectrum of solar energetic particles (SEP) reaching Earth, and to determine the precipitation loss and the evolution of the energy spectrum of radiation belt electrons. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a miniaturization of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics (LASP). The REPT instrument will fly onboard the NASA/Radiation Belt Storm Probes (RBSP) mission, which consists of two identical spacecraft scheduled to launch after August 23rd, 2012 that will go through the heart of the radiation belts in a low inclination orbit. CSSWE's REPTile is designed to measure the directional differential flux of protons ranging from 10 to 40 MeV and electrons from 0.5 to >3 MeV. Such differential flux measurements have significant science value, and a number of engineering challenges were overcome to enable these clean measurements to be made under the mass and power limits of a CubeSat. The CSSWE is an ideal class project, providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project. We will report the first results from this exciting mission.

  18. Growth of the lower continental crust

    Science.gov (United States)

    Rudnick, Roberta L.

    1988-01-01

    One of the largest uncertainties in crustal composition and growth models is the nature of the lower continental crust. Specifically, by what processes is it formed and modified, and when is it formed, particularly in reference to the upper crust? The main reason for this lack of information is the scarcity of lower crustal rock samples. These are restricted to two types: rocks which outcrop in granulite facies terrains and granulite facies xenoliths which are transported to the earth's surface by young volcanics. The important conclusions arising from the xenolith studies are: the majority of mafic lower crustal xenoliths formed through cumulate process, resitic xenoliths are rare; and formation and metamorphism of the deep crust is intimately linked to igneous activity and/or orogeny which are manifest in one form or another at the earth's surface. Therefore, estimates of crustal growth based on surface exposures is representative, although the proportion of remobilized pre-existing crust may be significantly greater at the surface than in the deep crust.

  19. Baotou Rare Earth Became the World’s Biggest High Performance Magnetic Material Base

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>The High Performance Magnetic Material Phase II Project,an industry upgrading project implemented by Inner Mongolia Baotou Iron&Steel Rare Earth(Group)Hi-tech Co.,Ltd,recently basically finished equipment commissioning,signifying that the enterprise had developed the production capacity of15000 t/a Nd-Fe-B strip casting alloy and 5000t/a Nd-Fe-B magnet,thus becoming the world’s

  20. Energy flows, material cycles and global development. A process engineering approach to the Earth system

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, Georg [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Engler-Bunte-Institut; Turek, Thomas [TU Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Chemische Verfahrenstechnik

    2011-07-01

    The book deals with the global flows of energy and materials, and changes caused by human activities. Based on these facts, the limitations of anthropogenic energy and material flows and the resulting consequences for the development of human societies are discussed. Different scenarios for lifestyle patterns are correlated with the world's future development of energy supply and climate. The book provides a process engineering approach to the Earth system and global development. It requires basic understanding of mathematics, physics, chemistry and biology, and provides an insight into the complex matter for readers ranging from undergraduate students to experts. (orig.)

  1. Weather resistance of CaSO4 ṡ 1/2H2O-based sand-fixation material

    Science.gov (United States)

    Liu, Xin; Tie, Shengnian

    2017-07-01

    Searching for an economical and effective sand-fixing material and technology is of great importance in Northwest China. This paper described the use of a semihydrated gypsum-(CaSO4 ṡ 1/2H2O-)based composite as a sand-fixing material. Its morphology and composition were characterized by SEM, and its water resistance, freezing-thawing resistance and wind erosion resistance were tested in the field. The results indicated that semihydrated gypsum-(CaSO4 ṡ 1/2H2O-)based sand-fixing composite has good water resistance and water-holding capacity. Its strength is maintained at 1.42 MPa after 50 freezing and thawing cycles, and its wind erosion increases with increasing wind speed and slope. Its compressive strength starts to decrease after nine months of field tests with no change in appearance, but it still satisfies the requirements of fixation technology. This sand-fixing material should have wide application owing to its good weather resistance.

  2. Technological characteristics of compressed earth blocks for its use as a building material

    Science.gov (United States)

    Gomez-Villalba, Luz Stella; Camacho-Perez, Nancy; Alvarez de Buergo, Monica; Becerra-Becerra, Javier; Esmeralda Corredor-Pulido, Dery; Fort, Rafael

    2013-04-01

    We present here an innovative building technique, which uses ecological, inexpensive and environmentally friendly materials. These compressed earth blocks seem to be very good for building purposes and that is why we have characterized three types of compressed earth blocks (CEB, named by their color as yellow, grey and red) mineralogically by means of X ray diffraction XRD and scanning electron microscopy SEM (both blocks and raw materials), petrographically by polarizing optical light microscopy POLM, and SEM, and, mainly, petrophysically: their hydric, physical and physico-mechanical properties by means of determining their capillary water absorption, porosity (open or accessible to water, pore size distribution and micro/macroporosity), and densities, color and ultrasound velocity (together with anisotropy). The particularities of these analyzed materials show that some varieties are more durable than others, and that all of them can be used as building materials with some restrictions related to their appropriate placing in the structures and the exposure to water. Acknowledgements: This work is supported by the GEOMATERIALES (S2009/MAT-1629) and CONSOLIDER-TCP (CSD2007-0058) programmes. Thanks also to the UCM (Complutense University of Madrid) Research Group "Alteración y conservación de los materiales pétreos del patrimonio" / Alteration and conservation of heritage stone materials (ref. 921349).

  3. Weathering trends and parent material characteristics of polygenetic oxisols from Minas Gerais, Brazil: I. Mineralogy

    NARCIS (Netherlands)

    Muggler, C.C.; Buurman, P.; Doesburg, van J.D.J.

    2007-01-01

    In geologically stable areas in the tropics, climatic changes and geomorphic cycles give origin to polygenetic soils. Polygenesis involves new soil formation phases taking place on preweathered materials from previous phases, resulting in soils with rather similar chemical and mineralogical properti

  4. Li Isotopic Composition and Concentration of the Upper Continental Crust: New Insights from Desert Loess

    Science.gov (United States)

    Sauzeat, L.; Rudnick, R. L.; Chauvel, C.

    2014-12-01

    The isotopic composition of lithium (δ7Li) is recognized to be an excellent proxy of near-surface fluid-rock reactions during weathering. Using Li as a tracer of these processes however requires constraints on the average Li composition of terrestrial reservoirs, in particular that of the upper continental crust. To date, only one value for the average δ7Li value of the upper continental crust, derived from periglacial loess, shales, and granites is available in the literature (7δLi = 0 ± 4 (2σ), Teng et al., 2004). Several values exist for the average [Li] of the upper crust, but they differ by more than 30%. We measured the Li isotopic composition of about 30 desert and periglacial loess (unweathered windblown sediments) from several parts of the world (Europe, Argentina, China and Tajikistan). We demonstrate that desert loess, which is more homogeneous and representative of larger portions of the Earth's surface, provides a better proxy for the average composition of the upper continental crust compared to periglacial loess. The Li isotopic compositions and concentrations of desert loess are controlled by eolian sorting, which can be quantified as a binary isotopic mixing between a weathered fine-grained end-member and an unweathered coarse-grained end-member. Using correlations between Li isotopic compositions, Li concentrations and trace element concentrations in desert loess, we estimate new average values for the upper continental crust: 1 ± 2 (2σ); [Li] = 35.3 ± 4.6 (2σ) ppm. This δ7Li value is slightly higher than that previously published in Teng et al. (2004), but overlaps within uncertainty, whereas the [Li] is identical to that of Teng et al. (2004: 35 ± 11, 2σ); both new estimates have lower uncertainty. Our new estimate of [Li], along with that of Teng et al. (2004), are higher than all previous estimates for the upper continental crust, raising the question as to whether the average concentrations of other mobile alkali metals such as

  5. Icelandic-type crust

    Science.gov (United States)

    Foulger, G.R.; Du, Z.; Julian, B.R.

    2003-01-01

    Numerous seismic studies, in particular using receiver functions and explosion seismology, have provided a detailed picture of the structure and thickness of the crust beneath the Iceland transverse ridge. We review the results and propose a structural model that is consistent with all the observations. The upper crust is typically 7 ?? 1 km thick, heterogeneous and has high velocity gradients. The lower crust is typically 15-30 ?? 5 km thick and begins where the velocity gradient decreases radically. This generally occurs at the V p ??? 6.5 km s-1 level. A low-velocity zone ??? 10 000 km2 in area and up to ??? 15 km thick occupies the lower crust beneath central Iceland, and may represent a submerged, trapped oceanic microplate. The crust-mantle boundary is a transition zone ???5 ?? 3 km thick throughout which V p increases progressively from ???7.2 to ???8.0 km s-1. It may be gradational or a zone of alternating high- and low-velocity layers. There is no seismic evidence for melt or exceptionally high temperatures in or near this zone. Isostasy indicates that the density contrast between the lower crust and the mantle is only ???90 kg m-3 compared with ???300 kg m-3 for normal oceanic crust, indicating compositional anomalies that are as yet not understood. The seismological crust is ???30 km thick beneath the Greenland-Iceland and Iceland-Faeroe ridges, and eastern Iceland, ???20 km beneath western Iceland, and ???40 km thick beneath central Iceland. This pattern is not what is predicted for an eastward-migrating plume. Low attenuation and normal V p/V s ratios in the lower crust beneath central and southwestern Iceland, and normal uppermost mantle velocities in general, suggest that the crust and uppermost mantle are subsolidus and cooler than at equivalent depths beneath the East Pacific Rise. Seismic data from Iceland have historically been interpreted both in terms of thin-hot and thick-cold crust models, both of which have been cited as supporting the plume

  6. Neutron Activation Analysis of the Rare Earth Elements (REE) - With Emphasis on Geological Materials

    Science.gov (United States)

    Stosch, Heinz-Günter

    2016-08-01

    Neutron activation analysis (NAA) has been the analytical method of choice for rare earth element (REE) analysis from the early 1960s through the 1980s. At that time, irradiation facilitieswere widely available and fairly easily accessible. The development of high-resolution gamma-ray detectors in the mid-1960s eliminated, formany applications, the need for chemical separation of the REE from the matrix material, making NAA a reliable and effective analytical tool. While not as precise as isotopedilution mass spectrometry, NAA was competitive by being sensitive for the analysis of about half of the rare earths (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu). The development of inductively coupled plasma mass spectrometry since the 1980s, together with decommissioning of research reactors and the lack of installation of new ones in Europe and North America has led to the rapid decline of NAA.

  7. Influence of Composite Phosphate Inorganic Antibacterial Materials Containing Rare Earth on Activated Water Property of Ceramics

    Institute of Scientific and Technical Information of China (English)

    梁金生; 梁广川; 祁洪飞; 吴子钊; 冀志江; 金宗哲

    2004-01-01

    Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of 17O-NMR for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate.

  8. Effect of Rre Earth Oxides and Silica on Sintering and Microstructure of AZS—40 Materials

    Institute of Scientific and Technical Information of China (English)

    CHAIJun-lan; CHENZhao-you

    1996-01-01

    Effect of the content of La2O3,CeO2 and SiO2 on the sintering behavior and microstruc-ture of AZS-40 material has been studied by means of sintering test and SEM examination,The results show that the porosity of the AZS-40 clinker with addition of 0.5% La2O3 or CeO2 could reach 2% under the ondition of 1600℃ for 4 hours.But it is not beneficial to the sintering and microstructure of the clinkers when the addition of the rare earth oxides increases to more than 0.5%,AZS-40 materials become difficult to be sintered as the addition of SiO2 in the materials incereases.

  9. Changes in the Optical Properties of Materials Are Observed After 18 Months in Low Earth Orbit

    Science.gov (United States)

    Jaworske, Donald A.

    1999-01-01

    Materials located on the exterior of spacecraft in low Earth orbit are subjected to a number of environmental threats, including atomic oxygen, ultraviolet radiation, thermal cycling, and micrometeroid and debris impact. Atomic oxygen attacks materials vulnerable to oxidation. Ultraviolet radiation can break chemical bonds and cause undesirable changes in optical properties. Thermal cycling can cause cracking, and micrometeroid and debris impacts can damage protective coatings. Another threat is contamination. The outgassing of volatile chemicals can contaminate nearby surfaces, changing their thermal control properties. Contaminated surfaces may undergo further change as a result of atomic oxygen and ultraviolet radiation exposure. The Passive Optical Sample Assembly (POSA) experiment was designed as a risk mitigation experiment for the International Space Station. Samples were characterized before launch, exposed for 18 months on the exterior of Mir, and characterized upon their return. Lessons learned from POSA about the durability of material properties can be applied to the space station and other long-duration missions.

  10. Development of Multifunctional Radiation Shielding Materials for Long Duration Human Exploration Beyond the Low Earth Orbit

    Science.gov (United States)

    Sen, S.; Bhattacharya, M.; Schofield, E.; Carranza, S.; O'Dell, S.

    2007-01-01

    One of the major challenges for long duration human exploration beyond the low Earth orbit and sustained human presence on planetary surfaces would be development of materials that would help minimize the radiation exposure to crew and equipment from the interplanetary radiation environment, This radiation environment consists primarily of a continuous flux of galactic cosmic rays (GCR) and transient but intense fluxes of solar energetic particles (SEP). The potential for biological damage by the relatively low percentage of high-energy heavy-ions in the GCR spectrum far outweigh that due to lighter particles because of their ionizing-power and the quality of the resulting biological damage. Although the SEP spectrum does not contain heavy ions and their energy range is much lower than that for GCRs, they however pose serious risks to astronaut health particularly in the event of a bad solar storm The primary purpose of this paper is to discuss our recent efforts in development and evaluation of materials for minimizing the hazards from the interplanetary radiation environment. Traditionally, addition of shielding materials to spacecrafts has invariably resulted in paying a penalty in terms of additional weight. It would therefore be of great benefit if materials could be developed not only with superior shielding effectiveness but also sufficient structural integrity. Such a multifunctional material could then be considered as an integral part of spacecraft structures. Any proposed radiation shielding material for use in outer space should be composed of nuclei that maximize the likelihood of projectile fragmentation while producing the minimum number of target fragments. A modeling based approach will be presented to show that composite materials using hydrogen-rich epoxy matrices reinforced with polyethylene fibers and/or fabrics could effectively meet this requirement. This paper will discuss the fabrication of such a material for a crewed vehicle. Ln addition

  11. Assessing life's effects on the interior dynamics of planet Earth using non-equilibrium thermodynamics

    Directory of Open Access Journals (Sweden)

    J. G. Dyke

    2010-09-01

    Full Text Available Vernadsky described life as the geologic force, while Lovelock noted the role of life in driving the Earth's atmospheric composition to a unique state of thermodynamic disequilibrium. Here, we use these notions in conjunction with thermodynamics to quantify biotic activity as a driving force for geologic processes. Specifically, we explore the hypothesis that biologically-mediated processes operating on the surface of the Earth, such as the biotic enhancement of weathering of continental crust, affect interior processes such as mantle convection and have therefore shaped the evolution of the whole Earth system beyond its surface and atmosphere. We set up three simple models of mantle convection, oceanic crust recycling and continental crust recycling. We describe these models in terms of non-equilibrium thermodynamics in which the generation and dissipation of gradients is central to driving their dynamics and that such dynamics can be affected by their boundary conditions. We use these models to quantify the maximum power that is involved in these processes. The assumption that these processes, given a set of boundary conditions, operate at maximum levels of generation and dissipation of free energy lead to reasonable predictions of core temperature, seafloor spreading rates, and continental crust thickness. With a set of sensitivity simulations we then show how these models interact through the boundary conditions at the mantle-crust and oceanic-continental crust interfaces. These simulations hence support our hypothesis that the depletion of continental crust at the land surface can affect rates of oceanic crust recycling and mantle convection deep within the Earth's interior. We situate this hypothesis within a broader assessment of surface-interior interactions by setting up a work budget of the Earth's interior to compare the maximum power estimates that drive interior processes to the power that is associated with biotic activity

  12. Application of material strength reserve method to the stability analysis of earth dam of feilaixia multipurpose project

    Institute of Scientific and Technical Information of China (English)

    YAO Hui-qin; DUAN Ya-hui

    2006-01-01

    The material strength reserve method is practical in the study of the stability and failure mechanism of earth dam by analysing the development of failure zone of different shear strength parameters of the earth mass of the dam. The stability in the concrete dam and ensemble architecture has got general application while analysing. In combination with Feilaixia Multipurpose Project, application of this method to earth dam stability analysis was studied by plane Finite Element Method(FEM) for the first time. Through plane FEM, we can get the failure mechanism of earth dam and appraise to the security, for operating and managing put forward some reference suggestions.

  13. Weather Station and Sensor Locations, Prince George's County Earth Networks Owned Weather Stations located on County Facilities, Published in 2005, 1:2400 (1in=200ft) scale, Prince George's County Office of Information Technology and Communications.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Weather Station and Sensor Locations dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Published Reports/Deeds information as of...

  14. Experiment on Nonlinear Properties Coupling Electromagnetism with Mechanics of Giant Rare Earth Magnetostrictive Materials

    Institute of Scientific and Technical Information of China (English)

    Yuan Huiqun; Sun Huagang

    2004-01-01

    The electromagnetic and mechanical coupling properties of giant rare earth giant magnetostriction material TbxDy1 -xFe2 -z (0. 27 ≤x ≤ 0.3, 0 ≤ z ≤ 0.1 ) alloys were investigated by means of self-fabricated test apparatus. The effect of coupling mechanical with electromagnetic on magnetostrictive strain coefficient was discussed. The physical model of the coupling system was established. Based on the equivalent circuit of the coupling system, the magnetomechanical coupling coefficient was derived by means of impedance resistance analysis method.

  15. Revolutions in energy input and material cycling in Earth history and human history

    Science.gov (United States)

    Lenton, Timothy M.; Pichler, Peter-Paul; Weisz, Helga

    2016-04-01

    Major revolutions in energy capture have occurred in both Earth and human history, with each transition resulting in higher energy input, altered material cycles and major consequences for the internal organization of the respective systems. In Earth history, we identify the origin of anoxygenic photosynthesis, the origin of oxygenic photosynthesis, and land colonization by eukaryotic photosynthesizers as step changes in free energy input to the biosphere. In human history we focus on the Palaeolithic use of fire, the Neolithic revolution to farming, and the Industrial revolution as step changes in free energy input to human societies. In each case we try to quantify the resulting increase in energy input, and discuss the consequences for material cycling and for biological and social organization. For most of human history, energy use by humans was but a tiny fraction of the overall energy input to the biosphere, as would be expected for any heterotrophic species. However, the industrial revolution gave humans the capacity to push energy inputs towards planetary scales and by the end of the 20th century human energy use had reached a magnitude comparable to the biosphere. By distinguishing world regions and income brackets we show the unequal distribution in energy and material use among contemporary humans. Looking ahead, a prospective sustainability revolution will require scaling up new renewable and decarbonized energy technologies and the development of much more efficient material recycling systems - thus creating a more autotrophic social metabolism. Such a transition must also anticipate a level of social organization that can implement the changes in energy input and material cycling without losing the large achievements in standard of living and individual liberation associated with industrial societies.

  16. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Qiang, E-mail: dong@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro [Department of Research Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae cho-7, Kofu 400-8511 (Japan); Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan)

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  17. Improved Electrical Insulation of Rare Earth Permanent Magnetic Materials With High Magnetic Properties

    Institute of Scientific and Technical Information of China (English)

    CHANG Ying; WANG Da-peng; LI Wei; PAN Wei; YU Xiao-jun; QI Min

    2009-01-01

    Rare earth permanent magnetic materials are typical electrical conductor, and their magnetic properties will decrease because of the eddy current effect, so it is difficult to keep them stable for a long enough time under a high frequency AC field. In the present study, as far as rare earth permanent magnets are concerned, for the first time, rare earth permanent magnets with strong electrical insulation and high magnetic performance have been obtained through experiments, and their properties are as follows:(1) Sm2TM17: Br=0.62 T, jHc=803.7 kA/m, (BH)m= The magnetic properties of Sm2TM17 and NdFeB are obviously higher than those of ferrite permanent magnet, and the electric insulating characteristics of Sm2TM17 and NdFeB applied have in fact been approximately the same as those of ferrite. Therefore, Sm2TM17 and NdFeB will possess the ability to take the place of ferrite under a certain high frequency AC electric field.

  18. Does subduction zone magmatism produce average continental crust

    Science.gov (United States)

    Ellam, R. M.; Hawkesworth, C. J.

    1988-01-01

    The question of whether present day subduction zone magmatism produces material of average continental crust composition, which perhaps most would agree is andesitic, is addressed. It was argued that modern andesitic to dacitic rocks in Andean-type settings are produced by plagioclase fractionation of mantle derived basalts, leaving a complementary residue with low Rb/Sr and a positive Eu anomaly. This residue must be removed, for example by delamination, if the average crust produced in these settings is andesitic. The author argued against this, pointing out the absence of evidence for such a signature in the mantle. Either the average crust is not andesitic, a conclusion the author was not entirely comfortable with, or other crust forming processes must be sought. One possibility is that during the Archean, direct slab melting of basaltic or eclogitic oceanic crust produced felsic melts, which together with about 65 percent mafic material, yielded an average crust of andesitic composition.

  19. Preparation, Characterization and Luminescent Properties of MCM-41 Type Materials Impregnated with Rare Earth Complex

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hybrid materials incorporating Eu-(TTA)3.2H2O(hereafter designated as Eu-TTA, with TTA:thenoyltrifluoroacetone)in unmodified or modified MCM-41 by 3-aminopropyl-triethoxysilane (APTES)were prepared by impregnation method.The obtained materials were characterized using X-ray diffraction(XRD),IR and diffuse reflectance spectroscopy and luminescence spectra.All the hybrid samples exhibited the characteristic emission bands of Eu3+ under UV light excitation at room temperature, and the excitation spectra showed significant blue-shifts compared to the pure rare-earth complex. Although the red emission intensity in the modified hybrid was almost the half of the red emission intensity in the pure Eu-TTA complex at room temperature,the hybrid showed a much higher thermal stability due to the shielding character of the MCM-41host.

  20. Nitrogen fixation in biological soil crusts from southeast Utah, USA

    Science.gov (United States)

    Belnap, J.

    2002-01-01

    Biological soil crusts can be the dominant source of N for arid land ecosystems. We measured potential N fixation rates biweekly for 2 years, using three types of soil crusts: (1) crusts whose directly counted cells were >98% Microcoleus vaginatus (light crusts); (2) crusts dominated by M. vaginatus, but with 20% or more of the directly counted cells represented by Nostoc commune and Scytonema myochrous (dark crusts); and (3) the soil lichen Collema sp. At all observation times, Collema had higher nitrogenase activity (NA) than dark crusts, which had higher NA than light crusts, indicating that species composition is critical when estimating N inputs. In addition, all three types of crusts generally responded in a similar fashion to climate conditions. Without precipitation within a week of collection, no NA was recorded, regardless of other conditions being favorable. Low (26??C) temperatures precluded NA, even if soils were moist. If rain or snow melt had occurred 3 or less days before collection, NA levels were highly correlated with daily average temperatures of the previous 3 days (r2=0.93 for Collema crusts; r2=0.86 for dark crusts and r2=0.83 for light crusts) for temperatures between 1??C and 26??C. If a precipitation event followed a long dry period, NA levels were lower than if collection followed a time when soils were wet for extended periods (e.g., winter). Using a combination of data from a recording weather datalogger, time-domain reflectometry, manual dry-down curves, and N fixation rates at different temperatures, annual N input from the different crust types was estimated. Annual N input from dark crusts found at relatively undisturbed sites was estimated at 9 kg ha-1 year-1. With 20% cover of the N-fixing soil lichen Collema, inputs are estimated at 13 kg ha-1 year-1. N input from light crusts, generally indicating soil surface disturbance, was estimated at 1.4 kg ha-1 year-1. The rates in light crusts are expected to be highly variable, as

  1. Tectonic escape in the evolution of the continental crust

    Science.gov (United States)

    Burke, K.; Sengor, C.

    1986-01-01

    The continental crust originated by processes similar to those operating today and continents consist of material most of which originated long ago in arc-systems that have later been modified, especially at Andean margins and in continental collisions where crustal thickening is common. Collision-related strike-slip motion is a general process in continental evolution. Because buoyant continental (or arc) material generally moves during collision toward a nearby oceanic margin where less buoyant lithosphere crops out, the process of major strike-slip dominated motion toward a 'free-face' is called 'tectonic escape'. Tectonic escape is and has been an element in continental evolution throughout recorded earth-history. It promotes: (1) rifting and the formation of rift-basins with thinning of thickened crust; (2) pervasive strike-slip faulting late in orogenic history which breaks up mountain belts across strike and may juxtapose unrelated sectors in cross-section; (3) localized compressional mountains and related foreland-trough basins.

  2. Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion.

    Science.gov (United States)

    Cudahy, Thomas; Caccetta, Mike; Thomas, Matilda; Hewson, Robert; Abrams, Michael; Kato, Masatane; Kashimura, Osamu; Ninomiya, Yoshiki; Yamaguchi, Yasushi; Collings, Simon; Laukamp, Carsten; Ong, Cindy; Lau, Ian; Rodger, Andrew; Chia, Joanne; Warren, Peter; Woodcock, Robert; Fraser, Ryan; Rankine, Terry; Vote, Josh; de Caritat, Patrice; English, Pauline; Meyer, Dave; Doescher, Chris; Fu, Bihong; Shi, Pilong; Mitchell, Ross

    2016-03-30

    The Earth's surface comprises minerals diagnostic of weathering, deposition and erosion. The first continental-scale mineral maps generated from an imaging satellite with spectral bands designed to measure clays, quartz and other minerals were released in 2012 for Australia. Here we show how these satellite mineral maps improve our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map shows how kaolinite has developed over tectonically stable continental crust in response to deep weathering during northwardly migrating tropical conditions from 45 to 10 Ma. The same clay composition map, in combination with one sensitive to water content, enables the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust such as the Lake Eyre Basin. Cutting across these clay patterns are sandy deserts that developed <10 Ma and are well mapped using another satellite product sensitive to the particle size of silicate minerals. This product can also be used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The accuracy and information content of these satellite mineral maps are validated using published data.

