WorldWideScience

Sample records for wearable global positioning

  1. Development of a wearable global positioning system for place and health research

    Directory of Open Access Journals (Sweden)

    Sawada Mike

    2008-11-01

    Full Text Available Abstract Background An increasing number of studies suggest that characteristics of context, or the attributes of the places within which we live, work and socialize, are associated with variations in health-related behaviours and outcomes. The challenge for health research is to ensure that these places are accurately represented spatially, and to identify those aspects of context that are related to variations in health and amenable to modification. This study focuses on the design of a wearable global positioning system (GPS data logger for the purpose of objectively measuring the temporal and spatial features of human activities. Person-specific GPS data provides a useful source of information to operationalize the concept of place. Results We designed and tested a lightweight, wearable GPS receiver, capable of logging location information for up to 70 hours continuously before recharging. The device is accurate to within 7 m in typical urban environments and performs well across a range of static and dynamic conditions. Discussion Rather than rely on static areal units as proxies for places, wearable GPS devices can be used to derive a more complete picture of the different places that influence an individual's wellbeing. The measures are objective and are less subject to biases associated with recall of location or misclassification of contextual attributes. This is important for two reasons. First, it brings a dynamic perspective to place and health research. The influence of place on health is dynamic in that certain places are more or less relevant to wellbeing as determined by the length of time in any location and by the frequency of activity in the location. Second, GPS data can be used to assess whether the characteristics of places at specific times are useful to explaining variations in health and wellbeing.

  2. Patterns of intestinal schistosomiasis among mothers and young children from Lake Albert, Uganda: water contact and social networks inferred from wearable global positioning system dataloggers

    Directory of Open Access Journals (Sweden)

    Edmund Y. W. Seto

    2012-11-01

    Full Text Available The establishment of a national control programme (NCP in Uganda has led to routine treatment of intestinal schistosomiasis with praziquantel in the communities along Lake Albert. However, because regular water contact remains a way of life for these populations, re-infection continues to mitigate the sustainability of the chemotherapy-based programme. A six-month longitudinal study was conducted in one Lake Albert community with the aim of characterizing water contact exposure and infection among mothers and their young preschool-aged children as the latter are not yet formally included within the NCP. At baseline the cohort of 37 mothers, 36 preschool-aged children had infection prevalences of 62% and 67%, respectively, which diminished to 20% and 29%, respectively, at the 6-month post-treatment follow-up. The subjects wore global positioning system (GPS datalogging devices over a 3-day period shortly after baseline, allowing for the estimation of time spent at the lakeshore as an exposure metric, which was found to be associated with prevalence at follow-up (OR = 2.1, P = 0.01 for both mothers and young children and odds ratio (OR = 4.4, P = 0.01 for young children alone. A social network of interpersonal interactions was also derived from the GPS data, and the exposures were positively associated both with the number and duration of peer interaction, suggesting the importance of socio-cultural factors associated with water contact behaviour. The findings illustrate reduction in both prevalence and intensity of infection in this community after treatment as well as remarkably high rates of water contact exposure and re-infection, particularly among younger children. We believe that this should now be formally considered within NCP, which may benefit from more in-depth ethnographic exploration of factors related to water contact as this should provide new opportunities for sustaining control.

  3. The Application of Wearable Technology in Surgery: Ensuring the Positive Impact of the Wearable Revolution on Surgical Patients

    Directory of Open Access Journals (Sweden)

    Jesse Alan Slade Shantz

    2014-09-01

    Full Text Available Wearable technology has become an important trend in consumer electronics in the past year. The miniaturization and mass production of myriad sensors has made possible the integration of sensors and output devices in wearable platforms. Despite the consumer focus of the wearable revolution some surgical applications are being developed. These fall into augmentative, assistive and assessment functions and primarily layer onto current surgical workflows. Some challenges to the adoption of wearable technologies are discussed and a conceptual framework for understanding the potential of wearable technology to revolutionize surgical practice are presented.

  4. The application of wearable technology in surgery: ensuring the positive impact of the wearable revolution on surgical patients.

    Science.gov (United States)

    Slade Shantz, Jesse Alan; Veillette, Christian J H

    2014-01-01

    Wearable technology has become an important trend in consumer electronics in the past year. The miniaturization and mass production of myriad sensors have made possible the integration of sensors and output devices in wearable platforms. Despite the consumer focus of the wearable revolution some surgical applications are being developed. These fall into augmentative, assistive, and assessment functions and primarily layer onto current surgical workflows. Some challenges to the adoption of wearable technologies are discussed and a conceptual framework for understanding the potential of wearable technology to revolutionize surgical practice are presented.

  5. The Application of Wearable Technology in Surgery: Ensuring the Positive Impact of the Wearable Revolution on Surgical Patients

    OpenAIRE

    Slade Shantz, Jesse Alan; Veillette, Christian J. H.

    2014-01-01

    Wearable technology has become an important trend in consumer electronics in the past year. The miniaturization and mass production of myriad sensors have made possible the integration of sensors and output devices in wearable platforms. Despite the consumer focus of the wearable revolution some surgical applications are being developed. These fall into augmentative, assistive, and assessment functions and primarily layer onto current surgical workflows. Some challenges to the adoption of wea...

  6. The Application of Wearable Technology in Surgery: Ensuring the Positive Impact of the Wearable Revolution on Surgical Patients

    OpenAIRE

    Jesse Alan Slade Shantz; Christian Henri Veillette

    2014-01-01

    Wearable technology has become an important trend in consumer electronics in the past year. The miniaturization and mass production of myriad sensors has made possible the integration of sensors and output devices in wearable platforms. Despite the consumer focus of the wearable revolution some surgical applications are being developed. These fall into augmentative, assistive and assessment functions and primarily layer onto current surgical workflows. Some challenges to the adoption of w...

  7. An Indoor Positioning System Based on Wearables for Ambient-Assisted Living

    Directory of Open Access Journals (Sweden)

    Óscar Belmonte-Fernández

    2016-12-01

    Full Text Available The urban population is growing at such a rate that by 2050 it is estimated that 84% of the world’s population will live in cities, with flats being the most common living place. Moreover, WiFi technology is present in most developed country urban areas, with a quick growth in developing countries. New Ambient-Assisted Living applications will be developed in the near future having user positioning as ground technology: elderly tele-care, energy consumption, security and the like are strongly based on indoor positioning information. We present an Indoor Positioning System for wearable devices based on WiFi fingerprinting. Smart-watch wearable devices are used to acquire the WiFi strength signals of the surrounding Wireless Access Points used to build an ensemble of Machine Learning classification algorithms. Once built, the ensemble algorithm is used to locate a user based on the WiFi strength signals provided by the wearable device. Experimental results for five different urban flats are reported, showing that the system is robust and reliable enough for locating a user at room level into his/her home. Another interesting characteristic of the presented system is that it does not require deployment of any infrastructure, and it is unobtrusive, the only device required for it to work is a smart-watch.

  8. An Indoor Positioning System Based on Wearables for Ambient-Assisted Living.

    Science.gov (United States)

    Belmonte-Fernández, Óscar; Puertas-Cabedo, Adrian; Torres-Sospedra, Joaquín; Montoliu-Colás, Raúl; Trilles-Oliver, Sergi

    2016-12-25

    The urban population is growing at such a rate that by 2050 it is estimated that 84% of the world's population will live in cities, with flats being the most common living place. Moreover, WiFi technology is present in most developed country urban areas, with a quick growth in developing countries. New Ambient-Assisted Living applications will be developed in the near future having user positioning as ground technology: elderly tele-care, energy consumption, security and the like are strongly based on indoor positioning information. We present an Indoor Positioning System for wearable devices based on WiFi fingerprinting. Smart-watch wearable devices are used to acquire the WiFi strength signals of the surrounding Wireless Access Points used to build an ensemble of Machine Learning classification algorithms. Once built, the ensemble algorithm is used to locate a user based on the WiFi strength signals provided by the wearable device. Experimental results for five different urban flats are reported, showing that the system is robust and reliable enough for locating a user at room level into his/her home. Another interesting characteristic of the presented system is that it does not require deployment of any infrastructure, and it is unobtrusive, the only device required for it to work is a smart-watch.

  9. Algorithms for Global Positioning

    DEFF Research Database (Denmark)

    Borre, Kai; Strang, Gilbert

    The emergence of satellite technology has changed the lives of millions of people. In particular, GPS has brought an unprecedented level of accuracy to the field of geodesy. This text is a guide to the algorithms and mathematical principles that account for the success of GPS technology and repla......The emergence of satellite technology has changed the lives of millions of people. In particular, GPS has brought an unprecedented level of accuracy to the field of geodesy. This text is a guide to the algorithms and mathematical principles that account for the success of GPS technology....... At the heart of the matter are the positioning algorithms on which GPS technology relies, the discussion of which will affirm the mathematical contents of the previous chapters. Numerous ready-to-use MATLAB codes are included for the reader. This comprehensive guide will be invaluable for engineers...

  10. Position Estimation by Wearable Walking Navigation System for Visually Impaired with Sensor Fusion

    Science.gov (United States)

    Watanabe, Hiromi; Yamamoto, Yoshihiko; Tanzawa, Tsutomu; Kotani, Shinji

    A wearable walking navigation system without any special infrastructures has been developed to guide visually impaired. It is important to estimate a position correctly so that safe navigation can be realized. In our system, different sensor data are fused to estimate a pedestrian's position. An image processing system and a laser range finder were used to estimate the positions indoors. In this paper, we introduce the concept of “similarity” between map information and sensor data. This similarity is used to estimate the positions. Experimental results show that highly accurate position estimation can be achieved by sensor fusion. The positions in a linear passage were estimated using image processing data, and when the passage turns, the positions were estimated using LRF data.

  11. Wearable Playware

    DEFF Research Database (Denmark)

    Pagliarini, Luigi; Lund, Henrik Hautop

    2011-01-01

    In this paper we define and trace the contours of a new approach to robotic systems, composed of interactive robotic modules that can be worn on the body, as for an ordinary suit. We label the field as Modular Robotic Wearable (MRW). Further, we describe how the use of modular robotics in creating...... wearable, besides being possible, is a path to obtain a flexible wearable processing system, where freely inter-changeable input/output modules can be positioned on the body suit in accordance with the task at hand. In this concept paper we describe the initial prototypes and show, as an example......, an artistic application. We then show drawing of future works and projects. Finally, by focusing on the intersection of the combination of modular robotic systems, wearability, and body-mind we attempt to explore the theoretical characteristics of such an approach and exploit the possible playware application...

  12. Inkjet-/3D-/4D-printed autonomous wearable RF modules for biomonitoring, positioning and sensing applications

    Science.gov (United States)

    Bito, Jo; Bahr, Ryan; Hester, Jimmy; Kimionis, John; Nauroze, Abdullah; Su, Wenjing; Tehrani, Bijan; Tentzeris, Manos M.

    2017-05-01

    In this paper, numerous inkjet-/3D-/4D-printed wearable flexible antennas, RF electronics, modules and sensors fabricated on paper and other polymer (e.g. LCP) substrates are introduced as a system-level solution for ultra-low-cost mass production of autonomous Biomonitoring, Positioning and Sensing applications. This paper briefly discusses the state-of-the-art area of fully-integrated wearable wireless sensor modules on paper or flexible LCP and show the first ever 4D sensor module integration on paper, as well as numerous 3D and 4D multilayer paper-based and LCP-based RF/microwave, flexible and wearable structures, that could potentially set the foundation for the truly convergent wireless sensor ad-hoc "on-body networks of the future with enhanced cognitive intelligence and "rugged" packaging. Also, some challenges concerning the power sources of "nearperpetual" wearable RF modules, including flexible miniaturized batteries as well as power-scavenging approaches involving electromagnetic and solar energy forms are discuessed. The final step of the paper will involve examples from mmW wearable (e.g. biomonitoring) antennas and RF modules, as well as the first examples of the integration of inkjet-printed nanotechnology-based (e.g.CNT) sensors on paper and organic substrates for Internet of Things (IoT) applications. It has to be noted that the paper will review and present challenges for inkjetprinted organic active and nonlinear devices as well as future directions in the area of environmentally-friendly "green") wearable RF electronics and "smart-skin conformal sensors.

  13. Wearable technology. Health-care solutions for a growing global population.

    Science.gov (United States)

    Rutherford, Jesse Jayne

    2010-01-01

    Wearable technology may provide an integral part of the solution for providing health care to a growing world population that will be strained by a ballooning aging population. By providing a means to conduct telemedicine-the monitoring, recording, and transmission of physiological signals from outside of the hospital-wearable technology solutions could ease the burden on health-care personnel and use hospital space for more emergent or responsive care. In addition, employing wearable technology in professions where workers are exposed to dangers or hazards could help save their lives and protect health-care personnel.

  14. Strategic Positioning of IT in Global Organizations

    DEFF Research Database (Denmark)

    Siurdyban, Artur

    2010-01-01

    Executives in large global corporations are faced with a number of non-alternative decision parameters determining the strategic positioning of their IT units. These parameters include organizational structures, competence development and distribution among central and local levels, goal setting...... and type of value contributed to the organization. Although the existing body of research addresses these issues in numerous ways, the concepts have not been fully applied in practice. This paper proposes a tool for strategic positioning of IT in large global companies. It contributes to the overall...... to either central or local departments of a company. In this approach, eight strategic IT positioning scenarios are defined. For each scenario, characteristics, examples of companies using it, as well as required competencies are defined.The paper concludes by highlighting applications of the tool...

  15. Global positive polarity items and obligatory exhaustivity

    Directory of Open Access Journals (Sweden)

    Benjamin Spector

    2014-11-01

    Full Text Available I argue for a distinction between two types of positive polarity items (PPIs which has not been recognized so far. While for some PPIs, anti-licensing is a strictly local phenomenon, for other PPIs anti-licensing should be stated as a global condition. I aim to contribute to a principled explanation for the distribution of a significant subset of global PPIs, by relating it to specific semantic properties of the relevant items. More specifically, I argue that PPIs such as soit ... soit ..., quelques and almost trigger obligatory exhaustivity effects and scalar inferences, and that independently motivated constraints regarding the generation of such inferences can account for their distribution. The paper also briefly addresses the case of other global PPIs, e.g., at least, for which a similar account is not straightforwardly available. http://dx.doi.org/10.3765/sp.7.11 BibTeX info

  16. Global positioning system recorder and method

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, D.W.; Hofstetter, K.J.; Eakle, R.F. Jr.; Reeves, G.E.

    1998-12-22

    A global positioning system recorder (GPSR) is disclosed in which operational parameters and recorded positional data are stored on a transferable memory element. Through this transferrable memory element, the user of the GPSR need have no knowledge of GPSR devices other than that the memory element needs to be inserted into the memory element slot and the GPSR must be activated. The use of the data element also allows for minimal downtime of the GPSR and the ability to reprogram the GPSR and download data therefrom, without having to physically attach it to another computer. 4 figs.

  17. Strategic Positioning of IT in Global Organizations

    DEFF Research Database (Denmark)

    Siurdyban, Artur

    2010-01-01

    Executives in large global corporations are faced with a number of non-alternative decision parameters determining the strategic positioning of their IT units. These parameters include organizational structures, competence development and distribution among central and local levels, goal setting...... understanding of the role of IT in value creation from a business process perspective, and at the same time practitioners may use it to diagnose, communicate and plan IT positioning in their companies. The tool consists of visual maps assigning different steps of the business process management lifecycle...... to either central or local departments of a company. In this approach, eight strategic IT positioning scenarios are defined. For each scenario, characteristics, examples of companies using it, as well as required competencies are defined.The paper concludes by highlighting applications of the tool...

  18. Wearable Optical Sensors

    KAUST Repository

    Ballard, Zachary S.

    2017-07-12

    The market for wearable sensors is predicted to grow to $5.5 billion by 2025, impacting global health in unprecedented ways. Optics and photonics will play a key role in the future of these wearable technologies, enabling highly sensitive measurements of otherwise invisible information and parameters about our health and surrounding environment. Through the implementation of optical wearable technologies, such as heart rate, blood pressure, and glucose monitors, among others, individuals are becoming more empowered to generate a wealth of rich, multifaceted physiological and environmental data, making personalized medicine a reality. Furthermore, these technologies can also be implemented in hospitals, clinics, point-of-care offices, assisted living facilities or even in patients’ homes for real-time, remote patient monitoring, creating more expeditious as well as resource-efficient systems. Several key optical technologies make such sensors possible, including e.g., optical fiber textiles, colorimetric, plasmonic, and fluorometric sensors, as well as Organic Light Emitting Diode (OLED) and Organic Photo-Diode (OPD) technologies. These emerging technologies and platforms show great promise as basic sensing elements in future wearable devices and will be reviewed in this chapter along-side currently existing fully integrated wearable optical sensors.

  19. Global Positioning System receiver evaluation results

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, R.H.

    1993-09-01

    A Sandia project currently uses an outdated Magnavox 6400 Global Positioning System (GPS) receiver as the core of its navigation system. The goal of this study was to analyze the performance of the current GPS receiver compared to newer, less expensive models and to make recommendations on how to improve the performance of the overall navigation system. This paper discusses the test methodology used to experimentally analyze the performance of different GPS receivers, the test results, and recommendations on how an upgrade should proceed. Appendices contain detailed information regarding the raw data, test hardware, and test software.

  20. Relativity in the Global Positioning System

    Directory of Open Access Journals (Sweden)

    Ashby Neil

    2003-01-01

    Full Text Available The Global Positioning System (GPS uses accurate, stable atomic clocks in satellites and on the ground to provide world-wide position and time determination. These clocks have gravitational and motional frequency shifts which are so large that, without carefully accounting for numerous relativistic effects, the system would not work. This paper discusses the conceptual basis, founded on special and general relativity, for navigation using GPS. Relativistic principles and effects which must be considered include the constancy of the speed of light, the equivalence principle, the Sagnac effect, time dilation, gravitational frequency shifts, and relativity of synchronization. Experimental tests of relativity obtained with a GPS receiver aboard the TOPEX/POSEIDON satellite will be discussed. Recently frequency jumps arising from satellite orbit adjustments have been identified as relativistic effects. These will be explained and some interesting applications of GPS will be discussed.

  1. Sustainable Wearables: Wearable Technology for Enhancing the Quality of Human Life

    Directory of Open Access Journals (Sweden)

    Jaewoon Lee

    2016-05-01

    Full Text Available This paper aims to elicit insights about sustainable wearables by investigating recent advancements in wearable technology and their applications. Wearable technology has advanced considerably from a technical perspective, but it has stagnated due to barriers without penetrating wider society despite early positive expectations. This situation is the motivation behind the focus on studies by many research groups in recent years into wearable applications that can provide the best value from a human-oriented perspective. The expectation is that a new means to resolve the issue can be found from a viewpoint of sustainability; this is the main point of this paper. This paper first focuses on the trend of wearable technology like bodily status monitoring, multi-wearable device control, and smart networking between wearable sensors. Second, the development intention of such technology is investigated. Finally, this paper discusses about the applications of current wearable technology from the sustainable perspective, rather than detailed description of the component technologies employed in wearables. In this paper, the definition of sustainable wearables is discussed in the context of improving the quality of individual life, social impact, and social public interest; those wearable applications include the areas of wellness, healthcare, assistance for the visually impaired, disaster relief, and public safety. In the future, wearables will not be simple data trackers or fun accessories but will gain extended objectives and meanings that play a valuable role for individuals and societies. Successful and sustainable wearables will lead to positive changes for both individuals and societies overall.

