WorldWideScience

Sample records for weather and climate

  1. The Weather and Climate Toolkit

    Science.gov (United States)

    Ansari, S.; Del Greco, S.; Hankins, B.

    2010-12-01

    The Weather and Climate Toolkit (WCT) is free, platform independent software distributed from NOAA’s National Climatic Data Center (NCDC). The WCT allows the visualization and data export of weather and climate data, including Radar, Satellite and Model data. By leveraging the NetCDF for Java library and Common Data Model, the WCT is extremely scalable and capable of supporting many new datasets in the future. Gridded NetCDF files (regular and irregularly spaced, using Climate-Forecast (CF) conventions) are supported, along with many other formats including GRIB. The WCT provides tools for custom data overlays, Web Map Service (WMS) background maps, animations and basic filtering. The export of images and movies is provided in multiple formats. The WCT Data Export Wizard allows for data export in both vector polygon/point (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, Gridded NetCDF) formats. These data export features promote the interoperability of weather and climate information with various scientific communities and common software packages such as ArcGIS, Google Earth, MatLAB, GrADS and R. The WCT also supports an embedded, integrated Google Earth instance. The Google Earth Browser Plugin allows seamless visualization of data on a native 3-D Google Earth instance linked to the standard 2-D map. Level-II NEXRAD data for Hurricane Katrina GPCP (Global Precipitation Product), visualized in 2-D and internal Google Earth view.

  2. Weather, Climate and Food Security

    Science.gov (United States)

    Beer, T.

    2016-12-01

    To climatologists food security is dominated by the impacts of weather and climate on food systems. But the link between the atmosphere and food security is more complex. Extreme weather events such as tropical cyclones impact directly on agriculture, but they also impact on the logistical distribution of food and can thus disrupt the food supply chain, especially in urban areas. Drought affects human life and health as well as impacting dramatically on the sustainable development of society. It represents a pending danger for vulnerable agricultural systems that depend on the rainfall, water supply and reservoirs. Developed countries are affected, but the impact is disproportionate within the developing world. Drought, especially when it results in famine, can change the life and economic development of developing nations and stifle their development for decades. A holistic approach is required to understand the phenomena, to forecast catastrophic events such as drought and famine and to predict their societal consequences. In the Food Security recommendations of the Rio+20 Forum on Science, Technology and Innovation for Sustainable Development it states that it is important "To understand fully how to measure, assess and reduce the impacts of production on the natural environment including climate change, recognizing that different measures of impact (e.g. water, land, biodiversity, carbon and other greenhouse gases, etc) may trade-off against each other..." This talk will review the historical link between weather, climate, drought and food supplies; examine the international situation; and summarise the response of the scientific community

  3. Probability for Weather and Climate

    Science.gov (United States)

    Smith, L. A.

    2013-12-01

    Over the last 60 years, the availability of large-scale electronic computers has stimulated rapid and significant advances both in meteorology and in our understanding of the Earth System as a whole. The speed of these advances was due, in large part, to the sudden ability to explore nonlinear systems of equations. The computer allows the meteorologist to carry a physical argument to its conclusion; the time scales of weather phenomena then allow the refinement of physical theory, numerical approximation or both in light of new observations. Prior to this extension, as Charney noted, the practicing meteorologist could ignore the results of theory with good conscience. Today, neither the practicing meteorologist nor the practicing climatologist can do so, but to what extent, and in what contexts, should they place the insights of theory above quantitative simulation? And in what circumstances can one confidently estimate the probability of events in the world from model-based simulations? Despite solid advances of theory and insight made possible by the computer, the fidelity of our models of climate differs in kind from the fidelity of models of weather. While all prediction is extrapolation in time, weather resembles interpolation in state space, while climate change is fundamentally an extrapolation. The trichotomy of simulation, observation and theory which has proven essential in meteorology will remain incomplete in climate science. Operationally, the roles of probability, indeed the kinds of probability one has access too, are different in operational weather forecasting and climate services. Significant barriers to forming probability forecasts (which can be used rationally as probabilities) are identified. Monte Carlo ensembles can explore sensitivity, diversity, and (sometimes) the likely impact of measurement uncertainty and structural model error. The aims of different ensemble strategies, and fundamental differences in ensemble design to support of

  4. NOAA Weather and Climate Toolkit (WCT)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Weather and Climate Toolkit is an application that provides simple visualization and data export of weather and climatological data archived at NCDC. The...

  5. Climate change and extreme events in weather

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    monsoon and b) tropical cyclones. Basically the climate of India is domi- nated by the south west monsoon season which accounts for about 75% of the annual rainfall. The extreme weather events occur over India are: Floods, Droughts, Tropical Cyclones..., Heat Waves and Cold Waves, Storms Surges, Hail Storms, Thunderstorms, Dust Storms. Floods, droughts and tropical cyclones have specific significance a far as India is concerned. Floods and droughts are the two sides of the weather phenomena...

  6. Using Music to Communicate Weather and Climate

    Science.gov (United States)

    Williams, P.; Aplin, K. L.; Brown, S.; Jenkins, K.; Mander, S.; Walsh, C.

    2016-12-01

    Depictions of weather and other atmospheric phenomena are common throughout the arts. Unlike in the visual arts, however, there has been little study of meteorological inspiration in music. This presentation will discuss the frequencies with which different weather types have been depicted in music over time, covering the period from the seventeenth century to the present day. Beginning with classical orchestral music, we find that composers were generally influenced by their own country's climate in the type of weather they chose to represent. Depictions of weather vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. Pieces depicting stormy weather tend to be in minor keys, whereas pieces depicting fair weather tend to be in major keys. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Moving onto modern popular music, we have identified and analyzed over 750 songs referring to different weather types. We find that lyrical references to bad weather peaked in songs written during the stormy 1950s and 60s, when there were many hurricanes, before declining in the relatively calm 1970s and 80s. This finding again suggests a causal link between song-writers' meteorological environments and compositional outputs. Composers and song-writers have a unique ability to emotionally connect their listeners to the environment. This ability could be exploited to communicate environmental science to a broader audience. Our work provides a catalogue of cultural responses to weather before (and during the early stages of) climate change. The effects of global warming may influence musical expression in future, in which case our work will provide a baseline for comparison.

  7. Extreme weather and climate in Europe

    OpenAIRE

    van der Linden, Paul; Dempsey, Peter; Dunn, Robert; Caesar, John; KURNIK Blaz; Dankers, Rutger; Jol, Andre; Kunz, Michael; van Lanen, Henny; Benestad, Rasmus; Parry, Simon; Hilden, Mikael; Marx, Andreas; Mysiak, Jaroslav; Kendon, Lizzie

    2015-01-01

    This report describes the current scientific knowledge of extreme weather and climate events in Europe for the following variables: temperature, precipitation, hail, and drought (with the following types of drought: meteorological, hydrological and soil moisture). The content summarises key literature drawn from peer reviewed journals and other sources (business and government reports), and builds upon the synthesised results presented in international assessments such as IPCC reports. It des...

  8. Extreme Weather Events and Climate Change Attribution

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Katherine [National Academy of Sciences, Washington, DC (United States)

    2016-03-31

    A report from the National Academies of Sciences, Engineering, and Medicine concludes it is now possible to estimate the influence of climate change on some types of extreme events. The science of extreme event attribution has advanced rapidly in recent years, giving new insight to the ways that human-caused climate change can influence the magnitude or frequency of some extreme weather events. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities. Confidence is strongest in attributing types of extreme events that are influenced by climate change through a well-understood physical mechanism, such as, the more frequent heat waves that are closely connected to human-caused global temperature increases, the report finds. Confidence is lower for other types of events, such as hurricanes, whose relationship to climate change is more complex and less understood at present. For any extreme event, the results of attribution studies hinge on how questions about the event's causes are posed, and on the data, modeling approaches, and statistical tools chosen for the analysis.

  9. Climate change concerns, weather expectations, and willingness to adapt

    Science.gov (United States)

    Klima, K.; Bruine de Bruin, W.; Dessai, S.; Lefevre, C.; Taylor, A.

    2016-12-01

    Adaptation will become necessary as climate change causes more extreme weather worldwide. People with lower climate change concerns may be less willing to act. Yet, people who dismiss climate change may still perceive that extreme weather events are becoming more frequent or more intense. It is possible that weather perceptions and change concerns are partially independent constructs, even if they do inform each other. In this research, we ask: 1) How likely do people think that wet, windy, and hot weather events will become worse by 2050? 2) How willing are people to implement climate change adaptation? and 3) Is willingness to adapt to climate change motivated by perceptions of extreme weather, independent of concerns about climate change? To answer these questions, we surveyed two areas with different political views on climate change and extreme weather events, the United States (474 participants) and the United Kingdom (607 participants). We find expectations for extreme weather and willingness to adapt vary between countries; US residents expect hot weather to worsen the most, and for UK residents the least. Willingness to adapt varies as well. Yet, for each type of weather, weather expectations and climate change concerns independently predict willingness to adapt, in the US and the UK. Our findings have implications for communications about climate change adaptation. Willingness to prepare for extreme weather may be higher among individuals with low climate change concerns if the term `climate change' is omitted from communications.

  10. Economic Value of Weather and Climate Forecasts

    Science.gov (United States)

    Yohe, Gary W.

    Researchers who ponder the value of information work in the world of integrated assessment. They study the creation of scientific knowledge from models and data and view the processing and analysis of knowledge through the creation and distribution of information. They understand that the value of this information is derived fundamentally from how it is used. Therefore, such researchers must investigate how and where individuals (and the institutions and systems that individuals create) uncover information that they find credible and how and why those same individuals, institutions, and systems discard information that they find incredible. The essays presented in Economic Value of Weather and Climate Forecasts are a perfect example of how practicing researchers confront this integration process in an area in which just about everyone has an opinion—the weather.

  11. Land plants, weathering, and Paleozoic climatic evolution

    Science.gov (United States)

    Goddéris, Yves; Maffre, Pierre; Donnadieu, Yannick; Carretier, Sébastien

    2017-04-01

    At the end of the Paleozoic, the Earth plunged into the longest and most severe glaciation of the Phanerozoic eon (Montanez et al., 2013). The triggers for this event (called the Late Paleozoic Ice Age, LPIA) are still debated. Based on field observations and laboratory experiments showing that CO2 consumption by rock weathering is enhanced by the presence of plants, the onset of the LPIA has been related to the colonization of the continents by vascular plants in the latest Devonian. By releasing organic acids, concentrating respired CO2 in the soil, and by mechanically breaking rocks with their roots, land plants may have increased the weatherability of the continental surfaces. The "greening" of the continents may also have contributed to an enhanced burial of organic carbon in continental sedimentary basins, assuming that lignin decomposers have not yet evolved (Berner, 2004). As a consequence, CO2 went down, setting the conditions for the onset of the LPIA. This scenario is now widely accepted in the scientific community, and reinforces the feeling that biotic evolutionary steps are main drivers of the long-term climatic evolution. Although appealing, this scenario suffers from some weaknesses. The timing of the continent colonization by vascular plants was achieved in the late Devonian, several tens of million years before the onset of the LPIA (Davies and Gibling, 2013). Second, lignin decomposer fungi were present at the beginning of the Carboniferous, 360 million years ago while the LPIA started around 340-330 Ma (Nelsen et al., 2016). Land plants have also decreased the continental albedo, warming the Earth surface and promoting runoff. Weathering was thus facilitated and CO2 went down. Yet, temperature may have stayed constant, the albedo change compensating for the CO2 fall (Le Hir et al., 2010). From a modelling point of view, the effect of land plants on CO2 consumption by rock weathering is accounted for by forcing the weatherability of the

  12. Tackling Weather and Climate Change Creatively in Science

    Science.gov (United States)

    Dale, Murray

    2013-01-01

    In this article, the author offers some practical support for teaching about weather, climate and climate change. In England, weather and climate are traditionally taught within the geography curriculum, although it is actually a very scientific subject, involving skills such as making careful observations and measurements, interpreting data…

  13. Supercomputing for weather and climate modelling: convenience or necessity

    CSIR Research Space (South Africa)

    Landman, WA

    2009-12-01

    Full Text Available Weather and climate modelling require dedicated computer infrastructure in order to generate high-resolution, large ensemble, various models with different configurations, etc. in order to optimise operational forecasts and climate projections. High...

  14. Public perceptions of climate change and extreme weather events

    Science.gov (United States)

    Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.

    2013-12-01

    Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such

  15. Weather and Climate Monitoring Protocol, Channel Islands National Park, California

    Science.gov (United States)

    McEachern, Kathryn; Power, Paula; Dye, Linda; Rudolph, Rocky

    2008-01-01

    Weather and climate are strong drivers of population dynamics, plant and animal spatial distributions, community interactions, and ecosystem states. Information on local weather and climate is crucial in interpreting trends and patterns in the natural environment for resource management, research, and visitor enjoyment. This document describes the weather and climate monitoring program at the Channel Islands National Park (fig. 1), initiated in the 1990s. Manual and automated stations, which continue to evolve as technology changes, are being used for this program. The document reviews the history of weather data collection on each of the five Channel Islands National Park islands, presents program administrative structure, and provides an overview of procedures for data collection, archival, retrieval, and reporting. This program overview is accompanied by the 'Channel Islands National Park Remote Automated Weather Station Field Handbook' and the 'Channel Islands National Park Ranger Weather Station Field Handbook'. These Handbooks are maintained separately at the Channel Island National Park as 'live documents' that are updated as needed to provide a current working manual of weather and climate monitoring procedures. They are available on request from the Weather Program Manager (Channel Islands National Park, 1901 Spinnaker Dr., Ventura, CA 93001; 805.658.5700). The two Field Handbooks describe in detail protocols for managing the four remote automated weather stations (RAWS) and the seven manual Ranger Weather Stations on the islands, including standard operating procedures for equipment maintenance and calibration; manufacturer operating manuals; data retrieval and archiving; metada collection and archival; and local, agency, and vendor contracts.

  16. The Future of Planetary Climate Modeling and Weather Prediction

    Science.gov (United States)

    Del Genio, A. D.; Domagal-Goldman, S. D.; Kiang, N. Y.; Kopparapu, R. K.; Schmidt, G. A.; Sohl, L. E.

    2017-01-01

    Modeling of planetary climate and weather has followed the development of tools for studying Earth, with lags of a few years. Early Earth climate studies were performed with 1-dimensionalradiative-convective models, which were soon fol-lowed by similar models for the climates of Mars and Venus and eventually by similar models for exoplan-ets. 3-dimensional general circulation models (GCMs) became common in Earth science soon after and within several years were applied to the meteorology of Mars, but it was several decades before a GCM was used to simulate extrasolar planets. Recent trends in Earth weather and and climate modeling serve as a useful guide to how modeling of Solar System and exoplanet weather and climate will evolve in the coming decade.

  17. Progress in Climate Prediction and Weather Forecast Operations in China

    Institute of Scientific and Technical Information of China (English)

    XIAO Ziniu; LIU Bo; LIU Hua; ZHANG De

    2012-01-01

    The current status of weather forecasting and climate prediction,and the main progress China has made in recent years,are summarized in this paper. The characteristics and requirements of modern weather forecast operations are described briefly,and the significance of Numerical Weather Prediction (NWP) for future development is emphasized.The objectives and critical tasks for seamless short-term climate prediction that covers the extended-range (15 30 days),monthly,seasonal,annual,interannual and interdecadal timescales,are proposed.

  18. Weathering, Soil Production, and Erosion Across Climatic and Tectonic Gradients

    Science.gov (United States)

    Norton, K. P.; Larsen, I. J.

    2014-12-01

    Weathering is one of the fundamental processes that sustain life on our planet. Physical weathering breaks down rock for soil production and chemical weathering is thought to operate as the ultimate long-term negative feedback on atmospheric CO2 concentrations. There remains, however, uncertainty as to the relationship between chemical and physical weathering at very fast rates. If chemical weathering becomes kinetically limited at rapid erosion rates, as has been shown in a number of locations around the globe, then the fastest erosion rates will be associated with reduced chemical weathering. This has led to a debate as to whether tectonically active mountain ranges or rolling plains are the main source of CO2 drawdown through silicate weathering. At the heart of this debate is the dearth of chemical weathering data at fast erosion rates. New cosmogenic nuclide-derived denudation rates from the West Coast of the New Zealand Southern Alps are among the fastest in the world and are linearly correlated with chemical weathering rates. The associated soil production rates reach an order of magnitude faster than previous estimates and far exceed the suggested maximum soil production rate. This suggests that very fast weathering and soil production is possible in such active landscapes and extreme climates. We investigate the controls on these rapid rates with a climate-driven soil production model. At the most basic level, soil production requires chemical weathering of primary minerals to secondary minerals. We apply soil production models with both exponential and hump-shaped dependencies on soil thickness. Mean annual temperature and precipitation are incorporated in the form of a modified Arrhenius equation that controls the maximum soil production rate. When applied to the Southern Alps, the model predicts very rapid soil production that matches the magnitude of the cosmogenic nuclide-derived rates. High annual precipitation in the Southern Alps supports rapid

  19. Using Weather Data and Climate Model Output in Economic Analyses of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Auffhammer, M.; Hsiang, S. M.; Schlenker, W.; Sobel, A.

    2013-06-28

    Economists are increasingly using weather data and climate model output in analyses of the economic impacts of climate change. This article introduces a set of weather data sets and climate models that are frequently used, discusses the most common mistakes economists make in using these products, and identifies ways to avoid these pitfalls. We first provide an introduction to weather data, including a summary of the types of datasets available, and then discuss five common pitfalls that empirical researchers should be aware of when using historical weather data as explanatory variables in econometric applications. We then provide a brief overview of climate models and discuss two common and significant errors often made by economists when climate model output is used to simulate the future impacts of climate change on an economic outcome of interest.

  20. Tools in Support of Planning for Weather and Climate Extremes

    Science.gov (United States)

    Done, J.; Bruyere, C. L.; Hauser, R.; Holland, G. J.; Tye, M. R.

    2016-12-01

    A major limitation to planning for weather and climate extremes is the lack of maintained and readily available tools that can provide robust and well-communicated predictions and advice on their impacts. The National Center for Atmospheric Research is facilitating a collaborative international program to develop and support such tools within its Capacity Center for Climate and Weather Extremes aimed at improving community resilience planning and reducing weather and climate impacts. A Global Risk, Resilience and Impacts Toolbox is in development and will provide: A portable web-based interface to process work requests from a variety of users and locations; A sophisticated framework that enables specialized community tools to access a comprehensive database (public and private) of geo-located hazard, vulnerability, exposure, and loss data; A community development toolkit that enables and encourages community tool developments geared towards specific user man­agement and planning needs, and A comprehensive community sup­port facilitated by NCAR utilizing tutorials and a help desk. A number of applications are in development, built off the latest climate science, and in collaboration with private industry and local and state governments. Example applications will be described, including a hurricane damage tool in collaboration with the reinsurance sector, and a weather management tool for the construction industry. These examples will serve as starting points to discuss the broader potential of the toolbox.

  1. Report of a Policy Forum: Weather, Climate, and Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-07-01

    The report of a policy forum on Weather, Climate, and Energy presents findings and recommendations that, if implemented, could position the energy sector, the providers of weather and climate science and services, and energy consumers to mange more cooperatively and effectively the production, distribution, and consumption of electrical power and fossil fuels. Recent U.S. experience with a series of energy shortages encouraged the AMS Atmospheric Policy Program to join with the University of Oklahoma in the development of a forum to address the issues connected with responding to those shortages. Nearly 100 representatives from the public, private, and academic portions of the energy production sector, the meteorological community, political and corporate leaders, weather risk management analysts, and policy makers met on October 16-17, 2001 to discuss these policy issues.

  2. Toward seamless weather-climate and environmental prediction

    Science.gov (United States)

    Brunet, Gilbert

    2016-04-01

    Over the last decade or so, predicting the weather, climate and atmospheric composition has emerged as one of the most important areas of scientific endeavor. This is partly because the remarkable increase in skill of current weather forecasts has made society more and more dependent on them day to day for a whole range of decision making. And it is partly because climate change is now widely accepted and the realization is growing rapidly that it will affect every person in the world profoundly, either directly or indirectly. One of the important endeavors of our societies is to remain at the cutting-edge of modelling and predicting the evolution of the fully coupled environmental system: atmosphere (weather and composition), oceans, land surface (physical and biological), and cryosphere. This effort will provide an increasingly accurate and reliable service across all the socio-economic sectors that are vulnerable to the effects of adverse weather and climatic conditions, whether now or in the future. This emerging challenge was at the center of the World Weather Open Science Conference (Montreal, 2014).The outcomes of the conference are described in the World Meteorological Organization (WMO) book: Seamless Prediction of the Earth System: from Minutes to Months, (G. Brunet, S. Jones, P. Ruti Eds., WMO-No. 1156, 2015). It is freely available on line at the WMO website. We will discuss some of the outcomes of the conference for the WMO World Weather Research Programme (WWRP) and Global Atmospheric Watch (GAW) long term goals and provide examples of seamless modelling and prediction across a range of timescales at convective and sub-kilometer scales for regional coupled forecasting applications at Environment and Climate Change Canada (ECCC).

  3. Wildfire, Ecosystems and Climate in Siberia: Developing Weather and Climate Data Sets for Use in Fire Weather and Bioclimatic Models

    Science.gov (United States)

    Westberg, D. J.; Soja, A. J.; Stackhouse, P. W.

    2007-12-01

    A primary driving force of land cover change in boreal regions is fire, and extreme fire seasons are influenced by local weather and ultimately climate. It is predicted that fire frequency, area burned, fire severity, fire season length, and severe fire seasons will increase under current climate change scenarios. Already, there is evidence of an increased number of extreme fire seasons in Siberia that correlate with current warming. Our overall goal is to explore the degree to which current and future climate variability has and will affect wildfire-induced land cover change and to highlight the significance of the interaction between the biosphere and the climate system. Developing reliable weather and climate data provides the backbone of this research, which is to examine the relationships between weather, extreme fire events, and fire-induced land cover change in the changing climate of Siberia. The primary focus in this presentation is the description of the assembled weather and climate data sets and the verification efforts, followed by an example where the data set is used in a fire prediction application. Ground- based weather observations from the National Climatic Data Center (NCDC) for the years 1983-2006, have been used to verify various modeled meteorological parameters from the NASA Goddard Earth Observing System version 4 (GEOS-4) data. Specifically, we have extracted "Summary of the Day" and "Integrated Surface Hourly (ISH)" weather data from the NCDC. The ISH data has been processed to obtain hourly observation times for all stations in Siberia, including Mongolia and parts of northern China. A subset of these stations have been selected for validation purposes if they meet a criteria of having at least 75% of the possible reporting observations per day and 75% of the possible days in each month. GEOS-4 data interpolated to a 1x1 degree grid have compared well with the NCDC station data, covering the burning season from April through September

  4. Advances and Challenges in Numerical Weather and Climate Prediction

    Science.gov (United States)

    Yu, Tsann-Wang

    2010-10-01

    In this review article, the dispersive nature of various waves that exist in the atmosphere is first reviewed. These waves include Rossby waves, Kelvin wave, acoustic wave, internal and external gravity waves and many others, whose intrinsic nature and great relevancy to weather and climate forecasts are described. This paper then describes the latest development in global observations and data analysis and assimilation methodologies. These include three-dimensional and four dimensional variational data assimilation systems that are being used in the world's major operational weather and climate forecasting centers. Some of the recent results in using novel atmospheric satellite and chemical observation data applied to these data assimilation systems and those from the latest development in high resolution modeling and the ensemble forecasting approach in the operational numerical weather forecasting centers are also presented. Finally, problems of inherent errors associated with initial conditions, and those associated with the coupling of dynamics and physics and their related numerical issues in variational data assimilation systems are discussed.

  5. Accelerating Climate and Weather Simulations through Hybrid Computing

    Science.gov (United States)

    Zhou, Shujia; Cruz, Carlos; Duffy, Daniel; Tucker, Robert; Purcell, Mark

    2011-01-01

    Unconventional multi- and many-core processors (e.g. IBM (R) Cell B.E.(TM) and NVIDIA (R) GPU) have emerged as effective accelerators in trial climate and weather simulations. Yet these climate and weather models typically run on parallel computers with conventional processors (e.g. Intel, AMD, and IBM) using Message Passing Interface. To address challenges involved in efficiently and easily connecting accelerators to parallel computers, we investigated using IBM's Dynamic Application Virtualization (TM) (IBM DAV) software in a prototype hybrid computing system with representative climate and weather model components. The hybrid system comprises two Intel blades and two IBM QS22 Cell B.E. blades, connected with both InfiniBand(R) (IB) and 1-Gigabit Ethernet. The system significantly accelerates a solar radiation model component by offloading compute-intensive calculations to the Cell blades. Systematic tests show that IBM DAV can seamlessly offload compute-intensive calculations from Intel blades to Cell B.E. blades in a scalable, load-balanced manner. However, noticeable communication overhead was observed, mainly due to IP over the IB protocol. Full utilization of IB Sockets Direct Protocol and the lower latency production version of IBM DAV will reduce this overhead.

  6. Extreme weather and climate events with ecological relevance: a review.

    Science.gov (United States)

    Ummenhofer, Caroline C; Meehl, Gerald A

    2017-06-19

    Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events

  7. Climate and Weather Analysis of Afghanistan Thunderstorms

    Science.gov (United States)

    2011-09-01

    in Iran, the Hindu Kush Mountains in AFG, the Pamir Mountains in Tajikistan, and the Himalayan Mountains in southwestern China and northern India...129,500 km2 of high plateaus and sandy deserts at an average elevation of 915 m. Within this plateau are the isolated arid salt flats of the

  8. Using Virtualization to Integrate Weather, Climate, and Coastal Science Education

    Science.gov (United States)

    Davis, J. R.; Paramygin, V. A.; Figueiredo, R.; Sheng, Y.

    2012-12-01

    To better understand and communicate the important roles of weather and climate on the coastal environment, a unique publically available tool is being developed to support research, education, and outreach activities. This tool uses virtualization technologies to facilitate an interactive, hands-on environment in which students, researchers, and general public can perform their own numerical modeling experiments. While prior efforts have focused solely on the study of the coastal and estuary environments, this effort incorporates the community supported weather and climate model (WRF-ARW) into the Coastal Science Educational Virtual Appliance (CSEVA), an education tool used to assist in the learning of coastal transport processes; storm surge and inundation; and evacuation modeling. The Weather Research and Forecasting (WRF) Model is a next-generation, community developed and supported, mesoscale numerical weather prediction system designed to be used internationally for research, operations, and teaching. It includes two dynamical solvers (ARW - Advanced Research WRF and NMM - Nonhydrostatic Mesoscale Model) as well as a data assimilation system. WRF-ARW is the ARW dynamics solver combined with other components of the WRF system which was developed primarily at NCAR, community support provided by the Mesoscale and Microscale Meteorology (MMM) division of National Center for Atmospheric Research (NCAR). Included with WRF is the WRF Pre-processing System (WPS) which is a set of programs to prepare input for real-data simulations. The CSEVA is based on the Grid Appliance (GA) framework and is built using virtual machine (VM) and virtual networking technologies. Virtualization supports integration of an operating system, libraries (e.g. Fortran, C, Perl, NetCDF, etc. necessary to build WRF), web server, numerical models/grids/inputs, pre-/post-processing tools (e.g. WPS / RIP4 or UPS), graphical user interfaces, "Cloud"-computing infrastructure and other tools into a

  9. Growing Diversity in Space Weather and Climate Change Research

    Science.gov (United States)

    Johnson, L. P.; Ng, C.; Marchese, P.; Austin, S.; Frost, J.; Cheung, T. D.; Robbins, I.; Carlson, B. E.; Steiner, J. C.; Tremberger, G.; Paglione, T.; Damas, C.; Howard, A.; Scalzo, F.

    2013-12-01

    Space Weather and Global Climate Impacts are critical items on the present national and international science agendas. Understanding and forecasting solar activity is increasingly important for manned space flight, unmanned missions (including communications satellites, satellites that monitor the space and earth environment), and regional power grids. The ability to predict the effects of forcings and feedback mechanisms on global and local climate is critical to survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies via advanced degrees and pursue careers related to these areas. This CUNY-based initiative, supported by NASA and NSF, provided undergraduate research experience for more than 70 students in topics ranging from urban impacts of global climate change to magnetic rope structure, solar flares and CMEs. Other research topics included investigations of the ionosphere using a CubeSat, stratospheric aerosols in Jupiter's atmosphere, and ocean climate modeling. Mentors for the primarily summer research experiences included CUNY faculty, GISS and GSFC scientists. Students were recruited from CUNY colleges as well as other colleges including Spelman, Cornell, Rutgers and SUNY colleges. Fifty-eight percent of the undergraduate students were under-represented minorities and thirty-four percent were female. Many of the research teams included high school teachers and students as well as graduate students. Supporting workshops for students included data analysis and visualization tools, space weather, planetary energy balance and BalloonSats. The project is supported by NASA awards NNX10AE72G and NNX09AL77G, and NSF REU Site award 0851932.

  10. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification

    Science.gov (United States)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2015-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  11. Enhanced weathering strategies for stabilizing climate and averting ocean acidification

    Science.gov (United States)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2016-04-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m-2 yr-1) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  12. The Relationships Between Weather and Climate and Attacks of Bronchitis

    Science.gov (United States)

    Talaia, M. A. R.; Saraiva, M. A. C.; Vieira da Cruz, A. A.

    The area of Aveiro, more concretely Aveiro lagoon, a natural laboratory has been con- sidered, for promoting the development and the application of several investigations worked. The importance of the influences of weather and climate on human health has been well known since ancient teams and many decisions concerning human be- haviour it are clearly weather related. However, decisions related to weather criteria can be important and economically significant, but the real economic effect of the weather is difficult to assess. Talaia et al. (2000) and Talaia and Vieira da Cruz (2001) have shown the possible harmful effect of certain meteorological factors on respiratory conditions. Bronchitis is a disease caused by inflammation of the bronchi as a result of infectious agents or air pollutants. In this study our attention is to relate, the be- ginning of bronchitis attacks in the services of urgency of the Hospital of Aveiro with meteorological factors, and the risk group are studied. We used the medical records and the database of meteorological factors. The obtained analysis allows to conclude that some meteorological factors have correlation with the occurrences of the disease and to allow improving the work in the urgency services in the requested periods. The knowledge that will be extracted of this study can be used later in studies that inte- grate other important components for the characterisation of the environmental impact in the area. References: Talaia, M.A.R., Vieira da Cruz, A.A., Saraiva, M.A.C., Amaro, G.S., Oliveira, C.J. and Carvalho, C.F., 2000, The Influence of Meteorological Fac- tors on Pneumonia Emergencies in Aveiro, International Symposium on Human- Biometeorology, St. Petersburg (Pushkin), Russia, pp. 67-68. Talaia, M.A.R. and Vieira of Cruz, A.A., (2001), Meteorological Effects on the Resistance of the Body to Influenza - One Study in Aveiro Region, Proceedings 2nd Symposium of Meteorol- ogy and Geophysics of APMG and 3rd Meeting

  13. Impacts of Amazon deforestation on regional weather and climate extremes

    Science.gov (United States)

    Medvigy, D.; Walko, R. L.; Avissar, R.

    2010-12-01

    Recent deforestation projections estimate that 40% of the Amazon rainforest will be deforested by 2050. Many modeling studies have indicated that deforestation will reduce average rainfall in the Amazon. However, very few studies have investigated the potential for deforestation to change the frequency and intensity of extreme climate and weather events. To fill this gap in our understanding, we use a variable-resolution GCM to investigate how precipitation and temperature extremes throughout South America respond to deforestation. The model’s grid mesh is set up to cover South America and nearby oceans at mesoscale (25 km) resolution, and then to gradually coarsen and cover the rest of the world at 200 km resolution. This approach differs from the two most common current approaches: (1) to use a GCM with too coarse of a resolution to evaluate regional climate extremes, or (2) to use a regional atmospheric model that requires lateral boundary conditions from a GCM or reanalysis. We find that deforestation induces large changes in winter (June-July-August) climate throughout much of South America. Extreme cold events become much more common along the eastern slopes of the Andes. The largest changes were in the western Amazon and, surprisingly, in Argentina, far from the actual deforested area. We also find shifts in precipitation extremes, especially in September-October-November. Such changes in temperature and precipitation extremes have important consequences for agriculture, natural ecosystems, and human society.

  14. Variations in pollen counts largely explained by climate and weather

    Science.gov (United States)

    Jung, Stephan; Damialis, Athanasios; Estrella, Nicole; Jochner, Susanne; Menzel, Annette

    2017-04-01

    The interaction between climate and vegetation is well studied within phenology. Climatic / weather conditions affect e.g. flowering date, length of vegetation period, start and end of the season and the plant growth. Besides phenological stages also pollen counts can be used to investigate the interaction between climate and vegetation. Pollen emission and distribution is directly influenced by temperature, wind speed, wind direction and humidity/precipitation. The objective of this project is to study daily/sub daily variations in pollen counts of woody and herbaceous plant species along an altitudinal gradient with different climatic conditions during the vegetation period. Measurements of pollen were carried out with three volumetric pollen traps installed at the altitudes 450 m a.s.l (Freising), 700 m a.s.l (Garmisch-Partenkirchen), and 2700 m a.s.l (Schneefernerhaus near Zugspitze) representing gradient from north of Munich towards the highest mountain of Germany. Airborne pollen concentrations were recorded during the years 2014-2015. The altitudinal range of these three stations accompanied by different microclimates ("space for time approach") can be used as proxy for climate change and to assess its impact on pollen counts and thus allergenic risk for human health. For example the pollen season is shortened and pollen amount is reduced at higher sites. For detailed investigations pollen of the species Plantago, Quercus, Poaceae, Cupressaceae, Cyperacea, Betula and Platanus were chosen, because those are found in appropriate quantities. In general, pollen captured in the pollen traps to a certain extent has its origin from the immediate surrounding. Thus, it mirrors local species distribution. But furthermore the distance of pollen transport is also based on (micro-) climatic conditions, land cover and topography. The pollen trap shortly below the summit of Zugspitze (Schneefernerhaus) has an alpine environment without vegetation nearby. Therefore, this

  15. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Science.gov (United States)

    Porada, P.; Lenton, T. M.; Pohl, A.; Weber, B.; Mander, L.; Donnadieu, Y.; Beer, C.; Pöschl, U.; Kleidon, A.

    2016-07-01

    It has been hypothesized that predecessors of today's bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr-1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today's global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate.

  16. Weather and Climate Effects of the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    DUAN Anmin; WU Guoxiong; LIU Yimin; MA Yaoming; ZHAO Ping

    2012-01-01

    Progress in observation experiments and studies concerning the effects of the Tibetan Plateau (TP) on weather and climate during the last 5 years are reviewed.The mesoscale topography over the TP plays an important role in generating and enhancing mesoscale disturbances.These disturbances increase the surface sensible heat (SH) flux over the TP and propagate eastward to enhance convection and precipitation in the valley of Yangtze River.Some new evidence from both observations and numerical simulations shows that the southwesterly flow,which lies on the southeastern flank of the TP,is highly correlated with the SH of the southeastern TP in seasonal and interannual variability.The mechanical and thermal forcing of the TP is an important climatic cause of the spring persistent rains over southeastern China.Moreover,the thermodynamic processes over the TP can influence the atmospheric circulation and climate over North America and Europe by stimulating the large-scale teleconnections such as the Asian-Pacific oscillation and can affect the atmospheric circulation over the southern Indian Ocean.Estimating the trend in the atmospheric heat source over the TP shows that,in contrast to the strong surface and troposphere warming,the SH over the TP has undergone a significant decreasing trend since the mid-1980s.Despite the fact that in situ latent heating presents a weak increasing trend,the springtime atmospheric heat source over the TP is losing its strength.This gives rise to reduced precipitation along the southern and eastern slopes of the TP and to increased rainfall over northeastern India and the Bay of Bengal.

  17. Climate change or variable weather: Rethinking Danish homeowners' perceptions of floods and climate

    DEFF Research Database (Denmark)

    Baron, Nina; Petersen, Lars Kjerulf

    2015-01-01

    Climate scenarios predict that an effect of climate change will be more areas at risk of extensive flooding. This article builds on a qualitative case study of homeowners in the flood-prone area of Lolland in Denmark and uses the theories of Tim Ingold and Bruno Latour to rethink the way we...... understand homeowners’ perception of climate change and local flood risk. Ingold argues that those perceptions are shaped by people’s experiences with and connections to their local landscape. People experience the local variability of the weather, and not global climate change as presented in statistical...... prevent the residents in Lolland from experiencing many of the changes that are already occurring and, at the same time, give them a feeling of being able to control the water to the extent that it is prevented from flooding their homes, both now and in the future. The combination of these two theoretical...

  18. Weather and Climate Scaling: Impacts on City Infrastructure

    Science.gov (United States)

    Austin, G.; Sutherland-Stacey, L.

    2015-12-01

    Weather and climate systems have been identified as chaotic and complex systems and have been extensively studied as such for decades exhibiting occasional large extremes, sudden changes, difficulty in forecasting and all the characteristics and behaviour patterns of chaotic systems including temporal and spatial scaling regimes. Urban traffic systems are also well recognised to exhibit such properties. However, centralised infrastructure such as water and energy are generally viewed as simple, centralised linear input/output engineering network systems which change slowly over time in an incremental, controlled fashion. Such systems can be overwhelmed by extreme events, causing system failure, often for extended periods of time. System failures and partial failures will become more frequent as the system reaches capacity as population and demand increases. As the risk of failure or partial failure increases and the capability to enable distributed capture and dissemination of resources improves, these systems will shift towards decentralisation. The decentralised segments of the systems will become increasingly dependent on weather (a chaotic system) but will be less subject to centralised system failure and could be buffered by the centralised segment when isolated failures occur. As decentralisation develops, the systems will become increasingly complex, potentially chaotic in nature and exhibit unexpected behaviours as well as self-organisation. Both criticality and resilience will also change and, it is likely that, should resilience reduce, the systems may become adaptive to compensate, potentially increasing resilience. Interesting questions include "does decentralisation of infrastructure force complexity and/or chaos?" and "how will shifting from centralised to decentralised inputs change resilience and criticality of the system?" We aim to examine these questions in the contexts of urban waste and potable water systems as well as with domestic solar panel

  19. Climate and weather atlas of Kansas : An introduction

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Because Kansas lies in the center of the continental United States, it is subject to varying weather patterns as air masses move across the state. Much of the severe...

  20. Enhanced weathering strategies for stabilizing climate and averting ocean acidification

    OpenAIRE

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M S; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2016-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliora...

  1. Possibility of weather and climate change by active experiments

    Science.gov (United States)

    Avakyan, Sergey; Voronin, Nikolai; Troitsky, Arkadil; Chernouss, Sergey

    The anonymous remote impact on weather and climatic characteristics permanently discussed in last decade despite the fact that the UN Convention forbid to use the weather as a weapon since the 1970's. For example, Ross N. Hoffman proposed to operate weather conditions by direct flux of microwave radiation from space. This flux could affects on water vapor in the troposphere. The development of an optically thin cirrus cloud is especially promising situation because even the formation of the aeroplane cirrus-track can stimulate disturbance, which is necessary to development of an initial cyclone stage. Our studies confirmed the results of experiments of NIRFI on sporadic appearance of the microwave radiation of ionospheric nature during periods of solar flares and geomagnetic storms, and also during work of the "Sura” ionospheric heating facility. Such microwave radiation also occurs, when precipitation of particles from radiation belts stimulated by work of powerful (˜ 1 MW) navigation transmitters at frequencies ˜ 5 - 22 kHz. This effect was discovered by measurements at the Intercosmos satellite Bulgaria-1300 in 1982, and recently was confirmed by the spacecraft DEMETER measurements Leningrad State University measurements 1990-1991 at altitude about 2100 m proved the impact of microwave radiation from solar radiobursts on the amount of water vapor in the upper troposphere column. 25 - 40% of the vapour are involved into the formation of clusters decreased an atmospheric transparency. Papers of State Optical Institute (2008) proposed to account the electron-stimulated precipitation from the radiation belts over powerful radio transmitters (registered on the spacecraft DEMETER) as an additional source of microwave radiation of the ionosphere. This source can participate in the condensation-cluster mechanism changes of atmospheric transparency by the same way as natural geomagnetic storm. (Grach et al) also recorded stream microwave ionospheric disturbance

  2. Climate-Literacy Laboratory Exercises for Undergraduate Students in an Introductory Weather and Climate Course

    Science.gov (United States)

    Diem, J.; Elliott, W.; Criswell, B.; Morrow, C. A.

    2012-12-01

    A suite of NASA-sponsored, Web-based exercises are in development for an introductory weather and climate course at Georgia State University (GSU) to improve climate literacy among undergraduate students. An extremely small percentage of the students are STEM majors. The exercises make extensive use of NASA resources and are guided in part by the concepts in Climate Literacy: The Essential Principles of Climate Science. At least two thousand undergraduate students have completed a majority of the exercises over the past two years. Nine of the twelve exercises in the course are connected strongly to climate literacy. The topics of those nine exercises are as follows: (1) Solar Irradiance, (2) Stratospheric Ozone, (3) Tropospheric Air, (4) The Carbon Cycle, (5) Global Surface Temperature, (6) Glacial-Interglacial Cycles, (7) Temperature Changes during the Past Millennium, (8) Climate & Ecosystems, and (9) Current & Future Climate Change. Two of the exercises (Tropospheric Air and The Carbon Cycle) make use of carbon dioxide (CO2) measurements made by students themselves and by a stationary CO2 monitor at GSU. The three remaining exercises, The Hadley Cell, Atlanta Weather, and Air Pollution, are less connected to multiple climate-literacy concepts; nonetheless, they provide a more complete experience for the students in the understanding of climate processes, differences between weather and climate, and human impacts on the atmosphere. All exercises are based on an inquiry-based learning cycle (i.e. 7 Es) and require substantial amounts of engagement, applied thinking, and critical thinking by the students. Not only do students become knowledgeable about the essential principles of climate change, especially global warming, but extensive use of geographical-information software and hand-held measurement devices has provided students with training in geography and technology. Student attitudes towards the labs were gathered via an on-line, anonymous survey from

  3. National programme for weather, climate and atmosphere research. Annual report 1984/85

    CSIR Research Space (South Africa)

    Louw, CW

    1984-12-01

    Full Text Available This report reviews the activities of the National Programme for Weather, Climate and Atmosphere Research (NPWCAR) for 1984/85, highlights the findings and also discusses future developments and general needs regarding research within the framework...

  4. Global markets and the differential effects of climate and weather on conflict

    Science.gov (United States)

    Meng, K. C.; Hsiang, S. M.; Cane, M. A.

    2011-12-01

    Both climate and weather have been attributed historically as possible drivers for violence. Previous empirical studies have either focused on isolating local idiosyncratic weather variation or have conflated weather with spatially coherent climatic changes. This paper provides the first study of the differential impacts of climate and weather variation by employing methods developed in earlier work linking the El Nino Southern Oscillation (ENSO) with the onset of civil conflicts. By separating the effects of climate from local weather, we are able to test possible mechanisms by which atmospheric changes can cause violence. It is generally difficult to separate the effect of year-to-year climate variations from other global events that might drive conflict. We avoid this problem by examining the set of tropical countries that are strongly teleconnected to ENSO. For this region, the ENSO cycle parallels the common year-to-year pattern of violence. Using ENSO, we isolate the influence of climatic changes from other global determinants of violence and compare it with the effect of local weather variations. We find that while climate affects the onset of civil conflicts in teleconnected countries, local weather has no significant effect. Productivity overall as well as across major sectors is more affected by local weather than by climatic variation. This is particularly evident in the agricultural sector where total value and cereal yield decline much greater from a 1°C increase in local temperature than a 1°C increase in ENSO. However, when examining the effect on food prices, we find that ENSO is associated with a large and statistically significant increase in cereal prices but no effect from hotter local temperatures. Altogether, this evidence points toward the ability of global and regional commodity markets to insure against the effects of local weather variation and their limitations in containing losses from aggregate shocks such as El Nino events. We posit

  5. Stochastic Parameterization: Towards a new view of Weather and Climate Models

    CERN Document Server

    Berner, Judith; Batte, Lauriane; De La Camara, Alvaro; Crommelin, Daan; Christensen, Hannah; Colangeli, Matteo; Dolaptchiev, Stamen; Franzke, Christian L E; Friederichs, Petra; Imkeller, Peter; Jarvinen, Heikki; Juricke, Stephan; Kitsios, Vassili; Lott, Franois; Lucarini, Valerio; Mahajan, Salil; Palmer, Timothy N; Penland, Cecile; Von Storch, Jin-Song; Sakradzija, Mirjana; Weniger, Michael; Weisheimer, Antje; Williams, Paul D; Yano, Jun-Ichi

    2015-01-01

    The last decade has seen the success of stochastic parameterizations in short-term, medium-range and seasonal ensembles: operational weather centers now routinely use stochastic parameterization schemes to better represent model inadequacy and improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides more skillful estimates of uncertainty, but is also extremely promising for reducing longstanding climate biases and relevant for determining the climate response to forcings such as e.g., an increase of CO2. This article highlights recent results from different research groups which show that the stochastic representation of unresolved processes in the atmosphere, oceans, land surface and cryosphere of comprehensive weather and climate models a) gives rise to more reliable probabilistic forecasts of weather and climate and b) reduces systematic model bias. We make a case that the use of mathematically ...

  6. Introdution of China Weather TV and its work on climate change

    Science.gov (United States)

    Li, R.

    2007-12-01

    A. Introduction of China Weather TV China Weather TV is the exclusive meteorological channel in China which broadcasting 24 hours each day. Nowadays, climate change becomes the global hot issue. As the professional meteorological channel, China Weather TV focuses on the education and public awareness on climate change. It not only makes news reports to let the public know the updates in the field of climate change, but also produces documentaries to communicate the facts, effluence of climate change as well as the policy for mitigate the change. B. Introduction of documentary series on climate change: 1) Documentary Series: Senior Expert Interview on Climate Change Content: Take the special interview of senior scientists and experts in the world, expressing their view on climate change issue. 2) Documentary Series: Resolving doubts on Climate Change Scientifically Content: Analyze the knowledge and concept of climate change, and make public know the scientific base of climate change. 3) Documentary Series: The Changing Earth Content: Shoot the natural ecosystem, such as the glacier, lake, grassland etc, showing the facts and impacts of climate change. 4 ) Documentary Series: Paleoclimate Content: Shoot the researching process and conclusion of paleoclimate scientists, making public know the historical progress of global climate. 5) Additionally, CWTV is shooting the educational program on climate change, the objective audience are students with the age from 6 to 18.

  7. Cosmic rays and space weather: effects on global climate change

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2012-01-01

    Full Text Available We consider possible effects of cosmic rays and some other space factors on the Earth's climate change. It is well known that the system of internal and external factors formatting the climate is very unstable; decreasing planetary temperature leads to an increase of snow surface, and decrease of the total solar energy input into the system decreases the planetary temperature even more, etc. From this it follows that even energetically small factors may have a big influence on climate change. In our opinion, the most important of these factors are cosmic rays and cosmic dust through their influence on clouds, and thus, on climate.

  8. The weather@home regional climate modelling project for Australia and New Zealand

    Science.gov (United States)

    Black, Mitchell T.; Karoly, David J.; Rosier, Suzanne M.; Dean, Sam M.; King, Andrew D.; Massey, Neil R.; Sparrow, Sarah N.; Bowery, Andy; Wallom, David; Jones, Richard G.; Otto, Friederike E. L.; Allen, Myles R.

    2016-09-01

    A new climate modelling project has been developed for regional climate simulation and the attribution of weather and climate extremes over Australia and New Zealand. The project, known as weather@home Australia-New Zealand, uses public volunteers' home computers to run a moderate-resolution global atmospheric model with a nested regional model over the Australasian region. By harnessing the aggregated computing power of home computers, weather@home is able to generate an unprecedented number of simulations of possible weather under various climate scenarios. This combination of large ensemble sizes with high spatial resolution allows extreme events to be examined with well-constrained estimates of sampling uncertainty. This paper provides an overview of the weather@home Australia-New Zealand project, including initial evaluation of the regional model performance. The model is seen to be capable of resolving many climate features that are important for the Australian and New Zealand regions, including the influence of El Niño-Southern Oscillation on driving natural climate variability. To date, 75 model simulations of the historical climate have been successfully integrated over the period 1985-2014 in a time-slice manner. In addition, multi-thousand member ensembles have also been generated for the years 2013, 2014 and 2015 under climate scenarios with and without the effect of human influences. All data generated by the project are freely available to the broader research community.

  9. Climate and weather risk in natural resource models

    Science.gov (United States)

    Merrill, Nathaniel Henry

    This work, consisting of three manuscripts, addresses natural resource management under risk due to variation in climate and weather. In three distinct but theoretically related applications, I quantify the role of natural resources in stabilizing economic outcomes. In Manuscript 1, we address policy designed to effect the risk of cyanobacteria blooms in a drinking water reservoir through watershed wide policy. Combining a hydrologic and economic model for a watershed in Rhode Island, we solve for the efficient allocation of best management practices (BMPs) on livestock pastures to meet a monthly risk-based as well as mean-based water quality objective. In order to solve for the efficient allocations of nutrient control effort, we optimize a probabilistically constrained integer-programming problem representing the choices made on each farm and the resultant conditions that support cyanobacteria blooms. In doing so, we employ a genetic algorithm (GA). We hypothesize that management based on controlling the upper tail of the probability distribution of phosphorus loading implies different efficient management actions as compared to controlling mean loading. We find a shift to more intense effort on fewer acres when a probabilistic objective is specified with cost savings of meeting risk levels of up to 25% over mean loading based policies. Additionally, we illustrate the relative cost effectiveness of various policies designed to meet this risk-based objective. Rainfall and the subsequent overland runoff is the source of transportation of nutrients to a receiving water body, with larger amounts of phosphorus moving in more intense rainfall events. We highlight the importance of this transportation mechanism by comparing policies under climate change scenarios, where the intensity of rainfall is projected to increase and the time series process of rainfall to change. In Manuscript 2, we introduce a new economic groundwater model that incorporates the gradual shift

  10. Climate Change, Extreme Weather Events, and Human Health Implications in the Asia Pacific Region.

    Science.gov (United States)

    Hashim, Jamal Hisham; Hashim, Zailina

    2016-03-01

    The Asia Pacific region is regarded as the most disaster-prone area of the world. Since 2000, 1.2 billion people have been exposed to hydrometeorological hazards alone through 1215 disaster events. The impacts of climate change on meteorological phenomena and environmental consequences are well documented. However, the impacts on health are more elusive. Nevertheless, climate change is believed to alter weather patterns on the regional scale, giving rise to extreme weather events. The impacts from extreme weather events are definitely more acute and traumatic in nature, leading to deaths and injuries, as well as debilitating and fatal communicable diseases. Extreme weather events include heat waves, cold waves, floods, droughts, hurricanes, tropical cyclones, heavy rain, and snowfalls. Globally, within the 20-year period from 1993 to 2012, more than 530 000 people died as a direct result of almost 15 000 extreme weather events, with losses of more than US$2.5 trillion in purchasing power parity.

  11. A multivariate extreme wave and storm surge climate emulator based on weather patterns

    Science.gov (United States)

    Rueda, A.; Camus, P.; Tomás, A.; Vitousek, S.; Méndez, F. J.

    2016-08-01

    Coastal floods often coincide with large waves, storm surge and tides. Thus, joint probability methods are needed to properly characterize extreme sea levels. This work introduces a statistical downscaling framework for multivariate extremes that relates the non-stationary behavior of coastal flooding events to the occurrence probability of daily weather patterns. The proposed method is based on recently-developed weather-type methods to predict extreme events (e.g., significant wave height, mean wave period, surge level) from large-scale sea-level pressure fields. For each weather type, variables of interest are modeled using Generalized Extreme Value (GEV) distributions and a Gaussian copula for modelling the interdependence between variables. The statistical dependence between consecutive days is addressed by defining a climate-based extremal index for each weather type. This work allows attribution of extreme events to specific weather conditions, enhancing the knowledge of climate-driven coastal flooding.

  12. Ethno-meteorology and scientific weather forecasting: Small farmers and scientists’ perspectives on climate variability in the Okavango Delta, Botswana

    OpenAIRE

    Oluwatoyin Dare Kolawole; Piotr Wolski; Barbara Ngwenya; Gagoitseope Mmopelwa

    2014-01-01

    Recent trends in abrupt weather changes continue to pose a challenge to agricultural production most especially in sub-Saharan Africa. The paper specifically addresses the questions on how local farmers read and predict the weather; and how they can collaborate with weather scientists in devising adaptation strategies for climate variability (CV) in the Okavango Delta of Botswana. Recent trends in agriculture-related weather variables available from country’s climate services, as well as in f...

  13. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Science.gov (United States)

    Porada, Philipp; Lenton, Tim; Pohl, Alexandre; Weber, Bettina; Mander, Luke; Donnadieu, Yannick; Beer, Christian; Pöschl, Ulrich; Kleidon, Axel

    2017-04-01

    Early non-vascular vegetation in the Late Ordovician may have strongly increased chemical weathering rates of surface rocks at the global scale. This could have led to a drawdown of atmospheric CO2 and, consequently, a decrease in global temperature and an interval of glaciations. Under current climatic conditions, usually field or laboratory experiments are used to quantify enhancement of chemical weathering rates by non-vascular vegetation. However, these experiments are constrained to a small spatial scale and a limited number of species. This complicates the extrapolation to the global scale, even more so for the geological past, where physiological properties of non-vascular vegetation may have differed from current species. Here we present a spatially explicit modelling approach to simulate large-scale chemical weathering by non-vascular vegetation in the Late Ordovician. For this purpose, we use a process-based model of lichens and bryophytes, since these organisms are probably the closest living analogue to Late Ordovician vegetation. The model explicitly represents multiple physiological strategies, which enables the simulated vegetation to adapt to Ordovician climatic conditions. We estimate productivity of Ordovician vegetation with the model, and relate it to chemical weathering by assuming that the organisms dissolve rocks to extract phosphorus for the production of new biomass. Thereby we account for limits on weathering due to reduced supply of unweathered rock material in shallow regions, as well as decreased transport capacity of runoff for dissolved weathered material in dry areas. We simulate a potential global weathering flux of 2.8 km3 (rock) per year, which we define as volume of primary minerals affected by chemical transformation. Our estimate is around 3 times larger than today's global chemical weathering flux. Furthermore, chemical weathering rates simulated by our model are highly sensitive to atmospheric CO2 concentration, which implies

  14. Tropical tele-connections to the Mediterranean climate and weather

    Directory of Open Access Journals (Sweden)

    P. Alpert

    2005-01-01

    Full Text Available Some strong natural fluctuations of climate in the Eastern Mediterranean (EM region are shown to be connected to the major tropical systems. Potential relations between EM rainfall extremes to tropical systems, e.g. El Niño, Indian Monsoon and hurricanes, are demonstrated. For a specific event, high resolution modelling of the severe flood on 3-5 December 2001 in Israel suggests a relation to hurricane Olga. In order to understand the factors governing the EM climate variability in the summer season, the relationship between extreme summer temperatures and the Indian Monsoon was examined. Other tropical factors like the Red-Sea Trough system and the Saharan dust are also likely to contribute to the EM climate variability.

  15. Description of Mixed-Phase Clouds in Weather Forecast and Climate Models

    Science.gov (United States)

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Description of Mixed-Phase Clouds in Weather Forecast...TERM GOALS To develop improved parameterizations of so-called mixed-phase stratocumulus in numerical models of weather and climate, and of their...impact on the surface energy budget over the Arctic Ocean, their impact on the vertical structure of the lower troposphere and relationships to larger

  16. Influences of the Weather and Climate on Wintering Migratory Bird in Dongting Lake

    Institute of Scientific and Technical Information of China (English)

    HUANG; Ju-mei; NIU; Ling-zhi; YAO; Yi; QIN; Hong

    2012-01-01

    [Objective] The research aimed to study influences of the weather and climate on wintering migratory bird in Dongting Lake. [Method] Bird analysis data provided by East Dongting Lake National Nature Reserve and wintering migratory bird monitoring data in big and small west lakes in recent 5 years were used. By combing water level data and various meteorological factors in Chenglingji, wintering migratory bird in Dongting Lake was analyzed. [Result] Abnormal precipitation led to drought or flood in Dongting Lake, causing significant adverse effect on the birds. Abnormal climate was important reason for that wintering migratory bird greatly reduced, such as high temperature and later going south of the strong cold air. Extreme weather and climate events led that some birds in Dongting Lake significantly reduced. Meteorological element had certain influence to bird survey. We should select a reasonable investigation time based on weather and climate. In Birding Festival, weather had little effect on bird species observation. In the migratory season of bird, we could see many birds in fine cold weather after a strong cold air, which suitable for observing bird. When it was low temperature or less rain in autumn, and was high temperature or more rain and sunshine in early winter, it was suitable for migratory birds wintering in Dongting Lake. Ardea cinerea, Anser fabalis and Anser erythropus were more in sunny days while Phalacrocorax carbo was more in rainy weather. Grus grus was more in heavy wind weather while Recurvirostra avosetta was more in small wind weather. [Conclusion] The research provided scientific basis for studying migratory bird in east Dongting Lake.

  17. Strong climate and tectonic control on plagioclase weathering in granitic terrain

    Science.gov (United States)

    Rasmussen, C.; Brantley, S.; Richter, D.D.B.; Blum, A.; Dixon, J.; White, A.F.