  3. Osmium isotope and highly siderophile element systematics of the lunar crust

    Science.gov (United States)

    Day, James M. D.; Walker, Richard J.; James, Odette B.; Puchtel, Igor S.

    2010-01-01

    somewhat surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a 'missing component' of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion.

  4. Osmium isotope and highly siderophile element systematics of the lunar crust

    Science.gov (United States)

    Day, J.M.D.; Walker, R.J.; James, O.B.; Puchtel, I.S.

    2010-01-01

    surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a 'missing component' of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion. ?? 2009 Elsevier B.V. All rights reserved.

  5. Space Weathering Impact on Solar System Surfaces and Planetary Mission Science

    Science.gov (United States)

    Cooper, John F.

    2011-01-01

    We often look "through a glass, darkly" at solar system bodies with tenuous atmospheres and direct surface exposure to the local space environment. Space weathering exposure acts via universal space-surface interaction processes to produce a thin patina of outer material covering, potentially obscuring endogenic surface materials of greatest interest for understanding origins and interior evolution. Examples of obscuring exogenic layers are radiation crusts on cometary nuclei and iogenic components of sulfate hydrate deposits on the trailing hemisphere of Europa. Weathering processes include plasma ion implantation into surfaces, sputtering by charged particles and solar ultraviolet photons, photolytic chemistry driven by UV irradiation, and radiolytic chemistry evolving from products of charged particle irradiation. Regolith structure from impacts, and underlying deeper structures from internal evolution, affects efficacy of certain surface interactions, e.g. sputtering as affected by porosity and surface irradiation dosage as partly attenuated by local topographic shielding. These processes should be regarded for mission science planning as potentially enabling, e.g. since direct surface sputtering, and resultant surface-bound exospheres, can provide in-situ samples of surface composition to ion and neutral mass spectrometers on orbital spacecraft. Sample return for highest sensitivity compOSitional and structural analyses at Earth will usually be precluded by limited range of surface sampling, long times for return, and high cost. Targeted advancements in instrument technology would be more cost efficient for local remote and in-situ sample analysis. More realistic laboratory simulations, e.g. for bulk samples, are needed to interpret mission science observations of weathered surfaces. Space environment effects on mission spacecraft and science operations must also be specified and mitigated from the hourly to monthly changes in space weather and from longer

  6. Geochemistry of Late Triassic pelitic rocks in the NE part of Songpan-Ganzi Basin, western China: Implications for source weathering, provenance and tectonic setting

    Directory of Open Access Journals (Sweden)

    Yan Tang

    2012-09-01

    Full Text Available Major, trace and rare earth element (REE concentrations of Late Triassic sediments (fine-grained sandstones and mudstones from Hongcan Well 1 in the NE part of the Songpan-Ganzi Basin, western China, are used to reveal weathering, provenance and tectonic setting of inferred source areas. The Chemical Index of Alteration (CIA reflects a low to moderate degree of chemical weathering in a cool and somewhat dry climate, and an A-CN-K plot suggests an older upper continental crust provenance dominated by felsic to intermediate igneous rocks of average tonalite composition. Based on the various geochemical tectonic setting discrimination diagrams, the Late Triassic sediments are inferred to have been deposited in a back-arc basin situated between an active continental margin (the Kunlun-Qinling Fold Belt and a continental island arc (the Yidun Island Arc. The Triassic sediments in the study area underwent a rapid erosion and burial in a proximal slope-basin environment by the petrographic data, while the published flow directions of Triassic turbidites in the Aba-Zoige region was not supported Yidun volcanic arc source. Therefore, we suggest that the Kunlun-Qinling terrane is most likely to have supplied source materials to the northeast part of the Songpan-Ganzi Basin during the Late Triassic.

  7. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker

    2007-01-01

    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  8. High temperature radiator materials for applications in the low Earth orbital environment

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Mirtich, Michael J.; Lebed, Richard; Brady, Joyce; Hotes, Deborah; Kussmaul, Michael

    1987-01-01

    Radiators must be constructed of materials which have high emittance in order to efficiently radiate heat from high temperature space power systems. In addition, if these radiators are to be used for applications in the low Earth orbital environment, they must not be detrimentally affected by exposure to atomic oxygen. Four materials selected as candidate radiator materials (304 stainless steel, copper, titanium-6% aluminum-4% vanadium (Ti-6%Al-4%V), and niobium-1% zirconium (Nb-1%Zr)) were surface modified by acid etching, heat treating, abrading, sputter texturing, electrochemical etching, and combinations of the above in order to improve their emittance. Combination treatment techniques with heat treating as the second treatment provided about a factor of two improvement in emittance for 304 stainless steel, Ti-6%Al-4%V, and Nb-1%Zr. A factor of three improvement in emittance occurred for discharge chamber sputter textured copper. Exposure to atomic oxygen in an RF plasma asher did not significantly change the emittance of those samples that had been heat treated as part of their texturing process. An evaluation of oxygen penetration is needed to understand how oxidation affects the mechanical properties of these materials when heat treated.

  9. Sol-gel-derived hybrid materials multi-doped with rare-earth metal ions

    Science.gov (United States)

    Zelazowska, E.; Rysiakiewicz-Pasek, E.; Borczuch-Laczka, M.; Cholewa-Kowalska, K.

    2012-06-01

    Four different hybrid organic-inorganic materials based on TiO2-SiO2 matrices with organic additives and doped with rare-earth metal ions (III) from the group of europium, cerium, terbium, neodymium, dysprosium and samarium, were synthesized by sol-gel method. Tetraethyl orthosilicate, titanium (IV) isopropoxide and organic compounds, such as butyl acrylate, butyl methacrylate, ethyl acetoacetate, ethylene glycol dimethacrylate, ethyl acetate, propylene carbonate, organic solvents and certain inorganic salts were used in the synthesis. The inorganic part of the sols, which were used in the synthesis of all the hybrid materials, was prepared separately and then the organic parts were added. The materials obtained were aged for three weeks at room temperature and then heated in an electric oven for three hours at temperatures of 80 °C-150 °C. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM/EDX); X-ray diffraction (XRD); Fourier transform infrared spectroscopy (KBr technique); 29Si magic-angle spinning nuclear magnetic resonance; and fluorescence spectroscopy were used for the examination of morphology, microstructure and luminescence properties, respectively. Photoluminescence properties with relatively intense narrow emission lines of Tb, Eu, Dy, Nd, Sm respectively to the RE-ions doping, were observed for all the hybrid materials.

  10. Weather Fundamentals: Hurricanes & Tornadoes. [Videotape].

    Science.gov (United States)

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) features information on the deadliest and most destructive storms on Earth. Through satellite…

  11. Hypervelocity Impact Testing of Materials for Additive Construction: Applications on Earth, the Moon, and Mars

    Science.gov (United States)

    Ordonez, Erick; Edmunson, Jennifer; Fiske, Michael; Christiansen, Eric; Miller, Josh; Davis, Bruce Alan; Read, Jon; Johnston, Mallory; Fikes, John

    2017-01-01

    Additive Construction is the process of building infrastructure such as habitats, garages, roads, berms, etcetera layer by layer (3D printing). The National Aeronautics and Space Administration (NASA) and the United States Army Corps of Engineers (USACE) are pursuing additive construction to build structures using resources available in-situ. Using materials available in-situ reduces the cost of planetary missions and operations in theater. The NASA team is investigating multiple binders that can be produced on planetary surfaces, including the magnesium oxide-based Sorel cement; the components required to make Ordinary Portland Cement (OPC), the common cement used on Earth, have been found on Mars. The availability of OPC-based concrete on Earth drove the USACE to pursue additive construction for base housing and barriers for military operations. Planetary and military base structures must be capable of resisting micrometeoroid impacts with velocities ranging from 11 to 72km/s for particle sizes 200 micrometers or more (depending on protection requirements) as well as bullets and shrapnel with a velocity of 1.036km/s with projectiles 5.66mm diameter and 57.40mm in length, respectively.

  12. High pressure {mu}SR studies: rare earths and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Kalvius, G.M., E-mail: kalvius@ph.tum.de; Schreier, E. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Ekstroem, M.; Hartmann, O. [Uppsala University, Physics Department (Sweden); Henneberger, S., E-mail: kalvius@ph.tum.de; Kratzer, A. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Waeppling, R. [Uppsala University, Physics Department (Sweden); Martin, E., E-mail: kalvius@ph.tum.de; Burghart, F.J. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Ballou, R.; Deportes, J. [CNRS, Laboratoire Louis Neel (France); Niedermayer, Ch. [University of Constance, Faculty of Physics (Germany)

    2000-11-15

    After a short introduction to {mu}SR with respect to the study of magnetic properties, followed by a brief outline of the principle of the high pressure-low temperature {mu}SR spectrometer installed at the Paul Scherrer Institute, we discuss some measurements on rare earth materials employing this instrument. They are concerned with: (1) The pressure dependence of the spin turning process in ferromagnetic Gd. (2) The volume dependence of the internal magnetic field in the heavy rare earth metals Gd, Dy, and Ho in their ordered magnetic states. (3) The response of the (first order) magnetic transition in the frustrated antiferromagnets of type RMn{sub 2} (R = Y,Gd) to pressure. (4) The variation of magnetic parameters with pressure in La{sub 2}CuO{sub 4} (powder sample), the antiferromagnetic parent compound of the high T{sub C} superconductors of type La{sub 2-x}(Sr, Ba){sub x}CuO{sub 4}. In conclusion a short outlook on further developments is given.

  13. Evaluation of black crust formation and soiling process on historical buildings from the Bilbao metropolitan area (north of Spain) using SEM-EDS and Raman microscopy.

    Science.gov (United States)

    Calparsoro, Estefanía; Maguregui, Maite; Giakoumaki, Anastasia; Morillas, Héctor; Madariaga, Juan Manuel

    2017-04-01

    In the present work, several building materials suffering from black crusts and soiled surfaces were evaluated by scanning electron microscopy energy dispersive X-ray spectrometry (SEM-EDS) and micro-Raman spectroscopy. The goal was to examine the elemental and molecular composition, the distribution on the samples, and the morphology of endogenous and exogenous compounds on those black crusts and soiled surfaces. The black crusts were deposited over different building materials such as limestone, sandstone, and brick that constitute a small construction called "malacate" as well as over a limestone substrate of a cemetery gate. Both constructions are dated back to the beginning of the twentieth century. The samples of soiling were taken from the façade of a building constructed in the 1980s. The analytical evaluation allowed in a first stage the determination of the composition and the observation of the morphology of soiling and black crusts. In addition, the evaluation of the compositions of the soiling and black crusts of different grade and formation allowed the assessment of the main weathering phenomena that the buildings have suffered, which were found to be sulfate impact, marine aerosol impact, depositions of metallic particles, crustal particulate matter depositions, carbonaceous particles, biodeterioration, and vandalism.

  14. Finite-difference migration of the field of refracted waves in studies of the deep structure of the Earth's crust and the upper mantle based on the DSS (on the example of the DOBRE profile)

    Science.gov (United States)

    Pilipenko, V. N.; Verpakhovskaya, A. O.; Starostenko, V. I.; Pavlenkova, N. I.

    2010-11-01

    The main results of deep seismic sounding (DSS) are usually presented in the form of high-velocity models of the medium. Some model examples and the international DOBRE profile have shown that the informativeness of the data obtained can be significantly enhanced by the construction of wave images of the Earth’s crust, based on the migration of refracted and wide-angle reflected waves. The Donets Basin Refraction/Reflection Experiment ( DOBRE) profile crosses the Dnieper-Donets paleorift zone in the Donbas region. Along the profile, refracted waves from the basement and the upper mantle and the reflections from the crust basement (the M boundary) are reliably traced. This wave migration has been used to construct a wave image of the structure of the Earth’s crust. As a result, a clear seismic image of the basement surface, whose depth changes along the profile from 0 to 20 km, was obtained. In near-slope parts of the basin, several major faults were identified that had not been identified previously during standard kinematic data processing. It is shown that the crust-upper mantle transition zone is a clearly reflective horizon only within the crystalline massifs; under a depression, it is represented by a lens-shaped highly-heterogeneous area. As shown in the model examples, the images obtained using such a migration accurately reflect the structural features of the medium, in spite of its complicated structure.

  15. Observation of Solar Wind Charge Exchange Emission from Exospheric Material in and Outside Earth's Magnetosheath

    Science.gov (United States)

    Snowden, S. L.; Collier, M. R.; Cravens, T.; Kuntz, K. D.; Lepri, S. T.; Robertson, I.; Tomas, L.

    2008-01-01

    A long XMM-Newton exposure is used to observe solar wind charge exchange (SWCX) emission from exospheric material in and outside Earth s magnetosheath. The light curve of the O VII (0.5-0.62 keV) band is compared with a model for the expected emission, and while the emission is faint and the light curve has considerable scatter, the correlation is significant to better than 99.9%. This result demonstrates the validity of the geocoronal SWCX emission model for predicting a contribution to astrophysical observations to a scale factor of order unity (1.36). The results also demonstrate the potential utility of using X-ray observations to study global phenomena of the magnetosheath which currently are only investigated using in situ measurements.

  16. Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials

    Science.gov (United States)

    Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.

    2016-09-01

    The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.

  17. Rare Earth based Sol-Gel Materials: An Intra- and Inter- Collegiate Collaborative Research Project

    Science.gov (United States)

    Silversmith, Ann

    2004-03-01

    Sol-gel glasses containing rare earth (RE) impurities form an exciting class of new optical materials with potential uses as phosphors and solid state laser media. The low temperature glass synthesis based on the liquid organic precursor tetramethoxysilane allows incorporation of higher RE concentrations than in traditional melt glasses without compromising the amorphous character of the material. The synthesis and spectroscopic characterization of these materials have together formed the basis for a fruitful interdisciplinary and multi-institutional research collaboration. All materials used in this project are made by Hamilton College chemistry students; spectroscopy experiments are performed by students and faculty in the physics departments at Hamilton, Franklin and Marshall, and Davidson Colleges. In this talk results from two ongoing spectroscopic investigations will be presented, both connected to the long-term goal of improving the low fluorescence efficiency of these materials. The first is the chelation of the RE metal to create an enhanced fluorescence excitation path and to physically separate the RE from the sol-gel matrix. Chelating molecules absorb strongly in the uv, and subsequent energy transfer can produce intense visible emission from the RE. Results are presented for the chelating agent 2,6-pyridine-dicarboxylic acid (PDC) bound to europium ions and incorporated into gels. Red emission from europium follows excitation into the PDC absorption band below 300nm. The second investigation focuses on fluorescence quenching of blue emission from trivalent terbium. Two separate mechanisms -energy transfer from terbium to residual hydroxide ions and among terbium ions - lead to reduced intensity of the blue emission lines relative to other longer wavelength signals.

  18. Sr isotope evolution during chemical weathering of granites -- impact of relative weathering rates of minerals

    Institute of Scientific and Technical Information of China (English)

    MA; Yingjun

    2001-01-01

    [1]Ma, Y. J., Liu, C. Q., Geochemistry of strontium isotopes in the crust weathering system, Acta Mineralogica Sinica (in Chinese), 1998, 18(3): 350.[2]Ma, Y. J., Liu, C. Q., Using strontium isotopes to trace nutrient element circulation and hydrochemical evolution within an ecosystem, Advance in Earth Sciences (in Chinese), 1999, 14 (4): 377.[3]Brantley, S. L., Chesley, J. T., Stillings, L. L., Isotopic ratios and release rates of strontium from weathering feldspars, Geochim. Cosmochim. Acta, 1998, 62(9): 1493.[4]Blum, J. D., Erel, Y., A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation, Nature, 1995, 373: 415.[5]Blum, J. D., Erel, Y., Rb-Sr isotope systematics of granitic soil chronosequence: The importance of biotite weathering, Geochim. Cosmochim. Acta, 1997, 61(15): 3193.[6]Bullen, T., Krabbenhoft, D., Kendall, C., Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA, Geochim. Cosmochim. Acta, 1996, 60: 1807.[7]Bullen, T., White, A., Blum, A. et al., Chemical weathering of a soil chronosequence on granitoid alluvium: Ⅱminer-alogic and isotopic constraints on the behavior of strontium, Geochim. Cosmochim. Acta, 1997, 61: 291.[8]Blum, J. D., Erel, Y., Brown, K., 87Sr/86Sr ratios of Sierra Nevada stream waters: Implications for relative mineral weath-ering rates, Geochim. Cosmochim. Acta, 1993, 57: 5019.[9]Ma Yingjun, Trace element and strontium isotope geochemistry during chemical weathering, Ph. D. Dissertation, 1999, Institute of Geochemistry, Chinese Academy of Sciences.[10]Nesbitt, H. W., Markovics, G., Price, R. C., Chemical processes affecting alkalis and alkaline earths during continental weathering, Geochim. Cosmochim. Acta, 1980, 44: 1659.[11]Clauer, N., Strontium and argon isotopes in naturally weathered biotites, muscovites and feldspars, Chem. Geol., 1981, 31: 325.[12

  19. Contributions of different land cover types in Otindag Sandy Land and Bashang area of Hebei Province to the material source of sand stormy weather in Beijing

    Institute of Scientific and Technical Information of China (English)

    LIU Hongyan; TIAN Yuhong; DING Deng

    2003-01-01

    Different land cover types in Otindag Sandy Land and Bashang area of Hebei Province are linked to a material source of sand stormy weather in Beijing based on results of field vegetation and soil survey and laboratory works. Results of grain size analysis show that dust release potential in per unit area of moving sandy land is small, while lowland meadow and meadow steppe in stony hillshave high potential of releasing dusts in per unit area during sand stormy weather occurrence. Further considering the effects of vegetation, it is inferred that the moving sandy land served as a material source of past dust storm and the possibility of dust release in per unit area is low in current time. Typical steppe in stony hills is undergoing desertification and its dust release possibility in per unit area is high. Farmland has strong potential of release dusts when they are ploughed in spring, but a large amount of therophytes grow and thus prevent dusts from release when cultivation was terminated. Potentials of dust release in per unit area in fixed sand dunes, stony mountain meadow steppe and lowland meadow are low due to high cover of perennials. Sand dune reactivation and desiccation of lakes and lowlands under estimated future climatic change will makethem serve as a future material source of sand stormy weather.

  20. Continental crust composition constrained by measurements of crustal Poisson's ratio

    Science.gov (United States)

    Zandt, George; Ammon, Charles J.

    1995-03-01

    DECIPHERING the geological evolution of the Earth's continental crust requires knowledge of its bulk composition and global variability. The main uncertainties are associated with the composition of the lower crust. Seismic measurements probe the elastic properties of the crust at depth, from which composition can be inferred. Of particular note is Poisson's ratio,Σ ; this elastic parameter can be determined uniquely from the ratio of P- to S-wave seismic velocity, and provides a better diagnostic of crustal composition than either P- or S-wave velocity alone1. Previous attempts to measure Σ have been limited by difficulties in obtaining coincident P- and S-wave data sampling the entire crust2. Here we report 76 new estimates of crustal Σ spanning all of the continents except Antarctica. We find that, on average, Σ increases with the age of the crust. Our results strongly support the presence of a mafic lower crust beneath cratons, and suggest either a uniformitarian craton formation process involving delamination of the lower crust during continental collisions, followed by magmatic underplating, or a model in which crust formation processes have changed since the Precambrian era.

  1. 1.2Ma以来闽中沿海长乐红色风化壳剖面的地球化学记录及古气候意义%The geochemical records and their paleoclimate significance of the red weathering crust at Changle coast in central Fujian since 1.2 Ma

    Institute of Scientific and Technical Information of China (English)

    靳建辉; 李志忠; 陈秀玲; 姜修洋; 齐升吉; 吴美榕; 祝淑雅; 陈斐然; 叶桂萍

    2012-01-01

    The chemical weathering intensity and element migration features of the red weathering crust at Changle in central Fujian (Changle RWC) are studied by samples collected from the 8-meter-thick section at a interval of five centimeters in this paper. Based on the measurement of the geochemical elements and mechenical grading, the chronology of Changle RWC is identified by combing OSL and ESR. Then, the process and features of the regional climatic change recorded by the contents, composition andratio of the major chemical elements of Changle RWC since 1. 2 Ma are analyzed. The results indicate; 1) the weathering intensity of Changle RWC in quaternary period was relatively strong between that of red soil and latosolic red soil weathering crusts, with typical characteristics of the red weathering crust in the transition zone between mid-subtropical zone and south subtropical zone; 2) in late Early Pleistocene, Changle RWC transformed from lateritic red soil into red soil, indicating that the climate changed from damp-heat to relatively warm-humid; 3) in middle Pleistocene, Changle RWC experienced a transition from red soil to lateritic red soil, indicating that the climate changed from relatively warm-humid to damp-heat; 4) at early Late Pleistocene, Changle RWC developed to typical lateritic red soil, indicating a damp-heat climate; 5) at late Late Pleistocene, Changle RWC showed a trend of retrogressive succession from latosolic red soil to late red soil, indicating the climate change from warm-humid to warm-dry. The climate change characteristics indicated by Changle RWC are corresponding to the global climatic variation law. At the same time, it is of its own characteristics, due that the regional climatic variation is contoled by the change of summer monsoon.%对闽中沿海长乐厚度8m的红土风化壳剖面(CL)间隔5cm采样,进行地球化学元素和粒度组成测试,以OSL与ESR年龄确定年代学框架,据此探讨了1.2Ma以来红土沉积常量化

  2. Spectroscopic analyses of trivalent rare-earth ions doped in different host materials

    Science.gov (United States)

    Chandrasekharan, Sreerenjini

    2011-12-01

    Trivalent rare-earth (RE3+) ions of 4f n electronic configurations are found to possess potential applications in the field of optoelectronic and biophotonic technologies owing to their unique optical properties. They have been used as optical activators in a large number of solid-state laser host materials due to their rich energy level structure. This work focuses on the spectroscopic study of two RE 3+ ions, namely, trivalent erbium and neodymium (Er3+ and Nd3+, respectively), embedded in some important single crystal and nanocrystalline host materials including yttrium orthoaluminate (YAlO3), erbium oxide (Er2O3), yttrium oxide (Y2O3) and a combined host system of Y2O 3 and a vinyl polymer named Polymethyl Methacrylate (PMMA). Each one of these host materials are known to be unique for their characteristic properties such as chemical durability, thermal stability, optical clarity, wide band gaps, biocompatibility, and success as phosphors in various optoelectronic devices. The complete material characterization has been performed through morphology analyses using advanced microscopy techniques and spectroscopic analyses of the characteristic absorption and emission spectra by applying phenomenological crystal-field splitting and Judd-Ofelt techniques. The important spectroscopic parameters such as line strengths, radiative decay rates, and branching ratios have been obtained for the intermanifold transitions from the upper multiplets to the corresponding lower-lying multiplet manifolds 2S+1LJ of RE3+ ions doped in various host systems. Using the radiative decay rates, radiative life times are obtained and the experimental analyses of the fluorescent spectra yield the measured lifetimes of emitting metastable states. Finally, the results are compared with the previously published set of values for the same ions doped in similar type of host systems. Detailed analyses of the spectroscopic properties show that the studied systems RE3+ doped single crystals and

  3. Diversity of burial rates in convergent settings decreased as Earth aged.

    Science.gov (United States)

    Nicoli, Gautier; Moyen, Jean-François; Stevens, Gary

    2016-05-24

    The evolution and the growth of the continental crust is inextricably linked to the evolution of Earth's geodynamic processes. The detrital zircon record within the continental crust, as well as the isotopic composition of this crust, indicates that the amount of juvenile felsic material decreased with time and that in geologically recent times, the generation of new crust is balanced by recycling of the crust back into the mantle within subduction zones. However it cannot always have been so; yet the nature of the crust and the processes of crustal reworking in the Precambrian Earth are not well constrained. Here we use both detrital zircon ages and metamorphic pressure-temperature-time (P-T-t) information from metasedimentary units deposited in proposed convergent settings from Archaean, Proterozoic and Phanerozoic terrains to characterize the evolution of minimum estimates of burial rate (km.Ma(-1)) as a function of the age of the rocks. The demonstrated decrease in burial rate correlates positively with a progressive decrease in the production of juvenile felsic crust in the Archaean and Proterozoic. Burial rates are also more diverse in the Archaean than in modern times. We interpret these features to reflect a progressive decrease in the diversity of tectonic processes from Archaean to present, coupled with the emergence of the uniquely Phanerozoic modern-style collision.

  4. Interdisciplinary Climate Change Curriculum Materials based on the Next Generation Science Standards and The Earth Charter

    Science.gov (United States)

    Barbosa, A.; Robertson, W. H.

    2013-12-01

    In the 2012, the National Research Council (NRC) of the National Academies' reported that one of the major issues associated with the development of climate change curriculum was the lack of interdisciplinary materials that also promoted a correlation between science standards and content. Therefore, in order to respond to this need, our group has developed an interdisciplinary climate change curriculum that has had as its fundamental basis the alignment with the guidelines presented by the Next Generation Science Standards (NGSS) and the ones presented by the international document entitled The Earth Charter. In this regards, while the alignment with NGSS disciplinary core ideas, cross-concepts and students' expectations intended to fulfill the need for the development of climate change curriculum activities that were directly associated with the appropriate set of NGSS guidelines, the alignment with The Earth Charter document intended to reinforce the need the for the integration of sociological, philosophical and intercultural analysis of the theme 'climate change'. Additionally, our curriculum was also developed as part of a collaborative project between climate scientists and engineers, who are responsible for the development of a Regional Arctic Simulation Model (RASM). Hence, another important curriculum constituent was the feedback, suggestions and reviews provided by these professionals, who have also contributed to these pedagogical materials' scientific accuracy by facilitating the integration of datasets and visualizations developed by RASM. Furthermore, our group has developed a climate change curriculum for two types of audience: high school and early undergraduate students. Each curriculum unit is divided into modules and each module contains a set of lesson plans. The topics selected to compose each unit and module were designated according to the surveys conducted with scientists and engineers involved with the development of the climate change

  5. Nature Degradable, Flexible, and Transparent Conductive Substrates from Green and Earth-Abundant Materials.

    Science.gov (United States)

    Yang, Bing; Yao, Chunhua; Yu, Yanhao; Li, Zhaodong; Wang, Xudong

    2017-07-10

    The rapid development of wearable and disposable electronic devices and the rising awareness of environmental sustainability impose growing new demands on the nature degradability of current electronic and energy systems. Here we report a new type of flexible transparent conductive paper completely made from green and earth abundant materials which are also fully degradable and recyclable. Aluminum-doped zinc oxide (AZO) was deposited by low-temperature atomic layer deposition (ALD) as the transparent conductive oxide (TCO) layer on transparent cellulose nanofibril (CNF) papers. The mesoporous structure of the CNF paper rendered strong adhesion of the AZO layer and exhibited excellent mechanical integrity and electrical conductivity within a wide range of tensile and compressive strains. The AZO-CNF paper could be completely dissolved in warm city water after one-hour stirring, demonstrating an excellent nature degradability. A flexible and transparent triboelectric nanogenerator (TENG) was further fabricated using such AZO-CNF papers with a performance that was comparable to other synthetic polymer-based systems. This work illustrated a new and promising strategy of utilizing 100% green and degradable materials in novel electronic and energy harvesting devices.

