WorldWideScience

Sample records for weather resistance

  1. Skid resistance determination for pavement management and wet-weather road safety

    Directory of Open Access Journals (Sweden)

    T.F. Fwa

    2017-09-01

    Full Text Available Road accidents during wet weather have been a topic of major concern of road engineers in regions of wet-tropical climate and in other parts of the world during the wet season of the year. Road safety studies indicate that approximately 20% of all road accidents occurred during wet weather, and that the skid resistance of wet pavements have a major influence on the occurrences of wet-weather accidents. Monitoring of wet pavement skid resistance has been an integral part of a typical pavement management system. However, because of the lack of prediction capability of pavement skid resistance under various rainfall intensities, the minimum skid resistance threshold for safe wet-weather driving has been specified by highway agencies based on either engineering judgement or past experience. It is shown in this paper that the single-point minimum skid resistance threshold is inadequate to offer a complete description of the skid resistance performance of the pavement sections in question for effective management of a road network. It is unable to assess the risk involved in an actual wet-weather condition where the pavement surface water-film thickness and vehicle speed are different from standard test conditions. This limitation of the current system of specifying a minimum skid resistance threshold can be overcome by adopting a theoretically sound approach to represent pavement skid resistance under different conditions of water-film thickness and vehicle speed. This paper describes the theoretical basis of the approach and the development of a mechanistically derived three-dimensional finite-element skid resistance simulation model to predict skid resistance. The application of the proposed approach and the skid resistance prediction procedure in pavement management system and wet-weather driving safety assessment is presented.

  2. Effects of Si as alloying element on corrosion resistance of weathering steel

    International Nuclear Information System (INIS)

    Mejía Gómez, J.A.; Antonissen, J.; Palacio, C.A.; De Grave, E.

    2012-01-01

    Highlights: ► Weathering steels with different concentrations of Si as alloying element were exposed to laboratory atmospheric conditions. ► The iron oxides formed as corrosion products were characterized and analyzed by XRD, TEM and Mössbauer spectroscopy. ► Silicon affects the corrosion resistance of weathering steels. ► Silicon promotes the formation of goethite as corrosion product with small particle size. - Abstract: The corrosion resistance in saline conditions of weathering steel with different concentrations of Si (1, 2 and 3 wt.%) exposed to dip dry tests (simulating wet/dry cycles of atmospheric corrosion) was studied by weight loss, X-ray diffraction, Mössbauer spectroscopy and transmission electron microscopy. The results showed that the steels exhibit better corrosion performance with increasing Si concentration. The formation of Fe-oxides such as goethite, lepidocrocite and magnetite was observed. Superparamagnetic goethite is the dominant phase in the rust developed on the Si steels, indicating that Si favors the formation of goethite with small particle size.

  3. Weather resistance of inkjet prints on plastic substrates

    Directory of Open Access Journals (Sweden)

    Rozália Szentgyörgyvölgyi

    2015-06-01

    Full Text Available The development of wide format inkjet printers made the technology available for large area commercials. Outdoor advertising uses a wide range of substrate including paperboard, vinyl, canvas, mesh; the material of the substrate itself has to endure the physical and chemical effects of local weather. Weather elements (humidity, wind, solar irradiation degrade printed products inevitably; plastic products have better resistance against them, than paper based substrates. Service life of the printed product for outdoor application is a key parameter from the customer’s point of view. There are two ways to estimate expected lifetime: on site outdoor testing or laboratory testing. In both cases weathering parameters can be monitored, however laboratory testing devices may produce the desired environmental effects and thus accelerate the aging process. Our research objective was to evaluate the effects of artificial weathering on prints produced by inkjet technology on plastic substrates. We used a large format CMYK inkjet printer (Mutoh Rockhopper II, with Epson DX 4 print heads to print our test chart on two similar substrates (PVC coated tarpaulins with grammages 400 g/m2 and 440 g/m2. Specimen were aged in an Atlas Suntest XLS+ material tester device for equal time intervals. We measured and calculated the gradual changes of the optical properties (optical density, tone value, colour shifts of the test prints.

  4. Using Resistivity Measurements to Determine Anisotropy in Soil and Weathered Rock

    Directory of Open Access Journals (Sweden)

    S. Soto-Caban

    2013-08-01

    Full Text Available This study uses electrical resistivity measurements of soils and weathered rock to perform a fast and reliable evaluation of field anisotropy. Two test sites at New Concord, Ohio were used for the study. These sites are characterized by different landform and slightly east dipping limestone and siltstone formations of Pennsylvanian age. The measured resistivity ranged from 19 Ω∙m to 100 ��∙m, and varied with depth, landform, and season. The anisotropy was determined by a comparison of resistance values along the directions of strike and the dip. Measurements showed that the orientation of electrical anisotropy in the shallow ground may vary due to fluid connection, which is determined by the pore geometry in soil and rock, as well as by the direction of fluid movement. Results from this study indicated that a portable electrical resistivity meter is sensitive and reliable enough to be used for shallow ground fluid monitoring.

  5. Identifying the changes of geo-engineering properties of dunites due to weathering utilizing electrical resistivity tomography (ERT)

    International Nuclear Information System (INIS)

    Ündül, Ömer; Tuğrul, Atiye; Zarif, İ Halil; Özyalın, Şenol

    2015-01-01

    Weathering phenomena have an important role in many construction facilities with varying depths and grades. Due to the anisotropic and heterogeneous nature of weathering profiles of some rocks, uncertainities exist in determining the geo-engineering properties. Geo-electrical studies have been utilized to overcome such uncertainities for various subsurface conditions including the determination of boundaries between weathered and unweathered parts of different rock types.In this study, the electrical resistivity tomography (ERT) results were correlated with conventional methods in determining the effects of weathering on the geo-engineering properties of dunites. During the research, weathering grades were determined by field studies including discontinuity spacings, aperture and properties of fill materials. The detailed petrographical studies, determination of petrophysical properties (e.g. water absorption and effective porosity) and mechanical properties (e.g. unconfined compressive strength (UCS)) constitute the laboratory studies. ERT studies were carried out in a row of sixty electrodes with electrode spacings of 0.5 m utilizing a Wenner–Schlumberger configuration. According to the comparison of the inversion model sections with the weathering profiles obtained by field and laboratory studies it is concluded that the use of ERT with a Wenner–Schlumberger configuration supplies comparable data for wider subsurface areas from the view of weathering and its effect on geo-engineering properties of dunites. In addition, ERT techniques are very useful where conventional techniques are inadequate in determining the full weathering profile. (paper)

  6. Weather resistance of CaSO4 ṡ 1/2H2O-based sand-fixation material

    Science.gov (United States)

    Liu, Xin; Tie, Shengnian

    2017-07-01

    Searching for an economical and effective sand-fixing material and technology is of great importance in Northwest China. This paper described the use of a semihydrated gypsum-(CaSO4 ṡ 1/2H2O-)based composite as a sand-fixing material. Its morphology and composition were characterized by SEM, and its water resistance, freezing-thawing resistance and wind erosion resistance were tested in the field. The results indicated that semihydrated gypsum-(CaSO4 ṡ 1/2H2O-)based sand-fixing composite has good water resistance and water-holding capacity. Its strength is maintained at 1.42 MPa after 50 freezing and thawing cycles, and its wind erosion increases with increasing wind speed and slope. Its compressive strength starts to decrease after nine months of field tests with no change in appearance, but it still satisfies the requirements of fixation technology. This sand-fixing material should have wide application owing to its good weather resistance.

  7. Design of Frost Resistant Pavement Structure Based on Road Weather Stations (RWSs Data

    Directory of Open Access Journals (Sweden)

    Audrius Vaitkus

    2016-12-01

    Full Text Available Frost is a decisive factor influencing pavement performance in cold countries. In the EU, millions of euros are spent annually on winter maintenance. About one-third of the maintenance budget is allocated to rehabilitation due to the negative impact of frost. The negative effect of frost is restricted by using non-frost-susceptible materials within the frost zone and regulating water accumulation. However, experience shows that the thickness of constructed pavement structure is often inadequate and that frost penetrates into the subgrade of frost-susceptible materials. The aim of this paper is to introduce the thickness calculation approach of the frost resistant pavement structure using road weather station (RWS data. The subgrade susceptibility to frost and the number of equivalent single axle loads (ESALs are considered as factors too. The calculated thickness of the frost resistant pavement structure is corrected according to the specific local conditions. After performing a statistical analysis of 2012–2014 data pertaining to 26 RWSs, Lithuania was divided into four regions according to the maximum frost depths, where the maximum values depending on RWS location varied from 110.4 cm to 179.1 cm.

  8. Progress in the Research of Fatigue of Weathering Steel after Corrosion

    Science.gov (United States)

    Jianyu, Liang; Jian, Yao; Youwu, Xu

    2017-12-01

    Weathering steel has a good corrosion resistance in the atmosphere, and the application of weathering steel in civil structure also reduces the cost of painting and maintenance. It is also possible for the bare weathering steel to bear the fatigue load with a rust layer. This paper summarizes the fatigue researches after corrosion of weathering steel, including the shape of specimens, failure modes of fatigue and the conclusions obtained through experimental investigations. It is also introduced the fatigue model of weathering steel after corrosion, which can be useful for the engineering application or further researches.

  9. Alligator Rivers Analogue project. Weathering and its effects on uranium redistribution

    International Nuclear Information System (INIS)

    Isobe, H.; Ohnuki, T.; Yanase, N.; Sato, T.; Kimura, H.; Sekine, K.; Nagano, T.; Klessa, D.A.; Conoley, C.; Nakashima, S.; Ewing, R.C.

    1992-01-01

    In the vicinity of the uranium ore deposit at Koongarra, quartz-chlorite schist, the ore host rock, has been subjected to weathering. Although quartz is resistant to weathering, chlorite has been altered to clays and iron minerals. The chlorite weathering and the uranium association with the weathered minerals are the main topics of this study. In order to clarify the weathering of chlorite and its effects on the redistribution of uranium, the processes, mechanisms, and kinetics of the chlorite weathering, and the uranium concentrations in minerals were examined by various methods: X-ray diffraction analysis, scanning electron microscopy, electron microprobe analysis, transmission electron microscopy, autoradiography, visible spectroscopy, alpha and gamma spectrometry. The observed results were compared to those calculated, based on two different models developed for the present study. Water-rock interactions have resulted in the weathering of chlorite and precipitation and sorption of uranyl from the groundwaters with the weathering products. It is concluded that the chlorite weathering affects the uranium retardation factor, and thus uranium redistribution at Koongarra. 55 refs., 20 tabs., 120 figs

  10. Weather derivatives: Business hedge instrument from weather risks

    Directory of Open Access Journals (Sweden)

    Đorđević Bojan S.

    2014-01-01

    Full Text Available In the late 1990s, a new financial market was developed - a market for weather derivatives, so that the risk managers could hedge their exposure to weather risk. After a rather slow start, the weather derivatives market had started to grow rapidly. Risk managers could no longer blame poor financial results on the weather. Weather risk could now be removed by hedging procedure. This paper will explain briefly what the weather derivatives are and will point out at some of the motives for use of derivatives. Thereafter we will look at the history of the weather risk market, how the weather derivatives market has developed in recent years and also who are the current and potential players in the weather derivatives market.

  11. Acidic weathering of carbonate building stones: experimental assessment

    Directory of Open Access Journals (Sweden)

    Ryszard Kryza

    2009-06-01

    Full Text Available Three types of carbonate rocks, travertine, limestone and marble have been studied to determine their selected technical parameters (water absorption, resistance to salt crystallization damage and reaction to experimentally modelled acid rain weathering imitating the polluted urban atmospheric conditions. The acidic agents present in natural acid rain precipitation, H2SO4, HCl, HNO3, CH3COOH and mixture of all the acids, “Acid mix”, were tested. The initial stages of acid weathering involve, apart from chemical dissolution, particularly intense physical detachment of rock particles (granular disintegration significantly contributing to the total mass loss. Travertine was found to be most prone to salt crystallization damage and to acid weathering, and these features should be taken into account especially in external architectural usage of this stone in cold climate conditions and polluted urban atmosphere.

  12. WEATHER INDEX- THE BASIS OF WEATHER DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Botos Horia Mircea

    2011-07-01

    Full Text Available This paper approaches the subject of Weather Derivatives, more exactly their basic element the weather index. The weather index has two forms, the Heating Degree Day (HDD and the Cooling Degree Day (CDD. We will try to explain their origin, use and the relationship between the two forms of the index. In our research we started from the analysis of the weather derivatives and what they are based on. After finding out about weather index, we were interested in understanding exactly how they work and how they influence the value of the contract. On the national level the research in the field is scares, but foreign materials available. The study for this paper was based firstly on reading about Weather Derivative, and then going in the meteorogical field and determining the way by which the indices were determined. After this, we went to the field with interest in the indices, such as the energy and gas industries, and figured out how they determined the weather index. For the examples we obtained data from the weather index database, and calculated the value for the period. The study is made on a period of five years, in 8 cities of the European Union. The result of this research is that we can now understand better the importance of the way the indices work and how they influence the value of the Weather Derivatives. This research has an implication on the field of insurance, because of the fact that weather derivative are at the convergence point of the stock markets and the insurance market. The originality of the paper comes from the personal touch given to the theoretical aspect and through the analysis of the HDD and CDD index in order to show their general behaviour and relationship.

  13. Influence of austenitisation temperature on the structure and properties of weather resistant steels

    International Nuclear Information System (INIS)

    Prasad, S.N.; Mediratta, S.R.; Sarma, D.S.

    2003-01-01

    The influence of austenitisation temperature on the structure and properties of three experimental weather resistant steels has been studied. All these steels contain 1% Mn, 0.3% Ni, 0.47% Cr and 0.47% Cu. In addition, steel no. 1 has 0.1% C, 0.1% P, steel no. 2 has 0.1% C, 0.05% P and 0.024% Nb while steel 3 has 0.2% C, 0.054% Nb and 0.046% V. It has been found that the hardness, yield strength and tensile strength do not change significantly with austenitisation temperature over the range 900-1200 deg. C for steel no. 1 but they increase considerably when austenitised above 1000 deg. C for steels 2 and 3. Similarly, the ductility decreases with increasing temperature of austenitisation. All the steels austenitised up to 1000 deg. C exhibit sharp yield points. None of these steels shows sharp yield point after 1200 deg. C. At 1100 deg. C, however, sharp yield points were observed in steels 1 and 2. There has been a noticeable change in optical microstructure. In steels 2 and 3 the pearlite is gradually replaced by granular bainite when austenitised above 1000 deg. C. The transmission electron microscopy study reveals that the granular bainite consists of acicular ferrite and martensite/austenite constituent

  14. Efficiency and resistance of the artificial oxalate protection treatment on marble against chemical weathering

    International Nuclear Information System (INIS)

    Doherty, B.; Pamplona, M.; Selvaggi, R.; Miliani, C.; Matteini, M.; Sgamellotti, A.; Brunetti, B.

    2007-01-01

    The artificial oxalate protection method was analyzed in laboratory experiments in order to achieve an optimum treatment application and concentration giving rise to its most effective protective nature. Spectroscopic (Fourier transform infrared, Micro-Raman and UV-vis colorimetry), microscopic (scanning electron microscope) and contact-angle analyses were carried out to characterize Carrara marble samples before and after application of the treatment to validate its efficiency. The resistance effects against chemical weathering were subsequently observed in a lab-controlled weak acid rain experiment. An acid spray at pH 5.5, representative of normal rain was used to provoke degrade of natural marble, marble treated with the artificial oxalate protective at concentrations of 0.4 and 5% and marble treated with a commercial organic silicon product. Run-off solutions sampled at timely intervals were tested for any change in pH followed by ion chromatography measurements for the presence of calcium ions in solution. The chromatography results of the oxalate treatment applied at a 5% concentration are analogous to an organic commercial product indicating its validity as a method for the conservation of carbonate substrates conferring protection to stone materials against acid environments

  15. Efficiency and resistance of the artificial oxalate protection treatment on marble against chemical weathering

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, B. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Pamplona, M. [Centro de Petrologia e Geoquimica do Instituto Superior Tecnico Universidade Tecnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Selvaggi, R. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Miliani, C. [Istituto CNR di Scienze e Tecnologie Molecolari (ISTM), Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy)]. E-mail: miliani@thch.unipg.it; Matteini, M. [CNR Istituto, Conservazione e Valorizzazione dei Beni Culturali (ICVBC), Via Madonna del Piano, 10, Edifico C-50019, Florence (Italy); Sgamellotti, A. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Istituto CNR di Scienze e Tecnologie Molecolari (ISTM), Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Brunetti, B. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy)

    2007-03-15

    The artificial oxalate protection method was analyzed in laboratory experiments in order to achieve an optimum treatment application and concentration giving rise to its most effective protective nature. Spectroscopic (Fourier transform infrared, Micro-Raman and UV-vis colorimetry), microscopic (scanning electron microscope) and contact-angle analyses were carried out to characterize Carrara marble samples before and after application of the treatment to validate its efficiency. The resistance effects against chemical weathering were subsequently observed in a lab-controlled weak acid rain experiment. An acid spray at pH 5.5, representative of normal rain was used to provoke degrade of natural marble, marble treated with the artificial oxalate protective at concentrations of 0.4 and 5% and marble treated with a commercial organic silicon product. Run-off solutions sampled at timely intervals were tested for any change in pH followed by ion chromatography measurements for the presence of calcium ions in solution. The chromatography results of the oxalate treatment applied at a 5% concentration are analogous to an organic commercial product indicating its validity as a method for the conservation of carbonate substrates conferring protection to stone materials against acid environments.

  16. WEATHERING PROCESS IN EOCENE FLYSCH IN REGION OF SPLIT (CROATIA

    Directory of Open Access Journals (Sweden)

    Predrag Miščević

    2001-12-01

    Full Text Available The Eocene flysh in the region of Split (Dalmatia, Croatia is char¬acterized by the presence of layers with different characteristics. It mainly includes thin-layered marls, clayey marls, calcareous marls, clastic lay¬ered limestones, calcarenites and breccias. Those parts that can be de¬scribed as the soft rocks or hard clays by the mechanical means, exposed to weathering reduce the durability within "an engineering time scale". The paper deals with the factors that influence the weathering process. The analyzed weathering is a combination of processes acting simulta¬neously. Most of these processes depend on the change of the water con¬tent, thus the weathering process mainly develops when a material is subjected to the wetting-drying process, On the base of these results form of degradation process is modeled. The weathering process can be main¬ly described as physical weathering combined with chemical weathering on the free surfaces and on the cracks walls. Erosion as a result of weath¬ering, is the dominant geomorphic process on analyzed flysch terrain. According to the analysis, as the most appropriate due to the characteris¬tics the tests are chosen as index properties. Some of these tests are modified in order to adapt them to the determined characteristics of ma¬terials from flysch layers. The correlations between the measured values are used as the basis for the classification proposal of the analyzed mate¬rial, according to its resistance to weathering processes. Roughly, three main groups of samples are recognizable: the first one with carbonate content more then 90% is not weathered at the engineers time scale; the second group with carbonate content from 75% to 90% include samples susceptible to weathering in engineers time scale; the third group with carbonate content less then 75% include samples in which the weather¬ing occurs immediately after the exposition to the weathering factors.

  17. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings.

    Science.gov (United States)

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities' preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities' capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change.

  18. National Weather Service

    Science.gov (United States)

    ... GIS International Weather Cooperative Observers Storm Spotters Tsunami Facts and Figures National Water Center WEATHER SAFETY NOAA Weather Radio StormReady Heat Lightning Hurricanes Thunderstorms Tornadoes Rip Currents Floods Winter Weather ...

  19. Pyrite oxidation under simulated acid rain weathering conditions.

    Science.gov (United States)

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  20. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    Science.gov (United States)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  1. Surface Weather, Signal Service and Weather Bureau

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather, Signal Service and Weather Bureau (SWSSWB) Records primarily created by the United States Army Signal Service from 1819 until the paid and voluntary...

  2. Adverse Weather Evokes Nostalgia.

    Science.gov (United States)

    van Tilburg, Wijnand A P; Sedikides, Constantine; Wildschut, Tim

    2018-03-01

    Four studies examined the link between adverse weather and the palliative role of nostalgia. We proposed and tested that (a) adverse weather evokes nostalgia (Hypothesis 1); (b) adverse weather causes distress, which predicts elevated nostalgia (Hypothesis 2); (c) preventing nostalgia exacerbates weather-induced distress (Hypothesis 3); and (d) weather-evoked nostalgia confers psychological benefits (Hypothesis 4). In Study 1, participants listened to recordings of wind, thunder, rain, and neutral sounds. Adverse weather evoked nostalgia. In Study 2, participants kept a 10-day diary recording weather conditions, distress, and nostalgia. We also obtained meteorological data. Adverse weather perceptions were positively correlated with distress, which predicted higher nostalgia. Also, adverse natural weather was associated with corresponding weather perceptions, which predicted elevated nostalgia. (Results were mixed for rain.) In Study 3, preventing nostalgia (via cognitive load) increased weather-evoked distress. In Study 4, weather-evoked nostalgia was positively associated with psychological benefits. The findings pioneer the relevance of nostalgia as source of comfort in adverse weather.

  3. On the Nature of People's Reaction to Space Weather and Meteorological Weather Changes

    Science.gov (United States)

    Khabarova, O. V.; Dimitrova, S.

    2009-12-01

    Our environment includes many natural and artificial agents affecting any person on the Earth in one way or other. This work is focused on two of them - weather and space weather, which are permanently effective. Their cumulative effect is proved by means of the modeling. It is shown that combination of geomagnetic and solar indices and weather strength parameter (which includes six main meteorological parameters) correlates with health state significantly better (up to R=0.7), than separate environmental parameters do. The typical shape of any health characteristics' time-series during human body reaction to any negative impact represents a curve, well-known in medicine as a General Adaptation Syndrome curve by Hans Selye. We demonstrate this on the base of blood pressure time-series and acupunctural experiment data, averaged by group. The first stage of adaptive stress-reaction (resistance to stress) is sometimes observed 1-2 days before geomagnetic storm onset. The effect of "outstripping reaction to magnetic storm", named Tchizhevsky- Velkhover effect, had been known for many years, but its explanation was obtained recently due to the consideration of the near-Earth space plasma processes. It was shown that lowfrequency variations of the solar wind density on a background of the density growth can stimulate the development of the geomagnetic filed (GMF) variations of the wide frequency range. These variations seem to have "bioeffective frequencies", resonant with own frequencies of body organs and systems. The mechanism of human body reaction is supposed to be a parametrical resonance in low-frequency range (which is determined by the resonance in large-scale organs and systems) and a simple forced resonance in GHz-range of variations (the resonance of micro-objects in the organism such as DNA, cell membranes, blood ions etc.) Given examples of mass-reaction of the objects to ULF-range GMF variations during quiet space weather time prove this hypothesis.

  4. Study on cold weather concreting using low-heat cement

    International Nuclear Information System (INIS)

    Hama, Yukio; Ryu Koto; Tomosawa, Fuminori

    2004-01-01

    In this paper, properties of frost damage at early age and strength development and thermal crack were studied, for purposes of application to the mass concrete of low-heat cement in cold weather, by means of concrete experiments and temperature analysis by finite element method. The experiments and the analysis result showed that the strength for resistance to frost damage at early age was 5N/mm 2 , the concrete strength correction value in terms of curing temperature was calculated approximately, and was effective in the resistance of thermal crack. And then, the application ranges of construction procedures were investigated. (author)

  5. Weather swap as an instrument for weather risk management in wheat production

    Directory of Open Access Journals (Sweden)

    Marković Todor

    2012-01-01

    Full Text Available A special type of weather derivatives are weather forwards and they exists mostly in the form of weather swaps. Hedging effectiveness in wheat production with and without weather swap was analyzed in this paper using stochastic dominance. The results show that the effect of risk reduction is significant using weather swap, but geographical- basis risk and production-related basis risk are important factor that reduce the utility of weather derivatives.

  6. Weathering and landscape evolution

    Science.gov (United States)

    Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.

    2005-04-01

    In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'.

  7. Behaviour of zirconium in the weathering of granulites from Salvador-BA/Brazil

    International Nuclear Information System (INIS)

    Garcia, I.J.C.

    1979-01-01

    The weathering related to mineralogy with chemical analysis of Zr in granulites and their weathered equivalents in Salvador - Brazil, is studied. The mineralogical and petrographical characteristics were correlated with analyses for K,Al and Zr. The fresh rocks are quartz-rich pyroxene granulites, the weathered samples were submitted to bromoform and electromagnetic separations to recovery nearly pure zircon from the fraction coarser than 50 micros. These zircons were classified by color, size and shape. Proportions between different colors of zircon were correlated with petrography of fresh granulites. Studies of zircons resistent to acid attack indicated, that the darker colors were due to iron oxide staining. Chemical analyses for Zr in fresh rocks presented values higher than the values corresponding to zircon observed in thin sections, sugesting the presence of Zr as a trace element in ferromagnesian silicates. In the weathered rocks, Zr values are much higher than those corresponding to recovered zircon. Comparisons of K 2 O, Al 2 O 3 and Zr values in fresh and weathered rocks indicated a loss of K 2 O, and a gain of Zr by weathering. However, maximum losses of K 2 O do not coincide with maximum gains of Zr. (author) [pt

  8. Reconstruction of Historical Weather by Assimilating Old Weather Diary Data

    Science.gov (United States)

    Neluwala, P.; Yoshimura, K.; Toride, K.; Hirano, J.; Ichino, M.; Okazaki, A.

    2017-12-01

    Climate can control not only human life style but also other living beings. It is important to investigate historical climate to understand the current and future climates. Information about daily weather can give a better understanding of past life on earth. Long-term weather influences crop calendar as well as the development of civilizations. Unfortunately, existing reconstructed daily weather data are limited to 1850s due to the availability of instrumental data. The climate data prior to that are derived from proxy materials (e.g., tree-ring width, ice core isotopes, etc.) which are either in annual or decadal scale. However, there are many historical documents which contain information about weather such as personal diaries. In Japan, around 20 diaries in average during the 16th - 19th centuries have been collected and converted into a digitized form. As such, diary data exist in many other countries. This study aims to reconstruct historical daily weather during the 18th and 19th centuries using personal daily diaries which have analogue weather descriptions such as `cloudy' or `sunny'. A recent study has shown the possibility of assimilating coarse weather data using idealized experiments. We further extend this study by assimilating modern weather descriptions similar to diary data in recent periods. The Global Spectral model (GSM) of National Centers for Environmental Prediction (NCEP) is used to reconstruct weather with the Local Ensemble Kalman filter (LETKF). Descriptive data are first converted to model variables such as total cloud cover (TCC), solar radiation and precipitation using empirical relationships. Those variables are then assimilated on a daily basis after adding random errors to consider the uncertainty of actual diary data. The assimilation of downward short wave solar radiation using weather descriptions improves RMSE from 64.3 w/m2 to 33.0 w/m2 and correlation coefficient (R) from 0.5 to 0.8 compared with the case without any

  9. DC resistivity survey for the assessment of groundwater potential in ...

    African Journals Online (AJOL)

    clayey sand/sandy clay weathered basement, partly weathered/fractured basement and fresh basement with resistivity values that ranged from 20 - 360 Ωm, 25 - 850 Ωm, 476 - 979 Ωm and infinity ohm-m respectively, while the thickness values ...

  10. Effects of Additives on Weather-Resistance Properties of Polyurethane Films Exposed to Ultraviolet Radiation and Ozone Atmosphere

    Directory of Open Access Journals (Sweden)

    Haiyan Wang

    2014-01-01

    Full Text Available Three polyurethane films were prepared by adding the antioxidant-1010 and the composite stabilizer to the polyurethane matrix, respectively. The accelerated weathering tests were performed by using self-designed UV/ozone aging test device. The color difference, yellowness index, UV-Vis spectrum, and infrared spectrum were recorded with colorimeter apparatus, UV-Vis spectroscopy, and FT-IR spectroscopy, respectively. The results show that, for the polyurethane film, the composite stabilizer can remarkably decrease UV transmission, the antioxidant-1010 and the composite stabilizer can markedly decrease the photooxidation index and the carbonyl index, respectively, and the antioxidant-1010 can significantly improve the antiyellowing properties after 60 h exposure. With incremental exposure time for the three films, UV-Vis transmission decreases, the photooxidation index, the carbonyl index, color difference, and yellowness index increase gradually. Under current experimental conditions, the order of UV/O3 aging resistance from highness to lowness is as follows: the polyurethane film modified by the antioxidant-1010, the polyurethane film modified by composite stabilizer, and the pure polyurethane film.

  11. Monthly Weather Review

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Supplements to the Monthly Weather Review publication. The Weather Bureau published the Monthly weather review Supplement irregularly from 1914 to 1949. The...

  12. Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations

    Science.gov (United States)

    McNally, B. David; Love, John

    2011-01-01

    The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today

  13. Cold-Weather Sports

    Science.gov (United States)

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  14. Cockpit weather information needs

    Science.gov (United States)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along

  15. Thermal aging and accelerated weathering of HMSPP: structural and morphological studies

    International Nuclear Information System (INIS)

    Oliani, Washington L.; Komatsu, Luiz G.H.; Parra, Duclerc F.

    2015-01-01

    This work focuses of the influence of weathering factors - UV radiation, humidity, and temperature on the structure and morphology polypropylene with high melt strength (HMSPP), also called polypropylene modified by irradiation. The HMSPP was prepared from iPP (isotactic polypropylene) in presence of acetylene at 110 kPa pressure and irradiated with γ of "6"0Co at doses of 5, 12.5 and 20 kGy. It has been observed that HMSPP deteriorates the weathering resistance, the thermal behavior and the long-term stability of HMSPP, beyond substantial color changes. The samples aged were characterized by infrared spectroscopy (FTIR), optical microscopy (OM) and differential scanning calorimetry (DSC). The optical microscopy images on the surface show that thermal aging and artificial weathering proceed by different mechanisms. The effects of elevated temperature aging were evaluated in HMSPPs exposed surface according to the order: HMSPP 20 >12.5 > kGy >iPP, showing intense crack formation in surface exposed due to thermo oxidative degradation. (author)

  16. NASA Space Weather Center Services: Potential for Space Weather Research

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  17. Weathering and weathering rates of natural stone

    Science.gov (United States)

    Winkler, Erhard M.

    1987-06-01

    Physical and chemical weathering were studied as separate processes in the past. Recent research, however, shows that most processes are physicochemical in nature. The rates at which calcite and silica weather by dissolution are dependent on the regional and local climatic environment. The weathering of silicate rocks leaves discolored margins and rinds, a function of the rocks' permeability and of the climatic parameters. Salt action, the greatest disruptive factor, is complex and not yet fully understood in all its phases, but some of the causes of disruption are crystallization pressure, hydration pressure, and hygroscopic attraction of excess moisture. The decay of marble is complex, an interaction between disolution, crack-corrosion, and expansion-contraction cycies triggered by the release of residual stresses. Thin spalls of granites commonly found near the street level of buildings are generally caused by a combination of stress relief and salt action. To study and determine weathering rates of a variety of commercial stones, the National Bureau of Standards erected a Stone Exposure Test Wall in 1948. Of the many types of stone represented, only a few fossiliferous limestones permit a valid measurement of surface reduction in a polluted urban environment.

  18. Weatherization Works: Weatherization Assistance Program Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    The United States demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  19. Powernext weather, benchmark indices for effective weather risk management

    International Nuclear Information System (INIS)

    2006-01-01

    According to the U.S. Department of Energy, an estimated 25% of the GNP is affected by weather-related events. The variations in temperature - even small ones - can also have long-lasting effects on the operational results of a company. Among other, the Energy supply sector is sensitive to weather risks: a milder or harsher than usual winter leads to a decrease or increase of energy consumption. The price of electricity on power trading facilities like Powernext is especially sensitive to odd changes in temperatures. Powernext and Meteo-France (the French meteorological agency) have joined expertise in order to promote the use of weather indices in term of decision making or underlying of hedging tools to energy actors, end users from any other sector of activity and specialists of the weather risk hedging. The Powernext Weather indices are made from information collected by Meteo-France's main observation network according to the norms of international meteorology, in areas carefully selected. The gross data are submitted to a thorough review allowing the correction of abnormalities and the reconstitution of missing data. Each index is fashioned to take into account the economic activity in the various regions of the country as represented by each region's population. This demographic information represents a fair approximation of the weight of the regional economic activity. This document presents the Powernext/Meteo France partnership for the elaboration of efficient weather-related risk management indices. (J.S.)

  20. Socio-Economic Impacts of Space Weather and User Needs for Space Weather Information

    Science.gov (United States)

    Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.

    2017-12-01

    The 2015 National Space Weather Strategy and Space Weather Action Plan (SWAP) details the activities, outcomes, and timelines to build a "Space Weather Ready Nation." NOAA's Space Weather Prediction Center and Abt Associates are working together on two SWAP initiatives: (1) identifying, describing, and quantifying the socio-economic impacts of moderate and severe space weather; and (2) outreach to engineers and operators to better understand user requirements for space weather products and services. Both studies cover four technological sectors (electric power, commercial aviation, satellites, and GNSS users) and rely heavily on industry input. Findings from both studies are essential for decreasing vulnerabilities and enhancing preparedness.

  1. Topographic imprint on chemical weathering in deeply weathered soil-mantled landscapes (southern Brazil)

    Science.gov (United States)

    Vanacker, Veerle; Schoonejans, Jerome; Ameijeiras-Marino, Yolanda; Opfergelt, Sophie; Minella, Jean

    2017-04-01

    The regolith mantle is defined as the thin layer of unconsolidated material overlaying bedrock that contributes to shape the Earth's surface. The development of the regolith mantle in a landscape is the result of in-situ weathering, atmospheric input and downhill transport of weathering products. Bedrock weathering - the physical and chemical transformations of rock to soil - contributes to the vertical development of the regolith layer through downward propagation of the weathering front. Lateral transport of soil particles, aggregates and solutes by diffusive and concentrated particle and solute fluxes result in lateral redistribution of weathering products over the hillslope. In this study, we aim to expand the empirical basis on long-term soil evolution at the landscape scale through a detailed study of soil weathering in subtropical soils. Spatial variability in chemical mass fluxes and weathering intensity were studied along two toposequences with similar climate, lithology and vegetation but different slope morphology. This allowed us to isolate the topographic imprint on chemical weathering and soil development. The toposequences have convexo-concave slope morphology, and eight regolith profiles were analysed involving the flat upslope, steep midslope and flat toeslope part. Our data show a clear topographic imprint on soil development. Along hillslope, the chemical weathering intensity of the regolith profiles increases with distance from the crest. In contrast to the upslope positions, the soils in the basal concavities develop on in-situ and transported regolith. While the chemical weathering extent on the slope convexities (the upslope profiles) is similar for the steep and gentle toposequence, there is a clear difference in the rate of increase of the chemical weathering extent with distance from the crest. The increase of chemical weathering extent along hillslope is highest for the steep toposequence, suggesting that topography enhances soil particle

  2. Weather and emotional state

    Science.gov (United States)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  3. Casebook on application for weather

    International Nuclear Information System (INIS)

    2009-11-01

    This book introduces the excellent cases on application using weather at the industry, research center and public office. It lists the names and application cases in 2008 and 2009, which includes research on decease in risk by weather in the industry by Sam sung institute of safety and environment, service on weather information for people by KT, application with weather information in the flight by Korean air, use on weather information for prevention of disasters by Masan city hall, upgrade for business with weather marketing, center for river forecast in NOAA and the case using weather management for high profit margins.

  4. Properties of early-stage concrete with setting-accelerating tablet in cold weather

    International Nuclear Information System (INIS)

    Ryou, Jae-Suk; Lee, Yong-Soo

    2012-01-01

    Highlights: ► Tablets were used as accelerators, which have a merit in cold weather. ► Tablets are almost not used at all as construction materials (powdered admixtures). ► 0.5 and 1.0% tablets satisfied workability and strength for early-frost prevention. ► It was found that it is possible for the 0.5 and 1.0% tablets in cold weather. - Abstract: Various methods are used at the early stages to control setting-time and strength of concrete, when cold-weather concrete is utilized. Among these methods is one that involves the use of an accelerator. Although economical, accelerators have difficulty securing workability because their early hydration makes them react rapidly. Therefore, how to make a tablet for cold-weather concrete, as with the existing medicines and foods, is discussed in this study, including the following items: mortar setting-time, workability by elapsed time, early strength to assure the development of adequate strength, and freezing–thawing resistance. As a result, both the 0.5 and 1.0% tablets were found to be superior. Thus, workability can be secured, as well as the development of early strength to prevent early frost.

  5. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  6. Effects of weathering on performance of intumescent coatings for structure fire protection in the wildland-urban interface

    Science.gov (United States)

    Bahrani, Babak

    The objective of this study was to investigate the effects of weathering on the performance of intumescent fire-retardant coatings on wooden products. The weathering effects included primary (solar irradiation, moisture, and temperature) and secondary (environmental contaminants) parameters at various time intervals. Wildland urban interface (WUI) fires have been an increasing threat to lives and properties. Existing solutions to mitigate the damages caused by WUI fires include protecting the structures from ignition and minimizing the fire spread from one structure to another. These solutions can be divided into two general categories: active fire protection systems and passive fire protection systems. Passive systems are either using pre-applied wetting agents (water, gel, or foam) or adding an extra layer (composite wraps or coatings). Fire-retardant coating treatment methods can be divided into impregnated (penetrant) and intumescent categories. Intumescent coatings are easy to apply, economical, and have a better appearance in comparison to other passive fire protection methods, and are the main focus of this study. There have been limited studies conducted on the application of intumescent coatings on wooden structures and their performance after long-term weathering exposure. The main concerns of weathering effects are: 1) the reduction of ignition resistance of the coating layer after weathering; and 2) the fire properties of coatings after weathering since coatings might contribute as a combustible fuel and assist the fire growth after ignition. Three intumescent coatings were selected and exposed to natural weathering conditions in three different time intervals. Two types of tests were performed on the specimens: a combustibility test consisted of a bench-scale performance evaluation using a Cone Calorimeter, and a thermal decomposition test using Simultaneous Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) method (also known

  7. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    Science.gov (United States)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  8. Optimizing Placement of Weather Stations: Exploring Objective Functions of Meaningful Combinations of Multiple Weather Variables

    Science.gov (United States)

    Snyder, A.; Dietterich, T.; Selker, J. S.

    2017-12-01

    Many regions of the world lack ground-based weather data due to inadequate or unreliable weather station networks. For example, most countries in Sub-Saharan Africa have unreliable, sparse networks of weather stations. The absence of these data can have consequences on weather forecasting, prediction of severe weather events, agricultural planning, and climate change monitoring. The Trans-African Hydro-Meteorological Observatory (TAHMO.org) project seeks to address these problems by deploying and operating a large network of weather stations throughout Sub-Saharan Africa. To design the TAHMO network, we must determine where to place weather stations within each country. We should consider how we can create accurate spatio-temporal maps of weather data and how to balance the desired accuracy of each weather variable of interest (precipitation, temperature, relative humidity, etc.). We can express this problem as a joint optimization of multiple weather variables, given a fixed number of weather stations. We use reanalysis data as the best representation of the "true" weather patterns that occur in the region of interest. For each possible combination of sites, we interpolate the reanalysis data between selected locations and calculate the mean average error between the reanalysis ("true") data and the interpolated data. In order to formulate our multi-variate optimization problem, we explore different methods of weighting each weather variable in our objective function. These methods include systematic variation of weights to determine which weather variables have the strongest influence on the network design, as well as combinations targeted for specific purposes. For example, we can use computed evapotranspiration as a metric that combines many weather variables in a way that is meaningful for agricultural and hydrological applications. We compare the errors of the weather station networks produced by each optimization problem formulation. We also compare these

  9. Synoptic weather types associated with critical fire weather

    Science.gov (United States)

    Mark J. Schroeder; Monte Glovinsky; Virgil F. Hendricks; Frank C. Hood; Melvin K. Hull; Henry L. Jacobson; Robert Kirkpatrick; Daniel W. Krueger; Lester P. Mallory; Albert G. Oeztel; Robert H. Reese; Leo A. Sergius; Charles E. Syverson

    1964-01-01

    Recognizing that weather is an important factor in the spread of both urban and wildland fires, a study was made of the synoptic weather patterns and types which produce strong winds, low relative humidities, high temperatures, and lack of rainfall--the conditions conducive to rapid fire spread. Such historic fires as the San Francisco fire of 1906, the Berkeley fire...

  10. Weatherization: Wyoming's Hidden Resource; Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Wyoming demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  11. Weather derivatives or how an energy company can hedge its weather risks

    International Nuclear Information System (INIS)

    Tahghighi, A.; Carpentier, Ph.

    2000-01-01

    This paper gives a detailed overview of weather derivatives and explains where this new class of financial products falls. The emergence of weather derivatives came about as a response to a need in the energy sector to hedge this sector's weather risks. This article focuses on the nature of these financial contracts, what they include and how they are priced. This article concludes by stating that energy companies in Europe can no longer afford to remain exposed to weather risks in an increasingly privatized and competitive market

  12. Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering

    Science.gov (United States)

    Parham, Walter E.

    1969-01-01

    Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78°C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O.The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering.

  13. Waste glass weathering

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.

    1994-01-01

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass

  14. Weather Information Processing

    Science.gov (United States)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  15. Wacky Weather

    Science.gov (United States)

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  16. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  17. Internet Weather Source

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (NWS) National Telecommunications Gateway provides weather, hydrologic, and climate forecasts and warnings for the United States, its...

  18. Mariners Weather Log

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mariners Weather Log (MWL) is a publication containing articles, news and information about marine weather events and phenomena, worldwide environmental impact...

  19. Pilot Weather Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviation weather reports relayed from pilots to FAA air traffic controllers or National Weather Service personnel. Elements include sky cover, turbulence, wind...

  20. Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Surface Weather Observation Collection consists primarily of hourly, synoptic, daily, and monthly forms submitted to the archive by the National Weather Service...

  1. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  2. Daily Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is...

  3. Differences in the importance of weather and weather-based decisions among campers in Ontario parks (Canada)

    Science.gov (United States)

    Hewer, Micah J.; Scott, Daniel J.; Gough, William A.

    2017-10-01

    Parks and protected areas represent an important resource for tourism in Canada, in which camping is a common recreational activity. The important relationship between weather and climate with recreation and tourism has been widely acknowledged within the academic literature. Howbeit, the need for activity-specific assessments has been identified as an on-going need for future research in the field of tourism climatology. Furthermore, very little is known about the interrelationships between personal characteristics and socio-demographics with weather preferences and behavioural thresholds. This study uses a stated climate preferences approach (survey responses) to explore differences in the importance of weather and related weather-based decisions among summer campers in Ontario parks. Statistically significant differences were found among campers for each of the four dependent variables tested in this study. Physically active campers placed greater importance on weather but were still more tolerant of adverse weather conditions. Older campers placed greater importance on weather. Campers travelling shorter distances placed greater importance on weather and were more likely to leave the park early due to adverse weather. Campers staying for longer periods of time were less likely to leave early due to weather and were willing to endure longer durations of adverse weather conditions. Beginner campers placed greater importance on weather, were more likely to leave early due to weather and recorded lower temporal weather thresholds. The results of this study contribute to the study of tourism climatology by furthering understanding of how personal characteristics such as gender, age, activity selection, trip duration, distance travelled, travel experience and life cycles affect weather preferences and decisions, focusing this time on recreational camping in a park tourism context.

  4. NASA Aviation Safety Program Weather Accident Prevention/weather Information Communications (WINCOMM)

    Science.gov (United States)

    Feinberg, Arthur; Tauss, James; Chomos, Gerald (Technical Monitor)

    2002-01-01

    Weather is a contributing factor in approximately 25-30 percent of general aviation accidents. The lack of timely, accurate and usable weather information to the general aviation pilot in the cockpit to enhance pilot situational awareness and improve pilot judgment remains a major impediment to improving aviation safety. NASA Glenn Research Center commissioned this 120 day weather datalink market survey to assess the technologies, infrastructure, products, and services of commercial avionics systems being marketed to the general aviation community to address these longstanding safety concerns. A market survey of companies providing or proposing to provide graphical weather information to the general aviation cockpit was conducted. Fifteen commercial companies were surveyed. These systems are characterized and evaluated in this report by availability, end-user pricing/cost, system constraints/limits and technical specifications. An analysis of market survey results and an evaluation of product offerings were made. In addition, recommendations to NASA for additional research and technology development investment have been made as a result of this survey to accelerate deployment of cockpit weather information systems for enhancing aviation safety.