    2011-01-01

    Investigations to understand linkages among climate, erosion and weathering are central to quantifying landscape evolution. We approach these linkages through synthesis of regolith data for granitic terrain compiled with respect to climate, geochemistry, and denudation rates for low sloping upland profiles. Focusing on Na as a proxy for plagioclase weathering, we quantified regolith Na depletion, Na mass loss, and the relative partitioning of denudation to physical and chemical contributions. The depth and magnitude of regolith Na depletion increased continuously with increasing water availability, except for locations with mean annual temperature reaction enthalpy for albite. Water availability is suggested as the dominant factor limiting rate kinetics in the water-limited systems. Together, these data demonstrate marked transitions and nonlinearity in how climate and tectonics correlate to plagioclase chemical weathering and Na mass loss. ?? 2010 Elsevier B.V.

  18. Solar origins of space weather and space climate

    CERN Document Server

    Komm, Rudolf; Pevtsov, Alexei; Leibacher, John

    2014-01-01

    This topical issue is based on the presentations given at the 26th National Solar Observatory (NSO) Summer Workshop held at the National Solar Observatory/Sacramento Peak, New Mexico, USA from 30 April to 4 May 2012. This unique forum brought together experts in different areas of solar and space physics to help in developing a full picture of the origin of solar phenomena that affect Earth’s technological systems.  The articles include theory, model, and observation research on the origin of the solar activity and its cycle, as well as a discussion on how to incorporate the research into space-weather forecasting tools.  This volume is aimed at graduate students and researchers active in solar physics and space science.  Previously published in Solar Physics, Vol. 289/2, 2014.

  19. Managing weather and climate risks to agriculture in North America, Central America and the Caribbean

    Directory of Open Access Journals (Sweden)

    Harlan D. Shannon

    2015-12-01

    Full Text Available In recent decades, numerous weather- and climate-related natural disasters have impacted North America, Central America, and the Caribbean, repeatedly demonstrating how vulnerable local agriculture is to extreme episodic events. Given this recent history, and expectations that the frequency and intensity of some episodic events will increase with climate change, it is becoming increasingly important for farmers to proactively manage weather and climate risks to agriculture to protect their livelihoods. Some farmers in this region already apply various strategies to help reduce weather and climate risks and uncertainties, including farming in multiple locations, diversifying crops and varieties, seeking alternative sources of income, and purchasing crop insurance. Such efforts often help farmers maintain a more stable income while also protecting and preserving the productivity of the land. Other farmers, however, have failed to implement basic risk management strategies despite the clear benefits. Reasons for these failures can be attributed to inadequate farmer education and training, a lack of tools to help facilitate the practical application of risk management concepts, and poor communications between the agrometeorological and farming communities. The agrometeorological community can help overcome these obstacles by building upon existing efforts that have successfully educated farmers about weather and climate risks to agriculture and have equipped farmers with the data, tools, and applications necessary to manage these risks. Farmer input is critical to preparing effective educational and training materials and developing user-friendly risk management tools. The agrometeorological community should solicit input from farmers regularly to ensure that farmers are obtaining the information necessary to effectively manage weather and climate risks to agriculture.

  20. Successes and Challenges Porting Weather and Climate Models to GPUs

    Science.gov (United States)

    Govett, M. W.; Middlecoff, J.; Henderson, T. B.; Rosinski, J.; Madden, P.

    2011-12-01

    NOAA ESRL has had significant success parallelizing and running the Non-Hydrostatic Icosahedral Model (NIM) dynamical core on GPUs. A key ingredient in the success was the development of our Fortran-to-CUDA compiler (called F2C-ACC) to convert the model code. Compiler directives, inserted by the user, define regions of code to be run on the GPU, identify where fine-grain parallelism can be exploited, and manage data transfers between CPU and GPU. In 2009, we demonstrated that our compiler, with limited analysis capabilities, was able to produce code that ran the NIM 25x faster on a single GPU than a similar generation CPU. As F2C-ACC matured, fewer hand-translations were required until the GPU parallelization of NIM became fully automatic. The usefulness of F2C-ACC as a language translation tool will diminish as commercial compilers from CAPS, PGI and Cray mature; however, porting codes to GPUs will continue to require significant user involvement due to limited tools to support parallelization. Code inspection and analysis is currently very challenging and requires heavy user involvement to parallelize, debug, and achieve respectable speedup on GPUs. Users must inspect their code to locate fine grain parallelism, determine performance bottlenecks, manage data transfers, identify data dependencies, place inter-GPU communications, and manage a myriad of other issues in porting CPU-based codes to GPU architectures. This talk will describe the F2C-ACC compiler, discuss code porting challenges, and describe further development of the analysis capabilities of F2C-ACC to improve GPU parallelization of Fortran-based, Numerical Weather Prediction codes.

  1. Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate

    NARCIS (Netherlands)

    Pielke, R.A.; Avissar, R.; Raupach, M.; Dolman, A.J.; Zeng, X.B.; Denning, A.S.

    1998-01-01

    This paper overviews the short-term (biophysical) and long-term tout to around 100 year timescales; biogeochemical and biogeographical) influences of the land surface on weather and climate. From our review of the literature, the evidence is convincing that terrestrial ecosystem dynamics on these

  2. Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate

    NARCIS (Netherlands)

    Pielke, R.A.; Avissar, R.; Raupach, M.; Dolman, A.J.; Zeng, X.B.; Denning, A.S.

    1998-01-01

    This paper overviews the short-term (biophysical) and long-term tout to around 100 year timescales; biogeochemical and biogeographical) influences of the land surface on weather and climate. From our review of the literature, the evidence is convincing that terrestrial ecosystem dynamics on these ti

  3. Come rain or shine? Public expectation on local weather change and differential effects on climate change attitude.

    Science.gov (United States)

    Lo, Alex Y; Jim, C Y

    2015-11-01

    Tailored messages are instrumental to climate change communication. Information about the global threat can be 'localised' by demonstrating its linkage with local events. This research ascertains the relationship between climate change attitude and perception of local weather, based on a survey involving 800 Hong Kong citizens. Results indicate that concerns about climate change increase with expectations about the likelihood and impacts of local weather change. Climate change believers attend to all three types of adverse weather events, namely, temperature rises, tropical cyclones and prolonged rains. Climate scepticism, however, is not associated with expectation about prolonged rains. Differential spatial orientations are a possible reason. Global climate change is an unprecedented and distant threat, whereas local rain is a more familiar and localised weather event. Global climate change should be articulated in terms that respect local concerns. Localised framing may be particularly effective for engaging individuals holding positive views about climate change science.

  4. Climate change, extreme weather events, air pollution and respiratory health in Europe.

    Science.gov (United States)

    De Sario, M; Katsouyanni, K; Michelozzi, P

    2013-09-01

    Due to climate change and other factors, air pollution patterns are changing in several urbanised areas of the world, with a significant effect on respiratory health both independently and synergistically with weather conditions; climate scenarios show Europe as one of the most vulnerable regions. European studies on heatwave episodes have consistently shown a synergistic effect of air pollution and high temperatures, while the potential weather-air pollution interaction during wildfires and dust storms is unknown. Allergen patterns are also changing in response to climate change, and air pollution can modify the allergenic potential of pollens, especially in the presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known; the health consequences vary from decreases in lung function to allergic diseases, new onset of diseases, exacerbation of chronic respiratory diseases, and premature death. These multidimensional climate-pollution-allergen effects need to be taken into account in estimating both climate and air pollution-related respiratory effects, in order to set up adequate policy and public health actions to face both the current and future climate and pollution challenges.

  5. Increasing weather-related impacts on European population under climate and demographic change

    Science.gov (United States)

    Forzieri, Giovanni; Cescatti, Alessandro; Batista e Silva, Filipe; Kovats, Sari R.; Feyen, Luc

    2017-04-01

    Over the last three decades the overwhelming majority of disasters have been caused by weather-related events. The observed rise in weather-related disaster losses has been largely attributed to increased exposure and to a lesser degree to global warming. Recent studies suggest an intensification in the climatology of multiple weather extremes in Europe over the coming decades in view of climate change, while urbanization continues. In view of these pressures, understanding and quantifying the potential impacts of extreme weather events on future societies is imperative in order to identify where and to what extent their livelihoods will be at risk in the future, and develop timely and effective adaptation and disaster risk reduction strategies. Here we show a comprehensive assessment of single- and multi-hazard impacts on the European population until the year 2100. For this purpose, we developed a novel methodology that quantifies the human impacts as a multiplicative function of hazard, exposure and population vulnerability. We focus on seven of the most impacting weather-related hazards - including heat and cold waves, wildfires, droughts, river and coastal floods and windstorms - and evaluated their spatial and temporal variations in intensity and frequency under a business-as-usual climate scenario. Long-term demographic dynamics were modelled to assess exposure developments under a corresponding middle-of-the-road scenario. Vulnerability of humans to weather extremes was appraised based on more than 2300 records of weather-related disasters. The integration of these elements provides a range of plausible estimates of extreme weather-related risks for future European generations. Expected impacts on population are quantified in terms of fatalities and number of people exposed. We find a staggering rise in fatalities from extreme weather events, with the projected death toll by the end of the century amounting to more than 50 times the present number of people

  6. Communicating Uncertainties in Weather and Climate Information: Results of a National Academies Workshop

    Science.gov (United States)

    Friday, E.; Barron, E. J.; Elfring, C.; Geller, L.

    2002-12-01

    When a major East Coast snowstorm was forecast during the winter of 2001, people began preparing - both the public and the decision-makers responsible for public services. There was an air of urgency, heightened because just the previous year the region had been hit hard by a storm of unpredicted strength. But this time, the storm never materialized and people were left wondering what went "wrong" with the forecast. Did something go wrong or did forecasters just fail to communicate their information in an effective way? Did they convey a sense of the likelihood of the event and keep people up to date as information changed? In the summer of 2001, the National Academies' Board on Atmospheric Sciences and Climate hosted a workshop designed to explore the communication of uncertainty in weather and climate information. Workshop participants examined five case studies that were chosen to illustrate a range of forecast timescales and certainty levels. The cases were: Red River Flood, Grand Forks, April 1997; East Coast Winter Storm, March 2001; Oklahoma-Kansas Tornado Outbreak, May 3, 1999; El Nino 1997-1998, and Climate Change Science, a report issued in 2001. In each of these cases, participants examined who said what, when, to whom, how, and with what effect. The last two cases specifically address climate-related topics. This paper summarizes the final workshop report (Communicating Uncertainties in Weather and Climate Information: Summary of a Workshop, NRC 2002), including an overview of the five cases and lessons learned about communicating uncertainties in weather and climate forecasts. Among other findings, the report stresses that communication and appropriate dissemination of information, including information about uncertainty in the forecasts and the forecaster's confidence in the product, should be an integral, ongoing part of the forecasting process, not an afterthought. Explaining uncertainty should be an integral part of what weather and climate

  7. Weather, climate, and resource Information should meet the needs of Sahelian pastoralists

    DEFF Research Database (Denmark)

    Rasmussen, Laura Vang; Mertz, Ole; Rasmussen, Kjeld;

    2014-01-01

    There has been an increasing focus on providing better weather, climate, and resource information for decision making in drylands. This study explores what kind of information pastoralists in the Sahel received in 2013 and how they responded to this information. Moreover, the study assesses whether...... the disseminated information corresponds to the actual needs of pastoralists. The overall objective is thus to identify the outcome of providing weather, climate, and resource information to pastoralists and thereby to explore whether and how various products may guide their mobility and decision-making patterns....... The results show that few of the interviewed pastoralists receive the seasonal rainfall forecasts, which have been produced since 1998 by the Climate Outlook Forum for West Africa. The pastoralists who did receive the forecasts used the information to adjust their crop cultivation strategies rather than...

  8. The CAMI Project - Weather and Climate Services for Caribbean Food Security

    Science.gov (United States)

    Trotman, Adrian; Van Meerbeeck, Cedric

    2013-04-01

    Food security is major focus of Caribbean governments, with production being of particular concern. For the past three decades, Caribbean agriculture has been declining in relative importance, both in terms of its contribution to GDP and its share of the labour force. One of the problems Caribbean agriculture faces is the destructive impacts from weather and climate extremes. These include flood, drought, extreme temperatures, and strong winds from tropical cyclones. Other potential disasters, such as from pests and diseases attacks, are also weather and climate driven. These make weather and climate information critically important to decision-making in agriculture in the Caribbean region. In an effort to help reduce weather and climate related risks to the food security sector, The Caribbean Institute for Meteorology and Hydrology, along with its partners the Caribbean Agricultural Research and Development Institute, the World Meteorological Organization (WMO) and ten National Meteorological Services from within the Caribbean Community launched and implemented the Caribbean Agrometeorological Initiative (CAMI). From 2010 to 2013, CAMI set out to provide relevant information to farmers, and the industry in general, for decision and policy making. The project is funded by the European Union through the Science and Technology Programme of the African, Caribbean and Pacific Group of Countries' (ACP). The overarching objective of CAMI was to increase and sustain agricultural productivity at the farm level in the Caribbean region through improved applications of weather and climate information, using an integrated and coordinated approach. Currently, this is done through (i) provision of relevant climate information appropriately disseminated, (ii) predictions on seasonal rainfall and temperature, (iii) support for improved irrigation management, (iv) the development of strategically selected weather-driven pest and disease models, (v) use of crop simulation models

  9. Climate change and health in Israel: adaptation policies for extreme weather events.

    Science.gov (United States)

    Green, Manfred S; Pri-Or, Noemie Groag; Capeluto, Guedi; Epstein, Yoram; Paz, Shlomit

    2013-01-01

    Climatic changes have increased the world-wide frequency of extreme weather events such as heat waves, cold spells, floods, storms and droughts. These extreme events potentially affect the health status of millions of people, increasing disease and death. Since mitigation of climate change is a long and complex process, emphasis has recently been placed on the measures required for adaptation. Although the principles underlying these measures are universal, preparedness plans and policies need to be tailored to local conditions. In this paper, we conducted a review of the literature on the possible health consequences of extreme weather events in Israel, where the conditions are characteristic of the Mediterranean region. Strong evidence indicates that the frequency and duration of several types of extreme weather events are increasing in the Mediterranean Basin, including Israel. We examined the public health policy implications for adaptation to climate change in the region, and proposed public health adaptation policy options. Preparedness for the public health impact of increased extreme weather events is still relatively limited and clear public health policies are urgently needed. These include improved early warning and monitoring systems, preparedness of the health system, educational programs and the living environment. Regional collaboration should be a priority.

  10. DADA: Data Assimilation for the Detection and Attribution of Weather and Climate-related Events

    Science.gov (United States)

    Hannart, Alexis; Bocquet, Marc; Carrassi, Alberto; Ghil, Michael; Naveau, Philippe; Pulido, Manuel; Ruiz, Juan; Tandeo, Pierre

    2015-04-01

    We describe a new approach allowing for near real time, systematic causal attribution of weather and climate-related events. The method is purposely designed to allow its operability at meteorological centers by synergizing causal attribution with data treatments that are routinely performed when numerically forecasting the weather, thereby taking advantage of their powerful computational and observational capacity. Namely, we show that causal attribution can be obtained as a by-product of the so-called data assimilation procedures that are run on a daily basis to update the meteorological model with new atmospheric observations. We explain the theoretical rationale of this approach and sketch the most prominent features of a "data assimilation-based detection and attribution" (DADA) procedure. The proposal is illustrated in the context of the 3-variables Lorenz model. Several practical and theoretical research questions that need to be addressed to make the proposal readily operational within weather forecasting centers are finally laid out.

  11. Economic Growth in the Face of Weather and Climate Extremes: A Call for Better Data

    Science.gov (United States)

    Pendleton, Linwood; Karl, Thomas R.; Mills, Evan

    2013-06-01

    The U.S. economy has grown to be the world's largest, even in the face of the most varied and costly weather and climate extremes on the planet (see http://www.munichreamerica.com/webinars/2013_01_natcatreview/MunichRe_III_NatCat01032013.pdf). Nevertheless, these extremes continue to take a toll on the nation, diverting public and private funds while limiting economic growth and jobs and threatening the well-being of Americans. Extreme weather events affect every state and manifest differently by region (see Figure 1 in Supporting Information in the online version of this Forum and http://www.ncdc.noaa.gov/billions/summary-stats).

  12. Water-borne Infections, Weather Variability and Climate Change in Eastern Russia

    Science.gov (United States)

    Tirrell, A.; Naumova, E. N.; Liss, A.

    2012-12-01

    For this project, a time-series analysis of existing data will be used to assess temporal and spatial associations between long-term, seasonal and short-term weather variability and water-borne infectious diseases in several Siberian municipalities. Building on these associations, we will generate estimates of future changes in infectious disease patterns based upon existing forecasts of climate change and likely increases in extreme weather events in Eastern Russia. Finally, we will contemplate the public health implications of these findings, and offer appropriate policy recommendations.

  13. 'Weather Value at Risk': A uniform approach to describe and compare sectoral income risks from climate change.

    Science.gov (United States)

    Prettenthaler, Franz; Köberl, Judith; Bird, David Neil

    2016-02-01

    We extend the concept of 'Weather Value at Risk' - initially introduced to measure the economic risks resulting from current weather fluctuations - to describe and compare sectoral income risks from climate change. This is illustrated using the examples of wheat cultivation and summer tourism in (parts of) Sardinia. Based on climate scenario data from four different regional climate models we study the change in the risk of weather-related income losses between some reference (1971-2000) and some future (2041-2070) period. Results from both examples suggest an increase in weather-related risks of income losses due to climate change, which is somewhat more pronounced for summer tourism. Nevertheless, income from wheat cultivation is at much higher risk of weather-related losses than income from summer tourism, both under reference and future climatic conditions. A weather-induced loss of at least 5% - compared to the income associated with average reference weather conditions - shows a 40% (80%) probability of occurrence in the case of wheat cultivation, but only a 0.4% (16%) probability of occurrence in the case of summer tourism, given reference (future) climatic conditions. Whereas in the agricultural example increases in the weather-related income risks mainly result from an overall decrease in average wheat yields, the heightened risk in the tourism example stems mostly from a change in the weather-induced variability of tourism incomes. With the extended 'Weather Value at Risk' concept being able to capture both, impacts from changes in the mean and the variability of the climate, it is a powerful tool for presenting and disseminating the results of climate change impact assessments. Due to its flexibility, the concept can be applied to any economic sector and therefore provides a valuable tool for cross-sectoral comparisons of climate change impacts, but also for the assessment of the costs and benefits of adaptation measures.

  14. WEATHER AND CLIMATE EXTREMES IN LIGHT OF THE IPCC SREX (2011 AND BEYOND

    Directory of Open Access Journals (Sweden)

    JÁNOS MIKA

    2012-03-01

    Full Text Available Weather and climate extremes in light of the IPCC SREX (2011 and beyond. The recent IPCC Special Report (IPCC SREX, 2011 provides a comprehensive overview of meteorological (i.e. weather and climate extremes and their various aspects. The present paper reflects the core concepts of the Report, clarifying the relations of the natural and anthropogenic factors causing meteorological extremes, as well, as condition determining the risks and general ways of response by the society. The paper can only add some recent statistics to this scheme on various aspects of meteorological and non-meteorological reasons of natural disasters. The paper argues, however, the still unclear definition of the extremes and their classification as weather and climate extremes. We also dedicate a sub-Section to the statistical and physical considerations on how the extremes may change parallel to the global warming. Another sub-Section refers to further difficulties that hamper the empirical establishment of the trends in the meteorological extremes. Finally we overview the IPCC AR4 (2007 conclusions on some meteorological extremes, since the detailed Chapters of the IPCC SREX (2011 Report were not available by the time of writing the paper, but from its SPM no difference in the statements and even its uncertainties can be established since the AR4.

  15. The effects of weather and climate change on cycling in Northern Norway

    NARCIS (Netherlands)

    Mathisen, T.A.; Annema, J.A.; Kroesen, M.

    2015-01-01

    Weather is identified as one of many factors that influence the demand for cycling. Weather patterns will change due to expected climate change. The aim of this article is to study the extent to which climate change influences the cycling frequency. The analysis in this article is conducted using an

  16. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    CERN Document Server

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  17. Fantasy and Reality in the History of Weather and Climate Control

    Science.gov (United States)

    Fleming, J. R.

    2005-12-01

    This presentation examines the history of large-scale weather and climate engineering since 1840, with special reference to imaginative and speculative literature and with special relevance to ethical and policy issues. Ultimate control of the weather and climate embodies both our wildest fantasies and our greatest fears. Fantasy often informs reality (and vice-versa). NASA managers know this well, as do Trekkies. The best science fiction authors typically build from the current state of a field to construct futuristic scenarios that reveal and explore the human condition. Scientists as well often venture into flights of fancy. Though not widely documented, the fantasy-reality axis is also a prominent aspect of the history of the geosciences. James Espy's proposal in the 1840s to enhance precipitation by lighting huge fires, thus stimulating convective updrafts, preceded the widespread charlatanism of the rain-makers, or so-called "pluviculturalists," in the western U.S. One hundred years later, promising discoveries in "cloud seeding" by Irving Langmuir and his associates at the General Electric Corporation rapidly devolved into unsupportable proposals and questionable practices by military and commercial rain-makers seeking to control the weather. During the Cold War, Soviet engineers also promoted a chilling vision (to Westerners) of global climate control. Recently, rather immodest proposals to "fix" a climate system perceived to be out of control have received wide circulation. In 2003 the U.S. Pentagon released a report recommending that the government should "explore geo-engineering options that control the climate." In 2004 a symposium in Cambridge, England set out to "identify, debate, and evaluate" possible, but highly controversial options for the design and construction of engineering projects for the management and mitigation of global climate change. This talk will locate the history of weather and climate modification within a long tradition of

  18. Fire occurrence and fire weather indices in the past and under future climate in Peninsular Spain

    Science.gov (United States)

    Urbieta, Itziar R.; Zavala, Gonzalo; Moreno, José M.

    2010-05-01

    Understanding fire occurrence and its relationship with ignition sources and weather conditions is a major environmental challenge in regions affected by fire, particularly under ongoing and projected future climate change. The objectives of this study were: 1) To address a historical reconstruction of fire regime (fire occurrence, area burned, and fire causes) in Peninsular Spain for the last three decades. 2) Analyze the time x space relationship between fire occurrence and area burned with climatic variables and climate-derived fire danger indices. 3) Assess how climate change would affect fire danger indices for various emission scenarios based on projections of five regional climate models. The country was divided into 50x50 km cells, for which fire statistics were available. Climate data were interpolated at this grid so that daily fire danger indices were calculated for present and future conditions. Results showed an overall increase of fire occurrence and area burned over the past decades. Fire activity (number of fires and area burned) showed significant correlations with fire danger indices and climatic variables; although in some areas the relationship was weak given the uncertainty linked to the number of ignitions caused by people. There was a significant correlation between certain fire indices and Gini coefficient of fire sizes, whereby fires under more severe conditions become more variable in size. Towards the end of this century (2071-2100) increases in the fire danger indices, and a longer period of fire danger are projected. This trend is consistent among models.

  19. Impact of climate and weather on the activities of the building and construction industry in South Africa

    CSIR Research Space (South Africa)

    De Villiers, GDT

    1986-01-01

    Full Text Available This study represents a quantitative survey of the impact of the climate and weather on the activities of the building and construction industry in South Africa. Seasonal productivity problems, the seasonal provision of special facilities...

  20. Contributions of the ARM Program to Radiative Transfer Modeling for Climate and Weather Applications

    Science.gov (United States)

    Mlawer, Eli J.; Iacono, Michael J.; Pincus, Robert; Barker, Howard W.; Oreopoulos, Lazaros; Mitchell, David L.

    2016-01-01

    Accurate climate and weather simulations must account for all relevant physical processes and their complex interactions. Each of these atmospheric, ocean, and land processes must be considered on an appropriate spatial and temporal scale, which leads these simulations to require a substantial computational burden. One especially critical physical process is the flow of solar and thermal radiant energy through the atmosphere, which controls planetary heating and cooling and drives the large-scale dynamics that moves energy from the tropics toward the poles. Radiation calculations are therefore essential for climate and weather simulations, but are themselves quite complex even without considering the effects of variable and inhomogeneous clouds. Clear-sky radiative transfer calculations have to account for thousands of absorption lines due to water vapor, carbon dioxide, and other gases, which are irregularly distributed across the spectrum and have shapes dependent on pressure and temperature. The line-by-line (LBL) codes that treat these details have a far greater computational cost than can be afforded by global models. Therefore, the crucial requirement for accurate radiation calculations in climate and weather prediction models must be satisfied by fast solar and thermal radiation parameterizations with a high level of accuracy that has been demonstrated through extensive comparisons with LBL codes. See attachment for continuation.

  1. Climate and weather of the Sun-Earth system (CAWSES) highlights from a priority program

    CERN Document Server

    Lübken, Franz-Josef

    2012-01-01

    CAWSES (Climate and Weather of the Sun-Earth System) is the most important scientific program of SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). CAWSES has triggered a scientific priority program within the German Research Foundation for a period of 6 years. Approximately 30 scientific institutes and 120 scientists were involved in Germany with strong links to international partners. The priority program focuses on solar influence on climate, atmospheric coupling processes, and space climatology. This book summarizes the most important results from this program covering some impor

  2. NUMERICAL SIMULATION OF INFLUENCE OF INDIAN OCEAN SSTA ON WEATHER AND CLIMATE IN ASIAN MONSOON REGION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Sea surface temperature anomaly (SSTA) exerts great influence on the generation of global weather and climate. Much progress has been made with respect to SSTA in the Pacific Ocean region in contrast to the Indian Ocean. The IAP9L model, which is developed at the Institute of Atmospheric Physics of the Chinese Academy of Science, is used to simulate the influence of the Indian Ocean SSTA on the general circulation and weather/climate anomalies in the monsoon region of Asia. It is found that the warm (cool) SSTA in the equatorial low latitudes of the Indian Ocean triggers winter (summer) teleconnection patterns in middle and higher latitudes of the Northern Hemisphere that are similar to PNA or EAP. They play a very important role in the anomaly of circulation or weather and climate in the middle and lower latitudes of the Asian summer monsoon region. With the warm (cool) SSTA forcing in the Indian Ocean, the Asian summer monsoon sets up at a late (early) date and withdraws at a early (late) date, lasting for a short (long) duration at a weak (strong) intensity. The Indian Ocean SSTA is shown to be an indicator for precipitation variation in China.

  3. An approach to secure weather and climate models against hardware faults

    Science.gov (United States)

    Düben, Peter; Dawson, Andrew

    2017-04-01

    Enabling Earth System models to run efficiently on future supercomputers is a serious challenge for model development. Many publications study efficient parallelisation to allow better scaling of performance on an increasing number of computing cores. However, one of the most alarming threats for weather and climate predictions on future high performance computing architectures is widely ignored: the presence of hardware faults that will frequently hit large applications as we approach exascale supercomputing. Changes in the structure of weather and climate models that would allow them to be resilient against hardware faults are hardly discussed in the model development community. We present an approach to secure the dynamical core of weather and climate models against hardware faults using a backup system that stores coarse resolution copies of prognostic variables. Frequent checks of the model fields on the backup grid allow the detection of severe hardware faults, and prognostic variables that are changed by hardware faults on the model grid can be restored from the backup grid to continue model simulations with no significant delay. To justify the approach, we perform simulations with a C-grid shallow water model in the presence of frequent hardware faults. As long as the backup system is used, simulations do not crash and a high level of model quality can be maintained. The overhead due to the backup system is reasonable and additional storage requirements are small. Runtime is increased by only 13% for the shallow water model.

  4. Temporal Fluctuations in Weather and Climate Extremes That Cause Economic and Human Health Impacts: A Review.

    Science.gov (United States)

    Kunkel, Kenneth E.; Pielke, Roger A., Jr.; Changnon, Stanley A.

    1999-06-01

    This paper reviews recent work on trends during this century in societal impacts (direct economic losses and fatalities) in the United States from extreme weather conditions and compares those with trends of associated atmospheric phenomena. Most measures of the economic impacts of weather and climate extremes over the past several decades reveal increasing losses. But trends in most related weather and climate extremes do not show comparable increases with time. This suggests that increasing losses are primarily due to increasing vulnerability arising from a variety of societal changes, including a growing population in higher risk coastal areas and large cities, more property subject to damage, and lifestyle and demographic changes subjecting lives and property to greater exposure.Flood damages and fatalities have generally increased in the last 25 years. While some have speculated that this may be due in part to a corresponding increase in the frequency of heavy rain events, the climate contribution to the observed impacts trends remains to be quantified. There has been a steady increase in hurricane losses. However, when changes in population, inflation, and wealth are considered, there is instead a downward trend. This is consistent with observations of trends in hurricane frequency and intensity. Increasing property losses due to thunderstorm-related phenomena (winds, hail, tornadoes) are explained entirely by changes in societal factors, consistent with the observed trends in the thunderstorm phenomena. Winter storm damages have increased in the last 10-15 years and this appears to be partially due to increases in the frequency of intense nor'easters. There is no evidence of changes in drought-related losses (although data are poor) and no apparent trend in climatic drought frequency. There is also no evidence of changes in the frequency of intense heat or cold waves.

  5. Best Practices in Weathering Climate Risks: Advancing Corporate and Community Resilience

    Science.gov (United States)

    Klima, K.; Winkelman, S.

    2012-12-01

    As the annual costs of severe weather events in the US grow into the billions of dollars, companies and communities are examining how best to plan ahead to protect their assets and bolster their bottom line. The Center for Clean Air Policy's Weathering Climate Risks program aims to help cities and companies enhance resilience to the economic impacts of severe weather and a changing climate. This presentation will highlight three communication techniques aimed at different types of audiences such as businesses, policymakers, the media, and society. First, we find that although planning for natural hazards now saves money later, stakeholders must fi¬nd their own self-interest if they are going to engage in a solution. Thus we research best practices and hold informational, off-the-record interviews to better understand the different stakeholders' perspectives, key concerns, and issues surrounding adaptation, resilience, and/or hazard mitigation. Diverse stakeholders find it attractive when a solution has multiple co-benefits such as climate resilience, greenhouse gas reduction, reduced costs, and social benefits. Second, we use off-the-record dialogues emphasizing candid public-private discussion to promote collaborative problem solving. Our high-level workshops typically consist of 30-40 scientists, companies, communities, and policymakers. We begin with presenting background material, such as geographic information systems (GIS) maps. Then we move to informal conservation. Topics include ideas such as "Ask the Climate Question": How will infrastructure, land development, and investment decisions affect GHG emissions and resilience to climate change impacts? We find these dialogues help stakeholders share their perspectives and advance public-private collaboration on climate resilience to protect critical urban infrastructure, ensure business continuity, and increase extreme weather resilience. Third, we find that communication to the general public must capture

  6. Initial phase of the Hans-Ertel Centre for Weather Research – A virtual centre at the interface of basic and applied weather and climate research

    Directory of Open Access Journals (Sweden)

    Martin Weissmann

    2014-09-01

    Full Text Available The Hans-Ertel Centre for Weather Research is a network of German universities, research institutes and the German Weather Service (Deutscher Wetterdienst, DWD. It has been established to trigger and intensify basic research and education on weather forecasting and climate monitoring. The performed research ranges from nowcasting and short-term weather forecasting to convective-scale data assimilation, the development of parameterizations for numerical weather prediction models, climate monitoring and the communication and use of forecast information. Scientific findings from the network contribute to better understanding of the life-cycle of shallow and deep convection, representation of uncertainty in ensemble systems, effects of unresolved variability, regional climate variability, perception of forecasts and vulnerability of society. Concrete developments within the research network include dual observation-microphysics composites, satellite forward operators, tools to estimate observation impact, cloud and precipitation system tracking algorithms, large-eddy-simulations, a regional reanalysis and a probabilistic forecast test product. Within three years, the network has triggered a number of activities that include the training and education of young scientists besides the centre's core objective of complementing DWD's internal research with relevant basic research at universities and research institutes. The long term goal is to develop a self-sustaining research network that continues the close collaboration with DWD and the national and international research community.

  7. Cretaceous to Quaternary Siliciclastic Sediments of the Tarfaya Basin, Marginal Atlantic, SW Morocco Petrography, Geochemistry, Provenance, Climate and Weathering

    OpenAIRE

    Ali, Sajid

    2012-01-01

    This dissertation is prepared to attain the doctorate under the title "Cretaceous to Quaternary Siliciclastic Sediments of the Tarfaya Basin, Marginal Atlantic, SW Morocco Petrography, Geochemistry, Provenance, Climate and Weathering".

  8. Weather and climate analyses using improved global water vapor observations

    National Research Council Canada - National Science Library

    Vonder Haar, Thomas H; Bytheway, Janice L; Forsythe, John M

    2012-01-01

    The NASA Water Vapor Project (NVAP) dataset is a global (land and ocean) water vapor dataset created by merging multiple sources of atmospheric water vapor to form a global data base of total and layered precipitable water vapor...

  9. RNCEP: global weather and climate data at your fingertips

    NARCIS (Netherlands)

    Kemp, M.U.; van Loon, E.E.; Shamoun-Baranes, J.; Bouten, W.

    2012-01-01

    Atmospheric conditions strongly influence ecological systems, and tools that simplify the access and processing of atmospheric data can greatly facilitate ecological research. We have developed RNCEP, a package of functions in the open-source R language, to access, organise and visualise freely

  10. RNCEP: global weather and climate data at your fingertips

    National Research Council Canada - National Science Library

    Kemp, M.U; Loon, van, E.E; Shamoun-Baranes, J; Bouten, W

    2012-01-01

    .... We have developed RNCEP, a package of functions in the open-source R language, to access, organise and visualise freely available atmospheric data from two long-term high-quality data sets with global coverage...

  11. Transport of Aerosols: Regional and Global Implications for Climate, Weather, and Air Quality

    Science.gov (United States)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Bian, Huisheng; Remer, Lorraine; Kahn, Ralph

    2008-01-01

    Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.

  12. National Intelligence Survey. British Borneo, Section 23, Weather and Climate

    Science.gov (United States)

    1962-03-01

    variations seldom exceed 4 Fahr - enheit degrees. The highest absolute maximum temperatures in this region have been recorded during the spring...Precautions should be taken against water- borne diseases . Disease -carrying insects are nu- merous in the many swampy locations in the coastal lowlands...mosquito netting is needed to combat sandflies. These po- tential disease carriers are nocturnal and the most annoying of all insects existing in

  13. Malaysia, Singapore. Section 23. Revision. Weather and Climate

    Science.gov (United States)

    1969-08-01

    1001D , I10 p -0T1t ൒/ ..U S IS ....iBIOPR RUMMIESI MELAKA KLIC1IRINGS1I .4.1 ’=M 1000 0 1300 Fnu700 17. MOANNG AND AAFTXINOON IUIPA r WIND tOsK., JULY...ALOR 0FF-Ot, K’)TA RA1A4IU KUANl~ MITO Af SANOA,A 6700 3,0700 3 .. . . ..3 .0 •, " o, ) - . 110 300 1 1400 10 A.SINOAOIL .AIRPORT0 MELAKA K N 110...03 US 11 9 1 $11 Ila 0 d1.-Im Xuntatln ................ 02 9 4 04 95 1t7 08 97 (in D 9 4 i 93 9l goA it) Melaka ,, ’rl.,.........., " "" ’" 903 96 Il l

  14. Influence of seasonal weather and climate variability on crop yields in Scotland.

    Science.gov (United States)

    Brown, Iain

    2013-07-01

    The climatic sensitivity of four important agriculture crops (wheat, barley, oats, potatoes) in a northern temperate bioclimatic region is investigated using national-level yield data for 1963-2005. The climate variables include monthly and annual meteorological data, derived bioclimatic metrics, and the North Atlantic Oscillation index. Statistical analysis shows that significant relationships between yield and climate vary depending on the crop type and month but highlight the influence of precipitation (negative correlation) and sunshine duration (positive correlation) rather than temperature. Soil moisture deficit is shown to be a particular useful indicator of yield with drier summers providing the best yields for Scotland as a whole. It is also tentatively inferred that the sensitivity of these crops, particularly wheat and barley, to soil moisture deficits has increased in recent years. This suggests that improved crop yields are optimised for dry sunny years despite the continued prevalence of considerable inter-annual variability in seasonal weather.

  15. Soils and climate: redness and weathering as indicators of mean annual precipitation

    Science.gov (United States)

    Lucke, Bernhard

    2016-04-01

    Paleosols can be used as archives of past changes of climate and landscapes, but their interpretation has to be based on modern analogies such as Budyko's law of soil zonality. These can be very useful if the respective processes of soil formation are sufficiently well understood. However, some soils such as the Terra Rossa or Red Mediterranean Soils, that are widespread at the fringes of the steppes and deserts, are still disputed with regard to their genesis and environmental significance. In particular, there is no agreement whether they resemble current environmental conditions, or are inherited from climates or sediments of the past. In this context, a remarkable change of the color of surface soils can be observed when driving from the city of Irbid in Jordan towards the east. Soil color apparently changes slowly, but steadily from dark red to yellow colors. However, attempting to express these color changes in numerical form is challenging, and it seemed questionable whether color is indeed connected with soil weathering intensity, or an optical illusion. However, a systematic comparison of different approaches of calculating soil redness found that the CIELAB-color system is suited for numerical expressions of soil redness and performs better than the Munsell charts. Along the investigated transect in Jordan, soil color seems strongly connected with weathering intensity, since various weathering indicators point to a steady increase of soil development with moisture. This suggests that such indices can well be used in semi-arid areas of 250-600 mm of mean annual precipitation. A very strong correlation of magnetic enhancement and rainfall indicates that the investigated soils are forming in equilibrium with current climatic conditions, and regressions based on this gradient might be suited for estimating paleorainfalls recorded by buried paelosols. It seems therefore that surface Terra Rossa soils in Jordan can be in equilibrium with current climate

  16. Decision-support tools for Extreme Weather and Climate Events in the Northeast United States

    Science.gov (United States)

    Kumar, S.; Lowery, M.; Whelchel, A.

    2013-12-01

    Decision-support tools were assessed for the 2013 National Climate Assessment technical input document, "Climate Change in the Northeast, A Sourcebook". The assessment included tools designed to generate and deliver actionable information to assist states and highly populated urban and other communities in assessment of climate change vulnerability and risk, quantification of effects, and identification of adaptive strategies in the context of adaptation planning across inter-annual, seasonal and multi-decadal time scales. State-level adaptation planning in the Northeast has generally relied on qualitative vulnerability assessments by expert panels and stakeholders, although some states have undertaken initiatives to develop statewide databases to support vulnerability assessments by urban and local governments, and state agencies. The devastation caused by Superstorm Sandy in October 2012 has raised awareness of the potential for extreme weather events to unprecedented levels and created urgency for action, especially in coastal urban and suburban communities that experienced pronounced impacts - especially in New Jersey, New York and Connecticut. Planning approaches vary, but any adaptation and resiliency planning process must include the following: - Knowledge of the probable change in a climate variable (e.g., precipitation, temperature, sea-level rise) over time or that the climate variable will attain a certain threshold deemed to be significant; - Knowledge of intensity and frequency of climate hazards (past, current or future events or conditions with potential to cause harm) and their relationship with climate variables; - Assessment of climate vulnerabilities (sensitive resources, infrastructure or populations exposed to climate-related hazards); - Assessment of relative risks to vulnerable resources; - Identification and prioritization of adaptive strategies to address risks. Many organizations are developing decision-support tools to assist in the urban

  17. Weather, Ocean and Climate topics in Geosciences, a new subject in Norwegian upper secondary education.

    Science.gov (United States)

    Hansen, P. J. K.

    2009-09-01

    Weather, Ocean and Climate topics in Geosciences, a new subject in Norwegian upper secondary education. Pål J. Kirkeby Hansen Faculty of Education and International Studies, Oslo University College (PalKirkeby.Hansen@lui.hio.no) The Knowledge Promotion is the latest curriculum reform in Norwegian compulsory and upper secondary education implemented autumn 2006. The greenhouse effect, the increased greenhouse effect and the importance of the ozone layer are topics in Natural Science upper secondary year 1, but only in Programme for General Studies, chosen by less than 50% of the students. In Geography the same cohort learns about ocean and air currents and their impact on climate, and in particular conditions influencing the weather and climate in Norway. If the students during year 1 get interested in further education in weather, ocean, climate or other geosciences topics, they could continue their education on Programme for Specialization in General Studies and choose the new science subject Geosciences at years 2 and/or 3. Among many geo-topics, Geosciences contains: climate, weather, water circulation, glaciers, atmospheric currents, weather forecasts, variations in the ozone layer, climatic development from the latest Ice Age, climate change - causes, effects and challenges, surface and deep-sea currents in oceans - causes and consequences for the climate, el Niño and la Niña - causes and influence on the climate. The students are supposed to make extensive investigations of different geosciences-parameters on their own in an outdoor field using different tools of geosciences, and on the Internet and other media, and present the results. One serious problem introducing a new subject in upper secondary education is who are able to teach this subject. We who developed the curriculum on mission of the education ministry, had first of all teachers with a degree in natural geography in mind. To empower other interested teachers, for instance with degree in

  18. US CLIVAR Working Group: Arctic Change and Possible Influence on Mid-latitude Climate and Weather

    Science.gov (United States)

    Cohen, J. L.; Zhang, X.

    2015-12-01

    The Arctic has warmed more than twice as fast as the global average, a phenomenon known as Arctic amplification (AA). These profound changes to the Arctic system have coincided with a period of ostensibly more frequent events of extreme weather across the Northern Hemisphere mid-latitudes, including extreme heat and rainfall events and recent severe winters. The possible link between Arctic change and mid-latitude weather has spurred a rush of new observational and modeling studies. These studies have argued that heavy precipitation events and heat waves are at least partially attributable to Arctic warming. A growing number of recent studies even argue that recent extreme winter weather is related to AA. In part due to the high impact of extreme weather on our society, some of these studies linking AA to the increased frequency of extreme weather have garnered public and media attention. At the same time, uncertainties from the large intrinsic variability of the system, the short observational record due to the recentness of AA and the shortcomings of global climate models have also resulted in much skepticism in any argued links between AA and severe weather. This in turn has resulted in a number of workshops trying to frame the problem and laying the groundwork to improve our understanding of Arctic-mid-latitude linkages and accurate attribution of extreme weather events. Although these workshops identified existing problems and difficulties, and provided broad recommendations, they did not synthesize the diversified research results to identify where community consensus and gaps exist. Therefore we have assembled many of the leading scientists researching Arctic-mid-latitude linkages as part of a US CLIVAR working group. Through the three-year efforts of this working group, we will use the outcome of the previous workshops and newly planned activities to guide the synthesis efforts, coordinate on-going research to fill out key gaps, and provide specific

  19. Weather and seasonal climate prediction for South America using a multi-model superensemble

    Science.gov (United States)

    Chaves, Rosane R.; Ross, Robert S.; Krishnamurti, T. N.

    2005-11-01

    This work examines the feasibility of weather and seasonal climate predictions for South America using the multi-model synthetic superensemble approach for climate, and the multi-model conventional superensemble approach for numerical weather prediction, both developed at Florida State University (FSU). The effect on seasonal climate forecasts of the number of models used in the synthetic superensemble is investigated. It is shown that the synthetic superensemble approach for climate and the conventional superensemble approach for numerical weather prediction can reduce the errors over South America in seasonal climate prediction and numerical weather prediction.For climate prediction, a suite of 13 models is used. The forecast lead-time is 1 month for the climate forecasts, which consist of precipitation and surface temperature forecasts. The multi-model ensemble is comprised of four versions of the FSU-Coupled Ocean-Atmosphere Model, seven models from the Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction (DEMETER), a version of the Community Climate Model (CCM3), and a version of the predictive Ocean Atmosphere Model for Australia (POAMA). The results show that conditions over South America are appropriately simulated by the Florida State University Synthetic Superensemble (FSUSSE) in comparison to observations and that the skill of this approach increases with the use of additional models in the ensemble. When compared to observations, the forecasts are generally better than those from both a single climate model and the multi-model ensemble mean, for the variables tested in this study.For numerical weather prediction, the conventional Florida State University Superensemble (FSUSE) is used to predict the mass and motion fields over South America. Predictions of mean sea level pressure, 500 hPa geopotential height, and 850 hPa wind are made with a multi-model superensemble comprised of six global models for the period

  20. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  1. Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years.

    Science.gov (United States)

    Ewald, Julie A; Wheatley, Christopher J; Aebischer, Nicholas J; Moreby, Stephen J; Duffield, Simon J; Crick, Humphrey Q P; Morecroft, Michael B

    2015-11-01

    Cereal fields are central to balancing food production and environmental health in the face of climate change. Within them, invertebrates provide key ecosystem services. Using 42 years of monitoring data collected in southern England, we investigated the sensitivity and resilience of invertebrates in cereal fields to extreme weather events and examined the effect of long-term changes in temperature, rainfall and pesticide use on invertebrate abundance. Of the 26 invertebrate groups examined, eleven proved sensitive to extreme weather events. Average abundance increased in hot/dry years and decreased in cold/wet years for Araneae, Cicadellidae, adult Heteroptera, Thysanoptera, Braconidae, Enicmus and Lathridiidae. The average abundance of Delphacidae, Cryptophagidae and Mycetophilidae increased in both hot/dry and cold/wet years relative to other years. The abundance of all 10 groups usually returned to their long-term trend within a year after the extreme event. For five of them, sensitivity to cold/wet events was lowest (translating into higher abundances) at locations with a westerly aspect. Some long-term trends in invertebrate abundance correlated with temperature and rainfall, indicating that climate change may affect them. However, pesticide use was more important in explaining the trends, suggesting that reduced pesticide use would mitigate the effects of climate change.

  2. Health Impacts of Climate and Weather: Influenza and Floods as Examples

    Science.gov (United States)

    Sharif, Hatim

    2010-05-01

    The interest in understanding how the emergence and spread of infectious disease is controlled by environmental factors such atmospheric condition has increased in the past two decades among public health officials, hydrometeorologists, scientists and policy maker. Given the strong linkage between climate and influenza, we studied the relationship between specific meteorological variables, namely temperature, humidity, precipitation, and radiation, and influenza morbidity and mortality at various temporal and spatial scales. The ultimate goal of the study is to make it possible to use weather and climate prediction at or before the beginning of the influenza season to provide valuable prediction of the characteristics of the season. Preliminary results will be presented. The Federal Emergency Management Agency (FEMA) considers flooding "America's Number One Natural Hazard". Despite flood management efforts in many communities, U.S. flood damages remain high, due, in large part, to increasing population and property development in flood-prone areas. Floods are the leading cause of fatalities related to natural disasters in Texas and are considered as a serious health threat by Texas Department of State Health Services (DSHS). We examined flood fatalities that occurred in Texas between 1960 and 2008. Flood fatality statistics were extracted from several sources including DSHS. The data collected for flood fatalities include the date, time, gender, age, location, and weather conditions. Analysis reveals that most fatalities result from driving into flood water. A health education intervention strategy is proposed.

  3. ­Weather and climate change drivers of agricultural pesticide use in the US

    Science.gov (United States)

    Larsen, A.; Deschenes, O.

    2016-12-01

    Agricultural pesticides have numerous negative consequences for human and environmental health due to direct exposure, and associated air pollution, water contamination and biodiversity losses. As such, understanding the abiotic and biotic drivers of pesticide variability is a scientific and policy priority. Temperature is a direct determinant of insect pest development rates, and as such, it is anticipated that insect pest damage and insecticide use will increase in a warmer climate. Yet, the complexity of plant-insect interactions, diversity of crop growing regions, and uncertainty of climate forecasts have hampered predictions regarding where and to what degree climate change may alter insecticide use. Here we use a county-level, panel data set including the USDA Census of Agriculture and the National Climatic Data Center (NCDC) Global Historical Climatology Network-Daily (GHCN-Daily) for 1987-2012 to statistically evaluate how a rich set of weather variables (e.g. degree days, frosts, precipitation) affect current insecticide use patterns in the continental US. Using climate predictions from National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) we then estimate how different climate change emissions scenarios (i.e. A2, B1) are likely to impact insecticide use in different agricultural regions of the US. We find an increase in growing season temperature (degree days) leads to an increase in insecticides on average, and in most regions of the US. However, our results indicate that the effect of a warm year is heterogeneous in time with, for example, a warm January leading to a more consistent increase in insecticides than a warm July. Therefore, we estimate that while future climate change will lead to an overall increase in insecticide use, the degree to which that increase materializes will depend on how warming manifests during the year.

  4. Insect community responses to climate and weather across elevation gradients in the Sagebrush Steppe, eastern Oregon

    Science.gov (United States)

    Pilliod, David S.; Rohde, Ashley T.

    2016-11-17

    Executive SummaryIn this study, the U.S. Geological Survey investigated the use of insects as bioindicators of climate change in sagebrush steppe shrublands and grasslands in the Upper Columbia Basin. The research was conducted in the Stinkingwater and Pueblo mountain ranges in eastern Oregon on lands administered by the Bureau of Land Management.We used a “space-for-time” sampling design that related insect communities to climate and weather along elevation gradients. We analyzed our insect dataset at three levels of organization: (1) whole-community, (2) feeding guilds (detritivores, herbivores, nectarivores, parasites, and predators), and (3) orders within nectarivores (i.e., pollinators). We captured 59,517 insects from 176 families and 10 orders at the Pueblo Mountains study area and 112,305 insects from 185 families and 11 orders at the Stinkingwater Mountains study area in 2012 and 2013. Of all the individuals captured at the Stinkingwater Mountains study area, 77,688 were from the family Cecidomyiidae (Diptera, gall gnats).We found that the composition of insect communities was associated with variability in long-term (30-yr) temperature and interannual fluctuations in temperature. We found that captures of certain fly, bee, moth, and butterfly pollinators were more strongly associated with some climate and vegetation variables than others. We found that timing of emergence, as measured by first detection of families, was associated with elevation. When analyzed by feeding guilds, we found that all guilds emerged later at high elevations except for detritivores, which emerged earlier at high elevations. The abundance of most taxa varied through time, mostly in response to temperature and precipitation. Of the pollinators, bees (particularly, Halictidae and Megachilidae) peaked in abundance in late June and early July, whereas butterflies and moths peaked in August. Flies peaked in abundance in July.Overall, our interpretation of these patterns is that

  5. Seafloor Weathering As a Long-Term Climate Regulation Mechanism

    Science.gov (United States)

    Farahat, N. X.; Abbot, D. S.; Archer, D. E.

    2014-12-01

    The global carbon cycle determines the distribution of carbon between the atmosphere, ocean, and solid earth. Carbon from the mantle enters the Earth's surficial environment as CO2 by volcanic outgassing, and carbon is buried in the oceanic crust as carbonate rocks during silicate rock weathering. The subduction of carbonate-rich oceanic plates returns carbon to the mantle, closing the cycle. Subtle adjustments in continental silicate weathering, widely held to consume atmospheric CO2 at a rate controlled by climate, are believed to have maintained habitable conditions throughout Earth's history. This long term climate regulation mechanism is known as a climate-weathering feedback. Seafloor weathering, low-temperature basalt alteration and carbonate precipitation in the permeable upper oceanic crust, has been proposed as a climate-weathering feedback as well, but the link to climate is presently poorly understood. Such a climate regulation mechanism would be particularly important on waterworld planets where continental silicate weathering cannot regulate climate. It has so far not been possible to determine whether changes in seafloor weathering could contribute to climate regulation on Earth or in a waterworld scenario because the necessary modeling framework has not yet been developed. However, advances in porous media flow modeling and reactive transport modeling, as well as the availability of inexpensive computational power, allow the seafloor weathering problem to be looked at in greater detail. We have developed a spatially resolved two-dimmensional (2D) numerical model of seafloor weathering in the permeable upper oceanic crust. This model simulates 2D off-axis hydrothermal flow coupled to geochemical alteration of seafloor basalt by modeling reactive transport of chemical species in seawater-derived hydrothermal fluids. The focus of this research is to use the model to determine the effect of geological and climatic factors on seafloor weathering, which

  6. High potential for chemical weathering and climate effects of early lichens and bryophytes in the Late Ordovician

    Science.gov (United States)

    Porada, Philipp; Lenton, Tim; Pohl, Alexandre; Weber, Bettina; Mander, Luke; Donnadieu, Yannick; Beer, Christian; Pöschl, Ulrich; Kleidon, Axel

    2016-04-01

    Non-vascular vegetation in the Late Ordovician may have considerably increased global chemical weathering, thereby reducing atmospheric CO2 concentration and contributing to a decrease in global temperature and the onset of glaciations. Usually, enhancement of weathering by non-vascular vegetation is estimated using field experiments which are limited to small areas and a low number of species. This makes it difficult to extrapolate to the global scale and to climatic conditions of the past, which differ markedly from the recent climate. Here we present a global, spatially explicit modelling approach to estimate chemical weathering by non-vascular vegetation in the Late Ordovician. During this period, vegetation probably consisted of early forms of today's lichens and bryophytes. We simulate these organisms with a process-based model, which takes into account their physiological diversity by representing multiple species. The productivity of lichens and bryophytes is then related to chemical weathering of surface rocks. The rationale is that the organisms dissolve rocks to extract phosphorus for the production of new biomass. To account for the limited supply of unweathered rock material in shallow regions, we cap biotic weathering at the erosion rate. We estimate a potential global weathering flux of 10.2 km3 yr-1 of rock, which is around 12 times larger than today's global chemical weathering. The high weathering potential implies a considerable impact of lichens and bryophytes on atmospheric CO2 concentration in the Ordovician. Moreover, we find that biotic weathering is highly sensitive to atmospheric CO2, which suggests a strong feedback between chemical weathering by lichens and bryophytes and climate.

  7. Using self-organizing maps to detail synoptic connections between climate indices and Alaska weather

    Science.gov (United States)

    Winnan, Reynir C.

    Seasonal forecasts for Alaska strongly depend on the phases of Pacific Decadal Oscillation (PDO), El Nino-Southern Oscillation (ENSO), and warm water in the North Pacific called the North Pacific Mode or more popularly the "Pacific blob." The canonical descriptions of these climate indices are based on seasonal averages, and anomalies that are based on a long-term mean. The patterns highlight general geographical placement and display a sharp contrast between opposing phases, but this may be misleading since seasonal averages hide much of the synoptic variability. Self-organizing maps (SOMs) are a way of grouping daily sea level pressure (SLP) patterns, over many time realizations into a specified set of maps (e.g. 35 maps) that describe commonly occurring patterns. This study uses the SOMs in the context of climate indices to describe the range of synoptic patterns that are relevant for Alaska. This study found that the patterns common during a given phase of the PDO include subtle differences that would result in Alaska weather that is very different from what is expected from the canonical PDO description, thus providing some explanation for recent studies that find the PDO link to Alaska climate is weakening. SOMs analysis is consistent with recent studies suggesting that the pattern responsible for the 2014 Pacific warm blob is linked to tropical sea-surface temperature (SST) forcing. An analysis of the summer SLP SOMs in the context of Alaska wildland fires was also conducted. This analysis identified several commonly occurring patterns during summers with large areas burned. These patterns are characterized by low pressure in the Bering Sea, which would be consistent with increased storm activity and thus an ignition source for the fires. Identifying synoptic patterns that occur during a particular phase of a teleconnection index contributes towards understanding the mechanisms of how these indices influence the weather and climate of Alaska.

  8. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification - Supplementary Information

    Science.gov (United States)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2015-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp. -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  9. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification - Supplementary Information

    Science.gov (United States)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2015-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp. -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  10. Signatures of climate and weather regimes in runoff of the Middle Elbe near Dresden, Germany

    Science.gov (United States)

    Carl, P.; Behrendt, H.

    2009-04-01

    To follow the traces that climate variability and change may have left in archives of terrestrial runoff, empirical modal structures are explored of observed streamflow and related climate and weather time series of the instrumental period. Here the signals are presented and discussed which may be found when using a strategy of two techniques of time series analysis in combination: matching pursuit (MP) and functional streamflow disaggregation (FSD). Hydrologic target of the study is the long daily record of Middle Elbe discharge at a gauging station near Dresden, Germany (period of interest: 1870-1997). At the regional scale, annual frequencies of occurence of the leading five grosswetterlagen (i.e., weather regimes) for Europe are analyzed, together with annual Central European surface air temperature, German precipitation, and sea level pressure at the two action centers of the North Atlantic Oscillation (NAO), Azores high and Iceland low. Tropic/subtropical links via the NAO and Eastern Pacific sea surface temperatures to the Southern Oscillation, as well as more direct connections to Asian monsoon dynamics, are confirmed and demonstrated in terms of the purely empirical, yet non-probabilistic, uncalibrated functional (i.e., dynamic) signal relationships found.