  6. Effects of rare earth elements on properties of AB5-type electrode materials at different temperature

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Discharge property is an important factor to evaluate electrode materials. The discharge capacity of the hydrogen-storing alloys are not only influenced by its thermodynamic property but also closely related to its dynamic property. When the temperature changes, the degrees of influence of the above-mentioned two factors on the discharge performance vary accordingly. As a consequence, adjusting compositions of the alloys to make them have good discharge performance under a relatively wide range of temperature is of great significance. On the basis of great deal of experimental investigation, the optimum combination of rare earth elements in hydrogen-storing electrode materials using at-30-55℃ is determined and the relationships between the cell parameters and discharge performance of alloys at -30℃ are discussed. Additionally, the DFEC calculation method has been improved to predict the discharge capacities, which is in good agreement with the experimental ones. This is of theoretical significance in investigating new hydrogen-storing alloys of the AB5 type.

  7. Formation of lower continental crust by relamination of buoyant arc lavas and plutons

    Science.gov (United States)

    Kelemen, Peter B.; Behn, Mark D.

    2016-03-01

    The formation of the Earth's continents is enigmatic. Volcanic arc magmas generated above subduction zones have geochemical compositions that are similar to continental crust, implying that arc magmatic processes played a central role in generating continental crust. Yet the deep crust within volcanic arcs has a very different composition from crust at similar depths beneath the continents. It is therefore unclear how arc crust is transformed into continental crust. The densest parts of arc lower crust may delaminate and become recycled into the underlying mantle. Here we show, however, that even after delamination, arc lower crust still has significantly different trace element contents from continental lower crust. We suggest that it is not delamination that determines the composition of continental crust, but relamination. In our conceptual model, buoyant magmatic rocks generated at arcs are subducted. Then, upon heating at depth, they ascend and are relaminated at the base of the overlying crust. A review of the average compositions of buoyant magmatic rocks -- lavas and plutons -- sampled from the Aleutians, Izu-Bonin-Marianas, Kohistan and Talkeetna arcs reveals that they fall within the range of estimated major and trace elements in lower continental crust. Relamination may thus provide an efficient process for generating lower continental crust.

  8. Google earth as a source of ancillary material in a history of psychology class.

    Science.gov (United States)

    Stevison, Blake K; Biggs, Patrick T; Abramson, Charles I

    2010-06-01

    This article discusses the use of Google Earth to visit significant geographical locations associated with events in the history of psychology. The process of opening files, viewing content, adding placemarks, and saving customized virtual tours on Google Earth are explained. Suggestions for incorporating Google Earth into a history of psychology course are also described.

  9. Laboratory experiments duplicate conditions in the Earth’s crust

    Science.gov (United States)

    Peselnick, L.; Dieterich, J.H.; Stewart, R.M.

    1974-01-01

    An experimental device that simulates conditions in the Earth's crust at depths of up to 30 kilometers has been constructed by geophysicists working at the U.S Geological Survey laboratories in Menlo Park, California. A high pressure "bomb" is being used to experimentally measure the velocity of seismic waves in different types of rock at various confining pressures and temperatures. The principal purpose of these measurements is to determine the elastic and non-elastic properties of rocks and minerals under conditions of high-pressure such as exist deep in the Earth's crust

  10. Art for the Smart: Paper and oral presentation assignments for an Earth Materials course

    Science.gov (United States)

    Wetzel, L. R.

    2011-12-01

    A letter from the fictional Art for the Smart company addresses students in the Earth Materials course: "You might be wondering why an artist needs a geology consultant. I am creating a sculpture garden filled with mythical beings. I would like each student to recommend two unique minerals for one of these sculptures..." For this project students randomly select a mythical being, two mineral groups, and a mineral characteristic. For example, a student might be assigned the goddess Freya, a sulfate, a vanadate, and twinning. Students then choose a specific mineral from each group, describe their physical and chemical characteristics, and recommend how the minerals could be incorporated into the sculpture. Reports are presented in short oral presentations and two-page business letters with accompanying bibliography and illustrations. The letter format provides a concise way to communicate results to the Art for the Smart "client" while preparing students for their job-hunting days ahead. The oral presentations are structured as features for a news program. Talks are limited to three to five minutes and four slides: title page, mineral #1, mineral #2, and mythical being. The strict limits help students concentrate on scientific content and smooth delivery rather than flashy visual aids. The student audience and the professor evaluate each in-class presentation. This has become a popular assignment because it engages student imaginations to relate minerals to mythical beings and creatively design a sculpture. Each project is unique and therefore more interesting for both students and faculty to evaluate. The projects are nearly impossible to plagiarize from previous years or from internet sources. Earth Materials is a sophomore level course for Geoscience and Marine Science majors at Eckerd College. The Art for the Smart project leads into an assignment for the second half of the semester featuring building stones. A new "client" sends a letter to the class explaining

  11. Lithium isotope behaviour during weathering in the Ganges Alluvial Plain

    Science.gov (United States)

    Pogge von Strandmann, Philip A. E.; Frings, Patrick J.; Murphy, Melissa J.

    2017-02-01

    The Ganges river system is responsible for the transportation of a large flux of dissolved materials derived from Himalayan weathering to the oceans. Silicate weathering-driven cooling resulting from uplift of the Himalayas has been proposed to be a key player in Cenozoic climate variation. This study has analysed Li isotope (δ7Li) ratios from over 50 Ganges river waters and sediments, in order to trace silicate weathering processes. Sediments have δ7Li of ∼0‰, identical to bulk continental crust, however suspended sediment depth profiles do not display variations associated with grain size that have been observed in other large river systems. Dissolved δ7Li are low (∼11‰) in the Ganges headwaters, but reach a constant value of 21 ± 1.6‰ within a relatively short distance downstream, which is then maintained for almost 2000 km to the Ganges mouth. Given that Li isotopes are controlled by the ratio of primary mineral dissolution to secondary mineral formation, this suggests that the Ganges floodplain is at steady-state in terms of these processes for most of its length. Low δ7Li in the mountainous regions suggest silicate weathering is therefore at its most congruent where uplift and fresh silicate exposure rates are high. However, there is no correlation between δ7Li and the silicate weathering rate in these rivers, suggesting that Li isotopes cannot be used as a weathering-rate tracer, although they do inform on weathering congruency and intensity. The close-to-constant δ7Li values for the final 2000 km of Ganges flow also suggest that once the size of the alluvial plain reached more than ∼500 km (the flow distance after which riverine δ7Li stops varying), the Ganges exerted little influence on the changing Cenozoic seawater δ7Li, because riverine δ7Li attained a near steady-state composition.

  12. Earth: A Ringed Planet?

    Science.gov (United States)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  13. The Early Evolution of Mars' Crust

    Science.gov (United States)

    Samuel, H.; Baratoux, D.; Kurita, K.

    2014-12-01

    The Mars crustal density and thickness have been recently re-evaluated using petrological constraints from remote sensing, in-situ data, and SNC meteorites. This work indicates that the present-day Martian crust is denser and thicker than previously proposed if essentially basaltic in composition. As a consequence, the average crustal thickness would be commensurable with the depth of the basalt/eclogite transition, re-opening the question of crustal recycling on Early Mars and more generally throughout all its history. We have therefore investigated the conditions under which a thick ancient crust with an eclogitic root could survive through the history of Mars using numerical modelling. Delamination may occur if the combination of poorly constrained physical parameters induces the presence of gravitationally unstable layers and favors a rheological decoupling. To study the conditions and the time scales for the occurrence of crustal delamination on Mars, we investigated the influence of critical parameters for a plausible range of values corresponding to the Martian mantle. For each case we follow the dynamic evolution over geological times of a three-layer system (i.e., crust-mantle with a distinction between low pressure, buoyant basaltic crust and higher pressure, denser eclogitic material). We systematically varied four governing parameters within plausible ranges: (1) the basalt-eclogite transition depth, (2) the density difference between the mantle and the basaltic crust, (3) the density difference between the eclogitic crust and the lithosphere & mantle, (4) the viscous rheology. These experiments allow determining the average Martian crustal thickness at early and late evolutionary stages.

  14. Synthesis and characterization of rare earth doped novel optical materials and their potential applications

    Science.gov (United States)

    Pokhrel, Madhab

    There are many application of photonic materials but selection of photonic materials are always constrained by number of factors such as cost, availability of materials, thermal and chemical stability, toxicity, size and more importantly ease of synthesis and processing along with the efficient emission. For example, quantum dots are efficient emitter but they are significantly toxic, whereas dyes are also efficient emitters but they are chemically unstable. On the other hand, display and LED requires the micron size particles but bio application requires the nano-sized particles. On the other hand, laser gain media requires the ceramics glass or single crystal not the nanoparticles. So, realization of practical optical systems critically depends on suitable materials that offer specific combinations of properties. Solid-state powders such as rare-earth ions doped nano and micron size phosphors are one of the most promising candidates for several photonic applications discussed above. In this dissertation, we investigate the upconversion (UC) fluorescence characteristics of rare earth (RE) doped M2O2S (M = Y, Gd, La) oxysulphide phosphors, for near-infrared to visible UC. Both nano and micron size phosphors were investigated depending on their applications of interest. This oxysulphide phosphor possesses several excellent properties such as chemical stability, low toxicity and can be easily mass produced at low cost. Mainly, Yb3+, Er3+, and Ho3+ were doped in the host lattice, resulting in bright red, green, blue and NIR emissions under 980 nm and 1550 nm excitation at various excitation power densities. Maximum UC quantum yields (QY) up to 6.2 %, 5.8%, and 4.6% were respectively achieved in Yb3+/Er3+ :La2O2S, Y2O2S, and Gd2O 2S. Comparisons have been made with respect to reported most efficient upconverting phosphors beta-NaYF4:20 % Yb/ 2% Er. We believe that present phosphors are the most efficient and lower excitation threshold upconverting phosphors at 980 and

  15. Weather Forecasting Systems and Methods

    Science.gov (United States)

    Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)

    2014-01-01

    A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.

  16. Personal Inquiry in the Earth Sciences.

    Science.gov (United States)

    Kaufman, W. Paul

    Designed as a basic workbook using the inquiry process or as a supplementary text in the classroom, this 129 page booklet is divided into five units: Moving in on the Earth From Space, The Earth's Great Bodies of Water, Composition of the Solid Earth, The Earth's Crust is Constantly Changing, and Studying the Earth's History. The exercises are…

  17. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  18. Cementing Material From Rice Husk-Broken Bricks-Spent Bleaching Earth-Dried Calcium Carbide Residue

    Directory of Open Access Journals (Sweden)

    Muthengia Jackson Washira

    2012-10-01

    Full Text Available A cementious material, coded CSBR (Carbide residue Spent bleaching earth Broken bricks and Rice husks, was made from dried calcium carbide residue (DCCR and an incinerated mix of rice husks (RH, broken bricks (BB and spent bleaching earth (SBE. Another material, coded SBR (Spent bleaching earth Broken bricks and Rice husk ash, was made from mixing separately incinerated RH, SBE and ground BB in the same ash ratio as in CSBR. When CSBR was inter-ground with Ordinary Portland Cement (OPC, it showed a continued decrease in Ca(OH2 in the hydrating cement as a function of curing time and replacement levels of the cement. Up to 45 % replacement of the OPC by CSBR produced a Portland pozzolana cement (PPC material that passed the relevant Kenyan Standard. Incorporation of the CSBR in OPC reduces the resultant calcium hydroxide from hydrating Portland cement. The use of the waste materials in production of cementitious material would rid the environment of wastes and lead to production of low cost cementitious material.

  19. Multifunctional rare earth or bismuth oxide materials for catalytic or electrical applications

    Directory of Open Access Journals (Sweden)

    Gavarri J.R.

    2013-09-01

    Full Text Available We present a review on catalytic or electrical properties of materials based on rare earth (RE oxides (CeO2, La2O3, Lu2O3 or bismuth based composite systems CeO2-Bi2O3, susceptible to be integrated into catalytic microsystems or gas sensors. The polycrystalline solids can be used as catalysts allowing conversion of CO or CH4 traces in air-gas flows. Fourier Transform infrared spectroscopy is used to determine the conversion rate of CO or CH4 into CO2 through the variations versus time and temperature of vibrational band intensities. The time dependent reactivities are interpreted in terms of an adapted Avrami model. In these catalytic analyses the nature of surfaces of polycrystalline solids seems to play a prominent role in catalytic efficiency. Electrical impedance spectroscopy allows analyzing the variation of conductivity of the system CeO2-Bi2O3. In this system, the specific high ionic conduction of a Bi2O3 tetragonal phase might be linked to the high catalytic activity.

  20. Radiation Protection Effectiveness of Polymeric Based Shielding Materials at Low Earth Orbit

    Science.gov (United States)

    Badavi, Francis F.; Stewart-Sloan, Charlotte R.; Wilson, John W.; Adams, Daniel O.

    2008-01-01

    Correlations of limited ionizing radiation measurements onboard the Space Transportation System (STS; shuttle) and the International Space Station (ISS) with numerical simulations of charged particle transport through spacecraft structure have indicated that usage of hydrogen rich polymeric materials improves the radiation shielding performance of space structures as compared to the traditionally used aluminum alloys. We discuss herein the radiation shielding correlations between measurements on board STS-81 (Atlantis, 1997) using four polyethylene (PE) spheres of varying radii, and STS-89 (Endeavour, 1998) using aluminum alloy spheres; with numerical simulations of charged particle transport using the Langley Research Center (LaRC)-developed High charge (Z) and Energy TRaNsport (HZETRN) algorithm. In the simulations, the Galactic Cosmic Ray (GCR) component of the ionizing radiation environment at Low Earth Orbit (LEO) covering ions in the 1Radiation (AIR) measurements. With the validity of numerical simulations through correlation with PE and aluminum spheres measurements established, we further present results from the expansion of the simulations through the selection of high hydrogen content commercially available polymeric constituents such as PE foam core and Spectra fiber(Registered TradeMark) composite face sheet to assess their radiation shield properties as compared to generic PE.

  1. Study on BSTO/MgO Ferroelectric Materials for Phase Shift Doped with Rare Earth Oxides

    Institute of Scientific and Technical Information of China (English)

    Yang Chunxia; Zhou Hongqing; Liu Min; Wu Hongzhong

    2005-01-01

    Barium strontium titanate/magnesia (BSTO/MgO) ferroelectric materials for phase shift were prepared by traditional ceramic process-solid phase synthesis. The effects of various rare earth oxides of 0.5% on dielectric behaviors of BSTO/MgO composites were studied in terms of permittivity, loss tangent and tunability both at low and high frequencies. The dielectric constant of Y2O3 and Er2O3 doped samples decreases from 160 to 120, and the microwave loss of La2O3 and Er2O3 doped samples decreases from 8.2×10-3 to 6.8×10-3. Only La2O3 increases the tunability of BSTO/MgO system, from 13.6% to 14.8%. For the La2O3 doped sample, the value of tunability is more than 14% with the external DC field 4000 V*mm-1 and the microwave loss at 2.47 GHz is 6.77×10-3 and, hence, it can basically meet the requirements of phase shifters working at microwave frequencies. The influence mechanism was discussed preliminarily.

  2. Tectonic erosion, subduction accretion and arc collision as controls on the growth of the continental crust

    Science.gov (United States)

    Clift, P.; Vannucchi, P.; Draut, A.

    2003-04-01

    Subduction plate boundaries, at which tectonic erosion removes material from the overriding plate, account for 57% of the total length of the global subduction system and are favored where convergence rates exceed 7 cm/yr and where the sedimentary cover is less than 1 km. Accretion conversely preferentially occurs in regions of slow convergence (1 km. The slope gradients and taper angle of accretionary plate margins correlates with plate convergence rates, while erosive margin slopes appear to be independent of this. Rates of trench retreat do not appear to correlate with any simple characteristic of the plate interaction, but are largely a function of the history of seamount or ridge collisions. Mass balances of the global subduction system indicate that the entire volume of the continental crust can be recycled through the subduction system every 2.6 Ga. Even in accretionary margins a median of only 32% of the incoming sedimentary mass is accreted over time scales of 10 my or greater, resulting in long-term net loss of continental crust along continental active margins. Average magmatic productivity in the active margins must exceed 75 km3/my if the volume of the continental crust is to reach the slow growth rate indicated by isotopic and continental freeboard arguments. Geological arguments indicate that magmatic accretion rates must be faster in oceanic arcs (87-95 km3/my) and less in the continental arcs (65-83 km3/my). Mass balance arguments in oceanic arcs require that their crustal thicknesses must be Continental growth is principally achieved through the collision of oceanic island arcs to continental margins. Although oceanic arcs are chemically distinct from continental crust, the collision process involves the loss of mafic and ultramafic lower crust and the emplacement of voluminous, high silica, light rare earth element enriched melts, transforming the net composition into something more continental in character.

  3. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Gutiérrez, Silvia C.; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart, E-mail: s.t.wagland@cranfield.ac.uk

    2015-08-15

    Highlights: • Samples from multiple core drills were obtained from 4× landfill sites in the UK. • Each sample analysed for rare earth elements, critical metals and valuable metals. • Two stage microwave digestion method ensuring high yield. • High quantities of copper and aluminium were observed in the soil layers of landfill. • Across 4× landfills aluminium and copper present has a value of around $400 million. - Abstract: Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58 ± 6 mg kg{sup −1} for REEs comprising 44 ± 8 mg kg{sup −1} for light REEs, 11 ± 2 mg kg{sup −1} for heavy REEs and 3 ± 1 mg kg{sup −1} for Scandium (Sc) and 3 ± 1.0 mg kg{sup −1} of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are

  4. Origin of heavy rare earth mineralization in South China

    Science.gov (United States)

    Xu, Cheng; Kynický, Jindřich; Smith, Martin P.; Kopriva, Antonin; Brtnický, Martin; Urubek, Tomas; Yang, Yueheng; Zhao, Zheng; He, Chen; Song, Wenlei

    2017-02-01

    Heavy rare earth elements (HREE) are dominantly mined from the weathering crusts of granites in South China. Although weathering processes occur globally, no economic HREE resources of this type have yet been found outside China. Here, we report the occurrence of unidentified REE minerals in the granites from South Chinese deposits. They contain high levels of both HREE and light REE, but are strongly depleted in Ce, implying high oxidation state. These REE minerals show higher initial Nd isotope than primary REE-rich minerals (εNd(t)=0.9+/-0.8 versus -11.5+/-0.5). The mineralized weathering crusts inherited REE signature of the granites, but show more Ce depletion and more overall concentration of the REE. We propose, therefore, that highly oxidized, REE-rich fluids, derived from external, isotopically depleted sources, metasomatized the granites, which resulted in Ce depletion as Ce4+ and enrichment of the remaining REE, especially the HREE, contributing to formation of a globally important REE resource.

  5. Earth Observation oriented teaching materials development based on OGC Web services and Bashyt generated reports

    Science.gov (United States)

    Stefanut, T.; Gorgan, D.; Giuliani, G.; Cau, P.

    2012-04-01

    Creating e-Learning materials in the Earth Observation domain is a difficult task especially for non-technical specialists who have to deal with distributed repositories, large amounts of information and intensive processing requirements. Furthermore, due to the lack of specialized applications for developing teaching resources, technical knowledge is required also for defining data presentation structures or in the development and customization of user interaction techniques for better teaching results. As a response to these issues during the GiSHEO FP7 project [1] and later in the EnviroGRIDS FP7 [2] project, we have developed the eGLE e-Learning Platform [3], a tool based application that provides dedicated functionalities to the Earth Observation specialists for developing teaching materials. The proposed architecture is built around a client-server design that provides the core functionalities (e.g. user management, tools integration, teaching materials settings, etc.) and has been extended with a distributed component implemented through the tools that are integrated into the platform, as described further. Our approach in dealing with multiple transfer protocol types, heterogeneous data formats or various user interaction techniques involve the development and integration of very specialized elements (tools) that can be customized by the trainers in a visual manner through simple user interfaces. In our concept each tool is dedicated to a specific data type, implementing optimized mechanisms for searching, retrieving, visualizing and interacting with it. At the same time, in each learning resource can be integrated any number of tools, through drag-and-drop interaction, allowing the teacher to retrieve pieces of data of various types (e.g. images, charts, tables, text, videos etc.) from different sources (e.g. OGC web services, charts created through Bashyt application, etc.) through different protocols (ex. WMS, BASHYT API, FTP, HTTP etc.) and to display

  6. Wacky Weather

    Science.gov (United States)

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  7. Wacky Weather

    Science.gov (United States)

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  8. Geoelectromagnetic investigation of the earth’s crust and mantle

    CERN Document Server

    Rokityansky, Igor I

    1982-01-01

    Electrical conductivity is a parameter which characterizes composition and physical state of the Earth's interior. Studies of the state equations of solids at high temperature and pressure indicate that there is a close relation be­ tween the electrical conductivity of rocks and temperature. Therefore, measurements of deep conductivity can provide knowledge of the present state and temperature of the Earth's crust and upper mantle matter. Infor­ mation about the temperature of the Earth's interior in the remote past is derived from heat flow data. Experimental investigation of water-containing rocks has revealed a pronounced increase of electrical conductivity in the temperature range D from 500 to 700 DC which may be attributed to the beginning of fractional melting. Hence, anomalies of electrical conductivity may be helpful in identitying zones of melting and dehydration. The studies of these zones are perspective in the scientific research of the mobile areas of the Earth's crust and upper mantle where t...

  9. Stages of weathering mantle formation from carbonate rocks in the light of rare earth elements (REE) and Sr-Nd-Pb isotopes

    Science.gov (United States)

    Hissler, Christophe; Stille, Peter

    2015-04-01

    Weathering mantles are widespread and include lateritic, sandy and kaolinite-rich saprolites and residuals of partially dissolved rocks. These old regolith systems have a complex history of formation and may present a polycyclic evolution due to successive geological and pedogenetic processes that affected the profile. Until now, only few studies highlighted the unusual high content of associated trace elements in weathering mantles originating from carbonate rocks, which have been poorly studied, compared to those developing on magmatic bedrocks. For instance, these enrichments can be up to five times the content of the underlying carbonate rocks. However, these studies also showed that the carbonate bedrock content only partially explains the soil enrichment for all the considered major and trace elements. Up to now, neither soil, nor saprolite formation has to our knowledge been geochemically elucidated. Therefore, the aim of this study was to examine more closely the soil forming dynamics and the relationship of the chemical soil composition to potential sources. REE distribution patterns and Sr-Nd-Pb isotope ratios have been used because they are particularly well suited to identify trace element migration, to recognize origin and mixing processes and, in addition, to decipher possible anthropogenic and/or "natural" atmosphere-derived contributions to the soil. Moreover, leaching experiments have been applied to identify mobile phases in the soil system and to yield information on the stability of trace elements and especially on their behaviour in these Fe-enriched carbonate systems. All these geochemical informations indicate that the cambisol developing on such a typical weathering mantle ("terra fusca") has been formed through weathering of a condensed Bajocian limestone-marl facies. This facies shows compared to average world carbonates important trace element enrichments. Their trace element distribution patterns are similar to those of the soil

  10. No significant production of continental crust prior to 3.8 Ga

    Science.gov (United States)

    Vervoort, J. D.; Kemp, T.; Fisher, C. M.

    2012-12-01

    sedimentary rocks (if zircon bearing continental crust existed in present-day volumes prior to 4.0 Ga, it was destroyed virtually without a trace in even the oldest sediments); 3) Pb and other isotopic data from Archean terranes show evidence of older Archean crust only where it is known to exist today (i.e., Slave and Pilbara cratons) but not elsewhere; 4) The best constrained Hf isotope data of mantle-derived samples show that the depleted mantle does not diverge significantly from bulk Earth (based on CHUR) until ca. 3.8-3.5 Ga, or even later if the Earth has a non-chondritic composition. We agree with Armstrong that it is "inescapable" that the Earth differentiated into depleted and enriched reservoirs soon after planetary accretion, but disagree that the enriched reservoir was necessarily an evolved crust typical of modern continental crust; it is more likely to be mafic and devoid of zircon. An essential part of crustal growth, therefore, is not only in the extraction of enriched material from the mantle but also in the transformation of this dominantly basaltic protocrust into something progressively more felsic, with greater preservation potential. This process begins to pick up steam at ca. 3.8 Ga.

  11. The continental record and the generation of continental crust

    OpenAIRE

    Cawood, Peter Anthony; Hawkesworth, Chris; Dhuime, Bruno Philippe Marcel

    2013-01-01

    Continental crust is the archive of Earth history. The spatial and temporal distribution of Earth's record of rock units and events is heterogeneous; for example, ages of igneous crystallization, metamorphism, continental margins, mineralization, and seawater and atmospheric proxies are distributed about a series of peaks and troughs. This distribution reflects the different preservation potential of rocks generated in different tectonic settings, rather than fundamental pulses of activity, a...