  2. Global positioning system theory and practice

    CERN Document Server

    Hofmann-Wellenhof, Bernhard; Collins, James

    2001-01-01

    This book is dedicated to Dr. Benjamin William Remondi for many reasons. The project of writing a Global Positioning System (GPS) book was con­ ceived in April 1988 at a GPS meeting in Darmstadt, Germany. Dr. Remondi discussed with me the need for an additional GPS textbook and suggested a possible joint effort. In 1989, I was willing to commit myself to such a project. Unfortunately, the timing was less than ideal for Dr. Remondi. Therefore, I decided to start the project with other coauthors. Dr. Remondi agreed and indicated his willingness to be a reviewer. I selected Dr. Herbert Lichtenegger, my colleague from the Technical University Graz, Austria, and Dr. James Collins from Rockville, Maryland, U.S.A. In my opinion, the knowledge ofthe three authors should cover the wide spectrum of GPS. Dr. Lichtenegger is a geodesist with broad experience in both theory and practice. He has specialized his research to geodetic astron­ omy including orbital theory and geodynamical phenomena. Since 1986, Dr. Lichteneg...

  3. A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time

    Science.gov (United States)

    Wang, Zhihua; Yang, Zhaochu; Dong, Tao

    2017-01-01

    Rapid growth of the aged population has caused an immense increase in the demand for healthcare services. Generally, the elderly are more prone to health problems compared to other age groups. With effective monitoring and alarm systems, the adverse effects of unpredictable events such as sudden illnesses, falls, and so on can be ameliorated to some extent. Recently, advances in wearable and sensor technologies have improved the prospects of these service systems for assisting elderly people. In this article, we review state-of-the-art wearable technologies that can be used for elderly care. These technologies are categorized into three types: indoor positioning, activity recognition and real time vital sign monitoring. Positioning is the process of accurate localization and is particularly important for elderly people so that they can be found in a timely manner. Activity recognition not only helps ensure that sudden events (e.g., falls) will raise alarms but also functions as a feasible way to guide people’s activities so that they avoid dangerous behaviors. Since most elderly people suffer from age-related problems, some vital signs that can be monitored comfortably and continuously via existing techniques are also summarized. Finally, we discussed a series of considerations and future trends with regard to the construction of “smart clothing” system. PMID:28208620

  4. A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time

    Directory of Open Access Journals (Sweden)

    Zhihua Wang

    2017-02-01

    Full Text Available Rapid growth of the aged population has caused an immense increase in the demand for healthcare services. Generally, the elderly are more prone to health problems compared to other age groups. With effective monitoring and alarm systems, the adverse effects of unpredictable events such as sudden illnesses, falls, and so on can be ameliorated to some extent. Recently, advances in wearable and sensor technologies have improved the prospects of these service systems for assisting elderly people. In this article, we review state-of-the-art wearable technologies that can be used for elderly care. These technologies are categorized into three types: indoor positioning, activity recognition and real time vital sign monitoring. Positioning is the process of accurate localization and is particularly important for elderly people so that they can be found in a timely manner. Activity recognition not only helps ensure that sudden events (e.g., falls will raise alarms but also functions as a feasible way to guide people’s activities so that they avoid dangerous behaviors. Since most elderly people suffer from age-related problems, some vital signs that can be monitored comfortably and continuously via existing techniques are also summarized. Finally, we discussed a series of considerations and future trends with regard to the construction of “smart clothing” system.

  5. Connect Global Positioning System RF Module

    Science.gov (United States)

    Franklin, Garth W.; Young, Lawrence E.; Ciminera, Michael A.; Tien, Jeffrey Y.; Gorelik, Jacob; Okihiro, Brian Bachman; Koelewyn, Cynthia L.

    2012-01-01

    The CoNNeCT Global Positioning System RF Module (GPSM) slice is part of the JPL CoNNeCT Software Defined Radio (SDR). CoNNeCT is the Communications, Navigation, and Net working reconfigurable Testbed project that is part of NASA's Space Communication and Nav igation (SCaN) Program. The CoNNeCT project is an experimental dem onstration that will lead to the advancement of SDRs and provide a path for new space communication and navigation systems for future NASA exploration missions. The JPL CoNNeCT SDR will be flying on the International Space Station (ISS) in 2012 in support of the SCaN CoNNeCT program. The GPSM is a radio-frequency sampler module (see Figure 1) that directly sub-harmonically samples the filtered GPS L-band signals at L1 (1575.42 MHz), L2 (1227.6 MHz), and L5 (1176.45 MHz). The JPL SDR receives GPS signals through a Dorne & Margolin antenna mounted onto a choke ring. The GPS signal is filtered against interference, amplified, split, and fed into three channels: L1, L2, and L5. In each of the L-band channels, there is a chain of bandpass filters and amplifiers, and the signal is fed through each of these channels to where the GPSM performs a one-bit analog-to-digital conversion (see Figure 2). The GPSM uses a sub-harmonic, single-bit L1, L2, and L5 sampler that samples at a clock rate of 38.656 MHz. The new capability is the down-conversion and sampling of the L5 signal when previous hardware did not provide this capability. The first GPS IIF Satellite was launched in 2010, providing the new L5 signal. With the JPL SDR flying on the ISS, it will be possible to demonstrate navigation solutions with 10-meter 3-D accuracy at 10-second intervals using a field-program mable gate array (FPGA)-based feedback loop running at 50 Hz. The GPS data bits will be decoded and used in the SDR. The GPSM will also allow other waveforms that are installed in the SDR to demonstrate various GNSS tracking techniques.

  6. Wearable Technology

    Science.gov (United States)

    Watson, Amanda

    2013-01-01

    Wearable technology projects, to be useful, in the future, must be seamlessly integrated with the Flight Deck of the Future (F.F). The lab contains mockups of space vehicle cockpits, habitat living quarters, and workstations equipped with novel user interfaces. The Flight Deck of the Future is one element of the Integrated Power, Avionics, and Software (IPAS) facility, which, to a large extent, manages the F.F network and data systems. To date, integration with the Flight Deck of the Future has been limited by a lack of tools and understanding of the Flight Deck of the Future data handling systems. To remedy this problem it will be necessary to learn how data is managed in the Flight Deck of the Future and to develop tools or interfaces that enable easy integration of WEAR Lab and EV3 products into the Flight Deck of the Future mockups. This capability is critical to future prototype integration, evaluation, and demonstration. This will provide the ability for WEAR Lab products, EV3 human interface prototypes, and technologies from other JSC organizations to be evaluated and tested while in the Flight Deck of the Future. All WEAR Lab products must be integrated with the interface that will connect them to the Flight Deck of the Future. The WEAR Lab products will primarily be programmed in Arduino. Arduino will be used for the development of wearable controls and a tactile communication garment. Arduino will also be used in creating wearable methane detection and warning system.

  7. Use of wearable technology for performance assessment: a validation study.

    Science.gov (United States)

    Papi, Enrica; Osei-Kuffour, Denise; Chen, Yen-Ming A; McGregor, Alison H

    2015-07-01

    The prevalence of osteoarthritis is increasing globally but current compliance with rehabilitation remains poor. This study explores whether wearable sensors can be used to provide objective measures of performance with a view to using them as motivators to aid compliance to osteoarthritis rehabilitation. More specifically, the use of a novel attachable wearable sensor integrated into clothing and inertial measurement units located in two different positions, at the waist and thigh pocket, was investigated. Fourteen healthy volunteers were asked to complete exercises adapted from a knee osteoarthritis rehabilitation programme whilst wearing the three sensors including five times sit-to-stand test, treadmill walking at slow, preferred and fast speeds. The performances of the three sensors were validated against a motion capture system and an instrumented treadmill. The systems showed a high correlation (r(2) > 0.7) and agreement (mean difference range: -0.02-0.03 m, 0.005-0.68 s) with gold standards. The novel attachable wearable sensor was able to monitor exercise tasks as well as the inertial measurement units (ICC > 0.95). Results also suggested that a functional placement (e.g., situated in a pocket) is a valid position for performance monitoring. This study shows the potential use of wearable technologies for assessing subject performance during exercise and suggests functional solutions to enhance acceptance.

  8. Case: The Global Positioning System (GPS)

    Science.gov (United States)

    2014-05-01

    benefits to an industry where billions of dollars can be made or lost in a fraction of a second. Despite these obvious civilian uses, up until the year...accurate positional locations, a user could correct for any induced error by differencing out the distance between the fixed stations. While several private

  9. POSITIVE AND NEGATIVE EFFECTS OF GLOBALIZATION

    Directory of Open Access Journals (Sweden)

    Alexandru OLTEANU

    2010-12-01

    Full Text Available We still live in Europe, in one of the richest regions of the world. Most of us still have a well paid and secure job. And yet social security is ensured for all of us, even for the less privileged persons. These gains seem to be endangered by the growing competition from abroad, which steals the productive potential and the jobs of the European economy. Has the pressure on the European economy by means of the internationalization of the economy really intensified in as far as it is claimed? Is it true that globalization has enhanced in recent years in such a dramatic way? The analysis shows us that we should make some distinctions.

  10. Euthanasia: India's position in the global scenario.

    Science.gov (United States)

    Shekhar, Skand; Goel, Ashish

    2013-11-01

    Euthanasia requests have increased as the number of debilitated patients rises in both developed and developing countries such as India due to medical, psychosocial-emotional, socioenvironmental, and existential issues amid fears of potential misuse. WORLD'S POSITION: Albania, Colombia, the Netherlands, and Switzerland permit euthanasia conditionally. Australia's legalization of euthanasia has been withdrawn. The United States permits withdrawal of life support. Mexico and Norway permit active euthanasia. INDIA'S POSITION: Following the Aruna Shanbaug case the Supreme Court granted legal sanction to passive, but not active, euthanasia that is valid till the Parliament legislates on euthanasia. HANDLING EUTHANASIA REQUESTS: Acknowledging the complexity of the problem; individualizing the palliative approach; and accepting the 'There is no alternative' or 'There is no answer' (TINA) factor.

  11. Global Positioning System III (GPS III)

    Science.gov (United States)

    2015-12-01

    Military Operations in Urban Terrain; Defense-Wide Mission Support; Air Mobility; and Space Launch Orbital Support. For military users, the GPS III...program provides Precise Positioning Service (PPS) to military operations and force enhancement. It also provides increased anti-jam power to the earth ...to be modified . On January 31, 2016, USD(AT&L) signed the GPS III revised APB. This Change 1 to the APB was due to both cost and schedule breaches

  12. Smart Vest: wearable multi-parameter remote physiological monitoring system.

    Science.gov (United States)

    Pandian, P S; Mohanavelu, K; Safeer, K P; Kotresh, T M; Shakunthala, D T; Gopal, Parvati; Padaki, V C

    2008-05-01

    The wearable physiological monitoring system is a washable shirt, which uses an array of sensors connected to a central processing unit with firmware for continuously monitoring physiological signals. The data collected can be correlated to produce an overall picture of the wearer's health. In this paper, we discuss the wearable physiological monitoring system called 'Smart Vest'. The Smart Vest consists of a comfortable to wear vest with sensors integrated for monitoring physiological parameters, wearable data acquisition and processing hardware and remote monitoring station. The wearable data acquisition system is designed using microcontroller and interfaced with wireless communication and global positioning system (GPS) modules. The physiological signals monitored are electrocardiogram (ECG), photoplethysmogram (PPG), body temperature, blood pressure, galvanic skin response (GSR) and heart rate. The acquired physiological signals are sampled at 250samples/s, digitized at 12-bit resolution and transmitted wireless to a remote physiological monitoring station along with the geo-location of the wearer. The paper describes a prototype Smart Vest system used for remote monitoring of physiological parameters and the clinical validation of the data are also presented.

  13. Can global positioning systems quantify participation in cerebral palsy?

    Science.gov (United States)

    Ben-Pazi, Hilla; Barzilay, Yair; Shoval, Noam

    2014-06-01

    This study examined whether motor-related participation could be assessed by global positioning systems in individuals with cerebral palsy. Global positioning systems monitoring devices were given to 2 adolescent girls (14-year-old with diplegic cerebral palsy and her 15-year-old healthy sister). Outcome measures were traveling distances, time spent outdoors, and Children's Assessment of Participation and Enjoyment questionnaires. Global positioning systems documented that the girl with cerebral palsy did not visit nearby friends, spent less time outdoors and traveled shorter distances than her sister (P = .02). Participation questionnaire corroborated that the girl with cerebral palsy performed most activities at home alone. Lower outdoor activity of the girl with cerebral palsy measured by a global positioning system was 29% to 53% of that of her sibling similar to participation questionnaires (44%). Global positioning devices objectively documented low outdoor activity in an adolescent with cerebral palsy compared to her sibling reflecting participation reported by validated questionnaires. Global positioning systems can potentially quantify certain aspects of participation.

  14. Positive biodiversity-productivity relationship predominant in global forests

    Science.gov (United States)

    Liang, Jingjing; Crowther, Thomas W.; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, Anthony David; ,

    2016-01-01

    The relationship between biodiversity and ecosystem productivity has been explored in detail in herbaceous vegetation, but patterns in forests are far less well understood. Liang et al. have amassed a global forest data set from >770,000 sample plots in 44 countries. A positive and consistent relationship can be discerned between tree diversity and ecosystem productivity at landscape, country, and ecoregion scales. On average, a 10% loss in biodiversity leads to a 3% loss in productivity. This means that the economic value of maintaining biodiversity for the sake of global forest productivity is more than fivefold greater than global conservation costs.

  15. The Global Positioning System and its application in spacecraft navigation

    Science.gov (United States)

    Van Leeuwen, A.; Rosen, E.; Carrier, L. M.

    1979-01-01

    The paper presents an overview of the Global Positioning System (GPS) as well as a discussion of the user system parameters govering the design of a low-earth-orbit spacecraft GPS navigation system. A specific application, the Space Shuttle orbiter GPS navigation system, is discussed with particular attention given to its receiver/processor.

  16. The Evolution of Global Positioning System (GPS) Technology.

    Science.gov (United States)

    Kumar, Sameer; Moore, Kevin B.

    2002-01-01

    Describes technological advances in the Global Positioning System (GPS), which is also known as the NAVSTAR GPS satellite constellation program developed in 1937, and changes in the nature of our world by GPS in the areas of agriculture, health, military, transportation, environment, wildlife biology, surveying and mapping, space applications, and…

  17. Towards a Wearable Inertial Sensor Network

    OpenAIRE

    Van Laerhoven, Kristof; Gellersen, Hans; Kern, Nicky; Schiele, Bernt

    2003-01-01

    Abstract. Wearable inertial sensors have become an inexpensive option to measure the movements and positions of a person. Other techniques that use environmental sensors such as ultrasound trackers or vision-based methods need full line of sight or a local setup, and it is complicated to access this data from a wearable computer’s perspective. However, a body-centric approach where sensor data is acquired and processed locally, has a need for appropriate algorithms that have to operate under ...

  18. 82 FR 18736 - Impact of Long Term Evolution Signals on Global Positioning System Receivers

    Science.gov (United States)

    2017-04-21

    ... Long Term Evolution Signals on Global Positioning System Receivers AGENCY: National Institute of... project ``Impact of Long Term Evolution (LTE) signals on Global Positioning System (GPS) Devices''. At...

  19. Positive biodiversity-productivity relationship predominant in global forests.

    Science.gov (United States)

    Liang, Jingjing; Crowther, Thomas W; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, A David; Bozzato, Fabio; Pretzsch, Hans; de-Miguel, Sergio; Paquette, Alain; Hérault, Bruno; Scherer-Lorenzen, Michael; Barrett, Christopher B; Glick, Henry B; Hengeveld, Geerten M; Nabuurs, Gert-Jan; Pfautsch, Sebastian; Viana, Helder; Vibrans, Alexander C; Ammer, Christian; Schall, Peter; Verbyla, David; Tchebakova, Nadja; Fischer, Markus; Watson, James V; Chen, Han Y H; Lei, Xiangdong; Schelhaas, Mart-Jan; Lu, Huicui; Gianelle, Damiano; Parfenova, Elena I; Salas, Christian; Lee, Eungul; Lee, Boknam; Kim, Hyun Seok; Bruelheide, Helge; Coomes, David A; Piotto, Daniel; Sunderland, Terry; Schmid, Bernhard; Gourlet-Fleury, Sylvie; Sonké, Bonaventure; Tavani, Rebecca; Zhu, Jun; Brandl, Susanne; Vayreda, Jordi; Kitahara, Fumiaki; Searle, Eric B; Neldner, Victor J; Ngugi, Michael R; Baraloto, Christopher; Frizzera, Lorenzo; Bałazy, Radomir; Oleksyn, Jacek; Zawiła-Niedźwiecki, Tomasz; Bouriaud, Olivier; Bussotti, Filippo; Finér, Leena; Jaroszewicz, Bogdan; Jucker, Tommaso; Valladares, Fernando; Jagodzinski, Andrzej M; Peri, Pablo L; Gonmadje, Christelle; Marthy, William; O'Brien, Timothy; Martin, Emanuel H; Marshall, Andrew R; Rovero, Francesco; Bitariho, Robert; Niklaus, Pascal A; Alvarez-Loayza, Patricia; Chamuya, Nurdin; Valencia, Renato; Mortier, Frédéric; Wortel, Verginia; Engone-Obiang, Nestor L; Ferreira, Leandro V; Odeke, David E; Vasquez, Rodolfo M; Lewis, Simon L; Reich, Peter B

    2016-10-14

    The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities. Copyright © 2016, American Association for the Advancement of Science.

  20. Global Positioning System: Political Support, Directions of Development, and Expectations

    Directory of Open Access Journals (Sweden)

    Krzysztof Czaplewski

    2015-06-01

    Full Text Available Over the last decade the Global Positioning System has become a global, multifunctional tool which provides services that are an integral part of U.S. national security as well as the security of other highly developed countries. Economic development, transport security as well as homeland security are important elements of the global economic infrastructure. In 2000 the United States acknowledged the growing significance of GPS for civilian users and stopped intentionally degrading accuracy for non-military signals that are known as “Selective Availability”. Since then, commercial applications of satellite systems have been proliferating even more rapidly, and therefore, their importance in everyday life has greatly increased. Currently, services that depend on information obtained from the Global Positioning System are the driving force behind economic growth, economic development and the improvement in life safety. This economic development would not be possible without the financial and political support of the US government to maintain the operation of the GPS system. Therefore it is important to have knowledge about the intentions of the US government how system GPS will be developed in the future. Decisions taken in the last 3 months are the subject of this article.

  1. Investigating the Impact of Global Positioning System Evidence

    OpenAIRE

    Berman, Kiyoshi J; Glisson, William Bradley; Glisson, L. Milton

    2015-01-01

    The continued amalgamation of Global Positioning Systems (GPS) into everyday activities stimulates the idea that these devices will increasingly contribute evidential importance in digital forensics cases. This study investigates the extent to which GPS devices are being used in criminal and civil court cases in the United Kingdom through the inspection of Lexis Nexis, Westlaw, and the British and Irish Legal Information Institute (BAILII) legal databases. The research identified 83 cases whi...

  2. Global positioning system recorder and method government rights

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, David W. (Aiken, SC); Hofstetter, Kenneth J. (Aiken, SC); Eakle, Jr., Robert F. (Aiken, SC); Reeves, George E. (Graniteville, SC)

    1998-01-01

    A global positioning system recorder (GPSR) is disclosed in which operational parameters and recorded positional data are stored on a transferable memory element. Through this transferrable memory element, the user of the GPSR need have no knowledge of GPSR devices other than that the memory element needs to be inserted into the memory element slot and the GPSR must be activated. The use of the data element also allows for minimal downtime of the GPSR and the ability to reprogram the GPSR and download data therefrom, without having to physically attach it to another computer.