  11. Euro-Climhist - a data platform for weather-, climate- and disaster history

    Science.gov (United States)

    Pfister, Christian

    2017-04-01

    The Euro-Climhist data base (http://www.euroclimhist.unibe.ch/de)/ presents evidence about weather and climate in space and time mostly originating from the archives of societies. It facilitates the cross-checking of proxy data with contemporaneous high-resolution narrative weather reports. Contemporary and non-contemporary data are distinguished for quality control. The original Euro-Climhist database was established between 1992 and 1994 to investigate weather patterns in Europe during the cold period of the late Maunder Minimum (1675-1715). The present-day internet version of Euro-Climhist went online in November 2015 with the Module Switzerland. It currently provides 160'000 records from 1501 to present, available in German, French, Italian and English. The module serves as a pilot project for developing an adequate methodology and user-friendly software. Currently a module "Middle Ages" led by Christian Rohr from the Bern University is being worked out. It includes evidence for the whole of Europe prior to 1501. Further modules may be established by regional working groups. The classification scheme includes 300 categories. A complementary facility—COMP—has been also been created to permit a still more precise description of events. For example, the facility can be used to describe in detail the impacts of nature-induced hazards. Moreover, it makes possible to rate quantitative evidence such as phenological data or the frequency of rain-days at a given location according to standard criteria. The elements of COMP are translated and can be augmented to an almost unlimited extent. The data are mapped according to the administrative organization of a country and to geographical units. Results are presented in the form of text and geographical charts. The structure of Euro-Climhist may be readily adapted to amplifications in relationship to content, spatial dimension and translation into further languages. In the long term, it may be possible to release

  12. How to use The National Gallery as a cross curricular approach to weather and climate studies at primary level.

    Science.gov (United States)

    Hansen, P. J. K.

    2009-09-01

    How to use The National Gallery as a cross curricular approach to weather and climate studies at primary level. Pål J. Kirkeby Hansen Faculty of Education and International Studies, Oslo University College (PalKirkeby.Hansen@lui.hio.no) Weather and climate are topics in natural science and geography in primary and secondary education in most countries. The pupils are often doing own weather observations and measurements and are presenting the results oral, by posters or with digital aids. They also use the Internet with all its relevant resources in their studies to develop vocabulary, practical and conceptual knowledge. Knowledge about weather and climate is parts of liberal education and could be projected to other topics in science and to topics in other subjects, for instance: history, social geography, literature and arts. This article reports from a case study in grade 3 classes (age 9 year) during their Weather Week. Their science teacher was, quite untypical, also educated in art history. She arranged a visited to The National Gallery with the double agenda: 1. To introduce the pupils to Norwegian canon paintings from the national romantic period, our so-called "golden age”. 2. To look for and discuss weather elements in this paintings. For one hour the museum curator guided the pupils around the water cycle by using the paintings. While the pupils' own observations of weather, clouds and wind and measurements of temperature and precipitation during the Weather Week only are point checks, the guided tour in The National Gallery gave literally "the whole picture” of the Norwegian weather and climate and of the water cycle. During the tour, the curator constantly invited the pupils to tell about and discuss what weather and water elements they were looking at when standing in front of a painting. The pupils were responsive and interested all the time. Back at school, they demonstrated that they had learned much about both weather elements, the water

  13. Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events

    Science.gov (United States)

    Mann, Michael E.; Rahmstorf, Stefan; Kornhuber, Kai; Steinman, Byron A.; Miller, Sonya K.; Coumou, Dim

    2017-01-01

    Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby waves within a particular wavelength range (zonal wavenumber 6–8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale waves with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the zonal mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art (“CMIP5”) historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability. PMID:28345645

  14. The Weather of the Future: Heat Waves, Extreme Storms, and Other Scenes from a Climate-Changed Planet

    Science.gov (United States)

    Cullen, H. M.

    2010-12-01

    In The Weather of the Future, Dr. Heidi Cullen puts a vivid face on climate change, offering a new way of seeing this phenomenon not just as an event set to happen in the distant future but as something happening right now in our own backyards. Arguing that we must connect the weather of today with the climate change of tomorrow, Cullen combines the latest research from scientists on the ground with state-of-the-art climate model projections to create climate-change scenarios for seven of the most at-risk locations around the world. From the Central Valley of California, where coming droughts will jeopardize the entire state’s water supply, to Greenland, where warmer temperatures will give access to mineral wealth buried beneath ice sheets for millennia, Cullen illustrates how, if left unabated, climate change will transform every corner of the world by midcentury. What emerges is a mosaic of changing weather patterns that collectively spell out the range of risks posed by global warming—whether it’s New York City, whose infrastructure is extremely vulnerable even to a relatively weak Category 3 hurricane or to Bangladesh, a country so low-lying that millions of people could become climate refugees thanks to rising sea levels. The Weather of the Future makes climate change local, showing how no two regions of the country or the world will be affected in quite the same way and demonstrating that melting ice is just the beginning.

  15. Erosion risk in the northern Gulf of Mexico - the effects of climate and weather

    Science.gov (United States)

    Wahl, Thomas; Plant, Nathaniel G.; Long, Joseph W.

    2016-04-01

    Oceanographic variables such as mean sea level, tides, storm surges, and waves are drivers of erosion, and they act on different time scales ranging from hours (associated with weather) to seasonal and decadal variations and trends (associated with climate). Here we explore how the related sea-state conditions affect the erosion risk in the northern Gulf of Mexico for past and future climate scenarios. From the climate perspective we find that long-term trends in the relevant variables have caused an increase of ~30% in the erosion risk since the 1980s; at least half of this increase was due to changes in the wave climate. In the next decades, sea level rise will likely become the dominating driver and may, in combination with ongoing changes in the wave climate (and depending on the emission scenario), escalate the erosion risk by up to 300% over the next 30 years. We also find significant changes in the seasonal cycles of sea level and significant wave height, which have in combination caused a considerable increase of the erosion risk in summer and decrease in winter (superimposed onto the long-term trends). The influence of weather is assessed with a copula-based multivariate sea storm model in a Monte-Carlo framework; i.e. we simulate hundreds of thousands of artificial but physically consistent sea-state conditions to quantify how different our understanding of the present day erosion risk would be if we had seen more or less extreme combinations of the different sea-state parameters over the last three decades. We find, for example, that total water levels (tide + surge + wave run-up) associated with 100-year return periods may be underestimated by up to 30% and that the average number of impact hours - when total water levels exceeded the height of the dune toe (collision) or dune crest (overwash) - could have been up to 50% higher than what we inferred based on the actually observed oceanographic conditions. Assessing erosion risk in such a probabilistic

  16. How climate and weather affect the erosion risk in the northern Gulf of Mexico

    Science.gov (United States)

    Wahl, T.; Plant, N. G.

    2015-12-01

    Oceanographic variables such as mean sea level, tides, storm surges, and waves are drivers of erosion, and they act on different time scales ranging from hours (associated with weather) to seasonal and decadal variations and trends (associated with climate). Here we explore how the related sea-state conditions affect the erosion risk in the northern Gulf of Mexico for past and future climate scenarios. From the climate perspective we find that long-term trends in the relevant variables have caused an increase of ~30% in the erosion risk since the 1980s; at least half of this increase was due to changes in the wave climate. In the next decades, sea level rise will likely become the dominating driver and may, in combination with ongoing changes in the wave climate (and depending on the emission scenario), escalate the erosion risk by up to 300% over the next 30 years. We also find significant changes in the seasonal cycles of sea level and significant wave height, which have in combination caused a considerable increase of the erosion risk in summer and decrease in winter (superimposed onto the long-term trends). The influence of weather is assessed with a copula-based multivariate sea storm model in a Monte-Carlo framework; i.e. we simulate hundreds of thousands of artificial but physically consistent sea-state conditions to quantify how different our understanding of the present day erosion risk would be if we had seen more or less extreme combinations of the different sea-state parameters over the last three decades. We find, for example, that total water levels (tide + surge + wave run-up) associated with 100-year return periods may be underestimated by up to 30% and that the average number of impact hours - when total water levels exceeded the height of the dune toe (collision) or dune crest (overwash) - could have been up to 50% higher than what we inferred based on the actually observed oceanographic conditions. Assessing erosion risk in such a probabilistic

  17. The Extreme Climate Index: a novel and multi-hazard index for extreme weather events.

    Science.gov (United States)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2017-04-01

    In this presentation we introduce the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events in African countries, thus indicating that a shift to a new climate regime is underway in a particular area. This index has been developed in the context of XCF (eXtreme Climate Facilities) project lead by ARC (African Risk Capacity, specialised agency of the African Union), and will be used in the payouts triggering mechanism of an insurance programme against risks related to the increase of frequency and magnitude of extreme weather events due to climate regimes' changes. The main hazards covered by ECI will be extreme dry, wet and heat events, with the possibility of adding region-specific risk events such as tropical cyclones for the most vulnerable areas. It will be based on data coming from consistent, sufficiently long, high quality historical records and will be standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be comparable. The first step to construct such an index is to define single hazard indicators. In this first study we focused on extreme dry/wet and heat events, using for their description respectively the well-known SPI (Standardized Precipitation Index) and an index developed by us, called SHI (Standardized Heat-waves Index). The second step consists in the development of a computational strategy to combine these, and possibly other indices, so that the ECI can describe, by means of a single indicator, different types of climatic extremes. According to the methodology proposed in this paper, the ECI is defined by two statistical components: the ECI intensity, which indicates whether an event is extreme or not; the angular component, which represent the contribution of each hazard to the overall intensity of the index. The ECI can thus be used to identify "extremes" after defining a

  18. Increasing Diversity in Global Climate Change, Space Weather and Space Technology Research and Education

    Science.gov (United States)

    Johnson, L. P.; Austin, S. A.; Howard, A. M.; Boxe, C.; Jiang, M.; Tulsee, T.; Chow, Y. W.; Zavala-Gutierrez, R.; Barley, R.; Filin, B.; Brathwaite, K.

    2015-12-01

    This presentation describes projects at Medgar Evers College of the City University of New York that contribute to the preparation of a diverse workforce in the areas of ocean modeling, planetary atmospheres, space weather and space technology. Specific projects incorporating both undergraduate and high school students include Assessing Parameterizations of Energy Input to Internal Ocean Mixing, Reaction Rate Uncertainty on Mars Atmospheric Ozone, Remote Sensing of Solar Active Regions and Intelligent Software for Nano-satellites. These projects are accompanied by a newly developed Computational Earth and Space Science course to provide additional background on methodologies and tools for scientific data analysis. This program is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research and the NASA New York State Space Grant Consortium.

  19. Nonlinear Dynamics and Chaos Applications for Prediction of Weather and Climate

    CERN Document Server

    Pethkar, J S

    2001-01-01

    Turbulence, namely, irregular fluctuations in space and time characterize fluid flows in general and atmospheric flows in particular.The irregular,i.e., nonlinear space-time fluctuations on all scales contribute to the unpredictable nature of both short-term weather and long-term climate.It is of importance to quantify the total pattern of fluctuations for predictability studies. The power spectra of temporal fluctuations are broadband and exhibit inverse power law form with different slopes for different scale ranges. Inverse power-law form for power spectra implies scaling (self similarity) for the scale range over which the slope is constant. Atmospheric flows therefore exhibit multiple scaling or multifractal structure.Standard meteorological theory cannot explain satisfactorily the observed multifractal structure of atmospheric flows.Selfsimilar spatial pattern implies long-range spatial correlations. Atmospheric flows therefore exhibit long-range spatiotemporal correlations, namely,self-organized critic...

  20. Investigation of the 2013 Alberta flood from weather and climate perspectives

    Science.gov (United States)

    Teufel, Bernardo; Diro, G. T.; Whan, K.; Milrad, S. M.; Jeong, D. I.; Ganji, A.; Huziy, O.; Winger, K.; Gyakum, J. R.; de Elia, R.; Zwiers, F. W.; Sushama, L.

    2016-06-01

    During 19-21 June 2013 a heavy precipitation event affected southern Alberta and adjoining regions, leading to severe flood damage in numerous communities and resulting in the costliest natural disaster in Canadian history. This flood was caused by a combination of meteorological and hydrological factors, which are investigated from weather and climate perspectives with the fifth generation Canadian Regional Climate Model. Results show that the contribution of orographic ascent to precipitation was important, exceeding 30 % over the foothills of the Rocky Mountains. Another contributing factor was evapotranspiration from the land surface, which is found to have acted as an important moisture source and was likely enhanced by antecedent rainfall that increased soil moisture over the northern Great Plains. Event attribution analysis suggests that human induced greenhouse gas increases may also have contributed by causing evapotranspiration rates to be higher than they would have been under pre-industrial conditions. Frozen and snow-covered soils at high elevations are likely to have played an important role in generating record streamflows. Results point to a doubling of surface runoff due to the frozen conditions, while 25 % of the modelled runoff originated from snowmelt. The estimated return time of the 3-day precipitation event exceeds 50 years over a large region, and an increase in the occurrence of similar extreme precipitation events is projected by the end of the 21st century. Event attribution analysis suggests that greenhouse gas increases may have increased 1-day and 3-day return levels of May-June precipitation with respect to pre-industrial climate conditions. However, no anthropogenic influence can be detected for 1-day and 3-day surface runoff, as increases in extreme precipitation in the present-day climate are offset by decreased snow cover and lower frozen water content in soils during the May-June transition months, compared to pre

  1. Systematic Investigation of REE Mobility and Fractionation During Continental Shale Weathering Along a Climate Gradient

    Science.gov (United States)

    Jin, L.; Ma, L.; Dere, A. L. D.; White, T.; Brantley, S. L.

    2014-12-01

    Rare earth elements (REE) have been identified as strategic natural resources and their demand in the United States is increasing rapidly. REE are relatively abundant in the Earth's crust, but REE deposits with minable concentrations are uncommon. One recent study has pointed to the deep-sea REE-rich muds in the Pacific Ocean as a new potential resource, related to adsorption and concentration of REE from seawater by hydrothermal iron-oxyhydroxides and phillipsite (Kato et al., 2010). Finding new REE deposits will be facilitated by understanding global REE cycles: during the transformation of bedrock into soils, REEs are leached into natural waters and transported to oceans. At present, the mechanisms and factors controlling release, transport, and deposition of REE - the sources and sinks - at Earth's surface remain unclear. Here, we systematically studied soil profiles and bedrock in seven watersheds developed on shale bedrock along a climate transect in the eastern USA, Puerto Rico and Wales to constrain the mobility and fractionation of REE during chemical weathering processes. In addition, one site on black shale (Marcellus) bedrock was included to compare behaviors of REEs in organic-rich vs. organic-poor shale end members under the same environmental conditions. Our investigation focused on: 1) the concentration of REEs in gray and black shales and the release rates of REE during shale weathering, 2) the biogeochemical and hydrological conditions (such as redox, dissolved organic carbon, and pH) that dictate the mobility and fractionation of REEs in surface and subsurface environments, and 3) the retention of dissolved REEs on soils, especially onto secondary Fe/Al oxyhydroxides and phosphate mineral phases. This systematic study sheds light on the geochemical behaviors and environmental pathways of REEs during shale weathering along a climosequence.

  2. Understanding Adaptive Capacity in Real Estate and the Built Environment: Climate Change and Extreme Weather in New York City

    NARCIS (Netherlands)

    Keenan, J.M.

    2016-01-01

    With climate change well underway, cities worldwide are struggling to develop and apply knowledge that will help advance social, environmental and economic adaptation to extreme weather and changing ecologies. Nowhere is this need more pressing than in the design, development and management of the b

  3. Research Project Entitled "The Dynamics and Physical Processes in The Weather and Climate System" --Part Ⅰ: A Brief Introduction

    Institute of Scientific and Technical Information of China (English)

    罗云峰; 郑文静; 周小刚

    2004-01-01

    In the beginning of the 21st century, the Tenth Five-Year Priority Research Projects of the Earth Sciences of the National Natural Science Foundation of China (NSFC) were initiated. After nearly a two-year long process to prepare, the first version of six Priority Research Projects of Earth Sciences was published in October 2001 by NSFC, viz., Local Response to Global Changes, Life Process and Environment,Dynamics and Physical Processes in the Weather and Climate System, Continental Dynamics, Regional Sustainable Development, Solar-Terrestrial Environment and Space Weather. The process involved more than 200 renowned Chinese scientists and many departments and agencies in China. The six Priority Research Projects guide the research effort of the earth sciences for the NSFC from year 2001 to 2005.This paper provides a brief introduction to the Third Priority Research Project of the Department of Earth Sciences of NSFC-Dynamics and Physical Processes in the Weather and Climate System (DPWOS).

  4. Data Mashups: Linking Human Health and Wellbeing with Weather, Climate and the Environment

    Science.gov (United States)

    Fleming, L. E.; Sarran, C.; Golding, B.; Haines, A.; Kessel, A.; Djennad, M.; Hajat, S.; Nichols, G.; Gordon Brown, H.; Depledge, M.

    2016-12-01

    A large part of the global disease burden can be linked to environmental factors, underpinned by unhealthy behaviours. Research into these linkages suffers from lack of common tools and databases for investigations across many different scientific disciplines to explore these complex associations. The MEDMI (Medical and Environmental Data-a Mash-up Infrastructure) Partnership brings together leading organisations and researchers in climate, weather, environment, and human health. We have created a proof-of-concept central data and analysis system with the UK Met Office and Public Health England data as the internet-based MEDMI Platform (www.data-mashup.org.uk) to serve as a common resource for researchers to link and analyse complex meteorological, environmental and epidemiological data in the UK. The Platform is hosted on its own dedicated server, with secure internet and in-person access with appropriate safeguards for ethical, copyright, security, preservation, and data sharing issues. Via the Platform, there is a demonstration Browser Application with access to user-selected subsets of the data for: a) analyses using time series (e.g. mortality/environmental variables), and b) data visualizations (e.g. infectious diseases/environmental variables). One demonstration project is linking climate change, harmful algal blooms and oceanographic modelling building on the hydrodynamic-biogeochemical coupled models; in situ and satellite observations as well as UK HAB data and hospital episode statistics data are being used for model verification and future forecasting. The MEDMI Project provides a demonstration of the potential, barriers and challenges, of these "data mashups" of environment and health data. Although there remain many challenges to creating and sustaining such a shared resource, these activities and resources are essential to truly explore the complex interactions between climate and other environmental change and health at the local and global scale.

  5. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture.

    Science.gov (United States)

    Edwards, David P; Lim, Felix; James, Rachael H; Pearce, Christopher R; Scholes, Julie; Freckleton, Robert P; Beerling, David J

    2017-04-01

    Restricting future global temperature increase to 2°C or less requires the adoption of negative emissions technologies for carbon capture and storage. We review the potential for deployment of enhanced weathering (EW), via the application of crushed reactive silicate rocks (such as basalt), on over 680 million hectares of tropical agricultural and tree plantations to offset fossil fuel CO2 emissions. Warm tropical climates and productive crops will substantially enhance weathering rates, with potential co-benefits including decreased soil acidification and increased phosphorus supply promoting higher crop yields sparing forest for conservation, and reduced cultural eutrophication. Potential pitfalls include the impacts of mining operations on deforestation, producing the energy to crush and transport silicates and the erosion of silicates into rivers and coral reefs that increases inorganic turbidity, sedimentation and pH, with unknown impacts for biodiversity. We identify nine priority research areas for untapping the potential of EW in the tropics, including effectiveness of tropical agriculture at EW for major crops in relation to particle sizes and soil types, impacts on human health, and effects on farmland, adjacent forest and stream-water biodiversity. © 2017 The Author(s).

  6. Climate and weather across scales: singularities and stochastic Levy-Clifford algebra

    Science.gov (United States)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2016-04-01

    There have been several attempts to understand and simulate the fluctuations of weather and climate across scales. Beyond mono/uni-scaling approaches (e.g. using spectral analysis), this was done with the help of multifractal techniques that aim to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations of these equations (Royer et al., 2008, Lovejoy and Schertzer, 2013). However, these techniques were limited to deal with scalar fields, instead of dealing directly with a system of complex interactions and non trivial symmetries. The latter is unfortunately indispensable to answer to the challenging question of being able to assess the climatology of (exo-) planets based on first principles (Pierrehumbert, 2013) or to fully address the question of the relevance of quasi-geostrophic turbulence and to define an effective, fractal dimension of the atmospheric motions (Schertzer et al., 2012). In this talk, we present a plausible candidate based on the combination of Lévy stable processes and Clifford algebra. Together they combine stochastic and structural properties that are strongly universal. They therefore define with the help of a few physically meaningful parameters a wide class of stochastic symmetries, as well as high dimensional vector- or manifold-valued fields respecting these symmetries (Schertzer and Tchiguirinskaia, 2015). Lovejoy, S. & Schertzer, D., 2013. The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge U.K. Cambridge Univeristy Press. Pierrehumbert, R.T., 2013. Strange news from other stars. Nature Geoscience, 6(2), pp.81-83. Royer, J.F. et al., 2008. Multifractal analysis of the evolution of simulated precipitation over France in a climate scenario. C.R. Geoscience, 340(431-440). Schertzer, D. et al., 2012. Quasi-geostrophic turbulence and generalized scale invariance, a theoretical reply. Atmos. Chem. Phys., 12, pp.327-336. Schertzer, D

  7. Climate Variability and Weather Extremes: Model-Simulated and Historical Data. Chapter 9

    Science.gov (United States)

    Schubert, Siegfried D.; Lim, Young-Kwon

    2012-01-01

    Extremes in weather and climate encompass a wide array of phenomena including tropical storms, mesoscale convective systems, snowstorms, floods, heat waves, and drought. Understanding how such extremes might change in the future requires an understanding of their past behavior including their connections to large-scale climate variability and trends. Previous studies suggest that the most robust findings concerning changes in short-term extremes are those that can be most directly (though not completely) tied to the increase in the global mean temperatures. These include the findings that (IPCC 2007): There has been a widespread reduction in the number of frost days in mid-latitude regions in recent decades, an increase in the number of warm extremes, particularly warm nights, and a reduction in the number of cold extremes, particularly cold nights. For North America in particular (CCSP SAP 3.3, 2008): There are fewer unusually cold days during the last few decades. The last 10 years have seen a lower number of severe cold waves than for any other 10-year period in the historical record that dates back to 1895. There has been a decrease in the number of frost days and a lengthening of the frost-free season, particularly in the western part of North America. Other aspects of extremes such as the changes in storminess have a less clear signature of long term change, with considerable interannual, and decadal variability that can obscure any climate change signal. Nevertheless, regarding extratropical storms (CCSP SAP 3.3, 2008): The balance of evidence suggests that there has been a northward shift in the tracks of strong low pressure systems (storms) in both the North Atlantic and North Pacific basins. For North America: Regional analyses suggest that there has been a decrease in snowstorms in the South and lower Midwest of the United States, and an increase in snowstorms in the upper Midwest and Northeast. Despite the progress already made, our understanding of the

  8. Long-range weather prediction and prevention of climate catastrophes: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, K; Caravan, G; Govindasamy, B; Grossman, A; Hyde, R; Ishikawa, M; Ledebuhr, A; Leith, C; Molenkamp, C; Teller, E; Wood, L

    1999-08-18

    As the human population of Earth continues to expand and to demand an ever-higher quality-of-life, requirements for ever-greater knowledge--and then control--of the future of the state of the terrestrial biosphere grow apace. Convenience of living--and, indeed, reliability of life itself--become ever more highly ''tuned'' to the future physical condition of the biosphere being knowable and not markedly different than the present one, Two years ago, we reported at a quantitative albeit conceptual level on technical ways-and-means of forestalling large-scale changes in the present climate, employing practical means of modulating insolation and/or the Earth's mean albedo. Last year, we reported on early work aimed at developing means for creating detailed, high-fidelity, all-Earth weather forecasts of two weeks duration, exploiting recent and anticipated advances in extremely high-performance digital computing and in atmosphere-observing Earth satellites bearing high-technology instrumentation. This year, we report on recent progress in both of these areas of endeavor. Preventing the commencement of large-scale changes in the current climate presently appears to be a considerably more interesting prospect than initially realized, as modest insolation reductions are model-predicted to offset the anticipated impacts of ''global warming'' surprisingly precisely, in both space and time. Also, continued study has not revealed any fundamental difficulties in any of the means proposed for insolation modulation and, indeed, applicability of some of these techniques to other planets in the inner Solar system seems promising. Implementation of the high-fidelity, long-range weather-forecasting capability presently appears substantially easier with respect to required populations of Earth satellites and atmospheric transponders and data-processing systems, and more complicated with respect to transponder lifetimes in the actual

  9. Long-range Weather Prediction and Prevention of Climate Catastrophes: A Status Report

    Science.gov (United States)

    Caldeira, K.; Caravan, G.; Govindasamy, B.; Grossman, A.; Hyde, R.; Ishikawa, M.; Ledebuhr, A.; Leith, C.; Molenkamp, C.; Teller, E.; Wood, L.

    1999-08-18

    As the human population of Earth continues to expand and to demand an ever-higher quality-of-life, requirements for ever-greater knowledge--and then control--of the future of the state of the terrestrial biosphere grow apace. Convenience of living--and, indeed, reliability of life itself--become ever more highly ''tuned'' to the future physical condition of the biosphere being knowable and not markedly different than the present one. Two years ago, we reported at a quantitative albeit conceptual level on technical ways-and-means of forestalling large-scale changes in the present climate, employing practical means of modulating insolation and/or the Earth's mean albedo. Last year, we reported on early work aimed at developing means for creating detailed, high-fidelity, all-Earth weather forecasts of two weeks duration, exploiting recent and anticipated advances in extremely high-performance digital computing and in atmosphere-observing Earth satellites bearing high-technology instrumentation. This year, we report on recent progress in both of these areas of endeavor. Preventing the commencement of large-scale changes in the current climate presently appears to be a considerably more interesting prospect than initially realized, as modest insolation reductions are model-predicted to offset the anticipated impacts of ''global warming'' surprisingly precisely, in both space and time. Also, continued study has not revealed any fundamental difficulties in any of the means proposed for insolation modulation and, indeed, applicability of some of these techniques to other planets in the inner Solar system seems promising. Implementation of the high-fidelity, long-range weather-forecasting capability presently appears substantially easier with respect to required populations of Earth satellites and atmospheric transponders and data-processing systems, and more complicated with respect to transponder lifetimes in the actual atmosphere; overall, the enterprise seems more

  10. Influence of weather and climate on subjective symptom intensity in atopic eczema

    Science.gov (United States)

    Vocks, E.; Busch, R.; Fröhlich, C.; Borelli, S.; Mayer, H.; Ring, J.

    The frequent clinical observation that the course of atopic eczema, a skin disease involving a disturbed cutaneous barrier function, is influenced by climate and weather motivated us to analyse these relationships biometrically. In the Swiss high-mountain area of Davos the intensity of itching experienced by patients with atopic eczema was evaluated and compared to 15 single meteorological variables recorded daily during an entire 7-year observation period. By means of univariate analyses and multiple regressions, itch intensity was found to be correlated with some meteorological variables. A clear-cut inverse correlation exists with air temperature (coefficient of correlation: -0.235, Peczema is significantly dependent on meteorological conditions. The data suggest that, in patients with atopic eczema, a certain range of thermo-hygric atmospheric conditions with a balance of heat and water loss on the skin surface is essential for the skin to feel comfortable.

  11. `Our Changing Climate' - A new interactive game about weather, climate, the Earth's energy budget and the impacts caused by climate change

    Science.gov (United States)

    Colon-Robles, M.; Lorentz, K.; Ruhlman, K.; Gilman, I.; Chambers, L. H.

    2010-12-01

    ‘Our Changing Climate’ is a brand new game developed at NASA’s Langley Research Center by the Informal Education group and the Science Directorate to educate the public on Earth’s climate system how the Sun, ocean, atmosphere, clouds, ice, land, and life interact with each other, and how these interactions are changing due to anthropogenic effects. The game was designed for students in middle school (5th and 8th grade) between the ages of 10-14 as part of the NASA's Summer of Innovation campaign for excellence in science, technology, engineering and mathematics, or STEM, education. The game, ‘Our Changing Climate’, is composed of a series of interactive boards, featuring the following topics: (1) the difference between weather and climate - “Weather vs Climate”, (2) the interactions of clouds and greenhouse gases on short and long wave radiation - “Greenhouse Gases and Clouds”, and (3) the definition of albedo and the importance of bright surfaces over the Arctic - “Arctic Temperature”. Each interactive board presents a climate system and steps the student or spectator through the climate interaction using “clues” and hands-on items that they need to put correctly on the board to understand the concept. Once the student or spectator finishes this part, they then have a better grasp of the concept and are able to understand how these interactions are changing due to the increase in average global temperature. This knowledge is then tested or “driven home” with interactive questions that show how these interactions in our climate are changing today. The concept is then reinforced with an example of a recent event presented in the media. The game has been piloted in outreach and informal settings, as well as for professional development of educators. The game, interactions and engagement of each of the audiences mentioned will be presented.

  12. Fractionaly Integrated Flux model and Scaling Laws in Weather and Climate

    Science.gov (United States)

    Schertzer, Daniel; Lovejoy, Shaun

    2013-04-01

    The Fractionaly Integrated Flux model (FIF) has been extensively used to model intermittent observables, like the velocity field, by defining them with the help of a fractional integration of a conservative (i.e. strictly scale invariant) flux, such as the turbulent energy flux. It indeed corresponds to a well-defined modelling that yields the observed scaling laws. Generalised Scale Invariance (GSI) enables FIF to deal with anisotropic fractional integrations and has been rather successful to define and model a unique regime of scaling anisotropic turbulence up to planetary scales. This turbulence has an effective dimension of 23/9=2.55... instead of the classical hypothesised 2D and 3D turbulent regimes, respectively for large and small spatial scales. It therefore theoretically eliminates a non plausible "dimension transition" between these two regimes and the resulting requirement of a turbulent energy "mesoscale gap", whose empirical evidence has been brought more and more into question. More recently, GSI-FIF was used to analyse climate, therefore at much larger time scales. Indeed, the 23/9-dimensional regime necessarily breaks up at the outer spatial scales. The corresponding transition range, which can be called "macroweather", seems to have many interesting properties, e.g. it rather corresponds to a fractional differentiation in time with a roughly flat frequency spectrum. Furthermore, this transition yields the possibility to have at much larger time scales scaling space-time climate fluctuations with a much stronger scaling anisotropy between time and space. Lovejoy, S. and D. Schertzer (2013). The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge Press (in press). Schertzer, D. et al. (1997). Fractals 5(3): 427-471. Schertzer, D. and S. Lovejoy (2011). International Journal of Bifurcation and Chaos 21(12): 3417-3456.

  13. Increasing horizontal resolution in numerical weather prediction and climate simulations: illusion or panacea?

    Science.gov (United States)

    Wedi, Nils P

    2014-06-28

    The steady path of doubling the global horizontal resolution approximately every 8 years in numerical weather prediction (NWP) at the European Centre for Medium Range Weather Forecasts may be substantially altered with emerging novel computing architectures. It coincides with the need to appropriately address and determine forecast uncertainty with increasing resolution, in particular, when convective-scale motions start to be resolved. Blunt increases in the model resolution will quickly become unaffordable and may not lead to improved NWP forecasts. Consequently, there is a need to accordingly adjust proven numerical techniques. An informed decision on the modelling strategy for harnessing exascale, massively parallel computing power thus also requires a deeper understanding of the sensitivity to uncertainty--for each part of the model--and ultimately a deeper understanding of multi-scale interactions in the atmosphere and their numerical realization in ultra-high-resolution NWP and climate simulations. This paper explores opportunities for substantial increases in the forecast efficiency by judicious adjustment of the formal accuracy or relative resolution in the spectral and physical space. One path is to reduce the formal accuracy by which the spectral transforms are computed. The other pathway explores the importance of the ratio used for the horizontal resolution in gridpoint space versus wavenumbers in spectral space. This is relevant for both high-resolution simulations as well as ensemble-based uncertainty estimation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Local weather, regional climate, and annual survival of the northern spotted owl

    Science.gov (United States)

    Glenn, E.M.; Anthony, R.G.; Forsman, E.D.; Olson, G.S.

    2011-01-01

    We used an information-theoretical approach and Cormack-Jolly-Seber models for open populations in program MARK to examine relationships between survival rates of Northern Spotted Owls and a variety of local weather variables and long-term climate variables. In four of the six populations examined, survival was positively associated with wetter than normal conditions during the growing season or high summer temperatures. At the three study areas located at the highest elevations, survival was positively associated with winter temperature but also had a negative or quadratic relation with the number of storms and winter precipitation. A metaanalysis of all six areas combined indicated that annual survival was most strongly associated with phase shifts in the Southern Oscillation and Pacific Decadal Oscillation, which reflect large-scale temperature and precipitation patterns in this region. Climate accounted for a variable amount (1-41%) of the total process variation in annual survival but for more year-to-year variation (3-66%) than did spatial variation among owl territories (0-7%). Negative associations between survival and cold, wet winters and nesting seasons were similar to those found in other studies of the Spotted Owl. The relationships between survival and growing-season precipitation and regional climate patterns, however, had not been reported for this species previously. Climate-change models for the first half of the 21st century predict warmer, wetter winters and hotter, drier summers for the Pacific Northwest. Our results indicate that these conditions could decrease Spotted Owl survival in some areas. Copyright ?? The Cooper Ornithological Society 2011.

  15. Climate Impacts Mid-1800's Deforestation in New England using the Weather, Research, and Forecasting Model

    Science.gov (United States)

    Burakowski, E. A.; Chen, M.; Birkel, S. D.; Wake, C. P.; Dibb, J. E.

    2012-12-01

    When colonists arrived in the New England region of the United States (US) in the 1600's, more than 90% of land area was forested. By the mid-1800's, half of the land area was deforested having been cleared extensively for timber, pasture, and to heat homes. Today, New Hampshire is one of the most forested states in the US, yet little is known about the local climate impacts resulting from reforestation. We hypothesize that the removal of forests in 1850 had a strong impact on wintertime climate through changes in surface albedo, roughness length, and other biogeophysical surface properties. This study investigates the climate impacts of historical deforestation on New England winter climate using the Weather, Research, and Forecasting model. The WRF simulations presented here utilize a triple-nested approach, with the innermost 4-km domain centered on the New England states for two land cover scenarios, (2) an historical 1850 deforested scenario derived from the History Database of the Global Environment (HYDE3) land cover dataset and (2) present-day reforested scenario derived from MODerate Resolution Imaging Spectroradiometer (MODIS) land cover data. ERA-Interim lateral boundary conditions are used to drive the model and results are compared for an above average snowfall winter (November 2008 through April 2009) and a below-average snowfall winter (November 2001 through April 2002). Simulations are ongoing but analysis of observational data suggests that nocturnal cooling is a dominant response to deforestation compared to forested areas. The results from the WRF modeling efforts in this study will help inform future land use decisions in the future.

  16. MEDICAL AND DEMOGRAPHIC CONSEQUENCES OF CLIMATE CHANGE AND THE ASSESSMENT OF COMFORT LEVEL OF WEATHER-CLIMATIC CONDITIONS IN THE VOLGA FEDERAL DISTRICT

    Directory of Open Access Journals (Sweden)

    Yuri P. Perevedentsev

    2016-01-01

    Full Text Available The paper provides a brief analysis of research on the impact of global climate change on human health. Using Tatarstan as an example, the paper discusses medical and demographic consequences of the extreme heat wave of the summer of 2010. Assessment of the Volga Federal District (VFD bioclimate conducted with the help of certain biometeorological parameters allowed evaluating modern global and regional changes of weather-climatic conditions. The main emphasis was placed on spatial and temporal analysis of both the integral pathogenicity index (I and its individual components for the district territory. In VFD, aggravating weather conditions increase from southwest to northeast. Summer months are associated with comfort weather conditions. In winter, the air temperature pathogenicity index and interdiurnal temperature fluctuations contribute the greatest to I; in summer, the role of cloudiness and humidity pathogenicity indices increases. The contribution of wind speed and interdiurnal pressure fluctuations to I is insignificant in all seasons. Analysis of the frequency distribution of I showed that comfort weather conditions (over 50 % of cases occur in May–August, aggravating weather conditions occur in March-Appril, and harsh weather conditions in more than 50 % of cases occur in January–February and November–December. Calculation of biometeorological indices allows forecasting risk of thermal hazard under extreme meteorological conditions.

  17. Weather anomalies affect Climate Change microblogging intensity

    Science.gov (United States)

    Molodtsova, T.; Kirilenko, A.

    2012-12-01

    There is a huge gap between the scientific consensus and public understanding of climate change. Climate change has become a political issue and a "hot" topic in mass media that only adds the complexity to forming the public opinion. Scientists operate in scientific terms, not necessarily understandable by general public, while it is common for people to perceive the latest weather anomaly as an evidence of climate change. In 1998 Hansen et al. introduced a concept of an objectively measured subjective climate change indicator, which can relate public feeling that the climate is changing to the observed meteorological parameters. We tested this concept in a simple example of a temperature-based index, which we related to microblogging activity. Microblogging is a new form of communication in which the users describe their current status in short Internet messages. Twitter (http://twitter.com), is currently the most popular microblogging platform. There are multiple reasons, why this data is particularly valuable to the researches interested in social dynamics: microblogging is widely used to publicize one's opinion with the public; has broad, diverse audience, represented by users from many countries speaking different languages; finally, Twitter contains an enormous number of data, e.g., there were 1,284,579 messages related to climate change from 585,168 users in the January-May data collection. We collected the textual data entries, containing words "climate change" or "global warming" from the 1st of January, 2012. The data was retrieved from the Internet every 20 minutes using a specially developed Python code. Using geolocational information, blog entries originating from the New York urbanized area were selected. These entries, used as a source of public opinion on climate change, were related to the surface temperature, obtained from La Guardia airport meteorological station. We defined the "significant change" in the temperature index as deviation of the

  18. Weather and climate impacts of biomass burning aerosols during the dry season in Amazonia

    Science.gov (United States)

    Kolusu, Seshagirirao; Marsham, John; Spracklen, Dominic; Parker, Douglas; Dalvi, Mohit; Johnson, Ben; Mann, Graham

    2016-04-01

    Amazonia is a major global source of biomass burning aerosols (BBA) with impacts on weather and climate. BBA can be represented in weather models, with satellite-observed fires used to provide emissions fields, but such emissions normally require tuning to give realistic aerosol fields in models. Here, we investigate the two-way coupling between BBA and regional weather during the South American Biomass Burning Analysis (SAMBBA) field campaign, using both a set of short-range (2-day) forecasts and nested 20-day runs with the Met Office Unified Model (MetUM). Short-range forecasts with parametrised convection show that BBA exert an overall cooling influence on the Earth-atmosphere system, although some levels of the atmosphere are directly warmed by the absorption of solar radiation: BBA reduce the clear-sky net radiation at the surface by 15 ± 1 W m-2 and reduces net top-of-atmosphere radiation by 8 ± 1 W m-2, with a direct atmospheric warming of 7 ± 1 W m-2. BBA-induced reductions in all-sky radiation are smaller in magnitude, but of the same sign. The differences in heating induced by BBA lead to a more anticyclonic circulation at 700 hPa. BBA cools the boundary layer, but warms air above, reducing the BL depth by around 19 m. Locally, on a 150 km scale, changes in precipitation reach around 4 mm day-1 due to changes in the location of convection, with BBA leading to fewer rain events that are more intense, which may be linked to the BBA changing the vertical profile of stability in the lower atmosphere. The localised changes in rainfall tend to average out to give a 5 % (0.06 mm day-1) decrease in total precipitation, but the change in regional water budget is dominated by decreased evapotranspiration from the reduced net surface fluxes (0.2 to 0.3 mm day-1). The results show that although including BBA either prognostoically, or through a climatology, improves forecasts, but differences between the impacts of prognostic and climatological aerosol are small

  19. Seeing is Believing? An Examination of Perceptions of Local Weather Conditions and Climate Change Among Residents in the U.S. Gulf Coast.

    Science.gov (United States)

    Shao, Wanyun; Goidel, Kirby

    2016-11-01

    What role do objective weather conditions play in coastal residents' perceptions of local climate shifts and how do these perceptions affect attitudes toward climate change? While scholars have increasingly investigated the role of weather and climate conditions on climate-related attitudes and behaviors, they typically assume that residents accurately perceive shifts in local climate patterns. We directly test this assumption using the largest and most comprehensive survey of Gulf Coast residents conducted to date supplemented with monthly temperature data from the U.S. Historical Climatology Network and extreme weather events data from National Climatic Data Center. We find objective conditions have limited explanatory power in determining perceptions of local climate patterns. Only the 15- and 19-year hurricane trends and decadal summer temperature trend have some effects on perceptions of these weather conditions, while the decadal trend of total number of extreme weather events and 15- and 19-year winter temperature trends are correlated with belief in climate change. Partisan affiliation, in contrast, plays a powerful role affecting individual perceptions of changing patterns of air temperatures, flooding, droughts, and hurricanes, as well as belief in the existence of climate change and concern for future consequences. At least when it comes to changing local conditions, "seeing is not believing." Political orientations rather than local conditions drive perceptions of local weather conditions and these perceptions-rather than objectively measured weather conditions-influence climate-related attitudes.

  20. Extreme weather events and related disasters in the Philippines, 2004-08: a sign of what climate change will mean?

    Science.gov (United States)

    Yumul, Graciano P; Cruz, Nathaniel A; Servando, Nathaniel T; Dimalanta, Carla B

    2011-04-01

    Being an archipelagic nation, the Philippines is susceptible and vulnerable to the ill-effects of weather-related hazards. Extreme weather events, which include tropical cyclones, monsoon rains and dry spells, have triggered hazards (such as floods and landslides) that have turned into disasters. Financial resources that were meant for development and social services have had to be diverted in response, addressing the destruction caused by calamities that beset different regions of the country. Changing climatic patterns and weather-related occurrences over the past five years (2004-08) may serve as an indicator of what climate change will mean for the country. Early recognition of this possibility and the implementation of appropriate action and measures, through disaster risk management, are important if loss of life and property is to be minimised, if not totally eradicated. This is a matter of urgent concern given the geographical location and geological characteristics of the Philippines.

  1. Research Data Alliance's Interest Group on "Weather, Climate and Air Quality"

    Science.gov (United States)

    Bretonnière, Pierre-Antoine; Benincasa, Francesco

    2016-04-01

    Research Data Alliance's Interest Group on "Weather, Climate and Air Quality" More than ever in the history of Earth sciences, scientists are confronted with the problem of dealing with huge amounts of data that grow continuously at a rate that becomes a challenge to process and analyse them using conventional methods. Data come from many different and widely distributed sources, ranging from satellite platforms and in-situ sensors to model simulations, and with different degrees of openness. How can Earth scientists deal with this diversity and big volume and extract useful information to understand and predict the relevant processes? The Research Data Alliance (RDA, https://rd-alliance.org/), an organization that promotes and develops new data policies, data standards and focuses on the development of new technical solutions applicable in many distinct areas of sciences, recently entered in its third phase. In this framework, an Interest Group (IG) comprised of community experts that are committed to directly or indirectly enable and facilitate data sharing, exchange, or interoperability in the fields of weather, climate and air quality has been created recently. Its aim is to explore and discuss the challenges for the use and efficient analysis of large and diverse datasets of relevance for these fields taking advantage of the knowledge generated and exchanged in RDA. At the same time, this IG intends to be a meeting point between members of the aforementioned communities to share experiences and propose new solutions to overcome the forthcoming challenges. Based on the collaboration between several research meteorological and European climate institutes, but also taking into account the input from the private (from the renewable energies, satellites and agriculture sectors for example) and public sectors, this IG will suggest practical and applicable solutions for Big Data issues, both at technological and policy level, encountered by these communities. We

  2. Weather, not climate, defines distributions of vagile bird species.

    Directory of Open Access Journals (Sweden)

    April E Reside

    Full Text Available BACKGROUND: Accurate predictions of species distributions are essential for climate change impact assessments. However the standard practice of using long-term climate averages to train species distribution models might mute important temporal patterns of species distribution. The benefit of using temporally explicit weather and distribution data has not been assessed. We hypothesized that short-term weather associated with the time a species was recorded should be superior to long-term climate measures for predicting distributions of mobile species. METHODOLOGY: We tested our hypothesis by generating distribution models for 157 bird species found in Australian tropical savannas (ATS using modelling algorithm Maxent. The variable weather of the ATS supports a bird assemblage with variable movement patterns and a high incidence of nomadism. We developed "weather" models by relating climatic variables (mean temperature, rainfall, rainfall seasonality and temperature seasonality from the three month, six month and one year period preceding each bird record over a 58 year period (1950-2008. These weather models were compared against models built using long-term (30 year averages of the same climatic variables. CONCLUSIONS: Weather models consistently achieved higher model scores than climate models, particularly for wide-ranging, nomadic and desert species. Climate models predicted larger range areas for species, whereas weather models quantified fluctuations in habitat suitability across months, seasons and years. Models based on long-term climate averages over-estimate availability of suitable habitat and species' climatic tolerances, masking species potential vulnerability to climate change. Our results demonstrate that dynamic approaches to distribution modelling, such as incorporating organism-appropriate temporal scales, improves understanding of species distributions.

  3. Determining optimum climate drivers for weather risk projections

    Science.gov (United States)

    Chavez, Erik; Kilian, Markus; Lucarini, Valerio

    2016-04-01

    In spite of the exponential increase of available data, the uncertainties of projections of weather variability, especially at local scale, have not decreased. This poses important challenges for the design of weather risk management strategies in various vulnerable sectors such as energy or agricultural production. This paper focuses on a two step methodology to enable projection of local weather risk in future climate scenarios. First, we focus on the optimum selection of drivers of regional weather patterns in order to project local weather variability risk estimates in future climate scenarios. This is carried out through the use of stochastic downscaling enabling conditional modelling of pixel-level distributions of weather variables as a function of inter-annual and inter-decadal climate variability drivers. Secondly, a statistical and physically-based climate model selection methodology is developed in order to produce a sub-ensemble of inter-annual and decadal variability drivers dataset that allows accurate and robust projection of weather variability. The case study of South Eastern Africa will be used. Datasets retrieved from CMIP5 repository in three RCP scenarios (historical, 8.5 and 2.5) are used as well as observed historical weather data.

  4. Water-borne diseases and extreme weather events in Cambodia: review of impacts and implications of climate change.

    Science.gov (United States)

    Davies, Grace I; McIver, Lachlan; Kim, Yoonhee; Hashizume, Masahiro; Iddings, Steven; Chan, Vibol

    2014-12-23

    Cambodia is prone to extreme weather events, especially floods, droughts and typhoons. Climate change is predicted to increase the frequency and intensity of such events. The Cambodian population is highly vulnerable to the impacts of these events due to poverty; malnutrition; agricultural dependence; settlements in flood-prone areas, and public health, governance and technological limitations. Yet little is known about the health impacts of extreme weather events in Cambodia. Given the extremely low adaptive capacity of the population, this is a crucial knowledge gap. A literature review of the health impacts of floods, droughts and typhoons in Cambodia was conducted, with regional and global information reviewed where Cambodia-specific literature was lacking. Water-borne diseases are of particular concern in Cambodia, in the face of extreme weather events and climate change, due to, inter alia, a high pre-existing burden of diseases such as diarrhoeal illness and a lack of improved sanitation infrastructure in rural areas. A time-series analysis under quasi-Poisson distribution was used to evaluate the association between floods and diarrhoeal disease incidence in Cambodian children between 2001 and 2012 in 16 Cambodian provinces. Floods were significantly associated with increased diarrhoeal disease in two provinces, while the analysis conducted suggested a possible protective effect from toilets and piped water. Addressing the specific, local pre-existing vulnerabilities is vital to promoting population health resilience and strengthening adaptive capacity to extreme weather events and climate change in Cambodia.

  5. Water-Borne Diseases and Extreme Weather Events in Cambodia: Review of Impacts and Implications of Climate Change

    Directory of Open Access Journals (Sweden)

    Grace I. Davies

    2014-12-01

    Full Text Available Cambodia is prone to extreme weather events, especially floods, droughts and typhoons. Climate change is predicted to increase the frequency and intensity of such events. The Cambodian population is highly vulnerable to the impacts of these events due to poverty; malnutrition; agricultural dependence; settlements in flood-prone areas, and public health, governance and technological limitations. Yet little is known about the health impacts of extreme weather events in Cambodia. Given the extremely low adaptive capacity of the population, this is a crucial knowledge gap. A literature review of the health impacts of floods, droughts and typhoons in Cambodia was conducted, with regional and global information reviewed where Cambodia-specific literature was lacking. Water-borne diseases are of particular concern in Cambodia, in the face of extreme weather events and climate change, due to, inter alia, a high pre-existing burden of diseases such as diarrhoeal illness and a lack of improved sanitation infrastructure in rural areas. A time-series analysis under quasi-Poisson distribution was used to evaluate the association between floods and diarrhoeal disease incidence in Cambodian children between 2001 and 2012 in 16 Cambodian provinces. Floods were significantly associated with increased diarrhoeal disease in two provinces, while the analysis conducted suggested a possible protective effect from toilets and piped water. Addressing the specific, local pre-existing vulnerabilities is vital to promoting population health resilience and strengthening adaptive capacity to extreme weather events and climate change in Cambodia.

  6. Geochemical balance of lateritization processes and climatic signatures in weathering profiles overlain by ferricretes in Central Africa

    Science.gov (United States)

    Beauvais, Anicet

    1999-12-01

    A simple geochemical balance of lateritization processes governing the development of several tens of meters of weathering profiles overlain by ferricretes is estimated on the basis of detailed mineralogical and geochemical data. The lateritic weathering mantle of the "Haut-Mbomou" area in Central Africa is composed of different weathering layers described from the base to the top of vertical profiles as a saprolite, a mottled clay layer, a soft nodular layer, a soft ferricrete, and a ferricrete in which kaolinite, gibbsite, goethite, and hematite occur in various quantities. Incongruent dissolution of kaolinite leads to the formation of gibbsite in the upper saprolite, whereas the hematite does not clearly replace the kaolinite according to an epigene process in the upper ferruginous layers of the profiles. Instead, that kaolinite is also transformed into gibbsite according to an incongruent dissolution under hydrated and reducing conditions induced by a relatively humid climatic pattern. The respective relations of the silica, iron, and aluminum balances and the Al substitution rate of the hematite on the one hand, and of RHG [RHG = 100 (hematite/hematite + goethite)] and the kaolinite on the other hand, to the consumption or the release of protons H + permit differentiation of aggrading ferruginization and degradation processes operating in the different lateritic weathering profiles. The Al substitution rate of the Fe-oxyhydroxides varies according to the nature of lateritization processes, e.g., saprolitic weathering and aggrading ferruginization vs. degradation. The observations and results indicate that the ferruginization process of the weathering materials of parent rocks is not a simple ongoing process as often thought. This suggests that the actual lateritic weathering mantle of the Haut-Mbomou area may result from different stages of weathering and erosion during climatic changes.

  7. Applications of Conditional Nonlinear Optimal Perturbation in Predictability Study and Sensitivity Analysis of Weather and Climate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Considering the limitation of the linear theory of singular vector (SV), the authors and their collaborators proposed conditional nonlinear optimal perturbation (CNOP) and then applied it in the predictability study and the sensitivity analysis of weather and climate system. To celebrate the 20th anniversary of Chinese National Committee for World Climate Research Programme (WCRP), this paper is devoted to reviewing the main results of these studies. First, CNOP represents the initial perturbation that has largest nonlinear evolution at prediction time, which is different from linear singular vector (LSV) for the large magnitude of initial perturbation or/and the long optimization time interval. Second, CNOP,rather than linear singular vector (LSV), represents the initial anomaly that evolves into ENSO events most probably. It is also the CNOP that induces the most prominent seasonal variation of error growth for ENSO predictability; furthermore, CNOP was applied to investigate the decadal variability of ENSO asymmetry. It is demonstrated that the changing nonlinearity causes the change of ENSO asymmetry.Third, in the studies of the sensitivity and stability of ocean's thermohaline circulation (THC), the non-linear asymmetric response of THC to finite amplitude of initial perturbations was revealed by CNOP.Through this approach the passive mechanism of decadal variation of THC was demonstrated; Also the authors studies the instability and sensitivity analysis of grassland ecosystem by using CNOP and show the mechanism of the transitions between the grassland and desert states. Finally, a detailed discussion on the results obtained by CNOP suggests the applicability of CNOP in predictability studies and sensitivity analysis.

  8. The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps

    Science.gov (United States)

    Egli, Markus; Mirabella, Aldo; Sartori, Giacomo

    2008-12-01

    Interactions between climate and soil remain ambiguous, particularly when silicate weathering and clay mineral formation and transformation rates are considered in relation to global climate changes. Recent studies suggest that climate affects weathering rates much less than previously thought. Here we show that the climate in the central European Alps has a significant, but indirect, influence on the weathering of soils through vegetation. The pattern of element leaching and mineral transformations is not only due to precipitation and temperature. Element leaching was greatest in subalpine forests near the timberline; weathering is lessened at higher and lower altitudes. Vegetation, therefore, contributes significantly to weathering processes. The highest accumulation of organic matter was found in climatically cooler sites (subalpine range) where the production of organic ligands, which enhance weathering, is greatest. Patterns of smectite formation and distribution had strong similarities to that of the elemental losses of Fe and Al ( R = 0.69; P climate, element leaching (Fe, Al, Ca, Mg, K, Na), and smectite formation is strongly nonlinear and driven by the podzolisation process, which is more pronounced near the timberline because of the bioclimatic constellation. Climate warming will probably, in the future, lead to a decrease in SOM stocks in the subalpine to alpine range because of more favourable conditions for biodegradation that would also affect weathering processes.

  9. AgroClimate: Simulating and Monitoring the Risk of Extreme Weather Events from a Crop Phenology Perspective

    Science.gov (United States)

    Fraisse, C.; Pequeno, D.; Staub, C. G.; Perry, C.

    2016-12-01

    Climate variability, particularly the occurrence of extreme weather conditions such as dry spells and heat stress during sensitive crop developmental phases can substantially increase the prospect of reduced crop yields. Yield losses or crop failure risk due to stressful weather conditions vary mainly due to stress severity and exposure time and duration. The magnitude of stress effects is also crop specific, differing in terms of thresholds and adaptation to environmental conditions. To help producers in the Southeast USA mitigate and monitor the risk of crop losses due to extreme weather events we developed a web-based tool that evaluates the risk of extreme weather events during the season taking into account the crop development stages. Producers can enter their plans for the upcoming season in a given field (e.g. crop, variety, planting date, acreage etc.), select or not a specific El Nino Southern Oscillation (ENSO) phase, and will be presented with the probabilities (ranging from 0 -100%) of extreme weather events occurring during sensitive phases of the growing season for the selected conditions. The DSSAT models CERES-Maize, CROPGRO-Soybean, CROPGRO-Cotton, and N-Wheat phenology models have been translated from FORTRAN to a standalone versions in R language. These models have been tested in collaboration with Extension faculty and producers during the 2016 season and their usefulness for risk mitigation and monitoring evaluated. A companion AgroClimate app was also developed to help producers track and monitor phenology development during the cropping season.

  10. Global Climate Change and Local Severe Weather Phenomena: Is There a Possible Synthesis Among These Apparent Antitheses?

    Science.gov (United States)

    Stel, F.; Giaiotti, D. B.

    A significant percentage of atmospheric threats for people and property are associated to severe weather events, e.g., to phenomena that occur at small scales (say a few kilometres) and in short amounts of time (say from a few minutes up to a few hours). For this reason adaptation policies would achieve relevant benefits from a circumstantial estimate of how frequency and intensity of these severe weather events might change in the future due to the global climate change. Even if state-of-the-art climate models, both global and regional, can supply precise information on how much and how fast global temperature and rain pattern might change due to climate variations, the same numerical models can not take into account directly small scale events. Nevertheless, the challenge of global change impacts on severe weather is not a lost battle, or at least a battle that is not worth to be fight, this because there are a few possible and complementary approaches, both based on climate models, that can be taken into account. Unfortunately, even the previous mentioned approaches would be correct, state-of-the-art climate models might still be not ready for this task because of their troubles in reproducing correctly the large scale quantities (the ingredients) necessary to infer the needed information on the future frequency and intensity of local severe weather events. Climate models, however, already have a lot of room to be improved with parametrizations (the so called "physics" of the models) that might better reproduce a wide variety of atmospheric behaviours. A lot of work has to be done, but the road is not yet closed, and does not seem, so far, that there are insurmountable walls at the horizon.

  11. Climate indices over the last three decades in Tunisia using Weather Research and Forecasting Model:WRF

    Science.gov (United States)

    Deli, Meriem; Mkhinini, Nadia; Sadok Guellouz, Mohamed; Benjabrallah, Sadok

    2016-04-01

    Tunisia is a country situated in the south of the mediterannen basin. This region undergoes direct and indirect effects of climate change. Actually, we notice that summer temperatures have risen during the last decades. Nevertheless research on the tunisian climate are not well developed and are mainly based on observations; short and mid term forecast are not available for the tunisian case. In this context we have studied the climate properties of Tunisia over the last 30 years using Weather Research and Forecasting model WRF. Afterwards we compared our results to the observations that we have obteined on behalf of the National Institute of Meteorology. Results were then used to calculate different climate indices related to the air temperature such as extreme values during a specific period exceeding specific limits (Percentile), warm and cold spell duration and growing season length. We admit that we have created a reliable database for the Tunisian climate.