  5. Atmospheric Corrosion Behavior and Mechanism of a Ni-Advanced Weathering Steel in Simulated Tropical Marine Environment

    Science.gov (United States)

    Wu, Wei; Zeng, Zhongping; Cheng, Xuequn; Li, Xiaogang; Liu, Bo

    2017-12-01

    Corrosion behavior of Ni-advanced weathering steel, as well as carbon steel and conventional weathering steel, in a simulated tropical marine atmosphere was studied by field exposure and indoor simulation tests. Meanwhile, morphology and composition of corrosion products formed on the exposed steels were surveyed through scanning electron microscopy, energy-dispersive x-ray spectroscopy and x-ray diffraction. Results indicated that the additive Ni in weathering steel played an important role during the corrosion process, which took part in the formation of corrosion products, enriched in the inner rust layer and promoted the transformation from loose γ-FeOOH to dense α-FeOOH. As a result, the main aggressive ion, i.e., Cl-, was effectively separated in the outer rust layer which leads to the lowest corrosion rate among these tested steels. Thus, the resistance of Ni-advanced weathering steel to atmospheric corrosion was significantly improved in a simulated tropical marine environment.

  6. Weatherization Makes Headlines in Connecticut: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Connecticut demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  7. Weatherization Makes Headlines in Connecticut: Weatherization Assistance Close-Up Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    D& R International

    2001-10-10

    Connecticut demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  8. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  9. New York Signals Weatherization Savings: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    New York demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  10. New York Signals Weatherization Savings: Weatherization Assistance Close-Up Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    D& R International

    2001-10-10

    New York demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  11. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    Science.gov (United States)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  12. Interpretation of 2D Resistivity with Engineering Characterisation of Subsurface Exploration in Nusajaya Johor, Malaysia

    Science.gov (United States)

    Akip Tan, S. N. Mohd; Dan, M. F. Md; Edy Tonnizam, M.; Saad, R.; Madun, A.; Hazreek, Z. A. M.

    2018-04-01

    2-D resistivity technique and pole-dipole array with spacing of 2 m electrode and total spacing of 80 m were adopted to map and characterize the shallow subsurface in a sedimentary area at Nusajaya, Johor. Geological field mapping and laboratory testing were conducted to determine weathering grades. Res2Dinv software was used to generate the inversion model resistivity. The result shows sandstone contains iron mineral (30-1000ohm-m) and weathered sandstone (500-1000 ohm-m). The lowest layer represents sandstone and siltstone with the highest range from 1500 through 5000 ohm-m. The weathering grade IV and V of sandstone in the actual profile indicates the range from 30 to 1000 ohm-m, whereas grade II and III in ground mass matched the higest range. Overall, the increase of weathering grade influenced both the physical properties and strength of rocks.

  13. The effect of weather and its changes on emotional state - individual characteristics that make us vulnerable

    Science.gov (United States)

    Spasova, Z.

    2011-03-01

    Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychological and emotional level has been made. Emotions affect the bio tone, working ability, and concentration; hence their significance in various domains of economic life such as health care, education, transportation, and tourism. The present pilot study was conducted in Sofia, Bulgaria over a period of eight months, using five psychological methods: Eysenck Personality Questionnaire, State-Trait Anxiety Inventory, Test for Self-assessment of the emotional state, Test for evaluation of moods and Test ''Self-confidence-Activity-Mood''. The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions in order to include a maximal number of meteorological elements in the analysis. Sixteen weather types are defined depending on the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were also considered. The results obtained by t-test showed that the different categories of weather led to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effects on human emotions - but only when a transition to the cloudy weather or weather type, classified as ''unfavorable'', has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension ''neuroticism'', has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more ''resistant'' to the weather influence on their emotions, while those who are emotionally unstable have a stronger dependence on the impacts of weather.

  14. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G

    2011-01-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  15. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    Science.gov (United States)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  16. Space Weather Services of Korea

    Science.gov (United States)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.

    2016-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  17. Weather Information Communications (WINCOMM) Project: Dissemination of Weather Information for the Reduction of Aviation Weather-Related Accident Causal Factors

    Science.gov (United States)

    Jarrell, Michael; Tanger, Thomas

    2004-01-01

    Weather Information Communications (WINCOMM) is part of the Weather Accident Prevention (WxAP) Project, which is part of the NASA's Aviation Safety and Security Program. The goals of WINCOMM are to facilitate the exchange of tactical and strategic weather information between air and ground. This viewgraph presentation provides information on data link decision factors, architectures, validation goals. WINCOMM is capable of providing en-route communication air-to-ground, ground-to-air, and air-to-air, even on international or intercontinental flights. The presentation also includes information on the capacity, cost, and development of data links.

  18. The Effect of Methylation and Anti-Oxidant on Discoloration of Weathered Wood Plastic Composites

    Directory of Open Access Journals (Sweden)

    Peivand Darabi

    2011-01-01

    Full Text Available As the outdoor application of Wood Plastic Composites (WPCs become more widespread, the resistance of these products against weathering, particularly ultraviolet (UV light becomes more important. When WPCs are exposed to outdoor ultraviolet light, rain, snow and atmosphere pollution, they will be degraded which can be indicated by color fade. To investigate the effects of methylation and Anti-Oxidant separately and together on discoloration of weathered wood plastic composites, composites of poplar wood flour and high density polyethylene.Were made according to the ASTMD 2565, samples were placed in Atlas Xenon apparatus for 250 and 2000 hours. Discoloration and FT-IR spectra of the samples were measured and compared. The results have shown that methylation in short term and long term can relatively reduce the discoloration of weathered samples and also in short term can hinder the photodegradation. FT-IR spectra showed that, in long term, neither of the treatments could protect lignin from irradiation within wood flour. But methylation limited the depth of penetration of weathering. The Antioxidant did not have an influence on color change in a long period of time, but was able to relatively decrease it in short term.

  19. Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization – Human Capacity Development

    Energy Technology Data Exchange (ETDEWEB)

    Wiita, Joanne

    2013-07-30

    The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members’ homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paid OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.

  20. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    Science.gov (United States)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  1. Integration of Weather Avoidance and Traffic Separation

    Science.gov (United States)

    Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.

    2011-01-01

    This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction

  2. The scope of the Weatherization Assistance Program: The weatherized population and the resource base

    Energy Technology Data Exchange (ETDEWEB)

    Power, M.; Eisenberg, J.F.; Michels, E. (Economic Opportunity Research Inst., Washington, DC (United States)); Witherspoon, M.J. (National Association for State Community Service Programs, Washington, DC (United States)); Brown, M.A. (Oak Ridge National Lab., TN (United States))

    1992-05-01

    This study is one of five parts of the US Department of Energy's national evaluation of its Weatherization Assistance Program (WAP). It has three major goals: (1) to enumerate the size and sources of investment in low-income weatherization; (2) to provide a count of the number of low-income units weatherized by all weatherization programs and characterized the type and tenure of those homes; and (3) to document the extent to which the DOE/WAP funding has been expanded though use of external resources.

  3. The scope of the Weatherization Assistance Program: The weatherized population and the resource base

    Energy Technology Data Exchange (ETDEWEB)

    Power, M.; Eisenberg, J.F.; Michels, E. [Economic Opportunity Research Inst., Washington, DC (United States); Witherspoon, M.J. [National Association for State Community Service Programs, Washington, DC (United States); Brown, M.A. [Oak Ridge National Lab., TN (United States)

    1992-05-01

    This study is one of five parts of the US Department of Energy`s national evaluation of its Weatherization Assistance Program (WAP). It has three major goals: (1) to enumerate the size and sources of investment in low-income weatherization; (2) to provide a count of the number of low-income units weatherized by all weatherization programs and characterized the type and tenure of those homes; and (3) to document the extent to which the DOE/WAP funding has been expanded though use of external resources.

  4. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker

    2007-01-01

    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  5. Fabulous Weather Day

    Science.gov (United States)

    Marshall, Candice; Mogil, H. Michael

    2007-01-01

    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…

  6. Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database

    Science.gov (United States)

    Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.

    2016-01-01

    Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.

  7. Weatherization is a Hit in Michigan: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Michigan demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  8. Weatherization Builds on Delaware's Innovative Past: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Delaware demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  9. Training Early Career Space Weather Researchers and other Space Weather Professionals at the CISM Space Weather Summer School

    Science.gov (United States)

    Gross, N. A.; Hughes, W.

    2011-12-01

    This talk will outline the organization of a summer school designed to introduce young professions to a sub-discipline of geophysics. Through out the 10 year life time of the Center for Integrated Space Weather Modeling (CISM) the CISM Team has offered a two week summer school that introduces new graduate students and other interested professional to the fundamentals of space weather. The curriculum covers basic concepts in space physics, the hazards of space weather, and the utility of computer models of the space environment. Graduate students attend from both inside and outside CISM, from all the sub-disciplines involved in space weather (solar, heliosphere, geomagnetic, and aeronomy), and from across the nation and around the world. In addition, between 1/4 and 1/3 of the participants each year are professionals involved in space weather in some way, such as: forecasters from NOAA and the Air Force, Air Force satellite program directors, NASA specialists involved in astronaut radiation safety, and representatives from industries affected by space weather. The summer school has adopted modern pedagogy that has been used successfully at the undergraduate level. A typical daily schedule involves three morning lectures followed by an afternoon lab session. During the morning lectures, student interaction is encouraged using "Timeout to Think" questions and peer instruction, along with question cards for students to ask follow up questions. During the afternoon labs students, working in groups of four, answer thought provoking questions using results from simulations and observation data from a variety of source. Through the interactions with each other and the instructors, as well as social interactions during the two weeks, students network and form bonds that will last them through out their careers. We believe that this summer school can be used as a model for summer schools in a wide variety of disciplines.

  10. Powernext weather, benchmark indices for effective weather risk management; Powernext Weather, des indices de reference pour gerer le risque meteo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    According to the U.S. Department of Energy, an estimated 25% of the GNP is affected by weather-related events. The variations in temperature - even small ones - can also have long-lasting effects on the operational results of a company. Among other, the Energy supply sector is sensitive to weather risks: a milder or harsher than usual winter leads to a decrease or increase of energy consumption. The price of electricity on power trading facilities like Powernext is especially sensitive to odd changes in temperatures. Powernext and Meteo-France (the French meteorological agency) have joined expertise in order to promote the use of weather indices in term of decision making or underlying of hedging tools to energy actors, end users from any other sector of activity and specialists of the weather risk hedging. The Powernext Weather indices are made from information collected by Meteo-France's main observation network according to the norms of international meteorology, in areas carefully selected. The gross data are submitted to a thorough review allowing the correction of abnormalities and the reconstitution of missing data. Each index is fashioned to take into account the economic activity in the various regions of the country as represented by each region's population. This demographic information represents a fair approximation of the weight of the regional economic activity. This document presents the Powernext/Meteo France partnership for the elaboration of efficient weather-related risk management indices. (J.S.)

  11. Weatherability and Leach Resistance of Wood Impregnated with Nano-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Nami Kartal S

    2010-01-01

    Full Text Available Abstract Southern pine specimens vacuum-treated with nano-zinc oxide (nano-ZnO dispersions were evaluated for leach resistance and UV protection. Virtually, no leaching occurred in any of the nano-ZnO–treated specimens in a laboratory leach test, even at the highest retention of 13 kg/m3. However, specimens treated with high concentrations of nano-ZnO showed 58–65% chemical depletion after 12 months of outdoor exposure. Protection from UV damage after 12 months exposure is visibly obvious on both exposed and unexposed surfaces compared to untreated controls. Graying was markedly diminished, although checking occurred in all specimens. Nano-zinc oxide treatment at a concentration of 2.5% or greater provided substantial resistance to water absorption following 12 months of outdoor exposure compared to untreated and unweathered southern pine. We conclude that nano-zinc oxide can be utilized in new wood preservative formulations to impart resistance to leaching, water absorption and UV damage of wood.

  12. Climate Prediction - NOAA's National Weather Service

    Science.gov (United States)

    Statistical Models... MOS Prod GFS-LAMP Prod Climate Past Weather Predictions Weather Safety Weather Radio National Weather Service on FaceBook NWS on Facebook NWS Director Home > Climate > Predictions Climate Prediction Long range forecasts across the U.S. Climate Prediction Web Sites Climate Prediction

  13. Graphical tools for TV weather presentation

    Science.gov (United States)

    Najman, M.

    2010-09-01

    Contemporary meteorology and its media presentation faces in my opinion following key tasks: - Delivering the meteorological information to the end user/spectator in understandable and modern fashion, which follows industry standard of video output (HD, 16:9) - Besides weather icons show also the outputs of numerical weather prediction models, climatological data, satellite and radar images, observed weather as actual as possible. - Does not compromise the accuracy of presented data. - Ability to prepare and adjust the weather show according to actual synoptic situtation. - Ability to refocus and completely adjust the weather show to actual extreme weather events. - Ground map resolution weather data presentation need to be at least 20 m/pixel to be able to follow the numerical weather prediction model resolution. - Ability to switch between different numerical weather prediction models each day, each show or even in the middle of one weather show. - The graphical weather software need to be flexible and fast. The graphical changes nee to be implementable and airable within minutes before the show or even live. These tasks are so demanding and the usual original approach of custom graphics could not deal with it. It was not able to change the show every day, the shows were static and identical day after day. To change the content of the weather show daily was costly and most of the time impossible with the usual approach. The development in this area is fast though and there are several different options for weather predicting organisations such as national meteorological offices and private meteorological companies to solve this problem. What are the ways to solve it? What are the limitations and advantages of contemporary graphical tools for meteorologists? All these questions will be answered.

  14. Road weather information for travelers : improving road weather messages and dissemination methods.

    Science.gov (United States)

    2010-01-01

    The Federal Highway Administration (FHWA) Road Weather Management Program (RWMP) recently completed a study titled Human Factors Analysis of Road Weather Advisory and Control Information (Publication No. FHWAJPO- 10-053). The goal of the study was to...

  15. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  16. Natural Weathering Exposure Station

    Data.gov (United States)

    Federal Laboratory Consortium — The Corps of Engineers' Treat Island Natural Weathering Exposure Station is a long-term natural weathering facility used to study concrete durability. Located on the...

  17. [Advance in the study of the powdered weathering profile of sandstone on China Yungang Grottoes based on VIS/NIR hyperspectral imaging].

    Science.gov (United States)

    Zhou, Xiao; Gao, Feng; Zhang, Ai-wu; Zhou, Ke-chao

    2012-03-01

    Yungang Grottoes were built in the mid-5th century A. D., and named as a UNESCO World Heritage site in 2001. Most of the grottoes were built on the feldspathic quartz sandstones. They were seriously damaged due to the environmental impact. The main form of the weathering is the powdered weathering. The weathering conditions are generally characterized by electrical sounding, penetration resistance, molecular spectroscopy, etc. However, although these methods can give good results about the weathering conditions for a specified sample or site, they are not suitable for providing a global profile of the weathering conditions. The present paper provides a method for effectively and roundly assessing the overall powdered weathering conditions of the Yungang Grottoes based on hyperspectral imaging. Powdered weathering could change the structure and granularity of the sandstone, and thus change the spectral reflectance of the sandstone surface. Based on the hyperspectral data collected from 400 nm to 1 000 nm and normalized by log residuals method, the powdered weathering conditions of the sandstones were classified into strong weathering and weak weathering. The weathering profile was also mapped in the Envi platform. The mapping images were verified using the measured hyperspectal data of the columns in front of the 9th and 10th grottoes as the examples. The mapping images were substantially fitted to the real observations, showing that hyperspectral imaging can be used to estimate the overall powdered weathering of the sandstones.

  18. Pilot's Automated Weather Support System (PAWSS) concepts demonstration project. Phase 1: Pilot's weather information requirements and implications for weather data systems design

    Science.gov (United States)

    Crabill, Norman L.; Dash, Ernie R.

    1991-01-01

    The weather information requirements for pilots and the deficiencies of the current aviation weather support system in meeting these requirements are defined. As the amount of data available to pilots increases significantly in the near future, expert system technology will be needed to assist pilots in assimilating that information. Some other desirable characteristics of an automation-assisted system for weather data acquisition, dissemination, and assimilation are also described.

  19. Weather forecast

    CERN Document Server

    Courtier, P

    1994-02-07

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  20. Surface Weather Observations Hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard hourly observations taken at Weather Bureau/National Weather Service offices and airports throughout the United States. Hourly observations began during the...

  1. Land Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — METAR is the international standard code format for hourly surface weather observations. The acronym roughly translates from French as Aviation Routine Weather...

  2. Sun, weather, and climate

    International Nuclear Information System (INIS)

    Herman, J.R.; Goldberg, R.A.

    1985-01-01

    The general field of sun-weather/climate relationships that is, apparent weather and climate responses to solar activity is introduced and theoretical and experimental suggestions for further research to identify and investigate the unknown casual mechanisms are provided. Topics of discussion include: (1) solar-related correlation factors and energy sources; (2) long-term climate trends; (3) short-term meteorological correlations; (4) miscellaneous obscuring influences; (5) physical processes and mechanisms; (6) recapitulation of sun-weather relationships; and (7) guidelines for experiments. 300 references

  3. "Share weather" : Design and evaluation of a new concept for sharing weather information

    OpenAIRE

    Elevant, Katarina

    2013-01-01

    Already centuries ago, humans had observed the weather in their everyday lives, seeking ways to understand, comprehend, and predict it. Until the present day, weather has had tremendous impacts on our lives and with climate change human civilizations as well. With new media technologies weather constitutes a part of the information services used by many residents of modern cities, people and businesses worldwide. The rise of Web 2.0, a cyberspace where individuals may connect and interact und...

  4. Space Weather in Operation

    Data.gov (United States)

    National Aeronautics and Space Administration — The “Space Weather in Operations” effort will provide on-demand and near-real time space weather event information to the Data Access Toolkit (DAT), which is the...

  5. Weather Augmented Risk Determination (WARD) System

    Science.gov (United States)

    Niknejad, M.; Mazdiyasni, O.; Momtaz, F.; AghaKouchak, A.

    2017-12-01

    Extreme climatic events have direct and indirect impacts on society, economy and the environment. Based on the United States Bureau of Economic Analysis (BEA) data, over one third of the U.S. GDP can be considered as weather-sensitive involving some degree of weather risk. This expands from a local scale concrete foundation construction to large scale transportation systems. Extreme and unexpected weather conditions have always been considered as one of the probable risks to human health, productivity and activities. The construction industry is a large sector of the economy, and is also greatly influenced by weather-related risks including work stoppage and low labor productivity. Identification and quantification of these risks, and providing mitigation of their effects are always the concerns of construction project managers. In addition to severe weather conditions' destructive effects, seasonal changes in weather conditions can also have negative impacts on human health. Work stoppage and reduced labor productivity can be caused by precipitation, wind, temperature, relative humidity and other weather conditions. Historical and project-specific weather information can improve better project management and mitigation planning, and ultimately reduce the risk of weather-related conditions. This paper proposes new software for project-specific user-defined data analysis that offers (a) probability of work stoppage and the estimated project length considering weather conditions; (b) information on reduced labor productivity and its impacts on project duration; and (c) probabilistic information on the project timeline based on both weather-related work stoppage and labor productivity. The software (WARD System) is designed such that it can be integrated into the already available project management tools. While the system and presented application focuses on the construction industry, the developed software is general and can be used for any application that involves

  6. Late Cenozoic deep weathering patterns on the Fennoscandian shield in northern Finland: A window on ice sheet bed conditions at the onset of Northern Hemisphere glaciation

    Science.gov (United States)

    Hall, Adrian M.; Sarala, Pertti; Ebert, Karin

    2015-10-01

    The nature of the regolith that existed on the shields of the Northern Hemisphere at the onset of ice sheet glaciation is poorly constrained. In this paper, we provide the first detailed account of an exceptionally preserved, deeply weathered late Neogene landscape in the ice sheet divide zone in northern Finland. We mine data sets of drilling and pitting records gathered by the Geological Survey of Finland to reconstruct regional preglacial deep weathering patterns within a GIS framework. Using a large geochemical data set, we give standardised descriptions of saprolite geochemistry using a variant of the Weathering Index of Parker (WIP) as a proxy to assess the intensity of weathering. We also focus on mineral prospects and mines with dense pit and borehole data coverage in order to identify links between geology, topography, and weathering. Geology is closely linked to topography on the preglacial shield landscape of northern Finland and both factors influence weathering patterns. Upstanding, resistant granulite, granite, gabbro, metabasalt, and quartzite rocks were associated with fresh rock outcrops, including tors, or with thin (floors developed along mineralised shear and fracture zones, weathering penetrated locally to depths of > 50 m and included intensely weathered kaolinitic clays with WIPfines values below 1000. Late Neogene weathering profiles were varied in character. Tripartite clay-gruss-saprock profiles occur only in limited areas. Bipartite gruss-saprock profiles were widespread, with saprock thicknesses of > 10 m. Weathering profiles included two discontinuities in texture, materials and resistance to erosion, between saprolite and saprock and between saprock and rock. Limited core recovery when drilling below the soil base in mixed rocks of the Tana Belt indicates that weathering locally penetrated deep below upper fresh rock layers. Such deep-seated weathered bands in rock represent a third set of discontinuities. Incipient weathering and

  7. Salt-enhanced chemical weathering of building materials and bacterial mineralization of calcium carbonate as a treatment

    Science.gov (United States)

    Schiro, M.; Ruiz-Agudo, E.; Jroundi, F.; Gonzalez-Muñoz, M. T.; Rodriguez-Navarro, C.

    2012-04-01

    Salt weathering is an important mechanism contributing to the degradation and loss of stone building materials. In addition to the physical weathering resulting from crystallization pressure, the presence of salts in solution greatly enhances the chemical weathering potential of pore waters. Flow through experiments quantify the dissolution rates of calcite and quartz grains (63-125 micrometer diameter) when subjected to 1.0 ionic strength solutions of MgSO4, MgCl, Na2SO4 or NaCl. Results indicate that the identity of the cation is the primary control over the dissolution rate of both calcite and quartz substrates, with salt-enhanced dissolution occurring most rapidly in Mg2+ bearing solutions. It has been observed that weathering rates of rocks in nature, as well as building stones, are slowed down by naturally occurring or artificially produced patinas. These tend to be bacterially produced, durable mineralized coatings that lend some degree of protection to the underlying stone surface [1]. Our research shows that bacterially produced carbonate coatings can be quite effective at reducing chemical weathering of stone by soluble salts. The calcite-producing-bacteria used in this study were isolated from stone monuments in Granada, Spain [2] and cultivated in an organic-rich culture medium on a variety of artificial and natural substrates (including limestone, marble, sandstone, quartz, calcite single crystals, glass cover-slips, and sintered porous glass). Scanning electron microscopy (FESEM) was used to image bacterial calcite growth and biofilm formation. In-situ atomic force microscopy (AFM) enabled calculation of dissolution rates of untreated and bacterially treated surfaces. 2D-XRD showed the mineralogy and crystallographic orientation of bacterial calcium carbonate. Results indicate that bacterially produced calcite crystals form a coherent, mechanically resistant surface layer in perfect crystallographic continuity with the calcite substrate (self

  8. Correlation of Resistivity Value with Geotechnical N-Value of Sedimentary Area in Nusajaya, Johor, Malaysia

    Science.gov (United States)

    Akip Tan, S. N. Mohd; Edy Tonnizam, M.; Saad, R.; Dan, M. F. Md; Nordiana, M. M.; Hazreek, Z. A. M.; Madun, A.

    2018-04-01

    Electrical resistivity survey and the geotechnical SPT blow counts (N-value) were carried out simultaneously on the tropically weathered sedimentary rock mass for an excavation project at Nusajaya, Johor, Malaysia. This study aims to determine subsurface profile by using 2D-resistivity methods and correlate with N-value derived from boring works. Four boreholes were investigated in five survey lines that revealed the site is underlain by moderately to completely weathered sandstone, clay, silt and shale. Data analysis from 2D-resistivity image shows that zones with high resistivity value generally have high N-value, and vice versa. Five zones have inversed the proportional relation between N-value and resistivity Ωm value due to different types of soil lithology. It indicates that 2D-resistivity is significance to detect bodies of anomalous materials or estimating the depth of bedrock. As a conclusion, the integration of geophysical and geotechnical analysis provides a promise approach to understand some relationship concerning the subsurface subsurface ground through the combination of 2D-resistivity and N-value.

  9. Taking Weatherization to New Heights in Colorado: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Colorado demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  10. Weatherization is a Natural Choice for Montana: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Montana demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  11. Weatherization is a Natural Choice for Montana: Weatherization Assistance Close-Up Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    D& R International

    2001-10-10

    Montana demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  12. Weatherization Sails on Maryland's Legacy of Innovation: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Maryland demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  13. Weatherization Plays a Starring Role in Mississippi: Weatherization Assistance Close-Up Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    D& R International

    2001-10-10

    Mississippi demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  14. Characterization of the rust formed on weathering steel exposed to Qinghai salt lake atmosphere

    International Nuclear Information System (INIS)

    Li, Q.X.; Wang, Z.Y.; Han, W.; Han, E.H.

    2008-01-01

    The product formed on weathering steel exposed to salt lake atmosphere for 12 months was investigated by X-ray diffraction (XRD), infrared transmission spectroscopy (IRS), scanning electron microscopy (SEM), electron probe micro analyzer (EPMA) and electrochemical techniques. The rust was mainly composed of β-FeOOH, Fe 8 (O,OH) 16 Cl 1.3 and a little γ-FeOOH. Amorphous δ-FeOOH was only on skyward surface. The rust layer suppressed anodic reaction and facilitated the cathodic reaction. The very small value of rust resistance R r in this work indicated that the rust had poor protective ability. Cl element was rich in the whole rust layer and played an important role in accelerating the corrosion of weathering steel in salt lake atmosphere

  15. Weatherization Savings Takes Root in New Mexico: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    New Mexico demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  16. AWE: Aviation Weather Data Visualization Environment

    Science.gov (United States)

    Spirkovska, Lilly; Lodha, Suresh K.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents, In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visualizing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment AWE), presents graphical displays of meteorological observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and design are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful.

  17. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  18. Assessing Weather Curiosity in University Students

    Science.gov (United States)

    Stewart, A. E.

    2017-12-01

    This research focuses upon measuring an individual's level of trait curiosity about the weather using the Weather Curiosity Scale (WCS). The measure consists of 15 self-report items that describe weather preferences and/or behaviors that people may perform more or less frequently. The author reports on two initial studies of the WCS that have used the responses of 710 undergraduate students from a large university in the southeastern United States. In the first study, factor analysis of the 15 items indicated that the measure was unidimensional - suggesting that its items singularly assessed weather curiosity. The WCS also was internally consistent as evidenced by an acceptable Cronbach's alpha, a = .81). The second study sought to identify other personality variables that may relate with the WCS scores and thus illuminate the nature of weather curiosity. Several clusters of personality variables appear to underlie the curiosity levels people exhibited, the first of which related to perceptual curiosity (r = .59). Being curious about sights, sounds, smells, and textures generally related somewhat to curiosity about weather. Two measures of trait sensitivity to environmental stimulation, the Highly Sensitive Person Scale (r = .47) and the Orientation Sensitivity Scale of the Adult Temperament Questionnaire (r = .43), also predicted weather curiosity levels. Finally, possessing extraverted personality traits (r = .34) and an intense style of experiencing one's emotions (r = .33) related to weather curiosity. How can this measure be used in K-12 or post-secondary settings to further climate literacy? First, the WCS can identify students with natural curiosities about weather and climate so these students may be given more challenging instruction that will leverage their natural interests. Second, high-WCS students may function as weather and climate ambassadors during inquiry-based learning activities and thus help other students who are not as oriented to the

  19. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    Science.gov (United States)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  20. New Technologies for Weather Accident Prevention

    Science.gov (United States)

    Stough, H. Paul, III; Watson, James F., Jr.; Daniels, Taumi S.; Martzaklis, Konstantinos S.; Jarrell, Michael A.; Bogue, Rodney K.

    2005-01-01

    Weather is a causal factor in thirty percent of all aviation accidents. Many of these accidents are due to a lack of weather situation awareness by pilots in flight. Improving the strategic and tactical weather information available and its presentation to pilots in flight can enhance weather situation awareness and enable avoidance of adverse conditions. This paper presents technologies for airborne detection, dissemination and display of weather information developed by the National Aeronautics and Space Administration (NASA) in partnership with the Federal Aviation Administration (FAA), National Oceanic and Atmospheric Administration (NOAA), industry and the research community. These technologies, currently in the initial stages of implementation by industry, will provide more precise and timely knowledge of the weather and enable pilots in flight to make decisions that result in safer and more efficient operations.

  1. Insurance against weather risk : use of heating degree-days from non-local stations for weather derivatives

    NARCIS (Netherlands)

    Asseldonk, van M.A.P.M.

    2003-01-01

    Weather derivatives enable policy-holders to safeguard themselves against extreme weather conditions. The effectiveness and the efficiency of the risk transfer is determined by the spatial risk basis, which is the stochastic dependency of the local weather outcome being insured and the outcome of

  2. Can the Weather Affect My Child's Asthma?

    Science.gov (United States)

    ... English Español Can the Weather Affect My Child's Asthma? KidsHealth / For Parents / Can the Weather Affect My ... Asthma? Print Can the Weather Affect My Child's Asthma? Yes. Weather conditions can bring on asthma symptoms. ...

  3. NWS Weather Fatality, Injury and Damage Statistics

    Science.gov (United States)

    ... Weather Awareness Floods, Wind Chill, Tornadoes, Heat... Education Weather Terms, Teachers, Statistics government web resources and services. Natural Hazard Statistics Statistics U.S. Summaries 78-Year List of Severe Weather Fatalities Preliminary Hazardous Weather Statistics for 2017 Now

  4. ... AND HERE COMES THE WEATHER - Austrian TV and radio weather news in the eye of the public

    Science.gov (United States)

    Keul, A.; Holzer, A. M.; Wostal, T.

    2010-09-01

    Media weather reports as the main avenue of meteorological and climatological information to the general public have always been in the focus of critical investigation. Former research found that although weather reports are high-interest topics, the amount of information recalled by non-experts is rather low, and criticized this. A pilot study (Keul et al., 2009) by the Salzburg University in cooperation with ORF, the Austrian Broadcasting Corporation, used historic radio files on a fair-weather and a storm situation. It identified the importance of intelligible wording of the weather forecast messages for lay people. Without quality control, weather information can stimulate rumours, false comfort or false alarms. More qualitative and experimental research, also on TV weather, seems justified. This need for further research was addressed by a second and larger field experiment in the spring of 2010. The survey took place in Salzburg City, Austria, with a quota sample of about 90 lay persons. This time TV and radio weather reports were used and a more realistic listening and viewing situation was created by presenting the latest weather forecasts of the given day to the test persons in the very next hours after originally broadcasting them. It asked lay people what they find important in the weather reports and what they remember for their actual next-day use. Reports of a fairweather prognosis were compared with a warning condition. The weather media mix of the users was explored. A second part of the study was a questionnaire which tested the understanding of typical figures of speech used in weather forecasts or even meteorological terms, which might also be important for fully understanding the severe weather warnings. This leads to quantitative and qualitative analysis from which the most important and unexpected results are presented. Short presentation times (1.5 to 2 minutes) make Austrian radio and TV weather reports a narrow compromise between general

  5. A Severe Weather Laboratory Exercise for an Introductory Weather and Climate Class Using Active Learning Techniques

    Science.gov (United States)

    Grundstein, Andrew; Durkee, Joshua; Frye, John; Andersen, Theresa; Lieberman, Jordan

    2011-01-01

    This paper describes a new severe weather laboratory exercise for an Introductory Weather and Climate class, appropriate for first and second year college students (including nonscience majors), that incorporates inquiry-based learning techniques. In the lab, students play the role of meteorologists making forecasts for severe weather. The…

  6. Engaging Earth- and Environmental-Science Undergraduates Through Weather Discussions and an eLearning Weather Forecasting Contest

    Science.gov (United States)

    Schultz, David M.; Anderson, Stuart; Seo-Zindy, Ryo

    2013-06-01

    For students who major in meteorology, engaging in weather forecasting can motivate learning, develop critical-thinking skills, improve their written communication, and yield better forecasts. Whether such advances apply to students who are not meteorology majors has been less demonstrated. To test this idea, a weather discussion and an eLearning weather forecasting contest were devised for a meteorology course taken by third-year undergraduate earth- and environmental-science students. The discussion consisted of using the recent, present, and future weather to amplify the topics of the week's lectures. Then, students forecasted the next day's high temperature and the probability of precipitation for Woodford, the closest official observing site to Manchester, UK. The contest ran for 10 weeks, and the students received credit for participation. The top students at the end of the contest received bonus points on their final grade. A Web-based forecast contest application was developed to register the students, receive their forecasts, and calculate weekly standings. Students who were successful in the forecast contest were not necessarily those who achieved the highest scores on the tests, demonstrating that the contest was possibly testing different skills than traditional learning. Student evaluations indicate that the weather discussion and contest were reasonably successful in engaging students to learn about the weather outside of the classroom, synthesize their knowledge from the lectures, and improve their practical understanding of the weather. Therefore, students taking a meteorology class, but not majoring in meteorology, can derive academic benefits from weather discussions and forecast contests. Nevertheless, student evaluations also indicate that better integration of the lectures, weather discussions, and the forecasting contests is necessary.

  7. Regional-seasonal weather forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  8. Extremely Severe Space Weather and Geomagnetically Induced Currents in Regions with Locally Heterogeneous Ground Resistivity

    Science.gov (United States)

    Fujita, Shigeru; Kataoka, Ryuho; Pulkkinen, Antti; Watari, Shinichi

    2016-01-01

    Large geomagnetically induced currents (GICs) triggered by extreme space weather events are now regarded as one of the serious natural threats to the modern electrified society. The risk is described in detail in High-Impact, Low-Frequency Event Risk, A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the US Department of Energy's November 2009 Workshop, June 2010. For example, the March 13-14,1989 storm caused a large-scale blackout affecting about 6 million people in Quebec, Canada, and resulting in substantial economic losses in Canada and the USA (Bolduc 2002). Therefore, European and North American nations have invested in GIC research such as the Solar Shield project in the USA (Pulkkinen et al. 2009, 2015a). In 2015, the Japanese government (Ministry of Economy, Trade and Industry, METI) acknowledged the importance of GIC research in Japan. After reviewing the serious damages caused by the 2011 Tohoku-Oki earthquake, METI recognized the potential risk to the electric power grid posed by extreme space weather. During extreme events, GICs can be concerning even in mid- and low-latitude countries and have become a global issue.

  9. Weather Derivatives – Origin, Types and Application

    OpenAIRE

    Piotr Binkowski

    2008-01-01

    The number of companies that are exposed to the revenues loss risk caused by weather variability is still increasing. The businesses that are mostly exposed to weather risk are following: energy, agriculture, constructions and transport. That situation has initiated dynamic growth of weather derivatives markets as well as the awareness of the weather risk among the market participants. Presently, the weather derivatives markets evaluate rapidly in all the mature economies: USA, Asia and Europ...

  10. Weatherization in Arkansas: A Gem of a Program: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Arkansas demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  11. Weather Derivatives – Origin, Types and Application

    Directory of Open Access Journals (Sweden)

    Piotr Binkowski

    2008-01-01

    Full Text Available The number of companies that are exposed to the revenues loss risk caused by weather variability is still increasing. The businesses that are mostly exposed to weather risk are following: energy, agriculture, constructions and transport. That situation has initiated dynamic growth of weather derivatives markets as well as the awareness of the weather risk among the market participants. Presently, the weather derivatives markets evaluate rapidly in all the mature economies: USA, Asia and Europe. Constructing weather derivatives relies on qu- antifying climate factors in the form of indexes, what is quite simple task, more difficultly can be gathering precise historical data of required climate factors. Taking into consideration so far development of derivatives especially the financial derivatives based on different types of indexes financial market has at disposal wide range of different types of proved derivatives (futures, forward, options, swaps, which can be successfully utilised on the weather-driven markets both for hedging weather risk and speculating.

  12. KSC Weather and Research

    Science.gov (United States)

    Maier, Launa; Huddleston, Lisa; Smith, Kristin

    2016-01-01

    This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.

  13. Weather and road capacity

    DEFF Research Database (Denmark)

    Jensen, Thomas Christian

    2014-01-01

    The paper presents estimations of the effect of bad weather on the observed speed on a Danish highway section; Køge Bugt Motorvejen. The paper concludes that weather, primarily precipitation and snow, has a clear negative effect on speed when the road is not in hypercongestion mode. Furthermore...

  14. Tales of future weather

    NARCIS (Netherlands)

    Hazeleger, W.; Van den Hurk, B.J.J.M.; Min, E.; Van Oldenborgh, G.J.; Petersen, A.C.; Stainforth, D.A.; Vasileiadou, E.; Smith, L.A.

    2015-01-01

    Society is vulnerable to extreme weather events and, by extension, to human impacts on future events. As climate changes weather patterns will change. The search is on for more effective methodologies to aid decision-makers both in mitigation to avoid climate change and in adaptation to changes. The

  15. The Weathering Study of PC/ASA Alloy For Automotive Exterior Applications

    Directory of Open Access Journals (Sweden)

    Sinan Öztürk

    2017-10-01

    Full Text Available Polycarbonates (PC are used in automotive industry due to high physical and mechanical properties like high impact resistance and ductility. Polycarbonates are blended with ABS (Acrylonitrile-Butadiene-Styrene and ASA (Acrylonitrile-Styrene-Acrylate terpolymers for interior and exterior applications of automotive components to achieve good physical and mechanical properties. Other reason for choosing such alloys for interior applications is the IZOD impact resistance requirement higher than 40kJ/m2. Recently, grades of PC/ASA with UV stabilized are developed for non-painted exterior applications. The aim of our study is to investigate whether new developed PC/ASA could be chosen for exterior applications of automotive industry. In this study, the samples are prepared from injection molding and the weathering performance of PC/ASA was tested by a weather-o-meter for 1500h at a total of 1890 kJ/m2 at 340nm with a cut-off filter at λ<290nm. The results are evaluated by FT-IR, DSC, TGA and SEM. It has been observed that UV degradation of PC/ASA leads to several major changes in its IR spectrum like broad bands occurred in the hydroxyl region around 3300 cm-1, and carbonyl stretching region increased around 1728 cm-1. The main degradations were based on photo-oxidation and photo-Fries rearrangement of PC. In our study, the photo-oxidation was followed by the color shift to yellowing of the polymer.

  16. 49 CFR 195.224 - Welding: Weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  17. The Spirit of North Dakota: Alive in Weatherization; Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    North Dakota demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  18. A Tribute to Weatherization Solutions in South Dakota: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    South Dakota demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  19. Integrating Sphere-based Weathering Device

    Data.gov (United States)

    Federal Laboratory Consortium — Description:In the artificial ultraviolet (UV) weathering of materials, a need exists for weathering devices that can uniformly illuminate test specimens with a high...

  20. Accelerated laboratory weathering of acrylic lens materials

    Science.gov (United States)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  1. Slope failures evaluation and landslides investigation using 2-D resistivity method

    Directory of Open Access Journals (Sweden)

    M.M. Nordiana

    2018-06-01

    Full Text Available Slope failure is a complex phenomenon that may caused to landslides. Buildings and infrastructure such as transportation facilities and pipelines located within the boundaries of a landslide can be damaged or destroyed. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. Six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed. The data were processed using Res2Dinv and surfer10 software to evaluate the subsurface characteristics. The 2-D resistivity results show that the subsurface consist of two main zones. The first zone was alluvium or highly weathered with resistivity value of 100–1000 Ω m and depth of >30 m. This zone consists of saturated area with resistivity value of 1–100 Ω m and boulders with resistivity value of 1200–7000 Ω m. The second zone with resistivity value of >7000 Ω m was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. This will cause to low strength of soil, debris flow and movement of earth. On the basis of the case examples described, 2-D resistivity method is categorized into desirable and useful method in determination of slope failure and future assessments. Keywords: Slope failure, Landslides, 2-D resistivity, Saturated, Boulders

  2. Determination of slope failure using 2-D resistivity method

    Science.gov (United States)

    Muztaza, Nordiana Mohd; Saad, Rosli; Ismail, Nur Azwin; Bery, Andy Anderson

    2017-07-01

    Landslides and slope failure may give negative economic effects including the cost to repair structures, loss of property value and medical costs in the event of injury. To avoid landslide, slope failure and disturbance of the ecosystem, good and detailed planning must be done when developing hilly area. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. The study on landslide and slope failure was conducted at Site A and Site B, Selangor using 2-D resistivity method. The implications of the anticipated ground conditions as well as the field observation of the actual conditions are discussed. Nine 2-D resistivity survey lines were conducted in Site A and six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed in Site B. The data were processed using Res2Dinv and Surfer10 software to evaluate the subsurface characteristics. 2-D resistivity results from both locations show that the study areas consist of two main zones. The first zone is alluvium or highly weathered with the resistivity of 100-1000 Ωm at 20-70 m depth. This zone consists of saturated area (1-100 Ωm) and boulders with resistivity value of 1200-3000 Ωm. The second zone with resistivity values of > 3000 Ωm was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. Based on the results obtained from the study findings, it can be concluded that 2-D resistivity method is useful method in determination of slope failure.

  3. 36 CFR 910.71 - Weather protection.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Weather protection. 910.71 Section 910.71 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL... DEVELOPMENT AREA Glossary of Terms § 910.71 Weather protection. Weather protection means a seasonal or...

  4. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    Science.gov (United States)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  5. North America Synoptic Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Series of Synoptic Weather Maps. Maps contains a surface analysis comprised of plotted weather station observations, isobars indicating low and high-pressure...

  6. Weather Risk Management in Agriculture

    Directory of Open Access Journals (Sweden)

    Martina Bobriková

    2016-01-01

    Full Text Available The paper focuses on valuation of a weather derivative with payoffs depending on temperature. We use historical data from the weather station in the Slovak town Košice to obtain unique prices of option contracts in an incomplete market. Numerical examples of prices of some contracts are presented, using the Burn analysis. We provide an example of how a weather contract can be designed to hedge the financial risk of a suboptimal temperature condition. The comparative comparison of the selected option hedging strategies has shown the best results for the producers in agricultural industries who hedges against an unfavourable weather conditions. The results of analysis proved that by buying put option or call option, the farmer establishes the highest payoff in the case of temperature decrease or increase. The Long Straddle Strategy is the most expensive but is available to the farmer who hedges against a high volatility in temperature movement. We conclude with the findings that weather derivatives could be useful tools to diminish the financial losses for agricultural industries highly dependent for temperature.

  7. Geography and Weather: Mountain Meterology.

    Science.gov (United States)

    Mogil, H. Michael; Collins, H. Thomas

    1990-01-01

    Provided are 26 ideas to help children explore the effects of mountains on the weather. Weather conditions in Nepal and Colorado are considered separately. Nine additional sources of information are listed. (CW)

  8. Using Artificial Intelligence to Inform Pilots of Weather

    Science.gov (United States)

    Spirkovska, Lilly; Lodha, Suresh K.

    2006-01-01

    An automated system to assist a General Aviation (GA) pilot in improving situational awareness of weather in flight is now undergoing development. This development is prompted by the observation that most fatal GA accidents are attributable to loss of weather awareness. Loss of weather awareness, in turn, has been attributed to the difficulty of interpreting traditional preflight weather briefings and the difficulty of both obtaining and interpreting traditional in-flight weather briefings. The developmental automated system not only improves weather awareness but also substantially reduces the time a pilot must spend in acquiring and maintaining weather awareness.

  9. Effects of Weather on Tourism and its Moderation

    Science.gov (United States)

    Park, J. H.; Kim, S.; Lee, D. K.

    2016-12-01

    Tourism is weather sensitive industry (Gómez Martín, 2005). As climate change has been intensifying, the concerns about negative effects of weather on tourism also have been increasing. This study attempted to find ways that mitigate the negative effects from weather on tourism, by analyzing a path of the effects of weather on intention to revisit and its moderation. The data of the study were collected by a self-recording online questionnaire survey of South Korean domestic tourists during August 2015, and 2,412 samples were gathered. A path model of effects of weather on intention to revisit that including moderating effects from physical attraction satisfaction and service satisfaction was ran. Season was controlled in the path model. The model fit was adequate (CMIN/DF=2.372(p=.000), CFI=.974, RMSEA=.024, SRMR=0.040), and the Model Comparison, which assumes that the base model to be correct with season constrained model, showed that there was a seasonal differences in the model ( DF=24, CMIN=32.430, P=.117). By the analysis, it was figured out that weather and weather expectation affected weather satisfaction, and the weather satisfaction affected intention to revisit (spring/fall: .167**, summer: .104**, and winter: .114**). Meanwhile physical attraction satisfaction (.200**), and service satisfaction (.210**) of tourism positively moderated weather satisfaction in summer, and weather satisfaction positively moderated physical attraction (.238**) satisfaction and service satisfaction (.339**). In other words, in summer, dissatisfaction from hot weather was moderated by satisfaction from physical attractions and services, and in spring/fall, comfort weather conditions promoted tourists to accept tourism experience and be satisfied from attractions and services positively. Based on the result, it was expected that if industries focus on offering the good attractions and services based on weather conditions, there would be positive effects to alleviate tourists

  10. Designing a Weather Station

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  11. Shatter resistance in sesame

    International Nuclear Information System (INIS)

    Langham, D.R.