  3. Technological Strategy of Using Global Positioning System: An Analysis

    CERN Document Server

    Ahamed, S S Riaz

    2010-01-01

    The Global Positioning System (GPS) is a U.S. space-based radionavigation system that provides reliable positioning, navigation, and timing services to civilian users on a continuous worldwide basis -- freely available to all. GPS provides specially coded satellite signals that can be processed in a GPS receiver, enabling the receiver to compute position, velocity and time. Basically GPS works by using four GPS satellite signals to compute positions in three dimensions (and the time offset) in the receiver clock. GPS provides accurate location and time information for an unlimited number of people in all weather, day and night, anywhere in the world. Anyone who needs to keep track of where he or she is, to find his or her way to a specified location, or know what direction and how fast he or she is going can utilize the benefits of the global positioning system. Everyday activities such as banking, mobile phone operations, and even the control of power grids, are facilitated by the accurate timing provided by...

  4. Technological Strategy of using Global Positioning System: An Analysis

    Directory of Open Access Journals (Sweden)

    Dr.S.S.Riaz Ahamed

    2009-10-01

    Full Text Available The Global Positioning System (GPS is a U.S. space-based radionavigation system that provides reliable positioning, navigation, and timing services to civilian users on a continuous worldwide basis -- freely available to all. GPS provides specially coded satellite signals that can be processed in a GPS receiver, enabling the receiver to compute position, velocity and time. Basically GPS works by using four GPS satellite signals to compute positions in three dimensions (and the time offset in the receiver clock. GPS provides accurate location and time information for an unlimited number of people in all weather, day and night, anywhere in the world. Anyone who needs to keep track of where he or she is, to find his or her way to a specified location, or know what direction and how fast he or she is going can utilize the benefits of the global positioning system. Everyday activities such as banking, mobile phone operations, and even the control of power grids, are facilitated by the accurate timing provided by GPS.

  5. Modular Robotic Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2009-01-01

    In this concept paper we trace the contours and define a new approach to robotic systems, composed of interactive robotic modules which are somehow worn on the body. We label such a field as Modular Robotic Wearable (MRW). We describe how, by using modular robotics for creating wearable....... Finally, by focusing on the intersection of the combination modular robotic systems, wearability, and bodymind we attempt to explore the theoretical characteristics of such approach and exploit the possible playware application fields....

  6. Communications for Wearable Devices

    OpenAIRE

    Tabibu, Shivram

    2017-01-01

    Wearable devices are transforming computing and the human-computer interaction and they are a primary means for motion recognition of reflexive systems. We review basic wearable deployments and their open wireless communications. An algorithm that uses accelerometer data to provide a control and communication signal is described. Challenges in the further deployment of wearable device in the field of body area network and biometric verification are discussed.

  7. Robotic Art for Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2010-01-01

    on “simple” plug-and-play circuits, ranging from pure sensors-actuators schemes to artefacts with a smaller level of elaboration complexity. Indeed, modular robotic wearable focuses on enhancing the body perception and proprioperception by trying to substitute all of the traditional exoskeletons perceptive......We present the robot art and how it may inspire to create a new type of wearable termed modular robotic wearable. Differently from the related works, modular robotic wearable aims at making no use of mechatronic devices (as, for example, in Cyberpunk and related research branches) and mostly relies...

  8. [Classification and Correlative Technology Development of Wearable Devices].

    Science.gov (United States)

    Jiang, Xiaomei; Zhang, Junran; Zhao, Bin; Chen Fuqin

    2016-02-01

    Wearable devices bring us an innovative human-computer interaction which plays an irreplaceable role in enhancing the users' ability in environmental awareness, acquirements of their own state and "ubiquitous" computing power. Since 2013, wearable devices have quickly appeared around us. In this article we classify most of the wearable devices which have been appeared in the markets or reported in the literature according to their functions and the positions where they are worn. Furthermore, we review the technologies related to wearable devices, such as sensing technology, wireless communication, power manager, display technology and big data. At last, we analyze the challenges which the wearable devices will face in near future, and look forward to development trends of wearable devices.

  9. High accuracy autonomous navigation using the global positioning system (GPS)

    Science.gov (United States)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  10. Romania's Competitiveness and Competitive Position in Global Context

    Directory of Open Access Journals (Sweden)

    Valentin NECULITA

    2012-08-01

    Full Text Available Competitiveness increase has become a primordial framework of the social and economic development strategies of most world countries (mainly the most developed ones over the last decades. The vigorous boost of the contemporary phenomenon of globalization, which has widened the global area of economies, sectors and firms confrontation, has laid an emphasis on their competitiveness importance for their favorable position in the international competition and has therefore force the status to take proper, broad and concerted measures to stimulate the determining factors of action and to take better advantage of their effects. The purpose of the paper is to determine whether an increase in competitiveness could reduce the disparities between regions. The E.U. Member States and regions need significant financial help to solve various structural problems and to achieve their potential of growth. Romania is no exception, one of the main problems being the low rate in attracting European funds.

  11. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    Science.gov (United States)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  12. Embodying Soft Wearables Research

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2016-01-01

    of soft wearables. Throughout, we will experiment with how embodied design research techniques might be shared, developed, and used as direct and unmediated vehicles for their own reporting. Rather than engage in oral presentations, participants will lead each other through a proven embodied method...... and knowledge transfer in the context of soft wearables....

  13. The global positioning system and ArcGIS

    CERN Document Server

    Kennedy, Michael

    2009-01-01

    Foreword to the First EditionForeword to the Second EditionPreface for the Instructor, Third EditionAcknowledgmentsAbout the AuthorIntroductionChapter 1: Basic Concepts OverviewWhere Are You?What Time Is It?GPS and GISAnatomy of the Term ""Global Positioning System""How We Know Where Something IsStep-by-StepDisclaimerFirst OffDifferent Receivers and Different SoftwarePreparationProject 1AUnderstanding the Screens and ControlsProject 1BProject 1CChapter 2: Automated Data CollectionOverviewHow'd They Do That?How It Works: Measuring Distance by Measuring TimeFactors Affecting When and How to Coll

  14. A program status report on the Navstar Global Positioning System

    Science.gov (United States)

    Niiya, Craig; Lamons, John W.

    1992-03-01

    The USAF's GPS Joint Program Office is charged with the development, testing, and deployment of the space, control, and user segments of GPS, whose 24-satellite constellation will furnish global position, velocity, and time data to both military and civilian users after reaching operational status in the autumn of 1993. Responsibility for the operation and maintenance of the GPS constellation was transferred to USAF as of May, 1990. The GPS control segment is fully deployed at this writing; the user segment's equipment is in 'limited rate initial production', but will begin full-rate production in fiscal year 1993.

  15. Global Positioning System Analysis of a High School Football Scrimmage.

    Science.gov (United States)

    Gleason, Benjamin H; Sams, Matthew L; Salley, John T; Pustina, A Andrew; Stone, Michael H

    2017-08-01

    Gleason, BH, Sams, M, Salley, JT, Pustina, A, and Stone, MH. Global positioning system analysis of a high school football scrimmage. J Strength Cond Res 31(8): 2183-2188, 2017-The purpose of this study was to examine the physical demands of a high school American football scrimmage. Male high school football players (N = 25) participated in a spring scrimmage. Global positioning system data and game film were recorded throughout the entirety of the scrimmage to determine the total distance covered, the distance covered in different velocity bands, the number of accelerations and decelerations performed, and the work-to-rest ratio of the scrimmage. The athletes were divided into 2 groups: linemen (L) (N = 7) vs. nonlinemen (NL) (N = 8) for statistical analysis, and independent T-tests with Holm's sequential Bonferroni adjustment were used to determine differences in movement characteristics between the L and NL groups. Average play duration was 5.7 ± 2.1 seconds, whereas the rest interval was 33.4 ± 13.6 seconds between plays, for an overall exercise-to-rest ratio of 1:5.9. Total distance, standing and walking distance, running distance, striding distance, sprinting distance, and total high-speed running distance covered by NL was greater than L (statistically significant at p ≤ 0.05). Distances traveled in each velocity band by position and by play are also included to provide context of our findings. Data from the present study add to the pool of support for the use of position-specific training in preparing high school football players for competition.

  16. Quantifying positional and temporal movement patterns in professional rugby union using global positioning system.

    Science.gov (United States)

    Jones, Marc R; West, Daniel J; Crewther, Blair T; Cook, Christian J; Kilduff, Liam P

    2015-01-01

    This study assessed the positional and temporal movement patterns of professional rugby union players during competition using global positioning system (GPS) units. GPS data were collected from 33 professional rugby players from 13 matches throughout the 2012-2013 season sampling at 10 Hz. Players wore GPS units from which information on distances, velocities, accelerations, exertion index, player load, contacts, sprinting and repeated high-intensity efforts (RHIE) were derived. Data files from players who played over 60 min (n = 112) were separated into five positional groups (tight and loose forwards; half, inside and outside backs) for match analysis. A further comparison of temporal changes in movement patterns was also performed using data files from those who played full games (n = 71). Significant positional differences were found for movement characteristics during performance (P drills that elicit specific adaptations and provide objective measures of preparedness. Knowledge of performance changes may be used when developing drills and should be considered when monitoring and evaluating performance.

  17. Professional rugby league positional match-play analysis through the use of global positioning system.

    Science.gov (United States)

    Austin, Damien J; Kelly, Stephen J

    2014-01-01

    The purpose of this study was to quantify the movement demands of all 9 individual playing positions in professional rugby league. The movement demands of 135 professional rugby league players were recorded during 28 National Rugby League games in 2011, using a nondifferential 5 Hz global positioning system. The mean total distances covered in a game for fullback, wing, center, five-eight, halfback, hooker, lock, back row, and prop players were 7,760, 7,457, 7,301, 8,402, 8,500, 6,988, 5,481, 6,936, and 4,597 m, respectively. The average occurrence of high-intensity runs per match was 42, 35, 34, 86, 120, 74, 52, 26, and 18 for fullback, wing, center, five-eight, halfback, hooker, lock, back row, and prop players, respectively. The average distance traveled greater than 18 km·h-1 for fullback were 17 ± 2 m, wing 18 ± 2 m, center 18 ± 3 m, five-eight 16 ± 3 m, and halfback 17 ± 4 m. The average distance and range traveled greater than 18 km·h for hooker were 14 ± 3 m, lock 16 ± 2 m, back row 18 ± 3 m, and prop 16 ± 2 m. The use of global positioning systems has demonstrated plausibility to eliminate the use of grouping of positions in rugby league and for coaches to make specific training protocols for each position. Given the differences in movement demands of all 9 positions in rugby league, some positions would lack specificity to their positional requirements if using collective grouping for planning of training regimens.

  18. Professional Android wearables

    CERN Document Server

    Cuartielles Ruiz, David

    2015-01-01

    The fast and easy way to get up and running on Androidwearables Written by an expert author team with years of hands-onexperience in designing and building wearables, ProfessionalAndroid Wearables covers how to use the Android Wear platformand other techniques to build real-world apps for a variety ofwearables including smartbands, smartwatches, and smart glasses. Inno time, you'll grasp how wearables can connect us to the Internetin more pervasive ways than with PCs, tablets, or mobile devices;how to build code using Google's Wear SDK for Android-enabledhardware devices; how Android Wear and

  19. Global positioning system: a new opportunity in physical activity measurement.

    Science.gov (United States)

    Maddison, Ralph; Ni Mhurchu, Cliona

    2009-11-04

    Accurate measurement of physical activity is a pre-requisite to monitor population physical activity levels and design effective interventions. Global Positioning System (GPS) technology offers potential to improve the measurement of physical activity. This paper 1) reviews the extant literature on the application of GPS to monitor human movement, with a particular emphasis on free-living physical activity, 2) discusses issues associated with GPS use, and 3) provides recommendations for future research. Overall findings show that GPS is a useful tool to augment our understanding of physical activity by providing the context (location) of the activity and used together with Geographical Information Systems can provide some insight into how people interact with the environment. However, no studies have shown that GPS alone is a reliable and valid measure of physical activity.

  20. Local vs. global temperature under a positive curvature condition

    CERN Document Server

    Sanders, Ko

    2016-01-01

    For a massless free scalar field in a globally hyperbolic space-time we compare the global temperature T, defined for the KMS states $\\omega^T$, with the local temperature $T_{\\omega}(x)$ introduced by Buchholz and Schlemmer. We prove the following claims: (1) Whenever $T_{\\omega^T}(x)$ is defined, it is a continuous, monotonically increasing function of T at every point x. (2) $T_{\\omega}(x)$ is defined when the space-time is ultra-static with compact Cauchy surface and non-trivial scalar curvature $R\\ge 0$, $\\omega$ is stationary and a few other assumptions are satisfied. Our proof of (2) relies on the positive mass theorem. We discuss the necessity of its assumptions, providing counter-examples in an ultra-static space-time with non-compact Cauchy surface and R<0 somewhere. We interpret the result in terms of a violation of the weak energy condition in the background space-time.

  1. Modeling the global positioning system signal propagation through the ionosphere

    Science.gov (United States)

    Bassiri, S.; Hajj, G. A.

    1992-01-01

    Based on realistic modeling of the electron density of the ionosphere and using a dipole moment approximation for the Earth's magnetic field, one is able to estimate the effect of the ionosphere on the Global Positioning System (GPS) signal for a ground user. The lowest order effect, which is on the order of 0.1-100 m of group delay, is subtracted out by forming a linear combination of the dual frequencies of the GPS signal. One is left with second- and third-order effects that are estimated typically to be approximately 0-2 cm and approximately 0-2 mm at zenith, respectively, depending on the geographical location, the time of day, the time of year, the solar cycle, and the relative geometry of the magnetic field and the line of sight. Given the total electron content along a line of sight, the authors derive an approximation to the second-order term which is accurate to approximately 90 percent within the magnetic dipole moment model; this approximation can be used to reduce the second-order term to the millimeter level, thus potentially improving precise positioning in space and on the ground. The induced group delay, or phase advance, due to second- and third-order effects is examined for two ground receivers located at equatorial and mid-latitude regions tracking several GPS satellites.

  2. Volcano monitoring using the Global Positioning System: Filtering strategies

    Science.gov (United States)

    Larson, K.M.; Cervelli, Peter; Lisowski, M.; Miklius, Asta; Segall, P.; Owen, S.

    2001-01-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/???h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours. Copyright 2001 by the American Geophysical Union.

  3. Workshop Builds Strategies to Address Global Positioning System Vulnerabilities

    Science.gov (United States)

    Fisher, Genene

    2011-01-01

    When we examine the impacts of space weather on society, do we really understand the risks? Can past experiences reliably predict what will happen in the future? As the complexity of technology increases, there is the potential for it to become more fragile, allowing for a single point of failure to bring down the entire system. Take the Global Positioning System (GPS) as an example. GPS positioning, navigation, and timing have become an integral part of daily life, supporting transportation and communications systems vital to the aviation, merchant marine, cargo, cellular phone, surveying, and oil exploration industries. Everyday activities such as banking, mobile phone operations, and even the control of power grids are facilitated by the accurate timing provided by GPS. Understanding the risks of space weather to GPS and the many economic sectors reliant upon it, as well as how to build resilience, was the focus of a policy workshop organized by the American Meteorological Society (AMS) and held on 13-14 October 2010 in Washington, D. C. The workshop brought together a select group of policy makers, space weather scientists, and GPS experts and users.

  4. Volcano monitoring using the Global Positioning System: Filtering strategies

    Science.gov (United States)

    Larson, Kristine M.; Cervelli, Peter; Lisowski, Michael; Miklius, Asta; Segall, Paul; Owen, Susan

    2001-09-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/√h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours.

  5. Global positioning system pseudolite-based relative navigation.

    Energy Technology Data Exchange (ETDEWEB)

    Monda, Eric W. (University of Texas, Austin, TX)

    2004-03-01

    Though the Global Positioning System has revolutionized navigation in the modern age, it is limited in its capability for some applications because an unobstructed line of sight to a minimum of four satellites is required. One way of augmenting the system in small areas is by employing pseudolites to broadcast additional signals that can be used to improve the user's position solution. At the Navigation Systems Testing Laboratory (NSTL) at NASA's Johnson Space Center in Houston, TX, research has been underway on the use of pseudolites to perform precision relative navigation. Based on the findings of previous research done at the NSTL, the method used to process the pseudolite measurements is an extended Kalman filter of the double differenced carrier phase measurements. By employing simulations of the system, as well as processing previously collected data in a real time manner, sub-meter tracking of a moving receiver with carrier phase measurements in the extended Kalman filter appears to be possible.

  6. Robotic Art for Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2010-01-01

    We present the robot art and how it may inspire to create a new type of wearable termed modular robotic wearable. Differently from the related works, modular robotic wearable aims at making no use of mechatronic devices (as, for example, in Cyberpunk and related research branches) and mostly relies...... on “simple” plug-and-play circuits, ranging from pure sensors-actuators schemes to artefacts with a smaller level of elaboration complexity. Indeed, modular robotic wearable focuses on enhancing the body perception and proprioperception by trying to substitute all of the traditional exoskeletons perceptive...... functions - in most of the cases strongly rigid, cabled and centralized - through the use of local sensing circuits. It is exemplified here with the early prototype art work called Fatherboard, and the concept is believed to be applicable to different application fields, such as sport, health...

  7. Performance Characteristics of Small Global-Positioning-System Tracking Collars

    Directory of Open Access Journals (Sweden)

    T. Dennis

    2010-06-01

    Full Text Available Recent technological advances have made possible the development of animal-tracking devices based on the global positioning system (GPS that are much smaller than what were available previously. However, potential limitations in size-dependent technologies and differences in patterns of behavior between small and large animals could mean that miniaturized GPS tracking devices may not function as well as their larger counterparts. Here, we evaluate the performance characteristics of 105-g GPS collars suitable for prolonged use on animals weighing as little as 2.5 kg. We tested 9 collars in stationary trials at a single reference site and in field deployments on common brushtail possums ( Trichosurus vulpecula/ , a semi-arboreal, nocturnal marsupial. We found in both trials that individual collars differed in several measures of positional accuracy and precision, yet overall the small collars compared favorably with published results of larger devices in similar habitats. Differences in operational characteristics between the two trials were mainly in the number and spatial configuration of satellites used to calculate position fixes, resulting in an increase in median location error from 9.8 m in the stationary tests to an estimated 14.7 m in the field trials. Most probably, these effects were due to dissimilarities in microhabitat features and variation in the orientation of GPS antennae which occurred when the possums changed their body posture during movement. The collars evaluated in this study promise to be a valuable tool for the study of the ecology, behavior, and conservation of many small-to-medium sized animals.

  8. 77 FR 56254 - 89th Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS)

    Science.gov (United States)

    2012-09-12

    ... Federal Aviation Administration 89th Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS... Notice of RTCA Special Committee 159, RTCA Special Committee 159, Global Positioning Systems (GPS... Special Committee 159, Global Positioning Systems (GPS). DATES: The meeting will be held October 5, 2012...

  9. 76 FR 67019 - Eighty-Seventh: RTCA Special Committee 159: Global Positioning System (GPS)

    Science.gov (United States)

    2011-10-28

    ... Federal Aviation Administration Eighty-Seventh: RTCA Special Committee 159: Global Positioning System (GPS... RTCA Special Committee 159 meeting: Global Positioning System (GPS). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 159: Global Positioning System (GPS...

  10. 78 FR 57672 - 91st Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS)

    Science.gov (United States)

    2013-09-19

    ... Federal Aviation Administration 91st Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS... Notice of RTCA Special Committee 159, RTCA Special Committee 159, Global Positioning Systems (GPS... Special Committee 159, Global Positioning Systems (GPS) DATES: The meeting will be held October 7-11, 2013...