  12. Ethno-meteorology and scientific weather forecasting: Small farmers and scientists’ perspectives on climate variability in the Okavango Delta, Botswana

    Directory of Open Access Journals (Sweden)

    Oluwatoyin Dare Kolawole

    2014-01-01

    Full Text Available Recent trends in abrupt weather changes continue to pose a challenge to agricultural production most especially in sub-Saharan Africa. The paper specifically addresses the questions on how local farmers read and predict the weather; and how they can collaborate with weather scientists in devising adaptation strategies for climate variability (CV in the Okavango Delta of Botswana. Recent trends in agriculture-related weather variables available from country’s climate services, as well as in freely available satellite rainfall products were analysed. The utility of a seasonal hydrological forecasting system for the study area in the context of supporting farmer’s information needs were assessed. Through a multi-stage sampling procedure, a total of 592 households heads in 8 rural communities in the Okavango Delta were selected and interviewed using open and close-ended interview schedules. Also, 19 scientists were purposively selected and interviewed using questionnaires. Key informant interviews, focus group and knowledge validation workshops were used to generate qualitative information from both farmers and scientists. Descriptive and inferential statistics were used in summarising the data. Analysis of satellite rainfall products indicated that there was a consistent increase in total annual rainfall throughout the region in the last 10 years, accompanied by an increase in number of rain days, and reduction of duration of dry spells. However, there is a progressive increase in the region’s temperatures leading to increase in potential evaporation. Findings from social surveys show that farmers’ age, education level, number of years engaged in farming, sources of weather information, knowledge of weather forecasting and decision on farming practices either had a significant relationship or correlation with their perceptions about the nature of both local [ethno-meteorological] and scientific weather knowledge. Nonetheless, there was a

  13. Climate control: United States weather modification in the cold war and beyond.

    Science.gov (United States)

    Harper, Kristine C

    2008-03-01

    Rainmaking, hail busting, fog lifting, snowpack enhancing, lightning suppressing, hurricane snuffing...weather control. At the lunatic fringe of scientific discussion in the early twentieth century--and the subject of newspaper articles with tones ranging from skeptical titters to awestruck wonder--weather modification research became more serious after World War II. In the United States, the 'seeds' of silver iodide and dry ice purported to enhance rainfall and bust hailstorms soon became seeds of controversy from which sprouted attempts by federal, state and local government to control the controllers and exploit 'designer weather' for their own purposes.

  14. A support system for assessing local vulnerability to weather and climate

    Science.gov (United States)

    Coletti, Alex; Howe, Peter D.; Yarnal, Brent; Wood, Nathan J.

    2013-01-01

    The changing number and nature of weather- and climate-related natural hazards is causing more communities to need to assess their vulnerabilities. Vulnerability assessments, however, often require considerable expertise and resources that are not available or too expensive for many communities. To meet the need for an easy-to-use, cost-effective vulnerability assessment tool for communities, a prototype online vulnerability assessment support system was built and tested. This prototype tool guides users through a stakeholder-based vulnerability assessment that breaks the process into four easy-to-implement steps. Data sources are integrated in the online environment so that perceived risks—defined and prioritized qualitatively by users—can be compared and discussed against the impacts that past events have had on the community. The support system is limited in scope, and the locations of the case studies do not provide a sufficiently broad range of sample cases. The addition of more publically available hazard databases combined with future improvements in the support system architecture and software will expand opportunities for testing and fully implementing the support system.

  15. Climate change or variable weather: Rethinking Danish homeowners' perceptions of floods and climate

    DEFF Research Database (Denmark)

    Baron, Nina; Petersen, Lars Kjerulf

    2015-01-01

    prevent the residents in Lolland from experiencing many of the changes that are already occurring and, at the same time, give them a feeling of being able to control the water to the extent that it is prevented from flooding their homes, both now and in the future. The combination of these two theoretical...

  16. Progress in the study of nonlinear atmospheric dynamics and predictability of weather and climate in China (2007-2011)

    Science.gov (United States)

    Zhou, Feifan; Ding, Ruiqiang; Feng, Guolin; Fu, Zuntao; Duan, Wansuo

    2012-09-01

    Recent progress in the study of nonlinear atmospheric dynamics and related predictability of weather and climate in China (2007-2011) are briefly introduced in this article. Major achievements in the study of nonlinear atmospheric dynamics have been classified into two types: (1) progress based on the analysis of solutions of simplified control equations, such as the dynamics of NAO, the optimal precursors for blocking onset, and the behavior of nonlinear waves, and (2) progress based on data analyses, such as the nonlinear analyses of fluctuations and recording-breaking temperature events, the long-range correlation of extreme events, and new methods of detecting abrupt dynamical change. Major achievements in the study of predictability include the following: (1) the application of nonlinear local Lyapunov exponents (NLLE) to weather and climate predictability; (2) the application of condition nonlinear optimal perturbation (CNOP) to the studies of El Niño-Southern Oscillation (ENSO) predictions, ensemble forecasting, targeted observation, and sensitivity analysis of the ecosystem; and (3) new strategies proposed for predictability studies. The results of these studies have provided greater understanding of the dynamics and nonlinear mechanisms of atmospheric motion, and they represent new ideas for developing numerical models and improving the forecast skill of weather and climate events.

  17. Progress in the Study of Nonlinear Atmospheric Dynamics and Predictability of Weather and Climate in China (2007-2011)

    Institute of Scientific and Technical Information of China (English)

    ZHOU Feifan; DING Ruiqiang; FENG Guolin; FU Zuntao; DUAN Wansuo

    2012-01-01

    Recent progress in the study of nonlinear atmospheric dynamics and related predictability of weather and climate in China (2007-2011) are briefly introduced in this article.Major achievements in the study of nonlinear atmospheric dynamics have been classified into two types:(1) progress based on the analysis of solutions of simplified control equations,such as the dynamics of NAO,the optimal precursors for blocking onset,and the behavior of nonlinear waves,and (2) progress based on data analyses,such as the nonlinear analyses of fluctuations and recording-breaking temperature events,the long-range correlation of extreme events,and new methods of detecting abrupt dynamical change.Major achievements in the study of predictability include the following:(1) the application of nonlinear local Lyapunov exponents (NLLE) to weather and climate predictability; (2) the application of condition nonlinear optimal perturbation (CNOP) to the studies of El Ni(n)o-Southern Oscillation (ENSO) predictions,ensemble forecasting,targeted observation,and sensitivity analysis of the ecosystem; and (3) new strategies proposed for predictability studies.The results of these studies have provided greater understanding of the dynamics and nonlinear mechanisms of atmospheric motion,and they represent new ideas for developing numerical models and improving the forecast skill of weather and climate events.

  18. Origins of forecast skill of weather and climate events on verifiable time scales

    CSIR Research Space (South Africa)

    Landman, WA

    2012-07-01

    Full Text Available Verification of weather and seasonal forecasts, as well as the statistical analysis of the spatial and temporal description of forecast and observed fields, are necessary to improve on our understanding of the capabilities of models to describe...

  19. Application of global weather and climate model output to the design and operation of wind-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Judith [Climate Forecast Applications Network, Atlanta, GA (United States)

    2015-05-21

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatory environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.

  20. Calibration of DMSP SSM/I and SSM/IS for Weather and Climate Applications

    Science.gov (United States)

    Weng, F.

    2006-05-01

    Since the launch of the first DMSP F8 satellite in 1987, the microwave data from all SSM/I have been utilized to improve weather forecasts. For climate studies, it is important to ensure calibration consistency and traceability across all satellite instruments. NOAA/NESDIS is developing an integrated system for satellite inter-calibrations including DMSP sensors. In this system, the coincident observations from different sensors are generated to characterize differences between sensors and improve radiometric calibration. This system is currently used for processing real-time data and extended to past data for NOAA satellites. For DMSP SSM//I instruments, the method referred as the Simultaneous Nadir Overpass (SNO) (Cao et al., 2005) is modified to take into account the SSM/I conical viewing geometry. The measurements from the SSM/I simultaneous conical overpass (SCO) are matched from two satellites that have overlapping time. Since SSM/I is an imager more sensitive to surface properties, the matched data from SCO will require more quality controls in discriminating the inhomogeneity effects from surface snow and sea ice prior to uses in the inter-calibration. Our preliminary analysis has indicated that SCO derived data can be used to remove the biases among all SSM/I instruments and calibrate all SSM/I instruments to the same reference level. This activity will lead to fundamental climate data records (FCDR) from SSM/I radiances On board DMSP F-16 satellite, the Special Sensor Microwave Imager/Sounder (SSMIS) measures the Earth's microwave radiation at frequencies ranging from 19 to 183 GHz. This instrument is designed to improve atmospheric sounding capability by uses of both imaging and sounding channels in the conical scanning mode. However, there remain several outstanding issues related to the SSMIS calibration. First, an extra energy arises from the emission and/or scattering through its main reflector and results in anomalous scene temperatures. It is

  1. Teaching weather and climate science in primary schools - a pilot project from the UK Met Office

    Science.gov (United States)

    Orrell, Richard; Liggins, Felicity; Challenger, Lesley; Lethem, Dom; Campbell, Katy

    2017-04-01

    Wow Schools is a pilot project from the Met Office with an aim to inspire and educate the next generation of scientists and, uniquely, use the data collected by schools to improve weather forecasts and warnings across the UK. Wow Schools was launched in late 2015 with a competition open to primary schools across the UK. 74 schools entered the draw, all hoping to be picked as one of the ten lucky schools taking part in the pilot scheme. Each winning school received a fully automatic weather station (AWS), enabling them to transmit real-time local weather observations to the Met Office's Weather Observation Website (WOW - wow.metoffice.gov.uk), an award winning web portal for uploading and sharing a range of environmental observations. They were also given a package of materials designed to get students out of the classroom to observe the weather, get hands-on with the science underpinning weather forecasting, and analyse the data they are collecting. The curriculum-relevant materials were designed with the age group 7 to 11 in mind, but could be extended to support other age groups. Each school was offered a visit by a Wow Schools Ambassador (a Met Office employee) to bring the students' learning to life, and access to a dedicated forecast for its location generated by our new supercomputer. These forecasts are improved by the school's onsite AWS reinforcing the link between observations and forecast production. The Wow Schools pilot ran throughout 2016. Here, we present the initial findings of the project, examining the potential benefits and challenges of working with schools across the UK to: enrich students' understanding of the science of weather forecasting; to source an ongoing supply of weather observations and discover how these might be used in the forecasting process; and explore what materials and business model(s) would be most useful and affordable if a wider roll-out of the initiative was undertaken.

  2. Weather and emotional state

    Science.gov (United States)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  3. Weather, water quality and infectious gastrointestinal illness in two Inuit communities in Nunatsiavut, Canada: potential implications for climate change.

    Science.gov (United States)

    Harper, Sherilee L; Edge, Victoria L; Schuster-Wallace, Corinne J; Berke, Olaf; McEwen, Scott A

    2011-03-01

    Climate change is expected to cause changes in precipitation quantity, intensity, frequency and duration, which will subsequently alter environmental conditions and might increase the risk of waterborne disease. The objective of this study was to describe the seasonality of and explore associations between weather, water quality and occurrence of infectious gastrointestinal illnesses (IGI) in two communities in Nunatsiavut, Canada. Weather data were obtained from meteorological stations in Nain (2005-2008) and Rigolet (2008). Free-chlorine residual levels in drinking water were extracted from municipal records (2005-2008). Raw surface water was tested weekly for total coliform and E. coli counts. Daily counts of IGI-related clinic visits were obtained from health clinic registries (2005-2008). Analysis of weather and health variables included seasonal-trend decomposition procedures based on Loess. Multivariable zero-inflated Poisson regression was used to examine potential associations between weather events (considering 0-4 week lag periods) and IGI-related clinic visits. In Nain, water volume input (rainfall + snowmelt) peaked in spring and summer and was positively associated with levels of raw water bacteriological variables. The number of IGI-related clinic visits peaked in the summer and fall months. Significant positive associations were observed between high levels of water volume input 2 and 4 weeks prior, and IGI-related clinic visits (P climate change on regional Inuit human and environmental health.

  4. COST Action ES1206: Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate (GNSS4SWEC)

    Science.gov (United States)

    Jones, Jonathan; Guerova, Guergana; Dousa, Jan; Dick, Galina; de Haan, Siebren; Pottiaux, Eric; Bock, Olivier; Pacione, Rosa

    2016-04-01

    GNSS is a well established atmospheric observing system which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60-70% of atmospheric warming. Water vapour observations are currently under-sampled in operational meteorology and obtaining and exploiting additional high-quality humidity observations is essential to improve severe weather forecasting and climate monitoring. Inconsistencies introduced into long-term time series from improved GNSS processing algorithms make climate trend analysis challenging. Ongoing re-processing efforts using state-of-the-art models are underway which will provide consistent time series' of tropospheric data, using 15+ years of GNSS observations and from over 600 stations worldwide. These datasets will enable validation of systematic biases from a range of instrumentation, improve the knowledge of climatic trends of atmospheric water vapour, and will potentially be of great benefit to global and regional NWP reanalyses and climate model simulations (e.g. IPCC AR5)

  5. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States.

    Science.gov (United States)

    Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D

    2001-05-01

    Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation.

  6. Strategies for Effective Implementation of Science Models into 6-9 Grade Classrooms on Climate, Weather, and Energy Topics

    Science.gov (United States)

    Yarker, M. B.; Stanier, C. O.; Forbes, C.; Park, S.

    2011-12-01

    As atmospheric scientists, we depend on Numerical Weather Prediction (NWP) models. We use them to predict weather patterns, to understand external forcing on the atmosphere, and as evidence to make claims about atmospheric phenomenon. Therefore, it is important that we adequately prepare atmospheric science students to use computer models. However, the public should also be aware of what models are in order to understand scientific claims about atmospheric issues, such as climate change. Although familiar with weather forecasts on television and the Internet, the general public does not understand the process of using computer models to generate a weather and climate forecasts. As a result, the public often misunderstands claims scientists make about their daily weather as well as the state of climate change. Since computer models are the best method we have to forecast the future of our climate, scientific models and modeling should be a topic covered in K-12 classrooms as part of a comprehensive science curriculum. According to the National Science Education Standards, teachers are encouraged to science models into the classroom as a way to aid in the understanding of the nature of science. However, there is very little description of what constitutes a science model, so the term is often associated with scale models. Therefore, teachers often use drawings or scale representations of physical entities, such as DNA, the solar system, or bacteria. In other words, models used in classrooms are often used as visual representations, but the purpose of science models is often overlooked. The implementation of a model-based curriculum in the science classroom can be an effective way to prepare students to think critically, problem solve, and make informed decisions as a contributing member of society. However, there are few resources available to help teachers implement science models into the science curriculum effectively. Therefore, this research project looks at

  7. Short-Term Relationship between Hip Fracture and Weather Conditions in Two Spanish Health Areas with Different Climates

    Directory of Open Access Journals (Sweden)

    José María Tenías

    2015-01-01

    Full Text Available Objective. To evaluate differences in the short-term relationship between weather conditions and the incidence of hip fracture in people aged 65 and over among two regions of Spain. Methods. Hip fracture incidence was calculated for the years 2000–2008 for residents of Health Area 14 in Valencian Community (Mediterranean climate and the “Mancha Centro” Health Area in Castilla-La Mancha (inland climate, Spain. The relationship between hip fracture incidence and weather was analyzed with a case-crossover design and explored in subgroups defined by sex, age, and fracture type. Results. In the inland area, a positive and significant tendency for hip fracture incidence was observed (annual increase: 1.5% whereas in the Mediterranean area a seasonal increase of 9% was noted in autumn and winter with respect to spring. Weather conditions, especially wind, were significantly associated with hip fracture incidence: days with more frequent windy periods and/or a greater wind velocity were associated with an increase in hip fracture incidence of 51% in the Mediterranean area and 44% in the inland area. Conclusions. Hip fracture incidence exhibits seasonal changes that differ between the Mediterranean and inland areas. The short-term relationship with climate, although similar in both areas, may partly explain these seasonal changes.

  8. Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change

    Science.gov (United States)

    Mistry, Malcolm N.; Wing, Ian Sue; De Cian, Enrica

    2017-07-01

    Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and implications of this divergence—both among GGCMs and between GGCMs and historical observations. We examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981-2004 hindcast yields over the coterminous United States (US) against US Department of Agriculture (USDA) time series for about 1000 counties. Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to 60% of the variance in both simulated and observed yields is attributable to weather variation. A majority of the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show yields to be more weather-sensitive than in the observational record over the predominant range of temperature and precipitation conditions. This disparity is largely attributable to heterogeneity in GGCMs’ responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts of climate on future crop yields.

  9. The interaction between atmospheric and oceanic fronts - the junction between weather and climate

    Science.gov (United States)

    Parfitt, Rhys; Czaja, Arnaud; Minobe, Shoshiro; Kuwano-Yoshida, Akira

    2016-04-01

    To first order in the middle latitudes, observations have traditionally suggested that it is the atmosphere that forces the ocean, with the ocean responding passively. Recently however, modelling studies performed at high resolution have shown that the impact of oceanic fronts can in fact extend throughout the entire depth of the troposphere. I will be presenting recent work across the Gulf Stream region that suggests the key physical process to understanding the impact of the extra-tropical ocean on the large-scale atmospheric circulation is the interaction of the atmospheric fronts (i.e. the synoptic weather system) with the underlying sea-surface temperature distribution (primarily set by the large-scale ocean circulation). Crucially, I will discuss how this process may have been previously underestimated due to models running at insufficient resolution. As such, I argue that the impact of the ocean on mid-latitude climate will likely increase as we move towards higher resolution general circulation models.

  10. Silicate Mineral Weathering Reponses to Increasing Atmospheric CO2, Plants and Climate Evolution

    Science.gov (United States)

    Banwart, S. A.; Taylor, L.; Leake, J.; Beerling, D.

    2009-04-01

    Mathematical modelling results of weathering processes in modern soils shed light on the role of land plants in weathering processes. Application to catchments in the boreal coniferous region of northern Europe demonstrates a stabilising biological feedback mechanism between hypothesised increasing atmospheric CO2 levels and silicate mineral weathering rates. The modelled feedback response agrees within a factor of 2 to that calculated by a weathering feedback function of the type generally used in global geochemical carbon cycle models of the Earth's Phanerozoic atmospheric CO2 history. Sensitivity analysis to model parameters indicate that the weathering feedback response is particularly sensitive to soil structure; its porosity, depth and water content. This suggests that the role of land plants to influence these soil characteristics are an important factor in the feedback to atmospheric CO2 levels. The model yields a relatively low sensitivity of soil pH to plant productivity. This is due to more rapid decomposition of dissolved organic carbon (DOC) under warmer conditions. Because DOC fluxes strongly influence the soil water proton balance and pH, this increased decomposition rate dampens the feedback between productivity and weathering. The conceptual model of linkages between biological, geochemical and hydrological processes is based on the influence of land plants and their associated soil microbial populations to influence the dynamics of nutrient elements in soil pore waters and the resulting impact of soil pore water composition on silicate mineral weathering rates. The translation to the mathematical description of these processes is through application of mass and flux balance from first principles. Sources and sinks for elements are based on stoichiometric mass balance equations that described coupled element transformations during biomass production and decomposition, microbial decomposition of dissolved organic carbon and element mass transfer

  11. East African weathering dynamics controlled by vegetation-climate feedbacks

    Science.gov (United States)

    Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Boehlke, Adam; Lézine, Anne-Marie; Vincens, Annie; Cohen, Andrew S.

    2017-01-01

    Tropical weathering has important linkages to global biogeochemistry and landscape evolution in the East African rift. We disentangle the influences of climate and terrestrial vegetation on chemical weathering intensity and erosion at Lake Malawi using a long sediment record. Fossil pollen, microcharcoal, particle size, and mineralogy data affirm that the detrital clays accumulating in deep water within the lake are controlled by feedbacks between climate and hinterland forest composition. Particle-size patterns are also best explained by vegetation, through feedbacks with lake levels, wildfires, and erosion. We develop a new source-to-sink framework that links lacustrine sedimentation to hinterland vegetation in tropical rifts. Our analysis suggests that climate-vegetation interactions and their coupling to weathering/erosion could threaten future food security and has implications for accurately predicting petroleum play elements in continental rift basins.

  12. Crop Production Risk in the Pampas: A Bayesian Weather Generator for Climate Change and Land Use Impact Studies

    Science.gov (United States)

    Verdin, A.; Rajagopalan, B.; Kleiber, W.; Podesta, G. P.; Bert, F.

    2015-12-01

    We present a space-time stochastic weather generator for daily precipitation and temperature, developed within a Bayesian hierarchical framework (hereafter BayGEN). This framework offers a unique advantage: it provides robust estimation of uncertainty that is typically under-represented in traditional weather generators. Realistic estimates of uncertainty are of utmost importance for studying climate variability and change, impacts on land use, and crop production. BayGEN is applied to a network of weather stations in the Salado basin of the Argentine Pampas, a region that saw immense agricultural expansion towards climatically marginal (i.e., semi-arid) regions, in part due to significant trends in annual precipitation from 1970-2000. Since the turn of the century, observed conditions suggest a decrease in precipitation, which begs the question: "Are the existing agricultural production systems viable in a drier future?" The use of process based (i.e., hydrologic, crop simulation) models in conjunction with BayGEN will allow for complete analysis of the system's response to an ensemble of plausible future scenarios. Precipitation occurrence at each site is modeled at the first level of hierarchy using probit regression with covariates for seasonality, where the latent process is Gaussian -- positivity in the latent process implies occurrence. The precipitation amounts are modeled using a transformed gamma regression (i.e., gamma generalized linear model), similarly with seasonality covariates. Minimum and maximum temperatures are conditional on precipitation occurrence and are decomposed into two processes: (i) climate -- linear regressions on seasonality covariates, and (ii) weather -- realizations from mean-zero Gaussian random fields. The use of seasonality covariates allows the generation of daily weather sequences conditioned on seasonal forecasts or projected multi-annual trends, an increasingly important practice for risk assessment in climatically marginal

  13. Estimation of the mean depth of boreal lakes for use in numerical weather prediction and climate modelling

    Directory of Open Access Journals (Sweden)

    Margarita Choulga

    2014-03-01

    Full Text Available Lakes influence the structure of the atmospheric boundary layer and, consequently, the local weather and local climate. Their influence should be taken into account in the numerical weather prediction (NWP and climate models through parameterisation. For parameterisation, data on lake characteristics external to the model are also needed. The most important parameter is the lake depth. Global database of lake depth GLDB (Global Lake Database is developed to parameterise lakes in NWP and climate modelling. The main purpose of the study is to upgrade GLDB by use of indirect estimates of the mean depth for lakes in boreal zone, depending on their geological origin. For this, Tectonic Plates Map, geological, geomorphologic maps and the map of Quaternary deposits were used. Data from maps were processed by an innovative algorithm, resulting in 141 geological regions where lakes were considered to be of kindred origin. To obtain a typical mean lake depth for each of the selected regions, statistics from GLDB were gained and analysed. The main result of the study is a new version of GLDB with estimations of the typical mean lake depth included. Potential users of the product are NWP and climate models.

  14. Modeling land-surface processes and land-atmosphere interactions in the community weather and regional climate WRF model (Invited)

    Science.gov (United States)

    Chen, F.; Barlage, M. J.

    2013-12-01

    The Weather Research and Forecasting (WRF) model has been widely used with high-resolution configuration in the weather and regional climate communities, and hence demands its land-surface models to treat not only fast-response processes, such as plant evapotranspiration that are important for numerical weather prediction but also slow-evolving processes such as snow hydrology and interactions between surface soil water and deep aquifer. Correctly representing urbanization, which has been traditionally ignored in coarse-resolution modeling, is critical for applying WRF to air quality and public health research. To meet these demands, numerous efforts have been undertaken to improve land-surface models (LSM) in WRF, including the recent implementation of the Noah-MP (Noah Multiple-Physics). Noah-MP uses multiple options for key sub-grid land-atmosphere interaction processes (Niu et al., 2011; Yang et al., 2011), and contains a separate vegetation canopy representing within- and under-canopy radiation and turbulent processes, a multilayer physically-based snow model, and a photosynthesis canopy resistance parameterization with a dynamic vegetation model. This paper will focus on the interactions between fast and slow land processes through: 1) a benchmarking of the Noah-MP performance, in comparison to five widely-used land-surface models, in simulating and diagnosing snow evolution for complex terrain forested regions, and 2) the effects of interactions between shallow and deep aquifers on regional weather and climate. Moreover, we will provide an overview of recent improvements of the integrated WRF-Urban modeling system, especially its hydrological enhancements that takes into account the effects of lawn irrigation, urban oasis, evaporation from pavements, anthropogenic moisture sources, and a green-roof parameterization.

  15. Climate control on soil age and weathering thresholds in young, post-glacial soils of New Zealand

    Science.gov (United States)

    Dixon, J. L.; Chadwick, O.; Vitousek, P.

    2014-12-01

    Climate is often invoked as a major driver of soil and landscape evolution. But a coherent story has failed to emerge for how climate controls soil properties and weathering rates - partially due to competing influences of mineral residence times and supply rates in eroding landscapes. Here, we combine insights and methods across the related fields of geomorphology, soil science and geochemistry, to explore weathering thresholds in non-eroding, young soils along a strong precipitation gradient (400-4000 mm/yr) in the South Island of New Zealand. We studied ~30 soil profiles developed in thin (~1m) loess deposits that mantle LGM and post LGM moraines and outwash in the Waitaki catchment, extending from Lake Benmore to just below the Tasman glacier in the north. We find repeated thresholds (sharp, non-linear transitions) in soil chemistry, including exchangeable cations, pH and total elemental abundances. Abundance of pedogenic iron and aluminum increase with precipitation, stabilizing at ~2000 mm/yr. Plant-available phosphorous and exchangeable Ca and Mg are rapidly depleted as precipitation exceeds 1000 mm/yr. However total elemental abundances show up to 50% of major cations are retained at wetter sites, likely in less labile minerals. Preliminary numerical modeling of cation weathering kinetics provides some support for this interpretation. Together our data identify nonlinear changes in weathering intensity with rainfall, and show clear climate control on relatively young, post-glacial soil development. Additionally, we measured profiles and inventories of meteoric 10Be to quantify soil residence times across the climate gradient. This nuclide is cosmogenically produced in the atmosphere and binds strongly to reactive surfaces in soil following fallout. Exchangeable beryllium does not decrease with rainfall, despite decreasing pH along the climate gradient. Therefore we are confident that nuclide concentrations do not reflect leaching. Instead, these

  16. Climate Central World Weather Attribution (WWA) project: Real-time extreme weather event attribution analysis

    Science.gov (United States)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2015-04-01

    Extreme weather detection and attribution analysis has emerged as a core theme in climate science over the last decade or so. By using a combination of observational data and climate models it is possible to identify the role of climate change in certain types of extreme weather events such as sea level rise and its contribution to storm surges, extreme heat events and droughts or heavy rainfall and flood events. These analyses are usually carried out after an extreme event has occurred when reanalysis and observational data become available. The Climate Central WWA project will exploit the increasing forecast skill of seasonal forecast prediction systems such as the UK MetOffice GloSea5 (Global seasonal forecasting system) ensemble forecasting method. This way, the current weather can be fed into climate models to simulate large ensembles of possible weather scenarios before an event has fully emerged yet. This effort runs along parallel and intersecting tracks of science and communications that involve research, message development and testing, staged socialization of attribution science with key audiences, and dissemination. The method we employ uses a very large ensemble of simulations of regional climate models to run two different analyses: one to represent the current climate as it was observed, and one to represent the same events in the world that might have been without human-induced climate change. For the weather "as observed" experiment, the atmospheric model uses observed sea surface temperature (SST) data from GloSea5 (currently) and present-day atmospheric gas concentrations to simulate weather events that are possible given the observed climate conditions. The weather in the "world that might have been" experiments is obtained by removing the anthropogenic forcing from the observed SSTs, thereby simulating a counterfactual world without human activity. The anthropogenic forcing is obtained by comparing the CMIP5 historical and natural simulations

  17. Holistic view to integrated climate change assessment and extreme weather adaptation in the Lake Victoria Basin East Africa

    Science.gov (United States)

    Mutua, F.; Koike, T.

    2013-12-01

    Extreme weather events have been the leading cause of disasters and damage all over the world.The primary ingredient to these disasters especially floods is rainfall which over the years, despite advances in modeling, computing power and use of new data and technologies, has proven to be difficult to predict. Also, recent climate projections showed a pattern consistent with increase in the intensity and frequency of extreme events in the East African region.We propose a holistic integrated approach to climate change assessment and extreme event adaptation through coupling of analysis techniques, tools and data. The Lake Victoria Basin (LVB) in East Africa supports over three million livelihoods and is a valuable resource to five East African countries as a source of water and means of transport. However, with a Mesoscale weather regime driven by land and lake dynamics,extreme Mesoscale events have been prevalent and the region has been on the receiving end during anomalously wet years in the region. This has resulted in loss of lives, displacements, and food insecurity. In the LVB, the effects of climate change are increasingly being recognized as a significant contributor to poverty, by its linkage to agriculture, food security and water resources. Of particular importance are the likely impacts of climate change in frequency and intensity of extreme events. To tackle this aspect, this study adopted an integrated regional, mesoscale and basin scale approach to climate change assessment. We investigated the projected changes in mean climate over East Africa, diagnosed the signals of climate change in the atmosphere, and transferred this understanding to mesoscale and basin scale. Changes in rainfall were analyzed and similar to the IPCC AR4 report; the selected three General Circulation Models (GCMs) project a wetter East Africa with intermittent dry periods in June-August. Extreme events in the region are projected to increase; with the number of wet days

  18. Climate Change, Weather Shocks and Violent Conflict: A Critical Look at the Evicence

    NARCIS (Netherlands)

    Klomp, J.G.; Bulte, E.H.

    2013-01-01

    We use cross-country data to explore whether temperature and rainfall shocks trigger violent conflict, or not. We include a wide range of country and time samples, and explore whether the impact of weather shocks is conditional on income or political regimes. Our overall conclusion is sobering.

  19. Stochastic Parameterization: Towards a new view of Weather and Climate Models

    NARCIS (Netherlands)

    Crommelin, D.T.; et al, not CWI

    2015-01-01

    The last decade has seen the success of stochastic parameterizations in short-term, medium-range and seasonal ensembles: operational weather centers now routinely use stochastic parameterization schemes to better represent model inadequacy and improve the quantification of forecast uncertainty. Dev

  20. Influence of weather and climate variables on the basal area growth of individual shortleaf pine trees

    Science.gov (United States)

    Pradip Saud; Thomas B. Lynch; Duncan S. Wilson; John Stewart; James M. Guldin; Bob Heinemann; Randy Holeman; Dennis Wilson; Keith Anderson

    2015-01-01

    An individual-tree basal area growth model previously developed for even-aged naturally occurring shortleaf pine trees (Pinus echinata Mill.) in western Arkansas and southeastern Oklahoma did not include weather variables. Individual-tree growth and yield modeling of shortleaf pine has been carried out using the remeasurements of over 200 plots...

  1. Extratropical Cyclogenesis and Frontal Waves on Mars: Influences on Dust, Weather and the Planet's climate

    Science.gov (United States)

    Hollingsworth, J. L.; Kahre, Melinda A.

    2012-01-01

    Between late autumn and early spring, middle and high latitudes on Mars exhibit strong equatortopole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic periodwaves) [1,2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wavelike disturbances act as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars extratropical weather systems have significant subsynoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).

  2. Classification and plausibility assessment of historical and future weather and climate anomalies (application for the Wupper River Basin, Germany)

    Science.gov (United States)

    Scheibel, Marc; Lorza, Paula

    2017-04-01

    In the frame of the Horizon 2020 project BINGO (Bringing INnovation to onGOing water management), the effects of climate change scenarios on the water cycle in the Wupper River Basin are being currently investigated. The Wupper catchment area is prone to flash floods in summer, winter floods as well as dry periods. The occurrence of these events has increased in the last decades together with the shifting of the rainy season. BINGO approach focuses on, among others: a) identifying past weather extremes and anomalies due to climate change; and b) gaining deeper knowledge on the effects of soil moisture on water balance and runoff generation processes for reservoir management and enhancement of Wupper Association's flood early warning system. Historical hydro-meteorological extreme events are assessed based on daily records of long-term precipitation time series (ca. 80 years) as well as precipitation time series from downscaled reanalysis products (i.e., ERA-Interim). The determination of representative indices, e.g., Weather Extremity Index (WEI) or the Standardized Precipitation Index (SPI) serves to compensate for uncertainties in spatial and temporal recording of the parameters of individual processes. The WEI establishes the highest rainfall amount per station and its rarity, the extent of the affected area, and the event duration. For the evaluation of historical climate signals in the reference period and for the assessment of future scenarios, deviation of the mean monthly observed precipitation from the long-term mean value is determined as a first approach for several stations along the catchment area for individual months and different time scales. As a second approach, different indices such as SPI and SPEI (Standardized Precipitation Evapotranspiration Index) are calculated for different time scales in order to determine whether they were anomalously dry or wet. SPEI is more suitable for climate change analysis than SPI since the former considers not

  3. Geography teachers’ pedagogical content knowledge and internal didactic transposition of the topic weather formation and climate change

    DEFF Research Database (Denmark)

    Clausen, Søren Witzel

    2015-01-01

    This paper represents a part of a PhD project and will put emphasis on eight lower secondary Geography teachers, and how their Pedagogical Content Knowledge might influence their internal didactical transposition of the topic of weather formation and climate change. There are conducted semi......-structured interview with the teachers. An analysis of the results implicates that there is a connection between the teachers’ topic specific Pedagogical Content Knowledge, especially their subject matter knowledge, their educational profile, and how the internal didactic transposition is carried out....

  4. The representation of low-level clouds during the West African monsoon in weather and climate models

    Science.gov (United States)

    Kniffka, Anke; Hannak, Lisa; Knippertz, Peter; Fink, Andreas

    2016-04-01

    The West African monsoon is one of the most important large-scale circulation features in the tropics and the associated seasonal rainfalls are crucial to rain-fed agriculture and water resources for hundreds of millions of people. However, numerical weather and climate models still struggle to realistically represent salient features of the monsoon across a wide range of scales. Recently it has been shown that substantial errors in radiation and clouds exist in the southern parts of West Africa (8°W-8°E, 5-10°N) during summer. This area is characterised by strong low-level jets associated with the formation of extensive ultra-low stratus clouds. Often persisting long after sunrise, these clouds have a substantial impact on the radiation budget at the surface and thus the diurnal evolution of the planetary boundary layer (PBL). Here we present some first results from a detailed analysis of the representation of these clouds and the associated PBL features across a range of weather and climate models. Recent climate model simulations for the period 1991-2010 run in the framework of the Year of Tropical Convection (YOTC) offer a great opportunity for this analysis. The models are those used for the latest Assessment Report of the Intergovernmental Panel on Climate Change, but for YOTC the model output has a much better temporal resolution, allowing to resolve the diurnal cycle, and includes diabatic terms, allowing to much better assess physical reasons for errors in low-level temperature, moisture and thus cloudiness. These more statistical climate model analyses are complemented by experiments using ICON (Icosahedral non-hydrostatic general circulation model), the new numerical weather prediction model of the German Weather Service and the Max Planck Institute for Meteorology. ICON allows testing sensitivities to model resolution and numerical schemes. These model simulations are validated against (re-)analysis data, satellite observations (e.g. CM SAF cloud and

  5. COST Action ES1206: Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate (GNSS4SWEC)

    Science.gov (United States)

    Jones, Jonathan; Guerova, Guergana; Dousa, Jan; Dick, Galina; de Haan, Siebren; Pottiaux, Eric; Bock, Olivier; Pacione, Rosa

    2017-04-01

    GNSS is a well established atmospheric observing technique which can accurately sense atmospheric water vapour, the most abundant greenhouse gas, accounting for up to 70% of atmospheric warming. Water vapour is typically under-sampled in modern operational meteorological observing systems and obtaining and exploiting additional high-quality humidity observations is essential to improve weather forecasting and climate monitoring. COST Action ES1206 is a 4-year project, running from 2013 to 2017, which is coordinating the research activities and improved capabilities from concurrent developments in the GNSS, meteorological and climate communities. For the first time, the synergy of multi-GNSS constellations is used to develop new, more advanced tropospheric products, exploiting the full potential of multi-GNSS on a wide range of temporal and spatial scales - from real-time products monitoring and forecasting severe weather, to the highest quality post-processed products suitable for climate research. The Action also promotes the use of meteorological data as an input to real-time GNSS services and is stimulating the transfer of knowledge and data throughout Europe and beyond.

  6. Atmospheric profiling via satellite to satellite occultations near water and ozone absorption lines for weather and climate

    Science.gov (United States)

    Kursinski, E. R.; Ward, D.; Otarola, A. C.; McGhee, J.; Stovern, M.; Sammler, K.; Reed, H.; Erickson, D.; McCormick, C.; Griggs, E.

    2016-05-01

    Significantly reducing weather and climate prediction uncertainty requires global observations with substantially higher information content than present observations provide. While GPS occultations have provided a major advance, GPS observations of the atmosphere are limited by wavelengths chosen specifically to minimize interaction with the atmosphere. Significantly more information can be obtained via satellite to satellite occultations made at wavelengths chosen specifically to characterize the atmosphere. Here we describe such a system that will probe cm- and mmwavelength water vapor absorption lines called the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS). Profiling both the speed and absorption of light enables ATOMMS to profile temperature, pressure and humidity simultaneously, which GPS occultations cannot do, as well as profile clouds and turbulence. We summarize the ATOMMS concept and its theoretical performance. We describe field measurements made with a prototype ATOMMS instrument and several important capabilities demonstrated with those ground based measurements including retrieving temporal variations in path-averaged water vapor to 1%, in clear, cloudy and rainy conditions, up to optical depths of 17, remotely sensing turbulence and determining rain rates. We conclude with a vision of a future ATOMMS low Earth orbiting satellite constellation designed to take advantage of synergies between observational needs for weather and climate, ATOMMS unprecedented orbital remote sensing capabilities and recent cubesat technological innovations that enable a constellation of dozens of very small spacecraft to achieve many critical, but as yet unfulfilled, monitoring and forecasting needs.

  7. Local Climate Experts: The Influence of Local TV Weather Information on Climate Change Perceptions

    Science.gov (United States)

    Bloodhart, Brittany; Maibach, Edward; Myers, Teresa; Zhao, Xiaoquan

    2015-01-01

    Individuals who identify changes in their local climate are also more likely to report that they have personally experienced global climate change. One way that people may come to recognize that their local climate is changing is through information provided by local TV weather forecasters. Using random digit dialing, 2,000 adult local TV news viewers in Virginia were surveyed to determine whether routine exposure to local TV weather forecasts influences their perceptions of extreme weather in Virginia, and their perceptions about climate change more generally. Results indicate that paying attention to TV weather forecasts is associated with beliefs that extreme weather is becoming more frequent in Virginia, which in turn is associated with stronger beliefs and concerns about climate change. These associations were strongest for individuals who trust their local TV weathercaster as a source of information about climate change, and for those who identify as politically conservative or moderate. The findings add support to the literature suggesting that TV weathercasters can play an important role in educating the public about climate change. PMID:26551357

  8. ClimoBase: Rouse Canadian Surface Observations of Weather, Climate, and Hydrological Variables, 1984-1998

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ClimoBase is a collection of surface climate measurements collected in Northern Canada by Dr. Wayne Rouse between 1984 and 1998 in three locations: Churchill,...

  9. Towards a unified Global Weather-Climate Prediction System

    Science.gov (United States)

    Lin, S. J.

    2016-12-01

    The Geophysical Fluid Dynamics Laboratory has been developing a unified regional-global modeling system with variable resolution capabilities that can be used for severe weather predictions and kilometer scale regional climate simulations within a unified global modeling system. The foundation of this flexible modeling system is the nonhydrostatic Finite-Volume Dynamical Core on the Cubed-Sphere (FV3). A unique aspect of FV3 is that it is "vertically Lagrangian" (Lin 2004), essentially reducing the equation sets to two dimensions, and is the single most important reason why FV3 outperforms other non-hydrostatic cores. Owning to its accuracy, adaptability, and computational efficiency, the FV3 has been selected as the "engine" for NOAA's Next Generation Global Prediction System (NGGPS). We have built into the modeling system a stretched grid, a two-way regional-global nested grid, and an optimal combination of the stretched and two-way nests capability, making kilometer-scale regional simulations within a global modeling system feasible. Our main scientific goal is to enable simulations of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously regarded as impossible. In this presentation I will demonstrate that, with the FV3, it is computationally feasible to simulate not only super-cell thunderstorms, but also the subsequent genesis of tornado-like vortices using a global model that was originally designed for climate simulations. The development and tuning strategy between traditional weather and climate models are fundamentally different due to different metrics. We were able to adapt and use traditional "climate" metrics or standards, such as angular momentum conservation, energy conservation, and flux balance at top of the atmosphere, and gain insight into problems of traditional weather prediction model for medium-range weather prediction, and vice versa. Therefore, the

  10. Divergence in Forest-Type Response to Climate and Weather: Evidence for Regional Links Between Forest-Type Evenness and Net Primary Productivity

    Science.gov (United States)

    Bradford, J.B.

    2011-01-01

    Climate change is altering long-term climatic conditions and increasing the magnitude of weather fluctuations. Assessing the consequences of these changes for terrestrial ecosystems requires understanding how different vegetation types respond to climate and weather. This study examined 20 years of regional-scale remotely sensed net primary productivity (NPP) in forests of the northern Lake States to identify how the relationship between NPP and climate or weather differ among forest types, and if NPP patterns are influenced by landscape-scale evenness of forest-type abundance. These results underscore the positive relationship between temperature and NPP. Importantly, these results indicate significant differences among broadly defined forest types in response to both climate and weather. Essentially all weather variables that were strongly related to annual NPP displayed significant differences among forest types, suggesting complementarity in response to environmental fluctuations. In addition, this study found that forest-type evenness (within 8 ?? 8 km2 areas) is positively related to long-term NPP mean and negatively related to NPP variability, suggesting that NPP in pixels with greater forest-type evenness is both higher and more stable through time. This is landscape- to subcontinental-scale evidence of a relationship between primary productivity and one measure of biological diversity. These results imply that anthropogenic or natural processes that influence the proportional abundance of forest types within landscapes may influence long-term productivity patterns. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  11. NCAR activities related to translating climate and weather information into infectious-disease and other public-health early warnings

    Science.gov (United States)

    Warner, T.; Monaghan, A.; Hopson, T.

    2010-09-01

    The atmosphere can influence the spread of human and agricultural infectious diseases through a number of different mechanisms, including the effect of the atmosphere on the health of the pathogen itself, the health and number of disease vectors, human behavior, wind transport, and flooding. Through knowledge of the statistical or physical relationships between disease incidence, for example outbreaks, and weather or climate conditions, it is possible to translate predictions of the atmosphere into predictions of disease spread or incidence. Medium range forecasts of weeks can allow redistribution of vaccines and medical personnel to locations that will be in greatest need. Inter-seasonal forecasts, e.g. based on the ENSO cycle, can provide long-lead-time information for disease early-warning systems, which can guide the manufacture of vaccines and inform aid agencies about future requirements. And knowledge of longer-term trends in climate conditions, associated, for example, with increases in green-house gases, can be used for development of infectious-disease mitigation and prevention policies. Because of the existence of complex physical, biological, and societal aspects to the links between atmospheric conditions and disease, prediction systems must be constructed based on knowledge of multiple disciplines. To be described in the presentation are activities at the National Center for Atmospheric Research that involve the coupling of atmospheric models with infectious-disease models and decision-support systems. These include 1) the use of operational multi-week weather forecasts to estimate the spatial and temporal variability of the threat of bacterial meningitis in West Africa, 2) climate and spatial risk modeling of human plague in Uganda, 3) a study of how climate variability and human landscape modification interact to influence key aspects of both mosquito vector ecology and human behavior, and how they influence the increased incidence of dengue fever

  12. Putting Weather back into the Definition of Climate

    Science.gov (United States)

    Smith, L. A.; Stainforth, D. A.

    2012-04-01

    For most of the previous century, it was generally clear that "climate" is far more than the "average weather", or even the average weather dressed up with a few supplementary statistics quantifying its variability. Yet towards the end of that century H H Lamb noted that there had been instances where "Climate was sometimes wrongly defined in the past as just 'average weather'." The importance of a clear, agreed definition of climate is stressed, and the slide away from defining climate as the distribution of weather, however measured, is documented. A rather obvious alternative definition from the theory of nonlinear dynamical systems is noted and criticized. Not only is it the weather that defines climate: it is changes in weather that change climate by altering vegetation and land surface, ice and snow and cloudiness, etc. A clear definition of climate can ease discussions between scientists and statisticians, and avoid needless confusion in discussions beyond (and within) science. An ideal definition would be physically relevant, mathematically coherent and observationally tractable, even if it is impossible to optimize all three properties simultaneously. Further, the definition of climate should allow general utility in decision support and policy making, and ease multi-disciplinary engagement, by avoiding assumptions that presuppose (for example) its application in practice. Defining climate change in relation to changes in averages does, of course, reduce the relevance of climate change to policy makers, as the changes in averages need not reflect impacts on individuals. Definitions of climate analogous to the (invariant) natural measure of a dynamical system (and distributions of trajectories of initial conditions drawn from this distribution) are proposed and criticized; then contrasted with a definition proposed by Lamb himself. Challenges that terrestrial climate change pose to the vocabulary of the modern theory of nonlinear dynamical systems are noted

  13. Solar-Terrestrial Relations: An Undergraduate-Level Introduction to the Sun, Space Weather, and the Sun-Climate Connection

    Science.gov (United States)

    Liemohn, M. W.; Zurbuchen, T.

    2011-12-01

    The University of Michigan offers a 300-level course entitled, "Solar-Terrestrial Relations," taken by all of the undergraduate students in the Atmospheric, Oceanic, and Space Sciences department. This is the first class in the space physics courses leading to a concentration in Space Weather. The course provides an overview of the Sun and solar radiation, both photon and particle, and its variability on all time scales. The effects of this variability on the near-Earth space environment and the Earth's climate are then discussed. The class content is a mixture of conceptual, theoretical, and analytical techniques. The students spend one session a week in a computer lab visiting data websites, downloading and processing the numbers, and interpreting the results. In addition to homework sets and exams, the students also do two projects, both including written and oral reports. The first is a space weather event analysis in which each student is assigned a storm day and they must determine the solar source and whether there was aurora over Ann Arbor during the event. The second project is a group effort on some aspect of the Sun-climate relationship, in which they are given a hypothesis and must conduct a literature search and data analysis exercise to support or refute it.

  14. Does the weather influence public opinion about climate change?

    Science.gov (United States)

    Donner, S. D.; McDaniel, J.

    2010-12-01

    Public opinion in North America about the science of anthropogenic climate change and the motivation for policy action has been variable over the past twenty years. The trends in public opinion over time have been attributed the general lack of pressing public concern about climate change to a range of political, economic and psychological factors. One driving force behind the variability in polling data from year to year may be the weather itself. The difference between what we “expect” - the climate - and what we “get” - the weather - can be a major source of confusion and obfuscation in the public discourse about climate change. For example, reaction to moderate global temperatures in 2007 and 2008 may have helped prompt the spread of a “global cooling” meme in the public and the news media. At the same time, a decrease in the belief in the science of climate change and the need for action has been noted in opinion polls. This study analyzes the relationship between public opinion about climate change and the weather in the U.S. since the mid-1980s using historical polling data from several major organizations (e.g. Gallup, Pew, Harris Interactive, ABC News), historical monthly air temperature (NCDC) and a survey of opinion articles from major U.S. newspapers (Washington Post, New York Times, Wall Street Journal, Houston Chronicle, USA Today). Seasonal and annual monthly temperature anomalies for the northeastern U.S and the continental U.S are compared with available national opinion data for three general categories of questions: i) Is the climate warming?, ii) Is the observed warming due to human activity?, and iii) Are you concerned about climate change? The variability in temperature and public opinion over time is also compared with the variability in the fraction of opinion articles in the newspapers (n ~ 7000) which express general agreement or disagreement with IPCC Summary for Policymakers consensus statements on climate change (“most of

  15. Integrating weather and climate predictions for seamless hydrologic ensemble forecasting: A case study in the Yalong River basin

    Science.gov (United States)

    Ye, Aizhong; Deng, Xiaoxue; Ma, Feng; Duan, Qingyun; Zhou, Zheng; Du, Chao

    2017-04-01

    Despite the tremendous improvement made in numerical weather and climate models over the recent years, the forecasts generated by those models still cannot be used directly for hydrological forecasting. A post-processor like the Ensemble Pre-Processor (EPP) developed by U.S. National Weather Service must be used to remove various biases and to extract useful predictive information from those forecasts. In this paper, we investigate how different designs of canonical events in the EPP can help post-process precipitation forecasts from the Global Ensemble Forecast System (GEFS) and Climate Forecast System Version 2 (CFSv2). The use of canonical events allow those products to be linked seamlessly and then the post-processed ensemble precipitation forecasts can be generated using the Schaake Shuffle procedure. We used the post-processed ensemble precipitation forecasts to drive a distributed hydrological model to obtain ensemble streamflow forecasts and evaluated those forecasts against the observed streamflow. We found that the careful design of canonical events can help extract more useful information, especially when up-to-date observed precipitation is used to setup the canonical events. We also found that streamflow forecasts using post-processed precipitation forecasts have longer lead times and higher accuracy than streamflow forecasts made by traditional Extend Streamflow Prediction (ESP) and the forecasts based on original GEFS and CFSv2 precipitation forecasts.

  16. Climate variability, weather and enteric disease incidence in New Zealand: time series analysis.

    Directory of Open Access Journals (Sweden)

    Aparna Lal

    Full Text Available BACKGROUND: Evaluating the influence of climate variability on enteric disease incidence may improve our ability to predict how climate change may affect these diseases. OBJECTIVES: To examine the associations between regional climate variability and enteric disease incidence in New Zealand. METHODS: Associations between monthly climate and enteric diseases (campylobacteriosis, salmonellosis, cryptosporidiosis, giardiasis were investigated using Seasonal Auto Regressive Integrated Moving Average (SARIMA models. RESULTS: No climatic factors were significantly associated with campylobacteriosis and giardiasis, with similar predictive power for univariate and multivariate models. Cryptosporidiosis was positively associated with average temperature of the previous month (β =  0.130, SE =  0.060, p <0.01 and inversely related to the Southern Oscillation Index (SOI two months previously (β =  -0.008, SE =  0.004, p <0.05. By contrast, salmonellosis was positively associated with temperature (β  = 0.110, SE = 0.020, p<0.001 of the current month and SOI of the current (β  = 0.005, SE = 0.002, p<0.050 and previous month (β  = 0.005, SE = 0.002, p<0.05. Forecasting accuracy of the multivariate models for cryptosporidiosis and salmonellosis were significantly higher. CONCLUSIONS: Although spatial heterogeneity in the observed patterns could not be assessed, these results suggest that temporally lagged relationships between climate variables and national communicable disease incidence data can contribute to disease prediction models and early warning systems.

  17. Characteristics that Help Households Weather Climate Variability, Now and in the Future

    Science.gov (United States)

    Phillips, J. G.; Seth, A.

    2002-05-01

    A number of characteristics of rural livelihood management are directly related to improving resilience against the impacts of seasonal variability in climate, such as diversification of crops or income strategies. However, traditional strategies that confer resilience to the household may be difficult to sustain in the modern era. Additionally, the frequency and distribution of extreme rainfall events or seasons may change as the composition of the atmosphere is altered. In order to reverse a potential negative trend in the ability of developing country households to handle climate shocks, we suggest that three key components of the system will need to be strengthened. The first is baseline resilience, which we suggest is primarily a function of a) diversification of income opportunities, and b) storage capacity for consumption smoothing (water reservoirs, soil moisture holding capacity, mechanisms for saving wealth from season to season such as granaries, animals, or bank accounts). The second is access to, and ability to effectively utilize, new information. The third is a supportive economic and policy environment such as access to crop insurance, functional markets, credit. By improving climate information systems and building skills to comprehend and utilize climate information in decision-making, adjustments at the seasonal time scale will add to the ability to withstand climate shocks and take advantage of opportunities. The combination of baseline resilience and ability to respond to new information will contribute substantially to rural households' ability to adapt to changing climate conditions in the next century. Experiences from East and Southern Africa will be used to illustrate these points.

  18. A new parameterization of regolith formation and the response time of weathering front propagation to climate and tectonic forcing

    Science.gov (United States)

    Braun, Jean

    2017-04-01

    density is dynamically determined by the onset of surface flow, i.e. where the water table intersects the topographic surface. In this way, the length scale of water table connectivity, L, which controls the value of all of the system response times (erosional, weathering and hydraulic) is determined in a self-consistent manner which allows us to predict more accurately the range of responses of the system to tectonic and climatic changes at a variety of forcing periods.

  19. Tomorrow's Forecast: Oceans and Weather.

    Science.gov (United States)

    Smigielski, Alan

    1995-01-01

    This issue of "Art to Zoo" focuses on weather and climate and is tied to the traveling exhibition Ocean Planet from the Smithsonian's National Museum of Natural History. The lessons encourage students to think about the profound influence the oceans have on planetary climate and life on earth. Sections of the lesson plan include: (1) "Ocean…

  20. WWBT? What Would Ben Think about Killer Apps, Cutting Edges, and Tipping Points in the History of Weather and Climate?

    Science.gov (United States)

    Fleming, J. R.

    2006-12-01

    This paper examines the history of weather and climate since 1706 along three intertwined analytical axes: technology (killer apps), science (cutting edges), and social issues (tipping points). For example, Franklin's best-known killer app, the lightning rod, gains added significance when seen in light of his cutting edge contributions to the science of electricity, his lifelong promotion of useful knowledge, and the societal tipping point his work triggered in our relationship to the sky. Subsequently, other major tipping points and conceptual shifts followed the introduction of telegraphy, radio, television, digital computers, and rocketry into meteorology. Following an analysis of the career and contributions of Benjamin Franklin (1706-1790), the paper examines later historical moments and watersheds, not merely in retrospect, but from the perspective of leading participants at the time. It focuses on technologies of significant promise, especially those involving electro- magnetism, up to and including the dawn of the twenty-first century, and asks playfully, "What would Ben think?"

  1. Space-time clustering analysis of wildfires: The influence of dataset characteristics, fire prevention policy decisions, weather and climate.

    Science.gov (United States)

    Parente, Joana; Pereira, Mário G; Tonini, Marj

    2016-07-15

    The present study focuses on the dependence of the space-time permutation scan statistics (STPSS) (1) on the input database's characteristics and (2) on the use of this methodology to assess changes on the fire regime due to different type of climate and fire management activities. Based on the very strong relationship between weather and the fire incidence in Portugal, the detected clusters will be interpreted in terms of the atmospheric conditions. Apart from being the country most affected by the fires in the European context, Portugal meets all the conditions required to carry out this study, namely: (i) two long and comprehensive official datasets, i.e. the Portuguese Rural Fire Database (PRFD) and the National Mapping Burnt Areas (NMBA), respectively based on ground and satellite measurements; (ii) the two types of climate (Csb in the north and Csa in the south) that characterizes the Mediterranean basin regions most affected by the fires also divide the mainland Portuguese area; and, (iii) the national plan for the defence of forest against fires was approved a decade ago and it is now reasonable to assess its impacts. Results confirmed (1) the influence of the dataset's characteristics on the detected clusters, (2) the existence of two different fire regimes in the country promoted by the different types of climate, (3) the positive impacts of the fire prevention policy decisions and (4) the ability of the STPSS to correctly identify clusters, regarding their number, location, and space-time size in spite of eventual space and/or time splits of the datasets. Finally, the role of the weather on days when clustered fires were active was confirmed for the classes of small, medium and large fires. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Weather, hydroregime, and breeding effort influence juvenile recruitment of anurans: implications for climate change

    Science.gov (United States)

    C. H. Greenberg; S. J. Zarnoch; J. D. Austin

    2017-01-01

    Amphibians that primarily breed in ephemeral wetlands are especially vulnerable to climate change because they rely on rainfall or temperature to initiate breeding and create suitable hydroregimes (water duration, timing, frequency, depth) for reproductive success. Hydroregime effects on reproductive success are likely to differ among species because of differences in...

  3. Intra- and interseasonal autoregressive prediction of dengue outbreaks using local weather and regional climate for a tropical environment in Colombia.

    Science.gov (United States)

    Eastin, Matthew D; Delmelle, Eric; Casas, Irene; Wexler, Joshua; Self, Cameron

    2014-09-01

    Dengue fever transmission results from complex interactions between the virus, human hosts, and mosquito vectors-all of which are influenced by environmental factors. Predictive models of dengue incidence rate, based on local weather and regional climate parameters, could benefit disease mitigation efforts. Time series of epidemiological and meteorological data for the urban environment of Cali, Colombia are analyzed from January of 2000 to December of 2011. Significant dengue outbreaks generally occur during warm-dry periods with extreme daily temperatures confined between 18°C and 32°C--the optimal range for mosquito survival and viral transmission. Two environment-based, multivariate, autoregressive forecast models are developed that allow dengue outbreaks to be anticipated from 2 weeks to 6 months in advance. These models have the potential to enhance existing dengue early warning systems, ultimately supporting public health decisions on the timing and scale of vector control efforts.

  4. The importance of weather data in crop growth simulation models and assessment of climatic change effects

    NARCIS (Netherlands)

    Nonhebel, S.

    1993-01-01

    Yields of agricultural crops are largely determined by the weather conditions during the growing season. Weather data are therefore important input variables for crop growth simulation models. In practice, these data are accepted at their face value. This is not realistic. Like all measured

  5. Effectiveness of Weather Derivatives as a Cross-Hedging Instrument against Climate Change: The Cases of Reservoir Water Allocation Management in Guanajuato, Mexico and Lambayeque, Peru

    OpenAIRE

    Juarez-Torres, Miriam; Sanchez-Aragon, Leonardo

    2012-01-01

    Ongoing climate change will increase competition for water. Diversified demand for water—in contrast with the rigid design of water systems, institutions and infrastructure—could hinder the implementation of adaptation policies in water management for Latin American countries. In this context, weather derivatives are proposed as a complementary mechanism for the successful adoption of more efficient water allocations in irrigation districts. Weather derivatives spread risks and incorporate a ...