    2001-01-01

    The majority of the world's sesame (probably over 99%) is shattering, and most of the harvest is manual. In a non-mechanized environment the last thing that farmers want is seed retention (''hold''). They want the seed to fall out as easily as possible. The amount of shattering desired is dependent on the method of harvest. By 1944 the first stage of mechanization was initiated. The indehiscent mutant found in 1943 showed in succeeding generations that it was controlled monogenically, and the homozygous recessive (id/id) gave indehiscence. Unfortunately, the id allele had pleiotropic effects including cupped leaves, twisted stems, short seed pods, semi-sterility, and low yield. Improvements in shatter resistance are relative within a specific program. For example, Sesaco has improved its shatter resistance each year, and still for the USA methods of harvest, further improvements are necessary to allow for better retention in adverse weather. This paper presents a methodology for quantifying shatter resistance so researchers can compare levels of shatter resistance between programs. (author)

  12. Prevalence of weather sensitivity in Germany and Canada

    Science.gov (United States)

    Mackensen, Sylvia; Hoeppe, Peter; Maarouf, Abdel; Tourigny, Pierre; Nowak, Dennis

    2005-01-01

    Several studies have shown that atmospheric conditions can affect well-being or disease, and that some individuals seem to be more sensitive to weather than others. Since epidemiological data on the prevalence of weather-related health effects are lacking, two representative weather sensitivity (WS) surveys were conducted independently in Germany and Canada. The objectives of this paper are: (1) to identify the prevalence of WS in Germany and Canada, (2) to describe weather-related symptoms and the corresponding weather conditions, and (3) to compare the findings in the two countries. In Germany 1,064 citizens (age >16 years) were interviewed in January 2001, and in Canada 1,506 persons (age >18 years) were interviewed in January 1994. The results showed that 19.2% of the German population thought that weather affected their health “to a strong degree,” 35.3% that weather had “some influence on their health” (sum of both = 54.5% weather sensitive), whereas the remaining 45.5% did not consider that weather had an effect on their health status. In Canada 61% of the respondents considered themselves to be sensitive to the weather. The highest prevalence of WS (high + some influence) in Germans was found in the age group older than 60 years (68%), which was almost identical in the Canadian population (69%). The highest frequencies of weather-related symptoms were reported in Germany for stormy weather (30%) and when it became colder (29%). In Canada mainly cold weather (46%), dampness (21%) and rain (20%) were considered to affect health more than other weather types. The most frequent symptoms reported in Germany were headache/migraine (61%), lethargy (47%), sleep disturbances (46%), fatigue (42%), joint pain (40%), irritation (31%), depression (27%), vertigo (26%), concentration problems (26%) and scar pain (23%). Canadian weather-sensitive persons reported colds (29%), psychological effects (28%) and painful joints, muscles or arthritis (10%). In Germany 32

  13. Five case studies of multifamily weatherization programs

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, L; Wilson, T.; Lewis, G. [Synertech Systems Corp. (United States); MacDonald, M. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    The multifamily case studies that are the subject of this report were conducted to provide a better understanding of the approach taken by program operators in weatherizing large buildings. Because of significant variations in building construction and energy systems across the country, five states were selected based on their high level of multifamily weatherization. This report summarizes findings from case studies conducted by multifamily weatherization operations in five cities. The case studies were conducted between January and November 1994. Each of the case studies involved extensive interviews with the staff of weatherization subgrantees conducting multifamily weatherization, the inspection of 4 to 12 buildings weatherized between 1991 and 1993, and the analysis of savings and costs. The case studies focused on innovative techniques which appear to work well.

  14. Severe Weather Data Inventory (SWDI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. SWDI enables a user to search through a variety...

  15. Laboratory weathering of combusted oil shale

    International Nuclear Information System (INIS)

    Essington, M.E.

    1991-01-01

    The objective of this study was to examine the mineralogy and leachate chemistry of three combusted oil shales (two Green River Formation and one New Albany) in a laboratory weathering environment using the humidity cell technique. The mineralogy of the combusted western oil shales (Green River Formation) is process dependent. In general, processing resulted in the formation of anhydrite, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and anhydrite dissolve and ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite dissolves, gypsum and calcite precipitate, and the leachates are dominated by Mg, SO 4 , and CO 3 . Leachate pH is rapidly reduced to between 8.5 and 9 with leaching. The combusted eastern oil shale (New Albany) is composed of quartz, illite, hematite, and orthoclase. Weathering results in the precipitation of gypsum. The combusted eastern oil shale did not display a potential to produce acid drainage. Leachate chemistry was dominated by Ca and SO 4 . Element concentrations continually decreased with weathering. IN a western disposal environment receiving minimal atmospheric precipitation, spent oil shale will remain in the initial stages of weathering, and highly alkaline and saline conditions will dominate leachate chemistry. In an eastern disposal environment, soluble salts will be rapidly removed from the spent oil shale to potentially affect the surrounding environment

  16. Portable Weather Applications for General Aviation Pilots.

    Science.gov (United States)

    Ahlstrom, Ulf; Ohneiser, Oliver; Caddigan, Eamon

    2016-09-01

    The objective of this study was to examine the potential benefits and impact on pilot behavior from the use of portable weather applications. Seventy general aviation (GA) pilots participated in the study. Each pilot was randomly assigned to an experimental or a control group and flew a simulated single-engine GA aircraft, initially under visual meteorological conditions (VMC). The experimental group was equipped with a portable weather application during flight. We recorded measures for weather situation awareness (WSA), decision making, cognitive engagement, and distance from the aircraft to hazardous weather. We found positive effects from the use of the portable weather application, with an increased WSA for the experimental group, which resulted in credibly larger route deviations and credibly greater distances to hazardous weather (≥30 dBZ cells) compared with the control group. Nevertheless, both groups flew less than 20 statute miles from hazardous weather cells, thus failing to follow current weather-avoidance guidelines. We also found a credibly higher cognitive engagement (prefrontal oxygenation levels) for the experimental group, possibly reflecting increased flight planning and decision making on the part of the pilots. Overall, the study outcome supports our hypothesis that portable weather displays can be used without degrading pilot performance on safety-related flight tasks, actions, and decisions as measured within the constraints of the present study. However, it also shows that an increased WSA does not automatically translate to enhanced flight behavior. The study outcome contributes to our knowledge of the effect of portable weather applications on pilot behavior and decision making. © 2016, Human Factors and Ergonomics Society.

  17. Internet-accessible real-time weather information system

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.; Desa, E.; Mehra, P.; Desa, E.; Gouveia, A.D.

    An internet-accessible real-time weather information system has been developed. This system provides real-time accessibility to weather information from a multitude of spatially distributed weather stations. The Internet connectivity also offers...

  18. Directable weathering of concave rock using curvature estimation.

    Science.gov (United States)

    Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew

    2010-01-01

    We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.

  19. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    classification and use a range of different techniques and input data. The first method uses external information from multispectral satellite images to detect clutter. The information in the visual, near-infrared, and infrared parts of the spectrum can be used to distinguish between cloud and cloud-free areas......Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...

  20. Artificial weathering of granite

    Directory of Open Access Journals (Sweden)

    Silva Hermo, B.

    2008-06-01

    Full Text Available This article summarizes a series of artificial weathering tests run on granite designed to: simulate the action of weathering agents on buildings and identify the underlying mechanisms, determine the salt resistance of different types of rock; evaluate consolidation and water-repellent treatment durability; and confirm hypotheses about the origin of salts such as gypsum that are often found in granite buildings. Salt crystallization tests were also conducted, using sodium chloride, sodium sulphate, calcium sulphate and seawater solutions. One of these tests was conducted in a chamber specifically designed to simulate salt spray weathering and another in an SO2 chamber to ascertain whether granite is subject to sulphation. The test results are analyzed and discussed, along with the shortcomings of each type of trial as a method for simulating the decay observed in monuments. The effect of factors such as wet-dry conditions, type of saline solution and the position of the planes of weakness on the type of decay is also addressed.En este trabajo se hace una síntesis de varios ensayos de alteración artificial realizados con rocas graníticas. Estos ensayos tenían distintos objetivos: reproducir las formas de alteración encontradas en los edificios para llegar a conocer los mecanismos que las generan, determinar la resistencia de las diferentes rocas a la acción de las sales, evaluar la durabilidad de tratamientos de consolidación e hidrofugación y constatar hipótesis acerca del origen de algunas sales, como el yeso, que aparecen frecuentemente en edificios graníticos. En los ensayos de cristalización de sales se utilizaron disoluciones de cloruro de sodio, sulfato de sodio, sulfato de calcio y agua de mar. Uno de estos ensayos se llevó a cabo en una cámara especialmente diseñada para reproducir la alteración por aerosol marino y otro se realizó en una cámara de SO2, con el objeto de comprobar si en rocas graníticas se puede producir

  1. Geochemical mass-balance to study the relative weathering rates of various formations in a complex watershed of lower Himalayas

    Science.gov (United States)

    Chattopadhyay, Pallavi; Kar, Swagat; Chouhan, Ramesh

    2017-04-01

    Weathering of rocks is a major process and believed to have the potential to alter Earth's surface. Aglar, a watershed in Garhwal Lesser Himalayas is identified and various formations of this complex geology are studied to understand the weathering process. A stream passes through the fault that divides the watershed into two slopes which have different lithotectonic units. Paligar and Belgar are the two main tributaries of Aglar stream flowing along the slopes respectively and joining at the valley near Thatyur village, India. Rocks like quartzite and limestone are generally hard, massive and resistant to weathering. However, sedimentary rocks are vulnerable to weathering and erosion. On the other hand, phyllites and schists are characterized by flaky minerals which weather quickly and promote instability . Aglar has all of them. The weathering processes are studied first using the hydrochemistry of Aglar river through major cations (Ca2+, Mg2+, Na+, K+) and major anions (SO42-, HCO-3, Cl-, NO3-). The discharges at various sampling points are calculated using area - velocity method. The basic idea in describing the discharge of material in a river is to estimate the mass of the substances transported through a cross section of the river per second. Dominance of Ca2+, Mg2+ and HCO-3 indicates that carbonate weathering is the major chemical weathering process near Belgar river. Paligar river has lower conductivity values compared to Belgar river which illustrates lower ionic concentrations. Mass-balance calculations are found often skewed and suggest the role of subsurface groundwater flow to explain the uncharacterized load. Southern side of the watershed with higher percentage of forest cover is found to have higher chemical weathering rates compared to the other slope having relatively lesser vegetation. These higher rates demonstrate the higher stream discharge load in that slope.

  2. The greenhouse effect and extreme weather

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern; Kvamstoe, Nils Gunnar

    2002-01-01

    The article asserts that an anthropogenic global warming is occurring. This greenhouse effect is expected to cause more occurrences of extreme weather. It is extremely difficult, however, to relate specific weather catastrophes to global warming with certainty, since such extreme weather conditions are rare historically. The subject is controversial. The article also discusses the public debate and the risk of floods

  3. Extreme weather events and infectious disease outbreaks.

    Science.gov (United States)

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  4. Carbon dioxide efficiency of terrestrial enhanced weathering.

    Science.gov (United States)

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-06

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.

  5. Cost-Loss Analysis of Ensemble Solar Wind Forecasting: Space Weather Use of Terrestrial Weather Tools

    Science.gov (United States)

    Henley, E. M.; Pope, E. C. D.

    2017-12-01

    This commentary concerns recent work on solar wind forecasting by Owens and Riley (2017). The approach taken makes effective use of tools commonly used in terrestrial weather—notably, via use of a simple model—generation of an "ensemble" forecast, and application of a "cost-loss" analysis to the resulting probabilistic information, to explore the benefit of this forecast to users with different risk appetites. This commentary aims to highlight these useful techniques to the wider space weather audience and to briefly discuss the general context of application of terrestrial weather approaches to space weather.

  6. Federal Aviation Administration weather program to improve aviation safety

    Science.gov (United States)

    Wedan, R. W.

    1983-01-01

    The implementation of the National Airspace System (NAS) will improve safety services to aviation. These services include collision avoidance, improved landing systems and better weather data acquisition and dissemination. The program to improve the quality of weather information includes the following: Radar Remote Weather Display System; Flight Service Automation System; Automatic Weather Observation System; Center Weather Processor, and Next Generation Weather Radar Development.

  7. Weatherization Works--Summary of Findings from the Retrospective Evaluation of the U.S. DOE's Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carroll, David [APPRISE, Inc., Princeton, NJ (United States); Pigg, Scott [Energy Center of Wisconsin, Madison, WI (United States); Blasnik, Michael [Blasnik & Associates, Roslindale, MA (United States); Dalhoff, Greg [Dalhoff & Associates, Verona, WI (United States); Berger, Jacqueline [APPRISE, Inc., Princeton, NJ (United States); Rose, Erin M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Beth A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eisenberg, Joel Fred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ucar, Ferit [APPRISE, Inc., Princeton, NJ (United States); Bensch, Ingo [Energy Center of Wisconsin, Madison, WI (United States); Cowan, Claire [Energy Center of Wisconsin, Madison, WI (United States)

    2015-10-01

    This report presents a summary of the studies and analyses that compose the retrospective evaluation of the U.S. Department of Energy s low-income Weatherization Assistance Program (WAP). WAP provides grants to Grantees (i.e., states) that then provide grants to Subgrantees (i.e., local weatherization agencies) to weatherize low-income homes. This evaluation focused on the WAP Program Year 2008. The retrospective evaluation produced twenty separate reports, including this summary. Four separate reports address the energy savings, energy cost savings, and cost effectiveness of WAP across four housing types: single family, mobile home, small multifamily, and large multifamily. Other reports address the environmental emissions, macroeconomic, and health and household-related benefits attributable to WAP, and characterize the program, its recipients, and those eligible for the program. Major field studies are also summarized, including a major indoor air quality study and a follow-up ventilation study, an in-depth in-field assessment of weatherization work and quality, and a study that assesses reasons for variations in energy savings across homes. Results of surveys of weatherization staff, occupants, occupants satisfaction with weatherization services provided, and weatherization trainees are summarized. Lastly, this report summarizes a set of fifteen case studies of high-performing and unique local weatherization agencies.

  8. Study on investigation and evaluation methods of deep seated sedimentary rocks. Chemical weathering, pore water squeezing and relationships of physical properties of sedimentary rocks

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Suzuki, Koichi

    2006-01-01

    Chemical weathering, porewater squeezing and physical properties for the sedimentary rocks were examined. Chemical weathering potential of rocks was described by the sulfur as a acceleration factor of weathering and carbonate contents as a neutralization factor of it. The carbonate contents in the rocks were measured accurately by the gas pressure measurement method. Pore water squeezing method was applied for the semi-hard sedimentary rocks (Opalinusclay). The chemical change of extracted pore water under high pressure conditions was estimated. Physical property of sedimentary rocks have relationship among the porosity and permeability and resistivity coefficient in the same rock types. It is possible to estimate the water permeability from the geophysical tests. (author)

  9. Impact of Tactical and Strategic Weather Avoidance on Separation Assurance

    Science.gov (United States)

    Refai, Mohamad S.; Windhorst, Robert

    2011-01-01

    The ability to keep flights away from weather hazards while maintaining aircraft-to-aircraft separation is critically important. The Advanced Airspace Concept is an automation concept that implements a ground-based strategic conflict resolution algorithm for management of aircraft separation. The impact of dynamic and uncertain weather avoidance on this concept is investigated. A strategic weather rerouting system is integrated with the Advanced Airspace Concept, which also provides a tactical weather avoidance algorithm, in a fast time simulation of the Air Transportation System. Strategic weather rerouting is used to plan routes around weather in the 20 minute to two-hour time horizon. To address forecast uncertainty, flight routes are revised at 15 minute intervals. Tactical weather avoidance is used for short term trajectory adjustments (30 minute planning horizon) that are updated every minute to address any weather conflicts (instances where aircraft are predicted to pass through weather cells) that are left unresolved by strategic weather rerouting. The fast time simulation is used to assess the impact of tactical weather avoidance on the performance of automated conflict resolution as well as the impact of strategic weather rerouting on both conflict resolution and tactical weather avoidance. The results demonstrate that both tactical weather avoidance and strategic weather rerouting increase the algorithm complexity required to find aircraft conflict resolutions. Results also demonstrate that tactical weather avoidance is prone to higher airborne delay than strategic weather rerouting. Adding strategic weather rerouting to tactical weather avoidance reduces total airborne delays for the reported scenario by 18% and reduces the number of remaining weather violations by 13%. Finally, two features are identified that have proven important for strategic weather rerouting to realize these benefits; namely, the ability to revise reroutes and the use of maneuvers

  10. Using Music to Communicate Weather and Climate

    Science.gov (United States)

    Williams, P.; Aplin, K. L.; Brown, S.

    2017-12-01

    Depictions of weather and other atmospheric phenomena are common throughout the arts. Unlike in the visual arts, however, there has been little study of meteorological inspiration in music. This presentation will discuss the frequencies with which different weather types have been depicted in music over time, covering the period from the seventeenth century to the present day. Beginning with classical orchestral music, we find that composers were generally influenced by their own country's climate in the type of weather they chose to represent. Depictions of weather vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. Pieces depicting stormy weather tend to be in minor keys, whereas pieces depicting fair weather tend to be in major keys. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Moving onto modern popular music, we have identified and analyzed over 750 songs referring to different weather types. We find that lyrical references to bad weather peaked in songs written during the stormy 1950s and 60s, when there were many hurricanes, before declining in the relatively calm 1970s and 80s. This finding again suggests a causal link between song-writers' meteorological environments and compositional outputs. Composers and song-writers have a unique ability to emotionally connect their listeners to the environment. This ability could be exploited to communicate environmental science to a broader audience. Our work provides a catalogue of cultural responses to weather before (and during the early stages of) climate change. The effects of global warming may influence musical expression in future, in which case our work will provide a baseline for comparison.

  11. Chromium isotope fractionation during oxidative weathering of a modern basaltic weathering profile

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Døssing, Lasse Nørbye; Frei, Robert

    Chromium can be used as a tracer of redox sensitive environmental processes. In soils Cr (III) is inert, immobile and resides predominantly in minerals, clays and oxides. Cr (VI) is toxic, soluble and mobile and is usually lost from the soil to local run off. Chromium isotopes have been shown...... to fractionate under both reducing and oxidizing conditions [1, 2]. Recent studies on d53Cr isotopes in laterite soils show that oxidative weathering of Cr-bearing rocks is accompanied by an isotopic fractionation, where by the lighter isotopes are retained in the residual soil and the heavier isotope...... is enriched in local runoff [1]. This study aims to quantify the stable Cr isotope composition of two modern basaltic weathering profiles, to help better understand the processes that oxidize inert Cr (III) to toxic Cr (VI). We sampled basaltic weathering profiles and associated river waters from areas of two...

  12. Space Weather Research: Indian perspective

    Science.gov (United States)

    Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.

    2016-12-01

    Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.

  13. Space Weather and Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  14. Seafloor weathering buffering climate: numerical experiments

    Science.gov (United States)

    Farahat, N. X.; Archer, D. E.; Abbot, D. S.

    2013-12-01

    Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching

  15. A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data

    International Nuclear Information System (INIS)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-01-01

    Highlights: • Weather has a significant impact on both the peak electricity demand and energy use. • Weather impact varies with building type, building efficiency level, and location. • Simulated results using TMY3 weather data can under or over estimate those of AMY. • It is crucial to assess performance of buildings using long-term actual weather data. • Findings enable building stakeholders to make better decisions on weather impact. - Abstract: Buildings consume more than one third of the world’s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980–2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: (1) annual weather variation has a greater impact on the peak electricity demand than it does

  16. 44 CFR 15.3 - Access to Mt. Weather.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Access to Mt. Weather. 15.3... HOMELAND SECURITY GENERAL CONDUCT AT THE MT. WEATHER EMERGENCY ASSISTANCE CENTER AND AT THE NATIONAL EMERGENCY TRAINING CENTER § 15.3 Access to Mt. Weather. Mt. Weather contains classified material and areas...

  17. The Challenge of Weather Prediction

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. The Challenge of Weather Prediction Old and Modern Ways of Weather Forecasting. B N Goswami. Series Article Volume 2 Issue 3 March 1997 pp 8-15. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Why 1D electrical resistivity techniques can result in inaccurate siting of boreholes in hard rock aquifers and why electrical resistivity tomography must be preferred: the example of Benin, West Africa

    Science.gov (United States)

    Alle, Iboukoun Christian; Descloitres, Marc; Vouillamoz, Jean-Michel; Yalo, Nicaise; Lawson, Fabrice Messan Amen; Adihou, Akonfa Consolas

    2018-03-01

    Hard rock aquifers are of particular importance for supplying people with drinking water in Africa and in the world. Although the common use of one-dimensional (1D) electrical resistivity techniques to locate drilling site, the failure rate of boreholes is usually high. For instance, about 40% of boreholes drilled in hard rock aquifers in Benin are unsuccessful. This study investigates why the current use of 1D techniques (e.g. electrical profiling and electrical sounding) can result in inaccurate siting of boreholes, and checks the interest and the limitations of the use of two-dimensional (2D) Electrical Resistivity Tomography (ERT). Geophysical numerical modeling and comprehensive 1D and 2D resistivity surveys were carried out in hard rock aquifers in Benin. The experiments carried out at 7 sites located in different hard rock groups confirmed the results of the numerical modeling: the current use of 1D techniques can frequently leads to inaccurate siting, and ERT better reveals hydrogeological targets such as thick weathered zone (e.g. stratiform fractured layer and preferential weathering associated with subvertical fractured zone). Moreover, a cost analysis demonstrates that the use of ERT can save money at the scale of a drilling programme if ERT improves the success rate by only 5% as compared to the success rate obtained with 1D techniques. Finally, this study demonstrates, using the example of Benin, that the use of electrical resistivity profiling and sounding for siting boreholes in weathered hard rocks of western Africa should be discarded and replaced by the use of ERT technique, more efficient.

  19. Weatherization Beyond the Numbers: Case Studies of Fifteen High-performing Weatherization Agencies - Conducted May 2011 through July 2012

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rose, Erin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Beth A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    The report presents fifteen individual case studies of high-performing and unique local weatherization agencies. This research was one component of the retrospective evaluation of the U.S. Department of Energy s Weatherization Assistance Program. The agencies were chosen to represent a range of contexts and approaches to weatherization. For example, the set of agencies includes a mix of urban and rural agencies, those that mainly use in-house crews to weatherize homes versus those that use contractor crews, and a mix of locations, from very cold climates to moderate to hot humid and dry climates. The case studies were mainly based on site visits to the agencies that encompassed interviews with program directors, weatherization crews, and recipients of weatherization. This information was supplemented by secondary materials. The cases document the diversity of contexts and challenges faced by the agencies and how they operate on a day-by-day basis. The cases also high common themes found throughout the agencies, such as their focus on mission and respect for their clients.

  20. 49 CFR 192.231 - Protection from weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Protection from weather. 192.231 Section 192.231 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... weather. The welding operation must be protected from weather conditions that would impair the quality of...

  1. Reducing prediction uncertainty of weather controlled systems

    NARCIS (Netherlands)

    Doeswijk, T.G.

    2007-01-01

    In closed agricultural systems the weather acts both as a disturbance and as a resource. By using weather forecasts in control strategies the effects of disturbances can be minimized whereas the resources can be utilized. In this situation weather forecast uncertainty and model based control are

  2. [Effect of weather on odontogenic abscesses].

    Science.gov (United States)

    Nissen, G; Schmidseder, R

    1978-11-01

    An increased frequency of odontogenous abcesses was observed on certain days in the course of routine clinical practice. We therefore investigated the possibility of a statistically significant weather-related odontogenous soft-tissue purulence originating from chronic apical periodontitis. Medical reports of patients treated between 1970 and 1977 were used. Our study indicated that the frequency of odontogenous abcesses was significantly higher with cyclonic weather conditions, i.e., weather with low barometric pressure.

  3. WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model

    Science.gov (United States)

    Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak

    2012-01-01

    A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties...

  4. Efficient Ways to Learn Weather Radar Polarimetry

    Science.gov (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  5. Weatherization Innovation Pilot Program (WIPP): Technical Assistance Summary

    Energy Technology Data Exchange (ETDEWEB)

    Hollander, A.

    2014-09-01

    The U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Programs Office (WIPO) launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of low-income residences without the utilization of additional taxpayer funding. Sixteen WIPP grantees were awarded a total of $30 million in Weatherization Assistance Program (WAP) funds in September 2010. These projects focused on: including nontraditional partners in weatherization service delivery; leveraging significant non-federal funding; and improving the effectiveness of low-income weatherization through the use of new materials, technologies, behavior-change models, and processes.

  6. Activities of NICT space weather project

    Science.gov (United States)

    Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  7. Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output

    DEFF Research Database (Denmark)

    Bøvith, Thomas; Nielsen, Allan Aasbjerg; Hansen, Lars Kai

    2006-01-01

    A method for detecting clutter in weather radar images by information fusion is presented. Radar data, satellite images, and output from a numerical weather prediction model are combined and the radar echoes are classified using supervised classification. The presented method uses indirect...... information on precipitation in the atmosphere from Meteosat-8 multispectral images and near-surface temperature estimates from the DMI-HIRLAM-S05 numerical weather prediction model. Alternatively, an operational nowcasting product called 'Precipitating Clouds' based on Meteosat-8 input is used. A scale...

  8. Structural control of weathering processes within exhumed granitoids: Compartmentalisation of geophysical properties by faults and fractures

    Science.gov (United States)

    Place, J.; Géraud, Y.; Diraison, M.; Herquel, G.; Edel, J.-B.; Bano, M.; Le Garzic, E.; Walter, B.

    2016-03-01

    In the latter stages of exhumation processes, rocks undergo weathering. Weathering halos have been described in the vicinity of structures such as faults, veins or dykes, with a lateral size gradually narrowing with depth, symmetrically around the structures. In this paper, we describe the geophysical characterisation of such alteration patterns on two granitoid outcrops of the Catalan Coastal Ranges (Spain), each of which is affected by one major fault, as well as minor faults and fractures. Seismic, electric and ground penetrating radar surveys were carried out to map the spatial distribution of P-wave velocity, electrical resistivity and to identify reflectors of electromagnetic waves. The analysis of this multi-method and complementary dataset revealed that, at shallow depth, geophysical properties of the materials are compartmentalised and asymmetric with respect to major and subsidiary faults affecting the rock mass. This compartmentalisation and asymmetry both tend to attenuate with depth, whereas the effect of weathering is more symmetric with respect to the major structure of the outcrops. We interpret such compartmentalisation as resulting from the role of hydraulic and mechanical boundaries played by subsidiary faults, which tend to govern both the chemical and physical alterations involved in weathering. Thus, the smoothly narrowing halo model is not always accurate, as weathering halos can be strongly asymmetrical and present highly irregular contours delimiting sharp contrasts of geophysical properties. These results should be considered when investigating and modelling fluid storage and transfer in top crystalline rock settings for groundwater applications, hydrocarbon or geothermal reservoirs, as well as mineral deposits.

  9. Utilization of Live Localized Weather Information for Sustainable Agriculture

    Science.gov (United States)

    Anderson, J.; Usher, J.

    2010-09-01

    Authors: Jim Anderson VP, Global Network and Business Development WeatherBug® Professional Jeremy Usher Managing Director, Europe WeatherBug® Professional Localized, real-time weather information is vital for day-to-day agronomic management of all crops. The challenge for agriculture is twofold in that local and timely weather data is not often available for producers and farmers, and it is not integrated into decision-support tools they require. Many of the traditional sources of weather information are not sufficient for agricultural applications because of the long distances between weather stations, meaning the data is not always applicable for on-farm decision making processes. The second constraint with traditional weather information is the timeliness of the data. Most delivery systems are designed on a one-hour time step, whereas many decisions in agriculture are based on minute-by-minute weather conditions. This is especially true for decisions surrounding chemical and fertilizer application and frost events. This presentation will outline how the creation of an agricultural mesonet (weather network) can enable producers and farmers with live, local weather information from weather stations installed in farm/field locations. The live weather information collected from each weather station is integrated into a web-enabled decision support tool, supporting numerous on-farm agronomic activities such as pest management, or dealing with heavy rainfall and frost events. Agronomic models can be used to assess the potential of disease pressure, enhance the farmer's abilities to time pesticide applications, or assess conditions contributing to yield and quality fluctuations. Farmers and industry stakeholders may also view quality-assured historical weather variables at any location. This serves as a record-management tool for viewing previously uncharted agronomic weather events in graph or table form. This set of weather tools is unique and provides a

  10. 46 CFR 44.01-13 - Heavy weather plan.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Heavy weather plan. 44.01-13 Section 44.01-13 Shipping... VOYAGES Administration § 44.01-13 Heavy weather plan. (a) Each heavy weather plan under § 44.01-12(b) must... Inspection. Approval of a heavy weather plan is limited to the current hurricane season. (b) The cognizant...

  11. A Analysis of the Development of Weather Concepts

    Science.gov (United States)

    Mroz, Paul John

    Weather information in all forms is poorly understood and often misinterpreted by the general public. Weather literacy is necessary for everyone if critical weather messages, designed to save lives and protect property, are to be effective. The purpose of this study was to seek content and causal evidence for a developmental concept of Weather Information Processing that was consistent with Piagetian Cognitive Stages of Development. Three ordinal Content Stages Of Weather Information Processing (phenomena, process and mechanism) and three ordinal Causal Explanation Stages Of Weather Information Processing (non-real, natural, and scientifically valid abstract ideas) were explored for their relationship with Piaget's Pre-Operational, Concrete and Formal Stages of Development. One hundred and fifty -five elementary and secondary school students from two school districts were administered a written Piagetian exam. Commonly available television weather programs were categorized, randomly assigned and viewed by 42 randomly selected students who were administered three Piagetian tasks. Students were clinically interviewed for the level of content information and causal explanations (reasoning). Results indicated that content information and causal reasoning of students to televised weather information is significantly related (p Cognitive Stages of Development. Two Piagetian logic operations (seriation and correlation) were established as significantly different (p Information Processing and have implications for teaching and presenting weather information to the public.

  12. A Study of UV Resistance of a Water-based Polyurethane Lacquer Containing Nano Ceria

    Directory of Open Access Journals (Sweden)

    Arash Saadat-Monfared

    2013-01-01

    Full Text Available Cerium oxide (Ceria nano particle, as photodegradation prevention agent was studied in water-based polyurethane clear coat  systems. Polyurethane coatings show superior weathering resistance compared with acrylic melamine systems. However, any chemical change has detrimental effects on the property profile of PU coatings. Coatings containing various amounts of cerium oxide nanoparticles were prepared and their weathering resistance was evaluated using simulated UV cabinet. To this end the extent and mechanism of degradation was studied utilizing UV-Vis and FTIR-ATR spectroscopy as well as DMTA analysis. The results revealed that Ceria nano particles with concentration of 1.44 % (wt absorb beyond 92.5% of UV light of UV-B region and showed an efficiency of 2000 times as of organic UV absorbers.

  13. The Early Years: The Wonders of Weather

    Science.gov (United States)

    Ashbrook, Peggy

    2013-01-01

    This article reports on the wonders of winter weather, as it often inspires teachers' and students' interest in collecting weather data, especially if snow falls. Beginning weather data collection in preschool will introduce children to the concepts of making regular observations of natural phenomena, recording the observations (data),…

  14. Towards a National Space Weather Predictive Capability

    Science.gov (United States)

    Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.

    2015-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.

  15. Newspaper Clippings and Articles (Weather-related)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather-related newspaper articles and photos, almost exclusively from Baltimore, MD and nearby areas. Includes storm damage, rainfall reports, and weather's affect...

  16. Fire Danger and Fire Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (formerly Weather Bureau) and Forest Service developed a program to track meteorological conditions conducive to forest fires, resulting...

  17. SIGWX Charts - High Level Significant Weather

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — High level significant weather (SIGWX) forecasts are provided for the en-route portion of international flights. NOAA's National Weather Service Aviation Center...

  18. Weatherization Assistance Program Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2018-02-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy e ciency of their homes, while ensuring their health and safety. The Program supports 8,500 jobs and provides weatherization services to approximately 35,000 homes every year using DOE funds.

  19. Improving weather predictability by including land-surface model parameter uncertainty

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  20. Designing and Implementing Weather Generators as Web Services

    Directory of Open Access Journals (Sweden)

    Rassarin Chinnachodteeranun

    2016-12-01

    Full Text Available Climate and weather realizations are essential inputs for simulating crop growth and yields to analyze the risks associated with future conditions. To simplify the procedure of generating weather realizations and make them available over the Internet, we implemented novel mechanisms for providing weather generators as web services, as well as a mechanism for sharing identical weather realizations given a climatological information. A web service for preparing long-term climate data was implemented based on an international standard, Sensor Observation Service (SOS. The weather generator services, which are the core components of the framework, analyze climatological data, and can take seasonal climate forecasts as inputs for generating weather realizations. The generated weather realizations are encoded in a standard format, which are ready for use to crop modeling. All outputs are generated in SOS standard, which broadens the extent of data sharing and interoperability with other sectoral applications, e.g., water resources management. These services facilitate the development of other applications requiring input weather realizations, as these can be obtained easily by just calling the service. The workload of analysts related to data preparation and handling of legacy weather generator programs can be reduced. The architectural design and implementation presented here can be used as a prototype for constructing further services on top of an interoperable sensor network system.

  1. Implementation of bayesian model averaging on the weather data forecasting applications utilizing open weather map

    Science.gov (United States)

    Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.

    2018-02-01

    Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.

  2. NOAA Weather and Climate Toolkit (WCT)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Weather and Climate Toolkit is an application that provides simple visualization and data export of weather and climatological data archived at NCDC. The...

  3. Longing for Clouds - Does Beautiful Weather have to be Fine?

    Directory of Open Access Journals (Sweden)

    Mădălina Diaconu

    2016-01-01

    Full Text Available Any attempt to outline a meteorological aesthetics centered on so-called beautiful weather has to overcome several difficulties: In everyday life, the appreciation of the weather is mostly related to practical interests or reduced to the ideal of stereotypical fine weather that is conceived according to blue-sky thinking irrespective of climate diversity. Also, an aesthetics of fine weather seems, strictly speaking, to be impossible given that such weather conditions usually allow humans to focus on aspects other than weather, which contradicts the autotelic character of beauty. The unreflective equation of beautiful weather with moderately sunny weather and a cloudless sky also collides with the psychological need for variation: even living in a “paradisal” climate would be condemned to end in monotony. Finally, whereas fine weather is related in modern realistic literature to cosmic harmony and a universal natural order, contemporary literary examples show that in the age of the climate change, fine weather may be deceitful and its passive contemplation, irresponsible. This implies the necessity of a reflective aesthetic attitude on weather, as influenced by art, literature, and science, which discovers the poetics of bad weather and the wonder that underlies average weather conditions.

  4. SPace weather applications in a technology-dependent society

    Science.gov (United States)

    Ngwira, C. M.

    2017-12-01

    Space weather can adversely key technology assets, such as, high-voltage electric power transmission grids, oil and gas pipelines, and communications systems that are critical to national security and economy. However, the term of "space weather" is not well known in our society. This presentation will introduce key concepts related to the space weather problem and show how space weather impacts our everyday life. The goal is to promote awareness among the general public. Also, this presentation will highlight how space weather is being used to promote STEM education for community college students through the NASA internship program.

  5. World War II Weather Record Transmittances

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World War II Weather Record Transmittances are a record of the weather and meteorological data observed during World War II and transferred to the archive. It...

  6. Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10): a World Weather Research Programme Project

    Science.gov (United States)

    Isaac, G. A.; Joe, P. I.; Mailhot, J.; Bailey, M.; Bélair, S.; Boudala, F. S.; Brugman, M.; Campos, E.; Carpenter, R. L.; Crawford, R. W.; Cober, S. G.; Denis, B.; Doyle, C.; Reeves, H. D.; Gultepe, I.; Haiden, T.; Heckman, I.; Huang, L. X.; Milbrandt, J. A.; Mo, R.; Rasmussen, R. M.; Smith, T.; Stewart, R. E.; Wang, D.; Wilson, L. J.

    2014-01-01

    A World Weather Research Programme (WWRP) project entitled the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) was developed to be associated with the Vancouver 2010 Olympic and Paralympic Winter Games conducted between 12 February and 21 March 2010. The SNOW-V10 international team augmented the instrumentation associated with the Winter Games and several new numerical weather forecasting and nowcasting models were added. Both the additional observational and model data were available to the forecasters in real time. This was an excellent opportunity to demonstrate existing capability in nowcasting and to develop better techniques for short term (0-6 h) nowcasts of winter weather in complex terrain. Better techniques to forecast visibility, low cloud, wind gusts, precipitation rate and type were evaluated. The weather during the games was exceptionally variable with many periods of low visibility, low ceilings and precipitation in the form of both snow and rain. The data collected should improve our understanding of many physical phenomena such as the diabatic effects due to melting snow, wind flow around and over terrain, diurnal flow reversal in valleys associated with daytime heating, and precipitation reductions and increases due to local terrain. Many studies related to these phenomena are described in the Special Issue on SNOW-V10 for which this paper was written. Numerical weather prediction and nowcast models have been evaluated against the unique observational data set now available. It is anticipated that the data set and the knowledge learned as a result of SNOW-V10 will become a resource for other World Meteorological Organization member states who are interested in improving forecasts of winter weather.

  7. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    Science.gov (United States)

    Winnick, Matthew J.; Maher, Kate

    2018-03-01

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. We test this theoretical scaling relationship against reactive transport simulations of chemical weathering profiles under open- and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO2 (y = kxn) where n is dependent on reaction stoichiometry and k is dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO2 at low values and approach open-system scaling at high pCO2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence

  8. Now, Here's the Weather Forecast...

    Science.gov (United States)

    Richardson, Mathew

    2013-01-01

    The Met Office has a long history of weather forecasting, creating tailored weather forecasts for customers across the world. Based in Exeter, the Met Office is also home to the Met Office Hadley Centre, a world-leading centre for the study of climate change and its potential impacts. Climate information from the Met Office Hadley Centre is used…

  9. History of surface weather observations in the United States

    Science.gov (United States)

    Fiebrich, Christopher A.

    2009-04-01

    In this paper, the history of surface weather observations in the United States is reviewed. Local weather observations were first documented in the 17th Century along the East Coast. For many years, the progression of a weather observation from an initial reading to dissemination remained a slow and laborious process. The number of observers remained small and unorganized until agencies including the Surgeon General, Army, and General Land Office began to request regular observations at satellite locations in the 1800s. The Smithsonian was responsible for first organizing a large "network" of volunteer weather observers across the nation. These observers became the foundation for today's Cooperative Observer network. As applications of weather data continued to grow and users required the data with an ever-decreasing latency, automated weather networks saw rapid growth in the later part of the 20th century. Today, the number of weather observations across the U.S. totals in the tens of thousands due largely to privately-owned weather networks and amateur weather observers who submit observations over the internet.

  10. Climate Central World Weather Attribution (WWA) project: Real-time extreme weather event attribution analysis

    Science.gov (United States)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2015-04-01

    Extreme weather detection and attribution analysis has emerged as a core theme in climate science over the last decade or so. By using a combination of observational data and climate models it is possible to identify the role of climate change in certain types of extreme weather events such as sea level rise and its contribution to storm surges, extreme heat events and droughts or heavy rainfall and flood events. These analyses are usually carried out after an extreme event has occurred when reanalysis and observational data become available. The Climate Central WWA project will exploit the increasing forecast skill of seasonal forecast prediction systems such as the UK MetOffice GloSea5 (Global seasonal forecasting system) ensemble forecasting method. This way, the current weather can be fed into climate models to simulate large ensembles of possible weather scenarios before an event has fully emerged yet. This effort runs along parallel and intersecting tracks of science and communications that involve research, message development and testing, staged socialization of attribution science with key audiences, and dissemination. The method we employ uses a very large ensemble of simulations of regional climate models to run two different analyses: one to represent the current climate as it was observed, and one to represent the same events in the world that might have been without human-induced climate change. For the weather "as observed" experiment, the atmospheric model uses observed sea surface temperature (SST) data from GloSea5 (currently) and present-day atmospheric gas concentrations to simulate weather events that are possible given the observed climate conditions. The weather in the "world that might have been" experiments is obtained by removing the anthropogenic forcing from the observed SSTs, thereby simulating a counterfactual world without human activity. The anthropogenic forcing is obtained by comparing the CMIP5 historical and natural simulations

  11. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small

  12. Weather-centric rangeland revegetation planning

    Science.gov (United States)

    Hardegree, Stuart P.; Abatzoglou, John T.; Brunson, Mark W.; Germino, Matthew; Hegewisch, Katherine C.; Moffet, Corey A.; Pilliod, David S.; Roundy, Bruce A.; Boehm, Alex R.; Meredith, Gwendwr R.

    2018-01-01

    Invasive annual weeds negatively impact ecosystem services and pose a major conservation threat on semiarid rangelands throughout the western United States. Rehabilitation of these rangelands is challenging due to interannual climate and subseasonal weather variability that impacts seed germination, seedling survival and establishment, annual weed dynamics, wildfire frequency, and soil stability. Rehabilitation and restoration outcomes could be improved by adopting a weather-centric approach that uses the full spectrum of available site-specific weather information from historical observations, seasonal climate forecasts, and climate-change projections. Climate data can be used retrospectively to interpret success or failure of past seedings by describing seasonal and longer-term patterns of environmental variability subsequent to planting. A more detailed evaluation of weather impacts on site conditions may yield more flexible adaptive-management strategies for rangeland restoration and rehabilitation, as well as provide estimates of transition probabilities between desirable and undesirable vegetation states. Skillful seasonal climate forecasts could greatly improve the cost efficiency of management treatments by limiting revegetation activities to time periods where forecasts suggest higher probabilities of successful seedling establishment. Climate-change projections are key to the application of current environmental models for development of mitigation and adaptation strategies and for management practices that require a multidecadal planning horizon. Adoption of new weather technology will require collaboration between land managers and revegetation specialists and modifications to the way we currently plan and conduct rangeland rehabilitation and restoration in the Intermountain West.

  13. Investigation of the weathering effect on Rb-Sr systematics and trace element abundances in Antarctic and non-Antarctic meteorites

    International Nuclear Information System (INIS)

    Nishikawa, Yoshiyuki; Nakamura, Noboru; Misawa, Keiji; Okano, Osamu; Yamamoto, Koshi; Kagami, Hiroo.

    1990-01-01

    In order to examine weathering effects on chondritic meteorites in Antarctic and non-Antarctic environments, the Rb-Sr isotopic ratios and abundances of REE, Ba, Sr, Rb, and K were determined for 8H-group chondrites (Yamato-790986 [H3], Yamato-74492 [H3], Grady [H3], Brownfield [H3], Clovis (No.1) [H3], Yamato-74155 [H4], Allegan [H5] [one whole-rock and two chondrules], and Yamato-74371 [H5]), and partly for the Etter (L5) chondrite. The Allegan whole-rock shows a flat REE pattern with a large negative Eu anomaly and Sr depletion. Analyses of Rb-Sr systematics of one whole-rock and two chondrules show somewhat younger age 4.38±0.12 b.y. It is suggested that REE and Rb-Sr were redistributed during the early thermal metamorphism. Except for Allegan, most other H-chondrites (finds) show the perturbation of the Rb-Sr systematics, indicating recent loss of Rb. It was found that the weathering degree is related with the Rb-Sr disturbance in Antarctic H-chondrite. In spite of different degrees of weathering, all the Antarctic H-chondrites studied (including heavily weathered ones) show flat REE patterns normal as H-chondrite with occasional occurrence of minor Eu anomalies, indicating the tough resistance of REE in H-chondrites to the Antarctic weathering. On the other hand, non-Antarctic finds (particularly the weathered chondrites) indicate light-REE enriched patterns with a large negative Ce anomaly and extreme enrichment of Ba, suggestive of terrestrial contaminations. (author)

  14. Bringing Space Weather Down to Earth

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.

    2005-05-01

    Most of the public has no idea what Space Weather is, but a number of innovative programs, web sites, magazine articles, TV shows and planetarium shows have taken space weather from an unknown quantity to a much more visible field. This paper reviews new developments, including the new Space Weather journal, the very popular spaceweather.com website, new immersive planetarium shows that can go "on the road", and well-publicized Sun-Earth Day activities. Real-time data and reasonably accurate spaceweather forecasts are available from several websites, with many subscribers. Even the renaissance of amateur radio because of Homeland Security brings a new generation of learners to wonder what is going on in the Sun today. The NSF Center for Integrated Space Weather Modeling has a dedicated team to reach both the public and a greater diversity of new scientists.