  12. Oceanic crust recycling and the formation of lower mantle heterogeneity

    Science.gov (United States)

    van Keken, Peter E.; Ritsema, Jeroen; Haugland, Sam; Goes, Saskia; Kaneshima, Satoshi

    2016-04-01

    The Earth's lower mantle is heterogeneous at multiple scales as demonstrated for example by the degree-2 distribution of LLSVPs seen in global tomography and widespread distribution of small scale heterogeneity as seen in seismic scattering. The origin of this heterogeneity is generally attributed to leftovers from Earth's formation, the recycling of oceanic crust, or a combination thereof. Here we will explore the consequences of long-term oceanic crust extraction and recycling by plate tectonics. We use geodynamical models of mantle convection that simulate plates in an energetically consistent manner. The recycling of oceanic crust over the age of the Earth produces persistent lower mantle heterogeneity while the upper mantle tends to be significantly more homogeneous. We quantitatively compare the predicted heterogeneity to that of the present day Earth by tomographic filtering of the geodynamical models and comparison with S40RTS. We also predict the scattering characteristics from S-P conversions and compare these to global scattering observations. The geophysical comparison shows that lower mantle heterogeneity is likely dominated by long-term oceanic crust recycling. The models also demonstrate reasonable agreement with the geochemically observed spread between HIMU-EM1-DMM in ocean island basalts as well as the long-term gradual depletion of the upper mantle as observed in Lu-Hf systematics.

  13. Crystal surface integrity and diffusion measurements on Earth and planetary materials

    Science.gov (United States)

    Watson, E. B.; Cherniak, D. J.; Thomas, J. B.; Hanchar, J. M.; Wirth, R.

    2016-09-01

    Characterization of diffusion behavior in minerals is key to providing quantitative constraints on the ages and thermal histories of Earth and planetary materials. Laboratory experiments are a vital source of the needed diffusion measurements, but these can pose challenges because the length scales of diffusion achievable in a laboratory time are commonly less than 1 μm. An effective strategy for dealing with this challenge is to conduct experiments involving inward diffusion of the element of interest from a surface source, followed by quantification of the resulting diffusive-uptake profile using a high-resolution depth-profiling technique such as Rutherford backscattering spectroscopy (RBS), nuclear reaction analysis (NRA), or ion microprobe (SIMS). The value of data from such experiments is crucially dependent on the assumption that diffusion in the near-surface of the sample is representative of diffusion in the bulk material. Historical arguments suggest that the very process of preparing a polished surface for diffusion studies introduces defects-in the form of dislocations and cracks-in the outermost micrometer of the sample that make this region fundamentally different from the bulk crystal in terms of its diffusion properties. Extensive indirect evidence suggests that, in fact, the near-surface region of carefully prepared samples is no different from the bulk crystal in terms of its diffusion properties. A direct confirmation of this conclusion is nevertheless clearly important. Here we use transmission electron microscopy to confirm that the near-surface regions of olivine, quartz and feldspar crystals prepared using careful polishing protocols contain no features that could plausibly affect diffusion. This finding does not preclude damage to the mineral structure from other techniques used in diffusion studies (e.g., ion implantation), but even in this case the role of possible structural damage can be objectively assessed and controlled. While all

  14. New Mid-IR Lasers Based on Rare-Earth-Doped Sulfide and Chloride Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nostrand, M

    2000-09-01

    Applications in remote-sensing and military countermeasures have driven a need for compact, solid-state mid-IR lasers. Due to multi-phonon quenching, non-traditional hosts are needed to extend current solid-state, room-temperature lasing capabilities beyond {approx} 4 {micro}m. Traditional oxide and fluoride hosts have effective phonon energies in the neighborhood of 1000 cm{sup -1} and 500 cm{sup -1}, respectively. These phonons can effectively quench radiation above 2 and 4 {micro}m, respectively. Materials with lower effective phonon energies such as sulfides and chlorides are the logical candidates for mid-IR (4-10 {micro}m) operation. In this report, laser action is demonstrated in two such hosts, CaGa{sub 2}S{sub 4} and KPb{sub 2}Cl{sub 5}. The CaGa{sub 2}S{sub 4}:Dy{sup 3+} laser operating at 4.3 {micro}m represents the first sulfide laser operating beyond 2 {micro}m. The KPb{sub 2}Cl{sub 5}:Dy{sup 3+} laser operating at 2.4 {micro}m represents the first operation of a chloride-host laser in ambient conditions. Laser action is also reported for CaGa{sub 2}S{sub 4}:Dy{sup 3+} at 2.4 {micro}m, CaGa{sub 2}S{sub 4}:Dy{sup 3+} at 1.4 {micro}m, and KPb{sub 2}Cl{sub 5}:Nd{sup 3+} at 1.06 {micro}m. Both host materials have been fully characterized, including lifetimes, absorption and emission cross sections, radiative branching ratios, and radiative quantum efficiencies. Radiative branching ratios and radiative quantum efficiencies have been determined both by the Judd-Ofelt method (which is based on absorption measurements), and by a novel method described herein which is based on emission measurements. Modeling has been performed to predict laser performance, and a new method to determine emission cross section from slope efficiency and threshold data is developed. With the introduction and laser demonstration of rare-earth-doped CaGa{sub 2}S{sub 4} and KPb{sub 2}Cl{sub 5}, direct generation of mid-IR laser radiation in a solid-state host has been demonstrated. In

  15. The Toxicological Geochemistry of Dusts, Soils, and Other Earth Materials: Insights From In Vitro Physiologically-based Geochemical Leach Tests

    Science.gov (United States)

    Plumlee, G. S.; Ziegler, T. L.; Lamothe, P.; Meeker, G. P.; Sutley, S.

    2003-12-01

    Exposure to mineral dusts, soils, and other earth materials results in chemical reactions between the materials and different body fluids that include, depending upon the exposure route, lung fluids, gastrointestinal fluids, and perspiration. In vitro physiologically-based geochemical leach tests provide useful insights into these chemical reactions and their potential toxicological implications. We have conducted such leach tests on a variety of earth materials, including asbestos, volcanic ash, dusts from dry lake beds, mine wastes, wastes left from the roasting of mercury ores, mineral processing wastes, coal dusts and coal fly ash, various soils, and complex dusts generated by the World Trade Center collapse. Size-fractionated samples of earth materials that have been well-characterized mineralogically and chemically are reacted at body temperature (37 C) for periods from 2 hours up to multiple days with various proportions of simulated lung, gastric, intestinal, and/or plasma-based fluids. Results indicate that different earth materials may have quite different solubility and dissolution behavior in vivo, depending upon a) the mineralogic makeup of the material, and b) the exposure route. For example, biodurable minerals such as asbestos and volcanic ash particles, whose health effects result because they dissolve very slowly in vivo, bleed off low levels of trace metals into the simulated lung fluids; these include metals such as Fe and Cr that are suspected by health scientists of contributing to the generation of reactive oxygen species and resulting DNA damage in vivo. In contrast, dry lake bed dusts and concrete-rich dusts are highly alkaline and bioreactive, and cause substantial pH increases and other chemical changes in the simulated body fluids. Many of the earth materials tested contain a variety of metals that can be quite soluble (bioaccessible), depending upon the material and the simulated body fluid composition. For example, due to their acidic

  16. Geodynamic investigation of the processes that control Lu-Hf isotopic differences between different mantle domains and the crust

    Science.gov (United States)

    Jones, Rosie; van Keken, Peter; Hauri, Erik; Vervoort, Jeff; Ballentine, Chris J.

    2016-04-01

    The chemical and isotopic composition of both the Earth's mantle and the continental crust are greatly influenced by subduction zone processes, such as the formation of continental crust through arc volcanism and the recycling of surface material into the deep mantle. Here we use a combined geodynamical-geochemical approach to investigate the long term role of subduction on the Lu-Hf isotopic evolution of the mantle and the continental crust. We apply the geodynamic model developed by Brandenburg et al., 2008. This model satisfies the geophysical constraints of oceanic heat flow and average plate velocities, as well as geochemical observations such as 40Ar in the atmosphere, and reproduces the geochemical distributions observed in multiple isotope systems which define the HIMU, MORB and EM1 mantle endmembers. We extend this application to investigate the detail of terrestrial Lu-Hf isotope distribution and evolution, and specifically to investigate the role of sediment recycling in the generation of EM2 mantle compositions. The model has been updated to produce higher resolution results and to include a self-consistent reorganisation of the plates with regions of up-/down-wellings. The model assumes that subduction is initiated at 4.5 Ga and that a transition from 'dry' to 'wet' subduction occurred at 2.5 Ga. The modelling suggests that the epsilon Hf evolution of the upper mantle can be generated through the extraction and recycling of the oceanic crust, and that the formation of continental crust plays a lesser role. Our future intention is to utilise the model presented here to investigate the differences observed in the noble gas compositions (e.g., 40Ar/36Ar, 3He/4He) of MORB and OIB. Brandenburg, J.P., Hauri, E.H., van Keken, P.E., Ballentine, C.J., 2008. Earth and Planetary Science Letters 276, 1-13.

  17. Physics of Neutron Star Crusts

    Directory of Open Access Journals (Sweden)

    Chamel Nicolas

    2008-12-01

    Full Text Available The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  18. Explore! Materials for Sharing Earth and Space Science in Libraries and After-School Programs

    Science.gov (United States)

    Nelson, B.; Shipp, S.

    2008-03-01

    The Lunar and Planetary Institute's Explore! team trains library and after-school program staff through workshops and Web casts, to engage families and children in their communities in Earth and space science through hands-on actvities.

  19. Primitive Solar System materials and Earth share a common initial 142Nd abundance

    Science.gov (United States)

    Bouvier, A.; Boyet, M.

    2016-09-01

    The early evolution of planetesimals and planets can be constrained using variations in the abundance of neodymium-142 (142Nd), which arise from the initial distribution of 142Nd within the protoplanetary disk and the radioactive decay of the short-lived samarium-146 isotope (146Sm). The apparent offset in 142Nd abundance found previously between chondritic meteorites and Earth has been interpreted either as a possible consequence of nucleosynthetic variations within the protoplanetary disk or as a function of the differentiation of Earth very early in its history. Here we report high-precision Sm and Nd stable and radiogenic isotopic compositions of four calcium-aluminium-rich refractory inclusions (CAIs) from three CV-type carbonaceous chondrites, and of three whole-rock samples of unequilibrated enstatite chondrites. The CAIs, which are the first solids formed by condensation from the nebular gas, provide the best constraints for the isotopic evolution of the early Solar System. Using the mineral isochron method for individual CAIs, we find that CAIs without isotopic anomalies in Nd compared to the terrestrial composition share a 146Sm/144Sm-142Nd/144Nd isotopic evolution with Earth. The average 142Nd/144Nd composition for pristine enstatite chondrites that we calculate coincides with that of the accessible silicate layers of Earth. This relationship between CAIs, enstatite chondrites and Earth can only be a result of Earth having inherited the same initial abundance of 142Nd and chondritic proportions of Sm and Nd. Consequently, 142Nd isotopic heterogeneities found in other CAIs and among chondrite groups may arise from extrasolar grains that were present in the disk and incorporated in different proportions into these planetary objects. Our finding supports a chondritic Sm/Nd ratio for the bulk silicate Earth and, as a consequence, chondritic abundances for other refractory elements. It also removes the need for a hidden reservoir or for collisional erosion

  20. Primitive Solar System materials and Earth share a common initial (142)Nd abundance.

    Science.gov (United States)

    Bouvier, A; Boyet, M

    2016-09-15

    The early evolution of planetesimals and planets can be constrained using variations in the abundance of neodymium-142 ((142)Nd), which arise from the initial distribution of (142)Nd within the protoplanetary disk and the radioactive decay of the short-lived samarium-146 isotope ((146)Sm). The apparent offset in (142)Nd abundance found previously between chondritic meteorites and Earth has been interpreted either as a possible consequence of nucleosynthetic variations within the protoplanetary disk or as a function of the differentiation of Earth very early in its history. Here we report high-precision Sm and Nd stable and radiogenic isotopic compositions of four calcium-aluminium-rich refractory inclusions (CAIs) from three CV-type carbonaceous chondrites, and of three whole-rock samples of unequilibrated enstatite chondrites. The CAIs, which are the first solids formed by condensation from the nebular gas, provide the best constraints for the isotopic evolution of the early Solar System. Using the mineral isochron method for individual CAIs, we find that CAIs without isotopic anomalies in Nd compared to the terrestrial composition share a (146)Sm/(144)Sm-(142)Nd/(144)Nd isotopic evolution with Earth. The average (142)Nd/(144)Nd composition for pristine enstatite chondrites that we calculate coincides with that of the accessible silicate layers of Earth. This relationship between CAIs, enstatite chondrites and Earth can only be a result of Earth having inherited the same initial abundance of (142)Nd and chondritic proportions of Sm and Nd. Consequently, (142)Nd isotopic heterogeneities found in other CAIs and among chondrite groups may arise from extrasolar grains that were present in the disk and incorporated in different proportions into these planetary objects. Our finding supports a chondritic Sm/Nd ratio for the bulk silicate Earth and, as a consequence, chondritic abundances for other refractory elements. It also removes the need for a hidden reservoir or

  1. Earth-Abundant and Non-Toxic SiX (X = S, Se) Monolayers as Highly Efficient Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji-Hui; Yuan, Qinghong; Deng, Huixiong; Wei, Su-Huai; Yakobson, Boris I.

    2017-01-12

    Current thermoelectric (TE) materials often have low performance or contain less abundant and/or toxic elements, thus limiting their large-scale applications. Therefore, new TE materials with high efficiency and low cost are strongly desirable. Here we demonstrate that SiS and SiSe monolayers made from nontoxic and earth-abundant elements intrinsically have low thermal conductivities arising from their low-frequency optical phonon branches with large overlaps with acoustic phonon modes, which is similar to the state-of-the-art experimentally demonstrated material SnSe with a layered structure. Together with high thermal power factors due to their two-dimensional nature, they show promising TE performances with large figure of merit (ZT) values exceeding 1 or 2 over a wide range of temperatures. We establish some basic understanding of identifying layered materials with low thermal conductivities, which can guide and stimulate the search and study of other layered materials for TE applications.

  2. Effect of Phosphatization on Element Concentration of Cobalt-Rich Ferromanganese Crusts

    Institute of Scientific and Technical Information of China (English)

    PAN Jiahua; E. H. De CARLO; YANG Yi; LIU Shuqin; YOU Guoqin

    2005-01-01

    A detailed study on a small scale of the effect of phosphatization on the chemistry of marine cobalt-rich ferromanganese crusts supplies useful information for the evaluation and comprehensive utilization of crust mineral resources. Sub-samples from top to bottom of a 10-cm thick sample from the NW Pacific Magellan seamount were taken at 5 mm intervals. The concentration profiles of ore-forming and rare earth elements show that obvious differences exist between young unphosphatized crusts and old phosphatized crusts. In the old crusts Fe, Mn, Si, Al, Zn, Mg, Co, Ni and Cu elements are depleted and Ca, P, Sr, Ba and Pb elements are enriched. The order of depletion is Co > Ni > Mg > Al > Mn >Si> Cu > Zn > Fe, while the order of enrichment is P > Ca > Ba > Pb > Sr. The phosphate mineral controls the concentration variation of the ore-forming elements in crusts and causes loss of the main ore-forming elements such as Co and Ni. The phosphatization also affects the abundance of REEs in the crusts. REEs are more abundant and the content of Ce in old crusts is higher than that in young crusts, however, the pattern of REEs and their fractionation characteristics in new and old crusts are not fundamentally changed. A Y-positive anomaly in old crusts has no relationship to the phosphatization.

  3. Application and Demonstration of a Series of Rare Earth Drought Resistant Materials in Western Area of China

    Institute of Scientific and Technical Information of China (English)

    Wang Guoqiang; Wang Jiachen

    2004-01-01

    The application and effects for a series of rare earth (RE) drought resistant materials used in arid, salina,hungriness, wind defending and sand fixing matter, withdraw farming and return to grass and forest in western of China were reported.The important discussion was technological innovation within two years: such as seed clothing agent,RE liquid field film, RE grass and woods transplant living agent, and RE complex pesticide development and application.

  4. Estimation of the physico-chemical parameters of materials based on rare earth elements with the application of computational model

    Science.gov (United States)

    Mamaev, K.; Obkhodsky, A.; Popov, A.

    2016-01-01

    Computational model, technique and the basic principles of operation program complex for quantum-chemical calculations of material's physico-chemical parameters with rare earth elements are discussed. The calculating system is scalable and includes CPU and GPU computational resources. Control and operation of computational jobs and also Globus Toolkit 5 software provides the possibility to join computer users in a unified system of data processing with peer-to-peer architecture. CUDA software is used to integrate graphic processors into calculation system.

  5. [Review on Application of Optical Scattering Spectroscopy for Elastic Wave Velocity Study on Materials in Earth's Interior].

    Science.gov (United States)

    Jiang, Jian-jun; Li, He-ping; Dai, Li-dong; Hu, Hai-ying; Wang, Yan; Zhao, Chao-shuai

    2015-09-01

    In-situ experimental results on the elastic wave velocity of Earth materials at high pressure and high temperature in combination with data from seismic observation can help to inverse the chemical composition, state and migration of materials in Earth's interior, providing an important approach to explore information of deep earth. Applying the Brillouin scattering into the Diamond Anvil Cell (DAC) to obtain the in situ elastic wave velocities of minerals, is the important approach to investigate elastic properties of Earth's Interior. With the development of DAC technology, on the one hand, the high temperature and high pressure experimental environment to simulate different layers of the earth can be achieved; on the other hand, the optical properties of DAC made many kinds of optical analysis and test methods have been widely applied in this research field. In order to gain the elastic wave velocity under high temperature and high pressure, the accurate experimental pressure and heating temperature of the sample in the cavity should be measured and calibrated first, then the scattering signal needs to dealt with, using the Brillouin frequency shift to calculate the velocity in the sample. Combined with the lattice constants obtained from X ray technique, by a solid elastic theory, all the elastic parameters of minerals can be solved. In this paper, firstly, application of methods based on optical spectrum such as Brillouin and Raman scattering in elasticity study on materials in Earth's interior, and the basic principle and research progress of them in the velocity measurement, pressure and temperature calibration are described in detail. Secondly, principle and scope of application of two common methods of spectral pressure calibration (fluorescence and Raman spectral pressure standard) are analyzed, in addition with introduce of the application of two conventional means of temperature calibration (blackbody radiation and Raman temperature scale) in

  6. Looking Backwards in Time to the Early Earth Using the Lens of Stable Isotope Geodynamic Cycles

    Science.gov (United States)

    Gregory, R. T.

    2016-12-01

    The stable isotope ratios of hydrogen, carbon, oxygen and sulfur provide of means of tracing interactions between the major reservoirs of the Earth. The oceans and the dichotomy between continental and oceanic crust are key differences between the Earth and other terrestrial bodies. The existence of plate tectonics and the recognition that no primary crust survives at the Earth's surface sets this planet apart from the smaller terrestrial bodies. The thermostatic control of carbonate-silicate cycle works because of the hydrosphere and plate tectonics. Additionally, the contrast between the carbon isotope ratios for reduced and oxidized species appear to also be invariant over geologic time with evidence of old recycled carbon in the form of diamond inclusions in mantle-derived igneous rocks. Lessons from comparative planetology suggest that early differentiation of the Earth would have likely resulted in the rapid formation of the oceans, a water world over the primary crust. Plate tectonics provides a mechanism for buffering the oxygen isotope fractionation between the oceans and the mantle. The set point for hydrosphere's oxygen isotope composition is a result of the geometry of mid-ocean ridge accretion that is stable over an order magnitude change in spreading rates with time constants much younger shorter than the age of the Earth. The recognition that the "normal" ranges for hydrogen isotope ratios of igneous, metamorphic and sedimentary rocks of any age generally overlap with similar ranges, with the exception of rocks that have interacted with D- and 18O-depleted meteoric waters (generally at high latitudes), is an argument for a constant volume ocean over geologic time. Plate tectonics with a constant volume ocean constrains the thickness of the continental crust because of the rapidity of the mechanical weathering cycle (characteristic times of 10's of millions of years; freeboard of the continents argument). In a plate tectonic regime, chemical

  7. Diversity of burial rates in convergent settings decreased as Earth aged

    Science.gov (United States)

    Nicoli, Gautier; Moyen, Jean-François; Stevens, Gary

    2016-05-01

    The evolution and the growth of the continental crust is inextricably linked to the evolution of Earth’s geodynamic processes. The detrital zircon record within the continental crust, as well as the isotopic composition of this crust, indicates that the amount of juvenile felsic material decreased with time and that in geologically recent times, the generation of new crust is balanced by recycling of the crust back into the mantle within subduction zones. However it cannot always have been so; yet the nature of the crust and the processes of crustal reworking in the Precambrian Earth are not well constrained. Here we use both detrital zircon ages and metamorphic pressure-temperature-time (P-T-t) information from metasedimentary units deposited in proposed convergent settings from Archaean, Proterozoic and Phanerozoic terrains to characterize the evolution of minimum estimates of burial rate (km.Ma-1) as a function of the age of the rocks. The demonstrated decrease in burial rate correlates positively with a progressive decrease in the production of juvenile felsic crust in the Archaean and Proterozoic. Burial rates are also more diverse in the Archaean than in modern times. We interpret these features to reflect a progressive decrease in the diversity of tectonic processes from Archaean to present, coupled with the emergence of the uniquely Phanerozoic modern-style collision.

  8. Li isotopes reflect chemical weathering intensity in streams and ground waters draining basalts

    Science.gov (United States)

    Liu, X.; Rudnick, R. L.; McDonough, W. F.

    2013-12-01

    Chemical weathering has an important influence on continental crust evolution, as weathering of basalt preferentially removes soluble elements, such as Mg, and can shift the crust composition towards more andesitic compositions, thus helping to solve the crustal composition paradox [1]. The isotopic compositions of soluble elements (e.g., Li and Mg) provide a monitor of chemical weathering of the continents. Along with large isotopic fractionations [2], these elements are preferentially transferred to rivers during weathering, and are useful tracers of weathering processes. The chemical and isotopic compositions of streams and ground waters that reside entirely within the Columbia River Basalts (CRBs) reflect the processes associated with basalt weathering. In addition, stream samples from both west and east of the Cascades were collected during summer and late winter to evaluate seasonal changes in Li isotopic compositions. The Li concentrations ([Li]) vary from 0.2 to 4.7 μg/l in dissolved loads of streams for both sampling seasons; in ground waters, [Li] varies from 2 to 21 μg/l. δ7Li varies by up to 20‰ in streams and ground waters, demonstrating that lithology is not the only influence on water chemistry in the catchments. Calculated mineral saturation suggests that most streams and some ground waters were saturated with respect to most secondary minerals, implying that Li isotopic fractionation was influenced by the development of secondary minerals, such as kaolinite and hematite. The δ7Li and Li/Na in dissolved loads of streams are not sensitive to distance from the coast or climate, but likely reflect the local weathering intensity. The correlated variation in δ7Li and Li/Na ratios seem to have global significance, at least in streams that only drain basalts [3, 4, 5], suggesting that the streams within the CRBs cover a wide range of weathering intensity, with low δ7Li and high Li/Na corresponding to higher weathering intensity. In addition

  9. Palladium-rare-earth metal alloys-advanced materials for hydrogen power engineering

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Hydrogen of no less than 99. 999 % (vol. fraction) purity is a principal power media of hydrogen power engineering. A single method for the preparation of high purity hydrogen consists in its separation from vapour-gas mixtures via the selective diffusion of hydrogen through a palladium membrane. The rate of hydrogen diffusion and the strength and stability during the operation in aggressive gases are important characteristics of palladium membranes. The increase in the strength, plasticity, and hydrogen-permeability of membrane alloys can be reached by alloying palladium with the formation of solid solutions.The formation of wide ranges of palladium-rare-earth metal (REM) solid solutions is an interesting feature of palladium. Earlier, we have shown that the alloying of Pd with REM substantially increases the rate of hydrogen diffusion and markedly increases the strength of palladium on retention of the adequate plasticity.In this work, we have studied alloys of the Pd-Y and Pd-Y-Me systems. It was shown that the following conditions should be satisfied to prepare high-quality alloys exhibiting high service properties: (1)the use of high-purity components (whose purity is no less than 99.95%, mass fraction), in particular,high-purity Y prepared by vacuum distillation, and (2) holding the reached purity for the final product.For this purpose, we suggested a cycle of manufacturing operations including the preparation of a vacuumtight foil of 50 (m thick as the final stage.The hydrogen-permeability of the alloys was measured at different temperatures and hydrogen pressures. The instability of operation of binary Pd-Y alloys w alloying the composition with a Ⅷ Group metal. For example, the alloy of the optimum composition Pd-8Y-Me in the annealed state exhibits the following mechanical properties: HV= 75 kg/mm2 , σu = 58 kg/mm2 , and δ= 20%. Its hydrogen-permeability (QH2) measured as a function of the temperature exceeds that of the Pd-23Ag alloy (that is widely

  10. Structure and composition of the continental crust in East China

    Institute of Scientific and Technical Information of China (English)

    高山; 骆庭川; 张本仁; 张宏飞; 韩吟文; 赵志丹; KERN; Hartmut

    1999-01-01

    Crustal structures of nine broad tectonic units in China, except the Tarim craton, are derived from 18 seismic refraction profiles including 12 geoscience transects. Abundances of 63 major, trace and rare earth elements in the upper crust in East China are estimated. The estimates are based on sampling of 11 451 individual rock samples over an area of 950 000 km~2, from which 905 large composite samples are prepared and analyzed by 13 methods. The middle, lower and total crust compositions of East China are also estimated from studies of exposed crustal cross sections and granulite xenoliths and by correlation of seismic data with lithologies. All the tectonic units except the Tarim craton and the Qinling orogen show a four-layered crustal structure, consisting of the upper, middle, upper lower, and lowermost crusts. P-wave velocities of the bulk lower crust and total crust are 6.8—7.0 and 6.4—6.5 km/s, respectively. They are slower by 0.2—0.4 km/s than the global averages. The bulk lower crust is su

  11. Chemical composition of upper crust in eastern China

    Institute of Scientific and Technical Information of China (English)

    鄢明才; 迟清华; 顾铁新; 王春书

    1997-01-01

    In an area of 3. 3 ×106 km" within eastern China, 28 253 rock samples were collected systematically and combined into 2 718 composite samples which were analyzed by 15 reliable methods using national preliminary certified reference materials (CRMs) for data quality monitoring. The average chemical compositions of the exposed crust, the sedimentary cover and the exposed basement as well as the upper crust for 76 chemical elements in eastern China are given.