  6. Sensitivity of the weather research and forecasting model to parameterization schemes for regional climate of Nile River Basin

    Science.gov (United States)

    Tariku, Tebikachew Betru; Gan, Thian Yew

    2017-08-01

    Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional

  7. Climate Change, Extreme Weather Events, and Fungal Disease Emergence and Spread

    Science.gov (United States)

    Tucker, Compton J.; Yager, Karina; Anyamba, Assaf; Linthicum, Kenneth J.

    2011-01-01

    Empirical evidence from multiple sources show the Earth has been warming since the late 19th century. More recently, evidence for this warming trend is strongly supported by satellite data since the late 1970s from the cryosphere, atmosphere, oceans, and land that confirms increasing temperature trends and their consequences (e.g., reduced Arctic sea ice, rising sea level, ice sheet mass loss, etc.). At the same time, satellite observations of the Sun show remarkably stable solar cycles since the late 1970s, when direct observations of the Sun's total solar irradiance began. Numerical simulation models, driven in part by assimilated satellite data, suggest that future-warming trends will lead to not only a warmer planet, but also a wetter and drier climate depending upon location in a fashion consistent with large-scale atmospheric processes. Continued global warming poses new opportunities for the emergence and spread of fungal disease, as climate systems change at regional and global scales, and as animal and plant species move into new niches. Our contribution to this proceedings is organized thus: First, we review empirical evidence for a warming Earth. Second, we show the Sun is not responsible for the observed warming. Third, we review numerical simulation modeling results that project these trends into the future, describing the projected abiotic environment of our planet in the next 40 to 50 years. Fourth, we illustrate how Rift Valley fever outbreaks have been linked to climate, enabling a better understanding of the dynamics of these diseases, and how this has led to the development of an operational predictive outbreak model for this disease in Africa. Fifth, We project how this experience may be applicable to predicting outbreaks of fungal pathogens in a warming world. Lastly, we describe an example of changing species ranges due to climate change, resulting from recent warming in the Andes and associated glacier melt that has enabled amphibians to

  8. Severe weather during the North American monsoon and its response to rapid urbanization and a changing global climate within the context of high resolution regional atmospheric modeling

    Science.gov (United States)

    Luong, Thang Manh

    The North American monsoon (NAM) is the principal driver of summer severe weather in the Southwest U.S. With sufficient atmospheric instability and moisture, monsoon convection initiates during daytime in the mountains and later may organize, principally into mesoscale convective systems (MCSs). Most monsoon-related severe weather occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. The overarching theme of this dissertation research is to investigate simulation of monsoon severe weather due to organized convection within the use of regional atmospheric modeling. A commonly used cumulus parameterization scheme has been modified to better account for dynamic pressure effects, resulting in an improved representation of a simulated MCS during the North American monsoon experiment and the climatology of warm season precipitation in a long-term regional climate model simulation. The effect of urbanization on organized convection occurring in Phoenix is evaluated in model sensitivity experiments using an urban canopy model (UCM) and urban land cover compared to pre-settlement natural desert land cover. The presence of vegetation and irrigation makes Phoenix a "heat sink" in comparison to its surrounding desert, and as a result the modeled precipitation in response to urbanization decreases within the Phoenix urban area and increase on its periphery. Finally, analysis of how monsoon severe weather is changing in association with observed global climate change is considered within the context of a series of retrospectively simulated severe weather events during the period 1948-2010 in a numerical weather prediction paradigm. The individual severe weather events are identified by favorable thermodynamic conditions of instability and atmospheric moisture (precipitable water). Changes in precipitation extremes are evaluated with extreme value statistics. During the last several decades, there has been

  9. Integrating interannual climate variability forecasts into weather-indexed crop insurance. The case of Malawi, Kenya and Tanzania

    Science.gov (United States)

    Vicarelli, M.; Giannini, A.; Osgood, D.

    2009-12-01

    In this study we explore the potential for re-insurance schemes built on regional climatic forecasts. We focus on micro-insurance contracts indexed on precipitation in 9 villages in Kenya, Tanzania (Eastern Africa) and Malawi (Southern Africa), and analyze the precipitation patterns and payouts resulting from El Niño Southern Oscillation (ENSO). The inability to manage future climate risk represents a “poverty trap” for several African regions. Weather shocks can potentially destabilize not only household, but also entire countries. Governments in drought-prone countries, donors and relief agencies are becoming aware of the importance to develop an ex-ante risk management framework for weather risk. Joint efforts to develop innovative mechanisms to spread and pool risk such as microinsurance and microcredit are currently being designed in several developing countries. While ENSO is an important component in modulating the rainfall regime in tropical Africa, the micro-insurance experiments currently under development to address drought risk among smallholder farmers in this region do not take into account ENSO monitoring or forecasting yet. ENSO forecasts could be integrated in the contracts and reinsurance schemes could be designed at the continental scale taking advantage of the different impact of ENSO on different regions. ENSO is associated to a bipolar precipitation pattern in Southern and Eastern Africa. La Niña years (i.e. Cold ENSO Episodes) are characterized by dry climate in Eastern Africa and wet climate in Southern Africa. During El Niño (or Warm Episode) the precipitation dipole is inverted, and Eastern Africa experiences increased probability for above normal rainfall (Halpert and Ropelewski, 1992, Journal of Climate). Our study represents the first exercise in trying to include ENSO forecasts in micro weather index insurance contract design. We analyzed the contracts payouts with respect to climate variability. In particular (i) we simulated

  10. Environmental Satellites: Strategy Needed to Sustain Critical Climate and Space Weather Measurements

    Science.gov (United States)

    2010-04-01

    together. For example, climate measurements have allowed scientists to better understand the effect of deforestation on how the earth absorbs heat, retains...Geostationary Operational Environmental Satellites: Progress Has Been Made, but Improvements Are Needed to Effectively Manage Risks, GAO-08-18 (Washington...color; and atmospheric observations such as greenhouse gas levels (e.g., carbon dioxide), aerosol and dust particles, and moisture concentration. When

  11. Sealed Attics Exposed to Two Years of Weathering in a Hot and Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Railkar, Sudhir [GAF; Shiao, Ming C [ORNL; Desjarlais, Andre Omer [ORNL

    2016-01-01

    Field studies in a hot, humid climate were conducted to investigate the thermal and hygrothermal performance of ventilated attics and non-ventilated semi-conditioned attics sealed with open-cell and with closed-cell spray polyurethane foam insulation. Moisture pin measurements made in the sheathing and absolute humidity sensor data from inside the foam and from the attic air show that moisture is being stored in the foam. The moisture in the foam diffuses to and from the sheathing dependent on the pressure gradient at the foam-sheathing interface which is driven by the irradiance and night-sky radiation. Ventilated attics in the same hot, humid climate showed less moisture movement in the sheathing than those sealed with either open- or closed-cell spray foam. In the ventilated attics the relative humidity drops as the attic air warms; however, the opposite was observed in the sealed attics. Peaks in measured relative humidity in excess of 80 90% and occasionally near saturation (i.e., 100%) were observed from solar noon till about 8 PM on hot, humid days. The conditioned space of the test facility is heated and cooled by an air-to-air heat pump. Therefore the partial pressure of the indoor air during peak irradiance is almost always less than that observed in the sealed attics. Field data will be presented to bring to light the critical humidity control issues in sealed attics exposed to hot, humid climates.

  12. Climate, Weather and Daily Mobility : Transport Mode Choices and Travel Experiences in the Randstad Holland

    NARCIS (Netherlands)

    Böcker, L.

    2014-01-01

    Intuitively, weather plays an important role in everyday mobility. How often do we not expose ourselves to cold, heat, sun, rain, snow or wind when we are travelling on foot or by bicycle; waiting at a bus stop; walking towards a parked car; or driving under slippery road conditions. Recently, weath

  13. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings

    Science.gov (United States)

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities’ preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities’ capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change. PMID:27649547

  14. Using Content-Aligned Assessments to Identify Weaknesses in Students' Understanding of Fundamental Weather and Climate Ideas

    Science.gov (United States)

    Wertheim, J.; Willard, S.

    2011-12-01

    There is growing interest in ensuring that citizens understand weather and climate sufficiently to make informed decisions, and these topics are gaining increased attention in K-12 education. The National Research Council recently released A Framework for K-12 Science Education with the expectation that U.S. 12th graders must have a sophisticated knowledge of climate change, including the role of deep time, variability, and computer modeling in the prediction of climate impacts on the planet and human activity. This requirement demands that students extend their understanding of climate change to the past and future, but it is important to recognize that many students know little about prerequisite ideas, such as daily and annual weather and climate processes, and this problem must be addressed prior to introducing the complexities of the climate system. In order to diagnose weaknesses in students' foundational understanding of the complex climate system, we primarily assessed a middle school (MS)-level understanding of the core elements of the system, in addition to a high school (HS)-level understanding of seasons. We described grade appropriate, coherent, functioning conceptual models for each targeted idea, and decomposed them into explicit learning goals. We then applied Project 2061's rigorous item development procedure to produce 235 high-quality, misconception-based multiple choice test items. These items were tested with a national sample of approximately 20,000 students, grades 6-12, in two phases (Spring 2010 & 2011). Here we report results from the second phase, including items targeting knowledge about convection, daily and annual air temperature patterns, factors that influence air temperature, and seasons. Overall, HS students outperformed MS students on these items by an average of only 3% (MS:31% correct; HS:34% correct). These data show a few strong misconceptions (e.g., 47% of students think that the North Pole is always angled toward the Sun

  15. Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models: COST Action ES0905 Final Report

    Directory of Open Access Journals (Sweden)

    Jun–Ichi Yano

    2014-12-01

    Full Text Available The research network “Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models” was organized with European funding (COST Action ES0905 for the period of 2010–2014. Its extensive brainstorming suggests how the subgrid-scale parameterization problem in atmospheric modeling, especially for convection, can be examined and developed from the point of view of a robust theoretical basis. Our main cautions are current emphasis on massive observational data analyses and process studies. The closure and the entrainment–detrainment problems are identified as the two highest priorities for convection parameterization under the mass–flux formulation. The need for a drastic change of the current European research culture as concerns policies and funding in order not to further deplete the visions of the European researchers focusing on those basic issues is emphasized.

  16. DOE Workshop; Pan-Gass Conference on the Representation of Atmospheric Processes in Weather and Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, PI Hugh

    2012-09-21

    This is the first meeting of the whole new GEWEX (Global Energy and Water Cycle Experiment) Atmospheric System Study (GASS) project that has been formed from the merger of the GEWEX Cloud System Study (GCSS) Project and the GEWEX Atmospheric Boundary Layer Studies (GABLS). As such, this meeting will play a major role in energizing GEWEX work in the area of atmospheric parameterizations of clouds, convection, stable boundary layers, and aerosol-cloud interactions for the numerical models used for weather and climate projections at both global and regional scales. The representation of these processes in models is crucial to GEWEX goals of improved prediction of the energy and water cycles at both weather and climate timescales. This proposal seeks funds to be used to cover incidental and travel expenses for U.S.-based graduate students and early career scientists (i.e., within 5 years of receiving their highest degree). We anticipate using DOE funding to support 5-10 people. We will advertise the availability of these funds by providing a box to check for interested participants on the online workshop registration form. We will also send a note to our participants' mailing lists reminding them that the funds are available and asking senior scientists to encourage their more junior colleagues to participate. All meeting participants are encouraged to submit abstracts for oral or poster presentations. The science organizing committee (see below) will base funding decisions on the relevance and quality of these abstracts, with preference given to under-represented populations (especially women and minorities) and to early career scientists being actively mentored at the meeting (e.g. students or postdocs attending the meeting with their advisor).

  17. Enabling Philippine Farmers to Adapt to Climate Variability Using Seasonal Climate and Weather Forecast with a Crop Simulation Model in an SMS-based Farmer Decision Support System

    Science.gov (United States)

    Ebardaloza, J. B. R.; Trogo, R.; Sabido, D. J.; Tongson, E.; Bagtasa, G.; Balderama, O. F.

    2015-12-01

    Corn farms in the Philippines are rainfed farms, hence, it is of utmost importance to choose the start of planting date so that the critical growth stages that are in need of water will fall on dates when there is rain. Most farmers in the Philippines use superstitions and traditions as basis for farming decisions such as when to start planting [1]. Before climate change, superstitions like planting after a feast day of a saint has worked for them but with the recent progression of climate change, farmers now recognize that there is a need for technological intervention [1]. The application discussed in this paper presents a solution that makes use of meteorological station sensors, localized seasonal climate forecast, localized weather forecast and a crop simulation model to provide recommendations to farmers based on the crop cultivar, soil type and fertilizer type used by farmers. It is critical that the recommendations given to farmers are not generic as each farmer would have different needs based on their cultivar, soil, fertilizer, planting schedule and even location [2]. This application allows the farmer to inquire about whether it will rain in the next seven days, the best date to start planting based on the potential yield upon harvest, when to apply fertilizer and by how much, when to water and by how much. Short messaging service (SMS) is the medium chosen for this application because while mobile penetration in the Philippines is as high as 101%, the smart phone penetration is only at 15% [3]. SMS has been selected as it has been identified as the most effective way of reaching farmers with timely agricultural information and knowledge [4,5]. The recommendations while derived from making use of Automated Weather Station (AWS) sensor data, Weather Research Forecasting (WRF) models and DSSAT 4.5 [9], are translated into the local language of the farmers and in a format that is easily understood as recommended in [6,7,8]. A pilot study has been started

  18. Analysis of weather patterns for attribution of changes in floods to anthropogenic climate change

    Science.gov (United States)

    Murawski, Aline; Vorogushyn, Sergiy; Merz, Bruno

    2015-04-01

    Detection of changes in the frequency and/or magnitude of floods has been extensively carried out for many river basins worldwide. However, little effort has been made so far to attribute these changes to certain drivers such as climate change, changes in land use, catchment properties, or river training. The knowledge of reasons behind observed changes is essential in order to better quantify related risks and to be able to adapt to changing flood risks or to take action to reduce them. As climate change is assumed to be a significant driver of changes in the past decades and near future, the contribution of climate change to changes in floods is of great interest. To quantify the flood risk attributable to climate change, a hydrological model can be run with different climate input - weather time series representing the observed climate or a climate without the influence of anthropogenic greenhouse gas emissions (non-GHG). These two different states of the climate system are assumed to be represented in the occurrence of weather patterns. Each weather pattern can be linked to an individual distribution of values of weather variables (e.g. precipitation, temperature, etc.). This link can be established by first applying a weather pattern classification scheme to large-scale gridded observations, and secondly deriving the distribution of values of weather variables that were observed locally during the same weather pattern occurrence. After applying the weather pattern classification scheme to the GCM output as well, values for weather variables can be drawn from the derived distributions, resulting in new weather time series for local stations. The derivation of weather patterns and establishment of a link to local weather variables is presented in this contribution.

  19. Leveraging Improvements in Precipitation Measuring from GPM Mission to Achieve Prediction Improvements in Climate, Weather and Hydrometeorology

    Science.gov (United States)

    Smith, Eric A.

    2002-01-01

    The main scientific goal of the GPM mission, currently planned for start in the 2007 time frame, is to investigate important scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like "core" satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing Operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve approximately 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrate retrievals to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, currently involving a partnership between NASA in the US and the National Space Development Agency in Japan. Additionally, the program is actively pursuing agreements with other international partners and domestic scientific agencies and institutions, as well as participation by individual scientists from academia, government, and the private sector to fulfill mission goals and to pave

  20. In a warming climate, just how predictable are temperature extremes at weather and seasonal time scales?

    CSIR Research Space (South Africa)

    Landman, WA

    2011-10-01

    Full Text Available stream_source_info Landman7_2011.pdf.txt stream_content_type text/plain stream_size 3538 Content-Encoding ISO-8859-1 stream_name Landman7_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 In a warming climate... at UK Met Office N9 members SA Japan UKUSA USA Brazil* SA SASA * IBSA-Ocean In use Near future Far future VCM/UTCM ENSEMBLES Strong anthropogenically forced warming trends have been observed over southern Africa and are projected...

  1. Weather, climate, and resource Information should meet the needs of Sahelian pastoralists

    DEFF Research Database (Denmark)

    Rasmussen, Laura Vang; Mertz, Ole; Rasmussen, Kjeld

    2014-01-01

    . The results show that few of the interviewed pastoralists receive the seasonal rainfall forecasts, which have been produced since 1998 by the Climate Outlook Forum for West Africa. The pastoralists who did receive the forecasts used the information to adjust their crop cultivation strategies rather than...... to support livestock management decisions. To do the latter, pastoralists need information pertaining to the availability of grazing resources in various areas, the onset date of the rains, flooding events, and finescale information on rainfall amount during the first weeks of the rainy season...

  2. A hypothesis on nanodust as a source of energy for extreme weather events and climate changes

    Science.gov (United States)

    Berkovich, Simon

    2013-03-01

    There are many phenomena that attract energy, the source of which cannot be unerringly identified. Among those are: excess heat alleged to nuclear processes, sonoluminescence, wire fragmentation under high voltage pulses, diverse biophysical experiences, and some atmospheric effects, like ball lightning and terrestrial gamma rays. Destructive atmospheric events associated with intense air movements, such as hurricanes and tornadoes, expend huge amounts of energy equivalent to very many nuclear bombs. Our paper indicates a possibility for a new source of energy due to the so-called ``hot-clocking'' effect related to the holographic mechanism of the Universe that establishes the exclusive property of nonlocality. This may uncover energy in various unusual appearances, particularly, in the suspected trend of global warming as a direct contribution to the extreme weather events. The surmised clocking impacts from holographic reference beam can reveal themselves through gaseous aerosols and suspended contaminants that may have been increased with human technogenesis. According to recent EPRI report nanopowder for Ni-Pd alloys in the size range of 5-10 nm was found to cause small amounts of excess power, about 4 watt per gram. So, using a minimal norm of contamination (20 micrograms per cubic meter) as an approximate guide, we could estimate that the whole atmosphere would thus generate dozens of terawatts, a contribution comparable to that of the Sun.

  3. Neogene weathering and terrestrial sedimentation in southern New Caledonia; inference on post-obduction tectonics and climate change

    Science.gov (United States)

    Folcher, Nicolas; Ricordel-Prognon, Caroline; Sevin, Brice; Maurizot, Pierre; Cluzel, Dominique; Quesnel, Florence

    2014-05-01

    Iron-rich sediments that fill up karst-like depressions and paleo-valleys in southern New Caledonia are mainly composed of re-sedimented laterite and saprolite. These fluvial sediments come from the erosion of an older regolith that developed upon peridotites and gabbros of the Peridotite Nappe during Late Oligocene times. At the bottom, conglomeratic facies fill incised valleys and contain some metre-size cobbles of ferricrete that record dissection of pre-existing weathering profiles and were deposited in alluvial fan environment. The basal conglomerate is overlain by sand, then dominantly silty fluvial sediments 40 to 50 m thick, with a few thin conglomerate channels. Brutal grain size reduction suggests that erosion was short-lived and followed by quiescence. Multiple interbedded ferruginous duricrusts and rhizocretions made of goethite (and secondary hematite) and liesegang rings reveal iron mobility and several iron oxi-hydroxides concretion/ cementation episodes alternating with sedimentation, probably as a consequence of water table variations. The top of the succession is overlain by a weathering profile and capped by a nodular lateritic ferricrete. Finally, reactivated erosion profoundly incised the fluvial succession and locally reached the bedrock which today crops out upstream along the main river beds. In southern New Caledonia some ferricretes and ferruginous duricrusts have been dated at -25 Ma and -20 to -10 Ma by paleomagnetic method (in progress). They could be correlated to some warming events of the Late Oligocene and Early Miocene or to the Middle Miocene Climatic Optimum. Erosion that predates the accumulation of terrestrial sediments may be tentatively correlated to the uplift that accompanied the emplacement of the Saint-Louis and Koum plutons, and some internal dissection episodes could be related to the Lower Miocene post-obduction slab break off. The final erosion is most probably related to the southward tilt of New Caledonia due to

  4. New developments in geostrophic turbulence and its implications for climate modeling and weather predictability

    Science.gov (United States)

    Tribbia, Joseph

    2012-10-01

    One of the many areas in geophysical fluid dynamics that impacts how we model dissipation in the climate system is the theory of two-dimensional and quasi geostrophic turbulence and its impact on atmospheric flow. Upscale energy and and down scale enstrophy cascades have been observed in the atmosphere along with the -3 power law predicted in two-dimensional turbulence theory put forward by Batchelor and Kraichnan in the late 1960s. A consequence of this observational finding is the fact that, unlike three-dimensional turbulence in which the eddy turnover time decreases with eddy length scale, in two dimensional and quasi-geostrophic turbulence the eddy turnover time is constant independent of eddy length scale in the enstrophy cascading range. A further consequence of this is that the Rossby number is constant through the enstrophy cascade. This implies that instabilities which depend on ageostrophic processes are restricted because the scaling laws which imply balanced, quasi-geostrophic dynamics are valid at all length scales. Recent results show, however, even given that all of the above statements are true and maintained in the dynamics, there is a mechanism through which quasi-geostrophic turbulence becomes inconsistent and develops the seeds of its own destruction at small scales.

  5. The influence of regional urbanization and abnormal weather conditions on the processes of human climatic adaptation on mountain resorts

    Science.gov (United States)

    Artamonova, M.; Golitsyn, G.; Senik, I.; Safronov, A.; Babyakin, A.; Efimenko, N.; Povolotskaya, N.; Topuriya, D.; Chalaya, E.

    2012-04-01

    This work is a further development in the study of weather pathogenic index (WPI) and negative influence of urbanization processes on the state of people's health with adaptation disorder. This problem is socially significant. According to the data of the WHO, in the world there are from 20 to 45% of healthy people and from 40 to 80% of people with chronic diseases who suffer from the raised meteosensitivity. As a result of our researches of meteosensitivity of people during their short-duration on mountain resorts there were used negative adaptive reactions (NAR) under 26 routine tests, stress-reactions under L.H. Garkavi's hemogram, vegetative indices, tests of neuro-vascular reactivity, signs of imbalance of vegetative and neurohumoral regulation according to the data of biorhythm fractal analysis and sudden aggravations of diseases (SAD) as an indicator of negative climatic and urbanization influence. In 2010-2011 the Caucasian mountain resorts were having long periods of climatic anomalies, strengthening of anthropogenic emissions and forest fires when record-breaking high waves of NAR and SAD were noticed. There have also been specified indices ranks of weather pathogenicity from results of comparison of health characteristics with indicators of synoptico-dynamic processes according to Weather Research and Forecasting model (WRF); air ionization N+, N-, N+/N- spectra of aerosol particles (the size from 500 to 20000 nanometers) and concentrations of chemically active gases (O3, NO, NO2, ), volatile phytoorganic substances in the surface atmosphere, bactericidal characteristics of vegetation by criterion χ2 (not above 0,05). It has allowed us to develop new physiological optimum borders, norm and pessimum, to classify emergency ecologo-weather situations, to develop a new techniques of their forecasting and prevention of meteopathic reactions with meteosensitive patients (Method of treatment and the early (emergency) and planned prevention meteopatic reactions

  6. On the usage of classical nucleation theory in quantification of the impact of bacterial INP on weather and climate

    Science.gov (United States)

    Sahyoun, Maher; Wex, Heike; Gosewinkel, Ulrich; Šantl-Temkiv, Tina; Nielsen, Niels W.; Finster, Kai; Sørensen, Jens H.; Stratmann, Frank; Korsholm, Ulrik S.

    2016-08-01

    Bacterial ice-nucleating particles (INP) are present in the atmosphere and efficient in heterogeneous ice-nucleation at temperatures up to -2 °C in mixed-phase clouds. However, due to their low emission rates, their climatic impact was considered insignificant in previous modeling studies. In view of uncertainties about the actual atmospheric emission rates and concentrations of bacterial INP, it is important to re-investigate the threshold fraction of cloud droplets containing bacterial INP for a pronounced effect on ice-nucleation, by using a suitable parameterization that describes the ice-nucleation process by bacterial INP properly. Therefore, we compared two heterogeneous ice-nucleation rate parameterizations, denoted CH08 and HOO10 herein, both of which are based on classical-nucleation-theory and measurements, and use similar equations, but different parameters, to an empirical parameterization, denoted HAR13 herein, which considers implicitly the number of bacterial INP. All parameterizations were used to calculate the ice-nucleation probability offline. HAR13 and HOO10 were implemented and tested in a one-dimensional version of a weather-forecast-model in two meteorological cases. Ice-nucleation-probabilities based on HAR13 and CH08 were similar, in spite of their different derivation, and were higher than those based on HOO10. This study shows the importance of the method of parameterization and of the input variable, number of bacterial INP, for accurately assessing their role in meteorological and climatic processes.

  7. Extreme Weather Events and Climate Variability Provide a Lens to How Shallow Lakes May Respond to Climate Change

    Directory of Open Access Journals (Sweden)

    Karl Havens

    2016-05-01

    Full Text Available Shallow lakes, particularly those in low-lying areas of the subtropics, are highly vulnerable to changes in climate associated with global warming. Many of these lakes are in tropical cyclone strike zones and they experience high inter-seasonal and inter-annual variation in rainfall and runoff. Both of those factors strongly modulate sediment–water column interactions, which play a critical role in shallow lake nutrient cycling, water column irradiance characteristics and cyanobacterial harmful algal bloom (CyanoHAB dynamics. We illustrate this with three examples, using long-term (15–25 years datasets on water quality and plankton from three shallow lakes: Lakes Okeechobee and George (Florida, USA and Lake Taihu (China. Okeechobee and Taihu have been impacted repeatedly by tropical cyclones that have resulted in large amounts of runoff and sediment resuspension, and resultant increases in dissolved nutrients in the water column. In both cases, when turbidity declined, major blooms of the toxic CyanoHAB Microcystis aeruginosa occurred over large areas of the lakes. In Lake George, periods of high rainfall resulted in high dissolved color, reduced irradiance, and increased water turnover rates which suppress blooms, whereas in dry periods with lower water color and water turnover rates there were dense cyanobacteria blooms. We identify a suite of factors which, from our experience, will determine how a particular shallow lake will respond to a future with global warming, flashier rainfall, prolonged droughts and stronger tropical cyclones.

  8. Extending to seasonal scales the current usage of short range weather forecasts and climate projections for water management in Spain

    Science.gov (United States)

    Rodriguez-Camino, Ernesto; Voces, José; Sánchez, Eroteida; Navascues, Beatriz; Pouget, Laurent; Roldan, Tamara; Gómez, Manuel; Cabello, Angels; Comas, Pau; Pastor, Fernando; Concepción García-Gómez, M.°; José Gil, Juan; Gil, Delfina; Galván, Rogelio; Solera, Abel

    2016-04-01

    This presentation, first, briefly describes the current use of weather forecasts and climate projections delivered by AEMET for water management in Spain. The potential use of seasonal climate predictions for water -in particular dams- management is then discussed more in-depth, using a pilot experience carried out by a multidisciplinary group coordinated by AEMET and DG for Water of Spain. This initiative is being developed in the framework of the national implementation of the GFCS and the European project, EUPORIAS. Among the main components of this experience there are meteorological and hydrological observations, and an empirical seasonal forecasting technique that provides an ensemble of water reservoir inflows. These forecasted inflows feed a prediction model for the dam state that has been adapted for this purpose. The full system is being tested retrospectively, over several decades, for selected water reservoirs located in different Spanish river basins. The assessment includes an objective verification of the probabilistic seasonal forecasts using standard metrics, and the evaluation of the potential social and economic benefits, with special attention to drought and flooding conditions. The methodology of implementation of these seasonal predictions in the decision making process is being developed in close collaboration with final users participating in this pilot experience.

  9. Osmium isotope perturbations during the Pliensbachian-Toarcian (Early Jurassic): Relationships between volcanism, weathering, and climate change

    Science.gov (United States)

    Percival, Lawrence; Cohen, Anthony; Davies, Marc; Dickson, Alexander; Jenkyns, Hugh; Hesselbo, Stephen; Mather, Tamsin; Xu, Weimu; Storm, Marisa

    2016-04-01

    weathering, and note that both excursions coincide with negative excursions in δ13C (indicating a massive release of isotopically light carbon to the atmosphere) and positive excursions in Hg/TOC (indicating enhanced volcanic activity associated with the Karoo-Ferrar LIP). These concurrent changes suggest that carbon-emissions related to the Karoo-Ferrar may have aided climate warming, leading to the enhanced weathering and marine anoxia recorded in Toarcian strata. Additionally, we record a potential lag in the recovery of 187Os/188Os compared to δ13C; such a lag would support previous hypotheses that enhanced weathering contributed towards draw-down of excess atmospheric carbon, alleviating the Toarcian warming. Finally, our recording of a second (stratigraphically lower) excursion in Os isotopes, coincident with previously recorded excursions, indicates that major climate change during the Toarcian in fact began, albeit to a lesser degree, at the Pl-To boundary, rather than being restricted solely to the T-OAE.

  10. Weathering the Climate Communication Storm (Invited)

    Science.gov (United States)

    Mann, M. E.

    2010-12-01

    I will discuss the continuing challenges climate scientists confront in efforts to communicate the science of climate change, and its implications for matters of mitigation and adaptation. Among these challenges is the existence of a well-funded and organized disinformation effort that aims to confuse the public about the nature of our scientific understanding. Despite these challenges, we must strive to communicate the science and its implications in plainspoken language that neither (a) insults the intelligence of our audience, (b) loses them in jargon and science-speak, nor (c) glosses over the real scientific uncertainties that remain. We must also maintain our composure and humor even in the face of the the most deceitful tactics used against us by our opposition. I will share insights that I have accumulated over the course of my own efforts at informing the public discourse, discussing some recent high profile with the climate change disinformation campaign.

  11. Extreme Rivers for Future Climates - Simulation Using Spatial Weather Generator

    Science.gov (United States)

    Kuchar, Leszek; Kosierb, Ryszard; Iwański, Sławomir; Jelonek, Leszek

    2014-05-01

    In this paper an application of spatial weather generator for estimation of probability distributions changes of river flows for selected climate change scenarios and different time horizons are presented. The main studies for the Kaczawa river basin located in Southwest region of Poland are carried out. For the estimation of probability distribution river flow, daily data of SR solar radiation, maximum and minimum air temperature, and total precipitation were obtained for sixteen stations of hydrological network from Institute of Meteorology and Water Management. In addition, daily data of flows from 6 closing water-gauges (partial catchments) were collected. Idea of flow simulation in the Kaczawa river catchment for future climate conditions given by different scenario shall be presented in the paper. First, on the basis of 25-years data series (1981-2005) for 16 stations of meteorological network within or around the Kaczawa river catchment basic climatology characteristics required by weather generator are computed. Then, spatial correlations between variables and stations are added to the characteristics. Next, on the basis of information coming from three climate change scenarios (GISS, GFDL and CCCM) for years 2040, 2060 and 2080 basic climatology characteristics are modified. Then, spatial weather generator SWGEN is used to produce 500 years of synthetic data for 16 stations, given time horizon and scenario. The year 2000 as the background of potential changes in river flow is used together with 500 years of synthetic data. Next, generated data are applied to hydrological model Mike SHE to simulate daily flows for closing water-gauges. The flow are evaluated with different temporal step and characterized by pdf functions. The application of spatial weather generator SWGEN combined with hydrological rainfall-runoff model (Mike SHE Ed. 2008) and climate change scenario, gives various possibilities to study changes in the river catchment coming up to 60

  12. Exploring spectral wave climate variability using a weather type approach

    Science.gov (United States)

    Mendez, F.; Espejo, A.; Camus, P.; Losada, I.

    2012-12-01

    Traditional approaches for determining wave climate variability in scales from month to decades have been broadly focused on aggregated or statistical parameters such as significant wave height, wave energy flux or mean wave direction. These studies, although revealing the major general modes of wave climate variability and trends, do not take in consideration the complexity of the gravity wave fields. Because ocean waves are the response of both local and remote winds, analyzing directional full spectrum variability can throw light on atmosphere circulation not only over the immediate ocean region, but also over a more broadly basin-scale. In this work we use the weather type approach (data mining) to explore wave climate variability in the frequency-direction domain. This approach identifies daily to 15 daily synoptic modes (depending on the basin) of the sea level pressure (from NCEP/NCAR) over the effective fetch of one selected ocean point, finding bi-univocal relations between each synoptic pattern (weather type) and each spectral wave energy distribution. Thus, it allows exploring wave spectrum (from GOW reanalisys, WaveWatchIII) covering all temporal scales of variability: daily, monthly, seasonal, inter-annual, decadal, long term trends and future climate change projections. The proposed scheme provides valuable information improving our ocean waves understanding. Moreover this new approach can support offshore wind-wave energy farms optimization or a more rigorous determination of wave induced sediment transport between others applications.

  13. Projecting demographic responses to climate change: adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population.

    Science.gov (United States)

    Dybala, Kristen E; Eadie, John M; Gardali, Thomas; Seavy, Nathaniel E; Herzog, Mark P

    2013-09-01

    Few studies have quantitatively projected changes in demography in response to climate change, yet doing so can provide important insights into the processes that may lead to population declines and changes in species distributions. Using a long-term mark-recapture data set, we examined the influence of multiple direct and indirect effects of weather on adult and juvenile survival for a population of Song Sparrows (Melospiza melodia) in California. We found evidence for a positive, direct effect of winter temperature on adult survival, and a positive, indirect effect of prior rainy season precipitation on juvenile survival, which was consistent with an effect of precipitation on food availability during the breeding season. We used these relationships, and climate projections of significantly warmer and slightly drier winter weather by the year 2100, to project a significant increase in mean adult survival (12-17%) and a slight decrease in mean juvenile survival (4-6%) under the B1 and A2 climate change scenarios. Together with results from previous studies on seasonal fecundity and postfledging survival in this population, we integrated these results in a population model and projected increases in the population growth rate under both climate change scenarios. Our results underscore the importance of considering multiple, direct, and indirect effects of weather throughout the annual cycle, as well as differences in the responses of each life stage to climate change. Projecting demographic responses to climate change can identify not only how populations will be affected by climate change but also indicate the demographic process(es) and specific mechanisms that may be responsible. This information can, in turn, inform climate change adaptation plans, help prioritize future research, and identify where limited conservation resources will be most effectively and efficiently spent. © 2013 John Wiley & Sons Ltd.

  14. Extreme weather events and infectious disease outbreaks

    OpenAIRE

    McMichael, Anthony J.

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental c...

  15. Project Weather and Water.

    Science.gov (United States)

    Hansen, Pal J. Kirkeby

    2000-01-01

    Introduces Project Weather and Water with the goal of developing and testing ideas of how to implement weather topics and water physics in an integrated way. Discusses teacher preparation, implementation, and evaluation of this project. (ASK)

  16. Climate-driven thresholds for chemical weathering in postglacial soils of New Zealand

    Science.gov (United States)

    Dixon, Jean L.; Chadwick, Oliver A.; Vitousek, Peter M.

    2016-09-01

    Chemical weathering in soils dissolves and alters minerals, mobilizes metals, liberates nutrients to terrestrial and aquatic ecosystems, and may modulate Earth's climate over geologic time scales. Climate-weathering relationships are often considered fundamental controls on the evolution of Earth's surface and biogeochemical cycles. However, surprisingly little consensus has emerged on if and how climate controls chemical weathering, and models and data from published literature often give contrasting correlations and predictions for how weathering rates and climate variables such as temperature or moisture are related. Here we combine insights gained from the different approaches, methods, and theory of the soil science, biogeochemistry, and geomorphology communities to tackle the fundamental question of how rainfall influences soil chemical properties. We explore climate-driven variations in weathering and soil development in young, postglacial soils of New Zealand, measuring soil elemental geochemistry along a large precipitation gradient (400-4700 mm/yr) across the Waitaki basin on Te Waipounamu, the South Island. Our data show a strong climate imprint on chemical weathering in these young soils. This climate control is evidenced by rapid nonlinear changes along the gradient in total and exchangeable cations in soils and in the increased movement and redistribution of metals with rainfall. The nonlinear behavior provides insight into why climate-weathering relationships may be elusive in some landscapes. These weathering thresholds also have significant implications for how climate may influence landscape evolution and the release of rock-derived nutrients to ecosystems, as landscapes that transition to wetter climates across this threshold may weather and deplete rapidly.

  17. Weather Derivatives – Origin, Types and Application

    Directory of Open Access Journals (Sweden)

    Piotr Binkowski

    2008-03-01

    Full Text Available The number of companies that are exposed to the revenues loss risk caused by weather variability is still increasing. The businesses that are mostly exposed to weather risk are following: energy, agriculture, constructions and transport. That situation has initiated dynamic growth of weather derivatives markets as well as the awareness of the weather risk among the market participants. Presently, the weather derivatives markets evaluate rapidly in all the mature economies: USA, Asia and Europe. Constructing weather derivatives relies on qu- antifying climate factors in the form of indexes, what is quite simple task, more difficultly can be gathering precise historical data of required climate factors. Taking into consideration so far development of derivatives ñ especially the financial derivatives based on different types of indexes ñ financial market has at disposal wide range of different types of proved derivatives (futures, forward, options, swaps, which can be successfully utilised on the weather-driven markets both for hedging weather risk and speculating.

  18. Differences of granitic weathering at the northern and southern feet of Dabie Mountains, Central China: Implication for tectonic and climatic environments

    Institute of Scientific and Technical Information of China (English)

    XU; Haijin(续海金); MA; Changqian(马昌前); LIU; Fan(刘凡); YANG; Kunguang(杨坤光)

    2003-01-01

    Two weathering profiles of Yanshanian granites on the southern and northern feet of the Dabie Mountains were investigated. The results showed that, on the southern foot of the Dabie Mountains, the weathering profile of the Sikongshan biotite monzonitic granite was eroded with remarkable loss of alkila, calcium and silicon, and richness of aluminium during hydrolysis process and in acidic mediums. Feldspar and biotite, major rock-forming minerals, were altered to illite→(vermiculite→1.4 nm transition minerals) →kaolinite→halloysite. However, on the northern foot of the Dabie Mountains, the Hepeng biotite orthogranite weathering profile was stable, without silicon depletion, but with remarkably enriched iron and noncrystalline during oxidizing process and in feebly acidic-neutral mediums. The major rock-forming minerals such as feldspar and biotite in the Hepeng weathering profile were weathered to smectites and halloysite→noncrystalline. The above results reveal that weathering differences of the granites between southern and northern feet of the Dabie Mountains may be related to climatic environments and tectonic movements. The southern foot, in hot and rainy environments, was uplifted by tectonics and was intensively leached. The soils in the southern slope were under acidic conditions. In contrast, the northern foot was slightly leached in hot and droughty environments, and the soils were under feebly acidic-neutral conditions.

  19. Climate-dependent sediment production: numerical modeling and field observations of variable grain size distributions from heterogeneous hillslope weathering of fractured basalt flows, Kohala Peninsula, Hawaii

    Science.gov (United States)

    Murphy, B. P.; Johnson, J. P.

    2012-12-01

    We present a numerical model for hillslope sediment production that includes climate-dependent chemical weathering rates and bedrock fracture spacings, and predicts how grain size distributions vary with climate and hillslope erosion rate. Understanding sediment preparation, or the in situ reduction of fractured bedrock to coarse sediment by heterogeneous weathering on hillslopes, is critical to understanding the evolution of mountainous landscapes, as sediment supply rates and size distributions can strongly influence river incision rates. The majority of soil production models assume a homogenous substrate and uniform weathering front, and therefore do not track the size of rock fragments and corestones, which become the sediment supplied to channels by hillslope erosion. Our model is inspired by the Kohala Peninsula on the big island of Hawaii, which has a gradient of mean annual precipitation (MAP) spanning over an order of magnitude that has been shown to influence the weathering rates of the basalt. Previous geochemical studies have constrained climate-dependent weathering rates for local soil production. Using these inputs, we developed a kinetics-based numerical model for the chemical weathering of initially fractured basalt into soil and coarse sediment over 150ky. Following first-order reaction kinetics, chemical weathering in the model decreases exponentially with both depth below the surface and time. The model starts with a column of repeating basalt flows (typically 1 m thick), each with fracture spacing distributions consistent with thermal-mechanical cooling characteristics. Each individual fracture-bound block is assumed to weather from the surface inwards, similar in form to a weathering rind. Since the model is constructed of discrete blocks, larger blocks remain as unweathered corestones (the "sediment"), surrounded by weathered material. In addition to a MAP-dependent initial surface weathering rate and rate constant, climate is also reflected

  20. Ambulance call-outs and response times in Birmingham and the impact of extreme weather and climate change.

    Science.gov (United States)

    Thornes, John Edward; Fisher, Paul Anthony; Rayment-Bishop, Tracy; Smith, Christopher

    2014-03-01

    Although there has been some research on the impact of extreme weather on the number of ambulance call-out incidents, especially heat waves, there has been very little research on the impact of cold weather on ambulance call-outs and response times. In the UK, there is a target response rate of 75% of life threatening incidents (Category A) that must be responded to within 8 min. This paper compares daily air temperature data with ambulance call-out data for Birmingham over a 5-year period (2007-2011). A significant relationship between extreme weather and increased ambulance call-out and response times can clearly be shown. Both hot and cold weather have a negative impact on response times. During the heat wave of August 2003, the number of ambulance call-outs increased by up to a third. In December 2010 (the coldest December for more than 100 years), the response rate fell below 50% for 3 days in a row (18 December-20 December 2010) with a mean response time of 15 min. For every reduction of air temperature by 1°C there was a reduction of 1.3% in performance. Improved weather forecasting and the take up of adaptation measures, such as the use of winter tyres, are suggested for consideration as management tools to improve ambulance response resilience during extreme weather. Also it is suggested that ambulance response times could be used as part of the syndromic surveillance system at the Health Protection Agency.

  1. PCW/PHEOS-WCA: quasi-geostationary Arctic measurements for weather, climate, and air quality from highly eccentric orbits

    Science.gov (United States)

    Lachance, Richard L.; McConnell, John C.; McElroy, C. Tom; O'Neill, Norm; Nassar, Ray; Buijs, Henry; Rahnama, Peyman; Walker, Kaley; Martin, Randall; Sioris, Chris; Garand, Louis; Trichtchenko, Alexander; Bergeron, Martin

    2012-09-01

    The PCW (Polar Communications and Weather) mission is a dual satellite mission with each satellite in a highly eccentric orbit with apogee ~42,000 km and a period (to be decided) in the 12-24 hour range to deliver continuous communications and meteorological data over the Arctic and environs. Such as satellite duo can give 24×7 coverage over the Arctic. The operational meteorological instrument is a 21-channel spectral imager similar to the Advanced Baseline Imager (ABI). The PHEOS-WCA (weather, climate and air quality) mission is intended as an atmospheric science complement to the operational PCW mission. The target PHEOS-WCA instrument package considered optimal to meet the full suite of science team objectives consists of FTS and UVS imaging sounders with viewing range of ~4.5° or a Field of Regard (FoR) ~ 3400×3400 km2 from near apogee. The goal for the spatial resolution at apogee of each imaging sounder is 10×10 km2 or better and the goal for the image repeat time is targeted at ~2 hours or better. The FTS has 4 bands that span the MIR and NIR with a spectral resolution of 0.25 cm-1. They should provide vertical tropospheric profiles of temperature and water vapour in addition to partial columns of many other gases of interest for air quality. The two NIR bands target columns of CO2, CH4 and aerosol optical depth (OD). The UVS is an imaging spectrometer that covers the spectral range of 280-650 nm with 0.9 nm resolution and targets the tropospheric column densities of O3 and NO2 and several other Air Quality (AQ) gases as well the Aerosol Index (AI).

  2. Winter weather regimes over the Mediterranean region: their role for the regional climate and projected changes in the twenty-first century

    Science.gov (United States)

    Rojas, M.; Li, L. Z.; Kanakidou, M.; Hatzianastassiou, N.; Seze, G.; Le Treut, H.

    2013-08-01

    The winter time weather variability over the Mediterranean is studied in relation to the prevailing weather regimes (WRs) over the region. Using daily geopotential heights at 700 hPa from the ECMWF ERA40 Reanalysis Project and Cluster Analysis, four WRs are identified, in increasing order of frequency of occurrence, as cyclonic (22.0 %), zonal (24.8 %), meridional (25.2 %) and anticyclonic (28.0 %). The surface climate, cloud distribution and radiation patterns associated with these winter WRs are deduced from satellite (ISCCP) and other observational (E-OBS, ERA40) datasets. The LMDz atmosphere-ocean regional climate model is able to simulate successfully the same four Mediterranean weather regimes and reproduce the associated surface and atmospheric conditions for the present climate (1961-1990). Both observational- and LMDz-based computations show that the four Mediterranean weather regimes control the region's weather and climate conditions during winter, exhibiting significant differences between them as for temperature, precipitation, cloudiness and radiation distributions within the region. Projections (2021-2050) of the winter Mediterranean weather and climate are obtained using the LMDz model and analysed in relation to the simulated changes in the four WRs. According to the SRES A1B emission scenario, a significant warming (between 2 and 4 °C) is projected to occur in the region, along with a precipitation decrease by 10-20 % in southern Europe, Mediterranean Sea and North Africa, against a 10 % precipitation increase in northern European areas. The projected changes in temperature and precipitation in the Mediterranean are explained by the model-predicted changes in the frequency of occurrence as well as in the intra-seasonal variability of the regional weather regimes. The anticyclonic configuration is projected to become more recurrent, contributing to the decreased precipitation over most of the basin, while the cyclonic and zonal ones become more

  3. Parallels among the ``music scores'' of solar cycles, space weather and Earth's climate

    Science.gov (United States)

    Kolláth, Zoltán; Oláh, Katalin; van Driel-Gesztelyi, Lidia

    2012-07-01

    Solar variability and its effects on the physical variability of our (space) environment produces complex signals. In the indicators of solar activity at least four independent cyclic components can be identified, all of them with temporal variations in their timescales. Time-frequency distributions (see Kolláth & Oláh 2009) are perfect tools to disclose the ``music scores'' in these complex time series. Special features in the time-frequency distributions, like frequency splitting, or modulations on different timescales provide clues, which can reveal similar trends among different indices like sunspot numbers, interplanetary magnetic field strength in the Earth's neighborhood and climate data. On the pseudo-Wigner Distribution (PWD) the frequency splitting of all the three main components (the Gleissberg and Schwabe cycles, and an ~5.5 year signal originating from cycle asymmetry, i.e. the Waldmeier effect) can be identified as a ``bubble'' shaped structure after 1950. The same frequency splitting feature can also be found in the heliospheric magnetic field data and the microwave radio flux.

  4. A coupled human-natural system to assess the operational value of weather and climate services for agriculture

    Science.gov (United States)

    Li, Yu; Giuliani, Matteo; Castelletti, Andrea

    2017-09-01

    Recent advances in weather and climate (W&C) services are showing increasing forecast skills over seasonal and longer timescales, potentially providing valuable support in informing decisions in a variety of economic sectors. Quantifying this value, however, might not be straightforward as better forecast quality does not necessarily imply better decisions by the end users, especially when forecasts do not reach their final users, when providers are not trusted, or when forecasts are not appropriately understood. In this study, we contribute an assessment framework to evaluate the operational value of W&C services for informing agricultural practices by complementing traditional forecast quality assessments with a coupled human-natural system behavioural model which reproduces farmers' decisions. This allows a more critical assessment of the forecast value mediated by the end users' perspective, including farmers' risk attitudes and behavioural factors. The application to an agricultural area in northern Italy shows that the quality of state-of-the-art W&C services is still limited in predicting the weather and the crop yield of the incoming agricultural season, with ECMWF annual products simulated by the IFS/HOPE model resulting in the most skillful product in the study area. However, we also show that the accuracy of estimating crop yield and the probability of making optimal decisions are not necessarily linearly correlated, with the overall assessment procedure being strongly impacted by the behavioural attitudes of farmers, which can produce rank reversals in the quantification of the W&C services operational value depending on the different perceptions of risk and uncertainty.

  5. Reducing the prediction uncertainties of high-impact weather and climate events: An overview of studies at LASG

    Science.gov (United States)

    Duan, Wansuo; Feng, Rong

    2017-02-01

    This paper summarizes recent progress at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences in studies on targeted observations, data assimilation, and ensemble prediction, which are three effective strategies to reduce the prediction uncertainties and improve the forecast skill of weather and climate events. Considering the limitations of traditional targeted observation approaches, LASG researchers have developed a conditional nonlinear optimal perturbation-based targeted observation strategy to optimize the design of the observing network. This strategy has been employed to identify sensitive areas for targeted observations of the El Niño-Southern Oscillation, Indian Ocean dipole, and tropical cyclones, and has been demonstrated to be effective in improving the forecast skill of these events. To assimilate the targeted observations into the initial state of a numerical model, a dimension-reducedprojection- based four-dimensional variational data assimilation (DRP-4DVar) approach has been proposed and is used operationally to supply accurate initial conditions in numerical forecasts. The performance of DRP-4DVar is good, and its computational cost is much lower than the standard 4DVar approach. Besides, ensemble prediction, which is a practical approach to generate probabilistic forecasts of the future state of a particular system, can be used to reduce the prediction uncertainties of single forecasts by taking the ensemble mean of forecast members. In this field, LASG researchers have proposed an ensemble forecast method that uses nonlinear local Lyapunov vectors (NLLVs) to yield ensemble initial perturbations. Its application in simple models has shown that NLLVs are more useful than bred vectors and singular vectors in improving the skill of the ensemble forecast. Therefore, NLLVs represent a candidate for possible development as an

  6. Extreme weather events and infectious disease outbreaks.

    Science.gov (United States)

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  7. Clouds, weather, climate, and modeling for K-12 and public audiences from the Center for Multi-scale Modeling of Atmospheric Processes

    Science.gov (United States)

    Foster, S. Q.; Johnson, R. M.; Randall, D. A.; Denning, A.; Russell, R. M.; Gardiner, L. S.; Hatheway, B.; Jones, B.; Burt, M. A.; Genyuk, J.

    2010-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its fifth year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences. This is accomplished through collaborations in resource development and dissemination between CMMAP scientists, CSU’s Little Shop of Physics (LSOP) program, and the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). Little Shop of Physics develops new hands on science activities demonstrating basic science concepts fundamental to understanding atmospheric characteristics, weather, and climate. Videos capture demonstrations of children completing these activities which are broadcast to school districts and public television programs. CMMAP and LSOP educators and scientists partner in teaching a summer professional development workshops for teachers at CSU with a semester's worth of college-level content on the basic physics of the atmosphere, weather, climate, climate modeling, and climate change, as well as dozens of LSOP inquiry-based activities suitable for use in classrooms. The W2U project complements these efforts by developing and broadly disseminating new CMMAP-related online content pages, animations, interactives, image galleries, scientists’ biographies, and LSOP videos to K-12 and public audiences. Reaching nearly 20 million users annually, W2U is highly valued as a curriculum enhancement

  8. Hands-on, online, and workshop-based K-12 weather and climate education resources from the Center for Multi-scale Modeling of Atmospheric Processes

    Science.gov (United States)

    Foster, S. Q.; Johnson, R. M.; Randall, D. A.; Denning, A.; Burt, M. A.; Gardiner, L.; Genyuk, J.; Hatheway, B.; Jones, B.; La Grave, M. L.; Russell, R. M.

    2009-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its fourth year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences. This is accomplished through collaborations in resource development and dissemination between CMMAP scientists, CSU’s Little Shop of Physics (LSOP) program, and the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). Little Shop of Physics develops new hands on science activities demonstrating basic science concepts fundamental to understanding atmospheric characteristics, weather, and climate. Videos capture demonstrations of children completing these activities which are broadcast to school districts and public television programs. CMMAP and LSOP educators and scientists partner in teaching a summer professional development workshops for teachers at CSU with a semester's worth of college-level content on the basic physics of the atmosphere, weather, climate, climate modeling, and climate change, as well as dozens of LSOP inquiry-based activities suitable for use in classrooms. The W2U project complements these efforts by developing and broadly disseminating new CMMAP-related online content pages, animations, interactives, image galleries, scientists’ biographies, and LSOP videos to K-12 and public audiences. Reaching nearly 20 million users annually, W2U is highly valued as a curriculum enhancement

  9. Weather Conditions, Weather Information and Car Crashes

    Directory of Open Access Journals (Sweden)

    Adriaan Perrels

    2015-11-01

    Full Text Available Road traffic safety is the result of a complex interaction of factors, and causes behind road vehicle crashes require different measures to reduce their impacts. This study assesses how strongly the variation in daily winter crash rates associates with weather conditions in Finland. This is done by illustrating trends and spatiotemporal variation in the crash rates, by showing how a GIS application can evidence the association between temporary rises in regional crash rates and the occurrence of bad weather, and with a regression model on crash rate sensitivity to adverse weather conditions. The analysis indicates that a base rate of crashes depending on non-weather factors exists, and some combinations of extreme weather conditions are able to substantially push up crash rates on days with bad weather. Some spatial causation factors, such as variation of geophysical characteristics causing systematic differences in the distributions of weather variables, exist. Yet, even in winter, non-spatial factors are normally more significant. GIS data can support optimal deployment of rescue services and enhance in-depth quantitative analysis by helping to identify the most appropriate spatial and temporal resolutions. However, the supportive role of GIS should not be inferred as existence of highly significant spatial causation.

  10. Impact of synoptic weather patterns and inter-decadal climate variability on air quality in the North China Plain during 1980-2013

    Science.gov (United States)

    Zhang, Yang; Ding, Aijun; Mao, Huiting; Nie, Wei; Zhou, Derong; Liu, Lixia; Huang, Xin; Fu, Congbin

    2016-01-01

    Potential relationships between air quality, synoptic weather patterns, and the East Asian Monsoon (EAM) over the North China Plain (NCP) were examined during the time period of 1980-2013 using a weather typing technique and ground-based air pollution index (API) data from three cities: Beijing, Tianjin and Shijiazhuang. Using the Kirchhofer method, circulation patterns during the 34-yr study period were classified into 5 categories, which were further used to understand the quantitative relationship between weather and air quality in NCP. The highest API values were associated with a stagnant weather condition when wide-spread stable conditions controlled most part of NCP, while westerly and southerly wind flowed over the northern and eastern part of this region, resulting in both the regional transport and local build-up of air pollutants. Under the continuous control of this weather pattern, API values were found to increase at a rate of 8.5 per day on average. Based on the qualitative and quantitative analysis, a significant correlation was found between the strength of EAM and inter-annual variability of frequencies of the weather patterns. The strengthening of summer/winter monsoon could increase the frequency of occurrence of cyclone/anticyclone related weather patterns. Time series of climate-induced variability in API over the 34 years were reconstructed based on the quantitative relationship between API and predominant weather patterns during 2001-2010. Significant connections between EAM and reconstructed API were found on both the inter-annual and inter-decadal scales. In winter and summer, strengthening/weakening of EAM, which was generally associated with the change of the representative circulation patterns, could improve/worsen air quality in this region.

  11. Process-based modeling of silicate mineral weathering responses to increasing atmospheric CO2 and climate change

    Science.gov (United States)

    Banwart, Steven A.; Berg, Astrid; Beerling, David J.

    2009-12-01

    A mathematical model describes silicate mineral weathering processes in modern soils located in the boreal coniferous region of northern Europe. The process model results demonstrate a stabilizing biological feedback mechanism between atmospheric CO2 levels and silicate weathering rates as is generally postulated for atmospheric evolution. The process model feedback response agrees within a factor of 2 of that calculated by a weathering feedback function of the type generally employed in global geochemical carbon cycle models of the Earth's Phanerozoic CO2 history. Sensitivity analysis of parameter values in the process model provides insight into the key mechanisms that influence the strength of the biological feedback to weathering. First, the process model accounts for the alkalinity released by weathering, whereby its acceleration stabilizes pH at values that are higher than expected. Although the process model yields faster weathering with increasing temperature, because of activation energy effects on mineral dissolution kinetics at warmer temperature, the mineral dissolution rate laws utilized in the process model also result in lower dissolution rates at higher pH values. Hence, as dissolution rates increase under warmer conditions, more alkalinity is released by the weathering reaction, helping maintain higher pH values thus stabilizing the weathering rate. Second, the process model yields a relatively low sensitivity of soil pH to increasing plant productivity. This is due to more rapid decomposition of dissolved organic carbon (DOC) under warmer conditions. Because DOC fluxes strongly influence the soil water proton balance and pH, this increased decomposition rate dampens the feedback between productivity and weathering. The process model is most sensitive to parameters reflecting soil structure; depth, porosity, and water content. This suggests that the role of biota to influence these characteristics of the weathering profile is as important, if not

  12. Long-term, High Resolution Records of Rock Cracking, Weather and Climate from Mid-Latitude, Desert and Humid-Temperate Sites

    Science.gov (United States)

    Eppes, M. C.; Magi, B. I.