  15. Measuring weather for aviation safety in the 1980's

    Science.gov (United States)

    Wedan, R. W.

    1980-01-01

    Requirements for an improved aviation weather system are defined and specifically include the need for (1) weather observations at all airports with instrument approaches, (2) more accurate and timely radar detection of weather elements hazardous to aviation, and (3) better methods of timely distribution of both pilot reports and ground weather data. The development of the discrete address beacon system data link, Doppler weather radar network, and various information processing techniques are described.

  16. Progress in space weather predictions and applications

    Science.gov (United States)

    Lundstedt, H.

    The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.

  17. Weather during bloom affects pollination and yield of highbush blueberry.

    Science.gov (United States)

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Weather plays an important role in spring-blooming fruit crops due to the combined effects on bee activity, flower opening, pollen germination, and fertilization. To determine the effects of weather on highbush blueberry, Vaccinium corymbosum L., productivity, we monitored bee activity and compared fruit set, weight, and seed number in a field stocked with honey bees, Apis mellifera L., and common eastern bumble bees, Bombus impatiens (Cresson). Flowers were subjected to one of five treatments during bloom: enclosed, open, open during poor weather only, open during good weather only, or open during poor and good weather. Fewer bees of all types were observed foraging and fewer pollen foragers returned to colonies during poor weather than during good weather. There were also changes in foraging community composition: honey bees dominated during good weather, whereas bumble bees dominated during poor weather. Berries from flowers exposed only during poor weather had higher fruit set in 1 yr and higher berry weight in the other year compared with enclosed clusters. In both years, clusters exposed only during good weather had > 5 times as many mature seeds, weighed twice as much, and had double the fruit set of those not exposed. No significant increase over flowers exposed during good weather was observed when clusters were exposed during good and poor weather. Our results are discussed in terms of the role of weather during bloom on the contribution of bees adapted to foraging during cool conditions.

  18. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  19. Operational Numerical Weather Prediction at the Met Office and potential ways forward for operational space weather prediction systems

    Science.gov (United States)

    Jackson, David

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  20. Weatherization and Indoor Air Quality: Measured Impacts in Single Family Homes Under the Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Pigg, Scott [Energy Center of Wisconsin, Madison, WI (United States); Cautley, Dan [Energy Center of Wisconsin, Madison, WI (United States); Francisco, Paul [Univ. of Illinois, Urbana-Champaign, IL (United States); Hawkins, Beth A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brennan, Terry M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    This report summarizes findings from a national field study of indoor air quality parameters in homes treated under the Weatherization Assistance Program (WAP). The study involved testing and monitoring in 514 single-family homes (including mobile homes) located in 35 states and served by 88 local weatherization agencies.

  1. Weather types in Sosnowiec (Poland during the period 1999-2013

    Directory of Open Access Journals (Sweden)

    Dobrowolska Ksenia

    2014-09-01

    Full Text Available The study presents the structure of weather types for the city of Sosnowiec during the period 1999-2013. The analysis was carried out on the basis of daily thermal data (the average daily air temperature, the minimum and maximum daily air temperature, cloudiness and precipitation. The data was obtained from a meteorological station belonging to the Department of Climatology at the Faculty of Earth Sciences at the University of Silesia. Weather types were established according to weather type classification after Woś (2010. 48 weather types were specified on the basis of a combination of 3 selected meteorological elements (temperature, cloudiness, precipitation. The number of days in the year and the frequency of particular thermal weather types, weather subtype, weather classes and weather types were characterized, and the changeability of weather types was analyzed. Furthermore, sequences of days with specific weather types were described. The analysis conducted has lead to the conclusion that, during the research period, the weather structure for the city of Sosnowiec was characterized by a great number of weather types observed, with relatively low frequency of occurrence. Weather throughout the year was dominated by warm weather types (3--, 2--, 2--, with weather marked as 310 – very warm, moderately cloudy, without precipitation (12.9% recorded as the most frequent, followed by 221 – moderately warm, very cloudy, with precipitation (11.6%, and 210 – moderately warm, moderately cloudy, without precipitation (11.4%as the least frequent one. A diversification in the number of particular classification units in consecutive years of the examined 15-year period does not display significant variability. Short sequences of 2 and 3 days dominated the selected sequences of specific weather types.

  2. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: new insight from U-series isotopes in weathering rinds

    Science.gov (United States)

    Engel, Jacqueline M.; May, Linda; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-01-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite.Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds

  3. Modeling rock weathering in small watersheds

    NARCIS (Netherlands)

    Pacheco, F.A.L.; van der Weijden, C.H.

    2014-01-01

    Many mountainous watersheds are conceived as aquifer media where multiple groundwater flow systems have developed (Tóth, 1963), and as bimodal landscapes where differential weathering of bare and soil-mantled rock has occurred (Wahrhaftig, 1965). The results of a weathering algorithm (Pacheco and

  4. A teaching-learning sequence about weather map reading

    Science.gov (United States)

    Mandrikas, Achilleas; Stavrou, Dimitrios; Skordoulis, Constantine

    2017-07-01

    In this paper a teaching-learning sequence (TLS) introducing pre-service elementary teachers (PET) to weather map reading, with emphasis on wind assignment, is presented. The TLS includes activities about recognition of wind symbols, assignment of wind direction and wind speed on a weather map and identification of wind characteristics in a weather forecast. Sixty PET capabilities and difficulties in understanding weather maps were investigated, using inquiry-based learning activities. The results show that most PET became more capable of reading weather maps and assigning wind direction and speed on them. Our results also show that PET could be guided to understand meteorology concepts useful in everyday life and in teaching their future students.

  5. Weather, transport mode choices and emotional travel experiences

    NARCIS (Netherlands)

    Böcker, L.; Dijst, M.J.; Faber, J.

    2016-01-01

    With climate change high on the political agenda, weather has emerged as an important issue in travel behavioral research and urban planning. While various studies demonstrate profound effects of weather on travel behaviors, limited attention has been paid to subjective weather experiences and the

  6. Review on the Strength Development Required for the Concrete Structure of Nuclear Power Plant under Cold Weather Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyung Teak; Park, Chun Jin; Ryu, Gum Sung; Kim, Do Gyeum; Lee, Jang Hwa [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2011-10-15

    exposed to continuous cold weather conditions after the protection equipment, including the curing coat are removed, the structure's durability may lessen as compared to the concrete cured under the standard curing temperature conditions in the spring and fall, however, the studies on this status still remain poor. Accordingly, this study attempted to verify the adequacy of the insulation curing management standard, which is currently presented, during the construction period of the cold weather concrete, through reviewing the freeze-thaw resistance after curing until the point of 5 MPa, then exposing such to a certain cycle of freezethaw environment under the continuous cold weather conditions and then finally performing the standard curing for 28 days

  7. Weatherization Works II - Summary of Findings from the ARRA Period Evaluation of the U.S. Department of Energy's Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carroll, David [APPRISE, Inc.. Princeton, NJ (United States); Rose, Erin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Beth A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pigg, Scott [Energy Center of Wisconsin, Madison, WI (United States); Dalhoff, Greg [Dalhoff & Associates. Verona, WI (United STates); Blasnik, Michael [Blasnik & Associates, Boston, MA (United States); Eisenberg, Joel Fred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cowan, Claire [Energy Center of Wisconsin, Madison, WI (United States); Conlon, Brian [Univ. of Tennessee, Knoxville, TN (United States)

    2015-10-01

    This report presents a summary of the American Recovery and Reinvestment Act of 2009 (ARRA) evaluation of the U.S. Department of Energy s low-income Weatherization Program. This evaluation focused on the WAP Program Year 2010. The ARRA evaluation produced fourteen separate reports, including this summary. Three separate reports address the energy savings, energy cost savings, and cost effectiveness of WAP across four housing types: single family, mobile home, and large multifamily. Other reports address the environmental emissions benefits attributable to WAP, and characterize the program. Special studies were conducted to: estimate the impacts of weatherization and healthy homes interventions on asthma-related Medicaid claims in a small cohort in Washington State; assess how weatherization recipients communicate their weatherization experiences to those in their social network, and assess processes implemented to defer homes for weatherization. Small studies addressed energy use in refrigerators, WAP as implemented in the U.S. territories for the first time, and weatherization s impacts on air conditioning energy savings. The national occupant survey was mined for additional insights on the impacts of weatherization on household budgets and energy behaviors post-weatherization. Lastly, the results of a survey of weatherization training centers are summarized.

  8. Pushing the Envelope of Extreme Space Weather

    Science.gov (United States)

    Pesnell, W. D.

    2014-12-01

    Extreme Space Weather events are large solar flares or geomagnetic storms, which can cost billions of dollars to recover from. We have few examples of such events; the Carrington Event (the solar superstorm) is one of the few that had superlatives in three categories: size of solar flare, drop in Dst, and amplitude of aa. Kepler observations show that stars similar to the Sun can have flares releasing millions of times more energy than an X-class flare. These flares and the accompanying coronal mass ejections could strongly affect the atmosphere surrounding a planet. What level of solar activity would be necessary to strongly affect the atmosphere of the Earth? Can we map out the envelope of space weather along the evolution of the Sun? What would space weather look like if the Sun stopped producing a magnetic field? To what extreme should Space Weather go? These are the extremes of Space Weather explored in this talk.

  9. Weather In Some Islands

    Institute of Scientific and Technical Information of China (English)

    王良华

    2007-01-01

    There are four seasons in a year. When spring comes, the weather is mild(温和的). Summer comes after spring. Summer is the hottest season of the year. Autumn follows summer. It is the best season of the year. Winter is the coldest season of the year. Some islands(岛) have their own particular(特别的) seasons because their weather is very much affected(影响) by the oceans(海洋) around them. In Britain, winter is not very cold and summer is not very hot.

  10. LOCAL WEATHER CLASSIFICATIONS FOR ENVIRONMENTAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Katarzyna PIOTROWICZ

    2013-03-01

    Full Text Available Two approaches of local weather type definitions are presented and illustrated for selected stations of Poland and Hungary. The subjective classification, continuing long traditions, especially in Poland, relies on diurnal values of local weather elements. The main types are defined according to temperature with some sub-types considering relative sunshine duration, diurnal precipitation totals, relative humidity and wind speed. The classification does not make a difference between the seasons of the year, but the occurrence of the classes obviously reflects the annual cycle. Another important feature of this classification is that only a minor part of the theoretically possible combination of the various types and sub-types occurs in all stations of both countries. The objective version of the classification starts from ten possible weather element which are reduced to four according to factor analysis, based on strong correlation between the elements. This analysis yields 3 to 4 factors depending on the specific criteria of selection. The further cluster analysis uses four selected weather elements belonging to different rotated factors. They are the diurnal mean values of temperature, of relative humidity, of cloudiness and of wind speed. From the possible ways of hierarchical cluster analysis (i.e. no a priori assumption on the number of classes, the method of furthest neighbours is selected, indicating the arguments of this decision in the paper. These local weather types are important tools in understanding the role of weather in various environmental indicators, in climatic generalisation of short samples by stratified sampling and in interpretation of the climate change.

  11. Combining traditional weather forecasting, science in Kenya | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-02-24

    Feb 24, 2012 ... Kenyan farmers have relied on the indigenous weather prediction methods of the Nganyi rainmakers for generations. But extreme weather caused by climate change is affecting the natural signs that rainmakers use to predict weather. Many fear traditional methods are therefore becoming redundant and ...

  12. Space weather and coronal mass ejections

    CERN Document Server

    Howard, Tim

    2013-01-01

    Space weather has attracted a lot of attention in recent times. Severe space weather can disrupt spacecraft, and on Earth can be the cause of power outages and power station failure. It also presents a radiation hazard for airline passengers and astronauts. These ""magnetic storms"" are most commonly caused by coronal mass ejections, or CMES, which are large eruptions of plasma and magnetic field from the Sun that can reach speeds of several thousand km/s. In this SpringerBrief, Space Weather and Coronal Mass Ejections, author Timothy Howard briefly introduces the coronal mass ejection, its sc

  13. Iron isotopic fractionation during continental weathering

    Energy Technology Data Exchange (ETDEWEB)

    Fantle, Matthew S.; DePaolo, Donald J.

    2003-10-01

    The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

  14. Post-Palaeozoic evolution of weathered landsurfaces in Uganda by tectonically controlled deep weathering and stripping

    Science.gov (United States)

    Taylor, R. G.; Howard, K. W. F.

    1998-11-01

    A model for the evolution of weathered landsurfaces in Uganda is developed using available geotectonic, climatic, sedimentological and chronological data. The model demonstrates the pivotal role of tectonic uplift in inducing cycles of stripping, and tectonic quiescence for cycles of deep weathering. It is able to account for the development of key landforms, such as inselbergs and duricrust-capped plateaux, which previous hypotheses of landscape evolution that are based on climatic or eustatic controls are unable to explain. Development of the Ugandan landscape is traced back to the Permian. Following late Palaeozoic glaciation, a trend towards warmer and more humid climates through the Mesozoic enabled deep weathering of the Jurassic/mid-Cretaceous surface in Uganda during a period of prolonged tectonic quiescence. Uplift associated with the opening South Atlantic Ocean terminated this cycle and instigated a cycle of stripping between the mid-Cretaceous and early Miocene. Deep weathering on the succeeding Miocene to recent (African) surface has occurred from Miocene to present but has been interrupted in the areas adjacent to the western rift where development of a new drainage base level has prompted cycles of stripping in the Miocene and Pleistocene.

  15. Weathering of the New Albany Shale, Kentucky, USA: I. Weathering zones defined by mineralogy and major-element composition

    Science.gov (United States)

    Tuttle, M.L.W.; Breit, G.N.

    2009-01-01

    Comprehensive understanding of chemical and mineralogical changes induced by weathering is valuable information when considering the supply of nutrients and toxic elements from rocks. Here minerals that release and fix major elements during progressive weathering of a bed of Devonian New Albany Shale in eastern Kentucky are documented. Samples were collected from unweathered core (parent shale) and across an outcrop excavated into a hillside 40 year prior to sampling. Quantitative X-ray diffraction mineralogical data record progressive shale alteration across the outcrop. Mineral compositional changes reflect subtle alteration processes such as incongruent dissolution and cation exchange. Altered primary minerals include K-feldspars, plagioclase, calcite, pyrite, and chlorite. Secondary minerals include jarosite, gypsum, goethite, amorphous Fe(III) oxides and Fe(II)-Al sulfate salt (efflorescence). The mineralogy in weathered shale defines four weathered intervals on the outcrop-Zones A-C and soil. Alteration of the weakly weathered shale (Zone A) is attributed to the 40-a exposure of the shale. In this zone, pyrite oxidization produces acid that dissolves calcite and attacks chlorite, forming gypsum, jarosite, and minor efflorescent salt. The pre-excavation, active weathering front (Zone B) is where complete pyrite oxidation and alteration of feldspar and organic matter result in increased permeability. Acidic weathering solutions seep through the permeable shale and evaporate on the surface forming abundant efflorescent salt, jarosite and minor goethite. Intensely weathered shale (Zone C) is depleted in feldspars, chlorite, gypsum, jarosite and efflorescent salts, but has retained much of its primary quartz, illite and illite-smectite. Goethite and amorphous FE(III) oxides increase due to hydrolysis of jarosite. Enhanced permeability in this zone is due to a 14% loss of the original mass in parent shale. Denudation rates suggest that characteristics of Zone C

  16. Combining traditional weather forecasting, science in Kenya | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    24 févr. 2012 ... Kenyan farmers have relied on the indigenous weather prediction methods of the Nganyi rainmakers for generations. But extreme weather caused by climate change is affecting the natural signs that rainmakers use to predict weather. Many fear traditional methods are therefore becoming redundant and ...

  17. Vodcasting space weather: The Space Weather FX vodcast series

    Science.gov (United States)

    Collins Petersen, C.; Erickson, P. J.

    2008-06-01

    The topic of space weather is the subject of a series of nine vodcasts (video podcasts) being created by MIT Haystack Observatory (Westford, Massachusetts, USA) and Loch Ness Productions (Groton, Massachusetts, USA). This paper describes the project, its science and outreach goals, and introduces the principal participants.

  18. 46 CFR 174.215 - Drainage of weather deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of weather deck. 174.215 Section 174.215 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... weather deck. The weather deck must have open rails to allow rapid clearing of water, or must have freeing...

  19. 46 CFR 173.062 - Drainage of weather deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of weather deck. 173.062 Section 173.062 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO VESSEL USE School Ships § 173.062 Drainage of weather deck. The weather deck of each sailing...

  20. Space Weather Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of space weather datasets from the National Oceanic and Atmospheric Administration and from the World Data Service for Geophysics,...

  1. Phototoxic potential of undispersed and dispersed fresh and weathered Macondo crude oils to Gulf of Mexico Marine Organisms.

    Science.gov (United States)

    Finch, Bryson E; Marzooghi, Solmaz; Di Toro, Dominic M; Stubblefield, William A

    2017-10-01

    Crude oils contain a mixture of hydrocarbons, including phototoxic polycyclic aromatic hydrocarbons (PAHs) that have the ability to absorb ultraviolet (UV) light. Absorption of UV light by PAHs can substantially increase their toxicity to marine organisms. The objective of the present study was to examine the potential for phototoxicity of fresh and naturally weathered Macondo crude oils alone and in combination with the dispersant Corexit 9500 to mysid shrimp (Americamysis bahia), inland silverside (Menidia beryllina), sheepshead minnow (Cyprinodon variegatus), and Gulf killifish (Fundulus grandis). Acute toxicity tests were conducted using combinations of natural or artificial sunlight and low-energy water-accommodated fractions (WAFs) of fresh and weathered Macondo crude oils collected from the Gulf of Mexico. Studies were also conducted to compare the phototoxicity resulting from natural and artificial sunlight. Fresh Macondo crude oil was more phototoxic than weathered crude oils, both in the presence and in the absence of UV light. Differences in toxicity between fresh and weathered crude oils were likely attributed to lighter-ringed PAHs in fresh crude oils. Phototoxic PAHs were relatively resistant to weathering compared with lighter-ringed PAHs. The addition of Corexit 9500 to crude oil increased toxicity compared with tests with crude oil alone, by increasing phototoxic PAH concentrations in WAFs. Macondo crude oils had the potential to be phototoxic to Gulf of Mexico marine organisms if specific light conditions and PAH concentrations were present during the Deepwater Horizon oil spill. Environ Toxicol Chem 2017;36:2640-2650. © 2017 SETAC. © 2017 SETAC.

  2. Artificial weathering of oils by rotary evaporator

    International Nuclear Information System (INIS)

    Fieldhouse, B.; Hollebone, B.P.; Singh, N.R.; Tong, T.S.; Mullin, J.

    2009-01-01

    Oil weathering has a considerable affect on the behaviour, impact and ultimate fate of an oil spill. As such, efforts have been made to study weathering as a whole using bench-scale procedures. The studies are generally divided into individual processes where the effect of other major processes are introduce as an amended sample input rather than a concurrent process. The weathering process that has the greatest effect immediately following an oil spill is evaporation, particularly for lighter oils. The rotary evaporator apparatus offers a convenient means of producing artificially weathered oil for laboratory studies. This paper reported on a study that examined the representativeness of samples obtained by this method compared to pan evaporation and the impact of changes to the apparatus or method parameters on sample chemistry. Experiments were performed on Alberta Sweet Mixed Blend no. 5 in a rotary evaporator under varying conditions of temperature and air flow at ambient pressure using 2 apparatus. The rate of mass loss increased with temperature and air flow rate as expected, but the quantitative relationships could not be defined from the data due to contributions by other uncontrolled factors. It was concluded that the rotary evaporator is not suited for evaporation rate studies, but rather for producing samples suitable for use in other studies. Chemical analysis showed that the relative abundance distributions of target n-alkane hydrocarbons varied with the degree of weathering of an oil in a consistent manner at ambient pressure, regardless of the temperature, rate of air exchange or other factors related to the apparatus and procedure. The composition of the artificially weathered oil was also consistent with that from an open pan simulation of a weathered oil slick. Loss of water content varied with the conditions of evaporation because of the differential rates of evaporation due to relative humidity considerations. It was concluded that weathering

  3. NATO Advanced Research Workshop on The Chemistry of Weathering

    CERN Document Server

    1985-01-01

    Several important developments in our understanding of the chemistry of weathering have occurred in the last few years: 1. There has been a major breakthrough in our understanding of the mechanisms controlling the kinetics of sil icate dissolution, and there have been major advances in computer modeling of weathering processes. 2. There has been a growing recognition of the importance of organic solutes in the weathering process, and hence of the inter-relationships between mineral weathering and the terrestrial ecosystem. 3. The impact of acid deposition ("acid rain") has been widely recognized. The processes by which acid deposition is neutral ized are closely related to the processes of normal chemical weathering; an understanding of the chemistry of weathering is thus essential for predicting the effects of acid deposition. 4. More high-qual ity data have become available on the chemical dynamics of smal I watersheds and large river systems, which represent the integrated effects of chemical weathering.

  4. Carbon dioxide efficiency of terrestrial enhanced weathering

    OpenAIRE

    Moosdorf, Nils; Renforth, Philip; Hartmann, Jens

    2014-01-01

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimi...

  5. Connected Vehicle-Enabled Weather Responsive Traffic Management

    Science.gov (United States)

    2018-04-01

    Weather Responsive Traffic Management (WRTM) is an initiative under the Federal Highway Administration's (FHWA) Road Weather Management Program that supports traffic management agencies and professionals in implementing effective advisory, control, a...

  6. Climate change & extreme weather vulnerability assessment framework.

    Science.gov (United States)

    2012-12-01

    The Federal Highway Administrations (FHWAs) Climate Change and Extreme Weather Vulnerability : Assessment Framework is a guide for transportation agencies interested in assessing their vulnerability : to climate change and extreme weather event...

  7. Solar EUV irradiance for space weather applications

    Science.gov (United States)

    Viereck, R. A.

    2015-12-01

    Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.

  8. Considerations in the weathering of wood-plastic composites

    Science.gov (United States)

    Nicole M. Stark

    2007-01-01

    During weathering, wood-plastic composites (WPCs) can fade and lose stiffness and strength. Weathering variables that induce these changes include exposure to UV light and water. Each variable degrades WPCs independently, but can also act synergistically. Recent efforts have highlighted the need to understand how WPCs weather, and to develop schemes for protection. The...

  9. Space Weather: Where Is The Beef?

    Science.gov (United States)

    Koskinen, H. E. J.

    Space weather has become a highly fashionable topic in solar-terrestrial physics. It is perhaps the best tool to popularise the field and it has contributed significantly to the dialogue between solar, magnetospheric, and ionospheric scientist, and also to mu- tual understanding between science and engineering communities. While these are laudable achievements, it is important for the integrity of scientific space weather re- search to recognise the central open questions in the physics of space weather and the progress toward solving them. We still lack sufficient understanding of the solar physics to be able to tell in advance when and where a solar eruption will take place and whether it will turn to a geoeffective event. There is much to do to understand ac- celeration of solar energetic particles and propagation of solar mass ejecta toward the Earth. After more than 40 years of research scientific discussion of energy and plasma transfer through the magnetopause still deals mostly with qualitative issues and the rapid acceleration processes in the magnetosphere are not yet explained in a satisfac- tory way. Also the coupling to the ionosphere and from there to the strong induction effects on ground is another complex of research problems. For space weather science the beef is in the investigation of these and related topics, not in marketing half-useful space weather products to hesitant customers.

  10. Vehicle automation and weather : challenges and opportunities.

    Science.gov (United States)

    2016-12-25

    Adverse weather has major impacts on the safety and operations of all roads, from signalized arterials to Interstate highways. Weather affects driver behavior, vehicle performance, pavement friction, and roadway infrastructure, thereby increasing the...

  11. On-line data acquisition system for Aanderaa weather station

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Diwan, S.G.

    Aanderaa Weather Station can be installed at unattended remote places for collection of various weather parameters at regular preselected intervals. The weather parameters are recorded on the magnetic spool inside a battery operated datalogger which...

  12. Space weather and power grids: findings and outlook

    Science.gov (United States)

    Krausmann, Elisabeth; Andersson, Emmelie; Murtagh, William; Mitchison, Neil

    2014-05-01

    The impact of space weather on the power grid is a tangible and recurring threat with potentially serious consequences on society. Of particular concern is the long-distance high-voltage power grid, which is vulnerable to the effects of geomagnetic storms that can damage or destroy equipment or lead to grid collapse. In order to launch a dialogue on the topic and encourage authorities, regulators and operators in European countries and North America to learn from each other, the European Commission's Joint Research Centre, the Swedish Civil Contingencies Agency, and NOAA's Space Weather Prediction Centre, with the contribution of the UK Civil Contingencies Secretariat, jointly organised a workshop on the impact of extreme space weather on the power grid on 29-30 October 2013. Being structured into 6 sessions, the topics addressed were space-weather phenomena and the dynamics of their impact on the grid, experiences with prediction and now-casting in the USA and in Europe, risk assessment and preparedness, as well as policy implications arising from increased awareness of the space-weather hazard. The main workshop conclusions are: • There is increasing awareness of the risk of space-weather impact among power-grid operators and regulators and some countries consider it a priority risk to be addressed. • The predictability of space-weather phenomena is still limited and relies, in part, on data from ageing satellites. NOAA is working with NASA to launch the DSCOVR solar wind spacecraft, the replacement for the ACE satellite, in early 2015. • In some countries, models and tools for GIC prediction and grid impact assessment have been developed in collaboration with national power grids but equipment vulnerability models are scarce. • Some countries have successfully hardened their transmission grids to space-weather impact and sustained relatively little or no damage due to currents induced by past moderate space-weather events. • While there is preparedness

  13. Models of Weather Impact on Air Traffic

    Science.gov (United States)

    Kulkarni, Deepak; Wang, Yao

    2017-01-01

    Flight delays have been a serious problem in the national airspace system costing about $30B per year. About 70 of the delays are attributed to weather and upto two thirds of these are avoidable. Better decision support tools would reduce these delays and improve air traffic management tools. Such tools would benefit from models of weather impacts on the airspace operations. This presentation discusses use of machine learning methods to mine various types of weather and traffic data to develop such models.

  14. Availability of high quality weather data measurements

    DEFF Research Database (Denmark)

    Andersen, Elsa; Johansen, Jakob Berg; Furbo, Simon

    In the period 2016-2017 the project “Availability of high quality weather data measurements” is carried out at Department of Civil Engineering at the Technical University of Denmark. The aim of the project is to establish measured high quality weather data which will be easily available...... for the building energy branch and the solar energy branch in their efforts to achieve energy savings and for researchers and students carrying out projects where measured high quality weather data are needed....

  15. Third Space Weather Summit Held for Industry and Government Agencies

    Science.gov (United States)

    Intriligator, Devrie S.

    2009-12-01

    The potential for space weather effects has been increasing significantly in recent years. For instance, in 2008 airlines flew about 8000 transpolar flights, which experience greater exposure to space weather than nontranspolar flights. This is up from 368 transpolar flights in 2000, and the number of such flights is expected to continue to grow. Transpolar flights are just one example of the diverse technologies susceptible to space weather effects identified by the National Research Council's Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (2008). To discuss issues related to the increasing need for reliable space weather information, experts from industry and government agencies met at the third summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's (NOAA) Space Weather Prediction Center (SWPC), held 30 April 2009 during Space Weather Week (SWW), in Boulder, Colo.

  16. The Early Years: About the Weather

    Science.gov (United States)

    Ashbrook, Peggy

    2015-01-01

    Observing and documenting elements of weather teach children about using tools and their senses to learn about the environment. This column discusses resources and science topics related to students in grades preK to 2. This month's issue describes an activity where students indirectly document local weather by counting outdoor clothing types worn…

  17. Looking toward to the next-generation space weather forecast system. Comments former a former space weather forecaster

    International Nuclear Information System (INIS)

    Tomita, Fumihiko

    1999-01-01

    In the 21st century, man's space-based activities will increase significantly and many kinds of space utilization technologies will assume a vital role in the infrastructure, creating new businesses, securing the global environment, contributing much to human welfare in the world. Communications Research Laboratory (CRL) has been contributing to the safety of human activity in space and to the further understanding of the solar terrestrial environment through the study of space weather, including the upper atmosphere, magnetosphere, interplanetary space, and the sun. The next-generation Space Weather Integrated Monitoring System (SWIMS) for future space activities based on the present international space weather forecasting system is introduced in this paper. (author)

  18. Daily Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Several different government offices have published the Daily weather maps over its history. The publication has also gone by different names over time. The U.S....

  19. National Weather Service: Watch, Warning, Advisory Display

    Science.gov (United States)

    weather.gov Site Map News Organization Search for: SPC NCEP All NOAA Search by city or zip ... Fire Wx Outlooks RSS Feeds E-Mail Alerts Weather Information Storm Reports Storm Reports Dev. NWS Hazards ...

  20. Successfully Transitioning Science Research to Space Weather Applications

    Science.gov (United States)

    Spann, James

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  1. Chemical dispersibility testing of fresh and weathered oils

    International Nuclear Information System (INIS)

    Brandvik, P.J.; Daling, P.S.; Aareskjold, K.

    1991-05-01

    This activity in the DIspersants on Weathered Oils-project (DIWO) is a continuation and an extended study of the dispersibility study described in DIWO report No. 3. The main objective has been to study the chemical dispersibility of fresh and weathered oils produced or transported in Norwegian waters. Other important aims of this study have been: To correlate the effectiveness results obtained by three different laboratory methods; to determine the relationship between the dispersant effectiveness and the change in the oils' physico-chemical properties due to weathering (topping, photo-oxidation and w/o-emulsification). This study has been performed with 8 different oil types and 12 different weathering degrees of each oil type. The work performed clearly demonstrates that the oil type and especially the weathering properties are essential for the performance of dispersants at sea. 41 figs., 5 tabs., 16 refs

  2. Winter Weather Checklists

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  3. Winter Weather: Frostbite

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  4. Next generation of weather generators on web service framework

    Science.gov (United States)

    Chinnachodteeranun, R.; Hung, N. D.; Honda, K.; Ines, A. V. M.

    2016-12-01

    Weather generator is a statistical model that synthesizes possible realization of long-term historical weather in future. It generates several tens to hundreds of realizations stochastically based on statistical analysis. Realization is essential information as a crop modeling's input for simulating crop growth and yield. Moreover, they can be contributed to analyzing uncertainty of weather to crop development stage and to decision support system on e.g. water management and fertilizer management. Performing crop modeling requires multidisciplinary skills which limit the usage of weather generator only in a research group who developed it as well as a barrier for newcomers. To improve the procedures of performing weather generators as well as the methodology to acquire the realization in a standard way, we implemented a framework for providing weather generators as web services, which support service interoperability. Legacy weather generator programs were wrapped in the web service framework. The service interfaces were implemented based on an international standard that was Sensor Observation Service (SOS) defined by Open Geospatial Consortium (OGC). Clients can request realizations generated by the model through SOS Web service. Hierarchical data preparation processes required for weather generator are also implemented as web services and seamlessly wired. Analysts and applications can invoke services over a network easily. The services facilitate the development of agricultural applications and also reduce the workload of analysts on iterative data preparation and handle legacy weather generator program. This architectural design and implementation can be a prototype for constructing further services on top of interoperable sensor network system. This framework opens an opportunity for other sectors such as application developers and scientists in other fields to utilize weather generators.

  5. Tectonic uplift and denudation rate influence soil chemical weathering intensity in a semi-arid environment, southeast Spain: physico-chemical and mineralogical evidence

    Science.gov (United States)

    Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Schoonejans, Jérôme; Vanacker, Veerle; Sonnet, Philippe; Delmelle, Pierre

    2015-04-01

    Tectonic uplift is known to influence denudation rates. Denudation, including chemical weathering and physical erosion, affects soil production rates and weathering intensities. At topographic steady state, weathering can be transport- or weathering-limited. In the transport-limited regime, low denudation rates should lead to comparatively high weathering intensities, while in the weathering-limited case high denudation rates are associated with lower weathering intensities. Here, we test if this relationship applies to semi-arid environments where chemical weathering is generally slow. Three catchments (EST, FIL and CAB) were studied in the Internal Zone of the Betic Cordillera in southeast Spain, spanning a range of increasing uplift rates (10-170 mm/kyr) and increasing denudation rates (20-250 mm/kyr) from EST to CAB. In each catchment, two ridgetop soil profiles were sampled down to the bedrock. The three catchments have similar vegetation and climatic conditions, with precipitation of 250- 315 mm/yr and mean annual temperature of 15-17 °C. The mineralogy of the bedrock, as determined by XRD, is similar across the three catchments and is characterized by the presence of quartz, muscovite, clinochlore, biotite and plagioclase. This primary mineral assemblage is also found in the catchment soils, indicating that the soils studied derive from the same parent material. The soil clay-size fraction is dominated by kaolinite, vermiculite and illite. However, the proportions of the soil primary and secondary minerals vary between the catchment sites. The abundance of biotite decreases from CAB (14%) to EST (4%), whereas the quartz and clay contents show an opposite tendency (from 30 to 69% and 9.9 to 14.3%, respectively). Further, the abundance of vermiculite increases from CAB to EST. The results are interpreted in terms of increasing weathering intensity from CAB to EST by weathering of biotite into vermiculite and enrichment of soils on more weathering resistant

  6. Weather Support for the 2002 Winter Olympic and Paralympic Games.

    Science.gov (United States)

    Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W. J.; Eubank, M.; Splitt, M.; Onton, D. J.

    2002-02-01

    The 2002 Winter Olympic and Paralympic Games will be hosted by Salt Lake City, Utah, during February-March 2002. Adverse weather during this period may delay sporting events, while snow and ice-covered streets and highways may impede access by the athletes and spectators to the venues. While winter snowstorms and other large-scale weather systems typically have widespread impacts throughout northern Utah, hazardous winter weather is often related to local terrain features (the Wasatch Mountains and Great Salt Lake are the most prominent ones). Examples of such hazardous weather include lake-effect snowstorms, ice fog, gap winds, downslope windstorms, and low visibility over mountain passes.A weather support system has been developed to provide weather information to the athletes, games officials, spectators, and the interested public around the world. This system is managed by the Salt Lake Olympic Committee and relies upon meteorologists from the public, private, and academic sectors of the atmospheric science community. Weather forecasting duties will be led by National Weather Service forecasters and a team of private, weather forecasters organized by KSL, the Salt Lake City NBC television affiliate. Other government agencies, commercial firms, and the University of Utah are providing specialized forecasts and support services for the Olympics. The weather support system developed for the 2002 Winter Olympics is expected to provide long-term benefits to the public through improved understanding,monitoring, and prediction of winter weather in the Intermountain West.

  7. Space Weather, Environment and Societies

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun’s violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the ...

  8. Weather and Air Quality Data of Helsinki

    OpenAIRE

    Bhuiyan, Fairuz

    2016-01-01

    The topic of this thesis is “Weather and air quality data of Helsinki” and the main objective was researching, analyzing and classifying the contents and of the weather and air quality data for the Cityzer project. The final objective was to map and understand the data and the business ecosystem around it, and then classify the data and paint a picture of the whole ecosystem around the data. The aim was to work with the weather companies and partners, such as Vaisala, Pegasor, The Finnish...

  9. Healthy Housing Opportunities During Weatherization Work

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.; Tohn, E.

    2011-03-01

    In the summer and early fall of 2010, the National Center for Healthy Housing interviewed people from a selection of state and local agencies that perform weatherizations on low-income housing in order to gauge their approach to improving the health and safety of the homes. The interviews provided a strong cross section of what work agencies can do, and how they go about funding this work when funds from the Weatherization Assistance Program (WAP) do not cover the full extent of the repairs. The report also makes recommendations for WAP in how to assist agencies to streamline and maximize the health and safety repairs they are able to make in the course of a standard weatherization.

  10. NOAA Weather Radio

    Science.gov (United States)

    del tiempo incluido. Si eres quieres ser avisado de las advertencias y relojes de día o de noche, un Weather Radio relojes son independientes o basadas en el Condado (parroquia basados en Luisiana), aunque

  11. A new precipitation and drought climatology based on weather patterns.

    Science.gov (United States)

    Richardson, Douglas; Fowler, Hayley J; Kilsby, Christopher G; Neal, Robert

    2018-02-01

    Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterize the broad-scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI-based drought months. The new weather-pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation-based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification-based analyses in the UK.

  12. WIRE: Weather Intelligence for Renewable Energies

    Science.gov (United States)

    Heimo, A.; Cattin, R.; Calpini, B.

    2010-09-01

    Renewable energies such as wind and solar energy will play an important, even decisive role in order to mitigate and adapt to the projected dramatic consequences to our society and environment due to climate change. Due to shrinking fossil resources, the transition to more and more renewable energy shares is unavoidable. But, as wind and solar energy are strongly dependent on highly variable weather processes, increased penetration rates will also lead to strong fluctuations in the electricity grid which need to be balanced. Proper and specific forecasting of ‘energy weather' is a key component for this. Therefore, it is today appropriate to scientifically address the requirements to provide the best possible specific weather information for forecasting the energy production of wind and solar power plants within the next minutes up to several days. Towards such aims, Weather Intelligence will first include developing dedicated post-processing algorithms coupled with weather prediction models and with past and/or online measurement data especially remote sensing observations. Second, it will contribute to investigate the difficult relationship between the highly intermittent weather dependent power production and concurrent capacities such as transport and distribution of this energy to the end users. Selecting, resp. developing surface-based and satellite remote sensing techniques well adapted to supply relevant information to the specific post-processing algorithms for solar and wind energy production short-term forecasts is a major task with big potential. It will lead to improved energy forecasts and help to increase the efficiency of the renewable energy productions while contributing to improve the management and presumably the design of the energy grids. The second goal will raise new challenges as this will require first from the energy producers and distributors definitions of the requested input data and new technologies dedicated to the management of

  13. Introducing GFWED: The Global Fire Weather Database

    Science.gov (United States)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; hide

    2015-01-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2-3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia,Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRAs precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphereocean controls on fire weather, and calibration of FWI-based fire prediction models.

  14. Using fire-weather forecasts and local weather observations in predicting burning index for individual fire-danger stations.

    Science.gov (United States)

    Owen P. Cramer

    1958-01-01

    Any agency engaged in forest-fire control needs accurate weather forecasts and systematic procedures for making the best use of predicted and reported weather information. This study explores the practicability of using several tabular and graphical aids for converting area forecasts and local observations of relative humidity and wind speed into predicted values for...

  15. Does Silicate Weathering of Loess Affect Atmospheric CO2?

    Science.gov (United States)

    Anderson, S. P.

    2002-12-01

    Weathering of glacial loess may be a significant, yet unrecognized, component of the carbon cycle. Glaciers produce fine-grained sediment, exposing vast amounts of mineral surface area to weathering processes, yet silicate mineral weathering rates at glacier beds and of glacial till are not high. Thus, despite the tremendous potential for glaciers to influence global weathering rates and atmospheric CO2 levels, this effect has not been demonstrated. Loess, comprised of silt-clay sizes, may be the key glacial deposit in which silicate weathering rates are high. Loess is transported by wind off braid plains of rivers, and deposited broadly (order 100 km from the source) in vegetated areas. Both the fine grain size, and hence large mineral surface area, and presence of vegetation should render loess deposits highly susceptible to silicate weathering. These deposits effectively extend the geochemical impact of glaciation in time and space, and bring rock flour into conditions conducive to chemical weathering. A simple 1-d model of silicate weathering fluxes from a soil profile demonstrates the potential of loess deposition to enhance CO2 consumption. At each time step, computed mineral dissolution (using anorthite and field-based rate constants) modifies the size of mineral grains within the soil. In the case of a stable soil surface, this results in a gradual decline in weathering fluxes and CO2 consumption through time, as finer grain sizes dissolve away. Computed weathering fluxes for a typical loess, with an initial mean grain size of 25 μm, are an order of magnitude greater than fluxes from a non-loess soil that differs only in having a mean grain size of 320 μm. High weathering fluxes are maintained through time if loess is continually deposited. Deposition rates as low as 0.01 mm/yr (one loess grain thickness per year) can lead to a doubling of CO2 consumption rates within 5 ka. These results suggest that even modest loess deposition rates can significantly

  16. Space weather effects on ground based technology

    Science.gov (United States)

    Clark, T.

    Space weather can affect a variety of forms of ground-based technology, usually as a result of either the direct effects of the varying geomagnetic field, or as a result of the induced electric field that accompanies such variations. Technologies affected directly by geomagnetic variations include magnetic measurements made d ringu geophysical surveys, and navigation relying on the geomagnetic field as a direction reference, a method that is particularly common in the surveying of well-bores in the oil industry. The most obvious technology affected by induced electric fields during magnetic storms is electric power transmission, where the example of the blackout in Quebec during the March 1989 magnetic storm is widely known. Additionally, space weather effects must be taken into account in the design of active cathodic protection systems on pipelines to protect them against corrosion. Long-distance telecommunication cables may also have to be designed to cope with space weather related effects. This paper reviews the effects of space weather in these different areas of ground-based technology, and provides examples of how mitigation against hazards may be achieved. (The paper does not include the effects of space weather on radio communication or satellite navigation systems).

  17. Development and Evaluation of a City-Wide Wireless Weather Sensor Network

    Science.gov (United States)

    Chang, Ben; Wang, Hsue-Yie; Peng, Tian-Yin; Hsu, Ying-Shao

    2010-01-01

    This project analyzed the effectiveness of a city-wide wireless weather sensor network, the Taipei Weather Science Learning Network (TWIN), in facilitating elementary and junior high students' study of weather science. The network, composed of sixty school-based weather sensor nodes and a centralized weather data archive server, provides students…

  18. Hydrological modeling using a multi-site stochastic weather generator

    Science.gov (United States)

    Weather data is usually required at several locations over a large watershed, especially when using distributed models for hydrological simulations. In many applications, spatially correlated weather data can be provided by a multi-site stochastic weather generator which considers the spatial correl...

  19. Corrosion processes on weathering steel railway bridge in Prague

    OpenAIRE

    Urban, Viktor; Křivý, Vít; Buchta, Vojtěch

    2016-01-01

    This contribution deals with experimental corrosion tests carried out on the weathering steel railway bridge in Prague. The basic specific property of the weathering steel is an ability to create in favourable environment a protective patina layer on its surface. Since 1968 weathering steel is used under the name “Atmofix” in the Czech Republic and can be used as a standard structural material without any corrosion protection. The weathering steel Atmofix is mostly used for bridge structures ...

  20. CCMC: bringing space weather awareness to the next generation

    Science.gov (United States)

    Chulaki, A.; Muglach, K.; Zheng, Y.; Mays, M. L.; Kuznetsova, M. M.; Taktakishvili, A.; Collado-Vega, Y. M.; Rastaetter, L.; Mendoza, A. M. M.; Thompson, B. J.; Pulkkinen, A. A.; Pembroke, A. D.

    2017-12-01

    Making space weather an element of core education is critical for the future of the young field of space weather. Community Coordinated Modeling Center (CCMC) is an interagency partnership established to aid the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable our small group to serve as a hub for rising generations of young space scientists and engineers. CCMC offers a variety of educational tools and resources publicly available online and providing access to the largest collection of modern space science models developed by the international research community. CCMC has revolutionized the way these simulations are utilized in classrooms settings, student projects, and scientific labs. Every year, this online system serves hundreds of students, educators and researchers worldwide. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unique capabilities and experiences, the team also provides in-depth space weather training to hundreds of students and professionals. One training module offers undergraduates an opportunity to actively engage in real-time space weather monitoring, analysis, forecasting, tools development and research, eventually serving remotely as NASA space weather forecasters. In yet another project, CCMC is collaborating with Hayden Planetarium and Linkoping University on creating a visualization platform for planetariums (and classrooms) to provide simulations of dynamic processes in the large domain stretching from the solar corona to the Earth's upper

  1. Space Weather Forecasting and Research at the Community Coordinated Modeling Center

    Science.gov (United States)

    Aronne, M.

    2015-12-01

    The Space Weather Research Center (SWRC), within the Community Coordinated Modeling Center (CCMC), provides experimental research forecasts and analysis for NASA's robotic mission operators. Space weather conditions are monitored to provide advance warning and forecasts based on observations and modeling using the integrated Space Weather Analysis Network (iSWA). Space weather forecasters come from a variety of backgrounds, ranging from modelers to astrophysicists to undergraduate students. This presentation will discuss space weather operations and research from an undergraduate perspective. The Space Weather Research, Education, and Development Initiative (SW REDI) is the starting point for many undergraduate opportunities in space weather forecasting and research. Space weather analyst interns play an active role year-round as entry-level space weather analysts. Students develop the technical and professional skills to forecast space weather through a summer internship that includes a two week long space weather boot camp, mentorship, poster session, and research opportunities. My unique development of research projects includes studying high speed stream events as well as a study of 20 historic, high-impact solar energetic particle events. This unique opportunity to combine daily real-time analysis with related research prepares students for future careers in Heliophysics.