  12. Integrating Sphere-based Weathering Device

    Data.gov (United States)

    Federal Laboratory Consortium — Description:In the artificial ultraviolet (UV) weathering of materials, a need exists for weathering devices that can uniformly illuminate test specimens with a high...

  13. `Our Changing Climate' - A new interactive game about weather, climate, the Earth's energy budget and the impacts caused by climate change

    Science.gov (United States)

    Colon-Robles, M.; Lorentz, K.; Ruhlman, K.; Gilman, I.; Chambers, L. H.

    2010-12-01

    ‘Our Changing Climate’ is a brand new game developed at NASA’s Langley Research Center by the Informal Education group and the Science Directorate to educate the public on Earth’s climate system how the Sun, ocean, atmosphere, clouds, ice, land, and life interact with each other, and how these interactions are changing due to anthropogenic effects. The game was designed for students in middle school (5th and 8th grade) between the ages of 10-14 as part of the NASA's Summer of Innovation campaign for excellence in science, technology, engineering and mathematics, or STEM, education. The game, ‘Our Changing Climate’, is composed of a series of interactive boards, featuring the following topics: (1) the difference between weather and climate - “Weather vs Climate”, (2) the interactions of clouds and greenhouse gases on short and long wave radiation - “Greenhouse Gases and Clouds”, and (3) the definition of albedo and the importance of bright surfaces over the Arctic - “Arctic Temperature”. Each interactive board presents a climate system and steps the student or spectator through the climate interaction using “clues” and hands-on items that they need to put correctly on the board to understand the concept. Once the student or spectator finishes this part, they then have a better grasp of the concept and are able to understand how these interactions are changing due to the increase in average global temperature. This knowledge is then tested or “driven home” with interactive questions that show how these interactions in our climate are changing today. The concept is then reinforced with an example of a recent event presented in the media. The game has been piloted in outreach and informal settings, as well as for professional development of educators. The game, interactions and engagement of each of the audiences mentioned will be presented.

  14. Composition and genesis of the oldest (4.28 Ga) sediments on Earth

    Science.gov (United States)

    Rosen, O. M.; Abbyasov, A. A.; Zlobin, V. L.

    2015-11-01

    Abstract—The primary premetamorphic mineral composition of the 4.28 Ga old cummingtonite amphibolites of basalt-andesite composition found in the Nuvvuagittuq foldbelt (Quebec, Canada) is calculated in the MINLITH program. Their mafic and intermediate protoliths were composed of more than one-third quartz clasts and more than 50% Mg-Fe-alumosilicates and silicates (including 30% probably clastic serpentine and chlorite in mafic and intermediate rocks, respectively). The amount of feldspars is insignificant: 5 and 9% in mafic and intermediate rocks, respectively. Such a contrasting composition of clastic material indicates its contribution from various sources. Sediments of such a composition could have been formed under aggressive conditions in the course of weathering of the primary ultramafic crust, Na from which was removed to seawater and K from which accumulated in sedimentary basins, which is evident from the high K2O/Na2O ratio of ≥20. This phenomenon has never happened in the subsequent evolution of the Earth.

  15. 塔河油田4区奥陶系风化壳古岩溶作用标志及控制因素分析%Marks and controlling factors of the paleo-karstification in the Ordovician weathered crust at the 4th block of Tahe oil field

    Institute of Scientific and Technical Information of China (English)

    曹建文; 金意志; 夏日元; 梁彬; 邹胜章

    2012-01-01

    奥陶系碳酸盐岩是塔河油田的重要勘探领域之一,其储层类型主要为风化壳古岩溶作用下形成的岩溶缝洞系统.通过对塔河油田4区岩心、钻井、录井、测井以及地震等资料进行系统分析,发现研究区内风化壳古岩溶发育,作用标志明显:岩心中具有与原岩岩性不一致的沉积充填物;钻进中常有放空、井漏、井涌等现象发生;测井曲线上各物性参数大幅度变化;地震反射剖面见杂乱反射、弱反射、串珠状反射等特征.研究区风化壳古岩溶发育主要受可溶性岩石、不整合面、风化壳古地貌及古气候等因素控制,其中可溶性岩石和不整合面控制了古岩溶的空间分布,古地貌决定了风化壳古岩溶的深度、范围及强度,古气候决定了古岩溶的总体发育程度,在各因素共同作用下,形成了一系列岩溶缝洞系统.%Ordovician carbonate is an important exploration area in Tahe oil field. The major reservoir type is karst seam and hole system in weathered crust formed by paleo-karstification. This paper analyzes core, well drilling, mud-logging, well-logging and seismic datas in the 4th block systematically. It is found that paleo-karst with obvious karst marks is well developed in karst seam and hole system in the study area. The paleo-karst marks including following features, such as infillings that different from the primary lithology in the core; the phenomena of lost circulation and kicking when drilling; great changes in physical property parameters in well-logging curves; irregular,weak or beaded reflection in seismic reflection profiling. The overall development degree of the paleo-karst is controlled mainly by soluble rock, unconformity plane, paleo landscape and climate. The spatial distribution of paleo-karst is controlled by soluble rock and unconformities; the weathering range, depth and intensity decided by paleo-landscape; and the paleo-climate decides the total extent

  16. Creep behavior of microbiotic crust

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The creep behavior of microbiotic crust at room temperature was revealed by the creep bending tests of cantilever beam under constant-load conditions.The variation in the deflection with time can be depicted well by a standard creep curve.Creep rupture is a fundamental failure mechanism of microbiotic crust due to creep.A simple theory was then applied to describe this new me-chanical behavior.The existence of creep phenomenon brings into question the validity of widely used methods for measuring the strength of microbiotic crust.

  17. Towards a metallurgy of neutron star crusts

    CERN Document Server

    Kobyakov, D

    2013-01-01

    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic (bcc) lattice of nuclei immersed in an essentially uniform electron gas. We show that at densities above that for neutron drip ($\\sim4\\times10^11$) g cm$^{-3}$ or roughly one thousandth of nuclear matter density, the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO$_3$. As a consequence, properties of matter in the inner crust are expected to be much richer than previously appreciated and we mention consequences for observable neutron star properties.

  18. Towards a metallurgy of neutron star crusts.

    Science.gov (United States)

    Kobyakov, D; Pethick, C J

    2014-03-21

    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic lattice of nuclei immersed in an essentially uniform electron gas. We show that, at densities above that for neutron drip (∼ 4 × 1 0(11)  g cm(-3) or roughly one-thousandth of nuclear matter density), the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO3. As a consequence, the properties of matter in the inner crust are expected to be much richer than previously appreciated, and we mention possible consequences for observable neutron star properties.

  19. 风化煤对晋陕蒙矿区排土场新构土体土壤呼吸的影响%Effect of weathered coal on soil respiration of reconstructed soils on mining area’s earth disposal sites in Shanxi-Shaanxi-Inner Monglia adjacent area

    Institute of Scientific and Technical Information of China (English)

    任志胜; 齐瑞鹏; 王彤彤; 解倩; 郑纪勇; 张兴昌

    2015-01-01

    为探讨风化煤添加对晋陕蒙矿区排土场沙黄土及砒砂岩掺混沙黄土等新构土体土壤呼吸特征的影响,该文设置沙黄土、沙黄土+风化煤、沙黄土+风化煤+砒砂岩掺混、沙黄土+砒砂岩掺混的4种新构土体,采用Li-8100土壤呼吸测量系统测定田间土壤呼吸,分析了不同土体重构方式土壤呼吸特征及其与土壤水热因子的相互关系。结果表明:1)风化煤添加后沙黄土+砒砂岩土体与沙黄土土体土壤呼吸速率分别提高了35.2%(P<0.05)和17.1%,沙黄土土壤呼吸日变化为单峰曲线,风化煤添加后日变化呈双峰曲线。2)各土体土壤呼吸与土壤温度均呈极显著的指数函数关系,vant’ Huff模型可用来模拟各土体土壤呼吸对土壤温度的响应。3)监测期内土壤含水率整体较高,土壤呼吸与土壤水分具有一定的线性关系,但不显著。土壤呼吸与土壤温度、水分多元线性分析结果也表明,监测期内新构土体土壤呼吸与土壤温度显著相关,与土壤水分相关性不显著,土壤温度可以解释土壤呼吸的大部分变异。综合研究结果表明风化煤促进了新构土体土壤呼吸,提高了碳释放速率,同时也改变了土壤呼吸日变化格局。研究阐明了添加风化煤对矿区新构土体碳通量释放的影响,对评估风化煤添加土体优缺点,估算未来局部碳变化具有积极意义。%Jin-Shan-Meng adjacent region is an important coal energy base in China, and also the most fragile ecological region. In recent years, the ecological system and landform have been destructed severely and widely because of opencast coal mining. So, how to improve the reconstructed soil rapidly and effectively on the earth disposal sites formed during coal mining becomes an important scientific problem for land reclamation and ecosystem restoration. Weathered coal, as a common organic material with an abundance of

  20. Areosynchronous weather imager

    Science.gov (United States)

    Puschell, Jeffery J.; Lock, Robert

    2016-09-01

    Mars is characterized by rapidly changing, poorly understood weather that is a concern for future human missions. Future Areosynchronous Mars Orbit (AMO) communication satellites offer possible platforms for Mars weather imagers similar to the geosynchronous Earth orbit (GEO) weather imagers that have been observing Earth since 1966. This paper describes an AReosynchronous Environmental Suite (ARES) that includes two imagers: one with two emissive infrared bands (10.8 μm and 12.0 μm) at 4 km resolution and the other with three VNIR bands (500 nm, 700 nm, 900 nm) at 1 km resolution. ARES stares at Mars and provides full disk coverage as fast as every 40 sec in the VNIR bands and every 2 min in the emissive bands with good sensitivity (SNR 200 in the VNIR for typical radiances and NEDT 0.2K at 180 K scene temperature in the emissive infrared). ARES size, mass, power and data rate characteristics are compatible with expectations for hosted payloads onboard future AMO communication satellites. Nevertheless, more work is needed to optimize ARES for future missions, especially in terms of trades between data rate, full disk coverage rate, sensitivity, number of spectral bands and spatial resolution and in study of approaches for maintaining accurate line of sight knowledge during data collection.

  1. Nature and Composition of Planetary Surficial Deposits and Their Relationship to Planetary Crusts

    Science.gov (United States)

    McLennan, S. M.

    2010-12-01

    Planetary soils constitute micron to meter sized debris blankets covering all or parts of the surfaces of many planetary bodies. Recent results from the Martian surface, by the MER rovers and Phoenix lander, the Huygens probe at Titan and perhaps even the NEAR mission to asteroid 433 Eros suggest a continuum between classic planetary soils, such as those on the Moon, and conventional sediments, such as those on Earth. Controls on this variation are governed by complex interactions related to (1) impact and volcanic history, (2) presence and nature of atmospheres (and thus climate), (3) occurrence, composition and physical state of near-surface volatiles (e.g., water, methane), and (4) presence and nature of crustal tectonics, crustal evolution, and so forth. The Moon represents one extreme where surficial deposits result almost exclusively from impact processes. Absence of water and air restrict further reworking or transport on a significant scale after initial deposition. Disruption and mixing of lunar soils takes place but is related to impact gardening operating on relatively local scales and largely in a vertical sense; alteration is restricted to space weathering. The effect is that lunar soils are compositionally variable and match the composition of the crust in the vicinity of where they form. Thus lunar soils in the highlands are fundamentally different in composition than those on maria. Earth provides the other extreme where the highly dynamic geochemical and geophysical nature of the surface precludes preservation of classic planetary soils, although analogs may exist in ejecta blankets and eolian loess. Instead, a complex suite of sedimentary deposits form in response to chemical and physical weathering, erosion, transport and deposition by a variety of mechanisms involving water, wind, ice and biology. Although there is substantial sedimentary lithological differentiation (e.g., shales, sands, carbonates, evaporites), greatly influenced by the

  2. Winter Weather: Indoor Safety

    Science.gov (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  3. Winter Weather: Frostbite

    Science.gov (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  4. Winter Weather Checklists

    Science.gov (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  5. High precision computation and numerical value characteristics of gravity emendation values arising from mass of the Earth's crust at the distance over 169 km from the observation point%169 km以远地壳质量的重力校正值高精度计算及其数值特征

    Institute of Scientific and Technical Information of China (English)

    安玉林; 郭良辉; 张明华

    2015-01-01

    In the previous textbooks of gravitational prospecting, the computation of gravity emendation values arising from mass of the Earth's crust at the distance over 2 km from the observation point is confined only to an area of circular ring 2.0~166.7 km in breadth and the computation expressions coming into existence in the orthogonal coordinate system are adopted. China Geological Survey has generalized in recent years the computation program of gravity emendation value that adopts the computation expressions both in the or⁃thogonal coordinate system and in the spherical coordinate system;nevertheless, the computation of gravity emendation values remains confined to an area of circular ring 2.0~166.7 km in breadth and fails to take into account the gravitation arising from mass of the Earth's crust at the distance over 166.7 km from the observation point. 10 years ago, the authors deduced alone gravity expression of the hexahedron with a spherical crust form and other expressions re⁃lated to the computation of gravity emendation values. After this, adopting these expressions, the authors conducted researches on high precision computation and numerical value characteristics of gravity emendation values arising from mass of the Earth's crust in pure spherical coordinate system, with the following computation achievements obtained: ① high precision computation result of "Gravity Emendation Value arising from Mass of the Earth's Crust at Distance Over 169 km From Observation Point" ( GEVMECDO 169 km FOP ) at the square grid 40 km in breadth on whole Earth's land and ocean surface; ② high precision computation achievements of GEVMECDO 169 km FOP at longitude and latitude grid of China's continent;③ high precision computation achievements of GEVM⁃ECDO 169km FOP at the square grid 0.556km in breadth in local 3°×2° area along the large curved portion of the Yarlung Zang Zang⁃bo River. Based on analyzing numerical values distribution characteristics of

  6. Modeling Continental Growth and Mantle Hydration in Earth's Evolution and the Impact of Life

    Science.gov (United States)

    Höning, Dennis; Spohn, Tilman

    2016-04-01

    budget and continental coverage might actually be unstable but with rates of change being very small. By enhancing continental weathering and erosion, and eventually the sediment transport into subduction zones, Earth's biosphere impacts both feedback cycles and might play a crucial role in regulating Earth's system and keep continental crust coverage and mantle water budget at its present day state.

  7. Elaboration of building materials from industrial waste from solid granular diatomaceous earth; Elaboracion de material de construccion a partir de residuos industriales solidos granulares procedentes de tierras diatomaceas

    Energy Technology Data Exchange (ETDEWEB)

    Del Angel S, A.

    2015-07-01

    In this work the initial characterization of granular solid industrial waste from diatomaceous earth was carried out using techniques of Scanning Electron Microscopy and X-ray Diffraction. In a second stage leaching of the material was undertaken to the US Patent Number 5, 376,000 and 5, 356,601 obtaining the samples M1-S ph 2, M1-L ph, M1-S ph 10 and M1-L ph 10. In the third stage a new characterization of the samples obtained with the techniques of Scanning Electron Microscopy, X-ray Diffraction and Atomic Absorption Spectrometry was performed, the latter in order to determine the efficiency percentage of the leaching process. In the fourth stage the specimens for performing mechanical, physical and chemical tests were manufactured, using molds as PVC pipes of 1 inch in diameter and 2 inches in length, with a composition of 50% of diatomaceous earth and 50% of cement produced in each. Finally, in the fifth stage mechanical testing (compression resistance), physical (moisture absorption rate) and chemical (composition and structure of the material) are performed. In the last stage, when conducting mechanical testing with the test specimens, the presence of bubbles enclosed in each obtaining erroneous results noted, so it was necessary to develop the specimens again, obtaining in this occasion concentrations of 20:80, 40:60, 60:40 and 80:20 of diatomaceous earth with the cement. These results were analyzed to determine if the used material is suitable for the production of building materials such as bricks or partitions, being demonstrated by the tests carried out if they are eligible. (Author)

  8. Crust Formation in Aluminum Cells

    Science.gov (United States)

    Oedegard, R.; Roenning, S.; Rolseth, S.; Thonstad, J.

    1985-11-01

    This paper examines the catalytic effects offlourides on the ϒ→α-Al2O3 phase transformation by heat treating commercial alumina samples with 2wt% additions of different flouride compounds. The various additives were ranked according to their effect on transformation temperature. Experiments were conducted to explain the high temperature coherence of crusts. The findings indicate that an alumina network is formed during ϒ→α phase transformation, which reinforces the crust on top of the cryolite bath.

  9. The toxicological geochemistry of Earth materials: An overview of processes and the interdisciplinary methods used to understand them

    Science.gov (United States)

    Plumlee, Geoffrey S.; Morman, Suzette A.; Ziegler, Thomas L.

    2006-01-01

    A broad spectrum of earth materials have been linked to, blamed for, and/or debated as sources for disease. In some cases, the links are clear. For example, excessive exposures to mineral dusts have long been recognized for their role in diseases such as: asbestosis, mesothelioma, and lung cancers (asbestos); silicosis and lung cancer (silica dusts); and coal-workers pneumoconiosis (coal dust). Lead poisoning, particularly in toddlers and young children, has been conclusively linked to involuntary ingestion of soils or other materials contaminated with lead-rich paint particles, leaded gasoline combustion byproducts, and some types of lead-rich mine wastes or smelter particulates. Waters with naturally elevated arsenic contents are common in many regions of the globe, and consumption of these waters has been documented as the source of arsenic-related diseases affecting thousands of people in south Asia and other regions. Exposure to dusts or soils containing pathogens has been documented as the cause of regionally common diseases such as valley fever (coccidioidomycosis) and much rarer diseases such as anthrax. Links between many other earth materials and specific diseases, although suspected, are less clear or are debated. For example, it has been suggested that geographic clusters of diseases such as leukemia are related to exposures to waters or atmospheric particulates containing organic or metal contaminants; however, for many clusters the exact causal relationships between disease and environmental exposure are difficult to prove conclusively. Even for many diseases in which the causal relationship is clear, such as in asbestosis and mesothelioma triggered by asbestos exposure, the minimum exposures needed to trigger disease, the influence of genetic factors, and the exact mechanisms of toxicity are still incompletely understood and are the focus of considerable debate within the public health community. Hence, understanding the health effects resulting from

  10. EARTH ROADS ARE EASY

    Directory of Open Access Journals (Sweden)

    David O. Whitten

    2000-01-01

    Full Text Available The earliest European immigrants in America traveled on waterways and on pathways worn into the earth by animals and Native Americans. Once their communities began to thrive, settlers widened paths and cleared new roads and streets then began experimenting with inexpensive surfacing to reduce dust in dry weather and mud in wet. “Earth Roads Are Easy” investigates materials and techniques used to maintain primitive thoroughfares with a minimum of effort and expense. The options range from the mundane—clay, sand, gravel, calcium chloride, oil, and tar—to the extraordinary—water glass, adobe clay, beet juice, and carpeting.There is no more dfficult problem confronting highway engineers than that of properly constructing and maintaining an earth road. The work may be less spectacular than the construction and maintenance of hard-surfaced roads, but there is greater latitude in location, methods of construction and choice of materials, consequently there is more scope for the exercise of sound judgment on the part of the engineer.1

  11. Rare earth monopnictides and monochalcogenides from first principles: towards an electronic phase diagram of strongly correlated materials

    DEFF Research Database (Denmark)

    Petit, Leon; Tyer, R.; Szotek, Z.

    2010-01-01

    We present the results of an ab initio study of the electronic structure of 140 rare earth compounds. Specifically, we predict an electronic phase diagram of the entire range of rare earth monopnictides and monochalcogenides, composed of metallic, semiconducting and heavy fermion-like regions...... and exhibiting valency transitions brought about by a complex interplay between ligand chemistry and lanthanide contraction. The calculations exploit the combined effect of a first-principles methodology, which can adequately describe the dual character of electrons, itinerant versus localized, and high...... calculated to within ~1.5% of the experimental values, and its ability to describe localization phenomena in solids, makes it a competitive atomistic simulation approach in the search for and design of new materials with specific physical properties and possible technological applications....

  12. Effect of rare earth ions on transition temperature in perovskite materials by on-line ultrasonic studies

    Directory of Open Access Journals (Sweden)

    Sundararaman Sankarrajan

    2012-08-01

    Full Text Available On-line measurements of ultrasonic longitudinal velocity, shear velocity and longitudinal attenuation were carried out on R1-xSr xMnO3 perovskites (R = La, Pr, Nd and Sm for different compositions of Sr, at a fundamental frequency of 5 MHz over wide range of temperatures using the through-transmission method. The observed maxima/minima in velocities and attenuation have been discussed with decrease in ionic radii and composition. As a decrease in the ionic radii of rare earth elements leads to a decrease in transition temperature (Tc, the results that are observed show that measurement is one of the best tools to explore the structural/phase transition on-line velocity in perovskite manganese materials as a function of the ionic radii of rare earth elements.

  13. Early evolution of the continental crust, the oxygenated atmosphere and oceans, and the heterogeneous mantle

    Science.gov (United States)

    Ohmoto, H.

    2011-12-01

    The current paradigm for the evolution of early Earth is that, only since ~2.5 Ga ago, the Earth began to: (a) form a large granitic continental crust; (b) form an oxygenated atmosphere; (c) operate oxidative weathering of rocks on land; (d) form Fe-poor, but S-, U- and Mo-rich, oceans; (e) operate large-scale transfers of elements between oceans and oceanic crust at MORs; (f) subduct the altered oceanic crust; (g) create the mantle heterogeneity, especially in the concentrations and isotopic compositions of Fe(III), Fe(II), U, Pb, alkali elements, C, S, REEs, and many other elements; (h) create chemical and isotopic variations among OIB-, OPB-, and MORB magmas, and between I- and S-type granitoid magmas; and (i) create variations in the chemical and isotopic compositions of volcanic gas. Submarine hydrothermal fluids have typically developed from seawater-rock interactions during deep (>2 km) circulation of seawater through underlying hot volcanic rocks. When the heated hydrothermal fluids ascend toward the seafloor, they mix with local bottom seawater to precipitate a variety of minerals on and beneath the seafloor. Thus, the mineralogy and geochemistry of submarine hydrothermal deposits and associated volcanic rocks can be used to decipher the chemistry of the contemporaneous seawater, which in turn indicate the chemistry of the atmosphere and the compositions and size of the continental crust. The results of mineralogical and geochemical investigations by our and other research groups on submarine hydrothermal deposits (VMS and BIF) and hydrothermally-altered submarine volcanic rocks in Australia, South Africa, and Canada, ~3.5-2.5 Ga in ages, suggest that the above processes (a)-(i) had began by ~3.5 Ga ago. Supportive evidence includes, but not restricted to, the similarities between Archean submarine rocks and modern ones in: (1) the abundance of ferric oxides; (2) the Fe(III)/Fe(I) ratios; (3) the abundance of barite; (4) the increased Li contents; (5) the

  14. Breaking strain of neutron star crust and gravitational waves.

    Science.gov (United States)

    Horowitz, C J; Kadau, Kai

    2009-05-15

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of the neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Because of the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gravitational wave radiation could limit the spin periods of some stars and might be detectable in large-scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in magnetar giant flares and microflares.

  15. Water Cycling Between Ocean and Mantle: Super-Earths Need Not be Waterworlds

    CERN Document Server

    Cowan, Nicolas B

    2014-01-01

    Large terrestrial planets are expected to have muted topography and deep oceans, implying that most super-Earths should be entirely covered in water, so-called waterworlds. This is important because waterworlds lack a silicate weathering thermostat so their climate is predicted to be less stable than that of planets with exposed continents. In other words, the continuously habitable zone for waterworlds is much narrower than for Earth-like planets. A planet's water is partitioned, however, between a surface reservoir, the ocean, and an interior reservoir, the mantle. Plate tectonics transports water between these reservoirs on geological timescales. Degassing of melt at mid-ocean ridges and serpentinization of oceanic crust depend negatively and positively on seafloor pressure, respectively, providing a stabilizing feedback on long-term ocean volume. Motivated by Earth's approximately steady-state deep water cycle, we develop a two-box model of the hydrosphere and derive steady-state solutions to the water pa...

  16. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Directory of Open Access Journals (Sweden)

    Landrou Gnanli

    2017-01-01

    Full Text Available In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  17. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Science.gov (United States)

    Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume

    2017-06-01

    In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  18. Tomorrow's Forecast: Oceans and Weather.

    Science.gov (United States)

    Smigielski, Alan

    1995-01-01

    This issue of "Art to Zoo" focuses on weather and climate and is tied to the traveling exhibition Ocean Planet from the Smithsonian's National Museum of Natural History. The lessons encourage students to think about the profound influence the oceans have on planetary climate and life on earth. Sections of the lesson plan include: (1) "Ocean…

  19. Early Earth(s) Across Time and Space

    Science.gov (United States)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  20. Hawaiian submarine manganese-iron oxide crusts - A dating tool?

    Science.gov (United States)

    Moore, J.G.; Clague, D.A.

    2004-01-01

    landslide southwest of Oahu has yielded samples with the greatest manganese-iron oxide crusts (9.5 mm thick) and therefore apparently represents the oldest submarine material yet found in the study area. The submarine volcanic field 100 km southwest of Oahu is apparently younger than the Waianae landslide. ?? 2004 Geological Society of America.

  1. Soil fertility in deserts: a review on the influence of biological soil crusts and the effect of soil surface disturbance on nutrient inputs and losses

    Science.gov (United States)

    Reynolds, R.; Phillips, S.; Duniway, M.; Belnap, J.

    2003-01-01

    Sources of desert soil fertility include parent material weathering, aeolian deposition, and on-site C and N biotic fixation. While parent materials provide many soil nutrients, aeolian deposition can provide up to 75% of plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. Soil surface biota are often sticky, and help retain wind-deposited nutrients, as well as providing much of the N inputs. Carbon inputs are from both plants and soil surface biota. Most desert soils are protected by cyanobacterial-lichen-moss soil crusts, chemical crusts and/or desert pavement. Experimental disturbances applied in US deserts show disruption of soil surfaces result in decreased N and C inputs from soil biota by up to 100%. The ability to glue aeolian deposits in place is compromised, and underlying soils are exposed to erosion. The ability to withstand wind increases with biological and physical soil crust development. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produce up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Soil fines and flora are often concentrated in the top 3 mm of the soil surface. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, disturbances of desert soil surfaces can both reduce fertility inputs and accelerate fertility losses.