  11. 78 FR 13396 - 90th Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS)

    Science.gov (United States)

    2013-02-27

    ... Federal Aviation Administration 90th Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS... Notice of RTCA Special Committee 159, RTCA Special Committee 159, Global Positioning Systems (GPS... Special Committee 159, Global Positioning Systems (GPS). DATES: The meeting will be held March 12-15, 2013...

  12. 77 FR 12106 - 88th Meeting: RTCA Special Committee 159, Global Positioning System (GPS)

    Science.gov (United States)

    2012-02-28

    ... Federal Aviation Administration 88th Meeting: RTCA Special Committee 159, Global Positioning System (GPS... RTCA Special Committee 159, Global Positioning System (GPS). SUMMARY: The FAA is issuing this notice to advise the public of the 88th meeting of RTCA Special Committee 159, Global Positioning System (GPS...

  13. Global positioning system watches for estimating energy expenditure.

    Science.gov (United States)

    Hongu, Nobuko; Orr, Barron J; Roe, Denise J; Reed, Rebecca G; Going, Scott B

    2013-11-01

    Global positioning system (GPS) watches have been introduced commercially, converting frequent measurements of time, location, speed (pace), and elevation into energy expenditure (EE) estimates. The purpose of this study was to compare EE estimates of 4 different GPS watches (Forerunner, Suunto, Polar, Adeo), at various walking speeds, with EE estimate from a triaxial accelerometer (RT3), which was used as a reference measure in this study. Sixteen healthy young adults completed the study. Participants wore 4 different GPS watches and an RT3 accelerometer and walked at 6-minute intervals on an outdoor track at 3 speeds (3, 5, and 7 km/hr). The statistical significance of differences in EE between the 3 watches was assessed using linear contrasts of the coefficients from the overall model. Reliability across trials for a given device was assessed using intraclass correlation coefficients as estimated in the mixed model. The GPS watches demonstrated lower reliability (intraclass correlation coefficient) across trials when compared with the RT3, particularly at the higher speed, 7 km/hr. Three GPS watches (Forerunner, Polar, and Suunto) significantly and consistently underestimated EE compared with the reference EE given by the RT3 accelerometer (average mean difference: Garmin, -50.5%; Polar, -41.7%; and Suunto, -41.7%; all p GPS watches to estimate EE in athletes during field-based testing and training.

  14. Energetic Particle Data From the Global Positioning System Constellation

    Science.gov (United States)

    Morley, S. K.; Sullivan, J. P.; Carver, M. R.; Kippen, R. M.; Friedel, R. H. W.; Reeves, G. D.; Henderson, M. G.

    2017-02-01

    Since 2000, Los Alamos National Laboratory (LANL) Combined X-ray and Dosimeter (CXD) and Burst Detector Dosimeter for Block II-R (BDD-IIR) instruments have been fielded on Global Positioning System (GPS) satellites. Today, 21 of the 31 operational GPS satellites are equipped with a CXD detector and a further 2 carry a BDD-IIR. Each of these instruments measures a wide range of energetic electrons and protons. These data have now been publicly released under the terms of the Executive Order for Coordinating Efforts to Prepare the Nation for Space Weather Events. The specific goal of releasing space weather data from the GPS satellites is to enable broad scientific community engagement in enhancing space weather model validation and improvements in space weather forecasting and situational awareness. The time period covered by this data release is approximately 16 years, which corresponds to more than 167 satellite years of data. The large number of GPS satellites, distributed over six orbital planes, will provide important context for ongoing and historical science missions, as well as enabling new types of research not previously possible.

  15. Positional differences in professional rugby league match play through the use of global positioning systems.

    Science.gov (United States)

    Austin, Damien J; Kelly, Stephen J

    2013-01-01

    The current use of tracking technology in the form of global positioning systems allows for a greater analysis of locomotor activities occurring in games and a larger volume of games when compared with time-motion analysis. Therefore, the aim of this study is to be the first to analyze the physiological demands of forwards and backs throughout the entirety of an Australian professional rugby league season. The movement patterns of 185 players from a professional rugby league club were recorded during 28 National Rugby League games played in Australia during the 2010 season. The players were clustered into 2 positional groups, backs and forwards. Maximum match-play time recorded was 99 minutes and 50 seconds in a semifinal game recorded for both a forward and back. The mean total distances covered in a game for forwards and backs were 5,964 ± 696 and 7,628 ± 744 m, respectively (p 18 km·h(-1)) was 23 ± 4 and for forwards and significantly higher backs with 35 ± 8 (p < 0.05). The maximum work rate in a 10-minute block of match play was 115 and 120 m·min(-1) of play for forwards and backs, respectively. Understanding the physiological demands of a sport is important for coaches to deliver athletes optimal training programs that elicit appropriate and specific physiological adaptation. The differences in locomotor activities, which occur between positions, need to be accounted for when developing training programs.

  16. Wearable biosensors for medical applications

    OpenAIRE

    Crean, C; Mcgeough, C; O'Kennedy, R

    2012-01-01

    Over the past decade, the design and development of wearable sensors for biomedical applications has garnered considerable attention in the scientifi c community and in industry. This chapter aims to review research conducted into wearable sensors for healthcare monitoring. Acceptance of this approach in observation of physiological data depends strongly on the cost, wearability, usability and performance of such devices. An outline of body sensor network systems (and applications of wearable...

  17. Global organization of a positive-strand RNA virus genome.

    Directory of Open Access Journals (Sweden)

    Baodong Wu

    Full Text Available The genomes of plus-strand RNA viruses contain many regulatory sequences and structures that direct different viral processes. The traditional view of these RNA elements are as local structures present in non-coding regions. However, this view is changing due to the discovery of regulatory elements in coding regions and functional long-range intra-genomic base pairing interactions. The ∼4.8 kb long RNA genome of the tombusvirus tomato bushy stunt virus (TBSV contains these types of structural features, including six different functional long-distance interactions. We hypothesized that to achieve these multiple interactions this viral genome must utilize a large-scale organizational strategy and, accordingly, we sought to assess the global conformation of the entire TBSV genome. Atomic force micrographs of the genome indicated a mostly condensed structure composed of interconnected protrusions extending from a central hub. This configuration was consistent with the genomic secondary structure model generated using high-throughput selective 2'-hydroxyl acylation analysed by primer extension (i.e. SHAPE, which predicted different sized RNA domains originating from a central region. Known RNA elements were identified in both domain and inter-domain regions, and novel structural features were predicted and functionally confirmed. Interestingly, only two of the six long-range interactions known to form were present in the structural model. However, for those interactions that did not form, complementary partner sequences were positioned relatively close to each other in the structure, suggesting that the secondary structure level of viral genome structure could provide a basic scaffold for the formation of different long-range interactions. The higher-order structural model for the TBSV RNA genome provides a snapshot of the complex framework that allows multiple functional components to operate in concert within a confined context.

  18. Real-time precision pedestrian navigation solution using Inertial Navigation System and Global Positioning System

    Directory of Open Access Journals (Sweden)

    Yong-Jin Yoon

    2015-03-01

    Full Text Available Global Positioning System and Inertial Navigation System can be used to determine position and velocity. A Global Positioning System module is able to accurately determine position without sensor drift, but its usage is limited in heavily urbanized environments and heavy vegetation. While high-cost tactical-grade Inertial Navigation System can determine position accurately, low-cost micro-electro-mechanical system Inertial Navigation System sensors are plagued by significant errors. Global Positioning System is coupled with Inertial Navigation System to correct the errors, while Inertial Navigation System itself can be used to provide navigation solution during a Global Positioning System outage. Data from Global Positioning System and Inertial Navigation System can be integrated by extensive Kalman filtering, using loosely coupled integration architecture to provide navigation solutions. In this study, real-time low-cost loosely coupled micro-electro-mechanical system Inertial Navigation System/Global Positioning System sensors have been used for pedestrian navigation. Trial runs of Global Positioning System outages have been conducted to determine the accuracy of the system described. The micro-electro-mechanical system Inertial Navigation System/Global Positioning System can successfully project a trajectory during a Global Positioning System outage and produces a root mean square error of 9.35 m in latitude direction and 10.8 m in longitude direction. This technology is very suitable for visually impaired pedestrians.

  19. Augmented reality som wearable

    DEFF Research Database (Denmark)

    Buhl, Mie; Rahn, Annette

    2015-01-01

    Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR-applikat......Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR...

  20. The global position of the U S forest products industry

    Science.gov (United States)

    Jeffrey P. Prestemon; David N. Wear; Michaela O. Foster

    2015-01-01

    The United States’ share of global industrial roundwood production has declined since the 1990s. We reviewed data from 1961-2013 to evaluate the extent of this decline for industrial roundwood and derived secondary forest products compared to other major producing countries. We find that the U.S. global share of industrial roundwood peaked at 28 percent in 1999 but...

  1. Gait analysis using wearable sensors.

    Science.gov (United States)

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  2. Gait Analysis Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Hutian Feng

    2012-02-01

    Full Text Available Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  3. Design and Implementation of Android Based Wearable Smart Locator Band for People with Autism, Dementia, and Alzheimer

    Directory of Open Access Journals (Sweden)

    Isha Goel

    2015-01-01

    Full Text Available A wearable smart locator band is an electronic device which can be worn on the wrist of the children to monitor and keep an eye on them. As the number of mishaps with children is increasing, it is a must to keep them safe. This also helps reducing crime rates. The research study proposed the development of a wearable smart locator band that helps keeping track of kids. The developed device includes an AVR microcontroller (ATmega8515, global positioning system (GPS, global system for mobile (GSM, and switching unit and the monitoring unit includes Android mobile device in parent’s hand with web based Android application as well as location indicated on a Google Map. This development is very useful for senior people and individuals suffering from memory diseases. This device, hence, behaves as a communication interface between wearer and caregiver.

  4. Towards Wearable Cognitive Assistance

    Science.gov (United States)

    2013-12-01

    Nokia -Siemens Networks announced the availability of a “mobile edge computing platform” [1]. Wearable cognitive assistance can be viewed as a “killer...first step, providing an open-source foundation for exploring this exciting new domain. References [1] IBM and Nokia Siemens Networks Announce World’s

  5. Augmented reality som wearable

    DEFF Research Database (Denmark)

    Buhl, Mie; Rahn, Annette

    2015-01-01

    Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR...

  6. Wearable Learning Tools.

    Science.gov (United States)

    Bowskill, Jerry; Dyer, Nick

    1999-01-01

    Describes wearable computers, or information and communication technology devices that are designed to be mobile. Discusses how such technologies can enhance computer-mediated communications, focusing on collaborative working for learning. Describes an experimental system, MetaPark, which explores communications, data retrieval and recording, and…

  7. Augmented reality som wearable

    DEFF Research Database (Denmark)

    Buhl, Mie; Rahn, Annette

    2015-01-01

    Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR...

  8. Positive biodiversity-productivity relationship predominant in global forests

    NARCIS (Netherlands)

    Liang, Jingjing; Crowther, Thomas W.; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, A. David; Bozzato, Fabio; Pretzsch, Hans; de-Miguel, Sergio; Paquette, Alain; Hérault, Bruno; Scherer-Lorenzen, Michael; Barrett, Christopher B.; Glick, Henry B.; Hengeveld, Geerten M.; Nabuurs, Gert-Jan; Pfautsch, Sebastian; Viana, Helder; Vibrans, Alexander C.; Ammer, Christian; Schall, Peter; Verbyla, David; Tchebakova, Nadja; Fischer, Markus; Watson, James V.; Chen, Han Y. H.; Lei, Xiangdong; Schelhaas, Mart-Jan; Lu, Huicui; Gianelle, Damiano; Parfenova, Elena I.; Salas, Christian; Lee, Eungul; Lee, Boknam; Kim, Hyun Seok; Bruelheide, Helge; Coomes, David A.; Piotto, Daniel; Sunderland, Terry; Schmid, Bernhard; Gourlet-Fleury, Sylvie; Sonké, Bonaventure; Tavani, Rebecca; Zhu, Jun; Brandl, Susanne; Vayreda, Jordi; Kitahara, Fumiaki; Searle, Eric B.; Neldner, Victor J.; Ngugi, Michael R.; Baraloto, Christopher; Frizzera, Lorenzo; Bałazy, Radomir; Oleksyn, Jacek; Zawiła-Niedźwiecki, Tomasz; Bouriaud, Olivier; Bussotti, Filippo; Finér, Leena; Jaroszewicz, Bogdan; Jucker, Tommaso; Valladares, Fernando; Jagodzinski, Andrzej M.; Peri, Pablo L.; Gonmadje, Christelle; Marthy, William; O’Brien, Timothy; Martin, Emanuel H.; Marshall, Andrew R.; Rovero, Francesco; Bitariho, Robert; Niklaus, Pascal A.; Alvarez-Loayza, Patricia; Chamuya, Nurdin; Valencia, Renato; Mortier, Frédéric; Wortel, Verginia; Engone-Obiang, Nestor L.; Ferreira, Leandro V.; Odeke, David E.; Vasquez, Rodolfo M.; Lewis, Simon L.; Reich, Peter B.

    2016-01-01

    The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126

  9. Positioning Multicultural Education across the Mirror of Globalization

    Science.gov (United States)

    Oikonomidoy, Eleni

    2015-01-01

    The graduate level course described in this article provides one possible pathway to making the connection between the global and the local in multicultural education. The proposal is that among many other things, the journey to the development of critical approaches is a conceptual endeavor. It is not meant to replace an introductory course in…

  10. The Positive Impact of Cultural Globalization on China

    Institute of Scientific and Technical Information of China (English)

    陈齐

    2014-01-01

    Along with the development of the information technology, people with different cultures are living together. Hence, there are both positive and negative influences. The for-mer one can help to promote the development of a nation, but the later one can let people feel confused about their culture or even forget it. In the following parts, I focus on the positive influences. According to my humble analysis, we need to seek harmony with-out uniformity.

  11. 76 FR 33022 - Eighty-Sixth Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Science.gov (United States)

    2011-06-07

    ... System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 159 meeting: Global Positioning System (GPS). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 159: Global Positioning System (GPS). DATES: The meeting...

  12. 76 FR 27744 - Eighty-Fifth Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Science.gov (United States)

    2011-05-12

    ... System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 159 meeting: Global Positioning System (GPS). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 159: Global Positioning System (GPS). DATES: The meeting...

  13. 75 FR 28318 - Eighty-Second Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Science.gov (United States)

    2010-05-20

    ... System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 159 meeting: Global Positioning System (GPS). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 159: Global Positioning System (GPS). DATES: The meeting...

  14. 75 FR 61818 - Eighty-Third Meeting: RTCA Special Committee 159: Global Positioning System (GPS).

    Science.gov (United States)

    2010-10-06

    ... System (GPS). AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 159 meeting: Global Positioning System (GPS). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 159: Global Positioning System (GPS). DATES: The...

  15. 75 FR 2581 - Eighty-First Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Science.gov (United States)

    2010-01-15

    ... System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 159 meeting: Global Positioning System (GPS). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 159: Global Positioning System (GPS). DATES: The meeting...

  16. Brand Positioning Through Advertising in Asia, North America, and Europe : The Role of Global Consumer Culture

    NARCIS (Netherlands)

    Alden, D.L.; Steenkamp, J.E.B.M.; Batra, R.

    1999-01-01

    In this study, the authors examine the emergence of brand positioning strategies in advertising that parallel the growth of the global marketplace. A new construct, global consumer culture positioning (GCCP), is proposed, operationalized, and tested. This construct associates the brand with a widely

  17. Brand Positioning Through Advertising in Asia, North America, and Europe : The Role of Global Consumer Culture

    NARCIS (Netherlands)

    Alden, D.L.; Steenkamp, J.E.B.M.; Batra, R.

    1999-01-01

    In this study, the authors examine the emergence of brand positioning strategies in advertising that parallel the growth of the global marketplace. A new construct, global consumer culture positioning (GCCP), is proposed, operationalized, and tested. This construct associates the brand with a widely

  18. Pointing Devices for Wearable Computers

    OpenAIRE

    Andrés A. Calvo; Saverio Perugini

    2014-01-01

    We present a survey of pointing devices for wearable computers, which are body-mounted devices that users can access at any time. Since traditional pointing devices (i.e., mouse, touchpad, and trackpoint) were designed to be used on a steady and flat surface they are inappropriate for wearable computers. Just as the advent of laptops resulted in the development of the touchpad and trackpoint, the emergence of wearable computers is leading to the development of pointing devices designed for th...

  19. Wearable sensors in syncope management

    National Research Council Canada - National Science Library

    Meyer, Christian; Carvalho, Paulo; Brinkmeyer, Christoph; Kelm, Malte; Couceiro, Ricardo; Mühlsteff, Jens

    2015-01-01

    .... Wearable sensors might overcome some limitations, including misdiagnosis and inappropriate defibrillator shocks, because a variety of physiological measures can now be easily acquired by a single non...

  20. Global regulation of robots using only position measurements

    NARCIS (Netherlands)

    Berghuis, Harry; Nijmeijer, Henk

    1993-01-01

    In this note we propose a simple solution to the regulation problem of rigid robots based on the availability of only joint position measurements. The controller consists of two parts: (1) a gravitation compensation, (2) a linear dynamic first-order compensator. The gravitation compensation part can

  1. 78 FR 22554 - Nationwide Differential Global Positioning System (NDGPS)

    Science.gov (United States)

    2013-04-16

    ... System (GPS) derived positions for surface transportation, as well as other civil, commercial, scientific... would like to know that they reached the Facility, please enclose a stamped, self-addressed postcard or... 3316). Background and Purpose The NDGPS augments GPS with an additional differential correction...

  2. ROMANIAN BUSINESS POSITION ON THE CONTEMPORARY GLOBALIZATION CHESSBOARD

    Directory of Open Access Journals (Sweden)

    Aurica Grec

    2012-01-01

    Full Text Available Given that from the global hat appear, one by one, new dangers, threats and risks which are destabilizing market forces, nowadays we’re seeing a pattern with non-predictable EFS (economic, financial, social indicators. In this context, appear new paradoxes, so as the states desired to achieve a better and more sustainable networking, they found that such reaction generate, on the domino principle, other countries security. We refer here both to the military and security side and to the non military one, in order to underline the dimensions of the LRI (local, regional, international scenarios. They are becoming more complicated and also are fighting with lack of vision for to identify, in real time, the ways to counter the micro-macro effects on the current organizational level.

  3. Wearable CO2 sensor

    OpenAIRE

    Radu, Tanja; Fay, Cormac; Lau, King-Tong; Waite, Rhys; Diamond, Dermot

    2009-01-01

    High concentrations of CO2 may develop particularly in the closed spaces during fires and can endanger the health of emergency personnel by causing serious physiological effects. The proposed prototype provides real-time continuous monitoring of CO2 in a wearable configuration sensing platform. A commercially available electrochemical CO2 sensor was selected due to its selectivity, sensitivity and low power demand. This was integrated onto an electronics platform that performed signal capture...

  4. Wearable wireless photoplethysmography sensors

    Science.gov (United States)

    Spigulis, Janis; Erts, Renars; Nikiforovs, Vladimirs; Kviesis-Kipge, Edgars

    2008-04-01

    Wearable health monitoring sensors may support early detection of abnormal conditions and prevention of their consequences. Recent designs of three wireless photoplethysmography monitoring devices embedded in hat, glove and sock, and connected to PC or mobile phone by means of the Bluetooth technology, are described. First results of distant monitoring of heart rate and pulse wave transit time using the newly developed devices are presented.