  2. National Space Weather Program Advances on Several Fronts

    Science.gov (United States)

    Gunzelman, Mark; Babcock, Michael

    2008-10-01

    The National Space Weather Program (NSWP; http://www.nswp.gov) is a U.S. federal government interagency initiative through the Office of the Federal Coordinator for Meteorology that was created to speed the improvement of space weather services for the nation. The Committee for Space Weather (CSW) under the NSWP has continued to advance the program on a number of fronts over the past 12 months.

  3. Analysis of Automated Aircraft Conflict Resolution and Weather Avoidance

    Science.gov (United States)

    Love, John F.; Chan, William N.; Lee, Chu Han

    2009-01-01

    This paper describes an analysis of using trajectory-based automation to resolve both aircraft and weather constraints for near-term air traffic management decision making. The auto resolution algorithm developed and tested at NASA-Ames to resolve aircraft to aircraft conflicts has been modified to mitigate convective weather constraints. Modifications include adding information about the size of a gap between weather constraints to the routing solution. Routes that traverse gaps that are smaller than a specific size are not used. An evaluation of the performance of the modified autoresolver to resolve both conflicts with aircraft and weather was performed. Integration with the Center-TRACON Traffic Management System was completed to evaluate the effect of weather routing on schedule delays.

  4. Adaptive Weather Forecasting using Local Meteorological Information

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    In general, meteorological parameters such as temperature, rain and global radiation are important for agricultural systems. Anticipating on future conditions is most often needed in these systems. Weather forecasts then become of substantial importance. As weather forecasts are subject to

  5. Capturing the WUnder: Using weather stations and WeatherUnderground to increase middle school students' understanding and interest in science

    Science.gov (United States)

    Schild, K. M.; Dunne, P.

    2014-12-01

    New models of elementary- and middle-school level science education are emerging in response to the need for science literacy and the development of the Next Generation Science Standards. One of these models is fostered through the NSF's Graduate Teaching Fellows in K-12 Education (GK-12) program, which pairs a graduate fellow with a science teacher at a local school for an entire school year. In our project, a PhD Earth Sciences student was paired with a local middle school science teacher with the goal of installing a weather station, and incorporating the station data into the 8th grade science curriculum. Here we discuss how we were able to use a school weather station to introduce weather and climate material, engage and involve students in the creative process of science, and motivate students through inquiry-based lessons. In using a weather station as the starting point for material, we were able to make science tangible for students and provide an opportunity for each student to experience the entire process of scientific inquiry. This hands-on approach resulted in a more thorough understanding the system beyond a knowledge of the components, and was particularly effective in challenging prior weather and climate misconceptions. We were also able to expand the reach of the lessons by connecting with other weather stations in our region and even globally, enabling the students to become members of a larger system.

  6. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  7. Vertical Pointing Weather Radar for Built-up Urban Areas

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Thorndahl, Søren; Schaarup-Jensen, Kjeld

    2008-01-01

      A cost effective vertical pointing X-band weather radar (VPR) has been tested for measurement of precipitation in urban areas. Stationary tests indicate that the VPR performs well compared to horizontal weather radars, such as the local area weather radars (LAWR). The test illustrated...

  8. Communicating space weather to policymakers and the wider public

    Science.gov (United States)

    Ferreira, Bárbara

    2014-05-01

    As a natural hazard, space weather has the potential to affect space- and ground-based technological systems and cause harm to human health. As such, it is important to properly communicate this topic to policymakers and the general public alike, informing them (without being unnecessarily alarmist) about the potential impact of space-weather phenomena and how these can be monitored and mitigated. On the other hand, space weather is related to interesting phenomena on the Sun such as coronal-mass ejections, and incorporates one of the most beautiful displays in the Earth and its nearby space environment: aurora. These exciting and fascinating aspects of space weather should be cultivated when communicating this topic to the wider public, particularly to younger audiences. Researchers have a key role to play in communicating space weather to both policymakers and the wider public. Space scientists should have an active role in informing policy decisions on space-weather monitoring and forecasting, for example. And they can exercise their communication skills by talking about space weather to school children and the public in general. This presentation will focus on ways to communicate space weather to wider audiences, particularly policymakers. It will also address the role researchers can play in this activity to help bridge the gap between the space science community and the public.

  9. Asian Dust Weather Categorization with Satellite and Surface Observations

    Science.gov (United States)

    Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen

    2011-01-01

    This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.

  10. Assessment of the ClimGen stochastic weather generator at ...

    African Journals Online (AJOL)

    Simulation of agricultural risk assessment and environmental management requires long series of daily weather data for the area being modelled. Acquiring and formatting this data can be very complex and time-consuming. This has led to the development of weather generation procedures and tools. Weather generators ...

  11. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  12. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  13. Changes in fire weather distributions: effects on predicted fire behavior

    Science.gov (United States)

    Lucy A. Salazar; Larry S. Bradshaw

    1984-01-01

    Data that represent average worst fire weather for a particular area are used to index daily fire danger; however, they do not account for different locations or diurnal weather changes that significantly affect fire behavior potential. To study the effects that selected changes in weather databases have on computed fire behavior parameters, weather data for the...

  14. Presenting Critical Space Weather Information to Customers and Stakeholders (Invited)

    Science.gov (United States)

    Viereck, R. A.; Singer, H. J.; Murtagh, W. J.; Rutledge, B.

    2013-12-01

    Space weather involves changes in the near-Earth space environment that impact technological systems such as electric power, radio communication, satellite navigation (GPS), and satellite opeartions. As with terrestrial weather, there are several different kinds of space weather and each presents unique challenges to the impacted technologies and industries. But unlike terrestrial weather, many customers are not fully aware of space weather or how it impacts their systems. This issue is further complicated by the fact that the largest space weather events occur very infrequently with years going by without severe storms. Recent reports have estimated very large potential costs to the economy and to society if a geomagnetic storm were to cause major damage to the electric power transmission system. This issue has come to the attention of emergency managers and federal agencies including the office of the president. However, when considering space weather impacts, it is essential to also consider uncertainties in the frequency of events and the predicted impacts. The unique nature of space weather storms, the specialized technologies that are impacted by them, and the disparate groups and agencies that respond to space weather forecasts and alerts create many challenges to the task of communicating space weather information to the public. Many customers that receive forecasts and alerts are highly technical and knowledgeable about the subtleties of the space environment. Others know very little and require ongoing education and explanation about how a space weather storm will affect their systems. In addition, the current knowledge and understanding of the space environment that goes into forecasting storms is quite immature. It has only been within the last five years that physics-based models of the space environment have played important roles in predictions. Thus, the uncertainties in the forecasts are quite large. There is much that we don't know about space

  15. Colluvial deposits as a possible weathering reservoir in uplifting mountains

    Science.gov (United States)

    Carretier, Sébastien; Goddéris, Yves; Martinez, Javier; Reich, Martin; Martinod, Pierre

    2018-03-01

    The role of mountain uplift in the evolution of the global climate over geological times is controversial. At the heart of this debate is the capacity of rapid denudation to drive silicate weathering, which consumes CO2. Here we present the results of a 3-D model that couples erosion and weathering during mountain uplift, in which, for the first time, the weathered material is traced during its stochastic transport from the hillslopes to the mountain outlet. To explore the response of weathering fluxes to progressively cooler and drier climatic conditions, we run model simulations accounting for a decrease in temperature with or without modifications in the rainfall pattern based on a simple orographic model. At this stage, the model does not simulate the deep water circulation, the precipitation of secondary minerals, variations in the pH, below-ground pCO2, and the chemical affinity of the water in contact with minerals. Consequently, the predicted silicate weathering fluxes probably represent a maximum, although the predicted silicate weathering rates are within the range of silicate and total weathering rates estimated from field data. In all cases, the erosion rate increases during mountain uplift, which thins the regolith and produces a hump in the weathering rate evolution. This model thus predicts that the weathering outflux reaches a peak and then falls, consistent with predictions of previous 1-D models. By tracking the pathways of particles, the model can also consider how lateral river erosion drives mass wasting and the temporary storage of colluvial deposits on the valley sides. This reservoir is comprised of fresh material that has a residence time ranging from several years up to several thousand years. During this period, the weathering of colluvium appears to sustain the mountain weathering flux. The relative weathering contribution of colluvium depends on the area covered by regolith on the hillslopes. For mountains sparsely covered by regolith

  16. Space Weather Models at the CCMC And Their Capabilities

    Science.gov (United States)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2007-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. In this presentation, we will provide an overview of the community-provided, space weather-relevant, model suite, which resides at CCMC. We will discuss current capabilities, and analyze expected future developments of space weather related modeling.

  17. 49 CFR 176.160 - Protection against weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Protection against weather. 176.160 Section 176.160 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Protection against weather. Any person loading or unloading packages containing Class 1 (explosive) materials...

  18. Multi-Objective Weather Routing of Sailing Vessels

    Directory of Open Access Journals (Sweden)

    Życzkowski Marcin

    2017-12-01

    Full Text Available The paper presents a multi-objective deterministic method of weather routing for sailing vessels. Depending on a particular purpose of sailboat weather routing, the presented method makes it possible to customize the criteria and constraints so as to fit a particular user’s needs. Apart from a typical shortest time criterion, safety and comfort can also be taken into account. Additionally, the method supports dynamic weather data: in its present version short-term, mid-term and long-term term weather forecasts are used during optimization process. In the paper the multi-objective optimization problem is first defined and analysed. Following this, the proposed method solving this problem is described in detail. The method has been implemented as an online SailAssistance application. Some representative examples solutions are presented, emphasizing the effects of applying different criteria or different values of customized parameters.

  19. 14 CFR 25.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 25.961...

  20. Introducing the Global Fire WEather Database (GFWED)

    Science.gov (United States)

    Field, R. D.

    2015-12-01

    The Canadian Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations beginning in 1980 called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5° latitude by 2/3° longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded datasets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA-based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DC=1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously-identified in MERRA's precipitation and reinforce the need to consider alternative sources of precipitation data. GFWED is being used by researchers around the world for analyzing historical relationships between fire weather and fire activity at large scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models. These applications will be discussed. More information on GFWED can be found at http://data.giss.nasa.gov/impacts/gfwed/

  1. An Update on Genetic Resistance of Chickpea to Ascochyta Blight

    Directory of Open Access Journals (Sweden)

    Mamta Sharma

    2016-03-01

    Full Text Available Ascochyta blight (AB caused by Ascochyta rabiei (Pass. Labr. is an important and widespread disease of chickpea (Cicer arietinum L. worldwide. The disease is particularly severe under cool and humid weather conditions. Breeding for host resistance is an efficient means to combat this disease. In this paper, attempts have been made to summarize the progress made in identifying resistance sources, genetics and breeding for resistance, and genetic variation among the pathogen population. The search for resistance to AB in chickpea germplasm, breeding lines and land races using various screening methods has been updated. Importance of the genotype × environment (GE interaction in elucidating the aggressiveness among isolates from different locations and the identification of pathotypes and stable sources of resistance have also been discussed. Current and modern breeding programs for AB resistance based on crossing resistant/multiple resistant and high-yielding cultivars, stability of the breeding lines through multi-location testing and molecular marker-assisted selection method have been discussed. Gene pyramiding and the use of resistant genes present in wild relatives can be useful methods in the future. Identification of additional sources of resistance genes, good characterization of the host–pathogen system, and identification of molecular markers linked to resistance genes are suggested as the key areas for future study.

  2. Location-Related Differences in Weathering Behaviors and Populations of Culturable Rock-Weathering Bacteria Along a Hillside of a Rock Mountain.

    Science.gov (United States)

    Wang, Qi; Wang, Rongrong; He, Linyan; Sheng, Xiafang

    2017-05-01

    Bacteria play important roles in rock weathering, elemental cycling, and soil formation. However, little is known about the weathering potential and population of bacteria inhabiting surfaces of rocks. In this study, we isolated bacteria from the top, middle, and bottom rock samples along a hillside of a rock (trachyte) mountain as well as adjacent soils and characterized rock-weathering behaviors and populations of the bacteria. Per gram of rock or surface soil, 10 6 -10 7 colony forming units were obtained and total 192 bacteria were isolated. Laboratory rock dissolution experiments indicated that the proportions of the highly effective Fe (ranging from 67 to 92 %), Al (ranging from 40 to 48 %), and Cu (ranging from 54 to 81 %) solubilizers were significantly higher in the top rock and soil samples, while the proportion of the highly effective Si (56 %) solubilizers was significantly higher in the middle rock samples. Furthermore, 78, 96, and 6 % of bacteria from the top rocks, soils, and middle rocks, respectively, significantly acidified the culture medium (pH bacteria (79 %) from the rocks were different to those from the soils and most of them (species level) have not been previously reported. Furthermore, location-specific rock-weathering bacterial populations were found and Bacillus species were the most (66 %) frequently isolated rock-weathering bacteria in the rocks based on cultivation methods. Notably, the top rocks and soils had the highest and lowest diversity of rock-weathering bacterial populations, respectively. The results suggested location-related differences in element (Si, Al, Fe, and Cu) releasing effectiveness and communities of rock-weathering bacteria along the hillside of the rock mountain.

  3. Borehole Logging and Slug Tests for Evaluating the Applicability of Electrical Resistivity Tomography for Groundwater Exploration in Nampula Complex, Mozambique

    Directory of Open Access Journals (Sweden)

    Farisse Chirindja

    2017-02-01

    Full Text Available In Nampula province, Mozambique, there is a high number of water wells considered as having failed for having too low a pumping yield. Two Electrical Resistivity Tomography (ERT measurement campaigns were conducted in the area for evaluating the reasons of failures. However, in some cases it was difficult to verify and interpret the ERT results by only using the inadequate lithological description presented in drilling reports. In this paper the integration of borehole logging and slug testing is presented as a solution to add more information and to enhance the interpretation of ERT models. The borehole logging tool measured resistivity, magnetic susceptibility and natural gamma. The logging results proved that the ERT models are accurate in estimating the resistivity for basement (>1400 Ωm, fractured layer (220–1400 Ωm, semi-weathered layer with clay accumulation (10–220 Ωm, and weathered and leached layer (220–2700 Ωm. The slug testing gave results of high hydraulic conductivity (K values where the ERT indicates well-developed weathered and fractured layers, and low K values where these are less developed. The borehole interpretation can be extrapolated using the ERT model to give a geometric characterization of the aquifer. Therefore, the implementation of the ERT method in groundwater exploration is encouraged.

  4. MWR-05XP Mobile Phased Array Weather Radar

    OpenAIRE

    2014-01-01

    The NPS/CIRPAS Weather Radar Project objective is to develop the technology for adding a parallel weather processor capability to tactical military radars and to develop an advanced scientific instrument for investigation of atmospheric phenomena and other various types of research. The payoff to the military will be the integration of current weather data into the tactical radar picture. The payoff to the science community will be the availability of an advanced instrument for inves...

  5. Effects of intraday weather changes on asset returns and volatilities

    Directory of Open Access Journals (Sweden)

    Hyein Shim

    2017-12-01

    Full Text Available Analyzing the intraday dataset on weather and market information with the use of the extended GJR-GARCH framework, this study explores in depth the weather effects on the asset returns and volatilities of the Korean stock and derivatives markets. Our intraday analyses contribute to the existing literature by going beyond the attempt of prior studies to capture the weather effects using the average daily observations alone. The empirical results document a modest presence of the weather effect on the returns and volatilities, though the significance of its impact is found to vary across different market conditions and indices. We also find that the return and volatility respond asymmetrically to extremely good and bad weather conditions. The intraday analyses show that the weather effect on the returns and volatilities is more statistically significant at the beginning of the working day or the lunch break, indicating the intraday weather effects on the financial market.

  6. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications.

    Science.gov (United States)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  7. Combating bad weather part I rain removal from video

    CERN Document Server

    Mukhopadhyay, Sudipta

    2015-01-01

    Current vision systems are designed to perform in normal weather condition. However, no one can escape from severe weather conditions. Bad weather reduces scene contrast and visibility, which results in degradation in the performance of various computer vision algorithms such as object tracking, segmentation and recognition. Thus, current vision systems must include some mechanisms that enable them to perform up to the mark in bad weather conditions such as rain and fog. Rain causes the spatial and temporal intensity variations in images or video frames. These intensity changes are due to the

  8. Biomass converted carbon quantum dots for all-weather solar cells

    International Nuclear Information System (INIS)

    Meng, Yuanyuan; Zhang, Yue; Sun, Weiyin; Wang, Min; He, Benlin; Chen, Haiyan; Tang, Qunwei

    2017-01-01

    Highlights: •CQDs are converted from soybean powders by a hydrothermal method. •The biomass converted CQDs are used for all-weather DSSCs. •The so-called all-weather DSSCs can generate electricity in the daytime and dark. •A dark efficiency as high as 7.97% is determined on the all-weather photovoltaics. •The launched solar cell extend our knowledge of advanced all-weather solar cells. -- Abstract: A great challenge for state-of-the-art photovoltaic devices is to realize electric power generation in all weathers. We constructively demonstrate here the conversion from biomass to carbon quantum dots for all-weather carbon quantum dot solar cells that can generate electricity in the daytime and in the dark. The combination of green-emitting long persistence phosphors with mesoscopic titanium dioxide realizes optical storage by composite photoanode under illumination and excitation to monochromatic green light in the dark. The optimized all-weather solar cell yields maximized dark power conversion efficiency as high as 7.97% along with persistent electricity output for several hours. This work begins a photovoltaic revolution to forward all-weather solar cells as future energy solutions.

  9. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    Science.gov (United States)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements

  10. Weather Support for the 2008 Olympic and Paralympic Sailing Events

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2013-01-01

    Full Text Available The Beijing 2008 Olympic and Paralympic Sailing Competitions (referred to as OPSC hereafter were held at Qingdao during August 9–23 and September 7–13 2008, respectively. The Qingdao Meteorological Bureau was the official provider of weather support for the OPSC. Three-dimensional real-time information with high spatial-temporal resolution was obtained by the comprehensive observation system during the OPSC, which included weather radars, wind profile radars, buoys, automated weather stations, and other conventional observations. The refined forecasting system based on MM5, WRF, and statistical modules provided point-specific hourly wind forecasts for the five venues, and the severe weather monitoring and forecasting system was used in short-term forecasts and nowcasts for rainstorms, gales, and hailstones. Moreover, latest forecasting products, warnings, and weather information were communicated conveniently and timely through a synthetic, speedy, and digitalized network system to different customers. Daily weather information briefings, notice boards, websites, and community short messages were the main approaches for regatta organizers, athletes, and coaches to receive weather service products at 8:00 PM of each day and whenever new updates were available. During the period of OPSC, almost one hundred people were involved in the weather service with innovative service concept, and the weather support was found to be successful and helpful to the OPSC.

  11. Robotic weather balloon launchers spread in Alaska

    Science.gov (United States)

    Rosen, Julia

    2018-04-01

    Last week, things began stirring inside the truck-size box that sat among melting piles of snow at the airport in Fairbanks, Alaska. Before long, the roof of the box yawned open and a weather balloon took off into the sunny afternoon, instruments dangling. The entire launch was triggered with the touch of a button, 5 kilometers away at an office of the National Weather Service (NWS). The flight was smooth, just one of hundreds of twice-daily balloon launches around the world that radio back crucial data for weather forecasts. But most of those balloons are launched by people; the robotic launchers, which are rolling out across Alaska, are proving to be controversial. NWS says the autolaunchers will save money and free up staff to work on more pressing matters. But representatives of the employee union question their reliability, and say they will hasten the end of Alaska's remote weather offices, where forecasting duties and hours have already been slashed.

  12. Kinetically limited weathering at low denudation rates in semiarid climatic conditions

    Science.gov (United States)

    Schoonejans, Jérôme; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Christl, Marcus

    2016-02-01

    Biogeochemical cycling within the Critical Zone depends on the interactions between minerals and fluids controlling chemical weathering and physical erosion rates. In this study, we explore the role of water availability in controlling soil chemical weathering in semiarid climatic conditions. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We combine a geochemical mass balance with 10Be cosmogenic nuclides to constrain chemical weathering intensities and long-term denudation rates. As such, this study presents new data on chemical weathering and 10Be-derived denudation for understudied semiarid climate systems. In the Betic Cordillera, chemical weathering intensities are relatively low (~5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Chemical mass losses are inversely related to denudation rates (14-109 mm/kyr) and positively to soil thickness (14-58 cm); these results are consistent with kinetic limitation of chemical weathering rates. A worldwide compilation of chemical weathering data suggests that soil water balance may regulate the coupling between chemical weathering and physical erosion by modulating soil solute fluxes. Therefore, future landscape evolution models that seek to link chemical weathering and physical erosion should include soil water flux as an essential driver of weathering.

  13. Strontium stable isotope behaviour accompanying basalt weathering

    Science.gov (United States)

    Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.

    2016-12-01

    The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.

  14. Detecting weather radar clutter using satellite-based nowcasting products

    DEFF Research Database (Denmark)

    Jensen, Thomas B.S.; Gill, Rashpal S.; Overgaard, Søren

    2006-01-01

    This contribution presents the initial results from experiments with detection of weather radar clutter by information fusion with satellite based nowcasting products. Previous studies using information fusion of weather radar data and first generation Meteosat imagery have shown promising results...... for the detecting and removal of clutter. Naturally, the improved spatio-temporal resolution of the Meteosat Second Generation sensors, coupled with its increased number of spectral bands, is expected to yield even better detection accuracies. Weather radar data from three C-band Doppler weather radars...... Application Facility' of EUMETSAT and is based on multispectral images from the SEVIRI sensor of the Meteosat-8 platform. Of special interest is the 'Precipitating Clouds' product, which uses the spectral information coupled with surface temperatures from Numerical Weather Predictions to assign probabilities...

  15. Colluvial deposits as a possible weathering reservoir in uplifting mountains

    Directory of Open Access Journals (Sweden)

    S. Carretier

    2018-03-01

    Full Text Available The role of mountain uplift in the evolution of the global climate over geological times is controversial. At the heart of this debate is the capacity of rapid denudation to drive silicate weathering, which consumes CO2. Here we present the results of a 3-D model that couples erosion and weathering during mountain uplift, in which, for the first time, the weathered material is traced during its stochastic transport from the hillslopes to the mountain outlet. To explore the response of weathering fluxes to progressively cooler and drier climatic conditions, we run model simulations accounting for a decrease in temperature with or without modifications in the rainfall pattern based on a simple orographic model. At this stage, the model does not simulate the deep water circulation, the precipitation of secondary minerals, variations in the pH, below-ground pCO2, and the chemical affinity of the water in contact with minerals. Consequently, the predicted silicate weathering fluxes probably represent a maximum, although the predicted silicate weathering rates are within the range of silicate and total weathering rates estimated from field data. In all cases, the erosion rate increases during mountain uplift, which thins the regolith and produces a hump in the weathering rate evolution. This model thus predicts that the weathering outflux reaches a peak and then falls, consistent with predictions of previous 1-D models. By tracking the pathways of particles, the model can also consider how lateral river erosion drives mass wasting and the temporary storage of colluvial deposits on the valley sides. This reservoir is comprised of fresh material that has a residence time ranging from several years up to several thousand years. During this period, the weathering of colluvium appears to sustain the mountain weathering flux. The relative weathering contribution of colluvium depends on the area covered by regolith on the hillslopes. For mountains

  16. Geo-electrical investigation of near surface conductive structures suitable for groundwater accumulation in a resistive crystalline basement environment: A case study of Isuada, southwestern Nigeria

    Science.gov (United States)

    Kayode, J. S.; Adelusi, A. O.; Nawawi, M. N. M.; Bawallah, M.; Olowolafe, T. S.

    2016-07-01

    This paper presents a geophysical surveying for groundwater identification in a resistive crystalline basement hard rock in Isuada area, Southwestern Nigeria. Very low frequency (VLF) electromagnetic and electrical resistivity geophysical techniques combined with well log were used to characterize the concealed near surface conductive structures suitable for groundwater accumulation. Prior to this work; little was known about the groundwater potential of this area. Qualitative and semi-quantitative interpretations of the data collected along eight traverses at 20 m spacing discovered conductive zones suspected to be fractures, faults, and cracks which were further mapped using Vertical Electrical Sounding (VES) technique. Forty VES stations were utilized using Schlumberger configurations with AB/2 varying from 1 to 100 m. Four layers i.e. the top soil, the weathered layer, the partially weathered/fractured basement and the fresh basement were delineated from the interpreted resistivity curves. The weathered layers constitute the major aquifer unit in the area and are characterized by moderately low resistivity values which ranged between about 52 Ωm and 270 Ωm while the thickness varied from 1 to 35 m. The depth to the basement and the permeable nature of the weathered layer obtained from both the borehole and the hand-dug wells was used to categorize the groundwater potential of the study area into high, medium and low ratings. The groundwater potential map revealed that about 45% of the study area falls within the low groundwater potential rating while about 10% constitutes the medium groundwater potential and the remaining 45% constitutes high groundwater potential. The low resistivity, thick overburden, and fractured bedrock constitute the aquifer units and the series of basement depressions identified from the geoelectric sections as potential conductive zones appropriate for groundwater development.

  17. Evaluating the quality and usability of crowdsourced weather data

    Science.gov (United States)

    Koole, Martijn; Siegmund, Peter

    2016-04-01

    In April 2015 the Royal Netherlands Meteorological Institute (KNMI) launched the Weather Observations Website (WOW-NL, https://wow.knmi.nl/) in the Netherlands in cooperation with the UK Met Office, who launched a similar WOW-UK website in 2011. WOW-NL functions as a platform to collect weather data that is measured by amateurs or organizations who own an automatic weather station. Such data can be used to increase the spatial and temporal resolution of existing observation networks. This can be meaningful for better understanding of e.g. urban climate (urban heat islands) and the occurrence of extreme meteorological events. In November 2015 the number of Dutch participants of WOW-NL was approximately 250. The following meteorological parameters are uploaded to the website every 10 minutes: air temperature, air pressure, rainfall rate, humidity, wind speed and wind direction. To get an idea about the location and environment at which the weather stations are placed, participants are asked to rate their station based on exposure, type of devices used and the level of urbanization. They can also specify the elevation and add a short description of the equipment that is used. This study examines the quality of the crowd-sourced weather data by using interpolated weather data that is measured at official weather stations that are operated by KNMI. Measurements at amateur stations are compared with the interpolated measurements and differences are explained using the metadata that the participants specified. A number of days is selected where interesting meteorological situations occurred, such as extremely hot weather, cold fronts, rain fronts or heavy winds. Based on this, recommendations are presented about possible applications of crowd-sourced weather data with respect to the quality level.

  18. Simulation of Daily Weather Data Using Theoretical Probability Distributions.

    Science.gov (United States)

    Bruhn, J. A.; Fry, W. E.; Fick, G. W.

    1980-09-01

    A computer simulation model was constructed to supply daily weather data to a plant disease management model for potato late blight. In the weather model Monte Carlo techniques were employed to generate daily values of precipitation, maximum temperature, minimum temperature, minimum relative humidity and total solar radiation. Each weather variable is described by a known theoretical probability distribution but the values of the parameters describing each distribution are dependent on the occurrence of rainfall. Precipitation occurrence is described by a first-order Markov chain. The amount of rain, given that rain has occurred, is described by a gamma probability distribution. Maximum and minimum temperature are simulated with a trivariate normal probability distribution involving maximum temperature on the previous day, maximum temperature on the current day and minimum temperature on the current day. Parameter values for this distribution are dependent on the occurrence of rain on the previous day. Both minimum relative humidity and total solar radiation are assumed to be normally distributed. The values of the parameters describing the distribution of minimum relative humidity is dependent on rainfall occurrence on the previous day and current day. Parameter values for total solar radiation are dependent on the occurrence of rain on the current day. The assumptions made during model construction were found to be appropriate for actual weather data from Geneva, New York. The performance of the weather model was evaluated by comparing the cumulative frequency distributions of simulated weather data with the distributions of actual weather data from Geneva, New York and Fort Collins, Colorado. For each location, simulated weather data were similar to actual weather data in terms of mean response, variability and autocorrelation. The possible applications of this model when used with models of other components of the agro-ecosystem are discussed.

  19. Weather and forecasting at Wilkins ice runway, Antarctica

    International Nuclear Information System (INIS)

    Carpentier, Scott

    2010-01-01

    Aviation forecasts for Wilkins ice runway in East Antarctica are developed within the conceptual framework of flow against a single dome shaped hill. Forecast challenges include the sudden onset of blizzards associated with the formation of an internal gravity wave; frontal weather; transient wake vortices and mesoscale lows; temperature limitations on runway use; and snow and fog events. These key weather aspects are presented within the context of synoptic to local scale climatologies and numerical weather prediction models.

  20. SYNTOR: A synthetic daily weather generator version 3.4 user manual

    Science.gov (United States)

    Existing records of weather observations are often too short to conduct long duration hydrologic and environmental computer simulations. A computer program can be used to generate synthetic weather data to increase the length of existing weather records. SYNTOR, which stands for SYNthetic weather g...

  1. Artificial Weathering of Biotite and Uranium Sorption Characteristics

    International Nuclear Information System (INIS)

    Lee, Seung Yeop; Baik, Min Hoon; Lee, Jae Kwang

    2009-01-01

    An experiment for uranium sorption onto fresh and weathered biotites was performed. After centrifugation, concentrations of uranium in the supernatants were analyzed using ICP-MS, and biotite samples were investigated using XRD and SEM. With powdered biotites (<3 mm in size), we have conducted uranium sorption experiments about fresh and weathered biotites to obtain uranium sorption amounts in various pH conditions. The uranium sorption was not high at a low pH (e.g., pH 3), but increased with increasing pH. There were lower uranium sorption by the weathered biotites than by the fresh ones, and the difference was much larger at higher pH (e.g., pH 11). The lower sorption values of uranium by the weathered biotites may be caused by a change of mineral surfaces and a chemical behavior of surrounding dissolved elements. It seems that the uranium-mineral interaction has been diminished, especially, in the weathered biotite by a destruction and dissolution of preferential sorption sites on the mineral surfaces and by the colloidal formation from dissolved elements.

  2. Toward seamless weather-climate and environmental prediction

    Science.gov (United States)

    Brunet, Gilbert

    2016-04-01

    Over the last decade or so, predicting the weather, climate and atmospheric composition has emerged as one of the most important areas of scientific endeavor. This is partly because the remarkable increase in skill of current weather forecasts has made society more and more dependent on them day to day for a whole range of decision making. And it is partly because climate change is now widely accepted and the realization is growing rapidly that it will affect every person in the world profoundly, either directly or indirectly. One of the important endeavors of our societies is to remain at the cutting-edge of modelling and predicting the evolution of the fully coupled environmental system: atmosphere (weather and composition), oceans, land surface (physical and biological), and cryosphere. This effort will provide an increasingly accurate and reliable service across all the socio-economic sectors that are vulnerable to the effects of adverse weather and climatic conditions, whether now or in the future. This emerging challenge was at the center of the World Weather Open Science Conference (Montreal, 2014).The outcomes of the conference are described in the World Meteorological Organization (WMO) book: Seamless Prediction of the Earth System: from Minutes to Months, (G. Brunet, S. Jones, P. Ruti Eds., WMO-No. 1156, 2015). It is freely available on line at the WMO website. We will discuss some of the outcomes of the conference for the WMO World Weather Research Programme (WWRP) and Global Atmospheric Watch (GAW) long term goals and provide examples of seamless modelling and prediction across a range of timescales at convective and sub-kilometer scales for regional coupled forecasting applications at Environment and Climate Change Canada (ECCC).

  3. Properties Evaluation of High Density Polyethylene Composite Filled with Bagasse after Accelerated Weathered

    Directory of Open Access Journals (Sweden)

    Peyvand Darabi

    2013-06-01

    Full Text Available Wood plastic composites (WPCs are produced from a mixture of wood (in different sizes and resin (thermoset or thermoplastic. This product has many applications as structural and non-structural materials and since its emerge in market its use received an increasing trend. Adding wood flour to polymer not only improves its mechanical properties compared to net polymer, but also leads to products with moldability characteristics. With increasing demand of WPCs and reduction in forest harvest according to new protecting law of forestry, and lack of raw materials for producers, other lignocelluloses materials replace wood flour. Agricultural by-products such as hemp, coir, rice husk and bagasse (residual from sugar cane extraction are the examples that can be used in WPCs. As the outdoor application of Wood Plastic Composites (WPCs becomes more widespread, the resistance of its products against weathering, particularly ultraviolet (UV light becomes more concerned. When WPCs are exposed to outdoor, ultraviolet (UV light, rain, snow and atmospheric pollution, they will be degraded which is marked by color fade and loss in mechanical properties. Nowadays many manufactures of WPCs use bagasse as a raw material. Their production in different color and shapes are used as arbors and pergolas and also as decorative applications for outdoor uses. However, so far there has been no research done on the effects of weathering on composites made from bagasse. In present study, composites from bagasse and high density polyethylene, with and without pigments in master batch, have been made through extrusion. Then samples were exposed to accelerated weathering for 1440h. After this period of time samples were removed and their chemical, mechanical and surface qualities were studied. The results have shown that using bagasse as filler can relatively reduce the discoloration of weathered samples. Moreover, adding pigments to WPCs can increase colorstability, while it

  4. Root-driven Weathering Impacts on Mineral-Organic Associations in Deep Soil

    Science.gov (United States)

    Keiluweit, M.; Garcia Arredondo, M.; Tfaily, M. M.; Kukkadapu, R. K.; Schulz, M. S.; Lawrence, C. R.

    2017-12-01

    Plant roots dramatically reshape the soil environments through the release of organic compounds. While root-derived organic compounds are recognized as an important source of soil C, their role in promoting weathering reactions has largely been overlooked. On the one hand, root-driven weathering may generate mineral-organic associations, which can protect soil C for centuries to millennia. On the other hand, root-driven weathering also transforms minerals, potentially disrupting protective mineral-organic associations in the process. Hence root-derived C may not only initiate C accumulation, but also diminish C stocks through disruption of mineral-organic associations. Here we determined the impact of rhizogenic weathering on mineral-organic associations, and associated changes in C storage, across the Santa Cruz Marine Terrace chronosequence (65ka-226ka). Using a combination of high-resolution mass spectrometry, Mössbauer, and X-ray (micro)spectroscopy, we examined mineral-organic associations of deep soil horizons characterized by intense rhizogenic weathering gradients. Initial rhizogenic weathering dramatically increased C stocks, which is directly linked to an increase of microbially-derived C bound to monomeric Fe and Al and nano-goethite. As weathering proceeded, the soil C stocks declined concurrent with an increasingly plant-derived C signature and decreasing crystallinity. X-ray spectromicroscopic analyses revealed strong spatial associations between C and Fe during initial weathering stages, indicative of protective mineral-organic associations. In contrast, later weathering stages showed weaker spatial relationships between C and Fe. We conclude that rhizogenic weathering enhance C storage by creating protective mineral-organic associations in the initial weathering stages. As root-driven weathering proceeds, minerals are transformed into more crystalline phases that retain lower amounts of C. Our results demonstrate that root-induced weathering

  5. A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data

    Science.gov (United States)

    Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Gao, Mao-Fang; Huo, Hong-Yuan

    2017-09-01

    Soil moisture has long been recognized as one of the essential variables in the water cycle and energy budget between Earth's surface and atmosphere. The present study develops a practical approach for deriving all-weather soil moisture using combined satellite images and gridded meteorological products. In this approach, soil moisture over the Moderate Resolution Imaging Spectroradiometer (MODIS) clear-sky pixels are estimated from the Vegetation Index/Temperature (VIT) trapezoid scheme in which theoretical dry and wet edges were determined pixel to pixel by China Meteorological Administration Land Data Assimilation System (CLDAS) meteorological products, including air temperature, solar radiation, wind speed and specific humidity. For cloudy pixels, soil moisture values are derived by the calculation of surface and aerodynamic resistances from wind speed. The approach is capable of filling the soil moisture gaps over remaining cloudy pixels by traditional optical/thermal infrared methods, allowing for a spatially complete soil moisture map over large areas. Evaluation over agricultural fields indicates that the proposed approach can produce an overall generally reasonable distribution of all-weather soil moisture. An acceptable accuracy between the estimated all-weather soil moisture and in-situ measurements at different depths could be found with an Root Mean Square Error (RMSE) varying from 0.067 m3/m3 to 0.079 m3/m3 and a slight bias ranging from 0.004 m3/m3 to -0.011 m3/m3. The proposed approach reveals significant potential to derive all-weather soil moisture using currently available satellite images and meteorological products at a regional or global scale in future developments.

  6. The impact of weather on human health.

    Science.gov (United States)

    Sulman, F G

    1984-01-01

    The impact of weather on human health is a well-known fact, yet, alas, neglected in the past. Bioclimatology, a vast field of medical knowledge, has only been developed in the past few years. It shows that the air we breathe has a profound influence on our well-being. Electrical charges of the air, such as ions, spherics and electrofields can affect our endocrine, vegetative and autonomous nerve system. It may even be responsible for post-operative thromboembolism. The present article describes weather reactions, electric radiations, climate rhythm, medical aspects of weather changes, and their effect on health and disease. Special devotion is also given to the manifestations of evil winds.

  7. Hydrologic applications of weather radar

    Science.gov (United States)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows:

  8. Benefits Analysis of Multi-Center Dynamic Weather Routes

    Science.gov (United States)

    Sheth, Kapil; McNally, David; Morando, Alexander; Clymer, Alexis; Lock, Jennifer; Petersen, Julien

    2014-01-01

    Dynamic weather routes are flight plan corrections that can provide airborne flights more than user-specified minutes of flying-time savings, compared to their current flight plan. These routes are computed from the aircraft's current location to a flight plan fix downstream (within a predefined limit region), while avoiding forecasted convective weather regions. The Dynamic Weather Routes automation has been continuously running with live air traffic data for a field evaluation at the American Airlines Integrated Operations Center in Fort Worth, TX since July 31, 2012, where flights within the Fort Worth Air Route Traffic Control Center are evaluated for time savings. This paper extends the methodology to all Centers in United States and presents benefits analysis of Dynamic Weather Routes automation, if it was implemented in multiple airspace Centers individually and concurrently. The current computation of dynamic weather routes requires a limit rectangle so that a downstream capture fix can be selected, preventing very large route changes spanning several Centers. In this paper, first, a method of computing a limit polygon (as opposed to a rectangle used for Fort Worth Center) is described for each of the 20 Centers in the National Airspace System. The Future ATM Concepts Evaluation Tool, a nationwide simulation and analysis tool, is used for this purpose. After a comparison of results with the Center-based Dynamic Weather Routes automation in Fort Worth Center, results are presented for 11 Centers in the contiguous United States. These Centers are generally most impacted by convective weather. A breakdown of individual Center and airline savings is presented and the results indicate an overall average savings of about 10 minutes of flying time are obtained per flight.

  9. Characterization and quantification of preferential flow in fractured rock systems, using resistivity tomography

    CSIR Research Space (South Africa)

    May, F

    2010-11-01

    Full Text Available , N Jovanovic2 and A Rozanov1 University of Stellenbosch1 and Council for Scientific and Industrial Research (CSIR)2 Characterization and quantification of preferential flow in fractured rock systems, using resistivity tomography Introduction... of slow and fast flowing pathways. Materials and Methods TABLE 1 DATE, TIME AND WEATHER CONDITIONS DURING RESISTIVITY TOMOGRAPHY SURVEY Survey No. Date Start time End time Precipitation (mm) Description KB001 8/27/2010 12H00 13H40 0.0 Sunny KB002 8...

  10. Weather impacts on natural, social and economic systems. German report

    Energy Technology Data Exchange (ETDEWEB)

    Flechsig, M; Gerlinger, K; Herrmann, N; Klein, R J.T.; Schneider, M; Sterr, H; Schellnhuber, H J

    2000-05-01

    The EU project Weather Impacts on Natural, Social and Economic Systems (WISE) has analysed impacts of current climate variability to evaluate the sensitivity of today's society to extreme weather. Unlike studies of anticipated impacts of climate change, WISE did not rely on scenarios and projections, but on existing and newly collected data. The research involved (i) the statistical modelling of meteorological and sectoral time series, aimed at quantifying the impacts of changing weather variables on sector output, (ii) a population survey, aimed at investigating public perception of and behavioural response to unusually hot and dry summers and mild winters, and (iii) a management survey, aimed at obtaining insight into managers' awareness and perception of the importance of extreme weather on their operations. The three activities revealed a wealth of data and information, providing relevant insights into Germany's sensitivity to and perception of extreme weather events. Sectors that were analysed included agriculture, outdoor fire, water supply, human health, electricity and gas consumption and tourism. It appears from the statistical modelling that extreme weather can have impressive impacts on all sectors, especially when expressed in monetary terms. However, weather variability is generally considered a manageable risk, to which sectors in Germany appear reasonably well-adapted. The population and management surveys reveal both positive and negative impacts of extreme weather. People generally respond to these impacts by adjusting their activities. The utilities (electricity, gas and water) indicate that they are robsut to the current level of weather variability and do not consider climate change an important threat to their operations. The tourism sector experiences impacts but typically takes a reactive approach to adaptation, although it is also developing weather-insensitive products. (orig.)

  11. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    Science.gov (United States)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  12. Public perceptions of climate change and extreme weather events

    Science.gov (United States)

    Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.

    2013-12-01

    Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such

  13. Space Weather Studies at Istanbul Technical University

    Science.gov (United States)

    Kaymaz, Zerefsan

    2016-07-01

    This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.

  14. Synoptic-scale fire weather conditions in Alaska

    Science.gov (United States)

    Hayasaka, Hiroshi; Tanaka, Hiroshi L.; Bieniek, Peter A.

    2016-09-01

    Recent concurrent widespread fires in Alaska are evaluated to assess their associated synoptic-scale weather conditions. Several periods of high fire activity from 2003 to 2015 were identified using Moderate Resolution Imaging Spectroradiometer (MODIS) hotspot data by considering the number of daily hotspots and their continuity. Fire weather conditions during the top six periods of high fire activity in the fire years of 2004, 2005, 2009, and 2015 were analyzed using upper level (500 hPa) and near surface level (1000 hPa) atmospheric reanalysis data. The top four fire-periods occurred under similar unique high-pressure fire weather conditions related to Rossby wave breaking (RWB). Following the ignition of wildfires, fire weather conditions related to RWB events typically result in two hotspot peaks occurring before and after high-pressure systems move from south to north across Alaska. A ridge in the Gulf of Alaska resulted in southwesterly wind during the first hotspot peak. After the high-pressure system moved north under RWB conditions, the Beaufort Sea High developed and resulted in relatively strong easterly wind in Interior Alaska and a second (largest) hotspot peak during each fire period. Low-pressure-related fire weather conditions occurring under cyclogenesis in the Arctic also resulted in high fire activity under southwesterly wind with a single large hot-spot peak.

  15. Space Weather Outreach: Connection to STEM Standards

    Science.gov (United States)

    Dusenbery, P. B.

    2008-12-01

    Many scientists are studying the Sun-Earth system and attempting to provide timely, accurate, and reliable space environment observations and forecasts. Research programs and missions serve as an ideal focal point for creating educational content, making this an ideal time to inform the public about the importance and value of space weather research. In order to take advantage of this opportunity, the Space Science Institute (SSI) is developing a comprehensive Space Weather Outreach program to reach students, educators, and other members of the public, and share with them the exciting discoveries from this important scientific discipline. The Space Weather Outreach program has the following five components: (1) the Space Weather Center Website that includes online educational games; (2) Small Exhibits for Libraries, Shopping Malls, and Science Centers; (3) After-School Programs; (4) Professional Development Workshops for Educators, and (5) an innovative Evaluation and Education Research project. Its overarching goal is to inspire, engage, and educate a broad spectrum of the public and make strategic and innovative connections between informal and K-12 education communities. An important factor in the success of this program will be its alignment with STEM standards especially those related to science and mathematics. This presentation will describe the Space Weather Outreach program and how standards are being used in the development of each of its components.

  16. Cape Kennedy Weather Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from original weather observations taken at Cape Kennedy Air Force Station, Florida. Elements recorded are wind speed and direction,...

  17. Global Space Weather Observational Network: Challenges and China's Contribution

    Science.gov (United States)

    Wang, C.

    2017-12-01

    To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.

  18. Using 311 Data as a Proxy For Weather Impacts

    Science.gov (United States)

    Zou, X.