    2014-12-01

    The mechanical breakdown of rock by physical weathering represents a significant rate limiting step for erosion, sediment supply, chemical weathering, and atmospheric- and landscape- evolution across the globe. Yet, the primary drivers of physical weathering are poorly quantified. Recent work highlights the importance of solar-induced thermal stress as a key driver in physical weathering, particularly in mid-latitudes, but to date the role of climate in thermal stress cracking has not been extensively explored. Here we examine two long-term acoustic emission (AE) records of rock cracking in both a humid-temperate (North Carolina - 1 year of data ) and a semi-arid (New Mexico - 3 years of data) location. We use AE energy as a proxy for rock cracking. We compare on-site average ambient daily temperature for days in which cracking occurs to the average temperatures for those dates derived from climate records from the nearest weather stations. The range of temperatures for days on which cracking occurs is similar for both stations (-10 C to +30 C). The majority of cracking in both locations occurs on warm days (> 15 C). In the semi-arid climate, 73% of cracking occurs on hot days (> 20 C) while only 0.1% occurs on very cold days (-8 C to -3 C). In the humid-temperate climate, 21% of cracking occurs on hot days, while 17% occurs on cold days. When days during which cracking occurs are compared to climate averages, 81% (NC) and 51% (NM) of all cracking occurs on days with absolute temperature anomalies >1, regardless of the temperature. The proportion of cracking that occurs on anomalously hot or cold days rises to 92% and 77% when the data is normalized to account for uneven sampling of the days with extreme temperatures. We examine these results in the context of prior analyses of this dataset which indicates that the majority of cracking, even that occurring in freezing temperatures, is caused by thermal-stress processes. Here we attribute a majority of observed

  13. Coping with difficult weather and snow conditions: Reindeer herders’ views on climate change impacts and coping strategies

    Directory of Open Access Journals (Sweden)

    Minna T. Turunen

    2016-01-01

    Full Text Available Winter is a critical season for reindeer herding, with the amount and quality of snow being among the most important factors determining the condition of reindeer and the annual success of the livelihood. Our first aim was to model the future (2035–2064 snow conditions in northern Finland, especially the quantities related to ground ice and/or ice layers within the snow pack, exceptionally deep snow and late snow melt. Secondly, we studied the strategies by which herders cope with the impacts of difficult weather and snow conditions on herding by interviewing 21 herders. SNOWPACK simulations indicate that snow cover formation will be delayed by an average of 19 days and snow will melt 16 days earlier during the period 2035–2064 when compared to 1980–2009. There will be more frequent occurrence of ground ice that persists through the winter and the ice layers in open environments will be thicker in the future. The snow cover will be 26–40% thinner and snow in open environments will be denser. Variability between winters will grow. In interviews, herders indicated that a longer snowless season and thin snow cover would be advantageous for herding due to increased availability of forage, but more frequent icing conditions would cause problems. The most immediate reaction of reindeer to the decreased availability of forage caused by difficult snow conditions is to disperse. This effect is intensified when the lichen biomass on the pastures is low. To cope with the impacts of adverse climatic conditions, herders increase control over their herds, intensify the use of pasture diversity, take reindeer into enclosures and/or start or intensify supplementary feeding. The research also reveals that predators, competing land uses and the high prices of supplementary feed and fuel were the major threats to the herders’ coping capacity. Coping capacity was facilitated by, among other factors, the herders’ experience-based traditional knowledge

  14. The effect of weather on mood, productivity, and frequency of emotional crisis in a temperate continental climate

    Science.gov (United States)

    Barnston, A. G.

    1988-06-01

    A group of 62 mostly university student subjects kept structured diaries of their feelings and their productivity for six weeks in Illinois in early autumn. During the same period, daily frequency of telephone calls to a crisis intervention service in the same community was monitored, and complete daily weather data for the vicinity were provided by a local meteorological research facility. Major findings are as follows. The weather appears to influence mood and productivity, but only to a smallextent compared with the aggregate of all other controlling factors. Males show a relatively stronger effect than females. Psychologically troubled people generally appear to be more affected by weather than university students. The students and the crisis intervention service clients with “mild” problems tend to be stressed more when the weather is unstable, cloudy, warm and humid, and least stressed during sunny, dry, cool weather with rising barometric pressure. The crisis service clients with “severe” problems react oppositely to these two weather types. The meaning of these and other results and the strengths and weaknesses of this study's design are discussed.

  15. The DACCIWA model evaluation project: representation of the meteorology of southern West Africa in state-of-the-art weather, seasonal and climate prediction models

    Science.gov (United States)

    Kniffka, Anke; Benedetti, Angela; Knippertz, Peter; Stanelle, Tanja; Brooks, Malcolm; Deetz, Konrad; Maranan, Marlon; Rosenberg, Philip; Pante, Gregor; Allan, Richard; Hill, Peter; Adler, Bianca; Fink, Andreas; Kalthoff, Norbert; Chiu, Christine; Vogel, Bernhard; Field, Paul; Marsham, John

    2017-04-01

    DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) is an EU-funded project that aims to determine the influence of anthropogenic and natural emissions on the atmospheric composition, air quality, weather and climate over southern West Africa. DACCIWA organised a major international field campaign in June-July 2016 and involves a wide range of modelling activities. Here we report about the coordinated model evaluation performed in the framework of DACCIWA focusing on meteorological fields. This activity consists of two elements: (a) the quality of numerical weather prediction during the field campaign, (b) the ability of seasonal and climate models to represent the mean state and its variability. For the first element, the extensive observations from the main field campaign in West Africa in June-July 2016 (ground supersites, radiosondes, aircraft measurements) will be combined with conventional data (synoptic stations, satellites data from various sensors) to evaluate models against. The forecasts include operational products from centres such as the ECMWF, UK MetOffice and the German Weather Service and runs specifically conducted for the planning and the post-analysis of the field campaign using higher resolutions (e.g., WRF, COSMO). The forecast and the observations are analysed in a concerted way to assess the ability of the models to represent the southern West African weather systems and secondly to provide a comprehensive synoptic overview of the state of the atmosphere. In a second step the process will be extended to long-term modelling periods. This includes both seasonal and climate models, respectively. In this case, the observational dataset contains long-term satellite observations and station data, some of which were digitised from written records in the framework of DACCIWA. Parameter choice and spatial averaging will build directly on the weather forecasting evaluation to allow an assessment of the impact of short-term errors on

  16. Communicating and managing change during extreme weather events: promising practices for responding to urgent and emergent climate threats.

    Science.gov (United States)

    Tinker, Tim L

    2013-01-01

    Large-scale weather events in the USA such as hurricanes Sandy, Isaac and Katrina challenge traditional approaches to change communication and management (CCM) before during and after crises. A major challenge (as well as opportunity) is addressing change from the 'whole-community' perspective affecting a spectrum of people, policies, processes, behaviours and outcomes. When CCM is used effectively, one of its fundamental advantages is creating a sense of urgency. This paper looks at optimising communication during extreme weather events, engaging stakeholders, harnessing the power of social media and change, and correlating organisational and individual behaviours and actions. The strategic blend of change management and crisis communication strategies and tactics in CCM is a central feature in the response to the full range of extreme weather scenarios.

  17. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  18. Optimal climate control of a storage facility using local weather forecasts

    NARCIS (Netherlands)

    Keesman, K.J.; Peters, D.; Lukasse, L.J.S.

    2003-01-01

    in this paper, the problem of optimal climate control of a potato storage facility exploiting favourable weather conditions is considered. A receding horizon optimal controller, allowing incorporation of real-time weather forecasts and input/state constraints and based on a reduced-order model, is c

  19. Rainfall extremes, weather and climatic characterization over complex terrain: A data-driven approach based on signal enhancement methods and extreme value modeling

    Science.gov (United States)

    Pineda, Luis E.; Willems, Patrick

    2017-04-01

    Weather and climatic characterization of rainfall extremes is both of scientific and societal value for hydrometeorogical risk management, yet discrimination of local and large-scale forcing remains challenging in data-scarce and complex terrain environments. Here, we present an analysis framework that separate weather (seasonal) regimes and climate (inter-annual) influences using data-driven process identification. The approach is based on signal-to-noise separation methods and extreme value (EV) modeling of multisite rainfall extremes. The EV models use a semi-automatic parameter learning [1] for model identification across temporal scales. At weather scale, the EV models are combined with a state-based hidden Markov model [2] to represent the spatio-temporal structure of rainfall as persistent weather states. At climatic scale, the EV models are used to decode the drivers leading to the shift of weather patterns. The decoding is performed into a climate-to-weather signal subspace, built via dimension reduction of climate model proxies (e.g. sea surface temperature and atmospheric circulation) We apply the framework to the Western Andean Ridge (WAR) in Ecuador and Peru (0-6°S) using ground data from the second half of the 20th century. We find that the meridional component of winds is what matters for the in-year and inter-annual variability of high rainfall intensities alongside the northern WAR (0-2.5°S). There, low-level southerly winds are found as advection drivers for oceanic moist of the normal-rainy season and weak/moderate the El Niño (EN) type; but, the strong EN type and its unique moisture surplus is locally advected at lowlands in the central WAR. Moreover, the coastal ridges, south of 3°S dampen meridional airflows, leaving local hygrothermal gradients to control the in-year distribution of rainfall extremes and their anomalies. Overall, we show that the framework, which does not make any prior assumption on the explanatory power of the weather

  20. Exploring clouds, weather, climate, and modeling using bilingual content and activities from the Windows to the Universe program and the Center for Multiscale Modeling of Atmospheric Processes

    Science.gov (United States)

    Foster, S. Q.; Johnson, R. M.; Randall, D.; Denning, S.; Russell, R.; Gardiner, L.; Hatheway, B.; Genyuk, J.; Bergman, J.

    2008-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its third year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences through its affiliation with the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). W2U web pages are written at three levels in English and Spanish. This information targets learners at all levels, educators, and families who seek to understand and share resources and information about the nature of weather and the climate system, and career role models from related research fields. This resource can also be helpful to educators who are building bridges in the classroom between the sciences, the arts, and literacy. Visitors to the W2U's CMMAP web portal can access a beautiful new clouds image gallery; information about each cloud type and the atmospheric processes that produce them; a Clouds in Art interactive; collections of weather-themed poetry, art, and myths; links to games and puzzles for children; and extensive classroom- ready resources and activities for K-12 teachers. Biographies of CMMAP scientists and graduate students are featured. Basic science concepts important to understanding the atmosphere, such as condensation, atmosphere pressure, lapse rate, and more have been developed, as well as 'microworlds' that enable students to interact with experimental tools while building fundamental knowledge

  1. WegenerNet climate station network region Feldbach/Austria: From local measurements to weather and climate data products at 1 km-scale resolution

    Science.gov (United States)

    Kabas, T.; Leuprecht, A.; Bichler, C.; Kirchengast, G.

    2010-12-01

    South-eastern Austria is characteristic for experiencing a rich variety of weather and climate patterns. For this reason, the county of Feldbach was selected by the Wegener Center as a focus area for a pioneering observation experiment at very high resolution: The WegenerNet climate station network (in brief WegenerNet) comprises 151 meteorological stations within an area of about 20 km × 15 km (~ 1.4 km × 1.4 km station grid). All stations measure the main parameters temperature, humidity and precipitation with 5 minute sampling. Selected further stations include measurements of wind speed and direction completed by soil parameters as well as air pressure and net radiation. The collected data is integrated in an automatic processing system including data transfer, quality control, product generation, and visualization. Each station is equipped with an internet-attached data logger and the measurements are transferred as binary files via GPRS to the WegenerNet server in 1 hour intervals. The incoming raw data files of measured parameters as well as several operating values of the data logger are stored in a relational database (PostgreSQL). Next, the raw data pass the Quality Control System (QCS) in which the data are checked for its technical and physical plausibility (e.g., sensor specifications, temporal and spatial variability). In consideration of the data quality (quality flag), the Data Product Generator (DPG) results in weather and climate data products on various temporal scales (from 5 min to annual) for single stations and regular grids. Gridded data are derived by vertical scaling and squared inverse distance interpolation (1 km × 1 km and 0.01° × 0.01° grids). Both subsystems (QCS and DPG) are realized by the programming language Python. For application purposes the resulting data products are available via the bi-lingual (dt, en) WegenerNet data portal (www.wegenernet.org). At this time, the main interface is still online in a system in which

  2. Observations of Space Weather and Space Climate Over the Past 15 Years From SABER (And Longer!)

    Science.gov (United States)

    Mlynczak, Marty; Hunt, Linda; Russell, James M., III

    2016-01-01

    The global infrared (IR) energy budget of the thermosphere has been reconstructed back 70 years (to 1947). IR cooling, integrated over a solar cycle, is relatively constant over the 5 complete cycles (19 -23) studied. Result implies that solar energy (particles and photons) has similar, small (< 7%) variation from one cycle to next. From Earth's upper atmosphere perspective, solar cycles are really more similar than different, over their length. No consistent relationship between peak of IR cooling and sunspot number peak. Results submitted to GRL 8/2016.

  3. Impacts of Severe Weather, Climate Zone, and Energy Factors on Base Realignment and Closure (BRAC)

    Science.gov (United States)

    2015-03-26

    It was not until the early 21st century that many jurisdictions even considered adopting an energy code (Makela, 2011). As of early 2014, many...federal, state, and local building-code enforcement-agencies have adopted new energy codes developed by the International Code Council (ICC). These...have large photovoltaic solar arrays with unique buy-back contracts or power-purchase agreements. These renewable energy projects benefit primarily

  4. Climate and weather influences on spatial temporal patterns of mountain pine beetle populations in Washington and Oregon

    Science.gov (United States)

    Haiganoush K. Preisler; Jeffrey A. Hicke; Alan A. Ager; Jane L. Hayes

    2012-01-01

    Widespread outbreaks of mountain pine beetle in North America have drawn the attention of scientists, forest managers, and the public. There is strong evidence that climate change has contributed to the extent and severity of recent outbreaks. Scientists are interested in quantifying relationships between bark beetle population dynamics and trends in climate. Process...

  5. Soil climate and decomposer activity in Sub-Saharan Africa estimated from standard weather station data: a simple climate index for soil carbon balance calculations.

    Science.gov (United States)

    Andrén, Olof; Kihara, Job; Bationo, André; Vanlauwe, Bernard; Kätterer, Thomas

    2007-07-01

    Soil biological activity was calculated on a daily basis, using standard meteorological data from African weather stations, a simple soil water model, and commonly used assumptions regarding the relations between temperature, soil water content, and biological activity. The activity factor r(e_clim) is calculated from daily soil moisture and temperature, thereby taking the daily interaction between temperature and moisture into account. Annual mean r(e_clim) was normalized to 1 in Central Sweden (clay loam soil, no crop), where the original calibration took place. Since soils vary in water storage capacity and plant cover will affect transpiration, we used this soil under no crop for all sites, thereby only including climate differences. The Swedish r(e_clim) value, 1, corresponds to ca. 50% annual mass loss of, e.g., cereal straw incorporated into the topsoil. African mean annual r(e_clim) values varied between 1.1 at a hot and dry site (Faya, Chad) and 4.7 at a warm and moist site (Brazzaville, Congo). Sites in Kenya ranged between r(e_clim) = 2.1 at high altitude (Matanya) and 4.1 in western Kenya (Ahero). This means that 4.1 times the Swedish C input to soil is necessary to maintain Swedish soil carbon levels in Ahero, if soil type and management are equal. Diagrams showing daily r(e_clim) dynamics are presented for all sites, and differences in within-year dynamics are discussed. A model experiment indicated that a Swedish soil in balance with respect to soil carbon would lose 41% of its soil carbon during 30 y, if moved to Ahero, Kenya. If the soil was in balance in Ahero with respect to soil carbon, and then moved to Sweden, soil carbon mass would increase by 64% in 30 y. The validity of the methodology and results is discussed, and r(e_clim) is compared with other climate indices. A simple method to produce a rough estimate of r(e_clim) is suggested.

  6. Weather and road capacity

    DEFF Research Database (Denmark)

    Jensen, Thomas Christian

    2014-01-01

    The paper presents estimations of the effect of bad weather on the observed speed on a Danish highway section; Køge Bugt Motorvejen. The paper concludes that weather, primarily precipitation and snow, has a clear negative effect on speed when the road is not in hypercongestion mode. Furthermore......, the capacity of the highway seems to be reduced in bad weather and there are indications that travel time variability is also increased, at least in free-flow conditions. Heavy precipitation reduces speed and capacity by around 5-8%, whereas snow primarily reduces capacity. Other weather variables......-parametrically against traffic density and in step 2 the residuals from step 1 are regressed linearly against the weather variables. The choice of a non-parametric method is made to avoid constricting ties from a parametric specification and because the focus here is not on the relationship between traffic flow...

  7. Extreme weather events in Iran under a changing climate

    Science.gov (United States)

    Alizadeh-Choobari, Omid; Najafi, M. S.

    2017-03-01

    Observations unequivocally show that Iran has been rapidly warming over recent decades, which in sequence has triggered a wide range of climatic impacts. Meteorological records of several ground stations across Iran with daily temporal resolution for the period 1951-2013 were analyzed to investigate the climate change and its impact on some weather extremes. Iran has warmed by nearly 1.3° C during the period 1951-2013 (+0.2° per decade), with an increase of the minimum temperature at a rate two times that of the maximum. Consequently, an increase in the frequency of heat extremes and a decrease in the frequency of cold extremes have been observed. The annual precipitation has decreased by 8 mm per decade, causing an expansion of Iran's dry zones. Previous studies have pointed out that warming is generally associated with more frequent heavy precipitation because a warmer air can hold more moisture. Nevertheless, warming in Iran has been associated with more frequent light precipitation, but less frequent moderate, heavy and extremely heavy precipitation. This is because in the subtropical dry zones, a longer time is required to recharge the atmosphere with water vapour in a warmer climate, causing more water vapour to be transported from the subtropics to high latitudes before precipitations forms. In addition, the altitude of the condensation level increases in a warmer climate in subtropical regions, causing an overall decrease of precipitation. We argue that changing in the frequency of heavy precipitation in response to warming varies depending on the geographical location. Warming over the dry subtropical regions is associated with a decrease in the frequency of heavy precipitation, while an increase is expected over both subpolar and tropical regions. The warmer climate has also led to the increase in the frequency of both thunderstorms (driven by convective heating) and dust events over Iran.

  8. Enhancing the efficiency of Climate and Weather Simulation in High Performance Computing Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A central focus of NASA's Global Modeling and Assimilation Office (GMAO) atmospheric general circulation modeling effort is the development of an atmospheric model...

  9. A Century of Monitoring Weather and Crops: The Weekly Weather and Crop Bulletin.

    Science.gov (United States)

    Heddinghaus, Thomas R.; Le Comte, Douglas M.

    1992-02-01

    Publication of a national weekly weather summary called the Weekly Weather Chronicle began in 1872. This summary was the precursor of today's Weekly Weather and Crop Bulletin (WWCB), a publication that reports global weather and climate conditions relevant to agricultural interests, as well as current national activities and assessments of crop and livestock conditions. The WWCB is produced by the Joint Agricultural Weather Facility (JAWF), a world agricultural weather information center located in the U.S. Department of Agriculture (USDA) headquarters in Washington, D.C., and jointly staffed by units of the National Oceanic and Atmospheric Administration's Climats. Analysis Center and USDA's World Agricultural Outlook Board and National Agricultural Statistics Service. Besides featuring charts and tables (e.g., temperature and precipitation maps and crop progress and condition tables), the WWCB contains summaries and special stories highlighting significant weather events affecting agriculture, such as droughts, torrential rains, floods, unusual warmth, heat waves, severe freezes, heavy snowfall, blizzards, damaging storms, and hurricanes.

  10. U. S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather

    Science.gov (United States)

    2013-07-01

    of biodiesel from microalgae (Yang et al. 2010). However, this freshwater demand can be substantially reduced if an alternative water resource is...analysis on biodiesel production from microalgae : Water footprint and nutrients balance.” Bioresource Technology. DOI:10.1016/j.biortech.2010.07.017.

  11. Communist China. Section 23. Weather and Climate. Part 3 - North China

    Science.gov (United States)

    1964-06-01

    been between about 95° F. and 105° F. However, Tun-huang in the west has experienced 111° F. in July while Wen- chuan in the northeast has not...8217 jukiOll .f»i I N Äanfung P-ÜM 4SI^ÄÖ?toH«.ng-eh’^ »NANKING (HsiangtanfFanch’eng) ) I -i,Chung hsiang n rTiu»n JL ^ ^1 r^ H»ü»n-ch’*nl

  12. National Intelligence Survey: France. Section 23. Weather and Climate. Chapter 2

    Science.gov (United States)

    1952-10-01

    example, there is a persistent snow cover during winter and early spring at Mont Ventoux , at an elevation of about 6,200 feet. At CONFIDENTIAL...65 74 75 71 64 52 ;9 71 76 70 72 67 14 1800 69 66 76 77 71 62 51 51 62 72 74 71 67 14 Mont Ventoux 0700 50 56 62 60 52 45 36 36 42 62 61 66 52 9... Ventoux Toulouse Mont-Louis MEDITERRANEAN COAST: NImes I’erpignan Marseille Antibes CORSICA: Frsa Ajaccio Bonifacio 11 8 15 12

  13. Weather and Climate Extremes.

    Science.gov (United States)

    1997-09-01

    Antarctica’s highest (New Zealand Antarctic Society, 1974). This extreme exceeded the record of 58°F (14.4°C) that occurred on 20 October 1956 at Esperanza ... Esperanza (also known as Bahia Esperanza , Hope Bay) was in operation from 1945 through the early 1960s. Meteorological/Climatological Factors: This extreme...cm) Location: Grand Ilet, La R’eunion Island [21°00’S, 55°30’E] Date: 26 January 1980 WORLD’S GREATEST 24-HOUR RAINFALL 72 in (182.5 cm

  14. The use of webcam images to determine tourist-climate aptitude: favourable weather types for sun and beach tourism on the Alicante coast (Spain)

    Science.gov (United States)

    Ibarra, Emilio Martínez

    2011-05-01

    Climate has an obvious influence on tourism as a resource and as a location factor for tourist activities. Consequently, the tourist phenomenon in general is heavily controlled by meteorological conditions—in short, by the climate. In this article, the author proposes a set of weather types with which to establish the climate aptitude for sun and beach tourism. To determine these types, the density of use of one of the beaches with the lowest seasonality in continental Europe, the Levante Beach in Benidorm (Alicante, Spain), was analysed. Beach attendance was monitored using a webcam installed by the "Agencia Valenciana de Turismo". The relationship between the density of use of the lower and upper beach areas on the one hand, and meteorological variables on the other, allowed comfort (physiological equivalent temperature) and enjoyment (fractions of solar radiation) thresholds to be established. The appropriate hydric comfort values were obtained by comparing the ranges proposed by Besancenot in 1989 [Besancenot (1989) Clima et turismes. Massom, París] with numbers of visitors to the beach. The wind velocity and precipitation thresholds were selected following consultation with the literature and considering the climatic characteristics of the environment under analysis. Based on a combination of these thresholds, weather types suitable for this specific tourist activity are defined. Thus, this article presents a method for assessing the extent to which a day on the beach can be enjoyed. This has a number of applications, for planners, the tourism business and consumers alike. The use of this (filter) method in climate databases and meteorological forecasts could help determine the tourist season, the suitability of setting up a business associated with sun and beach tourism, as well as help plan holidays and program a day's leisure activities. Thus, the article seeks to improve our understanding of the climate preferences of that tourist activity par

  15. The use of webcam images to determine tourist-climate aptitude: favourable weather types for sun and beach tourism on the Alicante coast (Spain).

    Science.gov (United States)

    Ibarra, Emilio Martínez

    2011-05-01

    Climate has an obvious influence on tourism as a resource and as a location factor for tourist activities. Consequently, the tourist phenomenon in general is heavily controlled by meteorological conditions-in short, by the climate. In this article, the author proposes a set of weather types with which to establish the climate aptitude for sun and beach tourism. To determine these types, the density of use of one of the beaches with the lowest seasonality in continental Europe, the Levante Beach in Benidorm (Alicante, Spain), was analysed. Beach attendance was monitored using a webcam installed by the "Agencia Valenciana de Turismo". The relationship between the density of use of the lower and upper beach areas on the one hand, and meteorological variables on the other, allowed comfort (physiological equivalent temperature) and enjoyment (fractions of solar radiation) thresholds to be established. The appropriate hydric comfort values were obtained by comparing the ranges proposed by Besancenot in 1989 [Besancenot (1989) Clima et turismes. Massom, París] with numbers of visitors to the beach. The wind velocity and precipitation thresholds were selected following consultation with the literature and considering the climatic characteristics of the environment under analysis. Based on a combination of these thresholds, weather types suitable for this specific tourist activity are defined. Thus, this article presents a method for assessing the extent to which a day on the beach can be enjoyed. This has a number of applications, for planners, the tourism business and consumers alike. The use of this (filter) method in climate databases and meteorological forecasts could help determine the tourist season, the suitability of setting up a business associated with sun and beach tourism, as well as help plan holidays and program a day's leisure activities. Thus, the article seeks to improve our understanding of the climate preferences of that tourist activity par excellence

  16. Integrated Information Systems Across the Weather-Climate Continuum

    Science.gov (United States)

    Pulwarty, R. S.; Higgins, W.; Nierenberg, C.; Trtanj, J.

    2015-12-01

    The increasing demand for well-organized (integrated) end-to-end research-based information has been highlighted in several National Academy studies, in IPCC Reports (such as the SREX and Fifth Assessment) and by public and private constituents. Such information constitutes a significant component of the "environmental intelligence" needed to address myriad societal needs for early warning and resilience across the weather-climate continuum. The next generation of climate research in service to the nation requires an even more visible, authoritative and robust commitment to scientific integration in support of adaptive information systems that address emergent risks and inform longer-term resilience strategies. A proven mechanism for resourcing such requirements is to demonstrate vision, purpose, support, connection to constituencies, and prototypes of desired capabilities. In this presentation we will discuss efforts at NOAA, and elsewhere, that: Improve information on how changes in extremes in key phenomena such as drought, floods, and heat stress impact management decisions for resource planning and disaster risk reduction Develop regional integrated information systems to address these emergent challenges, that integrate observations, monitoring and prediction, impacts assessments and scenarios, preparedness and adaptation, and coordination and capacity-building. Such systems, as illustrated through efforts such as NIDIS, have strengthened the integration across the foundational research enterprise (through for instance, RISAs, Modeling Analysis Predictions and Projections) by increasing agility for responding to emergent risks. The recently- initiated Climate Services Information System, in support of the WMO Global Framework for Climate Services draws on the above models and will be introduced during the presentation.

  17. Climatic variability of a fire-weather index based on turbulent kinetic energy and the Haines Index

    Science.gov (United States)

    Warren E. Heilman; Xindi Bian

    2010-01-01

    Combining the Haines Index (HI) with near-surface turbulent kinetic energy (TKEs) through a product of the two values (HITKEs) has shown promise as an indicator of the atmospheric potential for extreme and erratic fire behavior in the U.S. Numerical simulations of fire-weather evolution during past wildland fire episodes in...

  18. SUITS/SWUSV: a small-size mission to address solar spectral variability, space weather and solar-climate relations

    Science.gov (United States)

    Damé, Luc; Keckhut, Philippe; Hauchecorne, Alain; Meftah, Mustapha; Bekki, Slimane

    2016-07-01

    We present the SUITS/SWUSV microsatellite mission investigation: "Solar Ultraviolet Influence on Troposphere/Stratosphere, a Space Weather & Ultraviolet Solar Variability" mission. SUITS/SWUSV was developed to determine the origins of the Sun's activity, understand the flaring process (high energy flare characterization) and onset of CMEs (forecasting). Another major objective is to determine the dynamics and coupling of Earth's atmosphere and its response to solar variability (in particular UV) and terrestrial inputs. It therefore includes the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging) the solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance measures from 170 to 400 nm). The mission is proposed on a sun-synchronous polar orbit 18h-6h (for almost constant observing) and proposes a 7 instruments model payload of 65 kg - 65 W with: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); SOLSIM (Solar Spectral Irradiance Monitor), a spectrometer with 0.65 nm spectral resolution from 170 to 340 nm; SUPR (Solar Ultraviolet Passband Radiometers), with UV filter radiometers at Lyman-Alpha, Herzberg, MgII index, CN bandhead and UV bands coverage up to 400 nm; HEBS (High Energy Burst Spectrometers), a large energy coverage (a few tens of keV to a few hundreds of MeV) instrument to characterize large flares; EPT-HET (Electron-Proton Telescope - High Energy Telescope), measuring electrons, protons, and heavy ions over a large energy range; ERBO (Earth Radiative Budget and Ozone) NADIR oriented; and a vector magnetometer. Complete accommodation of the payload has been performed on a PROBA type platform very nicely. Heritage is important both for instruments (SODISM and PREMOS on PICARD, LYRA on PROBA-2, SOLSPEC on ISS

  19. Providing the Larger Climate Context During Extreme Weather - Lessons from Local Television News

    Science.gov (United States)

    Woods, M.; Cullen, H. M.

    2015-12-01

    Local television weathercasters, in their role as Station Scientists, are often called upon to educate viewers about the science and impacts of climate change. Climate Central supports these efforts through its Climate Matters program. Launched in 2010 with support from the National Science Foundation, the program has grown into a network that includes more than 245 weathercasters from across the country and provides localized information on climate and ready-to-use, broadcast quality graphics and analyses in both English and Spanish. This presentation will focus on discussing best practices for integrating climate science into the local weather forecast as well as advances in the science of extreme event attribution. The Chief Meteorologist at News10 (Sacramento, CA) will discuss local news coverage of the ongoing California drought, extreme weather and climate literacy.

  20. NASA's Advancements in Space-Based Spectrometry Lead to Improvements in Weather Prediction and Understanding of Climate Processes

    Science.gov (United States)

    Susskind, Joel; Iredell, Lena

    2010-01-01

    AIRS (Atmospheric Infra-Red Sounder), was launched, in conjunction with AMSU-A (Advanced Microwave Sounding Unit-A) on the NASA polar orbiting research satellite EOS (Earth Observing System) Aqua satellite in May 2002 as a next generation atmospheric sounding system. Atmospheric sounders provide information primarily about the vertical distribution of atmospheric temperature and water vapor distribution. This is achieved by measuring outgoing radiation in discrete channels (spectral intervals) which are sensitive primarily to variations of these geophysical parameters. The primary objectives of AIRS/AMSU were to utilize such information in order to improve the skill of numerical weather prediction as well as to measure climate variability and trends. AIRS is a multi-detector array grating spectrometer with 2378 channels covering the spectral range 650/cm (15 microns) to 2660/cm (3.6 microns) with a resolving power (i/a i) of roughly 1200 where a i is the spectral channel bandpass. Atmospheric temperature profile can be determined from channel observations taken within the 15 micron (the long-wave CO2 absorption band) and within the 4.2 micron (the short-wave CO2 absorption band). Radiances in these (and all other) spectral intervals in the infrared are also sensitive to the presence of clouds in the instrument?s field of view (FOV), which are present about 95% of the time. AIRS was designed so as to allow for the ability to produce accurate Quality Controlled atmospheric soundings under most cloud conditions. This was achieved by having 1) extremely low channel noise values in the shortwave portion of the spectrum and 2) a very flat spatial response function within a channel?s FOV. IASI, the high spectral resolution IR interferometer flying on the European METOP satellite, does not contain either of these important characteristics. The AIRS instrument was also designed to be extremely stabile with regard to its spectral radiometric characteristics, which is

  1. Toward Seamless Weather-Climate Prediction with a Global Cloud Resolving Model

    Science.gov (United States)

    2016-01-14

    distribution is unlimited. TOWARD SEAMLESS WEATHER- CLIMATE PREDICTION WITH A GLOBAL CLOUD RESOLVING MODEL PI: Tim Li IPRC/SOEST, University of Hawaii at...under global warming This study uses the MRI high-resolution Atmospheric Climate Model to determine whether environmental parameters that control...ENSO Amplitude under Global Warming in Four CMIP5 Models , J. Climate , 28 (8), 3250-3274. 6. Chung, P.-H., and T. Li, 2015: Characteristics of tropical

  2. Developing a robust methodology for assessing the value of weather/climate services

    Science.gov (United States)

    Krijnen, Justin; Golding, Nicola; Buontempo, Carlo

    2016-04-01

    Increasingly, scientists involved in providing weather and climate services are expected to demonstrate the value of their work for end users in order to justify the costs of developing and delivering these services. This talk will outline different approaches that can be used to assess the socio-economic benefits of weather and climate services, including, among others, willingness to pay and avoided costs. The advantages and limitations of these methods will be discussed and relevant case-studies will be used to illustrate each approach. The choice of valuation method may be influenced by different factors, such as resource and time constraints and the end purposes of the study. In addition, there are important methodological differences which will affect the value assessed. For instance the ultimate value of a weather/climate forecast to a decision-maker will not only depend on forecast accuracy but also on other factors, such as how the forecast is communicated to and consequently interpreted by the end-user. Thus, excluding these additional factors may result in inaccurate socio-economic value estimates. In order to reduce the inaccuracies in this valuation process we propose an approach that assesses how the initial weather/climate forecast information can be incorporated within the value chain of a given sector, taking into account value gains and losses at each stage of the delivery process. By this we aim to more accurately depict the socio-economic benefits of a weather/climate forecast to decision-makers.

  3. Evaluating effects of climate variability, extreme weather events and thinning on carbon and water exchanges in managed temperate forests in eastern Canada

    Science.gov (United States)

    Arain, M.; Brodeur, J. J.; Trant, J.; Thorne, R.; Peichl, M.; Kula, M.; Parsaud, A.; Khader, R.

    2013-12-01

    In this study the impact of climate variability and extreme weather events on gross ecosystem productivity (GEP), ecosystem respiration (RE), net ecosystem productivity (NEP) and evapotranspiration (E) is evaluated in an age-sequence (74-, 39- and 11-years old) of temperate pine (Pinus strobus L.) forests, north of Lake Erie in southern Ontario, Canada using ten years (2003-2012) of eddy covariance flux and meteorological data. Fluxes from conifer stands are also compared with measurements made in an 80-year-old deciduous (Carolinian) forest, established in 2012. All four sites are managed forests and part of the Turkey Point Flux Station and global Fluxnet. Ten-year mean NEP values were 169 (75 to 312), 371 (305 to 456, over 2008-2012) and 141 (-10 to 420) g C/m2/year in the 74-, 39-, and 11-year-old stand, respectively, while mean NEP in the 80-year-old deciduous stand was 286 g C/m2/year in 2012. This region is affected by low frequency climate oscillations, such as El Niño-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). The study period experienced four distinct extreme weather patterns: warm and dry springs in 2005 and 2012, extremely wet and warm summer in 2006, a summer drought in 2007 and warm summers in 2010 and 2012. In February-March 2012, the 74-year-old stand was selectively thinned and approximately 30% of trees were removed to improve light and water availability and stimulate growth of remaining trees. Thinning and warm/dry spring reduced NEP in the first post-thinning year, with mean annual NEP of 75 g C/m2/year in 2012. Increased supply of dead organic matter and warm temperatures in 2012 increased RE much more than GEP, resulting in lower annual NEP. Heat stress and drought in spring of 2005 reduced NEP of the 74-year stand to 78 g C/m2/year. The impact of this extreme weather event on NEP was similar to that observed in 2012 when stand experienced a drastic structural change, dry spring and warm temperatures throughout the

  4. The impact of climate change on weather index insurance design

    Science.gov (United States)

    Enenkel, Markus; Braun, Melody; Ouni, Souha; Osgood, Daniel; Blakeley, Sari; Lebel, Thierry

    2017-04-01

    While the agreement on a binding policy framework is vital to limit emissions and therefore the impact of climate change on a global scale, two complementary actions are important with regard to the mitigation of climate change impacts. First, there is clear need to upscale new approaches and successful strategies. Ideally, this happens via tools that are based on participatory processes and capacity building, empowering the communities that are the most affected. Second, the development of these approaches must constantly be re-evaluated with regard to a changing climate. Weather index insurance (WII) is one of these approaches. It allows smallholder farmers to increase their yields in normal or good years by protecting them against the risk of losing their agricultural investments in drought years. In addition, WII is usually more affordable and pays out faster than conventional insurance. The parameterization of WII is often based on satellite-derived datasets, mainly rainfall and vegetation health, dating back to the early 1980s. The calibration of indices based on historical data is crucial in identifying at which threshold of the chosen variable (e. g. of rainfall) payouts start and end during the season, the overall payout frequency and the payout sum for a given year. To date, the development of WII assumes a uniform distribution of drought years since the 1980s. Recent findings, however, identified generally dryer conditions in West Africa during the 1980s compared to the 1990s and 2000s. There is a risk that these circumstances influence the calibration of indices in a way that more recent droughts result in lower payouts. As a consequence, this study analyses temporal and spatial shifts in rainfall patterns in West Africa, in particular Senegal, and their impact on the calibration of WII.

  5. Chemical weathering as a mechanism for the climatic control of bedrock river incision

    Science.gov (United States)

    Murphy, Brendan P.; Johnson, Joel P. L.; Gasparini, Nicole M.; Sklar, Leonard S.

    2016-04-01

    Feedbacks between climate, erosion and tectonics influence the rates of chemical weathering reactions, which can consume atmospheric CO2 and modulate global climate. However, quantitative predictions for the coupling of these feedbacks are limited because the specific mechanisms by which climate controls erosion are poorly understood. Here we show that climate-dependent chemical weathering controls the erodibility of bedrock-floored rivers across a rainfall gradient on the Big Island of Hawai‘i. Field data demonstrate that the physical strength of bedrock in streambeds varies with the degree of chemical weathering, which increases systematically with local rainfall rate. We find that incorporating the quantified relationships between local rainfall and erodibility into a commonly used river incision model is necessary to predict the rates and patterns of downcutting of these rivers. In contrast to using only precipitation-dependent river discharge to explain the climatic control of bedrock river incision, the mechanism of chemical weathering can explain strong coupling between local climate and river incision.

  6. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    Science.gov (United States)

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquin; Gutierrez, Jose M.; San Miguel-Ayanz, Jesus; Camia, Andrea; Keeley, Jon E.; Moreno, Jose M.

    2015-01-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire–weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating

  7. Detection and attribution of extreme weather disasters

    Science.gov (United States)

    Huggel, Christian; Stone, Dáithí; Hansen, Gerrit

    2014-05-01

    Single disasters related to extreme weather events have caused loss and damage on the order of up to tens of billions US dollars over the past years. Recent disasters fueled the debate about whether and to what extent these events are related to climate change. In international climate negotiations disaster loss and damage is now high on the agenda, and related policy mechanisms have been discussed or are being implemented. In view of funding allocation and effective risk reduction strategies detection and attribution to climate change of extreme weather events and disasters is a key issue. Different avenues have so far been taken to address detection and attribution in this context. Physical climate sciences have developed approaches, among others, where variables that are reasonably sampled over climatically relevant time periods and related to the meteorological characteristics of the extreme event are examined. Trends in these variables (e.g. air or sea surface temperatures) are compared between observations and climate simulations with and without anthropogenic forcing. Generally, progress has been made in recent years in attribution of changes in the chance of some single extreme weather events to anthropogenic climate change but there remain important challenges. A different line of research is primarily concerned with losses related to the extreme weather events over time, using disaster databases. A growing consensus is that the increase in asset values and in exposure are main drivers of the strong increase of economic losses over the past several decades, and only a limited number of studies have found trends consistent with expectations from climate change. Here we propose a better integration of existing lines of research in detection and attribution of extreme weather events and disasters by applying a risk framework. Risk is thereby defined as a function of the probability of occurrence of an extreme weather event, and the associated consequences

  8. Global weather and local butterflies: variable responses to a large-scale climate pattern along an elevational gradient.

    Science.gov (United States)

    Pardikes, Nicholas A; Shapiro, Arthur M; Dyer, Lee A; Forister, Matthew L

    2015-11-01

    Understanding the spatial and temporal scales at which environmental variation affects populations of plants and animals is an important goal for modern population biology, especially in the context of shifting climatic conditions. The El Niño Southern Oscillation (ENSO) generates climatic extremes of interannual variation, and has been shown to have significant effects on the diversity and abundance of a variety of terrestrial taxa. However, studies that have investigated the influence of such large-scale climate phenomena have often been limited in spatial and taxonomic scope. We used 23 years (1988-2010) of a long-term butterfly monitoring data set to explore associations between variation in population abundance of 28 butterfly species and variation in ENSO-derived sea surface temperature anomalies (SSTA) across 10 sites that encompass an elevational range of 2750 m in the Sierra Nevada mountain range of California. Our analysis detected a positive, regional effect of increased SSTA on butterfly abundance (wetter and warmer years predict more butterfly observations), yet the influence of SSTA on butterfly abundances varied along the elevational gradient, and also differed greatly among the 28 species. Migratory species had the strongest relationships with ENSO-derived SSTA, suggesting that large-scale climate indices are particularly valuable for understanding biotic-abiotic relationships of the most mobile species. In general, however, the ecological effects of large-scale climatic factors are context dependent between sites and species. Our results illustrate the power of long-term data sets for revealing pervasive yet subtle climatic effects, but also caution against expectations derived from exemplar species or single locations in the study of biotic-abiotic interactions.

  9. Evaluating Parameterizations in General Circulation Models: Climate Simulation Meets Weather Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T J; Potter, G L; Williamson, D L; Cederwall, R T; Boyle, J S; Fiorino, M; Hnilo, J J; Olson, J G; Xie, S; Yio, J J

    2004-05-06

    To significantly improve the simulation of climate by general circulation models (GCMs), systematic errors in representations of relevant processes must first be identified, and then reduced. This endeavor demands that the GCM parameterizations of unresolved processes, in particular, should be tested over a wide range of time scales, not just in climate simulations. Thus, a numerical weather prediction (NWP) methodology for evaluating model parameterizations and gaining insights into their behavior may prove useful, provided that suitable adaptations are made for implementation in climate GCMs. This method entails the generation of short-range weather forecasts by a realistically initialized climate GCM, and the application of six-hourly NWP analyses and observations of parameterized variables to evaluate these forecasts. The behavior of the parameterizations in such a weather-forecasting framework can provide insights on how these schemes might be improved, and modified parameterizations then can be tested in the same framework. In order to further this method for evaluating and analyzing parameterizations in climate GCMs, the U.S. Department of Energy is funding a joint venture of its Climate Change Prediction Program (CCPP) and Atmospheric Radiation Measurement (ARM) Program: the CCPP-ARM Parameterization Testbed (CAPT). This article elaborates the scientific rationale for CAPT, discusses technical aspects of its methodology, and presents examples of its implementation in a representative climate GCM.

  10. weather@home 2: validation of an improved global-regional climate modelling system

    Science.gov (United States)

    Guillod, Benoit P.; Jones, Richard G.; Bowery, Andy; Haustein, Karsten; Massey, Neil R.; Mitchell, Daniel M.; Otto, Friederike E. L.; Sparrow, Sarah N.; Uhe, Peter; Wallom, David C. H.; Wilson, Simon; Allen, Myles R.

    2017-05-01

    Extreme weather events can have large impacts on society and, in many regions, are expected to change in frequency and intensity with climate change. Owing to the relatively short observational record, climate models are useful tools as they allow for generation of a larger sample of extreme events, to attribute recent events to anthropogenic climate change, and to project changes in such events into the future. The modelling system known as weather@home, consisting of a global climate model (GCM) with a nested regional climate model (RCM) and driven by sea surface temperatures, allows one to generate a very large ensemble with the help of volunteer distributed computing. This is a key tool to understanding many aspects of extreme events. Here, a new version of the weather@home system (weather@home 2) with a higher-resolution RCM over Europe is documented and a broad validation of the climate is performed. The new model includes a more recent land-surface scheme in both GCM and RCM, where subgrid-scale land-surface heterogeneity is newly represented using tiles, and an increase in RCM resolution from 50 to 25 km. The GCM performs similarly to the previous version, with some improvements in the representation of mean climate. The European RCM temperature biases are overall reduced, in particular the warm bias over eastern Europe, but large biases remain. Precipitation is improved over the Alps in summer, with mixed changes in other regions and seasons. The model is shown to represent the main classes of regional extreme events reasonably well and shows a good sensitivity to its drivers. In particular, given the improvements in this version of the weather@home system, it is likely that more reliable statements can be made with regards to impact statements, especially at more localized scales.

  11. CRADE OF SAND AND DUST STORM WEATHER

    Institute of Scientific and Technical Information of China (English)

    Niu Ruoyun; Tian Cuiying; Bi Baogui; Yang Keming; Wang Youheng; Tuo Ya; Ding Haifang; Zhang Tairen

    2011-01-01

    Background Sand and dust storm,as one of the main disastrous weathers that affect northern China,not only affect the people health and normal life,but cause the short-term climatic changes due to the direct and indirect radiation of the earth-atmosphere system through the dust floating in the sky.The sand end dust weather and its potential harm on the national economy,ecological environment,social activities and other aspects have aroused worldwide concern.

  12. Characterization of weathering profile in granites and volcanosedimentary rocks in West Africa under humid tropical climate conditions. Case of the Dimbokro Catchment (Ivory Coast)

    Science.gov (United States)

    Koita, M.; Jourde, H.; Koffi, K. J. P.; da Silveira, K. S.; Biaou, A.

    2013-06-01

    In granitic rocks, various models of weathering profile have been proposed, but never for the hard rocks of West Africa. Besides, in the literature there is no description of the weathering profile in volcanosedimentrary rocks. Therefore, we propose three models describing the weathering profiles in granites, metasediments, and volcanic rocks for hard rock formations located in West Africa. For each of these models proposed for granitic and volcanosedimentary rocks of the Dimbokro catchment, vertical layered weathering profiles are described, according to the various weathering and erosion cycles (specific to West Africa) that the geological formations of the Dimbokro catchment experienced from the Eocene to the recent Quaternary period. The characterization of weathering profiles is based on: i) bedrocks and weathering profile observations at outcrop, and ii) interpretation and synthesis of geophysical data and lithologs from different boreholes. For each of the geological formations (granites, metasediments, and volcanic rocks), their related weathering profile model depicted from top to bottom comprises four separate layers: alloterite, isalterite, fissured layer, and fractured fresh basement. These weathering profiles are systematically covered by a soil layer. Though granites, metasediments and volcanic rocks of the Dimbokro catchment experience the same weathering and erosion cycles during the palaeoclimatic fluctuations from Eocene to recent Quaternary period, they exhibit differences in thickness. In granites, the weathering profile is relatively thin due to the absence of iron crust which protects weathering products against dismantling. In metasediments and volcanic rocks iron crusts develop better than in granites; in these rocks the alterite are more resistant to dismantling.

  13. Characterization of weathering profile in granites and volcanosedimentary rocks in West Africa under humid tropical climate conditions. Case of the Dimbokro Catchment (Ivory Coast)

    Indian Academy of Sciences (India)

    M Koita; H Jourde; K J P Koffi; K S Da Silveira; A Biaou

    2013-06-01

    In granitic rocks, various models of weathering profile have been proposed, but never for the hard rocks of West Africa. Besides, in the literature there is no description of the weathering profile in volcanosedimentrary rocks. Therefore, we propose three models describing the weathering profiles in granites, metasediments, and volcanic rocks for hard rock formations located in West Africa. For each of these models proposed for granitic and volcano sedimentary rocks of the Dimbokro catchment, vertical layered weathering profiles are described, according to the various weathering and erosion cycles (specific to West Africa) that the geological formations of the Dimbokro catchment experienced from the Eocene to the recent Quaternary period. The characterization of weathering profiles is based on: i) bedrocks and weathering profile observations at outcrop, and ii) interpretation and synthesis of geophysical data and lithologs from different boreholes. For each of the geological formations (granites, metasediments, and volcanic rocks), their related weathering profile model depicted from top to bottom comprises four separate layers: alloterite, isalterite, fissured layer, and fractured fresh basement. These weathering profiles are systematically covered by a soil layer. Though granites, metasediments and volcanic rocks of the Dimbokro catchment experience the same weathering and erosion cycles during the palaeoclimatic fluctuations from Eocene to recent Quaternary period, they exhibit differences in thickness. In granites, the weathering profile is relatively thin due to the absence of iron crust which protects weathering products against dismantling. In metasediments and volcanic rocks iron crusts develop better than in granites; in these rocks the alterite are more resistant to dismantling.

  14. Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland

    NARCIS (Netherlands)

    Zumbrunnen, T.; Pezzatti, B.; Menendez, P.; Bugmann, H.; Brgi, M.; Conedera, M.

    2011-01-01

    Understanding the factors driving past fire regimes is crucial in the context of global change as a basis for predicting future changes. In this study, we aimed to identify the impact of climate and human activities on fire occurrence in the most fire-prone regions of Switzerland. We considered fore

  15. Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland

    NARCIS (Netherlands)

    Zumbrunnen, T.; Pezzatti, B.; Menendez, P.; Bugmann, H.; Brgi, M.; Conedera, M.

    2011-01-01

    Understanding the factors driving past fire regimes is crucial in the context of global change as a basis for predicting future changes. In this study, we aimed to identify the impact of climate and human activities on fire occurrence in the most fire-prone regions of Switzerland. We considered

  16. Weather, transport mode choices and emotional travel experiences

    NARCIS (Netherlands)

    Böcker, L.; Dijst, M.J.; Faber, J.

    2016-01-01

    With climate change high on the political agenda, weather has emerged as an important issue in travel behavioral research and urban planning. While various studies demonstrate profound effects of weather on travel behaviors, limited attention has been paid to subjective weather experiences and the

  17. Historic Climate Diaries and Journals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Diaries and Journals containing weather information in a non-tabular format. Records date from 1735 through the early 20th century. Much of the weather and climate...

  18. Impacts of aerosols on weather and regional climate over the Pearl River Delta megacity area in China

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2011-08-01

    Full Text Available Seven-year measurements of precipitation, lightning flashes, and visibility from 2000 to 2006 have been analyzed in the Pearl River Delta (PRD region, China, with a focus on the Guangzhou megacity area. Statistical analysis shows that the occurrence of heavy rainfall (>25 mm per day and frequency of lightning strikes are reversely correlated to visibility during this period. To elucidate the effects of aerosols on cloud processes, precipitation, and lightning activity, a cloud resolving – Weather Research and Forecasting (CR-WRF model with a two-moment bulk microphysical scheme is employed to simulate a mesoscale convective system occurring on 28 Match 2009 in the Guangzhou megacity area. The model predicted evolutions of composite radar reflectivity and accumulated precipitation are in agreement with measurements from S-band weather radars and automatic gauge stations. The calculated lightning potential index (LPI exhibits temporal and spatial consistence with lightning flashes recorded by a local lightning detection network. Sensitivity experiments have been performed to reflect aerosol conditions representative of polluted and clean cases. The simulations suggest that precipitation and LPI are enhanced by about 16 % and 50 %, respectively, under the polluted aerosol condition. Our results suggest that elevated aerosol loading suppresses light and moderate precipitation (less than 25 mm per day, but enhances heavy precipitation. The responses of hydrometeors and latent heat release to different aerosol loadings reveal the physical mechanism for the precipitation and lightning enhancement in the Guangzhou megacity area, showing more efficient mixed phase processes and intensified convection under the polluted aerosol condition.

  19. [On prevention of a combined impact of electromagnetic radiation and climatic/weather factors on worker's organism].

    Science.gov (United States)

    Rakhmanov, R S; Gadzhiibragimov, D A; Gladilin, A V

    2012-01-01

    Under conditions of combined exposure of the electromagnetic radiation generated by the PC or the industrial frequency and impact of hot or high-level continental climate to the organism the need to assess microclimatic conditions of open areas and the introduction of preventive nutrition to enhance the body's natural resistance, prevention of obesity and diseases associated with increased blood pressure and the development of coronary heart disease has been established.

  20. Climate adaption and post-fire restoration of a foundational perennial in cold desert: Insights from intraspecific variation in response to weather

    Science.gov (United States)

    Brabec, Martha M.; Germino, Matthew; Richardson, Bryce A.

    2017-01-01

    1.The loss of foundational but fire-intolerant perennials such as sagebrush due to increases in fire size and frequency in semiarid regions has motivated efforts to restore them, often with mixed or even no success. Seeds of sagebrush Artemisia tridentata and related species must be moved considerable distances from seed source to planting sites, but such transfers have not been guided by an understanding of local climate adaptation. Initial seedling establishment and its response to weather are a key demographic bottleneck that likely varies among subspecies and populations of sagebrush. 2.We assessed differences in survival, growth, and physiological responses of sagebrush to weather among eleven seed sources that varied in subspecies, cytotype, and climates-of-origin over 18 months following outplanting. Diploid or polyploid populations of mountain, Wyoming, and basin big sagebrush (A.tridentata ssp. vaseyana, A.tridentata ssp. wyomingensis, and A.tridentata ssp. tridentata, respectively) were planted onto five burned sites that normally support A.t.wyomingensis with some A.t.tridentata. 3.A.t.wyomingensis had the most growth and survival, and tetraploid populations had greater survival and height than diploids. Seasonal timing of mortality varied among the subspecies/cytotypes and was more closely related to minimum temperatures than water deficit. 4.Temperatures required to induce ice formation were up to 6°C more negative in 4n-A.t.tridentata and A.t.wyomingensis than other subspecies/cytotypes, indicating greater freezing avoidance. In contrast, freezing resistance of photosynthesis varied only 1°C among subspecies/cytotypes, being greatest in A.t.wyomingensis and least in the subspecies normally considered most cold-adapted,A.t.vaseyana. A large spectrum of reliance on freezing-avoidance vs. freezing-tolerance was observed and corresponded to differences in post-fire survivorship among subspecies/cytotypes. Differences in water deficit

  1. An Integrative Approach to Improving an Introductory Weather & Climate Course and Developing an Allied NASA Earth & Space Science Certificate Program for Pre-service Secondary Teachers (Invited)

    Science.gov (United States)

    Morrow, C. A.; Martin-Hansen, L.; Diem, J.; Elliott, W.

    2009-12-01

    An Atlanta-based partnership made up of leaders in science, education, and Georgia’s state-wide STEM Education Initiative are creating an enduring legacy of climate science education for pre-service and in-service teachers in Georgia as well as for underrepresented high school students who participate in an "Early College" program with Georgia State University (GSU). The core elements of our NASA-funded program are to infuse NASA global climate change resources and best pedagogical practice into a popular 4-credit lecture/lab course called “Introduction to Weather & Climate” (GEOG 1112) at GSU, and to establish a sustainable academic program for pre-service teachers in the College of Education called the NASA Earth & Space Science (ESS) Teacher Certificate. The NASA ESS Certificate will require candidates to accomplish the following as part of (or in addition to) standard degree and licensure requirements: 1. successfully complete a graduate section of “Introduction to Weather and Climate” (GEOG 7112), which requires lesson planning related to course content and engagement with GSU's new CO2 monitoring station whose research-quality data will provide unique hands-on opportunities for Metro Atlanta students and teachers; 2) complete an additional advanced course in climate change (GEOG 6784) plus elective hours in physical science disciplines (e.g. astronomy and physics); 3) serve as a lab teaching assistant for GEOG 1112 and a coach for a cadre of Carver Early College students who are taking the course; 4) make at least one of two teaching practica at a Georgia-based NASA Explorer School; and 5) participate or co-present in a week-long, residential, field-based, Summer Institute in Earth & Space Science intended to increase the interest, knowledge, and ability of in-service secondary science educators to fulfill climate-related standards in Earth Science and Earth Systems Science. We will evaluate, document, and disseminate (to the University System of

  2. Study on Climate Changes and Dlsastrous Weather in Tianjin%天津气候变化及灾害性天气研究

    Institute of Scientific and Technical Information of China (English)

    赵聪颖; 李云波; 王菲

    2011-01-01

    选取1980~2009年30 a天津4个具有代表性的气象站点的观测资料,研究了蓟县、宝坻、天津市区和大港地区温度、降水等气象因子的变化,分析了该地区的气候变化,以及沙尘、冰雹、雷暴和烟霾等灾害性天气出现频次.结果表明.1980~2009年在全球气候变暖、华北地区气温趋向暖干化的背景下,天津地区温度呈上升趋势,降水量变化不同,雷暴和烟霾是该地区频繁出现的灾害性天气,尤其是烟霾出现的频率增长很快,值得进一步关注.%Meteorological observation datd in 4 representative meteorological stations in Tianjin during 30 a(1980-2009)were selected,and the variation of meteorological factors,such as temperature,rainfall,etc.in Ji County,Tianjin Urban District and Dagang regions were studied In addition,the climate variation and the occurrence frequency of disadtrous weather,such as,dust,hailstone,thunderstorm and smaze,etc.in those were summarized and analyzed.The results indicated that under the background of global warming and climate warming and drying in North China during 1980-2009,the temperature in Tianjin showed increasing trend,and rainfall variation was not uniform,thunderstorm and smaze were desastrous weather which occurred frequengly in this area,especially the frequency if smaze increased quickly and deserved further attention.

  3. Proximate weather patterns and spring green-up phenology effect Eurasian beaver (Castor fiber) body mass and reproductive success: the implications of climate change and topography.