  2. Effect of rare earth ions doping on properties of LiFePO4/C cathode material

    Institute of Scientific and Technical Information of China (English)

    王丽; 焦昌梅; 梁广川; 赵南南; 王亚勉; 李琳慈

    2014-01-01

    LiFe0.99RE0.01PO4/C cathode material was synthesized by solid-state reaction method using FeC2O4·2H2O, Li2CO3, NH4H2PO4, RE(NO3)3·nH2O as raw materials and glucose as a carbon source. The doping effects of rare earth ions, such as La3+, Ce3+, Nd3+, on the structure and electrochemical properties of LiFePO4/C cathode material were systematically investigated. The as-prepared samples were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and particle size analysis. The electrochemical properties were investigated in terms of constant-current charge/discharge cycling tests.The XRD results showed that the rare earth ions doping did not change the olivine structure of LiFePO4, and all the doped samples were of single-phase with high crystallinity. SEM and particle size analysis results showed that the doping of La3+, Ce3+ and Nd3+ led to the decrease of particle size. The electrochemical results exhibited that the doping of La3+ and Ce3+ could improve the high-rate capability of LiFePO4/C cathode material, among which, the material doped with 1% Ce3+ exhibited the optimal elec-trochemical properties, whose specific discharge capacities could reach 128.9, 119.5 and 104.4 mAh/g at 1C, 2C and 5C rates, re-spectively.

  3. Quantification of particle-induced inflammatory stress response: a novel approach for toxicity testing of earth materials

    Directory of Open Access Journals (Sweden)

    Harrington Andrea D

    2012-04-01

    Full Text Available Abstract Background Reactive oxygen species (ROS are vital regulators of many cellular functions in the body. The intracellular ROS concentration is highly regulated by a balance between pro-oxidants and anti-oxidants. A chronic excess of pro-oxidants leads to elevated ROS concentrations and inflammation, possibly initiating or enhancing disease onset. Mineral-induced generation of ROS, the role of minerals in upregulating cellular ROS, and their role in the development of several occupational diseases are now widely recognized. However, there is no standard protocol to determine changes in ROS production in cells after exposure to mineral dust or earth materials in general. In this study, a new method for determining the degree of cellular toxicity (i.e., cytotoxicity of particles is described that will help bridge the gap in knowledge. Results By measuring the production of ROS and the viability of cells, an inflammatory stress response (ISR indicator is defined. This approach normalizes the ROS upregulation with respect to the number of viable cells at the time of measurement. We conducted experiments on a series of minerals and soils that represent materials that are inert (i.e., glass beads, anatase, and a soil with low trace element content, moderately reactive (i.e., soil with high trace element content, and highly reactive (i.e., pyrite. Inert materials generated the lowest ISR, averaging 350% compared to the control. Acid washed pyrite produced the highest ISR (1,100 fold higher than the control. The measurements conducted as a function of time showed a complex response. Most materials showed an increase in ISR with particle loading. Conclusions The amount of cellularly generated ROS and cell viability combined provide a better understanding of particle-induced oxidative stress. The results indicate that some earth materials may solicit an initial burst of ROS, followed by a second phase in which cell viability decreases and ROS

  4. The science of space weather.

    Science.gov (United States)

    Eastwood, Jonathan P

    2008-12-13

    The basic physics underpinning space weather is reviewed, beginning with a brief overview of the main causes of variability in the near-Earth space environment. Although many plasma phenomena contribute to space weather, one of the most important is magnetic reconnection, and recent cutting edge research in this field is reviewed. We then place this research in context by discussing a number of specific types of space weather in more detail. As society inexorably increases its dependence on space, the necessity of predicting and mitigating space weather will become ever more acute. This requires a deep understanding of the complexities inherent in the plasmas that fill space and has prompted the development of a new generation of scientific space missions at the international level.

  5. Use of natural clays as sorbent materials for rare earth ions: Materials characterization and set up of the operative parameters.

    Science.gov (United States)

    Iannicelli-Zubiani, Elena Maria; Cristiani, Cinzia; Dotelli, Giovanni; Gallo Stampino, Paola; Pelosato, Renato; Mesto, Ernesto; Schingaro, Emanuela; Lacalamita, Maria

    2015-12-01

    Two mineral clays of the montmorillonite group were tested as sorbents for the removal of Rare Earths (REs) from liquid solutions. Lanthanum and neodymium model solutions were used to perform uptake tests in order to: (a) verify the clays sorption capability, (b) investigate the sorption mechanisms and (c) optimize the experimental parameters, such as contact time and pH. The desorption was also studied, in order to evaluate the feasibility of REs recovery from waters. The adsorption-desorption procedure with the optimized parameters was also tested on a leaching solution obtained by dissolution of a dismantled NdFeB magnet of a hard-disk. The clays were fully characterized after REs adsorption and desorption by means of X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy (XPS); the liquid phase was characterized via Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) analyses. The experimental results show that both clays are able to capture and release La and Nd ions, with an ion exchange mechanism. The best total efficiency (capture ≈ 50%, release ≈ 70%) is obtained when the uptake and release processes are performed at pH=5 and pH=1 respectively; in real leached scrap solutions, the uptake is around 40% but release efficiency is strongly decreased passing from a mono-ion system to a real system (from 80% to 5%). Furthermore, a strong matrix effect is found, with the matrix largely affecting both the uptake and the release of neodymium.

  6. Crystal Structure Prediction and its Application in Earth and Materials Sciences

    Science.gov (United States)

    Zhu, Qiang

    First of all, we describe how to predict crystal structure by evolutionary approach, and extend this method to study the packing of organic molecules, by our specially designed constrained evolutionary algorithm. The main feature of this new approach is that each unit or molecule is treated as a whole body, which drastically reduces the search space and improves the efficiency. The improved method is possibly to be applied in the fields of (1) high pressure phase of simple molecules (H2O, NH3, CH4, etc); (2) pharmaceutical molecules (glycine, aspirin, etc); (3) complex inorganic crystals containing cluster or molecular unit, (Mg(BH4)2, Ca(BH4)2, etc). One application of the constrained evolutionary algorithm is given by the study of (Mg(BH4)2, which is a promising materials for hydrogen storage. Our prediction does not only reproduce the previous work on Mg(BH4)2 at ambient condition, but also yields two new tetragonal structures at high pressure, with space groups P4 and I41/acd are predicted to be lower in enthalpy, by 15.4 kJ/mol and 21.2 kJ/mol, respectively, than the earlier proposed P42nm phase. We have simulated X-ray diffraction spectra, lattice dynamics, and equations of state of these phases. The density, volume contraction, bulk modulus, and the simulated XRD patterns of P4 and I41/acd structures are in excellent agreement with the experimental results. Two kinds of oxides (Xe-O and Mg-O) have been studied under megabar pressures. For XeO, we predict the existence of thermodynamically stable Xe-O compounds at high pressures (XeO, XeO2 and XeO3 become stable at pressures of 83, 102 and 114 GPa, respectively). For Mg-O, our calculations find that two extraordinary compounds MgO2 and Mg3O 2 become thermodynamically stable at 116 GPa and 500 GPa, respectively. Our calculations indicate large charge transfer in these oxides for both systems, suggesting that large electronegativity difference and pressure are the key factors favouring their formations. We also

  7. Searching for Ancient Solar System Materials on the Moon, Earth, and Mars

    Science.gov (United States)

    Taylor, G. J.

    2016-11-01

    The Moon is a proven collector of rambling objects from throughout the Solar System, as summarized in a review article by Katherine Joy (University of Manchester, England) and colleagues at the University of London, the Lunar and Planetary Institute (Houston), NASA Johnson Space Center, and Western Ontario University. Their article summarizes the record of small bodies impacting the Moon. The lunar record includes chemical signatures in rocks formed by large impacts early in lunar history and rare, hard-to-find fragments of the impactors. Other studies have shown that layers of old sedimentary rocks on Earth also contain fragments of the types of meteorites falling to Earth today. Birger Schmitz (Lund University, Sweden) and coworkers at the University of Hawai'i, and the University of California, Davis have found a record of in-falling L-chondrites in limestone deposits formed during the Ordovician period (around 500 million years ago). Consistent with meteorite studies, these fossil meteorites indicate that the L-chondrite parent asteroid was demolished by the impact of a chemically different type of asteroid, which sent a plethora of objects into the inner Solar System to intersect Earth hundreds of millions of years ago. Surprisingly, this collection includes a new type of meteorite, suspected to be a piece of the impacting body that disrupted the L-chondrite parent asteroid 470 million years ago. Mars also collects meteorites, as summarized by James Ashley (Jet Propulsion Laboratory) who compiled a list of iron and stony-iron meteorites found by three different rovers on the Martian surface.

  8. Computer simulations of rare earth sites in glass: experimental tests and applications to laser materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M.J.

    1984-11-01

    Computer simulations of the microscopic structure of BeF/sub 2/ glasses using molecular dynamics are reviewed and compared with x-ray and neutron diffraction, EXAFS, NMR, and optical measurements. Unique information about the site-to-site variations in the local environments of rare earth ions is obtained using optical selective excitation and laser-induced fluorescence line-narrowing techniques. Applications and limitations of computer simulations to the development of laser glasses and to predictions of other static and dynamic properties of glasses are discussed. 35 references, 2 figures, 2 tables.

  9. Powder metallurgical processing of magnetostrictive materials based on rare earth-iron intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, M.

    1978-01-01

    Procedures are described for fabrication of high density rare earth-iron magnetostrictive compounds by powder metallurgical techniques. The fabrication involves a sequence of steps which includes preparing the pre-alloyed compounds, pulverizing them into a fine powder, compacting in suitable sizes and shapes, and sintering. Samples prepared by these procedures are carefully characterized by scanning electron microscopy, x-ray diffraction, dilatometry, and magnetic measurements. Process steps are found to exert important influences upon densities, microstructure and magnetic properties attained after densification. Investigations on a number of these process steps, including milling time and medium, sintering, and magnetic powder alignment are described.

  10. Lead isotopic evolution of Archean continental crust, Northern Tanzania

    Science.gov (United States)

    Bellucci, J. J.; McDonough, W. F.; Rudnick, R. L.; Walker, R. J.

    2010-12-01

    The continental crust is stratified in composition; the upper crust is generally enriched in highly incompatible trace elements relative to the lower crust [1]. The Western Granulite section of the Mozambique Belt of Northern Tanzania yields Archean Nd model ages and has zircons with U-Pb ages of ~2.6 Ga [2,3], but was strongly re-worked during the Pan-African Orogeny, ca. 560 Ma [2,3,4]. Here we use time-integrated Pb isotopic modeling for lower and middle crustal xenoliths, as well as upper crustal granulites to determine the timing of, and degree of intra-crustal differentiation. The Pb isotopic compositions of most feldspars in the lower crustal samples, measured via LA-MC-ICPMS, fall on the trend defined by the Tanzanian Craton [5] and therefore, were most likely extracted from the mantle at a similar time, ca. 2.7 Ga. However, some xenoliths fall off this trend and show enrichment in 207Pb/204Pb, which we interpret as reflecting derivation from more heterogeneous mantle than that sampled in the Tanzanian Craton. In contrast to lower crustal xenoliths from the Tanzanian Craton [5], we see no single feldspar Pb-Pb isochrons, which indicates complete re-homogenization of the Pb isotopic composition of the feldspars in the lower crust of the Mozambique Belt during the Pan-African Orogeny, and heating to > 600°C [5]. Using time integrated Pb modeling, the upper crust of the Western Granulites is enriched in U by ˜ 2.5 relative to that of the lower crust, which must have taken place around the time of mantle extraction (ca. 2.7 Ga). In addition, these calculations are consistent with a Th/U ratio of ˜ 4 for the bulk lower crust and ˜ 3 for the bulk upper crust. The common Pb isotopic composition of a single middle crustal xenolith implies a Th/U of 20, but is unlikely to be generally representative of the middle crust. [1] Rudnick, R. L. and Gao, S. (2003). In the Crust, vol. 3, Treatise on Geochemistry:1-64. [2] Mansur, A. (2008) Masters Thesis, University of

  11. 49 CFR 195.224 - Welding: Weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions...

  12. Lunar Science from and for Planet Earth

    Science.gov (United States)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    anniversary in 2007 over the launch of Sputnik (from the former Soviet Union). The ensuing Apollo (US) and Luna (USSR) programs initiated serious exploration of the Moon. The samples returned from those (now historic!) early missions changed our understanding of our place in the universe forever. They were the first well documented samples from an extraterrestrial body and attracted some of the top scientists in the world to extract the first remarkable pieces of information about Earth's nearest neighbour. And so they did - filling bookcases with profound new discoveries about this airless, waterless, and beautifully mysterious ancient world. The Moon was found to represent pure geology for a silicate planetary body - without all the complicating factors of plate tectonics, climate, and weather that recycle or transform Earth materials repeatedly. And then nothing happened. After the flush of reconnaissance, there was no further exploration of the Moon. For several decades scientists had nothing except the returned samples and a few telescopes with which to further study Earth's neighbour. Lack of new information breeds ignorance and can be stifling. Even though the space age was expanding its horizons to the furthest reaches of the solar system and the universe, lunar science moved slowly if at all and was kept in the doldrums. The drought ended with two small missions to the Moon in the 1990's, Clementine and Lunar Prospector. As summarized in the SSB/NRC report (and more completely in Jolliff et al. Eds. 2006, New Views of the Moon, Rev. Min. & Geochem.), the limited data returned from these small spacecraft set in motion several fundamental paradigm shifts in our understanding of the Moon and re-invigorated an aging science community. We learned that the largest basin in the solar system and oldest on the Moon dominates the southern half of the lunar farside (only seen by spacecraft). The age of this huge basin, if known, would constrain the period of heavy bombardment

  13. 四川盆地茅口组风化壳岩溶古地貌及勘探选区%Paleokarst landform of the weathering crust of Middle Permian Maokou Formation in Sichuan Basin and selection of exploration regions

    Institute of Scientific and Technical Information of China (English)

    江青春; 胡素云; 汪泽成; 池英柳; 杨雨; 鲁卫华; 王海真; 李秋芬

    2012-01-01

    In view of incomplete understanding on distribution characteristics of paleokarst landform of Maokou Formation in Sichuan Basin, we studied the geological and geophysical response of karst reservoirs and made a detailed stratigraphic correlation of more than 200 exploratory wells of Maokou Formation in the whole basin. Based on this , we depicted in detail Maokou Formation palaeo-geomorphology by using two palaeogeomorphologic analysis methods, impression method and residual thickness method, and proposed that there developed three geomorphic units in Maokou Formation, karst depression, karst slope and karst highland, which are characterized by "three highlands, two slopes and two depressions". Formations of the karst depression are basically well preserved, and the Mao-4 section and a part of the Mao-3 section have been missing in the karst highland, while the hiatus of the karst slope is medium between the highland and the depression. This conclusion made a breakthrough at the previous understanding on Maokou Formation weathering crust paleo-geomorphology, which holds a "two highlands" view. On the basis of this new conclusion and characteristics of the hydrocarbon generating intensity of source rocks, four favorable exploration zones of Maokou Formation were proposed in the paper.%针对四川盆地中二叠统茅口组顶部岩溶古地貌分布特征认识不清的问题,开展了岩溶储层的地质及地球物理响应分析,同时对全盆地200余口探井的茅口组开展了详细的地层对比,在此基础上利用印模法和残余厚度法2种古地貌分析方法开展了茅口组顶部古地貌形态的精细刻画,指出茅口组顶部发育岩溶洼地、岩溶斜坡和岩溶高地3种地貌单元,古地貌具有“三高地、两斜坡、两洼地”的特点,岩溶洼地地层保存基本完整,岩溶高地缺失茅口组四段和部分茅口组三段,岩溶斜坡的地层缺失介于岩溶高地和岩溶洼地之间.突破了前人对茅口

  14. Stormy Weather

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Inspired by the deep abyss of the unknown; a constant source for investigation and discovery, heating and destruction, all simultaneously. Beneath the deep darkness, millions of species vibrantly thrive in another universe wholly untouched by human hands, though affected by their choices. The weathered pieces and people associated with seaside villages, the deep wrinkles that tell a story of one's life and experiences like

  15. The Weather and Climate Toolkit

    Science.gov (United States)

    Ansari, S.; Del Greco, S.; Hankins, B.

    2010-12-01

    The Weather and Climate Toolkit (WCT) is free, platform independent software distributed from NOAA’s National Climatic Data Center (NCDC). The WCT allows the visualization and data export of weather and climate data, including Radar, Satellite and Model data. By leveraging the NetCDF for Java library and Common Data Model, the WCT is extremely scalable and capable of supporting many new datasets in the future. Gridded NetCDF files (regular and irregularly spaced, using Climate-Forecast (CF) conventions) are supported, along with many other formats including GRIB. The WCT provides tools for custom data overlays, Web Map Service (WMS) background maps, animations and basic filtering. The export of images and movies is provided in multiple formats. The WCT Data Export Wizard allows for data export in both vector polygon/point (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, Gridded NetCDF) formats. These data export features promote the interoperability of weather and climate information with various scientific communities and common software packages such as ArcGIS, Google Earth, MatLAB, GrADS and R. The WCT also supports an embedded, integrated Google Earth instance. The Google Earth Browser Plugin allows seamless visualization of data on a native 3-D Google Earth instance linked to the standard 2-D map. Level-II NEXRAD data for Hurricane Katrina GPCP (Global Precipitation Product), visualized in 2-D and internal Google Earth view.

  16. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    Directory of Open Access Journals (Sweden)

    David Parker and David J Singh

    2013-01-01

    Full Text Available We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  17. Influence of Doping Rare Earth on Performance of Lithium Manganese Oxide Spinels as Cathode Materials for Lithium-Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    Tang Zhiyuan; Zhang Na; Lu Xinghe; Huang Qinghua

    2005-01-01

    Some rare earth doping spinel LiMn2-xRExO4 (RE=La, Ce, Nd) cathode materials for lithium ion batteries were synthesized by the solid-state reaction method. The structure characteristics of these produced samples were investigated by XRD, SEM, and particle size distribution analysis. According to the microstructure and charge-discharge testing, the effect of doping rare earth on stabilizing the spinel structure was analyzed. Through a series of doping experiments, it is shown that when the doping content x within the range of 0.01~0.02 the cycle performance of the materials is greatly improved. The discharge capacity of the sample LiMn1.98La0.02O4, LiMn1.98Ce0.02O4 and LiMn1.98Nd0.02O4 remain 119.1, 114.2 and 117.5 mAh*g-1 after 50 cycles.

  18. Water in the Earth's Interior: Distribution and Origin

    Science.gov (United States)

    Peslier, Anne H.; Schönbächler, Maria; Busemann, Henner; Karato, Shun-Ichiro

    2017-08-01

    The concentration and distribution of water in the Earth has influenced its evolution throughout its history. Even at the trace levels contained in the planet's deep interior (mantle and core), water affects Earth's thermal, deformational, melting, electrical and seismic properties, that control differentiation, plate tectonics and volcanism. These in turn influenced the development of Earth's atmosphere, oceans, and life. In addition to the ubiquitous presence of water in the hydrosphere, most of Earth's "water" actually occurs as trace amounts of hydrogen incorporated in the rock-forming silicate minerals that constitute the planet's crust and mantle, and may also be stored in the metallic core. The heterogeneous distribution of water in the Earth is the result of early planetary differentiation into crust, mantle and core, followed by remixing of lithosphere into the mantle after plate-tectonics started. The Earth's total water content is estimated at 18_{-15}^{+81} times the equivalent mass of the oceans (or a concentration of 3900_{-3300}^{+32700} ppm weight H2O). Uncertainties in this estimate arise primarily from the less-well-known concentrations for the lower mantle and core, since samples for water analyses are only available from the crust, the upper mantle and very rarely from the mantle transition zone (410-670 km depth). For the lower mantle (670-2900 km) and core (2900-4500 km), the estimates rely on laboratory experiments and indirect geophysical techniques (electrical conductivity and seismology). The Earth's accretion likely started relatively dry because it mainly acquired material from the inner part of the proto-planetary disk, where temperatures were too high for the formation and accretion of water ice. Combined evidence from several radionuclide systems (Pd-Ag, Mn-Cr, Rb-Sr, U-Pb) suggests that water was not incorporated in the Earth in significant quantities until the planet had grown to ˜60-90% of its current size, while core formation

  19. Cobalt- and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands

    Science.gov (United States)

    Hein, J.R.; Schwab, W.C.; Davis, A.

    1988-01-01

    Ferromanganese crusts cover most hard substrates on seafloor edifices in the central Pacific basin. Crust samples and their associated substrates from seven volcanic edifices of Cretaceous age along the Ratak chain of the Marshall Islands are discussed. The two most abundant substrate lithologies recovered were limestone, dominantly fore-reef slope deposits, and volcanic breccia composed primarily of differentiated alkalic basalt and hawaiite clasts in a phosphatized carbonate matrix. The degree of mass wasting on the slopes of these seamounts is inversely correlated with the thickness of crusts. Crusts are generally thin on limestone substrate. Away from areas of active mass-wasting processes, and large atolls, crusts may be as thick as 10 cm maximum. The dominant crystalline phase in the Marshall Islands crusts is ??-MnO2 (vernadite). High concentrations of cobalt, platinum and rhodium strongly suggest that the Marshall Islands crusts are a viable source for these important metals. Many metals and the rare earth elements vary significantly on a fine scale through most crusts, thus reflecting the abundances of different host mineral phases in the crusts and changes in seawater composition with time. High concentrations of cobalt, nickel, titanium, zinc, lead, cerium and platinum result from a combination of their substitution in the iron and manganese phases and their oxidation potential. ?? 1988.

  20. The Significance of Crust Structure and Continental Dynamics Inferred from Receiver Functions in West Yunnan

    Institute of Scientific and Technical Information of China (English)

    HE Chuansong; ZHU Lupei; WANG Qingcai

    2009-01-01

    In our study we collected the teleseismic record of 31 broadband stations and 9 PASSCAL stations in West Yunnan, as well as extracted more than a million receiver functions. Using the waveform model and stacking techniques, we calculated the earth crust thicknesses and V_p/V_s ratios below the stations and obtained 35 valid data points. At the same time, we evenly stacked the receiver functions at the same station and superimposed the two profiles' cross sections of the main tectonic units. The results show a clear difference between the crust thicknesses of different tectonic units. Because of the magma underplatting and delimanition of the lower crust in the role of deep process, the West Yunnan's crust can be divided two kinds-mafic-uitramafic and feidspathic crusts. The research also shows that the mafic-ultramafic crust corresponds to a good background of mineralization. The delamination of the lower crust is one of the leading causes for moderate to strong earthquake prone in central Yunnan. The thinner crust and high velocity ratio as well as the muitimodal structure of P_s in the Tengchong volcanic area confirms existence of a deep process of the strong magma underplating. Due to the basic crust structure and nature, it is believed that the Honghe fault is a main suture of the Gondwana and Eurasia continents.

  1. Palaeomagnetism and the continental crust

    Energy Technology Data Exchange (ETDEWEB)

    Piper, J.D.A.

    1987-01-01

    This book is an introduction to palaeomagnetism offering treatment of theory and practice. It analyzes the palaeomagnetic record over the whole of geological time, from the Archaean to the Cenozoic, and goes on to examine the impact of past geometries and movements of the continental crust at each geological stage. Topics covered include theory of rock and mineral magnetism, field and laboratory methods, growth and consolidation of the continental crust in Archaean and Proterozoic times, Palaeozoic palaeomagnetism and the formation of Pangaea, the geomagnetic fields, continental movements, configurations and mantle convection.

  2. 3D models of slow motions in the Earth's crust and upper mantle in the source zones of seismically active regions and their comparison with highly accurate observational data: I. Main relationships

    Science.gov (United States)

    Molodenskii, S. M.; Molodenskii, M. S.; Begitova, T. A.

    2016-09-01

    Constructing detailed models for postseismic and coseismic deformations of the Earth's surface has become particularly important because of the recently established possibility to continuously monitor the tectonic stresses in the source zones based on the data on the time variations in the tidal tilt amplitudes. Below, a new method is suggested for solving the inverse problem about the coseismic and postseismic deformations in the real non-ideally elastic, radially and horizontally heterogeneous, self-gravitating Earth with a hydrostatic distribution of the initial stresses from the satellite data on the ground surface displacements. The solution of this problem is based on decomposing the parameters determining the geometry of the fault surface and the distribution of the dislocation vector on this surface and elastic modules in the source in the orthogonal bases. The suggested approach includes four steps: 1. Calculating (by the perturbation method) the variations in Green's function for the radial and tangential ground surface displacements with small 3D variations in the mechanical parameters and geometry of the source area (i.e., calculating the functional derivatives of the three components of Green's function on the surface from the distributions of the elastic moduli and creep function within the volume of the source area and Burgers' vector on the surface of the dislocations); 2. Successive orthogonalization of the functional derivatives; 3. Passing from the decompositions of the residuals between the observed and modeled surface displacements in the system of nonorthogonalized functional derivatives to their decomposition in the system of orthogonalized derivatives; finding the corrections to the distributions of the sought parameters from the coefficients of their decompositions in the orthogonalized basis; and 4. Analyzing the ambiguity of the inverse problem solution by constructing the orthogonal complement to the obtained basis. The described

  3. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials.