    2017-12-01

    According to the World Bank, two-thirds of the global population will lives in urban areas by 2050. The impacts of major weather events have sometimes led to huge economic losses in urban areas and impacts are projected to increase as cities grow. Using remote sensing to study weather in urban areas is challenge because urban areas are small relative to the resolutions of many satellite products. In addition, most human activity is indoors and underground, which neither satellites nor other remote sensing instruments can measure. As a substitute for these instruments, there are datasets that can potentially provide information about the local impacts of the weather. Many cities use the U.S. Federal Communications Commision code for non-emergencies (311) as a hotline for residents to report municipal issues. For example, New York City's 311 dataset contains over a 100 million reports, many of which are potentially related to the impacts of weather events. To isolate the impacts, we aggregate over space and time to reduce the noise in the data and normalize the data to account for uneven distributions of people and complaints. We then compare the potentially weather related 311 reports with global monthly summaries of weather observations from the Global Historical Climatology Network (GHCN) to analyze the impact of weather events as reported by the residents of NYC.

  19. Broadcast media and the dissemination of weather information

    Science.gov (United States)

    Byrnes, J.

    1973-01-01

    Although television is the public's most preferred source of weather information, it fails to provide weather reports to those groups who seek the information early in the day and during the day. The result is that many people most often use radio as a source of information, yet preferring the medium of television. The public actively seeks weather information from both radio and TV stations, usually seeking information on current conditions and short range forecasts. forecasts. Nearly all broadcast stations surveyed were eager to air severe weather bulletins quickly and often. Interest in Nowcasting was high among radio and TV broadcasters, with a significant portion indicating a willingness to pay something for the service. However, interest among TV stations in increasing the number of daily reports was small.

  20. DETERMINING THE THERMAL RESISTANCE OF A VENTILATED HINGED FACADE SYSTEM LAYER

    Directory of Open Access Journals (Sweden)

    Gagarin Vladimir Gennad'evich

    2015-03-01

    Full Text Available Enveloping structures with hinged façade systems are nowadays widely used for moisture control of enveloping structures, prevention of overheating of the structures by insolation, saving the constructions from atmospheric moisture and also for correspondence with the raised requirements to thermal protection of the enveloping structures, aimed also at reducing energy consumption. In the winter conditions the influence of air layer on the thermal insulation parameters is usually neglected. In the article the thermal resistance of an air gap and is considered and its effect in the calculation of the heat resistance of a building envelope with hinged facade system is analyzed in the conditions of cold weather. The thermal resistance of the air layer determines how the heat losses decrease.

  1. Step 1: Human System Integration Pilot-Technology Interface Requirements for Weather Management

    Science.gov (United States)

    2005-01-01

    This document involves definition of technology interface requirements for Hazardous Weather Avoidance. Technology concepts in use by the Access 5 Weather Management Work Package were considered. Beginning with the Human System Integration (HIS) high-level functional requirement for Hazardous Weather Avoidance, and Hazardous Weather Avoidance technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of hazardous weather, and (2) the control capability needed by the pilot to obtain hazardous weather information. Fundamentally, these requirements provide the candidate Hazardous Weather Avoidance technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Hazardous Weather Avoidance operations and functions should interface with the pilot to provide the necessary Weather Management functionality to the UA-pilot system. Requirements and guidelines for Hazardous Weather Avoidance are partitioned into four categories: (1) Planning En Route (2) Encountering Hazardous Weather En Route, (3) Planning to Destination, and (4) Diversion Planning Alternate Airport. Each requirement is stated and is supported with a rationale and associated reference(s).

  2. NASA Dryden Flight Research Center's Space Weather Needs

    Science.gov (United States)

    Wiley, Scott

    2011-01-01

    Presentation involves educating Goddard Space Weather staff about what our needs are, what type of aircraft we have and to learn what we have done in the past to minimize our exposure to Space Weather Hazards.

  3. Extreme weather is increasing flood-related damage along ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-08

    Jun 8, 2016 ... IDRC-supported researchers have found changes in weather patterns and in the intensity of extreme weather events are resulting in the ... the design of adaptation policies and risk management scenarios. ... Related articles ...

  4. Parametrization of the Richardson weather generator within the European Union

    NARCIS (Netherlands)

    Voet, van der P.; Kramer, K.; Diepen, van C.A.

    1996-01-01

    The Richardson model for mathematically generating daily weather data was parametrized. Thirty years' time-series of the 355 main meteorological stations in the European Union formed the database. Model parameters were derived from both observed weather station data and interpolated weather data on

  5. Temporal associations between weather and headache: analysis by empirical mode decomposition.

    Directory of Open Access Journals (Sweden)

    Albert C Yang

    Full Text Available BACKGROUND: Patients frequently report that weather changes trigger headache or worsen existing headache symptoms. Recently, the method of empirical mode decomposition (EMD has been used to delineate temporal relationships in certain diseases, and we applied this technique to identify intrinsic weather components associated with headache incidence data derived from a large-scale epidemiological survey of headache in the Greater Taipei area. METHODOLOGY/PRINCIPAL FINDINGS: The study sample consisted of 52 randomly selected headache patients. The weather time-series parameters were detrended by the EMD method into a set of embedded oscillatory components, i.e. intrinsic mode functions (IMFs. Multiple linear regression models with forward stepwise methods were used to analyze the temporal associations between weather and headaches. We found no associations between the raw time series of weather variables and headache incidence. For decomposed intrinsic weather IMFs, temperature, sunshine duration, humidity, pressure, and maximal wind speed were associated with headache incidence during the cold period, whereas only maximal wind speed was associated during the warm period. In analyses examining all significant weather variables, IMFs derived from temperature and sunshine duration data accounted for up to 33.3% of the variance in headache incidence during the cold period. The association of headache incidence and weather IMFs in the cold period coincided with the cold fronts. CONCLUSIONS/SIGNIFICANCE: Using EMD analysis, we found a significant association between headache and intrinsic weather components, which was not detected by direct comparisons of raw weather data. Contributing weather parameters may vary in different geographic regions and different seasons.

  6. An introduction to Space Weather Integrated Modeling

    Science.gov (United States)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  7. Explaining the road accident risk: weather effects.

    Science.gov (United States)

    Bergel-Hayat, Ruth; Debbarh, Mohammed; Antoniou, Constantinos; Yannis, George

    2013-11-01

    This research aims to highlight the link between weather conditions and road accident risk at an aggregate level and on a monthly basis, in order to improve road safety monitoring at a national level. It is based on some case studies carried out in Work Package 7 on "Data analysis and synthesis" of the EU-FP6 project "SafetyNet-Building the European Road Safety Observatory", which illustrate the use of weather variables for analysing changes in the number of road injury accidents. Time series analysis models with explanatory variables that measure the weather quantitatively were used and applied to aggregate datasets of injury accidents for France, the Netherlands and the Athens region, over periods of more than 20 years. The main results reveal significant correlations on a monthly basis between weather variables and the aggregate number of injury accidents, but the magnitude and even the sign of these correlations vary according to the type of road (motorways, rural roads or urban roads). Moreover, in the case of the interurban network in France, it appears that the rainfall effect is mainly direct on motorways--exposure being unchanged, and partly indirect on main roads--as a result of changes in exposure. Additional results obtained on a daily basis for the Athens region indicate that capturing the within-the-month variability of the weather variables and including it in a monthly model highlights the effects of extreme weather. Such findings are consistent with previous results obtained for France using a similar approach, with the exception of the negative correlation between precipitation and the number of injury accidents found for the Athens region, which is further investigated. The outlook for the approach and its added value are discussed in the conclusion. Copyright © 2013. Published by Elsevier Ltd.

  8. An abridged history of federal involvement in space weather forecasting

    Science.gov (United States)

    Caldwell, Becaja; McCarron, Eoin; Jonas, Seth

    2017-10-01

    Public awareness of space weather and its adverse effects on critical infrastructure systems, services, and technologies (e.g., the electric grid, telecommunications, and satellites) has grown through recent media coverage and scientific research. However, federal interest and involvement in space weather dates back to the decades between World War I and World War II when the National Bureau of Standards led efforts to observe, forecast, and provide warnings of space weather events that could interfere with high-frequency radio transmissions. The efforts to observe and predict space weather continued through the 1960s during the rise of the Cold War and into the present with U.S. government efforts to prepare the nation for space weather events. This paper provides a brief overview of the history of federal involvement in space weather forecasting from World War II, through the Apollo Program, and into the present.

  9. Weathered antlers as a source of DNA

    Science.gov (United States)

    Roy G. Lopez; Paul Beier

    2012-01-01

    We tested antlers of Coues white-tailed (Odocoileus virginianus couesi) and mule deer (O. hemionus) in various stages of natural decomposition to determine the degree of weathering that cast antlers could endure and still yield usable DNA. Based on physical characteristics, we partitioned antlers into 7 weathering categories ranging from freshly cast (class 1) to...

  10. Research on weathering and biomarkers in heavy fuel oil

    International Nuclear Information System (INIS)

    Ma, Q.; Li, Z.; Yu, Z.

    2008-01-01

    The fate of oil spilled in the ocean depends on several physicochemical and biological factors such as evaporation, dissolution, microbial degradation and photo-oxidation. These weathering processes decrease the low molecules in spilled oils which reduces the harmful effects of spilled oil to the ocean and biota near the spill. In addition to changing the composition of the oil, some weathering processes are key to identifying the spilled oil. As such, the relationship between the weathering processes and the changes in oil composition must be well understood. This paper used gas chromatography and mass spectrometry (GC/MS) to analyze changes of chemical components in heavy fuel oil by weathering in static seawater. The major alkanes of heavy fuel oil include C8 to C33, while the major aromatics include benzene, naphthalene, phenanthrene and dibenzothiophene. After 24 weeks of weathering in seawater, the alkanes from n-C8 to n-C15 evaporated in order of increasing carbon number. The susceptibility of n-alkanes was correlated with carbon numbers. The aromatics evaporated in order of increasing carbon and ring number as weathering time increased. 8 refs., 3 tabs., 5 figs

  11. Weather impacts on natural, social and economic systems. German report

    Energy Technology Data Exchange (ETDEWEB)

    Flechsig, M.; Gerlinger, K.; Herrmann, N.; Klein, R.J.T.; Schneider, M.; Sterr, H.; Schellnhuber, H.J.

    2000-05-01

    The EU project Weather Impacts on Natural, Social and Economic Systems (WISE) has analysed impacts of current climate variability to evaluate the sensitivity of today's society to extreme weather. Unlike studies of anticipated impacts of climate change, WISE did not rely on scenarios and projections, but on existing and newly collected data. The research involved (i) the statistical modelling of meteorological and sectoral time series, aimed at quantifying the impacts of changing weather variables on sector output, (ii) a population survey, aimed at investigating public perception of and behavioural response to unusually hot and dry summers and mild winters, and (iii) a management survey, aimed at obtaining insight into managers' awareness and perception of the importance of extreme weather on their operations. The three activities revealed a wealth of data and information, providing relevant insights into Germany's sensitivity to and perception of extreme weather events. Sectors that were analysed included agriculture, outdoor fire, water supply, human health, electricity and gas consumption and tourism. It appears from the statistical modelling that extreme weather can have impressive impacts on all sectors, especially when expressed in monetary terms. However, weather variability is generally considered a manageable risk, to which sectors in Germany appear reasonably well-adapted. The population and management surveys reveal both positive and negative impacts of extreme weather. People generally respond to these impacts by adjusting their activities. The utilities (electricity, gas and water) indicate that they are robsut to the current level of weather variability and do not consider climate change an important threat to their operations. The tourism sector experiences impacts but typically takes a reactive approach to adaptation, although it is also developing weather-insensitive products. (orig.)

  12. National Oceanic and Atmospheric Administration: National Weather Service Modernization and Weather Satellite Program

    National Research Council Canada - National Science Library

    Willemssen, Joel

    2000-01-01

    ...). At your request, we will discuss the status of the National Weather Service (NWS) systems modernization and the National Environmental Satellite, Data, and Information Service's Geostationary Operational Environmental Satellite (GOES) program...

  13. Calibration of Smartphone-Based Weather Measurements Using Pairwise Gossip.

    Science.gov (United States)

    Zamora, Jane Louie Fresco; Kashihara, Shigeru; Yamaguchi, Suguru

    2015-01-01

    Accurate and reliable daily global weather reports are necessary for weather forecasting and climate analysis. However, the availability of these reports continues to decline due to the lack of economic support and policies in maintaining ground weather measurement systems from where these reports are obtained. Thus, to mitigate data scarcity, it is required to utilize weather information from existing sensors and built-in smartphone sensors. However, as smartphone usage often varies according to human activity, it is difficult to obtain accurate measurement data. In this paper, we present a heuristic-based pairwise gossip algorithm that will calibrate smartphone-based pressure sensors with respect to fixed weather stations as our referential ground truth. Based on actual measurements, we have verified that smartphone-based readings are unstable when observed during movement. Using our calibration algorithm on actual smartphone-based pressure readings, the updated values were significantly closer to the ground truth values.

  14. Active Discriminative Dictionary Learning for Weather Recognition

    Directory of Open Access Journals (Sweden)

    Caixia Zheng

    2016-01-01

    Full Text Available Weather recognition based on outdoor images is a brand-new and challenging subject, which is widely required in many fields. This paper presents a novel framework for recognizing different weather conditions. Compared with other algorithms, the proposed method possesses the following advantages. Firstly, our method extracts both visual appearance features of the sky region and physical characteristics features of the nonsky region in images. Thus, the extracted features are more comprehensive than some of the existing methods in which only the features of sky region are considered. Secondly, unlike other methods which used the traditional classifiers (e.g., SVM and K-NN, we use discriminative dictionary learning as the classification model for weather, which could address the limitations of previous works. Moreover, the active learning procedure is introduced into dictionary learning to avoid requiring a large number of labeled samples to train the classification model for achieving good performance of weather recognition. Experiments and comparisons are performed on two datasets to verify the effectiveness of the proposed method.

  15. Space Weather Forecasting and Supporting Research in the USA

    Science.gov (United States)

    Pevtsov, A. A.

    2017-12-01

    In the United State, scientific research in space weather is funded by several Government Agencies including the National Science Foundation (NSF) and the National Aeronautics and Space Agency (NASA). For civilian and commercial purposes, space weather forecast is done by the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA). Observational data for modeling come from the network of groundbased observatories funded via various sources, as well as from the instruments on spacecraft. Numerical models used in forecast are developed in framework of individual research projects. The article provides a brief review of current state of space weather-related research and forecasting in the USA.

  16. Recent Progress of Solar Weather Forecasting at Naoc

    Science.gov (United States)

    He, Han; Wang, Huaning; Du, Zhanle; Zhang, Liyun; Huang, Xin; Yan, Yan; Fan, Yuliang; Zhu, Xiaoshuai; Guo, Xiaobo; Dai, Xinghua

    The history of solar weather forecasting services at National Astronomical Observatories, Chinese Academy of Sciences (NAOC) can be traced back to 1960s. Nowadays, NAOC is the headquarters of the Regional Warning Center of China (RWC-China), which is one of the members of the International Space Environment Service (ISES). NAOC is responsible for exchanging data, information and space weather forecasts of RWC-China with other RWCs. The solar weather forecasting services at NAOC cover short-term prediction (within two or three days), medium-term prediction (within several weeks), and long-term prediction (in time scale of solar cycle) of solar activities. Most efforts of the short-term prediction research are concentrated on the solar eruptive phenomena, such as flares, coronal mass ejections (CMEs) and solar proton events, which are the key driving sources of strong space weather disturbances. Based on the high quality observation data of the latest space-based and ground-based solar telescopes and with the help of artificial intelligence techniques, new numerical models with quantitative analyses and physical consideration are being developed for the predictions of solar eruptive events. The 3-D computer simulation technology is being introduced for the operational solar weather service platform to visualize the monitoring of solar activities, the running of the prediction models, as well as the presenting of the forecasting results. A new generation operational solar weather monitoring and forecasting system is expected to be constructed in the near future at NAOC.

  17. Predicting Space Weather: Challenges for Research and Operations

    Science.gov (United States)

    Singer, H. J.; Onsager, T. G.; Rutledge, R.; Viereck, R. A.; Kunches, J.

    2013-12-01

    Society's growing dependence on technologies and infrastructure susceptible to the consequences of space weather has given rise to increased attention at the highest levels of government as well as inspired the need for both research and improved space weather services. In part, for these reasons, the number one goal of the recent National Research Council report on a Decadal Strategy for Solar and Space Physics is to 'Determine the origins of the Sun's activity and predict the variations in the space environment.' Prediction of conditions in our space environment is clearly a challenge for both research and operations, and we require the near-term development and validation of models that have sufficient accuracy and lead time to be useful to those impacted by space weather. In this presentation, we will provide new scientific results of space weather conditions that have challenged space weather forecasters, and identify specific areas of research that can lead to improved capabilities. In addition, we will examine examples of customer impacts and requirements as well as the challenges to the operations community to establish metrics that enable the selection and transition of models and observations that can provide the greatest economic and societal benefit.

  18. A Dynamic Programming Approach for Pricing Weather Derivatives under Issuer Default Risk

    Directory of Open Access Journals (Sweden)

    Wolfgang Karl Härdle

    2017-10-01

    Full Text Available Weather derivatives are contingent claims with payoff based on a pre-specified weather index. Firms exposed to weather risk can transfer it to financial markets via weather derivatives. We develop a utility-based model for pricing baskets of weather derivatives under default risk on the issuer side in over-the-counter markets. In our model, agents maximise the expected utility of their terminal wealth, while they dynamically rebalance their weather portfolios over a finite investment horizon. Using dynamic programming approach, we obtain semi-closed forms for the equilibrium prices of weather derivatives and for the optimal strategies of the agents. We give an example on how to price rainfall derivatives on selected stations in China in the universe of a financial investor and a weather exposed crop insurer.

  19. Simulation and Data Analytics for Mobile Road Weather Sensors

    Science.gov (United States)

    Chettri, S. R.; Evans, J. D.; Tislin, D.

    2016-12-01

    Numerous algorithmic and theoretical considerations arise in simulating a vehicle-based weather observation network known as the Mobile Platform Environmental Data (MoPED). MoPED integrates sensor data from a fleet of commercial vehicles (about 600 at last count, with thousands more to come) as they travel interstate, state and local routes and metropolitan areas throughout the conterminous United States. The MoPED simulator models a fleet of anywhere between 1000-10,000 vehicles that travel a highway network encoded in a geospatial database, starting and finishing at random times and moving at randomly-varying speeds. Virtual instruments aboard these vehicles interpolate surface weather parameters (such as temperature and pressure) from the High-Resolution Rapid Refresh (HRRR) data series, an hourly, coast-to-coast 3km grid of weather parameters modeled by the National Centers for Environmental Prediction. Whereas real MoPED sensors have noise characteristics that lead to drop-outs, drift, or physically unrealizable values, our simulation introduces a variety of noise distributions into the parameter values inferred from HRRR (Fig. 1). Finally, the simulator collects weather readings from the National Weather Service's Automated Surface Observation System (ASOS, comprised of over 800 airports around the country) for comparison, validation, and analytical experiments. The simulator's MoPED-like weather data stream enables studies like the following: Experimenting with data analysis and calibration methods - e.g., by comparing noisy vehicle data with ASOS "ground truth" in close spatial and temporal proximity (e.g., 10km, 10 min) (Fig. 2). Inter-calibrating different vehicles' sensors when they pass near each other. Detecting spatial structure in the surface weather - such as dry lines, sudden changes in humidity that accompany severe weather - and estimating how many vehicles are needed to reliably map these structures and their motion. Detecting bottlenecks in the

  20. Uruguay - Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface weather observation forms for 26 stations in Uruguay. Period of record 1896-2005, with two to eight observations per day. Files created through a...

  1. Simulating spatial and temporally related fire weather

    Science.gov (United States)

    Isaac C. Grenfell; Mark Finney; Matt Jolly

    2010-01-01

    Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...

  2. Android Smartphone Relevance to Military Weather Applications

    Science.gov (United States)

    2011-10-01

    lithium -ion battery that may be replaced by the user (unlike Apple iPod Touch devices), thus spare batteries can be carried. If there is only sporadic...Android Smartphone Relevance to Military Weather Applications by David Sauter ARL-TR-5793 October 2011...Android Smartphone Relevance to Military Weather Applications David Sauter Computational and Information Sciences Directorate, ARL

  3. Fire weather and large fire potential in the northern Sierra Nevada

    Science.gov (United States)

    Brandon M. Collins

    2014-01-01

    Fuels, weather, and topography all contribute to observed fire behavior. Of these, weather is not only the most dynamic factor, it is the most likely to be directly influenced by climate change. In this study 40 years of daily fire weather observations from five weather stations across the northern Sierra Nevada were analyzed to investigate potential changes or trends...

  4. Extreme weather-year sequences have nonadditive effects on environmental nitrogen losses.

    Science.gov (United States)

    Iqbal, Javed; Necpalova, Magdalena; Archontoulis, Sotirios V; Anex, Robert P; Bourguignon, Marie; Herzmann, Daryl; Mitchell, David C; Sawyer, John E; Zhu, Qing; Castellano, Michael J

    2018-01-01

    The frequency and intensity of extreme weather years, characterized by abnormal precipitation and temperature, are increasing. In isolation, these years have disproportionately large effects on environmental N losses. However, the sequence of extreme weather years (e.g., wet-dry vs. dry-wet) may affect cumulative N losses. We calibrated and validated the DAYCENT ecosystem process model with a comprehensive set of biogeophysical measurements from a corn-soybean rotation managed at three N fertilizer inputs with and without a winter cover crop in Iowa, USA. Our objectives were to determine: (i) how 2-year sequences of extreme weather affect 2-year cumulative N losses across the crop rotation, and (ii) if N fertilizer management and the inclusion of a winter cover crop between corn and soybean mitigate the effect of extreme weather on N losses. Using historical weather (1951-2013), we created nine 2-year scenarios with all possible combinations of the driest ("dry"), wettest ("wet"), and average ("normal") weather years. We analyzed the effects of these scenarios following several consecutive years of relatively normal weather. Compared with the normal-normal 2-year weather scenario, 2-year extreme weather scenarios affected 2-year cumulative NO 3 - leaching (range: -93 to +290%) more than N 2 O emissions (range: -49 to +18%). The 2-year weather scenarios had nonadditive effects on N losses: compared with the normal-normal scenario, the dry-wet sequence decreased 2-year cumulative N 2 O emissions while the wet-dry sequence increased 2-year cumulative N 2 O emissions. Although dry weather decreased NO 3 - leaching and N 2 O emissions in isolation, 2-year cumulative N losses from the wet-dry scenario were greater than the dry-wet scenario. Cover crops reduced the effects of extreme weather on NO 3 - leaching but had a lesser effect on N 2 O emissions. As the frequency of extreme weather is expected to increase, these data suggest that the sequence of interannual weather

  5. Progress report of the National Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Berry, L.G.; Brown, M.A. [Oak Ridge National Lab., TN (United States); Kinney, L.F. [Synertech Systems Corp. (United States)

    1997-09-01

    The National Weatherization Evaluation of the 1989 Program Year and the Metaevaluation of 1996 are described in two ways in this summary document. The text pages summarize the results of the two evaluations conducted by the Oak Ridge National Laboratory. The photographs and explanations illustrate weatherization operations and tactics. An overview and history of the program is provided, followed by the scope of weatherization, metaevaluation methods and results for 1996, national evaluation methods and results for 1989, response to evaluation findings, remaining opportunities, and next steps. Conclusions and significant findings are then given.

  6. Extreme Weather and Climate: Workshop Report

    Science.gov (United States)

    Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc; hide

    2016-01-01

    Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.

  7. The Weatherization Assistant User's Manual (Version 8.9)

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, Michael B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Malhotra, Mini [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ternes, Mark P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The Weatherization Assistant is a Windows-based energy audit software tool that was developed by Oak Ridge National Laboratory (ORNL) to help states and their local weatherization agencies implement the U.S. Department of Energy (DOE) Weatherization Assistance Program. The Weatherization Assistant is an umbrella program for two individual energy audits or measure selection programs: the National Energy Audit Tool (NEAT) for site-built single-family homes and the Manufactured Home Energy Audit (MHEA) for mobile homes. The Weatherization Assistant User's Manual documents the operation of the user interface for Version 8.9 of the software. This includes how to install and setup the software, navigate through the program, and initiate an energy audit. All of the user interface forms associated with the software and the data fields on these forms are described in detail. The manual is intended to be a training manual for new users of the Weatherization Assistant and as a reference manual for experienced users.

  8. Microcontroller-based network for meteorological sensing and weather forecast calculations

    Directory of Open Access Journals (Sweden)

    A. Vas

    2012-06-01

    Full Text Available Weather forecasting needs a lot of computing power. It is generally accomplished by using supercomputers which are expensive to rent and to maintain. In addition, weather services also have to maintain radars, balloons and pay for worldwide weather data measured by stations and satellites. Weather forecasting computations usually consist of solving differential equations based on the measured parameters. To do that, the computer uses the data of close and distant neighbor points. Accordingly, if small-sized weather stations, which are capable of making measurements, calculations and communication, are connected through the Internet, then they can be used to run weather forecasting calculations like a supercomputer does. It doesn’t need any central server to achieve this, because this network operates as a distributed system. We chose Microchip’s PIC18 microcontroller (μC platform in the implementation of the hardware, and the embedded software uses the TCP/IP Stack v5.41 provided by Microchip.

  9. A Data Model for Determining Weather's Impact on Travel Time

    DEFF Research Database (Denmark)

    Andersen, Ove; Torp, Kristian

    2016-01-01

    Accurate estimating travel times in road networks is a complex task because travel times depends on factors such as the weather. In this paper, we present a generic model for integrating weather data with GPS data to improve the accuracy of the estimated travel times. First, we present a data model...... for storing and map-matching GPS data, and integrating this data with detailed weather data. The model is generic in the sense that it can be used anywhere GPS data and weather data is available. Next, we analyze the correlation between travel time and the weather classes dry, fog, rain, and snow along...... with winds impact on travel time. Using a data set of 1.6 billion GPS records collected from 10,560 vehicles, over a 5 year period from all of Denmark, we show that snow can increase the travel time up to 27% and strong headwind can increase the travel time with up to 19% (compared to dry calm weather...

  10. Recent Activities on the Embrace Space Weather Regional Warning Center: the New Space Weather Data Center

    Science.gov (United States)

    Denardini, Clezio Marcos; Dal Lago, Alisson; Mendes, Odim; Batista, Inez S.; SantAnna, Nilson; Gatto, Rubens; Takahashi, Hisao; Costa, D. Joaquim; Banik Padua, Marcelo; Campos Velho, Haroldo

    2016-07-01

    On August 2007 the National Institute for Space Research started a task force to develop and operate a space weather program, which is known by the acronyms Embrace that stands for the Portuguese statement "Estudo e Monitoramento BRAasileiro de Clima Espacial" Program (Brazilian Space Weather Study and Monitoring program). The mission of the Embrace/INPE program is to monitor the Solar-Terrestrial environment, the magnetosphere, the upper atmosphere and the ground induced currents to prevent effects on technological and economic activities. The Embrace/INPE system monitors the physical parameters of the Sun-Earth environment, such as Active Regions (AR) in the Sun and solar radiation by using radio telescope, Coronal Mass Ejection (CME) information by satellite and ground-based cosmic ray monitoring, geomagnetic activity by the magnetometer network, and ionospheric disturbance by ionospheric sounders and using data collected by four GPS receiver network, geomagnetic activity by a magnetometer network, and provides a forecasting for Total Electronic Content (TEC) - 24 hours ahead - using a version of the SUPIM model which assimilates the two latter data using nudging approach. Most of these physical parameters are daily published on the Brazilian space weather program web portal, related to the entire network sensors available. Regarding outreach, it has being published a daily bulletin in Portuguese and English with the status of the space weather environment on the Sun, the Interplanetary Medium and close to the Earth. Since December 2011, all these activities are carried out at the Embrace Headquarter, a building located at the INPE's main campus. Recently, a comprehensive data bank and an interface layer are under commissioning to allow an easy and direct access to all the space weather data collected by Embrace through the Embrace web Portal. The information being released encompasses data from: (a) the Embrace Digisonde Network (Embrace DigiNet) that monitors

  11. Oil Rig Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather observations taken at offshore platforms along the United States coastlines. The majority are located in oil-rich areas of the Gulf of Mexico, Gulf of...

  12. Surface Weather Observations Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather Observation 1001 Forms is a set of historical manuscript records for the period 1893-1948. The collection includes two very similar form types: Form...

  13. Detection and attribution of extreme weather disasters

    Science.gov (United States)

    Huggel, Christian; Stone, Dáithí; Hansen, Gerrit

    2014-05-01

    Single disasters related to extreme weather events have caused loss and damage on the order of up to tens of billions US dollars over the past years. Recent disasters fueled the debate about whether and to what extent these events are related to climate change. In international climate negotiations disaster loss and damage is now high on the agenda, and related policy mechanisms have been discussed or are being implemented. In view of funding allocation and effective risk reduction strategies detection and attribution to climate change of extreme weather events and disasters is a key issue. Different avenues have so far been taken to address detection and attribution in this context. Physical climate sciences have developed approaches, among others, where variables that are reasonably sampled over climatically relevant time periods and related to the meteorological characteristics of the extreme event are examined. Trends in these variables (e.g. air or sea surface temperatures) are compared between observations and climate simulations with and without anthropogenic forcing. Generally, progress has been made in recent years in attribution of changes in the chance of some single extreme weather events to anthropogenic climate change but there remain important challenges. A different line of research is primarily concerned with losses related to the extreme weather events over time, using disaster databases. A growing consensus is that the increase in asset values and in exposure are main drivers of the strong increase of economic losses over the past several decades, and only a limited number of studies have found trends consistent with expectations from climate change. Here we propose a better integration of existing lines of research in detection and attribution of extreme weather events and disasters by applying a risk framework. Risk is thereby defined as a function of the probability of occurrence of an extreme weather event, and the associated consequences

  14. Building resilience to weather-related hazards through better preparedness

    Science.gov (United States)

    Keller, Julia; Golding, Brian; Johnston, David; Ruti, Paolo

    2017-04-01

    Recent developments in weather forecasting have transformed our ability to predict weather-related hazards, while mobile communication is radically changing the way that people receive information. At the same time, vulnerability to weather-related hazards is growing through urban expansion, population growth and climate change. This talk will address issues facing the science community in responding to the Sendai Framework objective to "substantially increase the availability of and access to multi-hazard early warning systems" in the context of weather-related hazards. It will also provide an overview of activities and approaches developed in the World Meteorological Organisation's High Impact Weather (HIWeather) project. HIWeather has identified and is promoting research in key multi-disciplinary gaps in our knowledge, including in basic meteorology, risk prediction, communication and decision making, that affect our ability to provide effective warnings. The results will be pulled together in demonstration projects that will both showcase leading edge capability and build developing country capacity.

  15. Calibration of Smartphone-Based Weather Measurements Using Pairwise Gossip

    Directory of Open Access Journals (Sweden)

    Jane Louie Fresco Zamora

    2015-01-01

    Full Text Available Accurate and reliable daily global weather reports are necessary for weather forecasting and climate analysis. However, the availability of these reports continues to decline due to the lack of economic support and policies in maintaining ground weather measurement systems from where these reports are obtained. Thus, to mitigate data scarcity, it is required to utilize weather information from existing sensors and built-in smartphone sensors. However, as smartphone usage often varies according to human activity, it is difficult to obtain accurate measurement data. In this paper, we present a heuristic-based pairwise gossip algorithm that will calibrate smartphone-based pressure sensors with respect to fixed weather stations as our referential ground truth. Based on actual measurements, we have verified that smartphone-based readings are unstable when observed during movement. Using our calibration algorithm on actual smartphone-based pressure readings, the updated values were significantly closer to the ground truth values.

  16. A Real-Time Offshore Weather Risk Advisory System

    Science.gov (United States)

    Jolivet, Samuel; Zemskyy, Pavlo; Mynampati, Kalyan; Babovic, Vladan

    2015-04-01

    Offshore oil and gas operations in South East Asia periodically face extended downtime due to unpredictable weather conditions, including squalls that are accompanied by strong winds, thunder, and heavy rains. This downtime results in financial losses. Hence, a real time weather risk advisory system is developed to provide the offshore Oil and Gas (O&G) industry specific weather warnings in support of safety and environment security. This system provides safe operating windows based on sensitivity of offshore operations to sea state. Information products for safety and security include area of squall occurrence for the next 24 hours, time before squall strike, and heavy sea state warning for the next 3, 6, 12 & 24 hours. These are predicted using radar now-cast, high resolution Numerical Weather Prediction (NWP) and Data Assimilation (DA). Radar based now-casting leverages the radar data to produce short term (up to 3 hours) predictions of severe weather events including squalls/thunderstorms. A sea state approximation is provided through developing a translational model based on these predictions to risk rank the sensitivity of operations. A high resolution Weather Research and Forecasting (WRF, an open source NWP model) is developed for offshore Brunei, Malaysia and the Philippines. This high resolution model is optimized and validated against the adaptation of temperate to tropical met-ocean parameterization. This locally specific parameters are calibrated against federated data to achieve a 24 hour forecast of high resolution Convective Available Potential Energy (CAPE). CAPE is being used as a proxy for the risk of squall occurrence. Spectral decomposition is used to blend the outputs of the now-cast and the forecast in order to assimilate near real time weather observations as an implementation of the integration of data sources. This system uses the now-cast for the first 3 hours and then the forecast prediction horizons of 3, 6, 12 & 24 hours. The output is

  17. History of the National Weather Service - Public Affairs - NOAA's National

    Science.gov (United States)

    enter or select the go button to submit request City, St Go About NWS -Mission -Strategic Plan -History and local government web resources and services. Home >> History History of the National Weather Service The National Weather Service has its beginnings in the early history of the United States. Weather

  18. Winter Weather: Indoor Safety

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  19. Winter Weather: Outdoor Safety

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  20. The weather-stains of care: interpreting the meaning of bad weather for front-line health care workers in rural long-term care.

    Science.gov (United States)

    Joseph, Gillian M; Skinner, Mark W; Yantzi, Nicole M

    2013-08-01

    This paper addresses the gap in health services and policy research about the implications of everyday weather for health care work. Building on previous research on the weather-related challenges of caregiving in homes and communities, it examines the experiences of 'seasonal bad weather' for health care workers in long-term care institutions. It features a hermeneutic phenomenology analysis of six transcripts from interviews with nurses and personal support workers from a qualitative study of institutional long-term care work in rural Canada. Focussing on van Manen's existential themes of lived experience (body, relations, space, time), the analysis reveals important contradictions between the lived experiences of health care workers coping with bad weather and long-term care policies and practices that mitigate weather-related risk and vulnerability. The findings contribute to the growing concern for rural health issues particularly the neglected experiences of rural health providers and, in doing so, offer insight into the recent call for greater attention to the geographies of health care work. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. SPAGETTA: a Multi-Purpose Gridded Stochastic Weather Generator

    Science.gov (United States)

    Dubrovsky, M.; Huth, R.; Rotach, M. W.; Dabhi, H.

    2017-12-01

    SPAGETTA is a new multisite/gridded multivariate parametric stochastic weather generator (WG). Site-specific precipitation occurrence and amount are modelled by Markov chain and Gamma distribution, the non-precipitation variables are modelled by an autoregressive (AR) model conditioned on precipitation occurrence, and the spatial coherence of all variables is modelled following the Wilks' (2009) approach. SPAGETTA may be run in two modes. Mode 1: it is run as a classical WG, which is calibrated using weather series from multiple sites, and only then it may produce arbitrarily long synthetic series mimicking the spatial and temporal structure of the calibration data. To generate the weather series representing the future climate, the WG parameters are modified according to the climate change scenario, typically derived from GCM or RCM simulations. Mode 2: the user provides only basic information (not necessarily to be realistic) on the temporal and spatial auto-correlation structure of the weather variables and their mean annual cycle; the generator itself derives the parameters of the underlying AR model, which produces the multi-site weather series. Optionally, the user may add the spatially varying trend, which is superimposed to the synthetic series. The contribution consists of following parts: (a) Model of the WG. (b) Validation of WG in terms of the spatial temperature and precipitation characteristics, including characteristics of spatial hot/cold/dry/wet spells. (c) Results of the climate change impact experiment, in which the WG parameters representing the spatial and temporal variability are modified using the climate change scenarios and the effect on the above spatial validation indices is analysed. In this experiment, the WG is calibrated using the E-OBS gridded daily weather data for several European regions, and the climate change scenarios are derived from the selected RCM simulations (CORDEX database). (d) The second mode of operation will be

  2. Statistical Analysis of Asian WeatherDerivatives

    OpenAIRE

    Jiao, Yue

    2009-01-01

    Since last decade, weather derivatives have been traded by Chicago Mercantile Exchange(CME) to hedge the weather risk. In addition to HDD,CDD and CAT, which are index written on the temperature in U.S. and Europe, Pacific Rim Index is newly developed and actively traded nowadays. In terms of the great value of research on this new instrument, we study the temperature dynamics of 4 cities in Asia: Tokyo, Osaka, Taipei and Beijing by a continuous-time autoregressive process. We further inferred...

  3. Weather uncertainty versus climate change uncertainty in a short television weather broadcast

    Science.gov (United States)

    Witte, J.; Ward, B.; Maibach, E.

    2011-12-01

    For TV meteorologists talking about uncertainty in a two-minute forecast can be a real challenge. It can quickly open the way to viewer confusion. TV meteorologists understand the uncertainties of short term weather models and have different methods to convey the degrees of confidence to the viewing public. Visual examples are seen in the 7-day forecasts and the hurricane track forecasts. But does the public really understand a 60 percent chance of rain or the hurricane cone? Communication of climate model uncertainty is even more daunting. The viewing public can quickly switch to denial of solid science. A short review of the latest national survey of TV meteorologists by George Mason University and lessons learned from a series of climate change workshops with TV broadcasters provide valuable insights into effectively using visualizations and invoking multimedia-learning theories in weather forecasts to improve public understanding of climate change.

  4. Space Weather Forecasting at IZMIRAN

    Science.gov (United States)

    Gaidash, S. P.; Belov, A. V.; Abunina, M. A.; Abunin, A. A.

    2017-12-01

    Since 1998, the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN) has had an operating heliogeophysical service—the Center for Space Weather Forecasts. This center transfers the results of basic research in solar-terrestrial physics into daily forecasting of various space weather parameters for various lead times. The forecasts are promptly available to interested consumers. This article describes the center and the main types of forecasts it provides: solar and geomagnetic activity, magnetospheric electron fluxes, and probabilities of proton increases. The challenges associated with the forecasting of effects of coronal mass ejections and coronal holes are discussed. Verification data are provided for the center's forecasts.

  5. Thermal stress analysis of reactor containment building considering severe weather condition

    International Nuclear Information System (INIS)

    Lee, Yun; Kim, Yun-Yong; Hyun, Jung-Hwan; Kim, Do-Gyeum

    2014-01-01

    Highlights: • We examine that through-wall crack risk in cold weather is high. • It is predicted that cracking in concrete wall will not happen in hot region. • Cracking due to hydration heat can be controlled by appropriate curing condition. • Temperature differences between inner and outer face is relatively small in hot weather. - Abstract: Prediction of concrete cracking due to hydration heat in mass concrete such as reactor containment building (RCB) in nuclear power plant is a crucial issue in construction site. In this study, the numerical analysis for heat transfer and stress development is performed for the containment wall in RCB by considering the severe weather conditions. Finally, concrete cracking risk in hot and cold weather is discussed based on analysis results. In analyses considering severe weather conditions, it is found that the through-wall cracking risk in cold weather is high due to the abrupt temperature difference between inside concrete and the ambient air in cold region. In hot weather, temperature differences between inner and outer face is relatively small, and accordingly the relevant cracking risk is relatively low in contrast with cold weather

  6. NASA Space Environments Technical Discipline Team Space Weather Activities

    Science.gov (United States)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  7. Weather effects on the returns and volatility of the Shanghai stock market

    Science.gov (United States)

    Kang, Sang Hoon; Jiang, Zhuhua; Lee, Yeonjeong; Yoon, Seong-Min

    2010-01-01

    This study investigates the weather effects on returns as well as volatility in the Shanghai stock market. In order to analyze the influence of the opening of B-share market to domestic investors, it is assumed that domestic investors are more sensitive to the Shanghai local weather than foreign investors. In doing so, extreme weather condition dummies are generated by using the 21-day and 31-day moving average and its standard deviation. Empirical analysis provides two key results regarding weather effects. First, the weather effect exists in the A-share returns, but does not exist in the B-share returns over the whole period. In addition, the post-opening period shows the strong weather effect on B-share returns only, indicating that the market openness to domestic investors results in the weather effect. Second, the weather effect has a strong influence on the volatility of both A- and B-share returns. Similar to the case of returns, the weather effect on volatility is explained by the openness of B-share market.

  8. Differential rates of feldspar weathering in granitic regoliths

    Science.gov (United States)

    White, A.F.; Bullen, T.D.; Schulz, M.S.; Blum, A.E.; Huntington, T.G.; Peters, N.E.

    2001-01-01

    Differential rates of plagioclase and K-feldspar weathering commonly observed in bedrock and soil environments are examined in terms of chemical kinetic and solubility controls and hydrologic permeability. For the Panola regolith, in the Georgia Piedmont Province of southeastern United States, petrographic observations, coupled with elemental balances and 87Sr/86Sr ratios, indicate that plagioclase is being converted to kaolinite at depths > 6 m in the granitic bedrock. K-feldspar remains pristine in the bedrock but subsequently weathers to kaolinite at the overlying saprolite. In contrast, both plagioclase and K-feldspar remain stable in granitic bedrocks elsewhere in Piedmont Province, such as Davis Run, Virginia, where feldspars weather concurrently in an overlying thick saprolite sequence. Kinetic rate constants, mineral surface areas, and secondary hydraulic conductivities are fitted to feldspar losses with depth in the Panola and Davis Run regoliths using a time-depth computer spreadsheet model. The primary hydraulic conductivities, describing the rates of meteoric water penetration into the pristine granites, are assumed to be equal to the propagation rates of weathering fronts, which, based on cosmogenic isotope dating, are 7 m/106 yr for the Panola regolith and 4 m/106 yr for the Davis Run regolith. Best fits in the calculations indicate that the kinetic rate constants for plagioclase in both regoliths are factors of two to three times faster than K-feldspar, which is in agreement with experimental findings. However, the range for plagioclase and K-feldspar rates (kr = 1.5 x 10-17 to 2.8 x 10-16 mol m-2 s-1) is three to four orders of magnitude lower than for that for experimental feldspar dissolution rates and are among the slowest yet recorded for natural feldspar weathering. Such slow rates are attributed to the relatively old geomorphic ages of the Panola and Davis Run regoliths, implying that mineral surface reactivity decreases significantly with

  9. Weatherization Apprenticeship Program

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Eric J

    2012-12-18

    Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housing Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.

  10. SWIFF: Space weather integrated forecasting framework

    Directory of Open Access Journals (Sweden)

    Frederiksen Jacob Trier

    2013-02-01

    Full Text Available SWIFF is a project funded by the Seventh Framework Programme of the European Commission to study the mathematical-physics models that form the basis for space weather forecasting. The phenomena of space weather span a tremendous scale of densities and temperature with scales ranging 10 orders of magnitude in space and time. Additionally even in local regions there are concurrent processes developing at the electron, ion and global scales strongly interacting with each other. The fundamental challenge in modelling space weather is the need to address multiple physics and multiple scales. Here we present our approach to take existing expertise in fluid and kinetic models to produce an integrated mathematical approach and software infrastructure that allows fluid and kinetic processes to be modelled together. SWIFF aims also at using this new infrastructure to model specific coupled processes at the Solar Corona, in the interplanetary space and in the interaction at the Earth magnetosphere.

  11. Effect of weather on football attendances

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, J A

    1984-01-01

    On the premise that weather should have an effect on spectator attendance at sports events in outdoor settings (a topic which has received surprisingly little formalized study), the author examined the record of home attendances for three football teams in Scotland. In general, it was found that the greater the rainfall on the day of the match the lower the attendance. Dividing spectators into different groups, it was further found that an additional hour of sunshine was associated 162 more adults attending Aberdeen matches, while high temperatures appeared to increase juvenile attendance (by 57 for ever 1 deg. C. rise in temperature). Weather disruption of football games is attended by a number of costs, both direct and indirect. Quantifying the impact of weather can shed substantial light on the problem of scheduling for the season. For example, since certain periods are, on average, wetter than others, rescheduling to drier periods might encourage greater attendance.

  12. NASA's Internal Space Weather Working Group

    Science.gov (United States)

    St. Cyr, O. C.; Guhathakurta, M.; Bell, H.; Niemeyer, L.; Allen, J.