  5. Accuracy and Adoption of Wearable Technology Used by Active Citizens: A Marathon Event Field Study

    Science.gov (United States)

    Suleder, Julian; Zowalla, Richard

    2017-01-01

    Background Today, runners use wearable technology such as global positioning system (GPS)–enabled sport watches to track and optimize their training activities, for example, when participating in a road race event. For this purpose, an increasing amount of low-priced, consumer-oriented wearable devices are available. However, the variety of such devices is overwhelming. It is unclear which devices are used by active, healthy citizens and whether they can provide accurate tracking results in a diverse study population. No published literature has yet assessed the dissemination of wearable technology in such a cohort and related influencing factors. Objective The aim of this study was 2-fold: (1) to determine the adoption of wearable technology by runners, especially “smart” devices and (2) to investigate on the accuracy of tracked distances as recorded by such devices. Methods A pre-race survey was applied to assess which wearable technology was predominantly used by runners of different age, sex, and fitness level. A post-race survey was conducted to determine the accuracy of the devices that tracked the running course. Logistic regression analysis was used to investigate whether age, sex, fitness level, or track distance were influencing factors. Recorded distances of different device categories were tested with a 2-sample t test against each other. Results A total of 898 pre-race and 262 post-race surveys were completed. Most of the participants (approximately 75%) used wearable technology for training optimization and distance recording. Females (P=.02) and runners in higher age groups (50-59 years: P=.03; 60-69 years: Pphones with combined app (mean absolute error, MAE=0.35 km) and GPS-enabled sport watches (MAE=0.12 km) was significantly different (P=.002) for the half-marathon event. Conclusions A great variety of vendors (n=36) and devices (n=156) were identified. Under real-world conditions, GPS-enabled devices, especially sport watches and mobile

  6. Assessment of Wearable Sensor Technologies for Biosurveillance

    Science.gov (United States)

    2014-11-01

    intelligence (AI) and biometric data, the device captures electrodermal activity in real time to assess emotional states. Using the technique of...Biometric smartwear Hexoskin Breathing rate, volume, cadence, ECG, sleep position, heart rate, and other physiological data Wearable Wellnes...watches. Google Fit’s fitness tracking will display data such as heart rate, or detect whether its wearer has been physically active . Google’s

  7. Wearable Optical Chemical Sensors

    Science.gov (United States)

    Lobnik, Aleksandra

    Wearable sensors can be used to provide valuable information about the wearer's health and/or monitor the wearer's surroundings, identify safety concerns and detect threats, during the wearer's daily routine within his or her natural environment. The "sensor on a textile", an integrated sensor capable of analyzing data, would enable early many forms of detection. Moreover, a sensor connected with a smart delivery system could simultaneously provide comfort and monitoring (for safety and/or health), non-invasive measurements, no laboratory sampling, continuous monitoring during the daily activity of the person, and possible multi-parameter analysis and monitoring. However, in order for the technology to be accessible, it must remain innocuous and impose a minimal intrusion on the daily activities of the wearer. Therefore, such wearable technologies should be soft, flexible, and washable in order to meet the expectations of normal clothing. Optical chemical sensors (OCSs) could be used as wearable technology since they can be embedded into textile structures by using conventional dyeing, printing processes and coatings, while fiber-optic chemical sensors (FOCSs) as well as nanofiber sensors (NFSs) can be incorporated by weaving, knitting or laminating. The interest in small, robust and sensitive sensors that can be embedded into textile structures is increasing and the research activity on this topic is an important issue.

  8. Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions

    Science.gov (United States)

    2016-12-01

    Award Number: W81XWH-11-2-0175 TITLE: Global Positioning Systems ( GPS ) Technology to Study Vector-Pathogen-Host Interactions PRINCIPAL...Positioning Systems ( GPS ) Technology to Study Vector-Pathogen-Host Interactions 5b. GRANT NUMBER W81XWH-11-2-0175 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...sophisticated Global Positioning Systems ( GPS ) technology of isolated viruses and genetic characterization, spatial and temporal analysis are being

  9. Global proteomic characterization of microdissected estrogen receptor positive breast tumors

    Directory of Open Access Journals (Sweden)

    Tommaso De Marchi

    2015-12-01

    Full Text Available We here describe two proteomic datasets deposited in ProteomeXchange via PRIDE partner repository [1] with dataset identifiers PXD000484 (defined as “training” and PXD000485 (defined as “test” that have been used for the development of a tamoxifen outcome predictive signature [2]. Both datasets comprised 56 fresh frozen estrogen receptor (ER positive primary breast tumor specimens derived from patients who received tamoxifen as first line therapy for recurrent disease. Patient groups were defined based on time to progression (TTP after start of tamoxifen therapy (6 months cutoff: 32 good and 24 poor treatment outcome patients were comprised in the training set, respectively. The test set included 41 good and 15 poor treatment outcome patients. All specimens were subjected to laser capture microdissection (LCM to enrich for epithelial tumor cells prior to high resolution mass spectrometric (MS analysis. Protein identification and label-free quantification (LFQ were performed with MaxQuant software package [3]. A total of 3109 and 4061 proteins were identified and quantified in the training and test set, respectively. We here present the first public proteomic dataset analyzing ER positive recurrent breast cancer by LCM coupled to high resolution MS.

  10. Ethical Implications of User Perceptions of Wearable Devices.

    Science.gov (United States)

    Segura Anaya, L H; Alsadoon, Abeer; Costadopoulos, N; Prasad, P W C

    2017-02-02

    Health Wearable Devices enhance the quality of life, promote positive lifestyle changes and save time and money in medical appointments. However, Wearable Devices store large amounts of personal information that is accessed by third parties without user consent. This creates ethical issues regarding privacy, security and informed consent. This paper aims to demonstrate users' ethical perceptions of the use of Wearable Devices in the health sector. The impact of ethics is determined by an online survey which was conducted from patients and users with random female and male division. Results from this survey demonstrate that Wearable Device users are highly concerned regarding privacy issues and consider informed consent as "very important" when sharing information with third parties. However, users do not appear to relate privacy issues with informed consent. Additionally, users expressed the need for having shorter privacy policies that are easier to read, a more understandable informed consent form that involves regulatory authorities and there should be legal consequences the violation or misuse of health information provided to Wearable Devices. The survey results present an ethical framework that will enhance the ethical development of Wearable Technology.

  11. Wearable sensors for health monitoring

    Science.gov (United States)

    Suciu, George; Butca, Cristina; Ochian, Adelina; Halunga, Simona

    2015-02-01

    In this paper we describe several wearable sensors, designed for monitoring the health condition of the patients, based on an experimental model. Wearable sensors enable long-term continuous physiological monitoring, which is important for the treatment and management of many chronic illnesses, neurological disorders, and mental health issues. The system is based on a wearable sensors network, which is connected to a computer or smartphone. The wearable sensor network integrates several wearable sensors that can measure different parameters such as body temperature, heart rate and carbon monoxide quantity from the air. After the portable sensors measuring parameter values, they are transmitted by microprocessor through the Bluetooth to the application developed on computer or smartphone, to be interpreted.

  12. Evaluation of Global Positioning System Data for Offshore Platform Deformation

    Directory of Open Access Journals (Sweden)

    Abdul N. Matori

    2011-01-01

    Full Text Available Problem statement: Reservoir compaction and shallow gas migration phenomena may cause offshore platform to experience deformation which if happens excessively will affect their structural integrity. Approach: Hence it is crucial to monitor and quantify the magnitude of the deformation especially if they are not uniform throughout the platform structure. However since mostly the offshore platforms are few hundreds kilometers away from shore, the precise monitoring of their deformation is limited to very few sophisticated instruments, in which GPS technology is one of them albeit using very special GPS data processing technique such as Long Baseline Relative Positioning. Results: Using this technique and employing GPS data observed on one of PETRONAS own platform, Pulai, its deformation magnitude will be determined with various options such as number of reference stations used, configuration and their geographic location. This study presents initial deformation processing result using scientific software GAMIT/GLOBK and their analysis utilizing postfit nrms and chi-squared statistics. The result indicated that for the period of two months there was displacement as big as 0.0094 m with standard deviation of 0.0106 m. However following congruency statistical test using t-student distribution with 95% confidence level, indicated that this displacement is insignificance. Analysis of the output result with postfit nrms also indicated that the data were of good quality, the processing procedure was correct and the output for each processing epoch is internally and externally consistent. Conclusion/Recommendations: It could be concluded with correct data processing strategy GPS data could be used to determine deformation magnitude which consequently could be utilized as input to assess structural integrity of an offshore platform.

  13. From Mobile to Wearable System: A Wearable RFID System to Enhance Teaching and Learning Conditions

    Directory of Open Access Journals (Sweden)

    Souad Larabi Marie-Sainte

    2016-01-01

    Full Text Available Over the last decade, wearable technology has seen significant developments, making it possible to enhance our lives. One of the areas in which wearable technology can cause large changes is education, where it can be used to make educational experiences intrinsically motivating and more relevant to youth culture. In this paper, we focus on the use of wearable technology to improve the educational environment. The quantity of electronic assets used in the learning environment is rising, which presents a managerial problem when these devices are nonfunctioning. Therefore, we present a mobile application to solve this problem. The suggested approach consists of creating a mobile application named classroom clinic (CRC to help faculty members and students locate the closest maintenance technician via wearable radio frequency identification (RFID technology and to provide fast responses to the problems alerted to in the classroom, thereby avoiding any disturbances or delays during the lecture. Moreover, this application allows the maintenance service to efficiently manage any malfunctions of classroom electronic devices. To evaluate the CRC application, a pilot study was conducted at the College of Computer and Information Sciences, female campus of King Saud University, with 15 faculty members and students and 5 clinic members. The results showed high usability rates and generally positive attitudes towards using the app.

  14. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  15. Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change

    NARCIS (Netherlands)

    Scheffer, M.; Brovkin, V.; Cox, P.M.

    2006-01-01

    There is good evidence that higher global temperatures will promote a rise of greenhouse gas levels, implying a positive feedback which will increase the effect of anthropogenic emissions on global temperatures. However, the magnitude of this effect predicted by the available models remains highly

  16. The magnitude and direction movement in Thailand based on Global Positioning System (GPS)

    Science.gov (United States)

    Jamrus, Uthen; Deng, Hui

    2016-10-01

    In this research, we applied the Global Navigation Satellite System (GNSS) with Global Positioning System (GPS) to create new geodetic network, which is referred to ITRF2000. GPS observation data in 2010 and 2012 were used for network adjustment by Least Square Method (Minimally Constrained Adjustment and Fully Constrained Adjustment), then adjusted coordinates were used to determine updated magnitude and direction.

  17. Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change

    NARCIS (Netherlands)

    Scheffer, M.; Brovkin, V.; Cox, P.M.

    2006-01-01

    There is good evidence that higher global temperatures will promote a rise of greenhouse gas levels, implying a positive feedback which will increase the effect of anthropogenic emissions on global temperatures. However, the magnitude of this effect predicted by the available models remains highly u

  18. Quantifiable fitness tracking using wearable devices.

    Science.gov (United States)

    Bajpai, Anurag; Jilla, Vivek; Tiwari, Vijay N; Venkatesan, Shankar M; Narayanan, Rangavittal

    2015-08-01

    Monitoring health and fitness is emerging as an important benefit that smartphone users could expect from their mobile devices today. Rule of thumb calorie tracking and recommendation based on selective activity monitoring is widely available today, as both on-device and server based solutions. What is surprisingly not available to the users is a simple application geared towards quantitative fitness tracking. Such an application potentially can be a direct indicator of one's cardio-vascular performance and associated long term health risks. Since wearable devices with various inbuilt sensors like accelerometer, gyroscope, SPO2 and heart rate are increasingly becoming available, it is vital that the enormous data coming from these sensors be used to perform analytics to uncover hidden health and fitness associated facts. A continuous estimation of fitness level employing these wearable devices can potentially help users in setting personalized short and long-term exercise goals leading to positive impact on one's overall health. The present work describes a step in this direction. This work involves an unobtrusive method to track an individual's physical activity seamlessly, estimate calorie consumption during a day by mapping the activity to the calories spent and assess fitness level using heart rate data from wearable sensors. We employ a heart rate based parameter called Endurance to quantitatively estimate cardio-respiratory fitness of a person. This opens up avenues for personalization and adaptiveness by dynamically using individual's personal fitness data towards building robust modeling based on analytical principles.

  19. Quantitative wearable sensors for objective assessment of Parkinson's disease.

    Science.gov (United States)

    Maetzler, Walter; Domingos, Josefa; Srulijes, Karin; Ferreira, Joaquim J; Bloem, Bastiaan R

    2013-10-01

    There is a rapidly growing interest in the quantitative assessment of Parkinson's disease (PD)-associated signs and disability using wearable technology. Both persons with PD and their clinicians see advantages in such developments. Specifically, quantitative assessments using wearable technology may allow for continuous, unobtrusive, objective, and ecologically valid data collection. Also, this approach may improve patient-doctor interaction, influence therapeutic decisions, and ultimately ameliorate patients' global health status. In addition, such measures have the potential to be used as outcome parameters in clinical trials, allowing for frequent assessments; eg, in the home setting. This review discusses promising wearable technology, addresses which parameters should be prioritized in such assessment strategies, and reports about studies that have already investigated daily life issues in PD using this new technology.

  20. Stretchable and wearable electrochromic devices.

    Science.gov (United States)

    Yan, Chaoyi; Kang, Wenbin; Wang, Jiangxin; Cui, Mengqi; Wang, Xu; Foo, Ce Yao; Chee, Kenji Jianzhi; Lee, Pooi See

    2014-01-28

    Stretchable and wearable WO3 electrochromic devices on silver nanowire (AgNW) elastic conductors are reported. The stretchable devices are mechanically robust and can be stretched, twisted, folded, and crumpled without performance failure. Fast coloration (1 s) and bleaching (4 s) time and good cyclic stability (81% retention after 100 cycles) were achieved at relaxed state. Proper functioning at stretched state (50% strain) was also demonstrated. The electrochromic devices were successfully implanted onto textile substrates for potential wearable applications. As most existing electrochromic devices are based on rigid technologies, the innovative devices in their soft form hold the promise for next-generation electronics such as stretchable, wearable, and implantable display applications.

  1. 76 FR 50808 - Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS)

    Science.gov (United States)

    2011-08-16

    ... System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of intent to cancel... Positioning System (GPS), and request for public comment. SUMMARY: This notice announces the FAA's intent to cancel TSO-C129a, Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS...

  2. Contributions of Positive Psychology to Peace: Toward Global Well-Being and Resilience

    Science.gov (United States)

    Cohrs, J. Christopher; Christie, Daniel J.; White, Mathew P.; Das, Chaitali

    2013-01-01

    In this article, we analyze the relationship between positive psychology and peace psychology. We discuss how positive emotions, engagement, meaning, personal well-being, and resilience may impact peace at different levels, ranging from the personal and interpersonal to community, national, and global peace. First, we argue that an…

  3. Contributions of Positive Psychology to Peace: Toward Global Well-Being and Resilience

    Science.gov (United States)

    Cohrs, J. Christopher; Christie, Daniel J.; White, Mathew P.; Das, Chaitali

    2013-01-01

    In this article, we analyze the relationship between positive psychology and peace psychology. We discuss how positive emotions, engagement, meaning, personal well-being, and resilience may impact peace at different levels, ranging from the personal and interpersonal to community, national, and global peace. First, we argue that an…

  4. Global Positioning System: Observations on Quarterly Reports from the Air Force

    Science.gov (United States)

    2016-10-17

    Positioning System: Observations on Quarterly Reports from the Air Force The satellite-based Global Positioning System (GPS) provides positioning, navigation...infrastructure, and transportation safety. The Department of Defense (DOD)—specifically, the Air Force—develops and operates the GPS system, which...National Defense Authorization Act for Fiscal Year 2016 contained a provision that the Air Force provide quarterly reports to GAO on the next

  5. On global exponential stability of positive neural networks with time-varying delay.

    Science.gov (United States)

    Hien, Le Van

    2017-03-01

    This paper presents a new result on the existence, uniqueness and global exponential stability of a positive equilibrium of positive neural networks in the presence of bounded time-varying delay. Based on some novel comparison techniques, a testable condition is derived to ensure that all the state trajectories of the system converge exponentially to a unique positive equilibrium. The effectiveness of the obtained results is illustrated by a numerical example.

  6. Wearable Health Monitoring Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing a wearable health monitoring system for the human body that is functional, comfortable,...

  7. Wearable Health Monitoring Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing a wearable health monitoring system for the human body that is functional, comfortable,...

  8. The Routing Algorithm Based on Fuzzy Logic Applied to the Individual Physiological Monitoring Wearable Wireless Sensor Network

    OpenAIRE

    Jie Jiang; Yun Liu; Fuxing Song; Ronghao Du; Mengsen Huang

    2015-01-01

    In recent years, the research of individual wearable physiological monitoring wireless sensor network is in the primary stage. The monitor of physiology and geographical position used in wearable wireless sensor network requires performances such as real time, reliability, and energy balance. According to these requirements, this paper introduces a design of individual wearable wireless sensor network monitoring system; what is more important, based on this background, this paper improves the...

  9. Saint Petersburg as a Global Coastal City: Positioning in the Baltic Region

    Directory of Open Access Journals (Sweden)

    Lachininskii Stanislav

    2015-09-01

    Full Text Available The Baltic region consists of coastal areas of nine countries — Russia, Estonia, Latvia, Lithuania, Poland, Germany, Denmark, Sweden, and Finland. The region’s hubs are the port cities located along the Baltic Sea coast. However, Peter Taylor and Saskia Sassen’s classification identifies higher status cities and ‘global cities’, which are to be considered in the global context. Seven coastal regions are distinguished within this region, whose organising centers are the global coastal cities of Stockholm, Copenhagen, Helsinki, Riga, Tallinn, St. Petersburg, and Malmö. The concept of a “global city-region” (Sassen can be used as a methodological framework for analyzing this connection. Within this hierarchy, the dominant alpha group global city is Stockholm. The authors argue that, as a global coastal city, St. Petersburg forms the St. Petersburg coastal region, which can be defined as a typical "global city region". The index method shows that the position of St. Petersburg in the system of global coastal cities of the Baltic region is relatively favorable in view of its transport, logistics, and demographic potential and the advantageous geo-economic situation. St. Petersburg has certain competitive advantages in the region brought about by its demographic potential, port freight capacity, and the favorable geo-economic position of the "sea gate" of Russia. However, the level of high-tech services and ‘new economy’ development is not sufficient for the port to become a match for the top three cities (Stockholm, Helsinki, and Copenhagen. This is increasingly important because transboundary global city networks demonstrate that global cities are functions of global networks. Saint Petersburg is just starting to integrate into these networks through the Pulkovo airline hub and seaports of Ust-Luga, Primorsk, and Saint Petersburg.

  10. Saint Petersburg as a Global Coastal City: Positioning in the Baltic Region

    Directory of Open Access Journals (Sweden)

    Lachninsky S.