    Science.gov (United States)

    Reiss, Peter; Carrière, Marie; Lincheneau, Christophe; Vaure, Louis; Tamang, Sudarsan

    2016-09-28

    We review the synthesis of semiconductor nanocrystals/colloidal quantum dots in organic solvents with special emphasis on earth-abundant and toxic heavy metal free compounds. Following the Introduction, section 2 defines the terms related to the toxicity of nanocrystals and gives a comprehensive overview on toxicity studies concerning all types of quantum dots. Section 3 aims at providing the reader with the basic concepts of nanocrystal synthesis. It starts with the concepts currently used to describe the nucleation and growth of monodisperse particles and next takes a closer look at the chemistry of the inorganic core and its interactions with surface ligands. Section 4 reviews in more detail the synthesis of different families of semiconductor nanocrystals, namely elemental group IV compounds (carbon nanodots, Si, Ge), III-V compounds (e.g., InP, InAs), and binary and multinary metal chalcogenides. Finally, the authors' view on the perspectives in this field is given.

  4. Neutrino oscillations in the presence of the crust magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Syska, J., E-mail: jacek.syska@us.edu.p [Department of Field Theory and Particle Physics, Institute of Physics, University of Silesia, Katowice (Poland)

    2011-02-21

    It is noted that the crustal magnetic spectrum exhibits the signal from the partly correlated domain dipoles on the space-scale up to approximately 500 km. This suggests the nonzero correlation among the dynamical variables of the ferromagnetic magnetization phenomenon on the small domain scale inside the earth's crust also. Therefore the influence of the mean of the zero component of the polarization on the CP matter-induced violation indexes is discussed.

  5. Scales and effects of fluid flow in the upper crust.

    Science.gov (United States)

    Cathles, L M

    1990-04-20

    Two of the most important agents of geological change, solar energy and internal heat from the mantle, meet and battle for dominance in propelling aqueous and related fluids in the earth's upper crust. Which prevails and how they interact are subjects of active research. Recent work has demonstrated that both agents can propel fluids over nearly continental-scale distances in a fashion that influences a host of important geological processes and leaves a record in chemical alteration, mineral deposits, and hydrocarbon resources.

  6. Note to Energy Source of Tsunami Earthquake on the Planet Earth

    Science.gov (United States)

    Nakamura, S.

    2012-04-01

    Note to Energy Source of Tsunami Earthquake on the Planet Earth Shigehisa Nakamura Kyoto University, Japan This note concerns to an energyy source of tsunami earthquake. In the case of the earthquake on 11 March 2011, a satellite monitoring by the Geographic Survey Institute informed some spcific pattern of the earth surface displacements just around tothe epicenter of the interested earthquake. The monitoring pattern shows that the pattern of the earth surface displacements must be understood well when the earth surface as a part of the spherical earth crusts with a physical property of a visco-plastic material rather than with a solid plate consisted by rigid material made by the products of the magma in the planet earth. This means that the pattern was appared in a short time of only several minutes, say, two or three munutes after the seismic shock was happened. The pattern of the displacement shows as if it was for a pattern of a visco-plastic fluid flowing to the pit hole force for the at the epicenter out of a conduit of the magma in order to return to the mother magma flow under the spherical crust of the planet earth. This pattern is raising us to find an updateddd model after an advanced reserarch as soon as possible in order to realize what should be a reasonable energy source to see the tsunami earthquake.

  7. Space Weather Research: Indian perspective

    Science.gov (United States)

    Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.

    2016-12-01

    Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.

  8. Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: A test of Taylor's andesite model

    NARCIS (Netherlands)

    Castro, Antonio; Vogt, Katharina; Gerya, Taras

    2013-01-01

    The paradox of the Earth's continental crust is that although this reservoir is generally regarded as having differentiated from the mantle, it has an andesitic bulk composition that contrasts with the intrinsic basaltic composition of mantle-derived melts. Classical models for new crust generation

  9. Research into processes of production of hydrides of materials containing rare-earth metals and their corrosion

    Science.gov (United States)

    Sofronov, V. L.; Kartashov, E. Y.; Molokov, P. B.; Zhiganov, A. N.; Kalaev, M. E.

    2017-01-01

    Production of permanent magnets on basis of rare earth elements (REE) is implemented by means of powder metallurgy, therefore a technologically important operation is the multistage mechanical crushing of materials to the extent of domains. The promising technique of crushing of magnetic materials is their consistent hydrogenation-dehydrogenation that allows obtaining nano-dispersed powders which are stable enough in air. Hydrogenation apparatuses, as opposed to conventional grinding machines, do not comprise motion works and their producing capacity is much higher. Hydrogenation process does not require any additional preparation of materials and it excludes undermilling and overmilling as well as material oxidation. The paper presents the results of investigation on the temperature effect on the hydrogenation process of Nd-Fe alloys. The study results on the corrosion stability of ligature hydrides under various conditions are also given. Kinetic parameters of the hydrogenation process of ligatures are determined. The phase composition of corrosion products is detected. Guidelines on hydride powder storage are given.

  10. Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust

    Science.gov (United States)

    Clift, Peter D.; Vannucchi, Paola; Morgan, Jason Phipps

    2009-12-01

    We here attempt a global scale mass balance of the continental crust during the Phanerozoic and especially the Cenozoic (65 Ma). Continental crust is mostly recycled back into the mantle as a result of the subduction of sediment in trenches (1.65 km 3/a), by the subduction of eroded forearc basement (1.3 km 3/a) and by the delamination of lower crustal material from orogenic plateaus (ca. 1.1 km 3/a). Subduction of rifted crust in continent-continent collision zones (0.4 km 3/a), and dissolved materials fixed into the oceanic crust (ca. 0.4 km 3/a) are less important crustal sinks. At these rates the entire continental crust could be reworked in around 1.8 Ga. Nd isotope data indicate that ca. 80% of the subducted continental crust is not recycled by melting at shallow levels back into arcs, but is subducted to depth into the upper mantle. Continent-continent collision zones do not generally form new crust, but rather cause crustal loss by subduction and as a result of their physical erosion, which exports crust from the orogen to ocean basins where it may be subducted. Regional sedimentation rates suggest that most orogens have their topography eliminated within 100-200 million years. We estimate that during the Cenozoic the global rivers exported an average of 1.8 km 3/a to the oceans, approximately balancing the subducted loss. Accretion of sediment to active continental margins is a small contribution to crustal construction (ca. 0.3 km 3/a). Similarly, continental large igneous provinces (flood basalts) represent construction of only around 0.12 km 3/a, even after accounting for their intrusive roots. If oceanic plateaus are accreted to continental margins then they would average construction rates of 1.1 km 3/a, meaning that to keep constant crustal volumes, arc magmatism would have to maintain production of around 3.8 km 3/a (or 94 km 3/Ma/km of trench). This slightly exceeds the rates derived from sparse seismic experiments in oceanic arc systems. Although

  11. Contrasting effects of microbiotic crusts on runoff in desert surfaces

    Science.gov (United States)

    Kidron, Giora J.; Monger, H. Curtis; Vonshak, Ahuva; Conrod, William

    2012-02-01

    Microbiotic crusts (MCs) play an important role in surface hydrology by altering runoff yield. In order to study the crust's role on water redistribution, rainfall and runoff were measured during 1998-2000 at three sites within the northern Chihuahuan Desert, New Mexico, USA: the Sevilleta National Wildlife Refuge (SEV), the White Sands National Monument (WS), and the Jornada Experimental Range (JER). Whereas quartz and gypsum sand characterize the SEV and WS sites, respectively, both of which have high infiltration rates, silty alluvial deposits characterize the JER site. Runoff was measured in four pairs of 1.8-6.4 m 2 plots having MCs, one of which was scalped in each pair. No runoff was generated at WS, whether on the crusted or the scalped plots. Runoff was however generated at SEV and JER, being higher on the crusted plots at SEV and lower on the JER plots. The results were explained by the combined effect of (a) parent material and (b) the crust properties, such as species composition, microrelief (surface roughness) and exopolysaccharide (EPS) content (reflected in the ratio of carbohydrates to chlorophyll). Whereas the effective rainfall, the fines and the EPS content were found to explain runoff initiation, the effective rainfall and the crust microrelief were found to explain the amount of runoff at SEV and JER where runoff generation took place. The findings attest to the fundamental role of the parent material and the crust's species composition and properties on runoff and hence to the complex interactions and the variable effects that MCs have on dryland hydrology.

  12. Rare earth doped nanoparticles in organic and inorganic host materials for application in integrated optics

    NARCIS (Netherlands)

    Dekker, R.; Hilderink, L.T.H.; Diemeer, Mart; Stouwdam, J.W.; Sudarsan, V; van Veggel, F.C.J.M.; Driessen, A.; Worhoff, Kerstin; Misra, D; Masscher, P.; Sundaram, K.; Yen, W.M.; Capobianco, J.

    2006-01-01

    The preparation and the optical properties of lanthanum fluoride (LaF3) nanoparticles doped with erbium and neodymium will be discussed. Organic and inorganic materials in the form of polymers and sol-gels were used to serve as the hosts for the inorganic nanoparticles, respectively. The organic

  13. Statistics of Magnetar Crusts Magnetoemission

    Science.gov (United States)

    Kondratyev, V. N.; Korovina, Yu. V.

    2016-05-01

    Soft repeating gamma-ray (SGR) bursts are considered as magnetoemission of crusts of magnetars (ultranamagnetized neutron stars). It is shown that all the SGR burst observations can be described and systematized within randomly jumping interacting moments model including quantum fluctuations and internuclear magnetic interaction in an inhomogeneous crusty nuclear matter.

  14. Statistics of Magnetar Crusts Magnetoemission

    Directory of Open Access Journals (Sweden)

    Kondratyev V. N.

    2016-01-01

    Full Text Available Soft repeating gamma-ray (SGR bursts are considered as magnetoemission of crusts of magnetars (ultranamagnetized neutron stars. It is shown that all the SGR burst observations can be described and systematized within randomly jumping interacting moments model including quantum fluctuations and internuclear magnetic interaction in an inhomogeneous crusty nuclear matter.

  15. Astronomical relevance of materials from Earth and space: A laboratory study

    Science.gov (United States)

    Rauf, Kani Mustafa

    The present study used scanning and transmission electron microscopy, energy dispersive analysis of X-rays (EDAX) and spectroscopy (FTIR, UV-Visible and fluorescence) to examine terrestrial materials of possible astronomical significance (Oedogonium sp., Enteromopha intestinalis, Pelvetia canaliculata, Fucus vesiculosus, Bacillus cereus, Staphyllococcus aureus, poppy seed, chlorophylls 'a' and 'b', Panicum maximum, anthracite, bituminous coal, naphthalene), the Tagish lake and Carancas meteorites, a Kerala red rain sample and stratospheric air particles collected at altitudes of 38-41 km. The study was designed to determine if any of the terrestrial samples could be proposed as an effective model for the interpretation of astronomical spectroscopic observations. The study also set out to search for evidence to shed light on the origin of these meteorites, red rain and stratospheric air particles. The spectra of all the terrestrial samples (including the meteorites) exhibited absorptions in the Mid-IR region, similar to astronomical features displayed by a variety of galactic sources. Algae (Odeogonium sp.) in particular produced the largest number of absorption peaks, most of which matched those of the astronomical emission spectra of PPNe and also the UIBs. Based on these observations, algae could be defended as a biological model for the interpretation of UIBs and PPNe, and a potential candidate for interstellar material. Coal and semi anthracite, that can be regarded as steps in the degradation of biomaterial, preserve the UIB-PPNe spectral features to varying degrees. The results are consistent with the panspermia theory of Hoyle and Wickramasinghe. UV-Visible studies were also conducted on all these materials. The main absorption feature was one close to 217.5 nm (2175 A). The normalized (averaged) spectrum of the whole sequence of biological materials and their degradation products absorption feature at 217.5 nm (2175 A) further support the contention that

  16. Advances in the Study of Geochemistry and Paleo-oceanography of the Co-rich Crust

    Institute of Scientific and Technical Information of China (English)

    Cai Yihua; Huang Yipu

    2002-01-01

    The current advances in the study of geochemistry and paleo-oceanography of the Co-rich crust are reviewed in this paper. We summarize the study of geochemistry of the Co-rich crust, discuss the diffusion of elements in the Co-rich crust and the exchange with ambient seawater. Besides, we discuss the effect of phosphatization and substrate rocks on the composition of the Co-rich crust. We also introduce the application of stable isotopes (including the stable isotopes of Pb, Nd, and Hf), radioactive isotopes (including the radioactive isotopes of Be, U and Th), and elements (including the major elements, minor elements and rare earth elements) to the study of paleo-oceanography of the Co-rich crust.

  17. Recent development in clusters of rare earths and actinides. Chemistry and materials

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhiping (ed.) [Arizona Univ., Tucson, AZ (United States). Dept. of Chemistry and Biochemistry

    2017-02-01

    This book contains the following eight contributions: 1. Lanthanide Hydroxide Cluster Complexes via Ligand-Controlled Hydrolysis of the Lanthanide Ions (Zhonghao Zhang, Yanan Zhang, and Zhiping Zheng); 2. Synthesis and Structures of Lanthanide-Transition Metal Clusters (Xiu-Ying Zheng, Xiang-Jian Kong, and La-Sheng Long); 3. Hydrothermal Synthesis of Lanthanide and Lanthanide-Transition-Metal Cluster Organic Frameworks via Synergistic Coordination Strategy (Jian-Wen Cheng and Guo-Yu Yang); 4. Oxo Clusters of 5f Elements (Sarah Hickam and Peter C.); 5. Construction and Luminescence Properties of 4f and d-4f Clusters with Salen-Type Schiff Base Ligands (Xiaoping Yang, Shiqing Wang, Chengri Wang, Shaoming Huang, and Richard A.); 6. 4f-Clusters for Cryogenic Magnetic Cooling (Yan-Cong Chen, Jun-Liang Liu, and Ming-Liang Tong); 7. Lanthanide Clusters Toward Single-Molecule Magnets (Tian Han, You-Song Ding, and Yan-Zhen Zheng); 8. Molecular Rare Earth Hydride Clusters (Takanori Shima and Zhaomin Hou).

  18. Study of Vertical Movements of the European Crust Using Tide Gauge and Gnss Observations

    Directory of Open Access Journals (Sweden)

    Tretyak Kornyliy

    2015-02-01

    Full Text Available This research is devoted to the study of vertical movements of the European crust on the basis of two independent methods, namely tide gauge and GNSS observations results. The description and classification of factors affecting sea level change has been made. The precision with which the movement of the earth's crust according to the results of tide gauge observations can be explored has been calculated . A methodology to identify the duration of tide gauge observations required for studies of vertical movements of the earth 's crust has been presented. Approximation of tide gauge time series with the help of Fourier series has been implemented, the need for long-term observations in certain areas has been explained. The diagram of the velocities of the vertical movements of the European crust on the basis of the tide gauge data and GNSS observations has been built and the anomalous areas where the observations do not coincide have been identified.

  19. RE Advanced Materials Pushing the Development of Chinese Rare Earth Industry (Continued)

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zengqi

    2008-01-01

    @@ 2.3 Unbalanced production and sales will be worsened There is still diversity of the demand for various RE products in the following few years.Especially,fast development of NdFeB permanent magnetic materials worsens the unbalanced situation of RE market.Besides,with the development of science and technology,some traditional RE applications are challenged by new technology or new products.

  20. Space weathering on airless bodies

    Science.gov (United States)

    Pieters, Carle M.; Noble, Sarah K.

    2016-10-01

    Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produces different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, and outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research.

  1. Systematic Investigation of REE Mobility and Fractionation During Continental Shale Weathering Along a Climate Gradient

    Science.gov (United States)

    Jin, L.; Ma, L.; Dere, A. L. D.; White, T.; Brantley, S. L.

    2014-12-01

    Rare earth elements (REE) have been identified as strategic natural resources and their demand in the United States is increasing rapidly. REE are relatively abundant in the Earth's crust, but REE deposits with minable concentrations are uncommon. One recent study has pointed to the deep-sea REE-rich muds in the Pacific Ocean as a new potential resource, related to adsorption and concentration of REE from seawater by hydrothermal iron-oxyhydroxides and phillipsite (Kato et al., 2010). Finding new REE deposits will be facilitated by understanding global REE cycles: during the transformation of bedrock into soils, REEs are leached into natural waters and transported to oceans. At present, the mechanisms and factors controlling release, transport, and deposition of REE - the sources and sinks - at Earth's surface remain unclear. Here, we systematically studied soil profiles and bedrock in seven watersheds developed on shale bedrock along a climate transect in the eastern USA, Puerto Rico and Wales to constrain the mobility and fractionation of REE during chemical weathering processes. In addition, one site on black shale (Marcellus) bedrock was included to compare behaviors of REEs in organic-rich vs. organic-poor shale end members under the same environmental conditions. Our investigation focused on: 1) the concentration of REEs in gray and black shales and the release rates of REE during shale weathering, 2) the biogeochemical and hydrological conditions (such as redox, dissolved organic carbon, and pH) that dictate the mobility and fractionation of REEs in surface and subsurface environments, and 3) the retention of dissolved REEs on soils, especially onto secondary Fe/Al oxyhydroxides and phosphate mineral phases. This systematic study sheds light on the geochemical behaviors and environmental pathways of REEs during shale weathering along a climosequence.

  2. Rare Earth Elements-Doped LiCoO2 Cathode Material for Lithium-Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    魏进平; 曹晓燕; 潘桂玲; 叶茂; 阎杰

    2003-01-01

    Some compounds of LiCo1-xRExO2 (RE=rare earth elements and x=0.01~0.03) were prepared by doping rare earth elements to LiCoO2 via solid state synthesis. The microstructure characteristics of the LiCo1-xRExO2 were investigated by XRD. It was found that the lattice parameters c are increased and the lattice volumes are enlarged compared to that of LiCoO2. Moreover, the performance of LiCo1-xRExO2 as the cathode material in lithium ion battery is improved, especially LiCo1-xYxO2 and LiCo1-xLaxO2. The initial charge/discharge capacities of LiCo0.99Y0.01O2 and LiCo0.99La0.01O2 are 174/154 (mAh*g-1) and 159/149 (mAh*g-1) respectively, while those for LiCoO2 working in the same way are only 139/131 (mAh*g-1).

  3. Continental crust formation: Numerical modelling of chemical evolution and geological implications

    Science.gov (United States)

    Walzer, U.; Hendel, R.

    2017-05-01

    Oceanic plateaus develop by decompression melting of mantle plumes and have contributed to the growth of the continental crust throughout Earth's evolution. Occasional large-scale partial melting events of parts of the asthenosphere during the Archean produced large domains of precursor crustal material. The fractionation of arc-related crust during the Proterozoic and Phanerozoic contributed to the growth of continental crust. However, it remains unclear whether the continents or their precursors formed during episodic events or whether the gaps in zircon age records are a function of varying preservation potential. This study demonstrates that the formation of the continental crust was intrinsically tied to the thermoconvective evolution of the Earth's mantle. Our numerical solutions for the full set of physical balance equations of convection in a spherical shell mantle, combined with simplified equations of chemical continent-mantle differentiation, demonstrate that the actual rate of continental growth is not uniform through time. The kinetic energy of solid-state mantle creep (Ekin) slowly decreases with superposed episodic but not periodic maxima. In addition, laterally averaged surface heat flow (qob) behaves similarly but shows peaks that lag by 15-30 Ma compared with the Ekin peaks. Peak values of continental growth are delayed by 75-100 Ma relative to the qob maxima. The calculated present-day qob and total continental mass values agree well with observed values. Each episode of continental growth is separated from the next by an interval of quiescence that is not the result of variations in mantle creep velocity but instead reflects the fact that the peridotite solidus is not only a function of pressure but also of local water abundance. A period of differentiation results in a reduction in regional water concentrations, thereby increasing the temperature of the peridotite solidus and the regional viscosity of the mantle. By plausibly varying the

  4. Observation of Solar Wind Charge Exchange Emission From Exospheric Material in and Outside Earth's Magnetosheath 2008 September 25

    Science.gov (United States)

    Snowden, S. L.; Collier, M. R.; Cravens, T.; Kuntz, K. D.; Lepri, S. T.; Robertson, I.; Tomas, L.

    2009-01-01

    A long XMM-Newton exposure is used to observe solar wind charge exchange (SWCX) emission from exospheric material in and outside Earth's magnetosheath. The light curve of the O vii (0.5-0.62 keV) band is compared with a model for the expected emission, and while the emission is faint and the light curve has considerable scatter, the correlation is significant to better than 99.9%. This result demonstrates the validity of the geocoronal SWCX emission model for predicting a contribution to astrophysical observations to a scale factor of order unity (1.5). In addition, an average value of the SWCX O vii emission from the magnetosheath over the observation of 2.6 +/- 0.5 LU is derived. The results also demonstrate the potential utility of using X-ray observations to study global phenomena of the magnetosheath which currently are only investigated using in situ measurements.

  5. Continental igneous rock composition: A major control of past global chemical weathering.

    Science.gov (United States)

    Bataille, Clément P; Willis, Amy; Yang, Xiao; Liu, Xiao-Ming

    2017-03-01

    The composition of igneous rocks in the continental crust has changed throughout Earth's history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [((87)Sr/(86)Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of ((87)Sr/(86)Sr)seawater variations to the strontium isotopic composition ((87)Sr/(86)Sr) in igneous rocks generated through time. We demonstrate that the (87)Sr/(86)Sr ratio in igneous rocks is correlated to the epsilon hafnium (εHf) of their hosted zircon grains, and we use the detrital zircon record to reconstruct the evolution of the (87)Sr/(86)Sr ratio in zircon-bearing igneous rocks. The reconstructed (87)Sr/(86)Sr variations in igneous rocks are strongly correlated with the ((87)Sr/(86)Sr)seawater variations over the last 1000 million years, suggesting a direct control of the isotopic composition of silicic magmatism on ((87)Sr/(86)Sr)seawater variations. The correlation decreases during several time periods, likely reflecting changes in the chemical weathering rate associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years, the ((87)Sr/(86)Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather than to changes in the global chemical weathering rate. We conclude that the ((87)Sr/(86)Sr)seawater variations are of limited utility to reconstruct changes in the global chemical weathering rate in deep times.

  6. What Hf isotopes in zircon tell us about crust-mantle evolution

    Science.gov (United States)

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Itano, Keita; Hibiya, Yuki; Suzuki, Kazue

    2017-03-01

    The 176Lu-176Hf radioactive decay system has been widely used to study planetary crust-mantle differentiation. Of considerable utility in this regard is zircon, a resistant mineral that can be precisely dated by the U-Pb chronometer and record its initial Hf isotope composition due to having low Lu/Hf. Here we review zircon U-Pb age and Hf isotopic data mainly obtained over the last two decades and discuss their contributions to our current understanding of crust-mantle evolution, with emphasis on the Lu-Hf isotope composition of the bulk silicate Earth (BSE), early differentiation of the silicate Earth, and the evolution of the continental crust over geologic history. Meteorite zircon encapsulates the most primitive Hf isotope composition of our solar system, which was used to identify chondritic meteorites best representative of the BSE (176Hf/177Hf = 0.282793 ± 0.000011; 176Lu/177Hf = 0.0338 ± 0.0001). Hadean-Eoarchean detrital zircons yield highly unradiogenic Hf isotope compositions relative to the BSE, providing evidence for the development of a geochemically enriched silicate reservoir as early as 4.5 Ga. By combining the Hf and O isotope systematics, we propose that the early enriched silicate reservoir has resided at depth within the Earth rather than near the surface and may represent a fractionated residuum of a magma ocean underlying the proto-crust, like urKREEP beneath the anorthositic crust on the Moon. Detrital zircons from world major rivers potentially provide the most robust Hf isotope record of the preserved granitoid crust on a continental scale, whereas mafic rocks with various emplacement ages offer an opportunity to trace the Hf isotope evolution of juvenile continental crust (from εHf[4.5 Ga] = 0 to εHf[present] = + 13). The river zircon data as compared to the juvenile crust composition highlight that the supercontinent cycle has controlled the evolution of the continental crust by regulating the rates of crustal generation and intra

  7. Differential weathering of basaltic and granitic catchments from concentration-discharge relationships

    Science.gov (United States)

    Ibarra, Daniel E.; Caves, Jeremy K.; Moon, Seulgi; Thomas, Dana L.; Hartmann, Jens; Chamberlain, C. Page; Maher, Kate

    2016-10-01

    A negative feedback between silicate weathering rates and climate is hypothesized to play a central role in moderating atmospheric CO2 concentrations on geologic timescales. However, uncertainty regarding the processes that regulate the operation of the negative feedback limits our ability to interpret past variations in the ocean-atmosphere carbon cycle. In particular, the mechanisms that determine the flux of weathered material for a given climatic state are still poorly understood. Here, we quantify the processes that determine catchment-scale solute fluxes for two lithologic end-members-basalt and granite-by applying a recently developed solute production model that links weathering fluxes to both discharge and the reactivity of the weathering material. We evaluate the model against long-term monitoring of concentration-discharge relationships from basaltic and granitic catchments to determine the parameters associated with solute production in each catchment. Higher weathering rates in basaltic catchments relative to granitic catchments are driven by differing responses to increases in runoff, with basaltic catchments showing less dilution with increasing runoff. In addition, results from the solute production model suggest that thermodynamic constraints on weathering reactions could explain higher concentrations in basaltic catchments at lower runoff compared to granitic catchments. To understand how the response to changing discharge controls weathering fluxes under different climatic states, we define basalt/granite weatherability as the ratio of the basalt catchment flux to the granite catchment flux. This weatherability is runoff-dependent and increases with increasing runoff. For HCO3- and SiO2(aq) fluxes, for modern global runoff, the derived mean basalt/granite weatherability is 2.2 (1.3-3.7, 2σ) and 1.7 (1.6-2.1, 2σ), respectively. Although we cannot determine the array of individual processes resulting in differences among catchments, the relative

  8. Effect of Rare Earth Elements (Er, Ho) on Semi-Metallic Materials (ScN) in an Applied Electric Field

    Science.gov (United States)

    Kim, Hyunjung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.