    2011-01-01

    Measurements from many of NASA's scientific spacecraft are used routinely by space weather forecasters, both in the U.S. and internationally. ACE, SOHO (an ESA/NASA collaboration), STEREO, and SDO provide images and in situ measurements that are assimilated into models and cited in alerts and warnings. A number of years ago, the Space Weather laboratory was established at NASA-Goddard, along with the Community Coordinated Modeling Center. Within that organization, a space weather service center has begun issuing alerts for NASA's operational users. NASA's operational user community includes flight operations for human and robotic explorers; atmospheric drag concerns for low-Earth orbit; interplanetary navigation and communication; and the fleet of unmanned aerial vehicles, high altitude aircraft, and launch vehicles. Over the past three years we have identified internal stakeholders within NASA and formed a Working Group to better coordinate their expertise and their needs. In this presentation we will describe this activity and some of the challenges in forming a diverse working group.

  13. Achievements and Challenges in the Science of Space Weather

    Science.gov (United States)

    Koskinen, Hannu E. J.; Baker, Daniel N.; Balogh, André; Gombosi, Tamas; Veronig, Astrid; von Steiger, Rudolf

    2017-11-01

    In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.

  14. Adverse weather impact on aviation safety, investigation and oversight

    Science.gov (United States)

    Smith, M. J.

    1985-01-01

    A brief review of the weather factors that effect aviation safety with respect to U.S. Coast Guard operations is presented. Precise meteorological information is an absolute necessity to the Coast Guard which must conduct life saving and rescue operations under the worst of weather conditions. Many times the weather conditions in which they operate are the cause of or a contributing factor to the predicament from which they must execute a rescue operation.

  15. Hedging Yield with Weather Derivatives: A Role for Options

    OpenAIRE

    Manfredo, Mark R.; Richards, Timothy J.

    2005-01-01

    While there are few risk management alternatives available to specialty crop growers, weather derivatives provide an important advancement. As with the use of any derivatives contract, the behavior of the basis will ultimately determine the net-hedged outcome. However, when using weather derivatives to hedge yield risks for specialty crops, growers face a unique form of basis risk because weather (temperature) and yield are nonlinearly related. Using the forecast encompassing principle, this ...

  16. Web-based Weather Expert System (WES) for Space Shuttle Launch

    Science.gov (United States)

    Bardina, Jorge E.; Rajkumar, T.

    2003-01-01

    The Web-based Weather Expert System (WES) is a critical module of the Virtual Test Bed development to support 'go/no go' decisions for Space Shuttle operations in the Intelligent Launch and Range Operations program of NASA. The weather rules characterize certain aspects of the environment related to the launching or landing site, the time of the day or night, the pad or runway conditions, the mission durations, the runway equipment and landing type. Expert system rules are derived from weather contingency rules, which were developed over years by NASA. Backward chaining, a goal-directed inference method is adopted, because a particular consequence or goal clause is evaluated first, and then chained backward through the rules. Once a rule is satisfied or true, then that particular rule is fired and the decision is expressed. The expert system is continuously verifying the rules against the past one-hour weather conditions and the decisions are made. The normal procedure of operations requires a formal pre-launch weather briefing held on Launch minus 1 day, which is a specific weather briefing for all areas of Space Shuttle launch operations. In this paper, the Web-based Weather Expert System of the Intelligent Launch and range Operations program is presented.

  17. Weather Satellite Pictures and How to Obtain Them.

    Science.gov (United States)

    Petit, Noel J.; Johnson, Philip

    1982-01-01

    An introduction to satellite meteorology is presented to promote use of live weather satellite photographs in the classroom. Topics addressed include weather satellites, how they work, earth emissions, satellite photography, satellite image analysis, obtaining satellite pictures, and future considerations. Includes sources for materials to…

  18. The Evolution of Land Plants and the Silicate Weathering Feedback

    Science.gov (United States)

    Ibarra, D. E.; Caves Rugenstein, J. K.; Bachan, A.; Baresch, A.; Lau, K. V.; Thomas, D.; Lee, J. E.; Boyce, C. K.; Chamberlain, C. P.

    2017-12-01

    It has long been recognized that the advent of vascular plants in the Paleozoic must have changed silicate weathering and fundamentally altered the long-term carbon cycle. Efforts to quantify these effects have been formulated in carbon cycle models that are, in part, calibrated by weathering studies of modern plant communities. In models of the long-term carbon cycle, plants play a key role in controlling atmospheric CO2, particularly in the late Paleozoic. We test the impact of some established and recent theories regarding plant-enhanced weathering by coupling a one-dimensional vapor transport model to a reactive transport model of silicate weathering. In this coupled model, we evaluate consequences of plant evolutionary innovation that have not been mechanistically incorporated into most existing models: 1) the role of evolutionary shifts in plant transpiration in enhancing silicate weathering by increasing downwind transport and recycling of water vapor to continental interiors; 2) the importance of deeply-rooted plants and their associated microbial communities in increasing soil CO2 and weathering zone length scales; and, 3) the cumulative effect of these processes. Our modeling approach is framed by energy/supply constraints calibrated for minimally vegetated-, vascular plant forested-, and angiosperm-worlds. We find that the emergence of widespread transpiration and associated inland vapor recycling approximately doubles weathering solute concentrations when deep-rooted vascular plants (Devonian-Carboniferous) fully replace a minimally vegetated (pre-Devonian) world. The later evolution of angiosperms (Cretaceous and Cenozoic) and subsequent increase in transpiration fluxes increase weathering solute concentrations by approximately an additional 20%. Our estimates of the changes in weatherability caused by land plant evolution are of a similar magnitude, but explained with new process-based mechanisms, than those used in existing carbon cycle models. We

  19. How Satellites Have Contributed to Building a Weather Ready Nation

    Science.gov (United States)

    Lapenta, W.

    2017-12-01

    NOAA's primary mission since its inception has been to reduce the loss of life and property, as well as disruptions from, high impact weather and water-related events. In recent years, significant societal losses resulting even from well forecast extreme events have shifted attention from the forecast alone toward ensuring societal response is equal to the risks that exist for communities, businesses and the public. The responses relate to decisions ranging from coastal communities planning years in advance to mitigate impacts from rising sea level, to immediate lifesaving decisions such as a family seeking adequate shelter during a tornado warning. NOAA is committed to building a "Weather-Ready Nation" where communities are prepared for and respond appropriately to these events. The Weather-Ready Nation (WRN) strategic priority is building community resilience in the face of increasing vulnerability to extreme weather, water, climate and environmental threats. To build a Weather-Ready Nation, NOAA is enhancing Impact-Based Decision Support Services (IDSS), transitioning science and technology advances into forecast operations, applying social science research to improve the communication and usefulness of information, and expanding its dissemination efforts to achieve far-reaching readiness, responsiveness and resilience. These four components of Weather-Ready Nation are helping ensure NOAA data, products and services are fully utilized to minimize societal impacts from extreme events. Satellite data and satellite products have been important elements of the national Weather Service (NWS) operations for more than 40 years. When one examines the uses of satellite data specific to the internal forecast and warning operations of NWS, two main applications are evident. The first is the use of satellite data in numerical weather prediction models; the second is the use of satellite imagery and derived products for mesoscale and short-range weather warning and

  20. Winter weather demand considerations.

    Science.gov (United States)

    2015-04-01

    Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...

  1. Adaptation of Mesoscale Weather Models to Local Forecasting

    Science.gov (United States)

    Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.

    2003-01-01

    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes

  2. Cockpit weather graphics using mobile satellite communications

    Science.gov (United States)

    Seth, Shashi

    1993-01-01

    Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.

  3. The ESA Space Weather Applications Pilot Project

    Science.gov (United States)

    Glover, A.; Hilgers, A.; Daly, E.

    Following the completion in 2001 of two parallel studies to consider the feasibility of a European Space Weather Programme ESA embarked upon a space weather pilot study with the goal of prototyping European space weather services and assessing the overall market for such within Europe This pilot project centred on a number of targeted service development activities supported by a common infrastructure and making use of only existing space weather assets Each service activity included clear participation from at least one identified service user who was requested to provide initial requirements and regular feedback during the operational phase of the service These service activities are now reaching the end of their 2-year development and testing phase and are now accessible each with an element of the service in the public domain see http www esa-spaceweathet net swenet An additional crucial element of the study was the inclusion of a comprehensive and independent analysis of the benefits both economic and strategic of embarking on a programme which would include the deployment of an infrastructure with space-based elements The results of this study will be reported together with their implication for future coordinated European activities in this field

  4. NSF's Perspective on Space Weather Research for Building Forecasting Capabilities

    Science.gov (United States)

    Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.

    2017-12-01

    Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.

  5. Multiple Weather Factors Affect Apparent Survival of European Passerine Birds

    Science.gov (United States)

    Salewski, Volker; Hochachka, Wesley M.; Fiedler, Wolfgang

    2013-01-01

    Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and the potential for

  6. Rapid weather information dissemination in Florida

    Science.gov (United States)

    Martsolf, J. D.; Heinemann, P. H.; Gerber, J. F.; Crosby, F. L.; Smith, D. L.

    1984-01-01

    The development of the Florida Agricultural Services and Technology (FAST) plan to provide ports for users to call for weather information is described. FAST is based on the Satellite Frost Forecast System, which makes a broad base of weather data available to its users. The methods used for acquisition and dissemination of data from various networks under the FAST plan are examined. The system provides color coded IR or thermal maps, precipitation maps, and textural forecast information. A diagram of the system is provided.

  7. Investigation of possible sun-weather relationships

    International Nuclear Information System (INIS)

    Businger, S.

    1978-01-01

    Statistical correlations between anomalous solar activity (as denoted by large solar flares, active plages, and interplanetary magnetic sector boundaries) and the circulation of the troposphere are reviewed. Two indices (measuring atmospheric vorticity and mean zonal geostrophic flow in the northern hemisphere) are analyzed in an effort to reveal possible sun-weather relationships. The result of this analysis provides no additional statistical evidence for a connection between solar activity and the weather. Finally, physical mechanisms that have been suggested to explain the claimed correlations are discussed

  8. Mineralogical and geochemical trends in lateritic weathering profiles ...

    African Journals Online (AJOL)

    The absence of bauxite minerals like gibbsite and diaspora in the profiles shows that the trend of weathering is towards iron enrichment (ferralitization) and not aluminum accumulation (bauxitization). The CIA values of the lateritic layers shows that the weathering process is matured and has reached advanced stage.

  9. Special weather situations in Copenhagen-Oeresund area

    International Nuclear Information System (INIS)

    1982-01-01

    The Danish Environmental Agency has appointed a committee for studies of weather situations of Copenhgen and Oeresund strait regions in order to evaluate consequences of a potential nuclear accident at Barebaeck Power Plant in Sweden. The committee has investigated weather situations with fumigation, local wind systems at large urban areas and on the land-water boundary and precipitation role in plume transport over Oereseund. (EG)

  10. NextGen Weather Plan, Version 1.1

    Science.gov (United States)

    2009-09-17

    to-point transport of the weather products. Some data such as the Aviation Digital Data Service (ADDS) are also available via access to special web ...Aeronautics and Space Administration NCV National Ceiling & Visibility NDFD National Digital Forecast Database NEO Net Enabled Operations NEVS Network...World Area Forecast Center WAFS World Area Forecast System WBS Work Breakdown Structure WCS Web Coverage Service WFS Web Feature Service Wx Weather

  11. Workshop Report on Space Weather Risks and Society

    Science.gov (United States)

    Langhoff, Stephanie R.; Straume, Tore

    2012-01-01

    As technological innovations produce new capabilities, complexities, and interdependencies, our susceptibility to the societal impacts of space weather increase. There is real concern in the scientific community that our infrastructure would be at significant risk if a major geomagnetic storm should occur. To discuss the societal impacts of space weather, we brought together an interdisciplinary group of subject matter experts and societal stakeholders to participate in a workshop entitled Space Weather Risks and Society. The workshop was held at Ames Research Center (ARC) on 15-16 October 2011. The workshop was co-sponsored by NASA Ames Research Center (ARC), the Lockheed Martin Advanced Technology Center (LMATC), the Space Weather Prediction Center (SWPC, part of the National Oceanic and Atmospheric Administration NOAA), and the Rutherford Appleton Laboratory (RAL, part of the UK Science and Technology Facilities Council STFC). The workshop is part of a series of informal weekend workshops hosted by Center Director Pete Worden.

  12. Influence of Special Weather on Output of PV System

    Science.gov (United States)

    Zhang, Zele

    2018-01-01

    The output of PV system is affected by different environmental factors, therefore, it is important to study the output of PV system under different environmental conditions. Through collecting data on the spot, collecting the output of photovoltaic panels under special weather conditions, and comparing the collected data, the output characteristics of the photovoltaic panels under different weather conditions are obtained. The influence of weather factors such as temperature, humidity and irradiance on the output of photovoltaic panels was investigated.

  13. Weather conditions: a neglected factor in human salivary cortisol research?

    Science.gov (United States)

    Milas, Goran; Šupe-Domić, Daniela; Drmić-Hofman, Irena; Rumora, Lada; Klarić, Irena Martinović

    2018-02-01

    There is ample evidence that environmental stressors such as extreme weather conditions affect animal behavior and that this process is in part mediated through the elevated activity of the hypothalamic pituitary adrenal axis which results in an increase in cortisol secretion. This relationship has not been extensively researched in humans, and weather conditions have not been analyzed as a potential confounder in human studies of stress. Consequently, the goal of this paper was to assess the relationship between salivary cortisol and weather conditions in the course of everyday life and to test a possible moderating effect of two weather-related variables, the climate region and timing of exposure to outdoors conditions. The sample consisted of 903 secondary school students aged 18 to 21 years from Mediterranean and Continental regions. Cortisol from saliva was sampled in naturalistic settings at three time points over the course of a single day. We found that weather conditions are related to salivary cortisol concentration and that this relationship may be moderated by both the specific climate and the anticipation of immediate exposure to outdoors conditions. Unpleasant weather conditions are predictive for the level of salivary cortisol, but only among individuals who anticipate being exposed to it in the immediate future (e.g., in students attending school in the morning shift). We also demonstrated that isolated weather conditions or their patterns may be relevant in one climate area (e.g., Continental) while less relevant in the other (e.g., Mediterranean). Results of this study draw attention to the importance of controlling weather conditions in human salivary cortisol research.

  14. The effect of inclement weather on trauma orthopaedic workload.

    LENUS (Irish Health Repository)

    Cashman, J P

    2012-01-31

    BACKGROUND: Climate change models predict increasing frequency of extreme weather. One of the challenges hospitals face is how to make sure they have adequate staffing at various times of the year. AIMS: The aim of this study was to examine the effect of this severe inclement weather on hospital admissions, operative workload and cost in the Irish setting. We hypothesised that there is a direct relationship between cold weather and workload in a regional orthopaedic trauma unit. METHODS: Trauma orthopaedic workload in a regional trauma unit was examined over 2 months between December 2009 and January 2010. This corresponded with a period of severe inclement weather. RESULTS: We identified a direct correlation between the drop in temperature and increase in workload, with a corresponding increase in demand on resources. CONCLUSIONS: Significant cost savings could be made if these injuries were prevented. While the information contained in this study is important in the context of resource planning and staffing of hospital trauma units, it also highlights the vulnerability of the Irish population to wintery weather.

  15. The exo-weather report exploring diverse atmospheric phenomena around the universe

    CERN Document Server

    Stevenson, David S

    2016-01-01

    David Stevenson’s new book links the meteorology of the Earth to that of other planets, stars, and clusters of galaxies, showing the similarities and differences between terrestrial weather and that of weather on other worlds. Because Earth is not unique in having weather, there is much to learn from other planets with atmospheres that show the movement of energy from hotter to colder areas. The weather seen on Earth and other known planetary systems are examined to elaborate the connection between climate and the development of life. The weather on Earth and other Solar System planets is a manifestation of the huge energy budget imparted by our star, the Sun, but weather doesn’t stop at the shores of our Solar System. The author brings together the latest information from satellites and probes, such as Cassini and Hubble, to show its larger place in the astronomical picture. Inferences are drawn about the weather and climate of a large number of other planetary systems that lie far from our own. Addition...

  16. Analysis on the Intention to Purchase Weather Index Insurance and Development Agenda

    Science.gov (United States)

    Park, K.; Jung, J.; Shin, J.; Kim, B.

    2013-12-01

    The purpose of this paper is to analyze how to revitalize weather insurance. Current state of weather insurance market is firstly described, and the necessity of insurance products and intention to purchase are analyzed based on the recognition survey regarding weather insurance focusing on the weather index insurance. The result of intention to purchase insurance products were examined with Ordered Logit Analysis (OLA), indicating that the amount of damages, the impacts of weather change, and experience of damage and loss have a positive relationship with the intention to purchase weather insurance. In addition, recognition of the amount of acceptable payment for insurance (i.e. willingness to pay) was analyzed for both the group who wants to purchase insurance (Group 1) and the group who does not want to (Group 2). The results demonstrate that Group 1 shows statistically higher significance than Group 2. Based on the results above with the increase in abnormal weather phenomena, we could predict that the amount of damages and losses will be rapidly increasing. The portion of weather insurance market is also expected to consistently develop and expand. This study could be a cornerstone for drawing a plan to revitalize weather insurance.

  17. Atmospheric Diabatic Heating in Different Weather States and the General Circulation

    Science.gov (United States)

    Rossow, William B.; Zhang, Yuanchong; Tselioudis, George

    2016-01-01

    Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.

  18. Space Weather Research Towards Applications in Europe

    CERN Document Server

    Lilensten, Jean

    2007-01-01

    This book shows the state of the art in Europe on a very new discipline, Space Weather. This discipline lies at the edge between science and industry. This book reflects such a position, with theoretic papers and applicative papers as well. It is divided into 5 chapters. Each chapter starts with a short introduction, which shows the coherence of a given domain. Then, 4 to 5 contributions written by the best specialists in Europe give detailed hints of a hot topic in space weather. From the reading of this book, it becomes evident that space weather is a living discipline, full of promises and already full of amazing realizations. The strength of Europe is clear through the book, but it is also clear that this discipline is world wide.

  19. Vulnerability of Bread-Baskets to Weather Shocks

    Science.gov (United States)

    Gerber, J. S.; Ray, D. K.; West, P. C.; Foley, J. A.

    2013-12-01

    Many analyses of food security consider broad trends in food supply (crop production, crop use) and demand (changing diets, population growth.) However, if past shocks to the food system due to weather events (i.e. droughts) were to repeat themselves today, the resulting famines could be far more serious due to increased concentration of grain production in vulnerable bread-baskets, and decreased resilience of global and regional food systems (i.e. lower stocks, dependence on fewer crops). The present research project takes advantage of high-resolution historical weather datasets to assess probabilities of historically observed droughts repeating themselves in one or more of today's bread-basket regions. Using recently developed relationships between weather and crop yield, we consider the likelihood of region-wide crop failures under current conditions, and also under various climate scenarios.

  20. A coronagraph for operational space weather predication

    Science.gov (United States)

    Middleton, Kevin F.

    2017-09-01

    Accurate prediction of the arrival of solar wind phenomena, in particular coronal mass ejections (CMEs), at Earth, and possibly elsewhere in the heliosphere, is becoming increasingly important given our ever-increasing reliance on technology. The potentially severe impact on human technological systems of such phenomena is termed space weather. A coronagraph is arguably the instrument that provides the earliest definitive evidence of CME eruption; from a vantage point on or near the Sun-Earth line, a coronagraph can provide near-definitive identification of an Earth-bound CME. Currently, prediction of CME arrival is critically dependent on ageing science coronagraphs whose design and operation were not optimized for space weather services. We describe the early stages of the conceptual design of SCOPE (the Solar Coronagraph for OPErations), optimized to support operational space weather services.

  1. Weather Research and Forecasting (WRF) Regional Atmospheric Model: CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Commonwealth of the Northern...

  2. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the islands of Samoa at...

  3. Weather Information Services supporting Civilian UAS Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We build a system that supports the weather information needs of Unmanned Aircraft Systems (UAS) planning to fly in the National Airspace System (NAS). This weather...

  4. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the island of Guam at...

  5. Study on weathering index for improving the reliability of terrace correlation and chronology. Part 2. Understanding weathering condition of terrace gravel and induction of application requirement for correlation index

    International Nuclear Information System (INIS)

    Hamada, Takaomi

    2012-01-01

    Geomorphographic survey of fluvial terraces, geological exploration, borehole drilling and investigation, and analysis of weathering condition of terrace gravels were carried out in Chuetsu area, Niigata prefecture, where a great deal of geomorphostratigraphic and tephrostratigraphic data are available. The results of these surveys and investigations indicate that weathering degree of terrace gravels can be considered as an index of the terrace age, and also provide points to remember for sampling and method of sampling and observation. The effective porosity and the thickness of weathering rind of gravels, which are indexes for weathering degree evaluation, in boring core, increase above the depth of about 5m from the top of the hole. Weathering doesn't reach the deep portion, therefore, investigation and evaluation for the weathering degree of terrace gravels must be carried out on the upper portion. Weathering rind thickness and effective porosity of the gravels are dispersive. Dispersion of the weathering rind thickness can be reduced by confining to andesite, and dispersion of the effective porosity can be reduced by limiting range of gravel size. Reducing dispersion, increase trend with age becomes clear in change of the weathering rind thickness and the effective porosity in many of the studied area. It shows that weathering rind thickness and effective porosity are effective for terrace correlation. Dispersion of data in an outcrop isn't small, but data from neighboring terraces with the same age are not different each other. It indicates that weathering rind thickness and effective porosity can be quantitative indexes for terrace age evaluation. In area where weathering rind is effective for terrace correlation, the rate of the weathering rind formation of andesite gravels is about 0.04mm/1000 years. Therefore, MIS6 terraces and MIS8 terraces can be distinguished each other by means of thickness of the weathering rind. This formation rate falls inside the

  6. Impact of weathering on slope stability in soft rock mass

    Directory of Open Access Journals (Sweden)

    Predrag Miščević

    2014-06-01

    Full Text Available Weathering of soft rocks is usually considered as an important factor in various fields such as geology, engineering geology, mineralogy, soil and rock mechanics, and geomorphology. The problem of stability over time should be considered for slopes excavated in soft rocks, in case they are not protected against weathering processes. In addition to disintegration of material on slope surface, the weathering also results in shear strength reduction in the interior of the slope. Principal processes in association with weathering are discussed with the examples of marl hosted on flysch formations near Split, Croatia.

  7. Tackling Weather and Climate Change Creatively in Science

    Science.gov (United States)

    Dale, Murray

    2013-01-01

    In this article, the author offers some practical support for teaching about weather, climate and climate change. In England, weather and climate are traditionally taught within the geography curriculum, although it is actually a very scientific subject, involving skills such as making careful observations and measurements, interpreting data…

  8. The influence of the weather on tourist experiences: Analysing travel blog narratives

    NARCIS (Netherlands)

    Jeuring, J.; Peters, K.B.M.

    2013-01-01

    As one of its main resources, weather is an integral part of tourism. Yet little is known about how individual tourists experience the weather and how it affects the subjective perception of their holidays. The weather appears to have a prominent place in language and the use of the weather in

  9. Magnetic property based characterization of rust on weathering steels

    International Nuclear Information System (INIS)

    Mizoguchi, T.; Ishii, Y.; Okada, T.; Kimura, M.; Kihira, H.

    2005-01-01

    The characterization of rusts on weathering steels is important in understanding the origin of their corrosion resistance. Rust consists of several phases, e.g. α-, β- and γ-FeOOH, which are anti-ferromagnetic with different Neel temperatures. Rust on so-called advanced weathering steel containing 3 wt.% Ni [H. Kihira, A. Usami, K. Tanabe, M. Ito, G. Shigesato, Y. Tomita, T. Kusunoki, T. Tsuzuki, S. Ito, T. Murata, in: Proc. Symp. on Corrosion and Corrosion Control in Saltwater Environments, Honolulu, 1999, The Electrochemical Soc., pp. 127-136] contains in addition a ferrimagnetic spinel phase [M. Kimura, H. Kihira, Y. Ishii, T. Mizoguchi, in: Proc. 13th Asian-Pacific Corrosion Control Conference, Osaka, 2003; M. Kimura, H. Kihira, N. Ohta, M. Hashimoto, T. Senuma, Corros. Sci., this volume; M. Kimura, N. Ohta, H. Kihira, Mater. Trans. JIM, in press]. The nanostructure of real rust cannot be elucidated satisfactorily only with conventional analytical methods such as X-ray diffraction, because of the complex mixture of phases with fine and imperfect crystallites. Because of the short range of the super-exchange coupling between Fe ions in a solid, the magnetic properties can give information on local configurations even in the absence of perfect crystalline coherence. Therefore, the magnetic properties of rust samples were investigated in detail using a Superconducting Quantum Interference Device (SQUID) magnetometer and Moessbauer spectroscopy. SQUID magnetometry is effective to determine the quantity of the ferrimagnetic phase. The temperature dependence of the Moessbauer spectrum gives information about not only the fractions of the phases but also the distribution of grain volume, V, in each phase according to the super-paramagnetic relaxation effect. This approach has been applied to rust of conventional [T. Okada, Y. Ishii, T. Mizoguchi, I. Tamura, Y. Kobayashi, Y. Takagi, S. Suzuki, H. Kihira, M. Ito, A. Usami, K. Tanabe, K. Masuda, Jpn. J. Appl. Phys. 39

  10. Laboratory investigation on streaming potential for sandy soil and weathered rock; Shitsunai jikken ni yoru sashitsu jiban oyobi fuka ganban no ryudo den`i no kento

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H; Shima, H [OYO Corp., Tokyo (Japan)

    1996-10-01

    Laboratory experiment on sandy soil and weathered rock was conducted to clarify the generation mechanism of streaming potential due to underground fluid. Streaming potential is caused by underground fluid flow, namely by fluid flow in porous substances as electrokinetic phenomenon. In experiment, Inagi sand, Toyoura sand and strongly decomposed weathered granite were used. In Inagi and Toyoura sands, positive streaming potential was observed downstream in fluid flow. Streaming potential could be nearly determined as primary function of fluid velocity, and generated streaming potential increased with fluid resistivity. Streaming potential was higher in Inagi sand than Toyoura sand, probably depending on hydraulic radius, size of bleeding channel, and conductivity of sand surface. In weathered granite, negative streaming potential was measured. In the case of positive {zeta} potential, negative streaming potential is theoretically generated downstream in fluid flow. This experiment suggested possible generation of negative streaming potential in some kinds of ground. 2 refs., 6 figs., 1 tab.

  11. Weather Observation Systems and Efficiency of Fighting Forest Fires

    Science.gov (United States)

    Khabarov, N.; Moltchanova, E.; Obersteiner, M.

    2007-12-01

    Weather observation is an essential component of modern forest fire management systems. Satellite and in-situ based weather observation systems might help to reduce forest loss, human casualties and destruction of economic capital. In this paper, we develop and apply a methodology to assess the benefits of various weather observation systems on reductions of burned area due to early fire detection. In particular, we consider a model where the air patrolling schedule is determined by a fire hazard index. The index is computed from gridded daily weather data for the area covering parts Spain and Portugal. We conduct a number of simulation experiments. First, the resolution of the original data set is artificially reduced. The reduction of the total forest burned area associated with air patrolling based on a finer weather grid indicates the benefit of using higher spatially resolved weather observations. Second, we consider a stochastic model to simulate forest fires and explore the sensitivity of the model with respect to the quality of input data. The analysis of combination of satellite and ground monitoring reveals potential cost saving due to a "system of systems effect" and substantial reduction in burned area. Finally, we estimate the marginal improvement schedule for loss of life and economic capital as a function of the improved fire observing system.

  12. Superposed epoch analysis of physiological fluctuations: possible space weather connections.

    Science.gov (United States)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events-space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  13. Superposed epoch analysis of physiological fluctuations: possible space weather connections

    Science.gov (United States)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events—space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  14. Thermal advantage of tracking solar collectors under Danish weather conditions

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Furbo, Simon

    2010-01-01

    Theoretical investigations have been carried out with the aim to elucidate the thermal advantage of tracking solar collectors for different weather conditions in Kgs. Lyngby, Denmark (55.8°N), and for the weather conditions in Sisimiut, Greenland (66.9°N), just north of the arctic circle....... The investigations are based on calculations with a newly developed program. Measured weather data from a solar radiation measurement station at Technical University of Denmark in Kgs. Lyngby Denmark in the period 1990 to 2002 and the Danish Design Reference Year, DRY data file are used in the investigations....... The weather data used for Sisimiut are based on a Test Reference Year, TRY weather data file. The thermal advantages of different tracking strategies is investigated for two flat plate solar collectors with different efficiencies, operated at different temperature levels. The investigations show...

  15. Detecting Anthropogenic Disturbance on Weathering and Erosion Processes

    Science.gov (United States)

    Vanacker, V.; Schoonejans, J.; Bellin, N.; Ameijeiras-Mariño, Y.; Opfergelt, S.; Christl, M.

    2014-12-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedback mechanisms between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. In this paper, we analyze dynamic soil properties for a rapidly changing anthropogenic landscape in the Spanish Betic Cordillera; and focus on the coupling between physical erosion, soil production and soil chemical weathering. Modern erosion rates were quantified through analysis of sediment deposition volumes behind check dams, and represent catchment-average erosion rates over the last 10 to 50 years. Soil production rates are derived from in-situ produced 10Be nuclide concentrations, and represent long-term flux rates. In each catchment, soil chemical weathering intensities were calculated for two soil-regolith profiles. Although Southeast Spain is commonly reported as the European region that is most affected by land degradation, modern erosion rates are low (140 t ha-1 yr-1). About 50 % of the catchments are losing soils at a rate of less than 60 t km-2 yr-1. Our data show that modern erosion rates are roughly of the same magnitude as the long-term or cosmogenically-derived erosion rates in the Betic Cordillera. Soils developed on weathered metamorphic rocks have no well-developed profile characteristics, and are generally thin and stony. Nevertheless, soil chemical weathering intensities are high; and question the occurrence of past soil truncation.

  16. Weathering characteristics of the Lower Paleozoic black shale in ...

    Indian Academy of Sciences (India)

    permeability show that porosity increases significantly after weathering but permeability changes little. Furthermore, the ... As such, black shales usually have a high content of ... in the accumulation of soluble weathering phases, providing ...

  17. Weather, not climate, defines distributions of vagile bird species.

    Directory of Open Access Journals (Sweden)

    April E Reside

    Full Text Available BACKGROUND: Accurate predictions of species distributions are essential for climate change impact assessments. However the standard practice of using long-term climate averages to train species distribution models might mute important temporal patterns of species distribution. The benefit of using temporally explicit weather and distribution data has not been assessed. We hypothesized that short-term weather associated with the time a species was recorded should be superior to long-term climate measures for predicting distributions of mobile species. METHODOLOGY: We tested our hypothesis by generating distribution models for 157 bird species found in Australian tropical savannas (ATS using modelling algorithm Maxent. The variable weather of the ATS supports a bird assemblage with variable movement patterns and a high incidence of nomadism. We developed "weather" models by relating climatic variables (mean temperature, rainfall, rainfall seasonality and temperature seasonality from the three month, six month and one year period preceding each bird record over a 58 year period (1950-2008. These weather models were compared against models built using long-term (30 year averages of the same climatic variables. CONCLUSIONS: Weather models consistently achieved higher model scores than climate models, particularly for wide-ranging, nomadic and desert species. Climate models predicted larger range areas for species, whereas weather models quantified fluctuations in habitat suitability across months, seasons and years. Models based on long-term climate averages over-estimate availability of suitable habitat and species' climatic tolerances, masking species potential vulnerability to climate change. Our results demonstrate that dynamic approaches to distribution modelling, such as incorporating organism-appropriate temporal scales, improves understanding of species distributions.

  18. The sensitivity of snowfall to weather states over Sweden

    Science.gov (United States)

    Norin, Lars; Devasthale, Abhay; L'Ecuyer, Tristan S.

    2017-09-01

    For a high-latitude country like Sweden snowfall is an important contributor to the regional water cycle. Furthermore, snowfall impacts surface properties, affects atmospheric thermodynamics, has implications for traffic and logistics management, disaster preparedness, and also impacts climate through changes in surface albedo and turbulent heat fluxes. For Sweden it has been shown that large-scale atmospheric circulation patterns, or weather states, are important for precipitation variability. Although the link between atmospheric circulation patterns and precipitation has been investigated for rainfall there are no studies focused on the sensitivity of snowfall to weather states over Sweden.In this work we investigate the response of snowfall to eight selected weather states. These weather states consist of four dominant wind directions together with cyclonic and anticyclonic circulation patterns and enhanced positive and negative phases of the North Atlantic Oscillation. The presented analysis is based on multiple data sources, such as ground-based radar measurements, satellite observations, spatially interpolated in situ observations, and reanalysis data. The data from these sources converge to underline the sensitivity of falling snow over Sweden to the different weather states.In this paper we examine both average snowfall intensities and snowfall accumulations associated with the different weather states. It is shown that, even though the heaviest snowfall intensities occur during conditions with winds from the south-west, the largest contribution to snowfall accumulation arrives with winds from the south-east. Large differences in snowfall due to variations in the North Atlantic Oscillation are shown as well as a strong effect of cyclonic and anticyclonic circulation patterns. Satellite observations are used to reveal the vertical structures of snowfall during the different weather states.

  19. HDPE/LLDPE blend-based nanocomposites - Part I: evaluation of thermo-mechanical properties and weathering resistance

    International Nuclear Information System (INIS)

    Passador, Fabio R.; Backes, Eduardo H.; Travain, Daniel R.; Ruvolo Filho, Adhemar; Pessan, Luiz A.

    2013-01-01

    Nano composites from high density polyethylene/ linear low density polyethylene (HDPE/LLDPE) blends were prepared at the melt state in an extruder, using HDPE-g-MA as compatibilizer agent. The structural characterization was performed through wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The results showed that adding the compatibilizer induced formation of a predominant intercalated microstructure. Dynamic-mechanical studies showed that the addition of the compatibilizer increases the interactions between the nano clay surface and the polyolefin matrix. The weathering conditions affected the mechanical behavior of HDPE/LLDPE blend-based nano composites. Both treatments performed in hot water and in a forced convection air oven provided the relief of residual stresses in the polymer matrix, while the treatment in an accelerated aging chamber provided the formation of carbonyl groups that lead to a decreased degree of crystallinity and elastic modulus of the nanocomposites. (author)

  20. Earth Remote Sensing for Weather Forecasting and Disaster Applications

    Science.gov (United States)

    Molthan, Andrew; Bell, Jordan; Case, Jonathan; Cole, Tony; Elmer, Nicholas; McGrath, Kevin; Schultz, Lori; Zavodsky, Brad

    2016-01-01

    NASA's constellation of current missions provide several opportunities to apply satellite remote sensing observations to weather forecasting and disaster response applications. Examples include: Using NASA's Terra and Aqua MODIS, and the NASA/NOAA Suomi-NPP VIIRS missions to prepare weather forecasters for capabilities of GOES-R; Incorporating other NASA remote sensing assets for improving aspects of numerical weather prediction; Using NASA, NOAA, and international partner resources (e.g. ESA/Sentinel Series); and commercial platforms (high-res, or UAV) to support disaster mapping.

  1. A Meteorological Supersite for Aviation and Cold Weather Applications

    Science.gov (United States)

    Gultepe, Ismail; Agelin-Chaab, M.; Komar, J.; Elfstrom, G.; Boudala, F.; Zhou, B.

    2018-05-01

    The goal of this study is to better understand atmospheric boundary layer processes and parameters, and to evaluate physical processes for aviation applications using data from a supersite observing site. Various meteorological sensors, including a weather and environmental unmanned aerial vehicle (WE-UAV), and a fog and snow tower (FSOS) observations are part of the project. The PanAm University of Ontario Institute of Technology (UOIT) Meteorological Supersite (PUMS) observations are being collected from April 2015 to date. The FSOS tower gathers observations related to rain, snow, fog, and visibility, aerosols, solar radiation, and wind and turbulence, as well as surface and sky temperature. The FSOSs are located at three locations at about 450-800 m away from the PUMS supersite. The WE-UAV measurements representing aerosol, wind speed and direction, as well as temperature (T) and relative humidity (RH) are provided during clear weather conditions. Other measurements at the PUMS site include cloud backscattering profiles from CL51 ceilometer, MWR observations of liquid water content (LWC), T, and RH, and Microwave Rain Radar (MRR) reflectivity profile, as well as the present weather type, snow water depth, icing rate, 3D-ultrasonic wind and turbulence, and conventional meteorological observations from compact weather stations, e.g., WXTs. The results based on important weather event studies, representing fog, snow, rain, blowing snow, wind gust, planetary boundary layer (PBL) wind research for UAV, and icing conditions are given. The microphysical parameterizations and analysis processes for each event are provided, but the results should not be generalized for all weather events and be used cautiously. Results suggested that integrated observing systems based on data from a supersite as well as satellite sites can provide better information applicable to aviation meteorology, including PBL weather research, validation of numerical weather model predictions, and

  2. Artificial changes of weather conditions

    International Nuclear Information System (INIS)

    Kozin, I.D.; Vasil'ev, I.V.; Fedulina, I.N.; Zakizhan, Z.Z.; Khalimov, R.A.

    2005-01-01

    Unfavorable weather conditions have undesirable ecological consequences, causes remarkable economical damage. In the paper authors consider physical factors and technical methods of influence on cloud formation. (author)

  3. New weather depiction technology for night vision goggle (NVG) training: 3D virtual/augmented reality scene-weather-atmosphere-target simulation

    Science.gov (United States)

    Folaron, Michelle; Deacutis, Martin; Hegarty, Jennifer; Vollmerhausen, Richard; Schroeder, John; Colby, Frank P.

    2007-04-01

    US Navy and Marine Corps pilots receive Night Vision Goggle (NVG) training as part of their overall training to maintain the superiority of our forces. This training must incorporate realistic targets; backgrounds; and representative atmospheric and weather effects they may encounter under operational conditions. An approach for pilot NVG training is to use the Night Imaging and Threat Evaluation Laboratory (NITE Lab) concept. The NITE Labs utilize a 10' by 10' static terrain model equipped with both natural and cultural lighting that are used to demonstrate various illumination conditions, and visual phenomena which might be experienced when utilizing night vision goggles. With this technology, the military can safely, systematically, and reliably expose pilots to the large number of potentially dangerous environmental conditions that will be experienced in their NVG training flights. A previous SPIE presentation described our work for NAVAIR to add realistic atmospheric and weather effects to the NVG NITE Lab training facility using the NVG - WDT(Weather Depiction Technology) system (Colby, et al.). NVG -WDT consist of a high end multiprocessor server with weather simulation software, and several fixed and goggle mounted Heads Up Displays (HUDs). Atmospheric and weather effects are simulated using state-of-the-art computer codes such as the WRF (Weather Research μ Forecasting) model; and the US Air Force Research Laboratory MODTRAN radiative transport model. Imagery for a variety of natural and man-made obscurations (e.g. rain, clouds, snow, dust, smoke, chemical releases) are being calculated and injected into the scene observed through the NVG via the fixed and goggle mounted HUDs. This paper expands on the work described in the previous presentation and will describe the 3D Virtual/Augmented Reality Scene - Weather - Atmosphere - Target Simulation part of the NVG - WDT. The 3D virtual reality software is a complete simulation system to generate realistic

  4. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 3.5-day hourly forecast for the region surrounding the Hawaiian island of Oahu at...

  5. New Technologies for Reducing Aviation Weather-Related Accidents

    Science.gov (United States)

    Stough, H. Paul, III; Watson, James F., III; Jarrell, Michael A.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) has developed technologies to reduce aviation weather-related accidents. New technologies are presented for data-link and display of weather information to aircraft in flight, for detection of turbulence ahead of aircraft in flight, and for automated insitu reporting of atmospheric conditions from aircraft.

  6. Weather or Not To Teach Junior High Meteorology.

    Science.gov (United States)

    Knorr, Thomas P.

    1984-01-01

    Presents a technique for teaching meteorology allowing students to observe and analyze consecutive weather maps and relate local conditions; a model illustrating the three-dimensional nature of the atmosphere is employed. Instructional methods based on studies of daily weather maps to trace systems sweeping across the United States are discussed.…

  7. Weather effects on the success of longleaf pine cone crops

    Science.gov (United States)

    Daniel J. Leduc; Shi-Jean Susana Sung; Dale G. Brockway; Mary Anne Sword Sayer

    2016-01-01

    We used National Oceanic and Atmospheric Administration weather data and historical records of cone crops from across the South to relate weather conditions to the yield of cones in 10 longleaf pine (Pinus palustris Mill.) stands. Seed development in this species occurs over a three-year time period and weather conditions during any part of this...

  8. A subsurface Fe-silicate weathering microbiome

    Science.gov (United States)

    Napieralski, S. A.; Buss, H. L.; Roden, E. E.

    2017-12-01

    Traditional models of microbially mediated weathering of primary Fe-bearing minerals often invoke organic ligands (e.g. siderophores) used for nutrient acquisition. However, it is well known that the oxidation of Fe(II) governs the overall rate of Fe-silicate mineral dissolution. Recent work has demonstrated the ability of lithtrophic iron oxidizing bacteria (FeOB) to grow via the oxidation of structural Fe(II) in biotite as a source of metabolic energy with evidence suggesting a direct enzymatic attack on the mineral surface. This process necessitates the involvement of dedicated outer membrane proteins that interact with insoluble mineral phases in a process known as extracellular electron transfer (EET). To investigate the potential role FeOB in a terrestrial subsurface weathering system, samples were obtained from the bedrock-saprolite interface (785 cm depth) within the Rio Icacos Watershed of the Luquillo Mountains in Puerto Rico. Prior geochemical evidence suggests the flux of Fe(II) from the weathering bedrock supports a robust lithotrophic microbial community at depth. Current work confirms the activity of microorganism in situ, with a marked increase in ATP near the bedrock-saprolite interface. Regolith recovered from the interface was used as inoculum to establish enrichment cultures with powderized Fe(II)-bearing minerals serving as the sole energy source. Monitoring of the Fe(II)/Fe(total) ratio and ATP generation suggests growth of microorganisms coupled to the oxidation of mineral bound Fe(II). Analysis of 16S rRNA gene and shotgun metagenomic libraries from in situ and enrichment culture samples lends further support to FeOB involvement in the weathering process. Multiple metagenomic bins related to known FeOB, including Betaproteobacteria genera, contain homologs to model EET systems, including Cyc2 and MtoAB. Our approach combining geochemistry and metagenomics with ongoing microbiological and genomic characterization of novel isolates obtained

  9. Kinetically limited weathering at low denudation rates in semi-arid climates

    Science.gov (United States)

    Vanacker, V.; Schoonejans, J.; Opfergelt, S.; Ameijeiras-Marino, Y.; Christl, M.

    2016-12-01

    On Earth, the Critical Zone supports terrestrial life, being the near-surface environment where interactions between the atmosphere, lithosphere, hydrosphere, and biosphere take place Quantitative understanding of the interaction between mechanical rock breakdown, chemical weathering, and physical erosion is essential for unraveling Earth's biogeochemical cycles. In this study, we explore the role of soil water balance on regulating soil chemical weathering under water deficit regimes. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We present and compare quantitative information on soil weathering, chemical depletion and total denudation that were derived based on geochemical mass balance, 10Be cosmogenic nuclides and U-series disequilibria. Soil production rates determined based on U-series isotopes (238U, 234U, 230Th and 226Ra) are of the same order of magnitude as 10Be-derived denudation rates, suggesting steady state soil thickness, in two out of three sampling sites. The chemical weathering intensities are relatively low (˜5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Soil weathering extents increase (nonlinearly) with soil thickness and decrease with increasing surface denudation rates, consistent with kinetically limited or controlled weathering. Our study suggests that soil residence time and water availability limit weathering processes in semi-arid climates, which has not been validated previously with field data. An important implication of this finding is that climatic regimes may strongly regulate soil weathering by modulating soil solute fluxes.

  10. Arduino Based Weather Monitoring Telemetry System Using NRF24L01+

    Science.gov (United States)

    Sidqi, Rafi; Rio Rynaldo, Bagus; Hadi Suroso, Satya; Firmansyah, Rifqi

    2018-04-01

    Abstract-Weather is an important part of the natural environment, thus knowing weather information is needed before doing activity. The main purpose of this research was to develop a weather monitoring system which capable to transmit weather data via radio frequency by using nRF24L01+ 2,4GHz radio module. This research implement Arduino UNO as the main controller of the system which send data wirelessly using the radio module and received by a receiver system. Received data then logged and displayed using a Graphical User Interface on a personal computer. Test and experiment result show that the system was able to transmit weather data via radio wave with maximum transmitting range of 32 meters.