    2015-08-01

    Full Text Available The Baltic region consists of coastal areas of nine countries — Russia, Estonia, Latvia, Lithuania, Poland, Germany, Denmark, Sweden, and Finland. The region’s hubs are the port cities located along the Baltic Sea coast. However, Peter Taylor and Saskia Sassen’s classification identifies higher status cities and ‘global cities’, which are to be considered in the global context. Seven coastal regions are distinguished within this region, whose organising centers are the global coastal cities of Stockholm, Copenhagen, Helsinki, Riga, Tallinn, St. Petersburg, and Malmö. The concept of a “global city-region” (Sassen can be used as a methodological framework for analyzing this connection. Within this hierarchy, the dominant alpha group global city is Stockholm. The authors argue that, as a global coastal city, St. Petersburg forms the St. Petersburg coastal region, which can be defined as a typical "global city region". The index method shows that the position of St. Petersburg in the system of global coastal cities of the Baltic region is relatively favorable in view of its transport, logistics, and demographic potential and the advantageous geo-economic situation. St. Petersburg has certain competitive advantages in the region brought about by its demographic potential, port freight capacity, and the favorable geo-economic position of the "sea gate" of Russia. However, the level of high-tech services and ‘new economy’ development is not sufficient for the port to become a match for the top three cities (Stockholm, Helsinki, and Copenhagen. This is increasingly important because transboundary global city networks demonstrate that global cities are functions of global networks. Saint Petersburg is just starting to integrate into these networks through the Pulkovo airline hub and seaports of Ust-Luga, Primorsk, and Saint Petersburg.

  11. Dynamic tracking performance of indoor global positioning system: An experimental and theoretical study

    Directory of Open Access Journals (Sweden)

    Gang Zhao

    2015-10-01

    Full Text Available The automation level has been improved rapidly with the introduction of large-scale measurement technologies, such as indoor global positioning system, into the production process among the fields of car, ship, and aerospace due to their excellent measurement characteristics. In fact, the objects are usually in motion during the real measurement process; however, the dynamic measurement characteristics of indoor global positioning system are much limited and still in exploration. In this research, we focused on the dynamic tracking performance of indoor global positioning system and then successfully built a mathematical model based on its measurement principles. We first built single and double station system models with the consideration of measurement objects’ movement. Using MATLAB simulation, we realized the dynamic measurement characteristics of indoor global positioning system. In the real measurement process, the experimental results also support the mathematical model that we built, which proves a great success in dynamic measurement characteristics. We envision that this dynamic tracking performance of indoor global positioning system would shed light on the dynamic measurement of a motion object and therefore make contribution to the automation production.

  12. Wearable feedback systems for rehabilitation

    OpenAIRE

    Marci Carl; Sung Michael; Pentland Alex

    2005-01-01

    Abstract In this paper we describe LiveNet, a flexible wearable platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification. Based on the MIT Wearable Computing Group's distributed mobile system architecture, LiveNet is a stable, accessible system that combines inexpensive, commodity hardware; a flexible sensor/peripheral interconnection bus; and a powerful, light-weight distributed sensing, classification, and inter-process communicat...

  13. Wearable Sensor Systems for Infants

    OpenAIRE

    Zhihua Zhu; Tao Liu; Guangyi Li; Tong Li; Yoshio Inoue

    2015-01-01

    Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant’s body to clinicians or parents. Moreover, such sys...

  14. Wearable Health Monitoring Systems

    Science.gov (United States)

    Bell, John

    2015-01-01

    The shrinking size and weight of electronic circuitry has given rise to a new generation of smart clothing that enables biological data to be measured and transmitted. As the variation in the number and type of deployable devices and sensors increases, technology must allow their seamless integration so they can be electrically powered, operated, and recharged over a digital pathway. Nyx Illuminated Clothing Company has developed a lightweight health monitoring system that integrates medical sensors, electrodes, electrical connections, circuits, and a power supply into a single wearable assembly. The system is comfortable, bendable in three dimensions, durable, waterproof, and washable. The innovation will allow astronaut health monitoring in a variety of real-time scenarios, with data stored in digital memory for later use in a medical database. Potential commercial uses are numerous, as the technology enables medical personnel to noninvasively monitor patient vital signs in a multitude of health care settings and applications.

  15. Kinematic Precise Point Positioning Using Multi-Constellation Global Navigation Satellite System (GNSS Observations

    Directory of Open Access Journals (Sweden)

    Xidong Yu

    2017-01-01

    Full Text Available Multi-constellation global navigation satellite systems (GNSSs are expected to enhance the capability of precise point positioning (PPP by improving the positioning accuracy and reducing the convergence time because more satellites will be available. This paper discusses the performance of multi-constellation kinematic PPP based on a multi-constellation kinematic PPP model, Kalman filter and stochastic models. The experimental dataset was collected from the receivers on a vehicle and processed using self-developed software. A comparison of the multi-constellation kinematic PPP and real-time kinematic (RTK results revealed that the availability, positioning accuracy and convergence performance of the multi-constellation kinematic PPP were all better than those of both global positioning system (GPS-based PPP and dual-constellation PPP. Multi-constellation kinematic PPP can provide a positioning service with centimetre-level accuracy for dynamic users.

  16. The bioengineering of changing lifestyle and wearable technology: a mini review.

    Science.gov (United States)

    Geib, Roy W; Swink, Phil J; Vorel, Alyssa J; Shepard, Cynthia S; Gurovich, Alvaro N; Waite, Gabi N

    2015-01-01

    Chronic diseases are a major health concern at the national and global level. According to the CDC, 86% of US health dollars go toward the treatment of chronic diseases. Many chronic diseases are manageable or preventable if individuals make appropriate lifestyle choices. Wearable technology – both consumer and medical – provides a unique opportunity to track lifestyle choices, such as increasing physical activity. It is estimated the market for consumer wearables will grow from $9.2 billion in 2014 to $30 billion by 2018. With such a potential market growth, it is important to understand the potential benefits and limitations of wearable technology to impact chronic disease management and prevention.

  17. Global asymptotic stability of positive equilibrium in a 3-species cooperating model with time delay

    Institute of Scientific and Technical Information of China (English)

    WANG Chang-you

    2007-01-01

    The asymptotic behavior of the time-dependent solution for a 3-species cooperating model was investigated with the effects of both diffusion and time delay taken into consideration. We proved the global asymptotic stability of a positive steady-state solution to the model problem by using coupled upper and lower solutions for a more general reaction-diffusion system that gives a common framework for 3-species cooperating model problems. The result of global asymptotic stability implies that the model system coexistence is permanent. Some global asymptotic stability results for 2-species cooperating reaction-diffusion systems are included in the discussion, and some known results are extended.

  18. [Positioning Ecuador in the global health agenda as a result of sector reform].

    Science.gov (United States)

    Luna, Cristina; Emanuele, Carlos Andrés; Torre, Daniel De La

    2017-06-08

    Analyze strategies implemented by Ecuador's Ministry of Public Health (MPH) to position the country in the global health agenda during the period 2011-2015 as a result of health sector reform. Documentary review and interviews with stakeholders in national and international agencies with respect to positioning in the global health sphere during the study period. It was observed that the reform process produced a new framework to manage international health relations. The MPH implemented strategies and mechanisms to place national health priorities and interests on the global health agenda at bilateral, regional, and global levels. As a result, the country took a leadership role in certain processes and attained recognition at various international forums. The MPH reform process contributed to recognition and establishment of Ecuador's public policy priorities in the global health agenda through strategies such as giving importance to putting national priorities on the global health agenda, guiding the global health approach exercised by the highest health authority, developing technical capabilities and skills in the International Relations Office, and raising awareness in technical bodies.

  19. A Wearable Capacitive Sensor for Monitoring Human Respiratory Rate

    Science.gov (United States)

    Kundu, Subrata Kumar; Kumagai, Shinya; Sasaki, Minoru

    2013-04-01

    Realizing an untethered, low-cost, and comfortably wearable respiratory rate sensor for long-term breathing monitoring application still remains a challenge. In this paper, a conductive-textile-based wearable respiratory rate sensing technique based on the capacitive sensing approach is proposed. The sensing unit consists of two conductive textile electrodes that can be easily fabricated, laminated, and integrated in garments. Respiration cycle is detected by measuring the capacitance of two electrodes placed on the inner anterior and posterior sides of a T-shirt at either the abdomen or chest position. A convenient wearable respiratory sensor setup with a capacitance-to-voltage converter has been devised. Respiratory rate as well as breathing mode can be accurately identified using the designed sensor. The sensor output provides significant information on respiratory flow. The effectiveness of the proposed system for different breathing patterns has been evaluated by experiments.

  20. Estimating the globally attractive set and positively invariant set of a unified chaotic system

    Institute of Scientific and Technical Information of China (English)

    SHU Yong-lu; ZHANG Yong-hao

    2008-01-01

    By constructing two suitable generalized Lyapunov functions, we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters a=1/29 and 1/29global basin of attraction and positively invariant set for the Lorenz system and a unified chaotic system, Journal of Mathematical Analysis and Applications, 2006, 323(2): 844-853]. The theoretical results obtained in this paper will find wide application in chaos control and synchronization.

  1. Software for Wearable Devices: Challenges and Opportunities

    OpenAIRE

    Jiang, He; Chen, Xin; Zhang, Shuwei; ZHANG Xin; Kong, Weiqiang; Zhang, Tao

    2015-01-01

    Wearable devices are a new form of mobile computer system that provides exclusive and user-personalized services. Wearable devices bring new issues and challenges to computer science and technology. This paper summarizes the development process and the categories of wearable devices. In addition, we present new key issues arising in aspects of wearable devices, including operating systems, database management system, network communication protocol, application development platform, privacy an...

  2. The Global Positioning System for Military Users: Current Modernization Plans and Alternatives

    Science.gov (United States)

    2011-10-01

    signal was transmitted at 1575.42 MHz. 8. Michael Shaw, Kanwaljit Sandhoo, and David Turner, “Modern- ization of the Global Positioning System” (paper...the Foucault pendulum but uses a vibrating element, known as a Micro Electro-Mechanical System, instead of an actual pendulum. iGPS Module. The

  3. Combining a priori knowledge and sensor information for updating the global position of an autonomous vehicle

    NARCIS (Netherlands)

    Zivkovic, Zoran; Schoute, Albert; Heijden, van der Ferdinand

    2002-01-01

    The problem of updating the global position of an autonomous vehicle is considered. An iterative procedure is proposed to fit a map to a set of noisy measurements. The procedure is inspired by a non-parametric procedure for probability density function mode searching. We show how this could be used

  4. Are the Autism and Positive Schizotypy Spectra Diametrically Opposed in Local versus Global Processing?

    Science.gov (United States)

    Russell-Smith, Suzanna N.; Maybery, Murray T.; Bayliss, Donna M.

    2010-01-01

    Crespi and Badcock (2008) proposed that autism and psychosis represent two extremes on a cognitive spectrum with normality at its center. Their specific claim that autistic and positive schizophrenia traits contrastingly affect preference for local versus global processing was investigated by examining Embedded Figures Test performance in two…

  5. The Global Positioning System and Education in the 21st Century.

    Science.gov (United States)

    Wikle, Thomas A.

    2000-01-01

    Students should have an understanding of basic Global Positioning System (GPS) principles as well as an awareness of how the technology will impact society in the future. Provides a brief overview of the evolution, principles, and applications of GPS together with suggested activities. (Contains 25 references.) (Author/WRM)

  6. Global Attractivity of Positive Periodic Solutions for a Survival Model of Red Blood Cells

    Institute of Scientific and Technical Information of China (English)

    Xin-min Wu; Jing-wen Li

    2007-01-01

    In this paper, we deal with a model for the survival of red blood cells with periodic coefficients x′(t)=- μ(t)x(t)+P(t)e-γ(t)x(t-(τ))>0. (*)A new sufficient condition for global attractivity of positive periodic solutions of Eq.(*) is obtained. Our criterion improves corresponding result obtained by Li and Wang in 2005.

  7. Meteorological applications of a surface network of Global Positioning System receivers

    NARCIS (Netherlands)

    Haan, de S.

    2008-01-01

    This thesis presents meteorological applications of water vapour observations from a surface network of Global Positioning System (GPS) receivers. GPS signals are delayed by the atmo¬sphere due to atmospheric refraction and bending. Mapped to the zenith, this delay is called Zenith Total Delay (ZTD)

  8. Wearable sensor systems for infants.

    Science.gov (United States)

    Zhu, Zhihua; Liu, Tao; Li, Guangyi; Li, Tong; Inoue, Yoshio

    2015-02-05

    Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant's body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future.

  9. Wearable Sensor Systems for Infants

    Directory of Open Access Journals (Sweden)

    Zhihua Zhu

    2015-02-01

    Full Text Available Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant’s body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future.

  10. Wearable Sensor Systems for Infants

    Science.gov (United States)

    Zhu, Zhihua; Liu, Tao; Li, Guangyi; Li, Tong; Inoue, Yoshio

    2015-01-01

    Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant's body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future. PMID:25664432

  11. Position Estimation and Local Mapping Using Omnidirectional Images and Global Appearance Descriptors

    Directory of Open Access Journals (Sweden)

    Yerai Berenguer

    2015-10-01

    Full Text Available This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods.

  12. Clinical applications of wearable technology.

    Science.gov (United States)

    Bonato, Paolo

    2009-01-01

    An important factor contributing to the process involved in choosing a rehabilitation intervention is the assessment of its impact on the real life of patients. Therapists and physicians have to infer the effectiveness of rehabilitation approaches from observations performed in the clinical setting and from patients' feedback. Recent advances in wearable technology have provided means to supplement the information gathered using tools based on patient's direct observation as well as interviews and questionnaires. A new generation of wearable sensors and systems has recently become available thus providing clinical personnel with a "window of observation" in the home and community settings. These tools allow one to capture patients' activity level and exercise compliance, facilitate titration of medications in chronic patients, and provide means to assess the ability of patients to perform specific motor activities. In this paper, we review recent advances in the field of wearable technology and provide examples of application of this technology in rehabilitation.

  13. Wearable Flexible Sensors: A Review

    KAUST Repository

    Nag, Anindya

    2017-05-18

    The paper provides a review on some of the significant research work done on wearable flexible sensors (WFS). Sensors fabricated with flexible materials have been attached to a person along with the embedded system to monitor a parameter and transfer the significant data to the monitoring unit for further analyses. The use of wearable sensors has played a quite important role to monitor physiological parameters of a person to minimize any malfunctioning happening in the body. The paper categorizes the work according to the materials used for designing the system, the network protocols and different types of activities that were being monitored. The challenges faced by the current sensing systems and future opportunities for the wearable flexible sensors regarding its market values are also briefly explained in the paper.

  14. Wearable sensors fundamentals, implementation and applications

    CERN Document Server

    Sazonov, Edward

    2014-01-01

    Written by industry experts, this book aims to provide you with an understanding of how to design and work with wearable sensors. Together these insights provide the first single source of information on wearable sensors that would be a valuable addition to the library of any engineer interested in this field. Wearable Sensors covers a wide variety of topics associated with the development and application of various wearable sensors. It also provides an overview and coherent summary of many aspects of current wearable sensor technology. Both industry professionals and academic researcher

  15. Recognition of human activities with wearable sensors

    Science.gov (United States)

    He, Weihua; Guo, Yongcai; Gao, Chao; Li, Xinke

    2012-12-01

    A novel approach for recognizing human activities with wearable sensors is investigated in this article. The key techniques of this approach include the generalized discriminant analysis (GDA) and the relevance vector machines (RVM). The feature vectors extracted from the measured signal are processed by GDA, with its dimension remarkably reduced from 350 to 12 while fully maintaining the most discriminative information. The reduced feature vectors are then classified by the RVM technique according to an extended multiclass model, which shows good convergence characteristic. Experimental results on the Wearable Action Recognition Dataset demonstrate that our approach achieves an encouraging recognition rate of 99.2%, true positive rate of 99.18% and false positive rate of 0.07%. Although in most cases, the support vector machines model has more than 70 support vectors, the number of relevance vectors related to different activities is always not more than 4, which implies a great simplicity in the classifier structure. Our approach is expected to have potential in real-time applications or solving problems with large-scale datasets, due to its perfect recognition performance, strong ability in feature reduction, and simple classifier structure.

  16. Application Design for Wearable Computing

    CERN Document Server

    Siewiorek, Dan; Starner, Thad

    2008-01-01

    This lecture describes application design for wearable computing, providing a blend of experience based insights, learning in application development, and guidelines on how to frame problems and address a specific design context, followed by more detailed issues and solution approaches at the next level of the application development. The lecture takes the viewpoint of a potential designer or researcher in this field and aims to present such an integrated material in one place. Designing wearable computer interfaces requires attention to many different factors because of the computer's closene

  17. Mobile Collocated Interactions With Wearables

    DEFF Research Database (Denmark)

    Lucero, Andrés; Wilde, Danielle; Robinson, Simon

    2015-01-01

    powerful, and closer to our bodies. Therefore, mobile collocated interactions research, which originally looked at smartphones and tablets, will inevitably move towards fully integrated wearable technologies. The focus of this workshop is to bring together a community of researchers, designers...... and practitioners to explore the potential of extending mobile collocated interactions from, through and around the body using wearable technologies.......Research on mobile collocated interactions has been looking at situations in which collocated users engage in collaborative activities using their mobile devices, thus going from personal/individual toward shared/multiuser experiences and interactions. However, computers are getting smaller, more...

  18. Upgrading to lead firm position via international acquisition: learning from the global biomass power plant industry

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer; Fold, Niels; Hansen, Teis

    2016-01-01

    This article examines the case of a Chinese firm that has upgraded to lead firm position in the global biomass power plant industry mainly through acquisitions of technological frontier firms in Denmark. Sustaining the lead firm position was, however, challenged by difficulties in developing...... innovative capability. Drawing on the literature on (i) firm-level technological capability and (ii) knowledge transfer in international acquisitions, we explain the reasons for insufficient innovative capability building. Based on these empirical findings, we suggest maintaining the existing upgrading...

  19. COMPETITIVE POSITION OF SELECTED REGIONAL TRADE AGREEMENTS ON THE GLOBAL AGRI-FOOD MARKET

    Directory of Open Access Journals (Sweden)

    Agnieszka Sapa

    2014-03-01

    Full Text Available The study attempts to determine the CACM, MERCOSUR and NAFTA competitive position in the agri-food market taking into account selected indicators related to GDP, productivity and trade. The analysis allowed to state that only for MERCOSUR the competitive position in global food-market improved. In that groupings, compared to NAFTA and CACM, there was a bigger increase in GDP per capita and labour productivity in agriculture. Furthermore, only the share of MERCOSUR agri-food trade in world trade increased which was accompanied by a greater increase of extra-regional agri-food trade than intra-regional ones.

  20. Global localization of in-pipe robot based on ultra-long wave antenna array and global position system

    Institute of Scientific and Technical Information of China (English)

    Qi Haiming; Zhang Xiaohua; Chen Hongjun; Sun Dongchang; Sun Yongtai

    2009-01-01

    A global localization system of in-pipe robot is introduced in this paper. Global position system (GPS) is applied to monitor the motion of robot along the whole pipeline which is equally divided into many segments by tracking stations. The definite segment in which robot existing can be detected and this is long-range localization. Ultra-long wave (ULW) is adopted to solve the problem of metallic shielding and realize effective communication between inside and outside of pipeline. ULW emitter is carried by robot. When the plant is broken or defects on pipe-wall are inspected, the robot will stop moving. Antenna array is presented and disposed upon the definite segment to search the accurate location of robot, and this is short-range localization. In this paper, five-antenna array is adopted and an effective linear signal fusion algorithm is presented. The localization precision reaches R<25cm. By tests in Shengli oil field, the whole system is verified with robust solutions.