    2012-01-01

    The development of materials and fabrication technology for field-controlled spectrally active optics is essential for applications such as membrane optics, filters for LIDARs, windows for sensors, telescopes, spectroscopes, cameras and flat-panel displays. The dopants of rare earth elements, in a host of optical systems, create a number of absorption and emission band structures and can easily be incorporated into many high quality crystalline and amorphous hosts. In wide band-gap semiconductors like ScN, the existing deep levels can capture or emit the mobile charges, and can be ionized with the loss or capture of the carriers which are the fundamental basis of concept for smart optic materials. The band gap shrinkage or splitting with dopants supports the possibility of this concept. In the present work, a semi-metallic material (ScN) was doped with rare earth elements (Er, Ho) and tested under an applied electric field to characterize spectral and refractive index shifts by either Stark or Zeeman Effect. These effects can be verified using the UV-Vis spectroscopy, the Hall Effect measurement and the ellipsometric spectroscopy. The optical band gaps of ScN doped with Er and doped with Ho were experimentally estimated as 2.33eV and 2.24eV ( 0.2eV) respectively. This is less than that of undoped ScN (2.5 0.2eV). The red-shifted absorption onset is a direct evidence for the decrease of band gap energy (Eg), and the broadening of valence band states is attributable to the doping cases. A decrease in refractive index with an applied field was observed as a small shift in absorption coefficient using a variable angle spectroscopic ellipsometer. In the presence of an electric field, mobile carriers are redistributed within the space charge region (SCR) to produce this electro-refractive effect. The shift in refractive index is also affected by the density and location of deep potential wells within the SCR. In addition, the microstructure change was observed by a TEM

  9. Experiments of the Space Weather Network Using JGN2

    OpenAIRE

    2007-01-01

    The National Institute of Information and Communications Technology (NICT) operates a Japanese space forecast center for the International Space Environment Service (ISES). Information on space weather is exchanged daily among the space weather forecast centers all over the world. Researches of space weather need data on large areas of space from the Sun to the Earth's upper atmosphere. It is necessary for researchers of space weather to access various data and to communicate among various ot...

  10. Mission to Very Early Earth

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheon, I D; Weber, P K; Fallon, S J; Smith, J B; Aleon, J; Ryerson, F J; Harrison, T M; Cavosie, A J; Valley, J W

    2007-03-13

    The Hadean Earth is often viewed as an inhospitable and, perhaps, unlikely setting for the rise of primordial life. However, carbonaceous materials supplied by accreting meteorites and sources of chemical energy similar to those fueling life around modern deep-sea volcanic vents would have been present in abundance. More questionable are two other essential ingredients for life - liquid water and clement temperatures. Did the Hadean Earth possess a hydrosphere and temperate climate compatible with the initiation of biologic activity? If so, the popular model of an excessively hot planetary surface characterized by a basaltic crust, devoid of continental material is invalid. Similarly, establishment of an Hadean hydrosphere prior to the cessation of heavy asteroid bombardment may mean that primitive life could have evolved and then been extinguished, only to rise again. The most effective means of determining the environmental conditions on this young planet is through geochemical analysis of samples retrieved from the Early Earth. While rocks older than 4 billion years (4 Ga) have not been found, individual zircon grains, the detritus of rocks long since eroded away, have been identified with ages as old as 4.4 Ga - only {approx}160 million years younger than the Earth itself. If we can use the geochemical information contained in these unique samples to infer the nature of their source rocks and the processes that formed them, we can place constraints on the conditions prevailing at the Earth's surface shortly after formation. This project utilizes a combined analytical and experimental approach to gather the necessary geochemical data to determine the parameters required to relate the zircons to their parent materials. Mission to Early Earth involves dating, isotopic and chemical analyses of mineral and melt inclusions within zircons and of the zircons themselves. The major experimental activity at LLNL focused on the partitioning of trace elements between

  11. 44 CFR 15.3 - Access to Mt. Weather.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Access to Mt. Weather. 15.3... HOMELAND SECURITY GENERAL CONDUCT AT THE MT. WEATHER EMERGENCY ASSISTANCE CENTER AND AT THE NATIONAL EMERGENCY TRAINING CENTER § 15.3 Access to Mt. Weather. Mt. Weather contains classified material and...

  12. Use of Video Technology for Lecture and Lab Material in Introductory Earth Science

    Science.gov (United States)

    Shorey, C. V.

    2008-12-01

    Still images are essential to teaching introductory geology courses, but video has traditionally been relegated a minor role. When creatively integrated with lecture material, video can provide a better perspective on spatial scales and relationships between static geologic locations, or to demonstrate evolving processes with much greater economy. With the use of appropriate editing software, events can be temporally compressed and dilated to give a more visceral experience to processes described in labs and lectures. Video can also be used as a form of virtual field trip for students to see a more wide ranging sample of locations, and such virtual field trips can deliver comparable experiences for students with physical disabilities that may limit their ability to visit the locations their fellow students attend.

  13. Numerical Research of Materials Crystal Lattice Parameters Based on Rare-Earth Metals

    Directory of Open Access Journals (Sweden)

    Obkhodsky Artem

    2017-01-01

    Full Text Available Geometrical parameters (coordinates and angles of CeO2 crystal lattice by molecular dynamics method are calculated. Calculated parameters of crystal lattice are applied for definition the energy band structure via Hartree-Fock method in an approximation to CO LCAO (crystal orbitals as linear combination of atomic orbitals and using the model of cyclic cluster. Calculated minimum energy band p-d is within the value range of experimental data. Valence band maximum is 4.2 while minimum energy band p-d width is 2.8 eV Quantum-chemical calculations are accelerated by Schwarz inequality and direct inversion method in iterative subspace. The obtained mathematical model is implemented into software package for calculating material properties.

  14. Whole-Earth Decompression Dynamics

    CERN Document Server

    Herndon, J M

    2005-01-01

    The principles of Whole-Earth Decompression Dynamics are disclosed leading to a new way to interpret whole-Earth dynamics. Whole-Earth Decompression Dynamics incorporates elements of and unifies the two seemingly divergent dominant theories of continential displacement, plate tectonics theory and Earth expansion theory. Whole-Earth decompression is the consequence of Earth formation from within a Jupiter-like protoplanet with subsequent loss of gases and ices and concomitant rebounding. The initial whole-Earth decompression is expected to result in a global system of major primary decompression cracks appearing in the rigid crust which persist as the basalt feeders for the global, mid-oceanic ridge system. As the Earth subsequently decompresses, the area of the Earth's surface increases by the formation of secondary decompression cracks, often located near the continental margins, presently identified as oceanic trenches. These secondary decompression cracks are subsequently in-filled with basalt, extruded fr...

  15. Regulating continent growth and composition by chemical weathering.

    Science.gov (United States)

    Lee, Cin-Ty Aeolus; Morton, Douglas M; Little, Mark G; Kistler, Ronald; Horodyskyj, Ulyana N; Leeman, William P; Agranier, Arnaud

    2008-04-01

    Continents ride high above the ocean floor because they are underlain by thick, low-density, Si-rich, and Mg-poor crust. However, the parental magmas of continents were basaltic, which means they must have lost Mg relative to Si during their maturation into continents. Igneous differentiation followed by lower crustal delamination and chemical weathering followed by subduction recycling are possible solutions, but the relative magnitudes of each process have never been quantitatively constrained because of the lack of appropriate data. Here, we show that the relative contributions of these processes can be obtained by simultaneous examination of Mg and Li (an analog for Mg) on the regional and global scales in arcs, delaminated lower crust, and river waters. At least 20% of Mg is lost from continents by weathering, which translates into >20% of continental mass lost by weathering (40% by delamination). Chemical weathering leaves behind a more Si-rich and Mg-poor crust, which is less dense and hence decreases the probability of crustal recycling by subduction. Net continental growth is thus modulated by chemical weathering and likely influenced by secular changes in weathering mechanisms.

  16. Permanent components of the crust, geoid and ocean depth tides

    Science.gov (United States)

    Sun, Wenke; Sjöberg, Lars E.

    2001-04-01

    The tidal deformation caused by the luni-solar potential includes not only a periodic part, but also a time-independent part, called the permanent tide. How to deal with the tidal correction in gravimetric observations, especially the treatment of the permanent tide, has been discussed for a long time, since some practical and physical problems exist anyhow. A resolution adopted by IAG (1983) was that the permanent tidal attraction of the Moon and the Sun should be eliminated, but the permanent tidal deformation of the Earth be maintained. This is called zero gravity, and the geoid associated with it is the zero geoid. As to the crust deformation, Poutanen et al. (Poutanen, M., Vermeer, M., Mäkinen, J., 1996. The permanent tide in GPS positioning. Journal of Geodesy 70, 499-504.) suggested that co-ordinates should be reduced to the zero crust, i.e. the crust that includes the effect of the permanent tide. This research shows that horizontal components of the permanent earth tides, which are not considered in recent studies, are also important in GPS positioning and geoid determination. Since the tide-generating potential can be expanded into harmonics and divided into two parts (geodetic coefficients and the group of harmonic waves), the permanent earth tides can be easily obtained by multiplying the amplitude of the zero-frequency wavelength by the corresponding geoid geodetic coefficient. Formulas for both elastic and fluid cases are presented. Numerical results for the elastic case show that he vertical permanent crust (zero crust), geoid and ocean depth tides reach -12.0, -5.8 and 6.1 cm at the poles, and 5.9, 2.9 and -3.0 cm at the equator, respectively. The horizontal permanent crust, geoid and ocean depth tide components reach as much as 2.5, 8.7 and 6.3 cm, respectively. According to the solution of IAG (1983), the permanent vertical components are kept in GPS positioning and geoid computation. Thus, it is natural to include the horizontal components

  17. Hornblendite delineates zones of mass transfer through the lower crust

    Science.gov (United States)

    Daczko, Nathan R.; Piazolo, Sandra; Meek, Uvana; Stuart, Catherine A.; Elliott, Victoria

    2016-08-01

    Geochemical signatures throughout the layered Earth require significant mass transfer through the lower crust, yet geological pathways are under-recognized. Elongate bodies of basic to ultrabasic rocks are ubiquitous in exposures of the lower crust. Ultrabasic hornblendite bodies hosted within granulite facies gabbroic gneiss of the Pembroke Valley, Fiordland, New Zealand, are typical occurrences usually reported as igneous cumulate hornblendite. Their igneous features contrast with the metamorphic character of their host gabbroic gneiss. Both rock types have a common parent; field relationships are consistent with modification of host gabbroic gneiss into hornblendite. This precludes any interpretation involving cumulate processes in forming the hornblendite; these bodies are imposter cumulates. Instead, replacement of the host gabbroic gneiss formed hornblendite as a result of channeled high melt flux through the lower crust. High melt/rock ratios and disequilibrium between the migrating magma (granodiorite) and its host gabbroic gneiss induced dissolution (grain-scale magmatic assimilation) of gneiss and crystallization of mainly hornblende from the migrating magma. The extent of this reaction-replacement mechanism indicates that such hornblendite bodies delineate significant melt conduits. Accordingly, many of the ubiquitous basic to ultrabasic elongate bodies of the lower crust likely map the ‘missing’ mass transfer zones.

  18. Water in granulites: implications for the nature and evolution of the lower continental crust

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaozhi; XIA Qunke; Etienne DELOULE; FAN Qicheng; HAO Yantao

    2007-01-01

    The lower continental crust is one of the most important sphere-layers in the deep earth, and is the direct place where the crust-mantle interactions occur. Granulites are the dominated rocks in the lower crust, and have critical implications for the knowledge of the composition, nature and evolution of the deep crust; fluids are important mediums influencing many geochemical, geophysical and geodynamical characteristics of the lower crust, and may also play a fundamental role in the petrogenesis of granulites and the formation of the lower crusts. In this paper, we review recent advances involved with the deep continental crust, granulites and fluids, and some longstanding debates. Combined with the Fourier-transform infrared spectroscopy (FTIR) analysis performed on the mineral assemblages (cpx, opx, plag and grt) in lower crustal granulite xenoliths and terrains (exposed section) from east China, it is suggested that structural water, dominated by OH, in these nominally anhydrous phases may constitute the most important water reservoir in the deep crust. This structual water may help to understand many lower crustal geological processes and phenomena (e. G. Seismic activities and electrical conductive anomalies), and influences from these water must be taken into consideration.

  19. Origin and age of the earliest Martian crust from meteorite NWA 7533.

    Science.gov (United States)

    Humayun, M; Nemchin, A; Zanda, B; Hewins, R H; Grange, M; Kennedy, A; Lorand, J-P; Göpel, C; Fieni, C; Pont, S; Deldicque, D

    2013-11-28

    The ancient cratered terrain of the southern highlands of Mars is thought to hold clues to the planet's early differentiation, but until now no meteoritic regolith breccias have been recovered from Mars. Here we show that the meteorite Northwest Africa (NWA) 7533 (paired with meteorite NWA 7034) is a polymict breccia consisting of a fine-grained interclast matrix containing clasts of igneous-textured rocks and fine-grained clast-laden impact melt rocks. High abundances of meteoritic siderophiles (for example nickel and iridium) found throughout the rock reach a level in the fine-grained portions equivalent to 5 per cent CI chondritic input, which is comparable to the highest levels found in lunar breccias. Furthermore, analyses of three leucocratic monzonite clasts show a correlation between nickel, iridium and magnesium consistent with differentiation from impact melts. Compositionally, all the fine-grained material is alkalic basalt, chemically identical (except for sulphur, chlorine and zinc) to soils from Gusev crater. Thus, we propose that NWA 7533 is a Martian regolith breccia. It contains zircons for which we measured an age of 4,428 ± 25 million years, which were later disturbed 1,712 ± 85 million years ago. This evidence for early crustal differentiation implies that the Martian crust, and its volatile inventory, formed in about the first 100 million years of Martian history, coeval with earliest crust formation on the Moon and the Earth. In addition, incompatible element abundances in clast-laden impact melt rocks and interclast matrix provide a geochemical estimate of the average thickness of the Martian crust (50 kilometres) comparable to that estimated geophysically.

  20. Preparation, structure and catalytic performances of rare earth catalytic materials%稀土催化材料的制备、结构及催化性能

    Institute of Scientific and Technical Information of China (English)

    詹望成; 郭耘; 郭杨龙; 龚学庆; 王艳芹; 卢冠忠

    2012-01-01

    The research and development of rare earth catalytic materials will greatly promote the high-efficiency utilization of abundant rare earth elements, such as La and Ce. Rare earth elements have under-filled 4f orbits and lanthanide contraction, resulting in their unique catalytic performances when used as an active component or the carrier of catalysts. This paper reviews the progress in the preparation, structural and catalytic properties of rare earth catalytic materials, containing rare earth oxides, rare earth composite oxides, rare earth-noble metal catalysts and rare earth modified porous materials. The effects of rare earth elements on the structures, activities and stabilities of the concerned catalysts are mainly described. As well as, the interactions between rare earth metals and transition metals or noble metals are also elaborated, which are critical for the performances of the catalysts. Finally, the development thinking for rare earth catalytic materials is put forwarded and outlooked.%稀土催化材料的研究和发展为La和Ce等高丰度轻稀土元素的高质、高效利用提供了有效的途径.稀土元素具有未充满电子的4f轨道和镧系收缩等特征,作为催化剂的活性组分或载体使用时表现出独特的催化性能.本文从稀土氧化物、稀土复合氧化物、稀土-贵金属催化剂、稀土改性多孔催化材料等稀土催化材料出发,重点介绍和讨论了稀土的添加对催化剂的结构、活性和稳定性等的影响,阐述了稀土与过渡金属及氧化物、稀土与贵金属之间的相互作用,及对催化剂催化性能的影响.并对稀土催化材料的研究和发展提出了思考和展望.

  1. Sr isotope evolution during chemical weathering of granites -- impact of relative weathering rates of minerals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Sr isotopic systematics in the weathering profiles of biotite granite and granite porphyry in southern Jiangxi Province were investigated. The results showed that during the chemical weathering of granites, remarked fractionation occurred between Rb and Sr. During the early stages of chemical weathering of granites, the released Sr/Si and Sr/Ca ratios are larger than those of the parent rocks, and the leaching rate of Sr is higher than those of Si, Ca, K, Rb, etc. Dynamic variations in relative weathering rates of the main Sr-contributing minerals led to fluctuation with time in 87Sr/86Sr ratios of inherent and released Sr in the weathering crust of granite. Successive weathering of biotite, plagioclase and K-feldspar made 87Sr/86Sr ratios in the weathering residues show such a fluctuation trend as to decrease first, increase, and then decrease again till they maintain stable. This work further indicates that when Sr isotopes are used to trace biogeochemical processes on both the catchment and global scales, one must seriously take account of the prefer-ential release of Sr from dissolving solid phase and the fluctuation of 87Sr/86Sr ratios caused by the variations of relative weathering rates of Sr-contributing minerals.

  2. Novel indicators for the quantification of resilience in critical material supply chains, with a 2010 rare earth crisis case study.

    Science.gov (United States)

    Sprecher, Benjamin; Daigo, Ichiro; Spekkink, Wouter; Vos, Matthijs; Kleijn, Rene; Murakami, Shinsuke; Kramer, Gert Jan

    2017-03-03

    We introduce several new resilience metrics for quantifying the resilience of critical material supply chains to disruptions, and validate these metrics using the 2010 rare earth element (REE) crisis as a case study. Our method is a novel application of Event Sequence Analysis, supplemented with interviews of actors across the entire supply chain. We discuss resilience mechanism in quantitative terms - time lags, response speeds and maximum magnitudes - and in light of cultural differences between Japanese and European corporate practice. This quantification is crucial if resilience is ever to be taken into account in criticality assessments, and a step towards determining supply and demand elasticities in the REE supply chain. We find that the REE system showed resilience mainly through substitution and increased non-Chinese primary production, with a distinct role for stockpiling. Overall, annual substitution rates reached 10% of total demand. Non-Chinese primary production ramped up at a speed of 4% of total market volume per year. The compound effect of these mechanism was that recovery from the 2010 disruption took two years. The supply disruption did not nudge a system towards an appreciable degree of recycling. This finding has important implications for the circular economy concept, indicating that quite a long period of sustained material constraints will be necessary for a production-consumption system to naturally evolve towards a circular configuration.

  3. Continental crust generated in oceanic arcs

    Science.gov (United States)

    Gazel, Esteban; Hayes, Jorden L.; Hoernle, Kaj; Kelemen, Peter; Everson, Erik; Holbrook, W. Steven; Hauff, Folkmar; van den Bogaard, Paul; Vance, Eric A.; Chu, Shuyu; Calvert, Andrew J.; Carr, Michael J.; Yogodzinski, Gene M.

    2015-04-01

    Thin oceanic crust is formed by decompression melting of the upper mantle at mid-ocean ridges, but the origin of the thick and buoyant continental crust is enigmatic. Juvenile continental crust may form from magmas erupted above intra-oceanic subduction zones, where oceanic lithosphere subducts beneath other oceanic lithosphere. However, it is unclear why the subduction of dominantly basaltic oceanic crust would result in the formation of andesitic continental crust at the surface. Here we use geochemical and geophysical data to reconstruct the evolution of the Central American land bridge, which formed above an intra-oceanic subduction system over the past 70 Myr. We find that the geochemical signature of erupted lavas evolved from basaltic to andesitic about 10 Myr ago--coincident with the onset of subduction of more oceanic crust that originally formed above the Galápagos mantle plume. We also find that seismic P-waves travel through the crust at velocities intermediate between those typically observed for oceanic and continental crust. We develop a continentality index to quantitatively correlate geochemical composition with the average P-wave velocity of arc crust globally. We conclude that although the formation and evolution of continents may involve many processes, melting enriched oceanic crust within a subduction zone--a process probably more common in the Archaean--can produce juvenile continental crust.

  4. Sink or swim? Geodynamic and petrological model constraints on the fate of Archaean primary crust

    Science.gov (United States)

    Kaus, B.; Johnson, T.; Brown, M.; VanTongeren, J. A.

    2013-12-01

    Ambient mantle potential temperatures in the Archaean were significantly higher than 1500 °C, leading to a high percent of melting and generating thick MgO-rich primary crust underlain by highly residual mantle. However, the preserved volume of this crust is low suggesting much of it was recycled. Here we couple calculated phase equilibria for hydrated and anhydrous low to high MgO crust compositions and their complementary mantle residues with 2-D numerical geodynamic models to investigate lithosphere dynamics in the early Earth. We show that, with increasing ambient mantle potential temperature, the density of primary crust increases more dramatically than the density of residual mantle decreases and the base of MgO-rich primary crust becomes gravitationally unstable with respect to the underlying mantle even when fully hydrated. To study this process we use geodynamic models that include the effects of melt extraction, crust formation and depletion of the mantle in combination with laboratory-constrained dislocation and diffusion creep rheologies for the mantle. The models show that the base of the gravitationally unstable lithosphere delaminates through relatively small-scale Rayleigh-Taylor instabilities, but only if the viscosity of the mantle lithosphere is sufficiently low. Thickening of the crust above upwelling mantle and heating at the base of the crust are the main mechanisms that trigger the delamination process. Scaling laws were developed that are in good agreement with the numerical simulations and show that the key parameters that control the instability are the density contrast between crust and underlying mantle lithosphere, the thickness of the unstable layer and the effective viscosity of the upper mantle. Depending on uncertainties in the melting relations and rheology (hydrous or anhydrous) of the mantle, this process is shown to efficiently recycle the crust above potential temperatures of 1550-1600 °C. However, below these temperatures

  5. Monthly Weather Review

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Supplements to the Monthly Weather Review publication. The Weather Bureau published the Monthly weather review Supplement irregularly from 1914 to 1949. The...

  6. Weather Prediction Models

    Science.gov (United States)

    Bacmeister, Julio T.

    Awareness of weather and concern about weather in the proximate future certainly must have accompanied the emergence of human self-consciousness. Although weather is a basic idea in human existence, it is difficult to define precisely.

  7. Rare earth element content in the SPM of Daliao river system and its comparison with that in the sediments, loess and soils in China

    Institute of Scientific and Technical Information of China (English)

    LIN Chunye; HE Mengchang; LI Yanxia; YANG Linsheng; LIU Ruimin; YANG Zhifeng

    2008-01-01

    Content and distribution patterns of rare earth elements (REEs) in the suspended particulate material (SPM) of Daliao River system were investigated and compared with those in the river and sea sediments, loess, and soils of China. Twenty-seven samples of SPM were taken in Daliao River system and digested with various acids followed by ICP-MS analysis for REEs and ICP-OES analysis for Al, Fe, Mn, Ti, Mg, Ca, Na, and K, to measure the total concentrations of these elements. Results indicated that the spatial change in the content of REEs was great, with the coefficient of variance (CV) from 84% to 105%, while the contents of REEs were significantly correlated with each other. Chondrite-normalized patterns of REEs were characterized by higher enrichment of light REEs than heavy REEs, and a depletion of Eu in the SPM was generally found. The positive anomaly of Eu in the SPM of Xi River was due to anthropogenic source in Shenyang City. Furthermore, chondrite- and upper continent crust-normalized patterns of REEs in the SPM of Daliao River system, sediments of Yangtze River and Yellow River, sediments of Yellow Sea, East Sea, South Sea of China, and loess and soil of China, were very similar to one another. These demonstrated that the weathering and sedimentary processes resulted in constant REE distribution not only in the typical sedimentary rocks, but also in the modern riverine particle, sea sediments, loess, and soils.

  8. Comprehensive Recycling of the Abandoned Rare Earth Functional Materials%废弃稀土功能材料的综合回收利用

    Institute of Scientific and Technical Information of China (English)

    张博; 王威; 高照国

    2014-01-01

    China possesses the most abundant rare earth resources of the world .In recent years,as the increase of consumption demand and the long -term predatory exploitation,the reserves of the rare earth rapidly declined .The abandoned rare earth functional materials contain large amounts rare earth metals and other valuable elements .Therefore ,the efficiently clean utilization of the aban-doned rare earth functional materials is an important way to ease the contradiction between the sup-ply and demand of the rare earth resources .In this paper,the comprehensive utilization process of the rare earth permanent magnet materials , the rare earth hydrogen storage materials and the rare earth phosphor materials were reviewed .Based on the comparative analysis of the advantages and disadvantages of the different processes , a number of advises to solve the existing problems were proposed .%中国稀土储量居世界第一位,但随着稀土需求量的增加以及长期以来稀土资源掠夺式开采等因素的影响,我国稀土储量锐减。废弃稀土功能材料含有大量的稀土和其他有价金属元素,因此,对废弃稀土功能材料进行高效清洁利用是缓解我国稀土资源供需矛盾的重要途径。对稀土永磁材料、稀土储氢材料、稀土荧光粉材料等废弃稀土功能材料的综合利用工艺进行了综述,在比较不同工艺优缺点的基础上提出了一些解决现存问题的建议。

  9. 福建土楼墙身夯土材料抗压强度无损检测方法研究%THE RESEARCH ON RAMMED-EARTH MATERIAL COMPRESSIVE STRENGTH NONDESTRUCTIVE TESTING FOR FUJIAN TULOU(EARTH-BUILDING)

    Institute of Scientific and Technical Information of China (English)

    郭力群; 李安露; 彭兴黔

    2013-01-01

    针对福建土楼墙身夯土材料强度的无损检测方法进行研究。通过对回弹仪工作原理以及夯土材料强度的研究,对回弹仪进行加大弹击杆端的改进以提高其测试精度,结合夯土试块的抗压强度试验建立起不同年代夯土材料专用测强曲线。并通过现场实测,验证改进后回弹仪的适用性,为在役土楼的现场无损检测打下了基础,有助于进一步完善土楼保护措施。%It was studied the nondestructive testing methods of rammed-earth material strength of tulou wall .Through the research of working principle of the rebound hammer and rammed-earth material mechanical properties , the area of the rod end of the rebound hammer was enlarged to improve the detection precision .Combined with the compressive strength test of rammed earth cubes , the testing strength curves of rammed-earth material in different chron were set up .And through the field test , it was verified the applicability of the improved rebound hammer , which laid a foundation for field detection of the tulou ( earth-building ) in service , and contributed to improving protection measures .

  10. Continental Crust Growth as a Result of Continental Collision: Ocean Crust Melting and Melt Preservation

    Science.gov (United States)

    Niu, Y.; Zhao, Z.; Zhou, S.; Zhu, D.; Dong, G.; Mo, X.; Xie, G.; Dong, X.

    2010-12-01

    The significance of the continental crust (CC) on which we live is self-evident. However, our knowledge remains limited on its origin, its way and rate of growth, and how it has acquired the “andesitic” composition from mantle derived magmas. Compared to rocks formed from mantle derived magmas in all tectonic settings, volcanic arc rocks