    Science.gov (United States)

    Campbell, Ruairidh D; Newman, Chris; Macdonald, David W; Rosell, Frank

    2013-04-01

    Low spring temperatures have been found to benefit mobile herbivores by reducing the rate of spring-flush, whereas high rainfall increases forage availability. Cold winters prove detrimental, by increasing herbivore thermoregulatory burdens. Here we examine the effects of temperature and rainfall variability on a temperate sedentary herbivore, the Eurasian beaver, Castor fiber, in terms of inter-annual variation in mean body weight and per territory offspring production. Data pertain to 198 individuals, over 11 years, using capture-mark-recapture. We use plant growth (tree cores) and fAPAR (a satellite-derived plant productivity index) to examine potential mechanisms through which weather conditions affect the availability and the seasonal phenology of beaver forage. Juvenile body weights were lighter after colder winters, whereas warmer spring temperatures were associated with lighter adult body weights, mediated by enhanced green-up phenology rates. Counter-intuitively, we observed a negative association between rainfall and body weight in juveniles and adults, and also with reproductive success. Alder, Alnus incana, (n = 68) growth rings (principal beaver food in the study area) exhibited a positive relationship with rainfall for trees growing at elevations >2 m above water level, but a negative relationship for trees growing water level, prone to water logging, producing poorer forage in wetter years. Unlike most other herbivores, beavers are an obligate aquatic species that utilize a restricted 'central-place' foraging range, limiting their ability to take advantage of better forage growth further from water during wetter years. With respect to anthropogenic climate change, interactions between weather variables, plant phenology and topography on forage growth are instructive, and consequently warrant examination when developing conservation management strategies for populations of medium to large herbivores. © 2012 Blackwell Publishing Ltd.

  4. The characteristics of clusters of weather and extreme climate events in China during the past 50 years

    Institute of Scientific and Technical Information of China (English)

    Yang Ping; Hou Wei; Feng Guo-Lin

    2012-01-01

    The pick-up algorithm by the k-th order cluster for the closest distance is used in the fields of weather and climactic events,and the technical terms clustered index and high clustered region are defined to investigate their temporal and spatial distribution characteristics in China during the past 50 years.The results show that the contribution of extreme high-temperature event clusters changed in the period from the 1960s to the 1970s,and its strength was enhanced.On the other hand,the decreasing trend in the clusters of low-temperature extremes can be taken as a signal for warmer winters to follow in the decadal time scale.Torrential rain and heavy rainfall clusters have both been lessened in the past 50 years,and have different cluster characteristics because of their definitions.Regions with high clustered indexes are concentrated in southern China.The spatial evolution of the heavy rainfall clusters reveals that clustered heavy rainfall has played an important role in the rain-belt pattern over China during the last 50 years.

  5. Climate Change Mitigation through Enhanced Weathering in Bioenergy Crops

    Science.gov (United States)

    Kantola, I. B.; Masters, M. D.; Wolz, K. J.; DeLucia, E. H.

    2016-12-01

    Bioenergy crops are a renewable alternative to fossil fuels that reduce the net flux of CO2 to the atmosphere through carbon sequestration in plant tissues and soil. A portion of the remaining atmospheric CO2 is naturally mitigated by the chemical weathering of silica minerals, which sequester carbon as carbonates. The process of mineral weathering can be enhanced by crushing the minerals to increase surface area and applying them to agricultural soils, where warm temperatures, moisture, and plant roots and root exudates accelerate the weathering process. The carbonate byproducts of enhanced weathering are expected accumulate in soil water and reduce soil acidity, reduce nitrogen loss as N2O, and increase availability of certain soil nutrients. To determine the potential of enhanced weathering to alter the greenhouse gas balance in both annual (high disturbance, high fertilizer) and perennial (low disturbance, low fertilizer) bioenergy crops, finely ground basalt was applied to fields of maize, soybeans, and miscanthus at the University of Illinois Energy Farm. All plots showed an immediate soil temperature response at 10 cm depth, with increases of 1- 4 °C at midday. Early season CO2 and N2O fluxes mirrored soil temperature prior to canopy closure in all crops, while total N2O fluxes from miscanthus were lower than corn and soybeans in both basalt treatment and control plots. Mid-season N2O production was reduced in basalt-treated corn compared to controls. Given the increasing footprint of bioenergy crops, the ability to reduce GHG emissions in basalt-treated fields has the potential to mitigate atmospheric warming while benefitting soil fertility with the byproducts of weathering.

  6. Space Weather Influence on the Earth Climate: Possible Manifestations in Wheat Markets Reaction

    Science.gov (United States)

    Pustilnik, Lev; Yom Din, Gregory; Zagnetko, Alexander

    We consider problem of a possible influence of unfavorable states of the space weather on agri-culture market through chain of connections: "space weather"-"earth weather"-"agriculture crops"-"price reaction". We show that new manifestations of "space weather"-"earth weather" relations discovered in the last time allow to revise wide field of expected solar-terrestrial con-nections. In the previous works we proposed possible mechanisms of wheat market reaction in the form of price bursts on the specific unfavorable states of space weather. We show that implementation of considered "price reaction scenarios" is possible only for condition of simul-taneous realization of several necessary conditions: high sensitivity of local earth weather in selected region to space weather; state of "high risk agriculture" in selected agriculture zone; high sensitivity of agricultural market to possible deficit of supply. Results of previous works included application of this approach to wheat market in Medieval England and to modern USA durum market showed that real connection between wheat price bursts and space weather state is observed with high confidence level. The aim of present work is answer on the ques-tion, why wheat markets in one region are sensitive to space weather factor, while another regional wheat markets demonstrate absolute indifferent reaction on this factor. For this aim we consider distribution of sensitivity of wheat markets in Europe to space weather as function of localization in different climatic zones. We analyze giant database of 95 European wheat markets from 14 countries during about 600-year period (1260-1912). We show that observed sensitivity of wheat market to space weather effects controlled, first of all, by type of predomi-nant climate in different zones of agriculture. Wheat markets in the North and part of Central Europe (England, Iceland, Holland) shows reliable sensitivity to space weather in minimum states of solar activity with low

  7. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach

    National Research Council Canada - National Science Library

    Lyla L. Taylor; Steve A. Banwart; Paul J. Valdes; Jonathan R. Leake; David J. Beerling

    2012-01-01

    .... Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle...

  8. Simulation of an ensemble of future climate time series with an hourly weather generator

    Science.gov (United States)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.; Kim, J.

    2010-12-01

    There is evidence that climate change is occurring in many regions of the world. The necessity of climate change predictions at the local scale and fine temporal resolution is thus warranted for hydrological, ecological, geomorphological, and agricultural applications that can provide thematic insights into the corresponding impacts. Numerous downscaling techniques have been proposed to bridge the gap between the spatial scales adopted in General Circulation Models (GCM) and regional analyses. Nevertheless, the time and spatial resolutions obtained as well as the type of meteorological variables may not be sufficient for detailed studies of climate change effects at the local scales. In this context, this study presents a stochastic downscaling technique that makes use of an hourly weather generator to simulate time series of predicted future climate. Using a Bayesian approach, the downscaling procedure derives distributions of factors of change for several climate statistics from a multi-model ensemble of GCMs. Factors of change are sampled from their distributions using a Monte Carlo technique to entirely account for the probabilistic information obtained with the Bayesian multi-model ensemble. Factors of change are subsequently applied to the statistics derived from observations to re-evaluate the parameters of the weather generator. The weather generator can reproduce a wide set of climate variables and statistics over a range of temporal scales, from extremes, to the low-frequency inter-annual variability. The final result of such a procedure is the generation of an ensemble of hourly time series of meteorological variables that can be considered as representative of future climate, as inferred from GCMs. The generated ensemble of scenarios also accounts for the uncertainty derived from multiple GCMs used in downscaling. Applications of the procedure in reproducing present and future climates are presented for different locations world-wide: Tucson (AZ

  9. The Impact of IBM Cell Technology on the Programming Paradigm in the Context of Computer Systems for Climate and Weather Models

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shujia; Duffy, Daniel; Clune, Thomas; Suarez, Max; Williams, Samuel; Halem, Milton

    2009-01-10

    The call for ever-increasing model resolutions and physical processes in climate and weather models demands a continual increase in computing power. The IBM Cell processor's order-of-magnitude peak performance increase over conventional processors makes it very attractive to fulfill this requirement. However, the Cell's characteristics, 256KB local memory per SPE and the new low-level communication mechanism, make it very challenging to port an application. As a trial, we selected the solar radiation component of the NASA GEOS-5 climate model, which: (1) is representative of column physics components (half the total computational time), (2) has an extremely high computational intensity: the ratio of computational load to main memory transfers, and (3) exhibits embarrassingly parallel column computations. In this paper, we converted the baseline code (single-precision Fortran) to C and ported it to an IBM BladeCenter QS20. For performance, we manually SIMDize four independent columns and include several unrolling optimizations. Our results show that when compared with the baseline implementation running on one core of Intel's Xeon Woodcrest, Dempsey, and Itanium2, the Cell is approximately 8.8x, 11.6x, and 12.8x faster, respectively. Our preliminary analysis shows that the Cell can also accelerate the dynamics component (~;;25percent total computational time). We believe these dramatic performance improvements make the Cell processor very competitive as an accelerator.

  10. Denudational slope processes on weathered basalt in northern California: 130 ka history of soil development, periods of slope stability and colluviation, and climate change

    Science.gov (United States)

    McDonald, Eric; Harrison, Bruce; Baldwin, John; Page, William; Rood, Dylan

    2017-04-01

    The geomorphic history of hillslope evolution is controlled by multiple types of denudational processes. Detailed analysis of hillslope soil-stratigraphy provides a means to identify the timing of periods of slope stability and non-stability, evidence of the types of denudational processes, and possible links to climatic drivers. Moreover, the degree of soil formation and the presence of buried or truncated soils provide evidence of the relative age of alternating periods of colluviation and stability. We use evaluation of soil stratigraphy, for a small forested hillslope (slope length) located in the Cascades of northern California, to elucidate both the timing and processes controlling 130 ka of hillslope evolution. The soils and slope colluvium are derived from highly weathered basalt. Stratigraphic interpretation is reinforced with soil profile development index (PDI) derived age estimates, tephrochronology, luminescence ages on colluvium, and He3 nuclide exposure dates. Soils formed along hilltop ridges are well developed and reflect deep (>2-3 m) in-situ weathering of the basalt bedrock. PDI age estimates and He3 exposure dates indicate that these hilltop soils had been in place for 100-130 ka, implying a long period of relative surface stability. At about 40-30 ka, soil stratigraphy indicates the onset of 3 distinct cycles of denudation of the hilltop and slopes. Evidence for changes in stability and onset of soil erosion is the presence of several buried soils formed in colluvium downslope of the hilltop. These buried soils have formed in sediment derived from erosion of the hilltop soils (i.e. soil parent material of previously weathered soil matrix and basalt cobbles). The oldest buried soil indicates that slope stability was re-established between 32-23 ka, with stability and soil formation lasting to about 10 ka. Soil-stratigraphy indicates that two additional intervals of downslope transport of sediment between 6-10 ka, and 2-5 ka. Soil properties

  11. Role of Acclimatization in Weather-Related Human Mortality During the Transition Seasons of Autumn and Spring in a Thermally Extreme Mid-Latitude Continental Climate.

    Science.gov (United States)

    de Freitas, Christopher R; Grigorieva, Elena A

    2015-11-26

    Human mortality is closely related to natural climate-determined levels of thermal environmental stress and the resulting thermophysiological strain. Most climate-mortality research has focused on seasonal extremes during winter and summer when mortality is the highest, while relatively little attention has been paid to mortality during the transitional seasons of autumn and spring. The body acclimatizes to heat in the summer and cold in winter and readjusts through acclimatization during the transitions between the two during which time the body experiences the thermophysiological strain of readjustment. To better understand the influences of weather on mortality through the acclimatization process, the aim here is to examine the periods that link very cold and very warms seasons. The study uses the Acclimatization Thermal Strain Index (ATSI), which is a comparative measure of short-term thermophysiological impact on the body. ATSI centers on heat exchange with the body’s core via the respiratory system, which cannot be protected. The analysis is based on data for a major city in the climatic region of the Russian Far East characterized by very hot summers and extremely cold winters. The results show that although mortality peaks in winter (January) and is at its lowest in summer (August), there is not a smooth rise through autumn nor a smooth decline through spring. A secondary peak occurs in autumn (October) with a smaller jump in May. This suggests the acclimatization from warm-to-cold produces more thermophysiological strain than the transition from cold-to-warm. The study shows that ATSI is a useful metric for quantifying the extent to which biophysical adaptation plays a role in increased strain on the body during re-acclimatization and for this reason is a more appropriate climatic indictor than air temperature alone. The work gives useful bioclimatic information on risks involved in transitional seasons in regions characterized by climatic extremes. This

  12. Climate control on silicate weathering and physical erosion rates in young orogenic belts: Case study along a runoff gradient in Pacific and Amazonian Andean basins based on SNO-HYBAM Monitoring Program data

    Science.gov (United States)

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Viers, Jérôme; Crave, Alain; Morera, Sergio; Rau, Pedro; Armijos, Elisa; Lagane, Christelle; Sven Lavado Casimiro, Waldo; Pombosa, Rodrigo; Fraizy, Pascal; Santini, William; Timouk, Franck; Vauchel, Philippe; Martinez, Jean-Michel

    2017-04-01

    At the global scale and on geological time scales, mechanical erosion and chemical weathering budgets are linked. Together, these processes contribute to the formation and the degradation of the Earth's critical zone and to the biogeochemical cycles of elements. In young orogenic belts, climate and tectonic subsidence control together the rate of these matter balance budget and their relationships. The climate gradient observed along the Andean basin in both the Pacific and the Atlantic slopes offers the opportunity to explore the role of the climate variability on the erosion and weathering budgets and on their reciprocal relationships. Based on the SNO-HYBAM Monitoring Program database (Geodynamical, hydrological and Biogeochemical control of erosion/weathering and material transport in the Amazon, Orinoco and Congo basins), we explore the relationship between climate, the lithology, silicate weathering rates and physical erosion rates along a runoff gradient in Andean basins of the Amazon River (13 gauging stations) and Pacific drainage rivers (5 gauging stations). No homogenous relationship between erosion rates (E) and chemical weathering rate (W) is observed over the monitored basins. Only the volcanic basins respond to a global relationship defined in the literature while the other basins budget may depend on anthropogenic interferences on erosion/sedimentation budget, a lithology dependence of the W-E relationship parameters or/and on the existence of a threshold in this relationship. The results presented here contribute to better understanding the role of mountains belt formation in the biogeochemical cycles and in particular in the long-term carbon cycle.Your presentation type preference.

  13. Large-eddy simulation of stable atmospheric boundary layers to develop better turbulence closures for climate and weather models

    Science.gov (United States)

    Bou-Zeid, Elie; Huang, Jing; Golaz, Jean-Christophe

    2011-11-01

    A disconnect remains between our improved physical understanding of boundary layers stabilized by buoyancy and how we parameterize them in coarse atmospheric models. Most operational climate models require excessive turbulence mixing in such conditions to prevent decoupling of the atmospheric component from the land component, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. Using Large-eddy simulation, we revisit some of the basic challenges in parameterizing stable atmospheric boundary layers: eddy-viscosity closure is found to be more reliable due to an improved alignment of vertical Reynolds stresses and mean strains under stable conditions, but the dependence of the magnitude of the eddy viscosity on stability is not well represented by several models tested here. Thus, we propose a new closure that reproduces the different stability regimes better. Subsequently, tests of this model in the GFDL's single-column model (SCM) are found to yield good agreement with LES results in idealized steady-stability cases, as well as in cases with gradual and sharp changes of stability with time.

  14. Road Weather and Connected Vehicles

    Science.gov (United States)

    Pisano, P.; Boyce, B. C.

    2015-12-01

    On average, there are over 5.8 M vehicle crashes each year of which 23% are weather-related. Weather-related crashes are defined as those crashes that occur in adverse weather or on slick pavement. The vast majority of weather-related crashes happen on wet pavement (74%) and during rainfall (46%). Connected vehicle technologies hold the promise to transform road-weather management by providing improved road weather data in real time with greater temporal and geographic accuracy. This will dramatically expand the amount of data that can be used to assess, forecast, and address the impacts that weather has on roads, vehicles, and travelers. The use of vehicle-based measurements of the road and surrounding atmosphere with other, more traditional weather data sources, and create road and atmospheric hazard products for a variety of users. The broad availability of road weather data from mobile sources will vastly improve the ability to detect and forecast weather and road conditions, and will provide the capability to manage road-weather response on specific roadway links. The RWMP is currently demonstrating how weather, road conditions, and related vehicle data can be used for decision making through an innovative Integrated Mobile Observations project. FHWA is partnering with 3 DOTs (MN, MI, & NV) to pilot these applications. One is a mobile alerts application called the Motorists Advisories and Warnings (MAW) and a maintenance decision support application. These applications blend traditional weather information (e.g., radar, surface stations) with mobile vehicle data (e.g., temperature, brake status, wiper status) to determine current weather conditions. These weather conditions, and other road-travel-relevant information, are provided to users via web and phone applications. The MAW provides nowcasts and short-term forecasts out to 24 hours while the EMDSS application can provide forecasts up to 72 hours in advance. The three DOTs have placed readers and external

  15. Evaporation and weather

    NARCIS (Netherlands)

    Bruin, H.A.R. de; Feddes, R.A.; Holtslag, A.A.M.; Lablans, W.N.; Schuurmans, C.J.E.; Shuttleworth, W.J.

    1987-01-01

    Data on evaporation to be used in agriculture, hydrology, forestry, etc. are usually supplied by meteorologists. Meteorologists themselves also use evaporation data. Air mass properties determining weather are strongly dependent on the input of water vapour from the surface. So for weather

  16. Evaporation and weather

    NARCIS (Netherlands)

    Bruin, H.A.R. de; Feddes, R.A.; Holtslag, A.A.M.; Lablans, W.N.; Schuurmans, C.J.E.; Shuttleworth, W.J.

    1987-01-01

    Data on evaporation to be used in agriculture, hydrology, forestry, etc. are usually supplied by meteorologists. Meteorologists themselves also use evaporation data. Air mass properties determining weather are strongly dependent on the input of water vapour from the surface. So for weather predictio

  17. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker

    2007-01-01

    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  18. The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from numerical weather prediction and regional climate model simulations.

    Science.gov (United States)

    Schreier, Stefan F; Suomi, Irene; Bröde, Peter; Formayer, Herbert; Rieder, Harald E; Nadeem, Imram; Jendritzky, Gerd; Batchvarova, Ekaterina; Weihs, Philipp

    2013-03-01

    In this study we examine the determination accuracy of both the mean radiant temperature (Tmrt) and the Universal Thermal Climate Index (UTCI) within the scope of numerical weather prediction (NWP), and global (GCM) and regional (RCM) climate model simulations. First, Tmrt is determined and the so-called UTCI-Fiala model is then used for the calculation of UTCI. Taking into account the uncertainties of NWP model (among others the HIgh Resolution Limited Area Model HIRLAM) output (temperature, downwelling short-wave and long-wave radiation) stated in the literature, we simulate and discuss the uncertainties of Tmrt and UTCI at three stations in different climatic regions of Europe. The results show that highest negative (positive) differences to reference cases (under assumed clear-sky conditions) of up to -21°C (9°C) for Tmrt and up to -6°C (3.5°C) for UTCI occur in summer (winter) due to cloudiness. In a second step, the uncertainties of RCM simulations are analyzed: three RCMs, namely ALADIN (Aire Limitée Adaptation dynamique Développement InterNational), RegCM (REGional Climate Model) and REMO (REgional MOdel) are nested into GCMs and used for the prediction of temperature and radiation fluxes in order to estimate Tmrt and UTCI. The inter-comparison of RCM output for the three selected locations shows that biases between 0.0 and ±17.7°C (between 0.0 and ±13.3°C) for Tmrt (UTCI), and RMSE between ±0.5 and ±17.8°C (between ±0.8 and ±13.4°C) for Tmrt (UTCI) may be expected. In general the study shows that uncertainties of UTCI, due to uncertainties arising from calculations of radiation fluxes (based on NWP models) required for the prediction of Tmrt, are well below ±2°C for clear-sky cases. However, significant higher uncertainties in UTCI of up to ±6°C are found, especially when prediction of cloudiness is wrong.

  19. From Potential to Practice: How Weather and Climate Forecasts Can Be Effectively Used in Water Resources Management Decision Making

    Science.gov (United States)

    Shafiee-Jood, M.; Cai, X.

    2015-12-01

    The last decade has witnessed tremendous scientific and technological advances in our ability to forecast climate variability and extremes, which are potentially useful to help operate and manage water resources systems with larger reliability and efficiency. However, many forecasts are rarely effectively used in practice and there is little evidence of incorporating them in real-world decision making. One of the main barriers of the uptake of forecasts, which is often cited by studies, is related to forecast uncertainty; however, even reliable forecasts alone are not sufficient to ensure the expected response. There exist other barriers that affect effective use of forecasts such as water managers' behavior and institutional impediments. In fact, water managers make decisions in a sophisticated setting, which is on one hand affected by uncertainty and on the other hand constrained by regulations and policies. Therefore, it is not only important to recognize the various key individual challenges, but also critical to understand the interdependencies among them (Figure 1) in order to properly address the effective use of forecasts. This understanding is also essential to assess the expected value of forecasts information which is of high importance for decision makers prior to incorporating forecasts. The main objectives of this talk, which builds upon an extensive literature review of using forecasts in water resources and agricultural decision making, are to 1) address the key challenges limiting the uptake of forecast, 2) highlight the interdependency among different factors, and 3) shed light on how these insights can help improve the use of forecast in real-world practices.

  20. Weather Forecasting Systems and Methods

    Science.gov (United States)

    Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)

    2014-01-01

    A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.

  1. Comparative Study of Different Stochastic Weather Generators for Long-Term Climate Data Simulation

    Directory of Open Access Journals (Sweden)

    Sushant Mehan

    2017-03-01

    Full Text Available Climate is one of the single most important factors affecting watershed ecosystems and water resources. The effect of climate variability and change has been studied extensively in some places; in many places, however, assessments are hampered by limited availability of long-term continuous climate data. Weather generators provide a means of synthesizing long-term climate data that can then be used in natural resource assessments. Given their potential, there is the need to evaluate the performance of the generators; in this study, three commonly used weather generators—CLImate GENerator (CLIGEN, Long Ashton Research Station Weather Generator (LARS-WG, and Weather Generators (WeaGETS were compared with regard to their ability to capture the essential statistical characteristics of observed data (distribution, occurrence of wet and dry spells, number of snow days, growing season temperatures, and growing degree days. The study was based on observed 1966–2015 weather station data from the Western Lake Erie Basin (WLEB, from which 50 different realizations were generated, each spanning 50 years. Both CLIGEN and LARS-WG performed fairly well with respect to representing the statistical characteristics of observed precipitation and minimum and maximum temperatures, although CLIGEN tended to overestimate values at the extremes. This generator also overestimated dry sequences by 18%–30% and snow-day counts by 12%–19% when considered over the entire WLEB. It (CLIGEN was, however, well able to simulate parameters specific to crop growth such as growing degree days and had an added advantage over the other generators in that it simulates a larger number of weather variables. LARS-WG overestimated wet sequence counts across the basin by 15%–38%. In addition, the optimal growth period simulated by LARS-WG also exceeded that obtained from observed data by 16%–29% basin-wide. Preliminary results with WeaGETS indicated that additional evaluation is

  2. Variability of Blowing Dust Weather Frequency over Semi-Arid Areas of China (Baicheng, Jilin Province and Relationships with Climatic Factors During 1951 - 2006

    Directory of Open Access Journals (Sweden)

    Yun-Fei Wu

    2011-01-01

    Full Text Available We analyzed the variability of blowing dust weather frequency (BDWF and patterns in climatic factors over Baicheng for the period 1951 - 2006 in this study. The data showed that blowing dust over Baicheng occurs intensively during the spring and shows significant inter-decadal variability. One of the main findings is that the occurrence of blowing dust has significantly decreased after the mid-1980s. The mean wind speed (WS, diurnal temperature range (DTR, relative humidity (RH and precipitation at Baicheng during the spring show decreasing trends. The decreasing trends of the mean WS and DTR are significant at 99% confidence levels according to the t-test; the dataset also indicated a sharp decrease in WS occurred after the mid-1980s. The mean surface air temperature (SAT escalated in a fluctuating manner during 1951 - 2006. BDWF at Baicheng was significantly related to local WS, SAT and DTR during the spring [correlation coefficients (CCs are 0.41, -0.47 and 0.36, respectively]. The correlation between BDWF at Baicheng and selected climatic factors over the sand-dust source regions and transmission paths were also calculated. We found that BDWF is well correlated to the mean WS and SAT during the spring, with CCs of 0.45 and -0.48, respectively. The most likely causes for the dramatic decrease observed in BDWF after the mid-1980s were related to the adjustment of large-scale circulation patterns in response to a decrease of meridional temperature differences, the weakening of steering westerlies and the strengthening of downward motions that has occurred at the middle latitudes of eastern Eurasia in recent decades.

  3. Jerks as Guiding Influences on the Global Environment: Effects on the Solid Earth, Its Angular Momentum and Lithospheric Plate Motions, the Atmosphere, Weather, and Climate

    Science.gov (United States)

    Quinn, J. M.; Leybourne, B. A.

    2010-12-01

    modulated. These parameters in turn affect the weather and climate (e.g., the Dust Bowl Era, El Ninos, La Ninas, and hurricanes). The stress/strain within the Earth leads to Earth torsion, vibration, and mass redistribution, which leads to tectonic plate motion, seismicity, volcanism, and gravity waves, which drive atmospheric circulation and the teleconnection processes (i.e., a redistribution of magma beneath the plates) via surge tectonics. Various other connections among these processes and parameters will be discussed.

  4. Climatic effects of irrigation over the Huang-Huai-Hai Plain in China simulated by the weather research and forecasting model: Simulated Irrigation Effects in China

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ben [CMA-NJU Joint Laboratory for Climate Prediction Studies, Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing China; Collaborative Innovation Center of Climate Change, Jiangsu Province China; Zhang, Yaocun [CMA-NJU Joint Laboratory for Climate Prediction Studies, Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing China; Collaborative Innovation Center of Climate Change, Jiangsu Province China; Qian, Yun [Pacific Northwest National Laboratory, Richland Washington USA; Tang, Jian [China Meteorological Administration, Beijing China; Liu, Dongqing [Nanjing Meteorological Bureau, Nanjing China

    2016-03-14

    In this study, we apply the Weather Research and Forecasting model coupled with an operational-like irrigation scheme to investigate the climatic effects of irrigation over the Huang-Huai-Hai plain (3HP) in China. Multiple numerical experiments with irrigation off/on during spring, summer and both spring and summer are conducted, respectively. Our results show that the warm bias in surface temperature and dry bias in soil moisture are reduced over the 3HP region during growing seasons when irrigation is turned on in the model. Air temperature during non-growing seasons is also affected by irrigation due to the persistent effects of soil moisture on land-air energy exchanges and ground heat storage. Irrigation can induce a cooler planetary boundary layer (PBL) during growing seasons, causing a wetter PBL with more low-level clouds during spring but relatively dryer PBL in summer. Further analyses indicate that the dryer summer is highly related to the changes in the East Asian summer monsoon (EASM) circulation that is modified by irrigation effect. Spring irrigation may induce a decreased land-ocean thermal contrast, leading to a possible weaker EASM. Summer irrigation, however, evidently cools the atmosphere column and forces a southward shift of the upper-level jet, which results in more precipitation in Yangtze River basin but less over southern and northern China during summer.

  5. Effects of Weather on Tourism and its Moderation

    Science.gov (United States)

    Park, J. H.; Kim, S.; Lee, D. K.

    2016-12-01

    Tourism is weather sensitive industry (Gómez Martín, 2005). As climate change has been intensifying, the concerns about negative effects of weather on tourism also have been increasing. This study attempted to find ways that mitigate the negative effects from weather on tourism, by analyzing a path of the effects of weather on intention to revisit and its moderation. The data of the study were collected by a self-recording online questionnaire survey of South Korean domestic tourists during August 2015, and 2,412 samples were gathered. A path model of effects of weather on intention to revisit that including moderating effects from physical attraction satisfaction and service satisfaction was ran. Season was controlled in the path model. The model fit was adequate (CMIN/DF=2.372(p=.000), CFI=.974, RMSEA=.024, SRMR=0.040), and the Model Comparison, which assumes that the base model to be correct with season constrained model, showed that there was a seasonal differences in the model ( DF=24, CMIN=32.430, P=.117). By the analysis, it was figured out that weather and weather expectation affected weather satisfaction, and the weather satisfaction affected intention to revisit (spring/fall: .167**, summer: .104**, and winter: .114**). Meanwhile physical attraction satisfaction (.200**), and service satisfaction (.210**) of tourism positively moderated weather satisfaction in summer, and weather satisfaction positively moderated physical attraction (.238**) satisfaction and service satisfaction (.339**). In other words, in summer, dissatisfaction from hot weather was moderated by satisfaction from physical attractions and services, and in spring/fall, comfort weather conditions promoted tourists to accept tourism experience and be satisfied from attractions and services positively. Based on the result, it was expected that if industries focus on offering the good attractions and services based on weather conditions, there would be positive effects to alleviate tourists

  6. Development research for wind power weather insurance index through analysis of weather elements and new renewable energy

    Science.gov (United States)

    Park, Ki-Jun; jung, jihoon

    2014-05-01

    Recently, social interests and concerns regarding weather risk are gradually growing with increase in frequency of unusual phenomena. Actually, the threat to many vulnerable industries (sensitive to climate conditions) such as agriculture, architecture, logistics, transportation, clothing, home appliance, and food is increasing. According to climate change scenario reports published by National Institute of Meteorological Research (NIMR) in 2012, temperature and precipitation are expected to increase by 4.8% and 13.2% respectively with current status of CO2 emissions (RCP 8.5) at the end of the 21st century. Furthermore, most of areas in Korea except some mountainous areas are also expected to shift from temperate climate to subtropical climate. In the context of climate change, the intensity of severe weathers such as heavy rainfalls and droughts is enhanced, which, in turn, increases the necessity and importance of weather insurance. However, most insurance market is small and limited to policy insurance like crop disaster insurance, and natural disaster insurance in Korea. The reason for poor and small weather insurance market could result from the lack of recognition of weather risk management even though all economic components (firms, governments, and households) are significantly influenced by weather. However, fortunately, new renewable energy and leisure industry which are vulnerable to weather risk are in a long term uptrend and the interest of weather risk is also getting larger and larger in Korea. So, in the long run, growth potential of weather insurance market in Korea might be higher than ever. Therefore, in this study, the capacity of power generation per hour and hourly wind speed are analyzed to develop and test weather insurance index for wind power, and then the effectiveness of weather insurance index are investigated and the guidance will be derived to objectively calculate the weather insurance index.

  7. Quasi-geostationary viewing of high latitudes for Weather, Climate and Air quality data using highly elliptical orbits: PCW/PHEOS-WCA

    Science.gov (United States)

    McConnell, J. C.; McElroy, C. T.; Sioris, C. E.; Walker, K. A.; Buijs, H.; Rahnama, P.; Trishchenko, A. P.; Garand, L.; Nassar, R.; Martin, R. V.; Bergeron, M.; O'Neill, N. T.

    2012-12-01

    Arctic climate is changing and the multi-year sea-ice cover is disappearing more rapidly that climate models estimate. With declining ice cover, the Arctic Ocean will likely be subject to increased shipping traffic in addition to exploration activity for natural resources with a concomitant increase in air pollution. Thus there is a need to monitor the polar region and an important method that can address many of the atmospheric issues is by quasi-geostationary viewing at high temporal resolution. For this reason, several Canadian government departments led by the Canadian Space Agency (CSA) are proposing the PCW (Polar Communications and Weather) mission to provide improved communications and critically important meteorological and air quality information for the Arctic, in particular wind information using an operational meteorological imager. Two satellites are planned to be in a highly eccentric orbit with apogee at ~ 40,000 km over the Arctic in order to have both quasi-geostationary viewing over the Arctic and environs and 24x7 coverage in the MIR and solar reflected light (UV-Vis-NIR) in the summer period. The planned operational meteorological instrument is a 21-channel spectral imager with UV, visible, NIR and MIR channels similar to MODIS or ABI. This presentation will focus on PHEOS WCA (Polar Highly Elliptical Orbital Science Weather, Climate and Air quality) mission, which is an atmospheric science complement to the operational PCW mission. The PHEOS WCA instrument package consists of FTS and UVS imaging sounders with viewing range of ~4.5 degrees or a FoR ~ 3400x3400 km2 from near apogee. The spatial resolution at apogee of each imaging sounder is targeted to be 10×10 km2 or better and the image repeat time is targeted at ~ 1-2 hours or better. The FTS has 4 bands that span the MIR and NIR. The MIR bands cover 700-1500 cm-1 and 1800-2700 cm-1 with a spectral resolution of 0.25 cm-1 i.e., a similar spectral resolution to IASI. They should provide

  8. Long-Term Weather Data Measurements From A Danish Climate Station And The Weather’s Influence On The Thermal Performance Of Solar Collectors

    Directory of Open Access Journals (Sweden)

    Skalík Lukáš

    2015-06-01

    Full Text Available A weather data evaluation from a climate station in Lyngby, Denmark, was carried out. Twenty years of measurements show that the increase in global radiation was almost 3.5 kWh/m2 per year, corresponding to a growth of the yearly global radiation of 7 % for the last 20 years. The global radiation variation between the least sunny year to the sunniest year was 20%. The increase in diffuse radiation was 1.9 kWh/m2 per year, corresponding to 20 years’ growth of up to 7 %. The annual diffuse radiation of nearly 19 % varied from the least cloudy year to the cloudiest year. A small increase was measured for the ambient air temperature. The measurements showed a yearly increase of 0.04 K per year. The average yearly ambient air temperature variation from the coldest to the warmest year was 3.1 K. According to the seasonal growth of the parameters measured, the ambient air temperature and diffuse radiation increased the most in the summer period, while the global radiation significantly increased in the spring months. The calculations of the solar collector's thermal performance in Lyngby showed that the energy output was mostly dependent on beam radiation. The ambient air temperature did not have a high influence on the thermal performance of the solar collectors compared to the influence of the total solar radiation.

  9. Cool Stars and Space Weather

    CERN Document Server

    Vidotto, A A; Cameron, A C; Morin, J; Villadsen, J; Saar, S; Alvarado, J; Cohen, O; Holzwarth, V; Poppenhaeger, K; Reville, V

    2014-01-01

    Stellar flares, winds and coronal mass ejections form the space weather. They are signatures of the magnetic activity of cool stars and, since activity varies with age, mass and rotation, the space weather that extra-solar planets experience can be very different from the one encountered by the solar system planets. How do stellar activity and magnetism influence the space weather of exoplanets orbiting main-sequence stars? How do the environments surrounding exoplanets differ from those around the planets in our own solar system? How can the detailed knowledge acquired by the solar system community be applied in exoplanetary systems? How does space weather affect habitability? These were questions that were addressed in the splinter session "Cool stars and Space Weather", that took place on 9 Jun 2014, during the Cool Stars 18 meeting. In this paper, we present a summary of the contributions made to this session.

  10. ENSO regimes and the late 1970's climate shift: The role of synoptic weather and South Pacific ocean spiciness

    Energy Technology Data Exchange (ETDEWEB)

    O' Kane, Terence J.; Matear, Richard J.; Chamberlain, Matthew A.; Oke, Peter R.

    2014-08-15

    South Pacific subtropical density compensated temperature and salinity (spiciness) anomalies are known to be associated with decadal equatorial variability, however, the mechanisms by which such disturbances are generated, advect and the degree to which they modulate the equatorial thermocline remains controversial. During the late 1970's a climate regime transition preceded a period of strong and sustained El Nino events. Using an ocean general circulation model forced by the constituent mechanical and thermodynamic components of the reanalysed atmosphere we show that the late 1970's transition coincided with the arrival of a large-scale, subsurface cold and fresh water anomaly in the central tropical Pacific. An ocean reanalysis for the period 1990–2007 that assimilates subsurface Argo, XBT and CTD data, reveals that disturbances occur due to the subduction of negative surface salinity anomalies from near 30° S, 100° W which are advected along the σ=25–26 kgm{sup −3} isopycnal surfaces. These anomalies take, on average, seven years to reach the central equatorial Pacific where they may substantially perturb the thermocline before the remnants ultimately ventilate in the region of the western Pacific warm pool. Positive (warm–salty) disturbances, known to occur due to late winter diapycnal mixing and isopycnal outcropping, arise due to both subduction of subtropical mode waters and subsurface injection. On reaching the equatorial band (10° S–0° S) these disturbances tend to deepen the thermocline reducing the model's ENSO. In contrast the emergence of negative (cold–fresh) disturbances at the equator are associated with a shoaling of the thermocline and El Nino events. Process studies are used to show that the generation and advection of anomalous density compensated thermocline disturbances critically depend on stochastic forcing of the intrinsic ocean by weather. We further show that in the absence of the inter-annual component of

  11. Designing and Implementing Weather Generators as Web Services

    Directory of Open Access Journals (Sweden)

    Rassarin Chinnachodteeranun

    2016-12-01

    Full Text Available Climate and weather realizations are essential inputs for simulating crop growth and yields to analyze the risks associated with future conditions. To simplify the procedure of generating weather realizations and make them available over the Internet, we implemented novel mechanisms for providing weather generators as web services, as well as a mechanism for sharing identical weather realizations given a climatological information. A web service for preparing long-term climate data was implemented based on an international standard, Sensor Observation Service (SOS. The weather generator services, which are the core components of the framework, analyze climatological data, and can take seasonal climate forecasts as inputs for generating weather realizations. The generated weather realizations are encoded in a standard format, which are ready for use to crop modeling. All outputs are generated in SOS standard, which broadens the extent of data sharing and interoperability with other sectoral applications, e.g., water resources management. These services facilitate the development of other applications requiring input weather realizations, as these can be obtained easily by just calling the service. The workload of analysts related to data preparation and handling of legacy weather generator programs can be reduced. The architectural design and implementation presented here can be used as a prototype for constructing further services on top of an interoperable sensor network system.

  12. Testing a Weather Generator for Downscaling Climate Change Projections over Switzerland

    Science.gov (United States)

    Keller, Denise E.; Fischer, Andreas M.; Liniger, Mark A.; Appenzeller, Christof; Knutti, Reto

    2016-04-01

    Climate information provided by global or regional climate models (RCMs) are often too coarse and prone to substantial biases, making it impossible to directly use daily time-series of the RCMs for local assessments and in climate impact models. Hence, statistical downscaling becomes necessary. For the Swiss National Climate Change Initiative (CH2011), a delta-change approach was used to provide daily climate projections at the local scale. This data have the main limitations that changes in variability, extremes and in the temporal structure, such as changes in the wet day frequency, are not reproduced. The latter is a considerable downside of the delta-change approach for many impact applications. In this regard, stochastic weather generators (WGs) are an appealing technique that allow the simulation of multiple realizations of synthetic weather sequences consistent with the locally observed weather statistics and its future changes. Here, we analyse a Richardson-type weather generator (WG) as an alternative method to downscale daily precipitation, minimum and maximum temperature. The WG is calibrated for 26 Swiss stations and the reference period 1980-2009. It is perturbed with change factors derived from 12 RCMs (ENSEMBLES) to represent the climate of 2070-2099 assuming the SRES A1B emission scenario. The WG can be run in multi-site mode, making it especially attractive for impact-modelers that rely on a realistic spatial structure in downscaled time-series. The results from the WG are benchmarked against the original delta-change approach that applies mean additive or multiplicative adjustments to the observations. According to both downscaling methods, the results reveal area-wide mean temperature increases and a precipitation decrease in summer, consistent with earlier studies. For the summer drying, the WG indicates primarily a decrease in wet-day frequency and correspondingly an increase in mean dry spell length by around 18% - 40% at low

  13. Differences in the importance of weather and weather-based decisions among campers in Ontario parks (Canada)

    Science.gov (United States)

    Hewer, Micah J.; Scott, Daniel J.; Gough, William A.

    2017-05-01

    Parks and protected areas represent an important resource for tourism in Canada, in which camping is a common recreational activity. The important relationship between weather and climate with recreation and tourism has been widely acknowledged within the academic literature. Howbeit, the need for activity-specific assessments has been identified as an on-going need for future research in the field of tourism climatology. Furthermore, very little is known about the interrelationships between personal characteristics and socio-demographics with weather preferences and behavioural thresholds. This study uses a stated climate preferences approach (survey responses) to explore differences in the importance of weather and related weather-based decisions among summer campers in Ontario parks. Statistically significant differences were found among campers for each of the four dependent variables tested in this study. Physically active campers placed greater importance on weather but were still more tolerant of adverse weather conditions. Older campers placed greater importance on weather. Campers travelling shorter distances placed greater importance on weather and were more likely to leave the park early due to adverse weather. Campers staying for longer periods of time were less likely to leave early due to weather and were willing to endure longer durations of adverse weather conditions. Beginner campers placed greater importance on weather, were more likely to leave early due to weather and recorded lower temporal weather thresholds. The results of this study contribute to the study of tourism climatology by furthering understanding of how personal characteristics such as gender, age, activity selection, trip duration, distance travelled, travel experience and life cycles affect weather preferences and decisions, focusing this time on recreational camping in a park tourism context.

  14. Natural Climate Variability and Future Climate Policy

    Science.gov (United States)

    Ricke, K.; Caldeira, K.

    2013-12-01

    Individual beliefs about climate change and willingness-to-pay for its mitigation are influenced by local weather and climate. Large ensemble climate modeling experiments have demonstrated the large role natural variability plays in local weather and climate on a multidecadal timescale. Here we illustrate how if support for global climate policies and subsequent implementation of those policies are determined by citizens' local experiences, natural variability could influence the timeline for implementation of emissions reduction policies by decades. The response of complex social systems to local and regional changes in weather and climate cannot be quantitatively predicted with confidence. Both the form and timing of the societal response can be affected by interactions between social systems and the physical climate system. Here, to illustrate one type of influence decadal natural variability can have on climate policy, we consider a simple example in which the only question is when, if ever, the different parties will support emissions reduction. To analyze the potential effect that unpredictable extreme events may have on the time to reach a global agreement on climate policy, we analyzed the output from a 40-member Community Climate System Model version 3 simulation ensemble to illustrate how local experiences might affect the timing of acceptance of strong climate policy measures. We assume that a nation's decision to take strong actions to abate emissions is contingent upon the local experiences of its citizens and then examine how the timelines for policy action may be influenced by variability in local weather. To illustrate, we assume that a social 'tipping point' is reached at the national level occurs when half of the population of a nation has experienced a sufficiently extreme event. If climate policies are driven by democratic consensus then variability in weather could result in significantly disparate times-to-action. For the top six CO2 emitters

  15. The response of high-impact blocking weather systems to climate change

    Science.gov (United States)

    Kennedy, Daniel; Parker, Tess; Woollings, Tim; Harvey, Benjamin; Shaffrey, Len

    2016-07-01

    Midlatitude weather and climate are dominated by the jet streams and associated eastward moving storm systems. Occasionally, however, these are blocked by persistent anticyclonic regimes known as blocking. Climate models generally predict a small decline in blocking frequency under anthropogenic climate change. However, confidence in these predictions is undermined by, among other things, a lack of understanding of the physical mechanisms underlying the change. Here we analyze blocking (mostly in the Euro-Atlantic sector) in a set of sensitivity experiments to determine the effect of different parts of the surface global warming pattern. We also analyze projected changes in the impacts of blocking such as temperature extremes. The results show that enhanced warming both in the tropics and over the Arctic act to strengthen the projected decline in blocking. The tropical changes are more important for the uncertainty in projected blocking changes, though the Arctic also affects the temperature anomalies during blocking.

  16. Extreme Weather and Natural Disasters

    CERN Document Server

    Healey, Justin

    2012-01-01

    Australia is a vast land in which weather varies significantly in different parts of the continent. Recent extreme weather events in Australia, such as the Queensland floods and Victorian bushfires, are brutal reminders of nature's devastating power. Is global warming increasing the rate of natural disasters? What part do La Niña and El Niño play in the extreme weather cycle? Cyclones, floods, severe storms, bushfires, landslides, earthquakes, tsunamis - what are the natural and man-made causes of these phenomena, how predictable are they, and how prepared are we for the impacts of natural dis

  17. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    Energy Technology Data Exchange (ETDEWEB)

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    2015-04-30

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehicle climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.

  18. New software methods in radar ornithology using WSR-88D weather data and potential application to monitoring effects of climate change on bird migration

    Science.gov (United States)

    Mead, Reginald; Paxton, John; Sojda, Richard S.; Swayne, David A.; Yang, Wanhong; Voinov, A.A.; Rizzoli, A.; Filatova, T.

    2010-01-01

    Radar ornithology has provided tools for studying the movement of birds, especially related to migration. Researchers have presented qualitative evidence suggesting that birds, or at least migration events, can be identified using large broad scale radars such as the WSR-88D used in the NEXRAD weather surveillance system. This is potentially a boon for ornithologists because such data cover a large portion of the United States, are constantly being produced, are freely available, and have been archived since the early 1990s. A major obstacle to this research, however, has been that identifying birds in NEXRAD data has required a trained technician to manually inspect a graphically rendered radar sweep. A single site completes one volume scan every five to ten minutes, producing over 52,000 volume scans in one year. This is an immense amount of data, and manual classification is infeasible. We have developed a system that identifies biological echoes using machine learning techniques. This approach begins with training data using scans that have been classified by experts, or uses bird data collected in the field. The data are preprocessed to ensure quality and to emphasize relevant features. A classifier is then trained using this data and cross validation is used to measure performance. We compared neural networks, naive Bayes, and k-nearest neighbor classifiers. Empirical evidence is provided showing that this system can achieve classification accuracies in the 80th to 90th percentile. We propose to apply these methods to studying bird migration phenology and how it is affected by climate variability and change over multiple temporal scales.

  19. Cold-Weather Sports and Your Family

    Science.gov (United States)

    ... Feeding Your 1- to 2-Year-Old Cold-Weather Sports and Your Family KidsHealth > For Parents > Cold- ... once the weather turns frosty. Beating the Cold-Weather Blahs Once a chill is in the air, ...

  20. Weather data communication and utilization

    Science.gov (United States)

    Mcfarland, R. H.; Nickum, J. D.; Mccall, D. L.

    1983-01-01

    The communication of weather data to aircraft is discussed. Problems encountered because of the great quantities of data available and the limited capacity to transfer this via radio link to an aircraft are discussed. Display devices are discussed.

  1. Tropical Ocean Surface Energy Balance Variability: Linking Weather to Climate Scales

    Science.gov (United States)

    Roberts, J. Brent; Clayson, Carol Anne

    2013-01-01

    Radiative and turbulent surface exchanges of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing the spatiotemporal variability of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. These fluxes are integral components to tropical ocean-atmosphere variability; they can drive ocean mixed layer variations and modify the atmospheric boundary layer properties including moist static stability, thereby influencing larger-scale tropical dynamics. Non-parametric cluster-based classification of atmospheric and ocean surface properties has shown an ability to identify coherent weather regimes, each typically associated with similar properties and processes. Using satellite-based observational radiative and turbulent energy flux products, this study investigates the relationship between these weather states and surface energy processes within the context of tropical climate variability. Investigations of surface energy variations accompanying intraseasonal and interannual tropical variability often use composite-based analyses of the mean quantities of interest. Here, a similar compositing technique is employed, but the focus is on the distribution of the heat and moisture fluxes within their weather regimes. Are the observed changes in surface energy components dominated by changes in the frequency of the weather regimes or through changes in the associated fluxes within those regimes? It is this question that the presented work intends to address. The distribution of the surface heat and moisture fluxes is evaluated for both normal and non-normal states. By examining both phases of the climatic oscillations, the symmetry of energy and water cycle responses are considered.

  2. Landslides as weathering reactors; links between physical erosion and weathering in rapidly eroding mountain belts

    Science.gov (United States)

    Emberson, R.; Hovius, N.; Galy, A.

    2014-12-01

    The link between physical erosion and chemical weathering is generally modelled with a surface-blanketing weathering zone, where the supply of fresh minerals is tied to the average rate of denudation. In very fast eroding environments, however, sediment production is dominated by landsliding, which acts in a stochastic fashion across the landscape, contrasting strongly with more uniform denudation models. If physical erosion is a driver of weathering at the highest erosion rates, then an alternative weathering model is required. Here we show that landslides can be effective 'weathering reactors'. Previous work modelling the effect of landslides on chemical weathering (Gabet 2007) considered the fresh bedrock surfaces exposed in landslide scars. However, fracturing during the landslide motion generates fresh surfaces, the total surface area of which exceeds that of the exposed scar by many orders of magnitude. Moreover, landslides introduce concavity into hillslopes, which acts to catch precipitation. This is funnelled into a deposit of highly fragmented rock mass with large reactive surface area and limited hydraulic conductivity (Lo et al. 2007). This allows percolating water reaction time for chemical weathering; any admixture of macerated organic debris could yield organic acid to further accelerate weathering. In the South island of New Zealand, seepage from recent landslide deposits has systematically high solute concentrations, far outstripping concentration in runoff from locations where soils are present. River total dissolved load in the western Southern Alps is highly correlated with the rate of recent (erosion; this contrasts with persistent and ubiquitous weathering associated with soil production. Solute fluxes from fast eroding landscapes therefore likely depend on climatic or tectonic forcing of mass wasting; greater precipitation would drive increased weathering, while earthquakes, in generating landslides (Dadson et al. 2003; Chen & Hawkins 2009

  3. Texas Field Experiment Results: Performance of the Weatherization Assistance Program in Hot-Climate, Low-Income Homes

    Energy Technology Data Exchange (ETDEWEB)

    McCold, Lance Neil [ORNL; Goeltz, Rick [ORNL; Ternes, Mark P [ORNL; Berry, Linda G [ORNL

    2008-04-01

    A field test involving 35 houses was performed in Texas between 2000 and 2003 to study the response of low-income homes in hot climates to weatherization performed as part of the U.S Department of Energy Weatherization Assistance Program and to investigate certain methods to improve weatherization performance. The study found that improved Program designs and the use of advanced energy audits resulted in better weatherization measures being installed (use of blower doors to guide the infiltration work, more frequent installation of attic insulation, and installation of wall insulation) in the study homes, improved space-heating savings performance compared to the Program as implemented in the hot climates in 1989, and more comfortable indoor temperatures. Two key policy dilemmas for Texas and other hot-climate states were highlighted by the study; namely, how to balance expenditures between installing cost-effective weatherization measures and performing health, safety, and repair items, and that health, safety, and repair items can have an adverse impact on energy savings, which further complicates the weatherization decision process. Several occupant and equipment-related behaviors were observed in the field test homes that help explain why audits may over predict energy consumptions and savings and why air-conditioning electricity savings are difficult to measure. Based on this study, it is recommended that states in hot climates be encouraged to select from an expanded list of measures using advanced audits or other techniques, and further studies examining the benefits obtained from air conditioner measures should be performed. In addition, guidelines should be developed for the hot-climate states on how to (a) balance the objectives of saving energy, improving health and safety, and addressing repair issues, and (b) select repair items.

  4. Indirect consequences of extreme weather and climate events and their associations with physical health in coastal Bangladesh: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Dominik Beier

    2015-10-01

    Full Text Available Background: Bangladesh is one of the countries in the world which is most prone to natural disasters. The overall situation is expected to worsen, since extreme weather and climate events (EWCE are likely to increase in both frequency and intensity. Indirect consequences caused in the events’ aftermath widen the range of possible adverse health outcomes. Objective: To assess the association of indirect consequences of EWCE and physical health. Design: We used recent cross-sectional self-reported data from 16 coastal villages in Bangladesh. A total of 980 households were surveyed using a structured questionnaire. The outcome of physical health was categorized into three groups, reflecting the severity of reported diseases by the respective source of treatment as a proxy variable (hospital/clinic for severe disease, other source/no treatment for moderate disease, and no disease. The final statistical analysis was conducted using multinomial logistic regression. Results: Severe diseases were significantly associated with drinking water from open sources [odds ratio (OR: 4.26, 95% confidence interval (CI: 2.25–8.09] and tube wells (OR: 2.39, 95% CI: 1.43–4.01, moderate harm by river erosion (OR: 6.24, 95% CI: 2.76–14.11, food scarcity (OR: 1.98, 95% CI: 1.16–3.40, and the perception of increased employment problems (OR: 2.19, 95% CI: 1.18–4.07. Moderate diseases were significantly associated with moderate harm by river erosion (OR: 2.65, 95% CI: 1.28–5.48 and fully experienced food scarcity (OR: 1.75, 95% CI: 1.16–2.63. For both categories, women and the elderly had higher chances for diseases. Conclusions: Indirect consequences of EWCE were found to be associated with adverse health outcomes. Basic needs such as drinking water, food production, and employment opportunities are particularly likely to become threatened by EWCE and, thus, may lead to a higher likelihood of ill-health. Intervention strategies should concentrate on

  5. Indirect consequences of extreme weather and climate events and their associations with physical health in coastal Bangladesh: a cross-sectional study

    Science.gov (United States)

    Beier, Dominik; Brzoska, Patrick; Khan, Mobarak Hossain

    2015-01-01

    Background Bangladesh is one of the countries in the world which is most prone to natural disasters. The overall situation is expected to worsen, since extreme weather and climate events (EWCE) are likely to increase in both frequency and intensity. Indirect consequences caused in the events’ aftermath widen the range of possible adverse health outcomes. Objective To assess the association of indirect consequences of EWCE and physical health. Design We used recent cross-sectional self-reported data from 16 coastal villages in Bangladesh. A total of 980 households were surveyed using a structured questionnaire. The outcome of physical health was categorized into three groups, reflecting the severity of reported diseases by the respective source of treatment as a proxy variable (hospital/clinic for severe disease, other source/no treatment for moderate disease, and no disease). The final statistical analysis was conducted using multinomial logistic regression. Results Severe diseases were significantly associated with drinking water from open sources [odds ratio (OR): 4.26, 95% confidence interval (CI): 2.25–8.09] and tube wells (OR: 2.39, 95% CI: 1.43–4.01), moderate harm by river erosion (OR: 6.24, 95% CI: 2.76–14.11), food scarcity (OR: 1.98, 95% CI: 1.16–3.40), and the perception of increased employment problems (OR: 2.19, 95% CI: 1.18–4.07). Moderate diseases were significantly associated with moderate harm by river erosion (OR: 2.65, 95% CI: 1.28–5.48) and fully experienced food scarcity (OR: 1.75, 95% CI: 1.16–2.63). For both categories, women and the elderly had higher chances for diseases. Conclusions Indirect consequences of EWCE were found to be associated with adverse health outcomes. Basic needs such as drinking water, food production, and employment opportunities are particularly likely to become threatened by EWCE and, thus, may lead to a higher likelihood of ill-health. Intervention strategies should concentrate on protection and

  6. Are we disabling climate science in southern Africa? : A brief consideration of the draft South African Weather Service Amendment Bill

    CSIR Research Space (South Africa)

    Archer van Garderen, Emma RM

    2013-01-01

    Full Text Available effectively after World War 2, with the return to non-military life of a number of military meteorologists (Pielke 2003). As a result, as early as 1948, the American Meteorological Society indicated that the relationship between the then Weather Bureau... for national and regional climate strategy and policy. The increasing value of climate services, and certain shifts of National Meteorological and Hydrological Services (NMHSs) to accommodate this, complicates such initiatives, however, and rather than...

  7. Trans-African Hydro-Meteorological Observatory (TAHMO): A network to monitor weather, water, and climate in Africa

    Science.gov (United States)

    Van De Giesen, N.; Hut, R.; Andreini, M.; Selker, J. S.

    2013-12-01

    The Trans-African Hydro-Meteorological Observatory (TAHMO) has a goal to design, build, install and operate a dense network of hydro-meteorological monitoring stations in sub-Saharan Africa; one every 35 km. This corresponds to a total of 20,000 stations. By applying ICT and innovative sensors, each station should cost not more than $500. The stations would be placed at schools and integrated in the environmental curriculum. Data will be combined with models and satellite observations to obtain a very complete insight into the distribution of water and energy stocks and fluxes. Within this project, we have built a prototype of an acoustic disdrometer (rain gauge) that can be produced for much less than the cost of a commercial equivalent with the same specifications. The disdrometer was developed in The Netherlands and tested in Tanzania for a total project cost of Euro 5000. First tests have been run at junior high schools in Ghana to incorporate hydro-meteorological measurements in the science curriculum. The latest activity concerns the organization of a crowdsourcing competitions across Africa to address business development and the design and building of new robust sensors. This has resulted in a wide network throughout the continent to bring this program forward.

  8. Weather patterns as a downscaling tool - evaluating their skill in stratifying local climate variables

    Science.gov (United States)

    Murawski, Aline; Bürger, Gerd; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    The use of a weather pattern based approach for downscaling of coarse, gridded atmospheric data, as usually obtained from the output of general circulation models (GCM), allows for investigating the impact of anthropogenic greenhouse gas emissions on fluxes and state variables of the hydrological cycle such as e.g. on runoff in large river catchments. Here we aim at attributing changes in high flows in the Rhine catchment to anthropogenic climate change. Therefore we run an objective classification scheme (simulated annealing and diversified randomisation - SANDRA, available from the cost733 classification software) on ERA20C reanalyses data and apply the established classification to GCMs from the CMIP5 project. After deriving weather pattern time series from GCM runs using forcing from all greenhouse gases (All-Hist) and using natural greenhouse gas forcing only (Nat-Hist), a weather generator will be employed to obtain climate data time series for the hydrological model. The parameters of the weather pattern classification (i.e. spatial extent, number of patterns, classification variables) need to be selected in a way that allows for good stratification of the meteorological variables that are of interest for the hydrological modelling. We evaluate the skill of the classification in stratifying meteorological data using a multi-variable approach. This allows for estimating the stratification skill for all meteorological variables together, not separately as usually done in existing similar work. The advantage of the multi-variable approach is to properly account for situations where e.g. two patterns are associated with similar mean daily temperature, but one pattern is dry while the other one is related to considerable amounts of precipitation. Thus, the separation of these two patterns would not be justified when considering temperature only, but is perfectly reasonable when accounting for precipitation as well. Besides that, the weather patterns derived from

  9. The NOAA Local Climate Analysis Tool - An Application in Support of a Weather Ready Nation

    Science.gov (United States)

    Timofeyeva, M. M.; Horsfall, F. M.