  1. 可穿戴式自主定位技术的零速触发算法研究%A Research about Zero Velocity Trigger Algorithm Used in the Wearable Autonomous Positioning Technology

    Institute of Scientific and Technical Information of China (English)

    李超; 苏中; 朱嘉林

    2014-01-01

    所谓步态,即指人们在行走时躯干与腿的姿势,以及脚部接触地面时的状态。现如今,相关步态特征的应用技术已飞快地发展了起来。并在安全系统、人机交互、导航定位、医疗诊断等方面有了广泛的应用。而本文将提出一种利用三条件法将可穿戴式MEMS IMU( Inertial Measurement Units)用来实现检测静止步态的技术,此技术可以在定位领域,将检测出的静止状态作为一种触发条件,为零速修正、地磁角度更新等静态校准技术服务,从而使得定位的实时性和精确性得以更好的保障。本文通过将IMU分别安置在人体的脚部,腰部和胸部进行静止步态的检测,最终通过测试数据的仿真得出结论:将IMU放在脚部的静态检测效果要远远好于其他两种情况。%The so-called gait,is the posture of people's trunk and legs when they are walking,as well as the status of the feet when they are touching the ground. And nowadays,the application of the related gait characteristics technology has been developed quickly and had a wide range of applications in security systems,human-computer interaction, navigation,medical diagnosis and so on. And this paper will propose a technology by three conditions method to implement the still gait detection of the wearable MEMS IMU(Inertial Measurement Units). Above technology which can use the detected the stationary state as a trigger condition applies to zero velocity correction,updating of the geo-magnetic angle and the relevant static calibration techniques in positioning field. Thus the result of the real-time and accuracy in the positioning process will be better. This paper will respectively place the IMU on the pedestrian's foot, waist and chest to proceed the stationary gait testing. Final test data through the simulation shows that the detection still result of the case which place the IMU on the foot is much better than the other two cases.

  2. Physical Demands of Top-Class Soccer Friendly Matches in Relation to a Playing Position Using Global Positioning System Technology

    Directory of Open Access Journals (Sweden)

    Mallo Javier

    2015-09-01

    Full Text Available The aim of this study was to examine the physical demands imposed on professional soccer players during 11-a-side friendly matches in relation to their playing position, using global positioning system (GPS technology. One hundred and eleven match performances of a Spanish “La Liga” team during the 2010-11 and 2011-12 pre-seasons were selected for analysis. The activities of the players were monitored using GPS technology with a sampling frequency of 1 Hz. Total distance covered, distance in different speed categories, accelerations, and heart rate responses were analyzed in relation to five different playing positions: central defenders (n=23, full-backs (n=20, central midfielders (n=22, wide midfielders (n=26, and forwards (n=20. Distance covered during a match averaged 10.8 km, with wide and central midfielders covering the greatest total distance. Specifically, wide midfielders covered the greatest distances by very high-intensity running (>19.8 km·h-1 and central midfielders by jogging and running (7.2-19.7 km·h-1. On the other hand, central defenders covered the least total distance and at high intensity, although carried out more (p<0.05-0.01 accelerations than forwards, wide midfielders, and fullbacks. The work rate profile of the players obtained with the GPS was very similar to that obtained with semi-automatic image technologies. However, when comparing results from this study with data available in the literature, important differences were detected in the amount of distance covered by sprinting, which suggests that caution should be taken when comparing data obtained with the GPS with other motion analysis systems, especially regarding high-intensity activities.

  3. Global positive expectancies of the self and adolescents' substance use avoidance: testing a social influence mediational model.

    Science.gov (United States)

    Carvajal, Scott C; Evans, Richard I; Nash, Susan G; Getz, J Greg

    2002-06-01

    Grounded in theories of global positive expectancies and social influences of behavior, this investigation posited a model in which global positive expectancies are related to substance use as mediated by attitudes, subjective norms, self-efficacy, and intentions. Using a cohort sample (n = 525), structural equation modeling was employed to test the hypothesized predictions of future substance use. The findings suggest that, relative to adolescents with lower global positive expectancies, adolescents with higher global positive expectancies use substances less frequently over time because of their protective attitudinal and control-oriented perceptions towards that behavior. Additionally, results from the current investigation also extend prior findings on the factor structure of global positive expectancies, suggesting these expectancies can be viewed as a second-order factor representing optimism and two components of hope-agency and pathways.

  4. Wearable oximetry for harsh environments

    Science.gov (United States)

    2017-02-23

    a wearable monitor is required. Related to this, commercial oximetry sensors (e.g., from Masimo, BSX Insight, Cercacor) are now being marketed for...Schmid, C. Fulco, S. Muza, “Predictive models of acute mountain sickness after rapid ascent to various altitudes,” Med & Sci in Sports & Exercise, 792

  5. Evolution of the Global Aurora During Positive IMP Bz and Varying IMP By Conditions

    Science.gov (United States)

    Cumnock, J. A.; Sharber, J. R.; Heelis. R. A.; Hairston, M. R.; Carven, J. D.

    1997-01-01

    The DE 1 imaging instrumentation provides a full view of the entire auroral oval every 12 min for several hours during each orbit. We examined five examples of global evolution of the aurora that occurred during the northern hemisphere winter of 1981-1982 when the z component of the interplanetary magnetic field was positive and the y component was changing sign. Evolution of an expanded auroral emission region into a theta aurora appears to require a change in the sign of By during northward interplanetary magnetic field (IMF). Theta aurora are formed both from expanded duskside emission regions (By changes from positive to negative) and dawnside emission regions (By changes from negative to positive), however the dawnside-originating and duskside-originating evolutions are not mirror images. The persistence of a theta aurora after its formation suggests that there may be no clear relationship between the theta aurora pattern and the instantaneous configuration of the IMF.

  6. Movement and physiological match demands of elite rugby league using portable global positioning systems.

    Science.gov (United States)

    Waldron, Mark; Twist, Craig; Highton, Jamie; Worsfold, Paul; Daniels, Matthew

    2011-08-01

    Twelve elite players from an English Super League club consented to participate in the present study using portable global positioning system (GPS) devices to assess position-specific demands. Distances covered at low-intensity running, moderate-intensity running, high-intensity running, very high-intensity running, and total distance were significantly (P speed were higher in outside backs than both adjustables and forwards. A moderate, significant correlation (r = 0.62, P = 0.001) was apparent between session ratings of perceived exertion and summated heart rate. Results support the requirement for position-specific conditioning and provide preliminary evidence for the use of session ratings of perceived exertion as a measure of match load.

  7. Wearable Android Android wear and Google Fit app development

    CERN Document Server

    Mishra, Sanjay M

    2015-01-01

    Software Development/Mobile/Android/Wearable/Fitness Build ""Wearable"" Applications on the Android Wear and Google Fit Platforms This book covers wearable computing and wearable application development particularly for Android Wear (smartwatches) and Google Fit (fitness sensors). It provides relevant history, background and core concepts of wearable computing and ubiquitous computing, as a foundation for designing/developing applications for the Android Wear and Google Fit platforms. This book is intended for Android wearable enthusiasts, technologists and software developers. Gain ins

  8. Evaluating the Effect of Global Positioning System (GPS) Satellite Clock Error via GPS Simulation

    Science.gov (United States)

    Sathyamoorthy, Dinesh; Shafii, Shalini; Amin, Zainal Fitry M.; Jusoh, Asmariah; Zainun Ali, Siti

    2016-06-01

    This study is aimed at evaluating the effect of Global Positioning System (GPS) satellite clock error using GPS simulation. Two conditions of tests are used; Case 1: All the GPS satellites have clock errors within the normal range of 0 to 7 ns, corresponding to pseudorange error range of 0 to 2.1 m; Case 2: One GPS satellite suffers from critical failure, resulting in clock error in the pseudorange of up to 1 km. It is found that increase of GPS satellite clock error causes increase of average positional error due to increase of pseudorange error in the GPS satellite signals, which results in increasing error in the coordinates computed by the GPS receiver. Varying average positional error patterns are observed for the each of the readings. This is due to the GPS satellite constellation being dynamic, causing varying GPS satellite geometry over location and time, resulting in GPS accuracy being location / time dependent. For Case 1, in general, the highest average positional error values are observed for readings with the highest PDOP values, while the lowest average positional error values are observed for readings with the lowest PDOP values. For Case 2, no correlation is observed between the average positional error values and PDOP, indicating that the error generated is random.

  9. Quantification of Competitive Game Demands of NCAA Division I College Football Players Using Global Positioning Systems.

    Science.gov (United States)

    Wellman, Aaron D; Coad, Sam C; Goulet, Grant C; McLellan, Christopher P

    2016-01-01

    The aim of the present study was to examine the competitive physiological movement demands of National Collegiate Athletic Association (NCAA) Division I college football players using portable global positioning system (GPS) technology during games and to examine positional groups within offensive and defensive teams, to determine if a player's physiological requirements during games are influenced by playing position. Thirty-three NCAA Division I Football Bowl Subdivision football players were monitored using GPS receivers with integrated accelerometers (GPSports) during 12 regular season games throughout the 2014 season. Individual data sets (n = 295) from players were divided into offensive and defensive teams and subsequent position groups. Movement profile characteristics, including total, low-intensity, moderate-intensity, high-intensity, and sprint running distances (m), sprint counts, and acceleration and deceleration efforts, were assessed during games. A one-way ANOVA and post-hoc Bonferroni statistical analysis were used to determine differences in movement profiles between each position group within offensive and defensive teams. For both offensive and defensive teams, significant (p ≤ 0.05) differences exist between positional groups for game physical performance requirements. The results of the present study identified that wide receivers and defensive backs completed significantly (p ≤ 0.05) greater total distance, high-intensity running, sprint distance, and high-intensity acceleration and deceleration efforts than their respective offensive and defensive positional groups. Data from the present study provide novel quantification of position-specific physical demands of college football games and support the use of position-specific training in the preparation of NCAA Division I college football players for competition.

  10. Global stabilisation of large-scale hydraulic networks with quantised and positive proportional controls

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard; Wisniewski, Rafal

    2013-01-01

    The problem considered here is output regulation of a large-scale hydraulic network where the structure of the network is subject to change and where the actuation is subject to a non-negativity constraint. Previous results have shown that semi-global practical output regulation is achievable using...... a set of decentralised, logarithmic quantised and constrained control actions with properly designed quantisation parameters. That is, an attractor set with a compact basin of attraction exists. Subsequently, the basin can be increased by increasing the control gains. In our work, this result...... is extended by showing that an attractor set with a global basin of attraction exists for arbitrary values of positive control gains, given that the upper level of the quantiser is properly designed. Furthermore, the proof is given for general monotone quantisation maps. Since the basin of attraction...

  11. Global attractivity of positive periodic solution to periodic Lotka-Volterra competition systems with pure delay

    Science.gov (United States)

    Tang, Xianhua; Cao, Daomin; Zou, Xingfu

    We consider a periodic Lotka-Volterra competition system without instantaneous negative feedbacks (i.e., pure-delay systems) x(t)=x(t)[r(t)-∑j=1na(t)x(t-τ(t))], i=1,2,…,n. We establish some 3/2-type criteria for global attractivity of a positive periodic solution of the system, which generalize the well-known Wright's 3/2 criteria for the autonomous delay logistic equation, and thereby, address the open problem proposed by both Kuang [Y. Kuang, Global stability in delayed nonautonomous Lotka-Volterra type systems without saturated equilibria, Differential Integral Equations 9 (1996) 557-567] and Teng [Z. Teng, Nonautonomous Lotka-Volterra systems with delays, J. Differential Equations 179 (2002) 538-561].

  12. Woven structured triboelectric nanogenerator for wearable devices.

    Science.gov (United States)

    Zhou, Tao; Zhang, Chi; Han, Chang Bao; Fan, Feng Ru; Tang, Wei; Wang, Zhong Lin

    2014-08-27

    To date, quite a few wearable electronics have entered the market, which are changing the life pattern of consumers. However, the limited lifetime and energy storage capacity have made rechargeable batteries the bottleneck in wearable technology, especially with the increase of number of wearable devices and their large distribution. To solve this problem, we demonstrate a woven-structured triboelectric nanogenerator (W-TENG) using commodity nylon fabric, polyester fabric, and conductive silver fiber fabric. With the advantage of being flexible, washable, breathable, wearable, and able to be triggered by a freestanding triboelectric layer, this W-TENG can move freely without any constraint and is suitable for wearable electronics. To demonstrate the potential applications of the W-TENG, the W-TENG is integrated into shoes, coats, and trousers to harvest different kinds of mechanical energy from human motion. This work presents a new approach in applying triboelectric nanogenerator to wearable devices.

  13. Developing Accessibility Design Guidelines for Wearables: Accessibility Standards for Multimodal Wearable Devices

    NARCIS (Netherlands)

    Wentzel, Jobke; Velleman, Eric M.; Geest, van der Thea; Antona, Margherita; Stephanidis, Constantine

    2016-01-01

    Smart wearable devices are integrated our everyday lives. Such wearable technology is worn on or near the body, while leaving both hands free. This enables users to receive and send information in a non-obtrusive way. Because of the ability to continuously assist and support activities, wearables co

  14. Wireless Sensor Network for Wearable Physiological Monitoring

    OpenAIRE

    P. S. Pandian; K. P. Safeer; Pragati Gupta; D. T. Shakunthala; B. S. Sundersheshu; V. C. Padaki

    2008-01-01

    Wearable physiological monitoring system consists of an array of sensors embedded into the fabric of the wearer to continuously monitor the physiological parameters and transmit wireless to a remote monitoring station. At the remote monitoring station the data is correlated to study the overall health status of the wearer. In the conventional wearable physiological monitoring system, the sensors are integrated at specific locations on the vest and are interconnected to the wearable data acqui...

  15. Tracking of white-tailed deer migration by Global Positioning System

    Science.gov (United States)

    Nelson, M.E.; Mech, L.D.; Frame, P.F.

    2004-01-01

    Based on global positioning system (GPS) radiocollars in northeastern Minnesota, deer migrated 23-45 km in spring during 31-356 h, deviating a maximum 1.6-4.0 km perpendicular from a straight line of travel between their seasonal ranges. They migrated a minimum of 2.1-18.6 km/day over 11-56 h during 2-14 periods of travel. Minimum travel during 1-h intervals averaged 1.5 km/h. Deer paused 1-12 times, averaging 24 h/pause. Deer migrated similar distances in autumn with comparable rates and patterns of travel.

  16. Global Partnership China and India seek to exert a positive influence on-the world

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    China and India seek to exert a positive influence on-the world Chinese Premier Wen Jiabao dis- played his signature smile as he and his visiting Indian counter- part Manmohan Singh signed a document to upgrade China-India relations in the Great Hall of the People in Beijing on January 14.Wen had good rea- son to be confident.Having just concluded a fruitful meeting in which the two leaders reached a consensus on a wide range of top- ics,they were now reaffirming in a written document the two countries’commitment to intensifying bilateral cooperation from a global perspective.

  17. A Proposed Model for Traffic Signal Preemption Using Global Positioning System (GPS

    Directory of Open Access Journals (Sweden)

    Nikhil Mascarenhas

    2013-07-01

    Full Text Available A Traffic Signal Preemption system is an automated system that allows normal operation of traffic lights at automated signalized intersection s to be preempted. Preemption of signals is generally done to assist emergency vehicles, such a s ambulances, so that response times are reduced and right-of-way is provided in a smooth an d controlled manner. This paper proposes an innovative and cost-effective server-centric mod el to facilitate preemption using a simple mobile phone app which uses Global Positioning Syst em (GPS and a microcontroller which controls traffic signals.

  18. Wearable electrochemical sensors for monitoring performance athletes

    Science.gov (United States)

    Fraser, Kevin J.; Curto, Vincenzo F.; Coyle, Shirley; Schazmann, Benjamin; Byrne, Robert; Benito-Lopez, Fernando; Owens, Róisín M.; Malliaras, George G.; Diamond, Dermot

    2011-10-01

    Nowadays, wearable sensors such as heart rate monitors and pedometers are in common use. The use of wearable systems such as these for personalized exercise regimes for health and rehabilitation is particularly interesting. In particular, the true potential of wearable chemical sensors, which for the real-time ambulatory monitoring of bodily fluids such as tears, sweat, urine and blood has not been realized. Here we present a brief introduction into the fields of ionogels and organic electrochemical transistors, and in particular, the concept of an OECT transistor incorporated into a sticking-plaster, along with a printable "ionogel" to provide a wearable biosensor platform.

  19. Wearable device implications in the healthcare industry.

    Science.gov (United States)

    Erdmier, Casey; Hatcher, Jason; Lee, Michael

    2016-01-01

    This manuscript analyses the impact of wearable device technology in the healthcare industry. The authors provide an exploration of the different types of wearable technology that are becoming popular or are emerging into the consumer market and the personal health information and other user data these devices collect. The applications of wearable technology to healthcare and wellness are discussed, along with the impact of these devices on the industry. Finally, an analysis is provided, describing the current regulations in the US and UK that govern wearable devices and the impact of these device regulations on users and healthcare professionals.

  20. Wearable Computing in E-education

    Directory of Open Access Journals (Sweden)

    Aleksandra Labus

    2015-03-01

    Full Text Available Emerging technologies such as mobile computing, sensors and sensor networks, and augmented reality have led to innovations in the field of wearable computing. Devices such as smart watches and smart glasses allow users to interact with devices worn under, with, or on top of clothing. This paper analyzes the possibilities of application of wearable computing in e-education. The focus is on integration of wearables into e-learning systems, in order to support ubiquitous learning, interaction and collaborative work. We present a model for integration of wearable technology in an e-education system and discuss technical, pedagogical and social aspects.

  1. Wearables Find Easy Fit With Police, Troops

    National Research Council Canada - National Science Library

    Sandra Jontz

    2016-01-01

      With wearables tracking heart rate, measuring respiration and perspiration, approximating blood pressure, pinpointing the wearer's location via GPS and even assessing ultraviolet levels to determine...

  2. A novel wearable smart button system for fall detection

    Science.gov (United States)

    Zhuang, Wei; Sun, Xiang; Zhi, Yueyan; Han, Yue; Mao, Hande

    2017-05-01

    Fall has been the second most cause of accidental injury to death in the world. It has been a serious threat to the physical and mental health of the elders. Therefore, developing wearable node system with fall detecting ability has become increasingly pressing at present. A novel smart button for long-term fall detection is proposed in this paper, which is able to accurately monitor the falling behavior, and sending warning message online as well. The smart button is based on the tri-axis acceleration sensor which is used to collect the body motion signals. By using the statistical metrics of acceleration characteristics, a new SVM classification algorithm with high positive accuracy and stability is proposed so as to classify the falls and activities of daily living, and the results can be real-time displayed on Android based mobile phone. The experiments show that our wearable node system can continuously monitor the falling behavior with positive rate 94.8%.

  3. A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm.

    Science.gov (United States)

    Song, Jiancai; Xue, Guixiang; Kang, Yanan

    2016-01-01

    In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones.

  4. Robust scheme of global parallel force/position regulators for robot manipulators under environment uncertainty

    Institute of Scientific and Technical Information of China (English)

    Chunqing HUANG; Lisang LIU; Xinggui WANG; Songjiao SHI

    2007-01-01

    A simple robust scheme of parallel force/position control is proposed in this paper to deal with two problems for non-planar constraint surface and nonlinear mechanical feature of environment: i) uncertainties in environment that are usually not available or difficult to be determined in most practical situations; ii) stability problem or/and integrator windup due to the integration of force error in the force dominance rule in parallel force/position control. It shows that this robust scheme is a good alternative for anti-windup. In the presence of environment uncertainties, global asymptotic stability of the resulting closed-loop system is guaranteed; it also shows robustness of the proposed controller to uncertain environment with complex characteristics. Finally, numerical simulation verifies results via contact task of a two rigid-links robot manipulator.