  11. Radiogenic Isotopes in Weathering and Hydrology

    Science.gov (United States)

    Blum, J. D.; Erel, Y.

    2003-12-01

    There are a small group of elements that display variations in their isotopic composition, resulting from radioactive decay within minerals over geological timescales. These isotopic variations provide natural fingerprints of rock-water interactions and have been widely utilized in studies of weathering and hydrology. The isotopic systems that have been applied in such studies are dictated by the limited number of radioactive parent-daughter nuclide pairs with half-lives and isotopic abundances that result in measurable differences in daughter isotope ratios among common rocks and minerals. Prior to their application to studies of weathering and hydrology, each of these isotopic systems was utilized in geochronology and petrology. As in the case of their original introduction into geochronology and petrology, isotopic systems with the highest concentrations of daughter isotopes in common rocks and minerals and systems with the largest observed isotopic variations were introduced first and have made the largest impact on our understanding of weathering and hydrologic processes. Although radiogenic isotopes have helped elucidate many important aspects of weathering and hydrology, it is important to note that in almost every case that will be discussed in this chapter, our fundamental understanding of these topics came from studies of variations in the concentrations of major cations and anions. This chapter is a "tools chapter" and thus it will highlight applications of radiogenic isotopes that have added additional insight into a wide spectrum of research areas that are summarized in almost all of the other chapters of this volume.The first applications of radiogenic isotopes to weathering processes were based on studies that sought to understand the effects of chemical weathering on the geochronology of whole-rock samples and geochronologically important minerals (Goldich and Gast, 1966; Dasch, 1969; Blaxland, 1974; Clauer, 1979, 1981; Clauer et al., 1982); as well

  12. 14 CFR 91.155 - Basic VFR weather minimums.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Basic VFR weather minimums. 91.155 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Visual Flight Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...

  13. Weather shocks and cropland decisions in rural Mozambique

    DEFF Research Database (Denmark)

    Salazar Espinoza, César Antonio; Jones, Edward Samuel; Tarp, Finn

    2015-01-01

    to examine the effect of weather shocks on cropland decisions. We account for the bounded nature of land shares and estimate a Pooled Fractional Probit model for panel data. Our results show that crop choice is sensitive to past weather shocks. Farmers shift land use away from cash and permanent crops one...

  14. Space Weather in the Machine Learning Era: A Multidisciplinary Approach

    Science.gov (United States)

    Camporeale, E.; Wing, S.; Johnson, J.; Jackman, C. M.; McGranaghan, R.

    2018-01-01

    The workshop entitled Space Weather: A Multidisciplinary Approach took place at the Lorentz Center, University of Leiden, Netherlands, on 25-29 September 2017. The aim of this workshop was to bring together members of the Space Weather, Mathematics, Statistics, and Computer Science communities to address the use of advanced techniques such as Machine Learning, Information Theory, and Deep Learning, to better understand the Sun-Earth system and to improve space weather forecasting. Although individual efforts have been made toward this goal, the community consensus is that establishing interdisciplinary collaborations is the most promising strategy for fully utilizing the potential of these advanced techniques in solving Space Weather-related problems.

  15. Optimized Strategies for Detecting Extrasolar Space Weather

    Science.gov (United States)

    Hallinan, Gregg

    2018-06-01

    Fully understanding the implications of space weather for the young solar system, as well as the wider population of planet-hosting stars, requires remote sensing of space weather in other stellar systems. Solar coronal mass ejections can be accompanied by bright radio bursts at low frequencies (typically measurement of the magnetic field strength of the planet, informing on whether the atmosphere of the planet can survive the intense magnetic activity of its host star. However, both stellar and planetary radio emission are highly variable and optimal strategies for detection of these emissions requires the capability to monitor 1000s of nearby stellar/planetary systems simultaneously. I will discuss optimized strategies for both ground and space-based experiments to take advantage of the highly variable nature of the radio emissions powered by extrasolar space weather to enable detection of stellar CMEs and planetary magnetospheres.

  16. An Examination of the Space Weathering Patina of Lunar Rock 76015

    Science.gov (United States)

    Noble, S.; Chrisoffersen, R.; Rahman, Z.

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. Rocks have much longer surface lifetimes than an individual soil grain and thus record a longer history of exposure. By studying the weathering products which have built up on a rock surface, we can gain a deeper perspective on the weathering process and better assess the relative importance of various weathering components. The weathered coating, or patina, of the lunar rock 76015 has been previously studied under SEM and also by TEM using ultramicrotome sample preparation methods. However, to really understand the products involved in creating these coatings, it is helpful to examine the patina in cross section, something which is now possible though the use of Focused Ion Beam (FIB) sample prep techniques, which allows us to preserve intact the delicate stratigraphy of the patina coating and provides a unique cross-sectional view of the space weathering process. Several samples have been prepared from the rock and the coatings are found to be quite variable in thickness and composition from one sample to the next.

  17. Weather and Flight Testing

    Science.gov (United States)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  18. Climate, weather, and hops

    Science.gov (United States)

    As climate and weather become more variable, hop growers face increased uncertainty in making decisions about their crop. Given the unprecedented nature of these changes, growers may no longer have enough information and intuitive understanding to adequately assess the situation and evaluate their m...

  19. Vodcasting Space Weather

    Science.gov (United States)

    Collins Petersen, Carolyn; Erickson, P. J.; Needles, M.

    2009-01-01

    The topic of space weather is the subject of a series of vodcasts (video podcasts) produced by MIT Haystack Observatory (Westford, MA) and Loch Ness Productions (Groton, MA). This paper discusses the production and distribution of the series via Webcast, Youtube, and other avenues. It also presents preliminary evaluation of the effectiveness and outreach of the project through feedback from both formal and information education venues. The vodcast series is linked to the NASA Living With a Star Targeted Research and Technology project award "Multi-Instrument Investigation of Inner-Magnetospheric/Ionosphere Disturbances.” It is being carried out by Principal Investigator Dr. John Foster, under the auspices of NASA Grant # NNX06AB86G. The research involves using ionospheric total electron content (TEC) observations to study the location, extent, and duration of perturbations within stormtime ionospheric electric fields at mid- to low latitudes. It combines ground-based global positioning system (GPS) TEC data, incoherent scatter radar measurements of the mid-latitude ionospheric state, and DMSP satellite observations to characterize conditions which lead to severe low-latitude ionospheric perturbations. Each vodcast episode covers a certain aspect of space weather and the research program.

  20. Solar weather monitoring

    Directory of Open Access Journals (Sweden)

    J.-F. Hochedez

    2005-11-01

    Full Text Available Space Weather nowcasting and forecasting require solar observations because geoeffective disturbances can arise from three types of solar phenomena: coronal mass ejections (CMEs, flares and coronal holes. For each, we discuss their definition and review their precursors in terms of remote sensing and in-situ observations. The objectives of Space Weather require some specific instrumental features, which we list using the experience gained from the daily operations of the Solar Influences Data analysis Centre (SIDC at the Royal Observatory of Belgium. Nowcasting requires real-time monitoring to assess quickly and reliably the severity of any potentially geoeffective solar event. Both research and forecasting could incorporate more observations in order to feed case studies and data assimilation respectively. Numerical models will result in better predictions of geomagnetic storms and solar energetic particle (SEP events. We review the data types available to monitor solar activity and interplanetary conditions. They come from space missions and ground observatories and range from sequences of dopplergrams, magnetograms, white-light, chromospheric, coronal, coronagraphic and radio images, to irradiance and in-situ time-series. Their role is summarized together with indications about current and future solar monitoring instruments.

  1. Geomorphology's role in the study of weathering of cultural stone

    Science.gov (United States)

    Pope, Gregory A.; Meierding, Thomas C.; Paradise, Thomas R.

    2002-10-01

    Great monumental places—Petra, Giza, Angkor, Stonehenge, Tikal, Macchu Picchu, Rapa Nui, to name a few—are links to our cultural past. They evoke a sense of wonderment for their aesthetic fascination if not for their seeming permanence over both cultural and physical landscapes. However, as with natural landforms, human constructs are subject to weathering and erosion. Indeed, many of our cultural resources suffer from serious deterioration, some natural, some enhanced by human impact. Groups from the United Nations to local civic and tourism assemblies are deeply interested in maintaining and preserving such cultural resources, from simple rock art to great temples. Geomorphologists trained in interacting systems, process and response to thresholds, rates of change over time, and spatial variation of weathering processes and effects are able to offer insight into how deterioration occurs and what can be done to ameliorate the impact. Review of recent literature and case studies presented here demonstrate methodological and theoretical advances that have resulted from the study of cultural stone weathering. Because the stone was carved at a known date to a "baseline" or zero-datum level, some of the simplest methods (e.g., assessing surface weathering features or measuring surface recession in the field) provide useful data on weathering rates and processes. Such data are difficult or impossible to obtain in "natural" settings. Cultural stone weathering studies demonstrate the importance of biotic and saline weathering agents and the significance of weathering factors such as exposure (microclimate) and human impact. More sophisticated methods confirm these observations, but also reveal discrepancies between field and laboratory studies. This brings up two important caveats for conservators and geomorphologists. For the conservator, are laboratory and natural setting studies really analogous and useful for assessing stone damage? For the geomorphologist, does

  2. How accurate are the weather forecasts for Bierun (southern Poland)?

    Science.gov (United States)

    Gawor, J.

    2012-04-01

    Weather forecast accuracy has increased in recent times mainly thanks to significant development of numerical weather prediction models. Despite the improvements, the forecasts should be verified to control their quality. The evaluation of forecast accuracy can also be an interesting learning activity for students. It joins natural curiosity about everyday weather and scientific process skills: problem solving, database technologies, graph construction and graphical analysis. The examination of the weather forecasts has been taken by a group of 14-year-old students from Bierun (southern Poland). They participate in the GLOBE program to develop inquiry-based investigations of the local environment. For the atmospheric research the automatic weather station is used. The observed data were compared with corresponding forecasts produced by two numerical weather prediction models, i.e. COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) developed by Naval Research Laboratory Monterey, USA; it runs operationally at the Interdisciplinary Centre for Mathematical and Computational Modelling in Warsaw, Poland and COSMO (The Consortium for Small-scale Modelling) used by the Polish Institute of Meteorology and Water Management. The analysed data included air temperature, precipitation, wind speed, wind chill and sea level pressure. The prediction periods from 0 to 24 hours (Day 1) and from 24 to 48 hours (Day 2) were considered. The verification statistics that are commonly used in meteorology have been applied: mean error, also known as bias, for continuous data and a 2x2 contingency table to get the hit rate and false alarm ratio for a few precipitation thresholds. The results of the aforementioned activity became an interesting basis for discussion. The most important topics are: 1) to what extent can we rely on the weather forecasts? 2) How accurate are the forecasts for two considered time ranges? 3) Which precipitation threshold is the most predictable? 4) Why

  3. Relationship between onset of spontaneous pneumothorax and weather conditions.

    Science.gov (United States)

    Mishina, Taijiro; Watanabe, Atsushi; Miyajima, Masahiro; Nakazawa, Junji

    2017-09-01

    Spontaneous pneumothorax (SP) results from the rupture of blebs or bullae. It has been suggested that changes in weather conditions may trigger the onset of SP. Our aim was to examine the association between the onset of primary SP with weather changes in the general population in Sapporo, Japan. From January 2008 through September 2013, 345 consecutive cases with a diagnosis of primary SP were reviewed. All cases of primary SP developed in the area within 40 km from the Sapporo District Meteorological Observatory. Climatic measurements were obtained from the Observatory, which included 1-h readings of weather conditions. Logistic regression model was used to obtain predicted risks for the onset of SP with respect to weather conditions. SP occurred significantly when the atmospheric pressure decreased by - 18 hPa or less during 96 h before the survey date (odds ratio = 1.379, P = 0.026), when the pressure increased by 15 hPa or more during 72 h before the survey date (odds ratio = 1.095, P = 0.007) and when maximum fluctuation in atmospheric pressure over 22 hPa was observed during 96 h before the survey date (odds ratio = 1.519, P = 0.001). Other weather conditions, including the presence of thunderstorms, were not significantly correlated with the onset of pneumothorax. Changes in atmospheric pressure influence the onset of SP. Future studies on the relationship between the onset of SP and weather conditions on days other than before the onset and with large number of patients may enable us to predict the onset of SP in various regions and weather conditions. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  4. Weathering process in Sør Rondane Mountains, East Antarctica

    Science.gov (United States)

    Kanamaru, T.; Suganuma, Y.; Oiwane, H.; Miura, M.; Okuno, J.; Hayakawa, H.

    2016-12-01

    Weathering process under the hyper-arid and hypothermal environment is a key to understand the geomorphogic process and landscape evolution in Antarctica and on Mars. A nunber of studies have focused on weathering process of basaltic rocks in Antarctica, however, the nature of the weathering process of plutonic type rock, a common rock type on the Earth, have been less focused and remain unclear. Here, we report the physical/chemical weathering process of the granitic rocks obtained from Dronning Maud Land in East Antarctica based on a multiplicity of petrological approaches. Loss on Ignition (LOI) and major element composition of the crust and core of the rock samples indicate that chemical weathering process in this area seems to be very limited. The microscopic observations and laser-Raman micro spectroscopy for thin sections from the crust and core indicate that goethite grains are formed mainly in the vein around the crust, which is consistent with the higher Fe3+/Fe2+ contrast from the core to crust. A negative correlation between the rock hardness and color strength index (CSI) values also indicate that crust of rock samples tend to less hard than core due to cracking of the rock samples and following goethite formation. On the other hand, EPMA analysis indicates that original Fe-Ti oxide grains in the core of rock samples are damaged by weathering, and altered to hematite, and to non-stoichiometric Fe-Ti compound associated with ilmenite grans in case of the higher relative height samples. These reveal that the weathering process of the plutonic rocks under the hyper-cold and hypothermal environment are mainly controlled by oxidation, including iron hydroxide formation in the veins formed by mechanical distraction, and Fe-Ti oxide alteration in rock interior.

  5. Tactical Versus Strategic Behavior: General Aviation Piloting in Convective Weather Scenarios

    Science.gov (United States)

    Latorella, Kara A.; Chamberlain, James P.

    2002-01-01

    We commonly describe environments and behavioral responses to environmental conditions as 'tactical' and 'strategic.' However theoretical research defining relevant environmental characteristics is rare, as are empirical investigations that would inform such theory. This paper discusses General Aviation (GA) pilots' descriptions of tactical/strategic conditions with respect to weather flying, and evaluates their ratings along a tactical/strategic scale in response to real convective weather scenarios experienced during a flight experiment with different weather information cues. Perceived risk was significantly associated with ratings for all experimental conditions. In addition, environmental characteristics were found to be predictive of ratings for Traditional IMC (instrument meteorological conditions), i.e., aural weather information only, and Traditional VMC (visual meteorological conditions), i.e., aural information and an external view. The paper also presents subjects' comments regarding use of Graphical Weather Information Systems (GWISs) to support tactical and strategic weather flying decisions and concludes with implications for the design and use of GWISs.

  6. DEM investigation of weathered rocks using a novel bond contact model

    Directory of Open Access Journals (Sweden)

    Zhenming Shi

    2015-06-01

    Full Text Available The distinct element method (DEM incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the changing laws of microscopic parameters from observed decaying properties of rocks during weathering. The changing laws of macroscopic mechanical properties of typical rocks were summarized based on the existing research achievements. Parametric simulations were then conducted to analyze the relationships between macroscopic and microscopic parameters, and to derive the changing laws of microscopic parameters for the DEM model. Equipped with the microscopic weathering laws, a series of DEM simulations of basic laboratory tests on weathered rock samples was performed in comparison with analytical solutions. The results reveal that the relationships between macroscopic and microscopic parameters of rocks against the weathering period can be successfully attained by parametric simulations. In addition, weathering has a significant impact on both stress–strain relationship and failure pattern of rocks.

  7. Weather impacts on leisure activities in Halifax, Nova Scotia

    Science.gov (United States)

    Spinney, Jamie E. L.; Millward, Hugh

    2011-03-01

    The aim of this study was to investigate the impact of daily atmospheric weather conditions on daily leisure activity engagement, with a focus on physically active leisure. The methods capitalize on time diary data that were collected in Halifax, Nova Scotia to calculate objective measures of leisure activity engagement. Daily meteorological data from Environment Canada and daily sunrise and sunset times from the National Research Council of Canada are used to develop objective measures of the natural atmospheric environment. The time diary data were merged with the meteorological data in order to quantify the statistical association between daily weather conditions and the type, participation rate, frequency, and duration of leisure activity engagement. The results indicate that inclement and uncomfortable weather conditions, especially relating to thermal comfort and mechanical comfort, pose barriers to physically active leisure engagement, while promoting sedentary and home-based leisure activities. Overall, daily weather conditions exhibit modest, but significant, effects on leisure activity engagement; the strongest associations being for outdoor active sports and outdoor active leisure time budgets. In conclusion, weather conditions influence the type, participation rate, frequency, and duration of leisure activity engagement, which is an important consideration for health-promotion programming.

  8. Identifying Resistivity Anomalies of Sungai Batu Ancient River using 3D Contour Map

    Science.gov (United States)

    Yusoh, R.; Saad, R.; Saidin, M.; Muhammad, S. B.; Anda, S. T.; Ismail, M. A. M.; Hazreek, Z. A. M.

    2018-04-01

    Electrical resistivity method was undertaken at archeological site at Sungai Batu in Lembah Bujang, located at Sungai Merbok in northwestern of Malaysia. The survey was implemented near the excavation site. This paper shows the results of 5 ground resistivity survey line was carry out using SAS4000 equipment. The wenner-schlumberger array was applied for measurement. Resistivity data are used to obtain valuable information to identify the remain buried archeology. The ground resistivity data were presented in contour map for various depth by using Surfer 13 software visualized clearly the anomalies evidenced for every single depth section. The results from the survey has found the appearance of sedimentation formation that believe happen long time ago after ancient river was buried by sediment from weathering process due to increasing sea level. Otherwise, another anomaly was found in the middle of the survey area which shows high resistivity value about 1000 – 2000 ohm.m

  9. GOES-16 Space Weather Data Availability and Applications

    Science.gov (United States)

    Tilton, M.; Rowland, W. F.; Codrescu, S.; Seaton, D. B.; Redmon, R. J.; Hsu, V.

    2017-12-01

    In November 2016, NOAA launched the first in the "R" series of Geostationary Operational Environmental Satellites, GOES-16. Compared to its GOES predecessors, the GOES-R series satellites provide improved in situ measurements of charged particles, higher cadence magnetic field measurements, and enhanced remote sensing of the sun through ultraviolet (UV) imagery and X-ray/UV irradiance. GOES-16 space weather instruments will nominally reach provisional status near the beginning of 2018. After this milestone has been achieved, NOAA's National Centers for Environmental Information (NCEI) will provide archive access to GOES-16 space weather data. This presentation will describe the status of the space weather instruments, including available products and their applicability for forecasters, modelers, academics, spacecraft operators, and other users. It will discuss the available access systems for all levels of data-raw telemetry (Level 0), science measurements in high resolution (L1b), and higher-level (L2+) products developed by NCEI scientists. Finally, it will cover NCEI's efforts to promote space weather awareness through data visualization tools and image dissemination via the Helioviewer project.

  10. Cold weather oil spill response training

    International Nuclear Information System (INIS)

    Solsberg, L.B.; Owens, E.H.

    2001-01-01

    In April 2000, a three-day oil spill response training program was conducted on Alaska's North Slope. The unique hands-on program was specifically developed for Chevron Corporation's world-wide response team. It featured a combination of classroom and outdoor sessions that helped participants to learn and apply emergency measures in a series of field exercises performed in very cold weather conditions. Temperatures remained below minus 20 degrees C and sometimes reached minus 40 degrees C throughout the training. The classroom instructions introduced participants to the Emergency Prevention Preparedness and Response (EPPR) Working Group's Field Guide for Spill Response in Arctic Waters. This guide provides response strategies specific to the Arctic, including open water, ice and snow conditions. The sessions also reviewed the Alaska Clean Seas Tactics Manual which addresses spill containment and recovery, storage, tracking, burning and disposal. The issues that were emphasized throughout the training program were cold weather safety and survival. During the training sessions, participants were required to set up weather ports and drive snowmobiles and all terrain vehicles. Their mission was to detect oil with infra-red and hand-held devices. They were required to contain the oil by piling snow into snow banks, and by augering, trenching and slotting ice. Oil was removed by trimming operations on solid ice, snow melting, snow blowing, skimming and pumping. In-situ burning was also performed. Other sessions were also conducted develop skills in site characterization and treating oiled shorelines. The successfully conducted field sessions spanned all phases of a cleanup operation in cold weather. 5 refs., 7 figs

  11. Severe Weather Environments in Atmospheric Reanalyses

    Science.gov (United States)

    King, A. T.; Kennedy, A. D.

    2017-12-01

    Atmospheric reanalyses combine historical observation data using a fixed assimilation scheme to achieve a dynamically coherent representation of the atmosphere. How well these reanalyses represent severe weather environments via proxies is poorly defined. To quantify the performance of reanalyses, a database of proximity soundings near severe storms from the Rapid Update Cycle 2 (RUC-2) model will be compared to a suite of reanalyses including: North American Reanalysis (NARR), European Interim Reanalysis (ERA-Interim), 2nd Modern-Era Retrospective Reanalysis for Research and Applications (MERRA-2), Japanese 55-year Reanalysis (JRA-55), 20th Century Reanalysis (20CR), and Climate Forecast System Reanalysis (CFSR). A variety of severe weather parameters will be calculated from these soundings including: convective available potential energy (CAPE), storm relative helicity (SRH), supercell composite parameter (SCP), and significant tornado parameter (STP). These soundings will be generated using the SHARPpy python module, which is an open source tool used to calculate severe weather parameters. Preliminary results indicate that the NARR and JRA55 are significantly more skilled at producing accurate severe weather environments than the other reanalyses. The primary difference between these two reanalyses and the remaining reanalyses is a significant negative bias for thermodynamic parameters. To facilitate climatological studies, the scope of work will be expanded to compute these parameters for the entire domain and duration of select renalyses. Preliminary results from this effort will be presented and compared to observations at select locations. This dataset will be made pubically available to the larger scientific community, and details of this product will be provided.

  12. Cave breakdown by vadose weathering.

    Directory of Open Access Journals (Sweden)

    Osborne R. Armstrong L.

    2002-01-01

    Full Text Available Vadose weathering is a significant mechanism for initiating breakdown in caves. Vadose weathering of ore bodies, mineral veins, palaeokarst deposits, non-carbonate keystones and impure, altered or fractured bedrock, which is intersected by caves, will frequently result in breakdown. Breakdown is an active, ongoing process. Breakdown occurs throughout the vadose zone, and is not restricted to large diameter passages, or to cave ceilings. The surfaces of disarticulated blocks are commonly coated, rather than having fresh broken faces, and blocks continue to disintegrate after separating from the bedrock. Not only gypsum, but also hydromagnesite and aragonite are responsible for crystal wedging. It is impossible to study or identify potential breakdown foci by surface surveys alone, in-cave observation and mapping are essential.

  13. Communications Related to Weather Information Handling and Dissemination

    Science.gov (United States)

    Dhas, Chris

    2000-01-01

    This report summarizes the tasking contained in the Statement of Work and describes the results of the project. In addition, it addresses the principles, procedures, and methods of application that would be generally applicable to using the results of the project. NASA Glenn Research Center (GRC) is involved in the Aviation Weather Information (AWIN) Program, which has a goal of reducing the aircraft accident rate, by a factor of five within 10 years and by a factor of 10 within 20 years. GRC's effort concentrates on the communications means needed to disseminate effective weather data. GRC's focus in on developing new technologies and techniques to support the digital communication of weather information between airborne and ground-based users.

  14. Power losses in electrical networks depending on weather conditions

    International Nuclear Information System (INIS)

    Zhelezko, Yu. S.; Kostyushko, V. A.; Krylov, S. V.; Nikiforov, E. P.; Savchenko, O. V.; Timashova, L. V.; Solomonik, E. A.

    2005-01-01

    Specific power losses to corona and to leakage currents over overhead insulators are presented for 110 - 750-kV transmission lines with different phase design and pole types for different weather conditions. Consumption of electric energy for ice melting on conductors of various cross sections is evaluated. Meteorological data of 1372 weather stations in Russia are processed for a period of 10 years. The territory of the country is divided into 7 regions with approximately homogeneous weather conditions. Specific power losses to corona and leakage currents over overhead insulators are presented for every region

  15. Effects of Weathering on TIR Spectra and Rock Classification

    Science.gov (United States)

    McDowell, M. L.; Hamilton, V. E.; Riley, D.

    2006-03-01

    Changes in mineralogy due to weathering are detectable in the TIR and cause misclassification of rock types. We survey samples over a range of lithologies and attempt to provide a method of correction for rock identification from weathered spectra.

  16. Weather conditions and daily television use in the Netherlands, 1996-2005

    NARCIS (Netherlands)

    Eisinga, R.; Franses, Ph.-H.; Vergeer, M.

    2010-01-01

    This study examines the impact of daily atmospheric weather conditions on daily television use in the Netherlands for the period 1996–2005. The effects of the weather parameters are considered in the context of mood and mood management theory. It is proposed that inclement and uncomfortable weather

  17. The Effect of Early Frost Damage on the Penetration Resistance of Chloride Ion of NPP Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyung Teak; Park, Chun Jin; Kim, Si Hwan; Ryu, Gum Sung [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2012-05-15

    The specification for the nuclear power plant (NPP) structure construction specifies the conformity of the regulation ACI-306R in constructing the cold-weather concrete. According to the regulation with regard to the curing condition for cold weather concrete, the insulation curing of cold weather concrete should be appropriately performed under the environment of 5 .deg. C or more until the strength of 500 psi is developed. In addition, according to the regulations regarding the cold weather concrete in the domestic concrete specifications, the insulation curing should be performed until the strength development of 715 psi considering the safety factor indicated to the ACI regulation under the temperature of 5 .deg. C or more. According to the above-mentioned regulations, the NPP structure is required to develop the minimum strength of 715 psi or more and to maintain the important quality including strength development, early anti-freezing and duality under the cold weather condition. However, even though the early strength of 715 psi or more is secured under cold weather condition, if the structure is exposed to the continuous cold weather condition after the protection equipment including curing coat are removed, the structure's durability can go down compared to the concrete cured under the standard curing temperature condition in spring and fall, but the studies on this status still remain poor. Accordingly, this study tried to verify the adequacy of the insulation curing management standard, which is currently presented, in time of constructing the cold weather concrete, through reviewing the penetration resistance of chloride ion with considering the local characteristics of domestic NPP located at coastal areas after curing until the point of 715 psi, then exposing it to a certain cycle of freeze-thaw environment under the continuous cold weather condition

  18. Decreasing trend in severe weather occurrence over China during the past 50 years

    Science.gov (United States)

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-04-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  19. GEOSS interoperability for Weather, Ocean and Water

    Science.gov (United States)

    Richardson, David; Nyenhuis, Michael; Zsoter, Ervin; Pappenberger, Florian

    2013-04-01

    "Understanding the Earth system — its weather, climate, oceans, atmosphere, water, land, geodynamics, natural resources, ecosystems, and natural and human-induced hazards — is crucial to enhancing human health, safety and welfare, alleviating human suffering including poverty, protecting the global environment, reducing disaster losses, and achieving sustainable development. Observations of the Earth system constitute critical input for advancing this understanding." With this in mind, the Group on Earth Observations (GEO) started implementing the Global Earth Observation System of Systems (GEOSS). GEOWOW, short for "GEOSS interoperability for Weather, Ocean and Water", is supporting this objective. GEOWOW's main challenge is to improve Earth observation data discovery, accessibility and exploitability, and to evolve GEOSS in terms of interoperability, standardization and functionality. One of the main goals behind the GEOWOW project is to demonstrate the value of the TIGGE archive in interdisciplinary applications, providing a vast amount of useful and easily accessible information to the users through the GEO Common Infrastructure (GCI). GEOWOW aims at developing funcionalities that will allow easy discovery, access and use of TIGGE archive data and of in-situ observations, e.g. from the Global Runoff Data Centre (GRDC), to support applications such as river discharge forecasting.TIGGE (THORPEX Interactive Grand Global Ensemble) is a key component of THORPEX: a World Weather Research Programme to accelerate the improvements in the accuracy of 1-day to 2 week high-impact weather forecasts for the benefit of humanity. The TIGGE archive consists of ensemble weather forecast data from ten global NWP centres, starting from October 2006, which has been made available for scientific research. The TIGGE archive has been used to analyse hydro-meteorological forecasts of flooding in Europe as well as in China. In general the analysis has been favourable in terms of

  20. Impact of grain size and rock composition on simulated rock weathering

    Science.gov (United States)

    Israeli, Yoni; Emmanuel, Simon

    2018-05-01

    Both chemical and mechanical processes act together to control the weathering rate of rocks. In rocks with micrometer size grains, enhanced dissolution at grain boundaries has been observed to cause the mechanical detachment of particles. However, it remains unclear how important this effect is in rocks with larger grains, and how the overall weathering rate is influenced by the proportion of high- and low-reactivity mineral phases. Here, we use a numerical model to assess the effect of grain size on chemical weathering and chemo-mechanical grain detachment. Our model shows that as grain size increases, the weathering rate initially decreases; however, beyond a critical size no significant decrease in the rate is observed. This transition occurs when the density of reactive boundaries is less than ˜ 20 % of the entire domain. In addition, we examined the weathering rates of rocks containing different proportions of high- and low-reactivity minerals. We found that as the proportion of low-reactivity minerals increases, the weathering rate decreases nonlinearly. These simulations indicate that for all compositions, grain detachment contributes more than 36 % to the overall weathering rate, with a maximum of ˜ 50 % when high- and low-reactivity minerals are equally abundant in the rock. This occurs because selective dissolution of the high-reactivity minerals creates large clusters of low-reactivity minerals, which then become detached. Our results demonstrate that the balance between chemical and mechanical processes can create complex and nonlinear relationships between the weathering rate and lithology.

  1. National Weatherization Assistance Program Characterization Describing the Recovery Act Period

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rose, Erin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Beth A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    This report characterizes the U.S. Department of Energy s Weatherization Assistance Program (WAP) during the American Recovery and Reinvestment Act of 2009 (Recovery Act) period. This research was one component of the Recovery Act evaluation of WAP. The report presents the results of surveys administered to Grantees (i.e., state weatherization offices) and Subgrantees (i.e., local weatherization agencies). The report also documents the ramp up and ramp down of weatherization production and direct employment during the Recovery Act period and other challenges faced by the Grantees and Subgrantees during this period. Program operations during the Recovery Act (Program Year 2010) are compared to operations during the year previous to the Recovery Act (Program Year 2008).

  2. Weather radars – the new eyes for offshore wind farms?

    DEFF Research Database (Denmark)

    Trombe, Pierre-Julien; Pinson, Pierre; Vincent, Claire Louise

    2014-01-01

    Offshore wind fluctuations are such that dedicated prediction and control systems are needed for optimizing the management of wind farms in real-time. In this paper, we present a pioneer experiment – Radar@Sea – in which weather radars are used for monitoring the weather at the Horns Rev offshore...... inputs to prediction systems for anticipating changes in the wind fluctuation dynamics, generating improved wind power forecasts and developing specific control strategies. However, integrating weather radar observations into automated decision support systems is not a plug-and-play task...... observed at Horns Rev and (iv) we discuss the future perspectives for weather radars in wind energy. Copyright © 2013 John Wiley & Sons, Ltd....

  3. Space-weathering processes and products on volatile-rich asteroids

    Science.gov (United States)

    Britt, D.; Schelling, P.; Consolmagno, G.; Bradley, T.

    2014-07-01

    Space weathering is a generic term for the effects on atmosphereless solid bodies in the solar system from a range of processes associated with direct exposure to the space environment. These include impact processes (shock, vaporization, fragmentation, heating, melting, and ejecta formation), radiation damage (from galactic and solar cosmic rays), solar-wind effects (irradiation, ion implantation, and sputtering), and the chemical reactions driven by these processes. The classic example of space weathering is the formation of the lunar spectral red slope associated with the production of nanophase Fe (npFe0) in the dusty lunar regolith (C.R. Chapman, 2004, Annual Review of Earth & Planet. Sci. 32, C.M. Pieters, 2000, MAPS 35). Similar npFe0 has been recovered from asteroid (25143) Itokawa and some asteroid classes do exhibit modest spectral red slopes (T. Noguchi, 2011, Science 333). Space weathering can be thought of as driven by a combination of the chemical environment of space (hard vacuum, low oxygen fugacity, solar-wind implantation of hydrogen) along with thermal energy supplied by micrometeorite impacts. The forward modeling of space weathering as thermodynamically-driven decomposition of common rock-forming minerals suggests the production of a range of daughter products: (1) The silicate products typically lose oxygen, other volatile elements (i.e., sulfur and sodium), and metallic cations, producing minerals that are typically more disordered and less optically active than the original parent materials. (2) The decomposed metallic cations form in nano-sized blebs including npFe0, on the surfaces or in condensing rims of mineral grains. This creates a powerful optical component as seen in the lunar red slope. Surfaces with exposed npFe0 are an ideal environment for catalyzing further reactions. (3) The liberated volatile elements and gases (O, S, Na) may form an observable exosphere (e.g., Moon and Mercury) and can either escape from the body or

  4. Program evaluation: Weatherization Residential Assistance Partnership (WRAP) Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The Connecticut low income weatherization program was developed in response to a 1987 rate docket order from the Connecticut Department of Public Utility Control (DPUC) to Connecticut Light Power Co., an operating subsidiary of Northeast Utilities (NU). (Throughout this report, NU is referred to as the operator of the program.) This program, known as the Weatherization Residential Assistance Partnership, or WRAP, was configured utilizing input from a collaborative group of interested parties to the docket. It was agreed that this program would be put forth by the electric utility, but would not ignore oil and gas savings (thus, it was to be fuel- blind''). The allocated cost of conservation services for each fuel source, however, should be cost effective. It was to be offered to those utility customers at or below 200 percent of the federal poverty levels, and provide a wide array of energy saving measures directed toward heating, water heating and lighting. It was felt by the collaborative group that this program would raise the level of expenditures per participant for weatherization services provided by the state, and by linking to and revising the auditing process for weatherization, would lower the audit unit cost. The program plans ranged from the offering of low-cost heating, water heating and infiltration measures, increased insulation levels, carpentry and plumbing services, to furnace or burner replacement. The program was configured to allow for very comprehensive weatherization and heating system servicing.

  5. GPU-Accelerated Real-Time Surveillance De-Weathering

    OpenAIRE

    Pettersson, Niklas

    2013-01-01

    A fully automatic de-weathering system to increase the visibility/stability in surveillance applications during bad weather has been developed. Rain, snow and haze during daylight are handled in real-time performance with acceleration from CUDA implemented algorithms. Video from fixed cameras is processed on a PC with no need of special hardware except an NVidia GPU. The system does not use any background model and does not require any precalibration. Increase in contrast is obtained in all h...

  6. Sensitivity of European wheat to extreme weather

    DEFF Research Database (Denmark)

    Mäkinen, H; Kaseva, J; Trnka, M

    2018-01-01

    The frequency and intensity of extreme weather is increasing concomitant with changes in the global climate change. Although wheat is the most important food crop in Europe, there is currently no comprehensive empirical information available regarding the sensitivity of European wheat to extreme...... weather. In this study, we assessed the sensitivity of European wheat yields to extreme weather related to phenology (sowing, heading) in cultivar trials across Europe (latitudes 37.21° to 61.34° and longitudes −6.02° to 26.24°) during the period 1991–2014. All the observed agro-climatic extremes (≥31 °C...... wheat cultivars that responded positively (+10%) to drought after sowing, or frost during winter (−15 °C and −20 °C). Positive responses to extremes were often shown by cultivars associated with specific regions, such as good performance under high temperatures by southern-origin cultivars. Consequently...

  7. Design of all-weather celestial navigation system

    Science.gov (United States)

    Sun, Hongchi; Mu, Rongjun; Du, Huajun; Wu, Peng

    2018-03-01

    In order to realize autonomous navigation in the atmosphere, an all-weather celestial navigation system is designed. The research of celestial navigation system include discrimination method of comentropy and the adaptive navigation algorithm based on the P value. The discrimination method of comentropy is studied to realize the independent switching of two celestial navigation modes, starlight and radio. Finally, an adaptive filtering algorithm based on P value is proposed, which can greatly improve the disturbance rejection capability of the system. The experimental results show that the accuracy of the three axis attitude is better than 10″, and it can work all weather. In perturbation environment, the position accuracy of the integrated navigation system can be increased 20% comparing with the traditional method. It basically meets the requirements of the all-weather celestial navigation system, and it has the ability of stability, reliability, high accuracy and strong anti-interference.

  8. Weathering durability of commercial polymeric coatings tested by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Chen, H.; Peng, Q.; Huang, Y.Y.; Zhang, R.; Li, Y.; Zhang, J.; Wu, Y.C.; Richardson, J.R.; Sandreczki, T.C.; Jean, Y.C.

    2003-01-01

    A series of commercial coatings were prepared according to the industrial specifications and were exposed to Florida natural weathering and controlled UVA irradiation. The Doppler broadening energy spectra (DBES) of positron annihilation were measured as a function of incident positron energy at different periods of weathering. A significant decrease in the S parameter was observed and it was used as an indicator to test coating durability in micro-scale. Application to weathering durability of commercial polymeric coatings under natural weathering and controlled UVA irradiation is investigated by using the S parameter from the DBES

  9. The effort to increase the space weather forecasting accuracy in KSWC

    Science.gov (United States)

    Choi, J. S.

    2017-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition as the Regional Warning Center of the International Space Environment Service (ISES). KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. Recently, KSWC are focusing on increasing the accuracy of space weather forecasting results and verifying the model generated results. The forecasting accuracy will be calculated based on the probability statistical estimation so that the results can be compared numerically. Regarding the cosmic radiation does, we are gathering the actual measured data of radiation does using the instrument by cooperation with the domestic airlines. Based on the measurement, we are going to verify the reliability of SAFE system which was developed by KSWC to provide the cosmic radiation does information with the airplane cabin crew and public users.

  10. Clay formation and metal fixation during weathering of coal fly ash

    International Nuclear Information System (INIS)

    Zevenbergen, C.; Bradley, J.P.; Reeuwijk, L.P. Van; Shyam, A.K.; Hjelmar, O.; Comans, R.N.J.

    1999-01-01

    The enormous and worldwide production of coal fly ash cannot be durably isolated from the weathering cycle, and the weathering characteristics of fly ash must be known to understand the long-term environmental impact. The authors studied the weathering of two coal fly ashes and compared them with published data from weathered volcanic ash, it's closest natural analogue. Both types of ash contain abundant aluminosilicate glass, which alters to noncrystalline clay. However, this study reveals that the kinetics of coal fly ash weathering are more rapid than those of volcanic ash because the higher pH of fresh coal fly ash promotes rapid dissolution of the glass. After about 10 years of weathering, the noncrystalline clay content of coal fly ash is higher than that of 250-year-old volcanic ash. The observed rapid clay formation together with heavy metal fixation imply that the long-term environmental impact of coal fly ash disposal may be less severe and the benefits more pronounced than predicted from previous studies on unweathered ash. Their findings suggest that isolating coal fly ash from the weathering cycle may be counterproductive because, in the long-term under conditions of free drainage, fly ash is converted into fertile soil capable of supporting agriculture

  11. Visualizing uncertainty : Towards a better understanding of weather forecasts

    NARCIS (Netherlands)

    Toet, A.; Tak, S.; Erp, J.B.F. van

    2016-01-01

    Uncertainty visualizations are increasingly used in communications to the general public. A well-known example is the weather forecast. Rather than providing an exact temperature value, weather forecasts often show the range in which the temperature will lie. But uncertainty visualizations are also

  12. Forecasting Space Weather-Induced GPS Performance Degradation Using Random Forest

    Science.gov (United States)

    Filjar, R.; Filic, M.; Milinkovic, F.

    2017-12-01

    Space weather and ionospheric dynamics have a profound effect on positioning performance of the Global Satellite Navigation System (GNSS). However, the quantification of that effect is still the subject of scientific activities around the world. In the latest contribution to the understanding of the space weather and ionospheric effects on satellite-based positioning performance, we conducted a study of several candidates for forecasting method for space weather-induced GPS positioning performance deterioration. First, a 5-days set of experimentally collected data was established, encompassing the space weather and ionospheric activity indices (including: the readings of the Sudden Ionospheric Disturbance (SID) monitors, components of geomagnetic field strength, global Kp index, Dst index, GPS-derived Total Electron Content (TEC) samples, standard deviation of TEC samples, and sunspot number) and observations of GPS positioning error components (northing, easting, and height positioning error) derived from the Adriatic Sea IGS reference stations' RINEX raw pseudorange files in quiet space weather periods. This data set was split into the training and test sub-sets. Then, a selected set of supervised machine learning methods based on Random Forest was applied to the experimentally collected data set in order to establish the appropriate regional (the Adriatic Sea) forecasting models for space weather-induced GPS positioning performance deterioration. The forecasting models were developed in the R/rattle statistical programming environment. The forecasting quality of the regional forecasting models developed was assessed, and the conclusions drawn on the advantages and shortcomings of the regional forecasting models for space weather-caused GNSS positioning performance deterioration.

  13. Briefing highlights space weather risks to GPS

    Science.gov (United States)

    Tretkoff, Ernie

    2011-07-01

    Solar storms, which are expected to increase as the Sun nears the most active phase of the solar cycle, can disrupt a variety of technologies on which society relies. Speakers at a 22 June briefing on Capitol Hill in Washington, D. C., focused on how space weather can affect the Global Positioning System (GPS), which is used in a wide range of industries, including commercial air travel, agriculture, national security, and emergency response. Rocky Stone, chief technical pilot for United Airlines, noted that GPS allows more aircraft to be in airspace, saves fuel, and helps aircraft move safely on runways. “Improvements in space weather forecasting need to be pursued,” he said. Precision GPS has also “changed the whole nature of farming,” said Ron Hatch, Director of Navigation Systems, NavCom Technology/John Deere. GPS makes it possible for tractors to be driven in the most efficient paths and for fertilizer and water to be applied precisely to the areas that most need them. Space weather-induced degradation of GPS signals can cause significant loss to farms that rely on GPS. Elizabeth Zimmerman, Deputy Associate Administrator for the Office of Response and Recovery at the Federal Emergency Management Agency (FEMA), described how FEMA relies on GPS for disaster recovery. The agency is developing an operations plan for dealing with space weather, she said.

  14. Understanding the weather signal in national crop-yield variability

    Science.gov (United States)

    Frieler, Katja; Schauberger, Bernhard; Arneth, Almut; Balkovič, Juraj; Chryssanthacopoulos, James; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Olin, Stefan; Pugh, Thomas A. M.; Schaphoff, Sibyll; Schewe, Jacob; Schmid, Erwin; Warszawski, Lila; Levermann, Anders

    2017-06-01

    Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.

  15. Light Nonaqueous-Phase Liquid Weathering at Various Fuel Release Sites

    National Research Council Canada - National Science Library

    Henry, Bruce

    1999-01-01

    ...) contracted with Parsons ES to perform this fuels weathering study. Of particular interest for this study is the weathering or natural depletion of benzene, toluene, ethylbenzene, and xylenes (BTEX...

  16. Experimental Simulation of Long Term Weathering in Alkaline Bauxite Residue Tailings

    Directory of Open Access Journals (Sweden)

    Talitha C. Santini

    2015-07-01

    Full Text Available Bauxite residue is an alkaline, saline tailings material generated as a byproduct of the Bayer process used for alumina refining. Developing effective plans for the long term management of potential environmental impacts associated with storage of these tailings is dependent on understanding how the chemical and mineralogical properties of the tailings will change during weathering and transformation into a soil-like material. Hydrothermal treatment of bauxite residue was used to compress geological weathering timescales and examine potential mineral transformations during weathering. Gibbsite was rapidly converted to boehmite; this transformation was examined with in situ synchrotron XRD. Goethite, hematite, and calcite all precipitated over longer weathering timeframes, while tricalcium aluminate dissolved. pH, total alkalinity, and salinity (electrical conductivity all decreased during weathering despite these experiments being performed under “closed” conditions (i.e., no leaching. This indicates the potential for auto-attenuation of the high alkalinity and salinity that presents challenges for long term environmental management, and suggests that management requirements will decrease during weathering as a result of these mineral transformations.

  17. Pre-Weather Bureau Observation Networks

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The collection consists of monthly weather records from U.S. Army Forts stations (~1820-1871), U.S. Army Signal Service Stations (1871-1892), Smithsonian Institution...

  18. KZHU Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  19. KZOA Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  20. KZJX Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...