    2012-12-01

    Citizens across the U.S., including decision makers from the local to the national level, have a multitude of questions about climate, such as the current state and how that state fits into the historical context, and more importantly, how climate will impact them, especially with regard to linkages to extreme weather events. Developing answers to these types of questions for locations has typically required extensive work to gather data, conduct analyses, and generate relevant explanations and graphics. Too frequently providers don't have ready access to or knowledge of reliable, trusted data sets, nor sound, scientifically accepted analysis techniques such that they can provide a rapid response to queries they receive. In order to support National Weather Service (NWS) local office forecasters with information they need to deliver timely responses to climate-related questions from their customers, we have developed the Local Climate Analysis Tool (LCAT). LCAT uses the principles of artificial intelligence to respond to queries, in particular, through use of machine technology that responds intelligently to input from users. A user translates customer questions into primary variables and issues and LCAT pulls the most relevant data and analysis techniques to provide information back to the user, who in turn responds to their customer. Most responses take on the order of 10 seconds, which includes providing statistics, graphical displays of information, translations for users, metadata, and a summary of the user request to LCAT. Applications in Phase I of LCAT, which is targeted for the NWS field offices, include Climate Change Impacts, Climate Variability Impacts, Drought Analysis and Impacts, Water Resources Applications, Attribution of Extreme Events, and analysis techniques such as time series analysis, trend analysis, compositing, and correlation and regression techniques. Data accessed by LCAT are homogenized historical COOP and Climate Prediction Center

  10. Understanding climate change projections for precipitation over Western Europe with a weather typing approach

    Science.gov (United States)

    Santos, João A.; Belo-Pereira, Margarida; Fraga, Helder; Pinto, Joaquim G.

    2016-04-01

    Precipitation over Western Europe (WE) is projected to increase (decrease) roughly northward (equatorward) of 50°N during the twenty first century. These changes are generally attributed to alterations in the regional large-scale circulation, e.g. jet stream, cyclone activity and blocking frequencies. A novel weather typing within the sector (30°W-10°E, 25-70°N) is used for a more comprehensive dynamical interpretation of precipitation changes. A k-means clustering on daily mean sea level pressure was undertaken for ERA-Interim reanalysis (1979-2014). Eight weather types are identified: S1, S2, S3 (summertime types), W1, W2, W3 (wintertime types), B1 and B2 (blocking-like types). Their distinctive dynamical characteristics allow identifying the main large-scale precipitation-driving mechanisms. Simulations with 22 CMIP5 models for recent climate conditions show biases in reproducing the observed seasonality of weather types. In particular, an overestimation of weather type frequencies associated with zonal airflow is identified. Considering projections following the RCP8.5 scenario over 2071-2100, the frequencies of the three driest types (S1, B2 and W3) are projected to increase (mainly S1, +4%) in detriment of the rainiest types, particularly W1 (-3%). These changes explain most of the precipitation projections over WE. However, a weather type-independent background signal is identified (increase/decrease in precipitation over northern/southern WE), suggesting modifications in precipitation-generating processes and/or model inability to accurately simulate these processes. Despite these caveats in the precipitation scenarios for WE, which must be taken into account, our approach permits a better understanding of the projected trends for precipitation over Western Europe.

  11. STEREO Space Weather and the Space Weather Beacon

    Science.gov (United States)

    Biesecker, D. A.; Webb, D F.; SaintCyr, O. C.

    2007-01-01

    The Solar Terrestrial Relations Observatory (STEREO) is first and foremost a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.

  12. Internet Weather Source

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (NWS) National Telecommunications Gateway provides weather, hydrologic, and climate forecasts and warnings for the United States, its...

  13. Has prey availability for Arctic birds advanced with climate change? Hindcasting the abundance of tundra Arthropods using weather and seasonal variation

    NARCIS (Netherlands)

    Tulp, I.Y.M.; Schekkerman, H.

    2008-01-01

    Of all climatic zones on earth, Arctic areas have experienced the greatest climate change in recent decades. Predicted changes, including a continuing rise in temperature and precipitation and a reduction in snow cover, are expected to have a large impact on Arctic life. Large numbers of birds breed

  14. Has prey availability for Arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variations

    NARCIS (Netherlands)

    Tulp, I.; Schekkerman, H.

    2008-01-01

    Of all climatic zones on earth, Arctic areas have experienced the greatest climate change in recent decades. Predicted changes, including a continuing rise in temperature and precipitation and a reduction in snow cover, are expected to have a large impact on Arctic life. Large numbers of birds breed

  15. Weather impacts on natural, social and economic systems. German report

    Energy Technology Data Exchange (ETDEWEB)

    Flechsig, M.; Gerlinger, K.; Herrmann, N.; Klein, R.J.T.; Schneider, M.; Sterr, H.; Schellnhuber, H.J.

    2000-05-01

    The EU project Weather Impacts on Natural, Social and Economic Systems (WISE) has analysed impacts of current climate variability to evaluate the sensitivity of today's society to extreme weather. Unlike studies of anticipated impacts of climate change, WISE did not rely on scenarios and projections, but on existing and newly collected data. The research involved (i) the statistical modelling of meteorological and sectoral time series, aimed at quantifying the impacts of changing weather variables on sector output, (ii) a population survey, aimed at investigating public perception of and behavioural response to unusually hot and dry summers and mild winters, and (iii) a management survey, aimed at obtaining insight into managers' awareness and perception of the importance of extreme weather on their operations. The three activities revealed a wealth of data and information, providing relevant insights into Germany's sensitivity to and perception of extreme weather events. Sectors that were analysed included agriculture, outdoor fire, water supply, human health, electricity and gas consumption and tourism. It appears from the statistical modelling that extreme weather can have impressive impacts on all sectors, especially when expressed in monetary terms. However, weather variability is generally considered a manageable risk, to which sectors in Germany appear reasonably well-adapted. The population and management surveys reveal both positive and negative impacts of extreme weather. People generally respond to these impacts by adjusting their activities. The utilities (electricity, gas and water) indicate that they are robsut to the current level of weather variability and do not consider climate change an important threat to their operations. The tourism sector experiences impacts but typically takes a reactive approach to adaptation, although it is also developing weather-insensitive products. (orig.)

  16. Linking spatio-temporal patterns in land cover dynamics with regional climate factors and recent weather: Application to the Flint Hills of Kansas and Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Henebry, G.M.; Goodin, D.G. [Kansas State Univ., Manhattan, KS (United States); Su, H. [Argonne National Lab., IL (United States)] [and others

    1995-06-01

    A key obstacle to developing regional models of ecosystem dynamics is representation of spatio-temporal variation in constituent patterns and processes. Simple resealing of site-specific ecological data or simulations to broader spatial scales is unlikely to capture regional spatio-temporal dynamics. Yet logistical constraints usually require synoptic weather data to be synthesized from sparse data networks. We seek a simple top-down model that links remotely-sensed vegetation cover with antecedent meteorological forcings to generate boundary conditions for site-specific fine-resolution data and simulations of tallgrass prairie. We developed several candidate models using AVHRR NDVI maximum biweekly composites of the Flint Hills from 1990-1993 and data from a network of more than 60 weather stations across the 40,000 km2 region. Models combined parameters derived from exemplary land cover trajectories, spatial structure (lacunarity and correlation length), and running weighted sums of weather data. Spectral-temporal models were easier to fit; lacunarity was more sensitive than correlation length; compositing effects were strong.

  17. Simulating infectious disease risk based on climatic drivers: from numerical weather prediction to long term climate change scenario

    Science.gov (United States)

    Caminade, C.; Ndione, J. A.; Diallo, M.; MacLeod, D.; Faye, O.; Ba, Y.; Dia, I.; Medlock, J. M.; Leach, S.; McIntyre, K. M.; Baylis, M.; Morse, A. P.

    2012-04-01

    Climate variability is an important component in determining the incidence of a number of diseases with significant health and socioeconomic impacts. In particular, vector born diseases are the most likely to be affected by climate; directly via the development rates and survival of both the pathogen and the vector, and indirectly through changes in the surrounding environmental conditions. Disease risk models of various complexities using different streams of climate forecasts as inputs have been developed within the QWeCI EU and ENHanCE ERA-NET project frameworks. This work will present two application examples, one for Africa and one for Europe. First, we focus on Rift Valley fever over sub-Saharan Africa, a zoonosis that affects domestic animals and humans by causing an acute fever. We show that the Rift Valley fever outbreak that occurred in late 2010 in the northern Sahelian region of Mauritania might have been anticipated ten days in advance using the GFS numerical weather prediction system. Then, an ensemble of regional climate projections is employed to model the climatic suitability of the Asian tiger mosquito for the future over Europe. The Asian tiger mosquito is an invasive species originally from Asia which is able to transmit West Nile and Chikungunya Fever among others. This species has spread worldwide during the last decades, mainly through the shipments of goods from Asia. Different disease models are employed and inter-compared to achieve such a task. Results show that the climatic conditions over southern England, central Western Europe and the Balkans might become more suitable for the mosquito (including the proviso that the mosquito has already been introduced) to establish itself in the future.

  18. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks

    Science.gov (United States)

    Torres, Mark A.; Moosdorf, Nils; Hartmann, Jens; Adkins, Jess F.; West, A. Joshua

    2017-08-01

    Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO2, we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean–atmosphere CO2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O2. Future work on glaciation–weathering–carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals.

  19. The importance of terrestrial weathering for climate system modelling on extended timescales: a study with the UVic ESCM

    Science.gov (United States)

    Brault, Marc-Olivier; Matthews, Damon; Mysak, Lawrence

    2016-04-01

    The chemical erosion of carbonate and silicate rocks is a key process in the global carbon cycle and, through its coupling with calcium carbonate deposition in the ocean, is the primary sink of carbon on geologic timescales. The dynamic interdependence of terrestrial weathering rates with atmospheric temperature and carbon dioxide concentrations is crucial to the regulation of Earth's climate over multi-millennial timescales. However any attempts to develop a modeling context for terrestrial weathering as part of a dynamic climate system are limited, mostly because of the difficulty in adapting the multi-millennial timescales of the implied negative feedback mechanism with those of the atmosphere and ocean. Much of the earlier work on this topic is therefore based on box-model approaches, abandoning spatial variability for the sake of computational efficiency and the possibility to investigate the impact of weathering on climate change over time frames much longer than those allowed by traditional climate system models. As a result we still have but a rudimentary understanding of the chemical weathering feedback mechanism and its effects on ocean biogeochemistry and atmospheric CO2. Here, we introduce a spatially-explicit, rock weathering model into the University of Victoria Earth System Climate Model (UVic ESCM). We use a land map which takes into account a number of different rock lithologies, changes in sea level, as well as an empirical model of the temperature and NPP dependency of weathering rates for the different rock types. We apply this new model to the last deglacial period (c. 21000BP to 13000BP) as well as a future climate change scenario (c. 1800AD to 6000AD+), comparing the results of our 2-D version of the weathering feedback mechanism to simulations using only the box-model parameterizations of Meissner et al. [2012]. These simulations reveal the importance of two-dimensional factors (i.e., changes in sea level and rock type distribution) in the

  20. Climate change: linking traditional and scientific knowledge

    National Research Council Canada - National Science Library

    Riewe, R. R. (Roderick R.); Oakes, Jill E. (Jill Elizabeth)

    2006-01-01

    This book includes papers written by over 50 community experts and scientists addressing theoretical concerns, knowledge transfer, adapting to climate change, implications of changing weather, water...

  1. Space Weather, Environment and Societies

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun’s violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the ...

  2. Surficial weathering of iron sulfide mine tailings under semi-arid climate.

    Science.gov (United States)

    Hayes, Sarah M; Root, Robert A; Perdrial, Nicolas; Maier, Raina; Chorover, Jon

    2014-09-15

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg(-1), respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in

  3. Surficial weathering of iron sulfide mine tailings under semi-arid climate

    Science.gov (United States)

    Hayes, Sarah M.; Root, Robert A.; Perdrial, Nicolas; Maier, Raina M.; Chorover, Jon

    2014-09-01

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering in a semi-arid climate at an EPA Superfund Site in central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg-1, respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in samples with

  4. Hourly test reference weather data in the changing climate of Finland for building energy simulations

    Directory of Open Access Journals (Sweden)

    Kirsti Jylhä

    2015-09-01

    Full Text Available Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled “Energy demand for the heating and cooling of residential houses in Finland in a changing climate” [1].

  5. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt

    Directory of Open Access Journals (Sweden)

    G. Muttoni

    2012-09-01

    Full Text Available The small reservoir of carbon dioxide in the atmosphere (pCO2 that modulates climate through the greenhouse effect reflects a delicate balance between large fluxes of sources and sinks. The major long-term source of CO2 is global outgassing from sea-floor spreading, subduction, hotspot activity, and metamorphism; the ultimate sink is through weathering of continental silicates and deposition of carbonates. Most carbon cycle models are driven by changes in the source flux scaled to variable rates of ocean floor production. However, ocean floor production may not be distinguishable from being steady since 180 Ma. We evaluate potential changes in sources and sinks of CO2 for the past 120 Ma in a paleogeographic context. Our new calculations show that although decarbonation of pelagic sediments in Tethyan subduction likely contributed to generally high pCO2 levels from the Late Cretaceous until the Early Eocene, shutdown of Tethyan subduction with collision of India and Asia at the Early Eocene Climate Optimum at around 50 Ma was inadequate to account for the large and prolonged decrease in pCO2 that eventually allowed the growth of significant Antarctic ice sheets by around 34 Ma. Instead, variation in area of continental basaltic provinces in the equatorial humid belt (5° S–5° N seems to be the dominant control on how much CO2 is retained in the atmosphere via the silicate weathering feedback. The arrival of the highly weatherable Deccan Traps in the equatorial humid belt at around 50 Ma was decisive in initiating the long-term slide to lower atmospheric pCO2, which was pushed further down by the emplacement of the 30 Ma Ethiopian Traps near the equator and the southerly tectonic extrusion of SE Asia, an arc terrane that presently is estimated to account for 1/4 of CO2 consumption from all basaltic provinces that account for ~1/3 of the total CO2 consumption by continental silicate weathering (Dessert et al., 2003. A negative climate

  6. Performance of Chaos Theory in Weather Forecasts (Case Study: Tehran-Temperate Climate

    Directory of Open Access Journals (Sweden)

    SohrabHajjam

    2016-06-01

    Full Text Available Accurate weather forecast is of great importance for providing the suitable substrates for water resources management and crisis management. Therefore, the use of methods with high accuracy and updating the forecast models seem to be necessary in this regard. In evaluation of hydrological and climate data, the investigation of precipitation parameter is in non-linear time series method. The present research aimed to compare the performance of intelligent systems based on nonlinear methods, chaos theory, and neural network system in estimating monthly precipitation in temperate climate of Tehran. The results of neural network system, local model methods, and the nearest neighbor showed that chaos-based methods not only are sensitive to the range of data but also influenced by the length of data and attitude towards data review process based on conditions. Evaluation of results indicated that chaos-based have an acceptable and high precision and accuracy and chaos theory produces better results than neural network system in temperate climates. Considering the nature of data, the studied climate, and the procedures required in forecast of meteorological parameters, chaos theory can bring very good results. Due to the sensitivity of meteorological forecasts, the use of this theory can be helpful and beneficial.

  7. Thresholds for soil cover and weathering in mountainous landscapes

    Science.gov (United States)

    Dixon, Jean; Benjaram, Sarah

    2017-04-01

    The patterns of soil formation, weathering, and erosion shape terrestrial landscapes, forming the foundation on which ecosystems and human civilizations are built. Several fundamental questions remain regarding how soils evolve, especially in mountainous landscapes where tectonics and climate exert complex forcings on erosion and weathering. In these systems, quantifying weathering is made difficult by the fact that soil cover is discontinuous and heterogeneous. Therefore, studies that attempt to measure soil weathering in such systems face a difficult bias in measurements towards more weathered portions of the landscape. Here, we explore current understanding of erosion-weathering feedbacks, and present new data from mountain systems in Western Montana. Using field mapping, analysis of LiDAR and remotely sensed land-cover data, and soil chemical analyses, we measure soil cover and surface weathering intensity across multiple spatial scales, from the individual soil profile to a landscape perspective. Our data suggest that local emergence of bedrock cover at the surface marks a landscape transition from supply to kinetic weathering regimes in these systems, and highlights the importance of characterizing complex critical zone architecture in mountain landscapes. This work provides new insight into how landscape morphology and erosion may drive important thresholds for soil cover and weathering.

  8. Rates of consumption of atmospheric CO2 through the weathering of loess during the next 100 yr of climate change

    Directory of Open Access Journals (Sweden)

    D. Pollard

    2012-08-01

    Full Text Available Quantifying how C fluxes will change in the future is a complex task for models because of the coupling between climate, hydrology, and biogeochemical reactions. Here we investigate how pedogenesis of the Peoria loess, which has been weathering for the last 13 kyr, will respond over the next 100 yr of climate change. Using a cascade of numerical models for climate (ARPEGE, vegetation (CARAIB and weathering (WITCH we explore the effect of an increase in CO2 of 315 ppmv (1950 to 700 ppmv (2100 projection. The increasing CO2 results in an increase in temperature along the entire transect. In contrast, drainage increases slightly for a focus pedon in the South but decreases strongly in the North. These two variables largely determine the behavior of weathering. In addition, although CO2 production rate increases in the soils in response to global warming, the rate of diffusion back to the atmosphere also increases, maintaining a roughly constant or even decreasing CO2 concentration in the soil gas phase. Our simulations predict that temperature increasing in the next 100 yr causes the weathering rates of the silicates to increase into the future. In contrast, the weathering rate of dolomite – which consumes most of the CO2-decreases due to its retrograde solubility in both end members (South and North of the transect. We thus infer slower rates of advance of the dolomite reaction front into the subsurface, and faster rates of advance of the silicate reaction front. However, additional simulations for 9 pedons located along the North–South transect show that dolomite weathering will increase in the central part of the Mississippi Valley, owing to a maximum in the response of vertical drainage to the ongoing climate change. The carbonate reaction front can be likened to a terrestrial lysocline because it represents a depth interval over which carbonate dissolution rates increase drastically. However, in contrast to the lower pH and shallower

  9. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt

    Directory of Open Access Journals (Sweden)

    D. V. Kent

    2013-03-01

    Full Text Available The small reservoir of carbon dioxide in the atmosphere (pCO2 that modulates climate through the greenhouse effect reflects a delicate balance between large fluxes of sources and sinks. The major long-term source of CO2 is global outgassing from sea-floor spreading, subduction, hotspot activity, and metamorphism; the ultimate sink is through weathering of continental silicates and deposition of carbonates. Most carbon cycle models are driven by changes in the source flux scaled to variable rates of ocean floor production, but ocean floor production may not be distinguishable from being steady since 180 Ma. We evaluate potential changes in sources and sinks of CO2 for the past 120 Ma in a paleogeographic context. Our new calculations show that decarbonation of pelagic sediments by Tethyan subduction contributed only modestly to generally high pCO2 levels from the Late Cretaceous until the early Eocene, and thus shutdown of this CO2 source with the collision of India and Asia at the early Eocene climate optimum at around 50 Ma was inadequate to account for the large and prolonged decrease in pCO2 that eventually allowed the growth of significant Antarctic ice sheets by around 34 Ma. Instead, variation in area of continental basalt terranes in the equatorial humid belt (5° S–5° N seems to be a dominant factor controlling how much CO2 is retained in the atmosphere via the silicate weathering feedback. The arrival of the highly weatherable Deccan Traps in the equatorial humid belt at around 50 Ma was decisive in initiating the long-term slide to lower atmospheric pCO2, which was pushed further down by the emplacement of the 30 Ma Ethiopian Traps near the equator and the southerly tectonic extrusion of SE Asia, an arc terrane that presently is estimated to account for 1/4 of CO2 consumption from all basaltic provinces that account for ~1/3 of the total CO2 consumption by continental silicate weathering (Dessert et al., 2003. A negative climate

  10. Stochastic Climate Theory and Modelling

    CERN Document Server

    Franzke, Christian L E; Berner, Judith; Williams, Paul D; Lucarini, Valerio

    2014-01-01

    Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations as well as for model error representation, uncertainty quantification, data assimilation and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochast...

  11. Climatology of salt transitions and implications for stone weathering

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, C.M., E-mail: c.grossi-sampedro@uea.ac.uk [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Brimblecombe, P. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Menendez, B. [Geosciences et Environnement Cergy, Universite de Cergy-Pontoise 95031 Cergy-Pontoise cedex (France); Benavente, D. [Lab. Petrologia Aplicada, Unidad Asociada UA-CSIC, Dpto. Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Alicante 03080 (Spain); Harris, I. [Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Deque, M. [Meteo-France/CNRM, CNRS/GAME, 42 Avenue Coriolis, F-31057 Toulouse, Cedex 01 (France)

    2011-06-01

    This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Koeppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Koeppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). - Research highlights: {yields} We introduce the notion of salt climatology for heritage conservation. {yields} Climate affects salt thermodynamics on building materials. {yields} We associate Koeppen-Geiger climate types with potential salt weathering. {yields} We offer future projections of salt damage in Western Europe due to climate change. {yields} Humid

  12. Impact Analysis of Climate Change on Snow over a Complex Mountainous Region Using Weather Research and Forecast Model (WRF Simulation and Moderate Resolution Imaging Spectroradiometer Data (MODIS-Terra Fractional Snow Cover Products

    Directory of Open Access Journals (Sweden)

    Xiaoduo Pan

    2017-07-01

    Full Text Available Climate change has a complex effect on snow at the regional scale. The change in snow patterns under climate change remains unknown for certain regions. Here, we used high spatiotemporal resolution snow-related variables simulated by a weather research and forecast model (WRF including snowfall, snow water equivalent and snow depth along with fractional snow cover (FSC data extracted from Moderate Resolution Imaging Spectroradiometer Data (MODIS-Terra to evaluate the effects of climate change on snow over the Heihe River Basin (HRB, a typical inland river basin in arid northwestern China from 2000 to 2013. We utilized Empirical Orthogonal Function (EOF analysis and Mann-Kendall/Theil-Sen trend analysis to evaluate the results. The results are as follows: (1 FSC, snow water equivalent, and snow depth across the entire HRB region decreased, especially at elevations over 4500 m; however, snowfall increased at mid-altitude ranges in the upstream area of the HRB. (2 Total snowfall also increased in the upstream area of the HRB; however, the number of snowfall days decreased. Therefore, the number of extreme snow events in the upstream area of the HRB may have increased. (3 Snowfall over the downstream area of the HRB decreased. Thus, ground stations, WRF simulations and remote sensing products can be used to effectively explore the effect of climate change on snow at the watershed scale.

  13. Weather conditions and sudden sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Kateri Maria

    2002-07-01

    Full Text Available Abstract Background Climatic or meteorological condition changes have been implicated in the pathogenesis of Idiopathic Sudden Sensorineural Hearing Loss (ISSHL. We investigated the seasonal distribution of ISSHL and evaluated the influence of meteorological parameters (such as temperature, humidity, and atmospheric pressure, their variation and covariation on the incidence of the disease. Methods A total of 82 cases of ISSHL, admitted to our department over a five-year period, were enrolled in the study. Seasonal distribution of the disease was investigated by dividing the year in four seasons. Meteorological data included daily values of 13 distinct parameters recorded at the meteorological station of the University of Ioannina during this period. A relationship between each meteorological variable and the incidence of ISSHL was investigated by applying (χ2 test on data from 13 contingency tables as well as by using logistic regression and t-test approaches. In addition, the influence of different weather types on the incidence of ISSHL was investigated using Cluster Analysis in order to create eight clusters (weather types characteristic for the prefecture of Ioannina. Results The results of the study could not indicate any seasonal distribution of the disease. The incidence of ISSHL could not be significantly correlated either to any distinct meteorological parameter or to any specific weather type. Conclusions Meteorological conditions, such as those dominating in the Northwestern Greece, and/or their changes, have no proven effect on the incidence of ISSHL.

  14. The sun and space weather Second Edition

    CERN Document Server

    Hanslmeier, Arnold

    2007-01-01

    This second edition is a great enhancement of literature which will help the reader get deeper into the specific topics. There are new sections included such as space weather data sources and examples, new satellite missions, and the latest results. At the end a comprehensive index is given which will allow the reader to quickly find his topics of interest. The Sun and Space weather are two rapidly evolving topics. The importance of the Sun for the Earth, life on Earth, climate and weather processes was recognized long ago by the ancients. Now, for the first time there is a continuous surveillance of solar activity at nearly all wavelengths. These data can be used to improve our understanding of the complex Sun-Earth interaction. The first chapters of the book deal with the Sun as a star and its activity phenomena as well as its activity cycle in order to understand the complex physics of the Sun-Earth system. The reader will see that there are many phenomena but still no definite explanations and models exis...

  15. Newspaper Clippings and Articles (Weather-related)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather-related newspaper articles and photos, almost exclusively from Baltimore, MD and nearby areas. Includes storm damage, rainfall reports, and weather's affect...

  16. A multi-site stochastic weather generator of daily precipitation and temperature

    Science.gov (United States)

    Stochastic weather generators are used to generate time series of climate variables that have statistical properties similar to those of observed data. Most stochastic weather generators work for a single site, and can only generate climate data at a single point, or independent time series at sever...

  17. Meteorology and Climate Inspire Secondary Science Students

    Science.gov (United States)

    Charlton-Perez, Andrew; Dacre, Helen; Maskell, Kathy; Reynolds, Ross; South, Rachel; Wood, Curtis

    2010-01-01

    As part of its National Science and Engineering Week activities in 2009 and 2010, the University of Reading organised two open days for 60 local key stage 4 pupils. The theme of both open days was "How do we predict weather and climate?" Making use of the students' familiarity with weather and climate, several concepts of relevance to secondary…

  18. Climate Trends and Impacts in China

    OpenAIRE

    Sall, Chris

    2013-01-01

    This discussion paper summarizes observed and projected trends in extreme weather events, present-day climate variability, and future climate change and their impacts on China's different regions. Findings are presented from China's national assessment report on climate change (2007) and second national assessment report on climate change (2011) as well as other studies by Chinese and inte...

  19. In search for coastal amplification of rock weathering in polar climates - pilot Schmidt hammer rock tests surveys from sheltered fjords of Svalbard and tsunami-affected coasts of Western Greenland.

    Science.gov (United States)

    Strzelecki, Matt

    2014-05-01

    Recent decade has seen the major advance in Arctic coastal geomorphology due to research progress along ice-rich permafrost coastlines of Siberia, Alaska and NW Canada. On the contrary little attention was paid to Arctic rocky coastlines and their response to the reduction of sea ice cover and increased number of storms reaching Arctic region. In this paper I present results from a pilot survey of rock resistance using Schmidt Hammer Rock Tests across rocky cliffs and shore platforms developed in: - sheltered bays of Billefjorden, Svalbard characterised by prolonged sea-ice conditions and very limited operation of wave and tidal action - Vaigat Strait and Isfjorden in W Greenland influenced by landslide-triggered tsunamis and waves induced by ice-berg roll events. The aim of a pilot study was to test the hypothesized coastal impact on the rate of rock weathering in polar climates. To do so I characterise the changes in the rock resistance on the following coastal landforms: - modern and uplifted wave-washed abrasion platforms- focusing on a relation between the degree of rock surface weathering and the distance from the shoreline as well as thickness of sediment cover on shore platform surface - modern and uplifted rocky cliffs - focusing on a relation between the degree of rock surface weathering and the distance from the shoreline as well as difference in height above the sea level and relation to rock lithology. The results present another line of argument supporting intensification of rock weathering processes in the Arctic coastal zone. This work is a contribution to the National Science Centre in Poland research project no. 2011/01/B/ST10/01553.

  20. GEOSS interoperability for Weather, Ocean and Water

    Science.gov (United States)

    Richardson, David; Nyenhuis, Michael; Zsoter, Ervin; Pappenberger, Florian

    2013-04-01

    "Understanding the Earth system — its weather, climate, oceans, atmosphere, water, land, geodynamics, natural resources, ecosystems, and natural and human-induced hazards — is crucial to enhancing human health, safety and welfare, alleviating human suffering including poverty, protecting the global environment, reducing disaster losses, and achieving sustainable development. Observations of the Earth system constitute critical input for advancing this understanding." With this in mind, the Group on Earth Observations (GEO) started implementing the Global Earth Observation System of Systems (GEOSS). GEOWOW, short for "GEOSS interoperability for Weather, Ocean and Water", is supporting this objective. GEOWOW's main challenge is to improve Earth observation data discovery, accessibility and exploitability, and to evolve GEOSS in terms of interoperability, standardization and functionality. One of the main goals behind the GEOWOW project is to demonstrate the value of the TIGGE archive in interdisciplinary applications, providing a vast amount of useful and easily accessible information to the users through the GEO Common Infrastructure (GCI). GEOWOW aims at developing funcionalities that will allow easy discovery, access and use of TIGGE archive data and of in-situ observations, e.g. from the Global Runoff Data Centre (GRDC), to support applications such as river discharge forecasting.TIGGE (THORPEX Interactive Grand Global Ensemble) is a key component of THORPEX: a World Weather Research Programme to accelerate the improvements in the accuracy of 1-day to 2 week high-impact weather forecasts for the benefit of humanity. The TIGGE archive consists of ensemble weather forecast data from ten global NWP centres, starting from October 2006, which has been made available for scientific research. The TIGGE archive has been used to analyse hydro-meteorological forecasts of flooding in Europe as well as in China. In general the analysis has been favourable in terms of

  1. Fire Danger and Fire Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (formerly Weather Bureau) and Forest Service developed a program to track meteorological conditions conducive to forest fires, resulting...

  2. Cenozoic carbon cycle imbalances and a variable weathering feedback

    Science.gov (United States)

    Caves, Jeremy K.; Jost, Adam B.; Lau, Kimberly V.; Maher, Kate

    2016-09-01

    The long-term stability of Earth's climate and the recovery of the ocean-atmosphere system after carbon cycle perturbations are often attributed to a stabilizing negative feedback between silicate weathering and climate. However, evidence for the operation of this feedback over million-year timescales and in response to tectonic and long-term climatic change remains scarce. For example, the past 50 million years of the Cenozoic Era are characterized by long-term cooling and declining atmospheric CO2 (pCO2). During this interval, constant or decreasing carbon fluxes from the solid Earth to the atmosphere suggest that stable or decreasing weathering fluxes are needed to balance the carbon cycle. In contrast, marine isotopic proxies of weathering (i.e., 87Sr/86Sr, δ7 Li , and 187Os/188Os) are interpreted to reflect increasing weathering fluxes. Here, we evaluate the existence of a negative feedback by reconstructing the imbalance in the carbon cycle during the Cenozoic using the surface inventories of carbon and alkalinity. Only a sustained 0.25-0.5% increase in silicate weathering is necessary to explain the long-term decline in pCO2 over the Cenozoic. We propose that the long-term decrease in pCO2 is due to an increase in the strength of the silicate weathering feedback (i.e., the constant of proportionality between the silicate weathering flux and climate), rather than an increase in the weathering flux. This increase in the feedback strength, which mirrors the marine isotope proxies, occurs as transient, 1 million year timescales remains invariant to match the long-term inputs of carbon. Over the Cenozoic, this results in stable long-term weathering fluxes even as pCO2 decreases. We attribute increasing feedback strength to a change in the type and reactivity of rock in the weathering zone, which collectively has increased the reactivity of the surface of the Earth. Increasing feedback strength through the Cenozoic reconciles mass balance in the carbon cycle with

  3. SUITS/SWUSV: a Solar-Terrestrial Space Weather & Climate Mission

    Science.gov (United States)

    Damé, Luc; Hauchecorne, Alain

    2016-04-01

    The SUITS/SWUSV (Solar Ultraviolet Influence on Troposphere/Stratosphere, a Space Weather & Ultraviolet Solar Variability mission) microsatellite mission is developed on one hand to determine the origins of the Sun's activity, understand the flaring process (high energy flare characterization) and onset (forecasting) of Coronal Mass Ejections (CMEs) and, on the other hand, to determine the dynamics and coupling of Earth's atmosphere and its response to solar variability (in particular UV) and terrestrial inputs. It therefore includes the prediction and detection of major eruptions and CMEs (Lyman-Alpha and Herzberg continuum imaging 200-220 nm), the solar forcing on the climate through radiation, and their interactions with the local stratosphere (UV spectral irradiance 170-400 nm and ozone measurements). SUITS/SWUSV includes a 8 instruments model payload with, in particular for Space Weather and Climate, SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (Herzberg continuum) imaging (sources of variability), SOLSIM (Solar Spectral Irradiance Monitor), a spectrometer with 0.65 nm spectral resolution from 170 to 340 nm, SUPR (Solar Ultraviolet Passband Radiometers), with UV filter radiometers at Lyman-Alpha, Herzberg, MgII, CN bandhead and UV bands coverage up to 400 nm, and ERBO (Earth Radiative Budget and Ozone), NADIR oriented to measure ozone (6 bands) and 0.1-100 μm ERB. Example of accommodation of the payload has been performed on a new PROBA type platform very nicely by Qinetic. Heritage is important both for instruments and platform leading to high TRL levels. SUITS/SWUSV is designed in view of ESA Small Mission Calls and other possible CNES/NASA opportunities in the near future (Heliophysics, Earth Observation, etc.).

  4. Positive lightning and severe weather

    Science.gov (United States)

    Price, C.; Murphy, B.

    2003-04-01

    In recent years researchers have noticed that severe weather (tornados, hail and damaging winds) are closely related to the amount of positive lightning occurring in thunderstorms. On 4 July 1999, a severe derecho (wind storm) caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators for short-term forecasts of severe weather.

  5. Linkages of Weather and Climate With Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae), Enzootic Transmission of Borrelia burgdorferi, and Lyme Disease in North America.

    Science.gov (United States)

    Eisen, Rebecca J; Eisen, Lars; Ogden, Nicholas H; Beard, Charles B

    2016-03-01

    Lyme disease has increased both in incidence and geographic extent in the United States and Canada over the past two decades. One of the underlying causes is changes during the same time period in the distribution and abundance of the primary vectors: Ixodes scapularis Say and Ixodes pacificus Cooley and Kohls in eastern and western North America, respectively. Aside from short periods of time when they are feeding on hosts, these ticks exist in the environment where temperature and relative humidity directly affect their development, survival, and host-seeking behavior. Other important factors that strongly influence tick abundance as well as the proportion of ticks infected with the Lyme disease spirochete, Borrelia burgdorferi, include the abundance of hosts for the ticks and the capacity of tick hosts to serve as B. burgdorferi reservoirs. Here, we explore the linkages between climate variation and: 1) duration of the seasonal period and the timing of peak activity; 2) geographic tick distributions and local abundance; 3) enzootic B. burgdorferi transmission cycles; and 4) Lyme disease cases. We conclude that meteorological variables are most influential in determining host-seeking phenology and development, but, while remaining important cofactors, additional variables become critical when exploring geographic distribution and local abundance of ticks, enzootic transmission of B. burgdorferi, and Lyme disease case occurrence. Finally, we review climate change-driven projections for future impact on vector ticks and Lyme disease and discuss knowledge gaps and research needs.

  6. Climatic control on clay mineral formation: Evidence from weathering profiles developed on either side of the Western Ghats

    Indian Academy of Sciences (India)

    R Deepthy; S Balakrishnan

    2005-10-01

    Many physico-chemical variables like rock-type,climate,topography and exposure age affect weathering environments.In the present study,an attempt is made to understand how the nature of clay minerals formed due to weathering differs in tropical regions receiving high and low rainfall. Clay mineralogy of weathering pro files in west coast of India,which receives about 3 m rainfall through two monsoons and those from the inland rain-shadow zones (> 200 cm rainfall)are studied using X-ray diffraction technique.In the west coast,1:1 clays (kaolinite)and Fe –Al oxides (gibb-site/goethite)are dominant clay minerals in the weathering pro files while 2:1 clay minerals are absent or found only in trace amounts.Weathering pro files in the rain shadow region have more complex clay mineralogy and are dominated by 2:1 clays and kaolinite.Fe –Al oxides are either less or absent in clay fraction.The kaolinite –smectite interstrati fied mineral in Banasandra pro files are formed due to transformation of smectites to kaolinite,which is indicative of a humid paleo-climate. In tropical regions receiving high rainfall the clay mineral assemblage remains the same irrespective of the parent rock type.Rainfall and availability of water apart from temperature, are the most important factors that determine kinetics of chemical weathering.Mineral alteration reactions proceed through different pathways in water rich and water poor environments.

  7. Climate change impacts on continental weathering through the Middle Jurassic to Lower Cretaceous of Sverdrup Basin, Canadian Arctic

    Science.gov (United States)

    Galloway, Jennifer; Grasby, Stephen; Swindles, Graeme; Dewing, Keith

    2014-05-01

    Jurassic to Cretaceous strata of Sverdrup Basin, Canadian Arctic Archipelago, contain marine and non-marine successions that can be studied to reconstruct ancient paleoclimates and paleoenvironments that are poorly understood in high-latitude regions. We use element geochemistry integrated with palynology to study a continuous Aalenian to Albian-aged succession preserved in the Hoodoo Dome H-37 oil and gas well located on southern Ellef Ringnes Island near the centre of Sverdrup Basin. Cluster analysis (stratigraphically constrained incremental sum of squares; CONISS) is used to delineate four geochemical zones that are broadly coeval with major changes in palyno-assemblages interpreted to reflect changes in regional paleoclimate. Zone 1 (late Aalenian to Bathonian) is characterized by palynomorphs associated with humid and warm climate conditions. The chemical alteration index (CAI) is high in this interval, expected under this a humid and warm climate. A transition to a seasonally arid and warm climate occurred in the Bathonian and persisted until the Kimmeridgian or Valanginian (Zone 2). This interval is characterized by decreased chemical weathering, indicated by a drop in CAI. The onset of Zone 3 (Kimmeridgian or Valanginian to late Barremian or early Aptian) occurs during a transition to humid and cool climate conditions and is associated with a period of regional uplift and rifting. Zone 3 is marked by a substantial and progressive drop in CAI, indicating a transition from a weathering to transport-dominated system, possibly associated with landscape destabilization. Reduced tectonic activity in Zone 4 (early Aptian to early or mid Albian) shows a return to active chemical weathering, possibly associated with landscape stabilization, suggested by a continued increase in pollen from upland coniferous taxa. The geochemical and palynological records of Middle Jurassic to Lower Cretaceous strata of the Hoodoo Dome H-37 oil and gas well show close correlation

  8. Extreme weather: Subtropical floods and tropical cyclones

    Science.gov (United States)

    Shaevitz, Daniel A.

    Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the

  9. Drivers of weathering-related magnetic concentration changes in lacustrine sediments of the Tibetan Plateau - cases in dry and humid climate

    Science.gov (United States)

    Appel, E.; Zhang, W.; Hu, S.; Herb, C.; Goddu, S.; Koutsodendris, A.; Pross, J.; Fang, X.

    2014-12-01

    Magnetic susceptibility (MS) variations in lacustrine cores from the westerlies-dominated arid Qaidam basin (NE Tibetan Plateau) and the monsoon- dominated humid Heqing basin (SE Tibetan Plateau) have turned out to record changes in moisture fluxes throughout the Pleistocene. In both cases humidity-related weathering of magnetite to maghemite and hematite by low-temperature oxidation in the catchment is recognized as a main driver. In Qaidam basin fluctuations of low and high MS values show orbital cyclicities and reflect relatively higher and lower humidity, respectively, as revealed by calibration to pollen results. The range and possible changes of the catchment area, remains unclear. A tectonic control of the proxy record becomes evident by comparing results in an overlapping age interval (~2.7-1.7 Ma) of two cores in ~20 km distance. The records in the sediments of the Qaidam basin may be dominated by paleo-environmental changes near the lakeshore and controlled by regional water recycling. In Heqing basin the extent of the catchment is far clearer and processes in the catchment and their pathway into lake sediments are better understood. These processes comprise chemical weathering of limestone rocks, strong magnetic enhancement in soils by both enrichment of coarser-grained magnetite inherited from the bedrock and bacterial production of ultrafine magnetite. Relative changes of wind and surface water transport in more and less humid periods led to systematic variations of MS values and carbonate contents on a clear eccentricity (100-kyr) scale. Amplitudes of the cycles can be interpreted with the relative influence of the Indian summer monsoon in this area.

  10. Arts and Climate

    Science.gov (United States)

    Cegnar, T.

    2010-09-01

    Arts and climate science have more in common points than it appears at first glance. Artistic works can help us to directly or indirectly learn about climatic conditions and weather events in the past, but are also very efficient in raising awareness about climate change nowadays. Long scientific articles get very little response among general public, because most people don't want to read long articles. There is a need to communicate climate change issues more powerfully and more directly, with simple words, pictures, sculptures, installations. Artistic works can inspire people to take concrete action. A number of communication media can fit this purpose. Artists can speak to people on an emotional and intellectual level; they can help people to see things from another perspective and in new ways. Artists can motivate change; they have the freedom to weave facts, opinions, thoughts, emotion and colour all together. Paintings are witnesses of the past climatic conditions. We can learn from paintings, architectural constructions and sculptures about the vegetation, weather events, animals, and way of living. Mentioning only some few examples: old paintings in caves, also Flemish painters are often shown for their winter landscapes, and paintings are very useful to illustrate how fast glaciers are melting. At the end, we shall not forget that dilapidation of art masterpieces often depends on climatic conditions.

  11. Cultural Implications of Out-of-Phase Weather across northern Alaska after 500 CE: Regional Variability during the Medieval Climate Anomaly and Little Ice Age

    Science.gov (United States)

    Mason, O. K.; Alix, C. M.; Bigelow, N. H.; Hoffecker, J. F.

    2014-12-01

    From a global perspective, a diverse mélange of paleoclimate data reveal that Northwest Alaska is partially out of phase with northwest Europe, witnessing cooler periods during the Medieval Climate Anomaly ca. CE 1000 and warmer conditions in the 16th and 17th centuries. The search for climatic forcers in northern Alaska relies on integration of data drawn from tree-rings, lacustrine varves and moraines, diatoms, beach ridges and dunes. At Cape Espenberg, northern Seward Peninsula, a 1500-year reconstruction of settlement, landscape evolution and climatic variability employs >100 14C ages from accreting dunes with shell-laden storm beds, intercalated driftwood and superimposed soils, archaeological sites and marsh peats within swale ponds. Large storms occurred along the Chukchi Sea from Cape Espenberg and Deering (Kotzebue Sound) to Point Barrow prior to 1000 CE, and at decadal intervals during the Little Ice Age (LIA) from 1300 to 1700. Architecural driftwood logs from several excavated houses capped by sand dunes yield several 14C dated floating chronologies covering intervals from 700 to 1700, suggest the identification of cooler intervals 800 to 1000 and intermittently after 1300. Peat aggradation followed isolation from the sea from 500 onward, and was interrupted by two pulses of fresh water, one ca. 1300 and a second ca. 1800, with diatoms suggesting relative aridity during the LIA. The occupation history of Cape Espenberg generally follows dune growth, and may be inversely related to cooler temperatures.

  12. Generating extreme weather event sets from very large ensembles of regional climate models

    Science.gov (United States)

    Massey, Neil; Guillod, Benoit; Otto, Friederike; Allen, Myles; Jones, Richard; Hall, Jim

    2015-04-01

    Generating extreme weather event sets from very large ensembles of regional climate models Neil Massey, Benoit P. Guillod, Friederike E. L. Otto, Myles R. Allen, Richard Jones, Jim W. Hall Environmental Change Institute, University of Oxford, Oxford, UK Extreme events can have large impacts on societies and are therefore being increasingly studied. In particular, climate change is expected to impact the frequency and intensity of these events. However, a major limitation when investigating extreme weather events is that, by definition, only few events are present in observations. A way to overcome this issue it to use large ensembles of model simulations. Using the volunteer distributed computing (VDC) infrastructure of weather@home [1], we run a very large number (10'000s) of RCM simulations over the European domain at a resolution of 25km, with an improved land-surface scheme, nested within a free-running GCM. Using VDC allows many thousands of climate model runs to be computed. Using observations for the GCM boundary forcings we can run historical "hindcast" simulations over the past 100 to 150 years. This allows us, due to the chaotic variability of the atmosphere, to ascertain how likely an extreme event was, given the boundary forcings, and to derive synthetic event sets. The events in these sets did not actually occur in the observed record but could have occurred given the boundary forcings, with an associated probability. The event sets contain time-series of fields of meteorological variables that allow impact modellers to assess the loss the event would incur. Projections of events into the future are achieved by modelling projections of the sea-surface temperature (SST) and sea-ice boundary forcings, by combining the variability of the SST in the observed record with a range of warming signals derived from the varying responses of SSTs in the CMIP5 ensemble to elevated greenhouse gas (GHG) emissions in three RCP scenarios. Simulating the future with a

  13. Indication of insensitivity of planetary weathering behavior and habitable zone to surface land fraction

    CERN Document Server

    Abbot, Dorian S; Ciesla, Fred J

    2012-01-01

    It is likely that unambiguous habitable zone terrestrial planets of unknown water content will soon be discovered. Water content helps determine surface land fraction, which influences planetary weathering behavior. This is important because the silicate weathering feedback determines the width of the habitable zone in space and time. Here a low-order model of weathering and climate, useful for gaining qualitative understanding, is developed to examine climate evolution for planets of various land-ocean fractions. It is pointed out that, if seafloor weathering does not depend directly on surface temperature, there can be no weathering-climate feedback on a waterworld. This would dramatically narrow the habitable zone of a waterworld. Results from our model indicate that weathering behavior does not depend strongly on land fraction for partially ocean-covered planets. This is powerful because it suggests that previous habitable zone theory is robust to changes in land fraction, as long as there is some land. F...

  14. Simple future weather files for estimating heating and cooling demand

    DEFF Research Database (Denmark)

    Cox, Rimante Andrasiunaite; Drews, Martin; Rode, Carsten

    2015-01-01

    Estimations of the future energy consumption of buildings are becoming increasingly important as a basis for energy management, energy renovation, investment planning, and for determining the feasibility of technologies and designs. Future weather scenarios, where the outdoor climate is usually...... represented by future weather files, are needed for estimating the future energy consumption. In many cases, however, the practitioner’s ability to conveniently provide an estimate of the future energy consumption is hindered by the lack of easily available future weather files. This is, in part, due...... to the difficulties associated with generating high temporal resolution (hourly) estimates of future changes in air temperature. To address this issue, we investigate if, in the absence of high-resolution data, a weather file constructed from a coarse (annual) estimate of future air temperature change can provide...

  15. Evaluation of fertilizer and water management effect on rice performance and greenhouse gas intensity in different seasonal weather of tropical climate.

    Science.gov (United States)

    Ku, Hyun-Hwoi; Hayashi, Keiichi; Agbisit, Ruth; Villegas-Pangga, Gina

    2017-12-01

    Intensively double cropping rice increases greenhouse gas (GHG) emission in tropical countries, and hence, finding better management practices is imperative for reducing global warming potential (GWP), while sustaining rice yield. This study demonstrated an efficient fertilizer and water management practice targeting seasonal weather conditions effects on rice productivity, nitrogen use efficiency (NUE), GWP, and GHG intensity (GHGI). Two-season experiments were conducted with two pot-scale experiments using urea and urea+cattle manure (CM) under continuous flooding (CF) during the wet season (2013WS), and urea with/without CaSiO3 application under alternate wetting and drying (AWD) during the dry season (2014DS). In 2013WS, 120kgNha(-1) of urea fertilizer resulted in lower CH4 emission and similar rice production compared to urea+CM. In 2014DS, CaSiO3 application showed no difference in yields and led to significant reduction of N2O emission, but increased CH4 emission and GWP. Due to significant increases in GHG emissions in urea+CM and CaSiO3 application, we compared a seasonal difference in a local rice cultivation to test two water management practices. CF was adopted during 2013WS while AWD was adopted during 2014DS. Greater grain yields and yield components and NUE were obtained in 2014DS than in 2013WS. Furthermore, higher grain yields contributed to similar values of GHGI although GWP of cumulative GHG emissions was increased in 2014DS. Thus, utilizing urea only application under AWD is a preferred practice to minimize GWP without yield decline for double cropping rice in tropical countries. Copyright © 2017. Published by Elsevier B.V.

  16. Space weather and space anomalies

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available A large database of anomalies, registered by 220 satellites in different orbits over the period 1971-1994 has been compiled. For the first time, data from 49 Russian Kosmos satellites have been included in a statistical analysis. The database also contains a large set of daily and hourly space weather parameters. A series of statistical analyses made it possible to quantify, for different satellite orbits, space weather conditions on the days characterized by anomaly occurrences. In particular, very intense fluxes (>1000 pfu at energy >10 MeV of solar protons are linked to anomalies registered by satellites in high-altitude (>15000 km, near-polar (inclination >55° orbits typical for navigation satellites, such as those used in the GPS network, NAVSTAR, etc. (the rate of anomalies increases by a factor ~20, and to a much smaller extent to anomalies in geostationary orbits, (they increase by a factor ~4. Direct and indirect connections between anomaly occurrence and geomagnetic perturbations are also discussed.

  17. Forest cover change in the upper Midwestern United States results from both climate and land use change following European settlement: Historical survey and weather records provide robust support for modeling applications

    Science.gov (United States)

    Goring, S. J.; Williams, J. W.; McLachlan, J. S.; Dawson, A.; Dietze, M.; Paciorek, C. J.; Mladenoff, D. J.; Record, S.; Cogbill, C. V.; Hooten, M.; Ruid, M.; Jackson, S. T.

    2013-12-01

    Since European settlement, both climate and human land use have acted on forests in the upper Midwestern United States resulting in changes in forest structure and composition. The extent of these changes has been examined locally and at the state level by examining forest records from the Public Lands Survey System (PLSS), but here we bring together records of changing forest composition with weather records from the mid to late 19th century from the 19th Century Forts and Observer's Database. We are able to assign attribution for taxon range and composition shifts in the region to either land use, climate or both. We see that much of the range contraction in the region seen when comparing Forest Inventory and Analysis data with Public Land Survey System data occurs along the prairie margin, with northern forests showing greater stability in both range and composition suggesting a dominant role for land use in structuring regional vegetation. Modern forests are often less diverse than PLSS forests and the mean minimum dissimilarity between modern and PLSS-era forests is significantly higher than the minimum dissimilarity within either the PLSS-era forests or the modern (FIA) forests, indicating the possiblity that our modern forests have already become 'no-analogue' ecosystems.

  18. Climates, Landscapes, and Civilizations

    Science.gov (United States)

    Schultz, Colin

    2013-10-01

    Humans are now the dominant driver of global climate change. From ocean acidification to sea level rise, changes in precipitation patterns, and rising temperatures, global warming is presenting us with an uncertain future. However, this is not the first time human civilizations have faced a changing world. In the AGU monograph Climates, Landscapes, and Civilizations, editors Liviu Giosan, Dorian Q. Fuller, Kathleen Nicoll, Rowan K. Flad, and Peter C. Clift explore how some ancient peoples weathered the shifting storms while some faded away. In this interview, Eos speaks with Liviu Giosan about the decay of civilizations, ancient adaptation, and the surprisingly long history of humanity's effect on the Earth.

  19. A Review on Climate Change in Weather Stations of Guilan Province Using Mann-Kendal Methodand GIS

    Science.gov (United States)

    Behzadi, Jalal

    2016-07-01

    Climate has always been changing during the life time of the earth, and has appeared in the form of ice age, hurricanes, severe and sudden temperature changes, precipitation and other climatic elements, and has dramatically influenced the environment, and in some cases has caused severe changes and even destructions. Some of the most important aspects of climate changes can be found in precipitation types of different regions in the world and especially Guilan, which is influenced by drastic land conversions and greenhouse gases. Also, agriculture division, industrial activities and unnecessary land conversions are thought to have a huge influence on climate change. Climate change is a result of abnormalcies of metorologyl parameters. Generally, the element of precipitation is somehow included in most theories about climate change. The present study aims to reveal precipitation abnormalcies in Guilan which lead to climate change, and possible deviations of precipitation parameter based on annual, seasonal and monthly series have been evaluated. The Mann-Kendal test has been used to reveal likely deviations leading to climate change. The trend of precipitation changes in long-term has been identifiedusing this method. Also, the beginning and end of these changes have been studied in five stations as representatives of all the thirteen weather stations. Then,the areas which have experienced climate change have been identified using the GIS software along with the severity of the changes with an emphasis on drought. These results can be used in planning and identifying the effects of these changes on the environment. Keywords: Climate Change, Guilan, Mann-Kendal, GIS

  20. Connecting stakeholders and climate science: A summary of farmer, rancher, and forester climate data needs and climate change attitudes

    Science.gov (United States)

    The mission of the USDA Southwest Regional Climate Hub is to provide farmers, ranchers and forest land owners and managers with information and resources to cope with the impacts of climate change. As such, a clear understanding of landowner needs for weather and climate data and their attitudes abo...

  1. Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2-Week to 2-Month) Times Scales

    Science.gov (United States)

    Schubert, Siegfried; Dole, Randall; vandenDool, Huug; Suarez, Max; Waliser, Duane

    2002-01-01

    This workshop, held in April 2002, brought together various Earth Sciences experts to focus on the subseasonal prediction problem. While substantial advances have occurred over the last few decades in both weather and seasonal prediction, progress in improving predictions on these intermediate time scales (time scales ranging from about two weeks to two months) has been slow. The goals of the workshop were to get an assessment of the "state of the art" in predictive skill on these time scales, to determine the potential sources of "untapped" predictive skill, and to make recommendations for a course of action that will accelerate progress in this area. One of the key conclusions of the workshop was that there is compelling evidence for predictability at forecast lead times substantially longer than two weeks. Tropical diabatic heating and soil wetness were singled out as particularly important processes affecting predictability on these time scales. Predictability was also linked to various low-frequency atmospheric "phenomena" such as the annular modes in high latitudes (including their connections to the stratosphere), the Pacific/North American (PNA) pattern, and the Madden Julian Oscillation (MJO). The latter, in particular, was highlighted as a key source of untapped predictability in the tropics and subtropics, including the Asian and Australian monsoon regions.

  2. Inferences on weather extremes and weather-related disasters: a review of statistical methods

    Directory of Open Access Journals (Sweden)

    H. Visser

    2012-02-01

    Full Text Available The study of weather extremes and their impacts, such as weather-related disasters, plays an important role in research of climate change. Due to the great societal consequences of extremes – historically, now and in the future – the peer-reviewed literature on this theme has been growing enormously since the 1980s. Data sources have a wide origin, from century-long climate reconstructions from tree rings to relatively short (30 to 60 yr databases with disaster statistics and human impacts.

    When scanning peer-reviewed literature on weather extremes and its impacts, it is noticeable that many different methods are used to make inferences. However, discussions on these methods are rare. Such discussions are important since a particular methodological choice might substantially influence the inferences made. A calculation of a return period of once in 500 yr, based on a normal distribution will deviate from that based on a Gumbel distribution. And the particular choice between a linear or a flexible trend model might influence inferences as well.

    In this article, a concise overview of statistical methods applied in the field of weather extremes and weather-related disasters is given. Methods have been evaluated as to stationarity assumptions, the choice for specific probability density functions (PDFs and the availability of uncertainty information. As for stationarity assumptions, the outcome was that good testing is essential. Inferences on extremes may be wrong if data are assumed stationary while they are not. The same holds for the block-stationarity assumption. As for PDF choices it was found that often more than one PDF shape fits to the same data. From a simulation study the conclusion can be drawn that both the generalized extreme value (GEV distribution and the log-normal PDF fit very well to a variety of indicators. The application of the normal and Gumbel distributions is more limited. As for uncertainty, it is

  3. Inferences on weather extremes and weather-related disasters: a review of statistical methods

    Directory of Open Access Journals (Sweden)

    H. Visser

    2011-09-01

    Full Text Available The study of weather extremes and their impacts, such as weather-related disasters, plays an important role in climate-change research. Due to the great societal consequences of extremes – historically, now and in the future – the peer-reviewed literature on this theme has been growing enormously since the 1980s. Data sources have a wide origin, from century-long climate reconstructions from tree rings to short databases with disaster statistics and human impacts (30 to 60 yr.

    In scanning the peer-reviewed literature on weather extremes and impacts thereof we noticed that many different methods are used to make inferences. However, discussions on methods are rare. Such discussions are important since a particular methodological choice might substantially influence the inferences made. A calculation of a return period of once in 500 yr, based on a normal distribution will deviate from that based on a Gumbel distribution. And the particular choice between a linear or a flexible trend model might influence inferences as well.

    In this