  5. The positive Indian Ocean Dipole–like response in the tropical Indian Ocean to global warming

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yiyong; Lu, Jian; Liu, Fukai; Wan, Xiuquan

    2016-02-04

    Climate models project a positive Indian Ocean Dipole (pIOD)-like SST response in the tropical Indian Ocean to global warming. By employing the Community Earth System Model (CESM) and applying an overriding technique to its ocean component Parallel Ocean Program version 2 (POP2), this study investigates the similarity and difference of the formation mechanisms for the changes in the tropical Indian Ocean during the pIOD versus global warming. Results show that their formation processes and related seasonality are quite similar; in particular, the Bjerknes feedback is the leading mechanism in producing the anomalous cooling over the eastern tropics in both cases. Some differences are also found, including that the cooling effect of the vertical advection over the eastern tropical Indian Ocean is dominated by the anomalous vertical velocity during the pIOD while it is dominated by the anomalous upper-ocean stratification under global warming. These findings above are further examined with an analysis of the mixed layer heat budget.

  6. The social comfort of wearable technology and gestural interaction.

    Science.gov (United States)

    Dunne, Lucy E; Profita, Halley; Zeagler, Clint; Clawson, James; Gilliland, Scott; Do, Ellen Yi-Luen; Budd, Jim

    2014-01-01

    The "wearability" of wearable technology addresses the factors that affect the degree of comfort the wearer experiences while wearing a device, including physical, psychological, and social aspects. While the physical and psychological aspects of wearing technology have been investigated since early in the development of the field of wearable computing, the social aspects of wearability have been less fully-explored. As wearable technology becomes increasingly common on the commercial market, social wearability is becoming an ever-more-important variable contributing to the success or failure of new products. Here we present an analysis of social aspects of wearability within the context of the greater understanding of wearability in wearable technology, and focus on selected theoretical frameworks for understanding how wearable products are perceived and evaluated in a social context. Qualitative results from a study of social acceptability of on-body interactions are presented as a case study of social wearability.

  7. Ambiguity resolution in precise point positioning with hourly data for global single receiver

    Science.gov (United States)

    Zhang, Xiaohong; Li, Pan; Guo, Fei

    2013-01-01

    Integer ambiguity resolution (IAR) can improve precise point positioning (PPP) performance significantly. IAR for PPP became a highlight topic in global positioning system (GPS) community in recent years. More and more researchers focus on this issue. Progress has been made in the latest years. In this paper, we aim at investigating and demonstrating the performance of a global zero-differenced (ZD) PPP IAR service for GPS users by providing routine ZD uncalibrated fractional offsets (UFOs) for wide-lane and narrow-lane. Data sets from all IGS stations collected on DOY 1, 100, 200 and 300 of 2010 are used to validate and demonstrate this global service. Static experiment results show that an accuracy better than 1 cm in horizontal and 1-2 cm in vertical could be achieved in ambiguity-fixed PPP solution with only hourly data. Compared with PPP float solution, an average improvement reaches 58.2% in east, 28.3% in north and 23.8% in vertical for all tested stations. Results of kinematic experiments show that the RMS of kinematic PPP solutions can be improved from 21.6, 16.6 and 37.7 mm to 12.2, 13.3 and 34.3 mm for the fixed solutions in the east, north and vertical components, respectively. Both static and kinematic experiments show that wide-lane and narrow-lane UFO products of all satellites can be generated and provided in a routine way accompanying satellite orbit and clock products for the PPP user anywhere around the world, to obtain accurate and reliable ambiguity-fixed PPP solutions.

  8. Accuracy of Kinematic Positioning Using Global Satellite Navigation Systems under Forest Canopies

    Directory of Open Access Journals (Sweden)

    Harri Kaartinen

    2015-09-01

    Full Text Available A harvester enables detailed roundwood data to be collected during harvesting operations by means of the measurement apparatus integrated into its felling head. These data can be used to improve the efficiency of wood procurement and also replace some of the field measurements, and thus provide both less costly and more detailed ground truth for remote sensing based forest inventories. However, the positional accuracy of harvester-collected tree data is not sufficient currently to match the accuracy per individual trees achieved with remote sensing data. The aim in the present study was to test the accuracy of various instruments utilizing global satellite navigation systems (GNSS in motion under forest canopies of varying densities to enable us to get an understanding of the current state-of-the-art in GNSS-based positioning under forest canopies. Tests were conducted using several different combinations of GNSS and inertial measurement unit (IMU mounted on an all-terrain vehicle (ATV “simulating” a moving harvester. The positions of 224 trees along the driving route were measured using a total-station and real-time kinematic GPS. These trees were used as reference items. The position of the ATV was obtained using GNSS and IMU with an accuracy of 0.7 m (root mean squared error (RMSE for 2D positions. For the single-frequency GNSS receivers, the RMSE of real-time 2D GNSS positions was 4.2–9.3 m. Based on these results, it seems that the accuracy of novel single-frequency GNSS devices is not so dependent on forest conditions, whereas the performance of the tested geodetic dual-frequency receiver is very sensitive to the visibility of the satellites. When post-processing can be applied, especially when combined with IMU data, the improvement in the accuracy of the dual-frequency receiver was significant.

  9. Conformal, wearable, thin microwave antenna for sub-skin and skin surface monitoring

    Science.gov (United States)

    Converse, Mark C.; Chang, John T.; Duoss, Eric B.

    2017-05-16

    A wearable antenna is operably positioned on a wearer's skin and is operably connected the wearer's tissue. A first antenna matched to the wearer's tissue is operably positioned on the wearer's skin. A second antenna matched to the air is operably positioned on the wearer's skin. Transmission lines connect the first antenna and the second antenna.

  10. EXISTENCE OF POSITIVE SOLUTIONS AND 1/c-GLOBAL ATTRACTIVITY OF A NONLINEAR DELAY DIFFERENCE EQUATION WITH VARIABLE COEFFICIENTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The existence of positive solutions and the global attractivity of the difference equation △yn=rnyn are investigated. And some sufficient conditions are obtained,which greatly improve and extend the known results.

  11. Radio-frequency energy harvesting for wearable sensors.

    Science.gov (United States)

    Borges, Luís M; Chávez-Santiago, Raul; Barroca, Norberto; Velez, Fernando José; Balasingham, Ilangko

    2015-02-01

    The use of wearable biomedical sensors for the continuous monitoring of physiological signals will facilitate the involvement of the patients in the prevention and management of chronic diseases. The fabrication of small biomedical sensors transmitting physiological data wirelessly is possible as a result of the tremendous advances in ultra-low power electronics and radio communications. However, the widespread adoption of these devices depends very much on their ability to operate for long periods of time without the need to frequently change, recharge or even use batteries. In this context, energy harvesting (EH) is the disruptive technology that can pave the road towards the massive utilisation of wireless wearable sensors for patient self-monitoring and daily healthcare. Radio-frequency (RF) transmissions from commercial telecommunication networks represent reliable ambient energy that can be harvested as they are ubiquitous in urban and suburban areas. The state-of-the-art in RF EH for wearable biomedical sensors specifically targeting the global system of mobile 900/1800 cellular and 700 MHz digital terrestrial television networks as ambient RF energy sources are showcased. Furthermore, guidelines for the choice of the number of stages for the RF energy harvester are presented, depending on the requirements from the embedded system to power supply, which is useful for other researchers that work in the same area. The present authors' recent advances towards the development of an efficient RF energy harvester and storing system are presented and thoroughly discussed too.

  12. The Role of Trust and Interaction in Global Positioning System Related Accidents

    Science.gov (United States)

    Johnson, Chris W.; Shea, Christine; Holloway, C. Michael

    2008-01-01

    The Global Positioning System (GPS) uses a network of satellites to calculate the position of a receiver over time. This technology has revolutionized a wide range of safety-critical industries and leisure applications. These systems provide diverse benefits; supplementing the users existing navigation skills and reducing the uncertainty that often characterizes many route planning tasks. GPS applications can also help to reduce workload by automating tasks that would otherwise require finite cognitive and perceptual resources. However, the operation of these systems has been identified as a contributory factor in a range of recent accidents. Users often come to rely on GPS applications and, therefore, fail to notice when they develop faults or when errors occur in the other systems that use the data from these systems. Further accidents can stem from the over confidence that arises when users assume automated warnings will be issued when they stray from an intended route. Unless greater attention is paid to the role of trust and interaction in GPS applications then there is a danger that we will see an increasing number of these failures as positioning technologies become integral in the functioning of increasing numbers of applications.

  13. Renewable-emodin-based wearable supercapacitors.

    Science.gov (United States)

    Hu, Pengfei; Chen, Tinghan; Yang, Yun; Wang, Hua; Luo, Zihao; Yang, Jie; Fu, Haoran; Guo, Lin

    2017-01-26

    With the increasing dependency of human life on wearable electronics, the development of corresponding energy-storage devices is being insensitively pursued. Considering the special usage locations of wearable energy-storage devices, the safety and non-toxicity of electrode materials adopted should be of concern. In this work, a novel all-solid-state wearable supercapacitor based on the renewable-biomolecule emodin, naturally derivable from traditional Chinese herbal rhubarb or Polygonum cuspidatum, was successfully fabricated. Such supercapacitors exhibited excellent charge storage and rate capability with great flexibility and could be integrated into wearable electronics. As a proof of concept, a strap-shaped supercapacitor was fabricated, and it was capable of powering an electronic watch. Our work will promote the development of safe wearable electronics.

  14. Development of gait segmentation methods for wearable foot pressure sensors.

    Science.gov (United States)

    Crea, S; De Rossi, S M M; Donati, M; Reberšek, P; Novak, D; Vitiello, N; Lenzi, T; Podobnik, J; Munih, M; Carrozza, M C

    2012-01-01

    We present an automated segmentation method based on the analysis of plantar pressure signals recorded from two synchronized wireless foot insoles. Given the strict limits on computational power and power consumption typical of wearable electronic components, our aim is to investigate the capability of a Hidden Markov Model machine-learning method, to detect gait phases with different levels of complexity in the processing of the wearable pressure sensors signals. Therefore three different datasets are developed: raw voltage values, calibrated sensor signals and a calibrated estimation of total ground reaction force and position of the plantar center of pressure. The method is tested on a pool of 5 healthy subjects, through a leave-one-out cross validation. The results show high classification performances achieved using estimated biomechanical variables, being on average the 96%. Calibrated signals and raw voltage values show higher delays and dispersions in phase transition detection, suggesting a lower reliability for online applications.

  15. QRS complex detection in ECG signal for wearable devices.

    Science.gov (United States)

    Arefin, M Riadh; Tavakolian, Kouhyar; Fazel-Rezai, Reza

    2015-01-01

    This paper presents QRS complex detection algorithm based on dual slope technique, which is suitable for wearable electrocardiogram (ECG) applications. For cardiac patients of different arrhythmias, ECG signals are needed to be monitored over an extensive period of time. Thus, the wearable heart monitoring system needs computationally efficient QRS detection technique with good accuracy. In this paper, a method of QRS detection based on two slopes on both sides of an R peak is presented which is computationally efficient. Based on the slopes, first, a variable measuring steepness is developed, then by introducing an adjustable R-R interval based window and adaptive thresholding techniques, depending on the number of peaks detected in such window, R peaks are detected. The algorithm was evaluated against MIT/BIH arrhythmia database and achieved 99.16% detection rate with sensitivity of 0.9935 and positive predictivity of 0.9981. The method was compared with two widely used R peaks detection algorithms.

  16. Wearable knee health rehabilitation assessment using acoustical emissions

    Science.gov (United States)

    Teague, Caitlin N.; Hersek, Sinan; Conant, Jordan L.; Gilliland, Scott M.; Inan, Omer T.

    2017-02-01

    We have developed a novel, wearable sensing system based on miniature piezoelectric contact microphones for measuring the acoustical emissions from the knee during movement. The system consists of two contact microphones, positioned on the medial and lateral sides of the patella, connected to custom, analog pre-amplifier circuits and a microcontroller for digitization and data storage on a secure digital card. Tn addition to the acoustical sensing, the system includes two integrated inertial measurement sensors including accelerometer and gyroscope modalities to enable joint angle calculations; these sensors, with digital outputs, are connected directly to the same microcontroller. The system provides low noise, accurate joint acoustical emission and angle measurements in a wearable form factor and has several hours of battery life.

  17. Global positioning system reoccupation of early triangulation sites - Tectonic deformation of the Southern Coast Ranges

    Science.gov (United States)

    Shen, Zheng-Kang; Jackson, David D.

    1993-06-01

    We study tectonic deformation in the Southern Coast Range, California. We use triangulation and astronomic azimuth data collected since 1875, trilateration since 1970, and global positioning system data collected from 1986 to 1987. Two modeling techniques have been used. An elastic block-fault model is applied to study the tectonic motion of the San Andreas Fault and the San Gregorio-Hosgri Fault. Station velocities are modeled to study regional deformations. Results show that the regional deformation is predominantly controlled by deep strike-slip motion along the San Andreas Fault, at a rate of 33 +/- 2 mm/yr. Deep slip along the San Gregorio-Hosgri Fault is about 0-4 mm/yr, assuming a locked suit to a depth of 20 km. Convergence normal to the San Andreas Fault in the Southern Coast Ranges is not greater than 0.02 microrad/yr.

  18. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling

    Science.gov (United States)

    Thakur, Jay Krishna; Singh, Sudhir Kumar; Ekanthalu, Vicky Shettigondahalli

    2017-07-01

    Integration of remote sensing (RS), geographic information systems (GIS) and global positioning system (GPS) are emerging research areas in the field of groundwater hydrology, resource management, environmental monitoring and during emergency response. Recent advancements in the fields of RS, GIS, GPS and higher level of computation will help in providing and handling a range of data simultaneously in a time- and cost-efficient manner. This review paper deals with hydrological modeling, uses of remote sensing and GIS in hydrological modeling, models of integrations and their need and in last the conclusion. After dealing with these issues conceptually and technically, we can develop better methods and novel approaches to handle large data sets and in a better way to communicate information related with rapidly decreasing societal resources, i.e. groundwater.

  19. Global Systems for Mobile Position Tracking Using Kalman and Lainiotis Filters

    Directory of Open Access Journals (Sweden)

    Nicholas Assimakis

    2014-01-01

    Full Text Available We present two time invariant models for Global Systems for Mobile (GSM position tracking, which describe the movement in x-axis and y-axis simultaneously or separately. We present the time invariant filters as well as the steady state filters: the classical Kalman filter and Lainiotis Filter and the Join Kalman Lainiotis Filter, which consists of the parallel usage of the two classical filters. Various implementations are proposed and compared with respect to their behavior and to their computational burden: all time invariant and steady state filters have the same behavior using both proposed models but have different computational burden. Finally, we propose a Finite Impulse Response (FIR implementation of the Steady State Kalman, and Lainiotis filters, which does not require previous estimations but requires a well-defined set of previous measurements.

  20. Some tests of wet tropospheric calibration for the CASA Uno Global Positioning System experiment

    Science.gov (United States)

    Dixon, T. H.; Wolf, S. Kornreich

    1990-01-01

    Wet tropospheric path delay can be a major error source for Global Positioning System (GPS) geodetic experiments. Strategies for minimizing this error are investigted using data from CASA Uno, the first major GPS experiment in Central and South America, where wet path delays may be both high and variable. Wet path delay calibration using water vapor radiometers (WVRs) and residual delay estimation is compared with strategies where the entire wet path delay is estimated stochastically without prior calibration, using data from a 270-km test baseline in Costa Rica. Both approaches yield centimeter-level baseline repeatability and similar tropospheric estimates, suggesting that WVR calibration is not critical for obtaining high precision results with GPS in the CASA region.

  1. FirstAED emergency dispatch, global positioning of community first responders with distinct roles

    DEFF Research Database (Denmark)

    Henriksen, Finn Lund; Schorling, Per; Hansen, Bruno

    2016-01-01

    FirstAED is a supplement to the existing emergency response systems. The aim is to shorten the community first responder response times at emergency calls to below five minutes in a bridge connected island area. FirstAED defines a way to dispatch the nearby three first responders and organise...... their roles in a team structure to reduce response times, ensure citizens' safety and offer equal possibility of early defibrillation. First aid is provided by community first responders who use their smartphone. FirstAED global positioning system (GPS)-tracks the nine nearby first responders and enables...... the emergency dispatcher to send an organised team of three first responders with distinct roles to the scene automatically. During the first 24 months the FirstAED system was used 718 times. Three first responders arrived in ∼89% of the cases, and they arrived before the ambulance in ∼94% of the cases. First...

  2. Wearable Technology Devices Security and Privacy Vulnerability Analysis

    OpenAIRE

    Ke Wan Ching; Manmeet Mahinderjit Singh

    2016-01-01

    Wearable Technology also called wearable gadget, is acategory of technology devices with low processing capabilities that can be worn by a user with the aim to provide information and ease of access to the master devices its pairing with. Such examples are Google Glass and Smart watch. The impact of wearable technology becomes significant when people start their invention in wearable computing, where their mobile devices become one of the computation sources. However, wearable tec...

  3. Development of a Wearable Cardiac Monitoring System for Behavioral Neurocardiac Training: A Usability Study

    Science.gov (United States)

    Morita, Plinio P; Tallevi, Kevin; Armour, Kevin; Li, John; Nolan, Robert P; Cafazzo, Joseph A

    2016-01-01

    Background Elevated blood pressure is one of the main risk factors for death globally. Behavioral neurocardiac training (BNT) is a complementary approach to blood pressure and stress management that is intended to exercise the autonomic reflexes, improve stress recovery, and lower blood pressure. BNT involves cognitive-behavioral therapy with a paced breathing technique and heart rate variability biofeedback. BNT is limited to in-clinic delivery and faces an accessibility barrier because of the need for clinical oversight and the use of complex monitoring tools. Objective The objective of this project was to design, develop, and evaluate a wearable electrocardiographic (ECG) sensor system for the delivery of BNT in a home setting. Methods The wearable sensor system, Beat, consists of an ECG sensor and a mobile app. It was developed iteratively using the principles of test-driven Agile development and user-centered design. A usability study was conducted at Toronto General Hospital to evaluate feasibility and user experience and identify areas of improvement. Results The Beatsensor was designed as a modular patch to be worn on the user’s chest and uses standard ECG electrodes. It streams a single-lead ECG wirelessly to a mobile phone using Bluetooth Low Energy. The use of small, low-power electronics, a low device profile, and a tapered enclosure allowed for a device that can be unobtrusively worn under clothing. The sensor was designed to operate with a mobile app that guides users through the BNT exercises to train them to a slow-paced breathing technique for stress recovery. The BNT app uses the ECG captured by the sensor to provide heart rate variability biofeedback in the form of a real-time heart rate waveform to complement and reinforce the impact of the training. Usability testing (n=6) indicated that the overall response to the design and user experience of the system was perceived positively. All participants indicated that the system had a positive

  4. Development of a Wearable Cardiac Monitoring System for Behavioral Neurocardiac Training: A Usability Study.

    Science.gov (United States)

    Uddin, Akib A; Morita, Plinio P; Tallevi, Kevin; Armour, Kevin; Li, John; Nolan, Robert P; Cafazzo, Joseph A

    2016-04-22

    Elevated blood pressure is one of the main risk factors for death globally. Behavioral neurocardiac training (BNT) is a complementary approach to blood pressure and stress management that is intended to exercise the autonomic reflexes, improve stress recovery, and lower blood pressure. BNT involves cognitive-behavioral therapy with a paced breathing technique and heart rate variability biofeedback. BNT is limited to in-clinic delivery and faces an accessibility barrier because of the need for clinical oversight and the use of complex monitoring tools. The objective of this project was to design, develop, and evaluate a wearable electrocardiographic (ECG) sensor system for the delivery of BNT in a home setting. The wearable sensor system, Beat, consists of an ECG sensor and a mobile app. It was developed iteratively using the principles of test-driven Agile development and user-centered design. A usability study was conducted at Toronto General Hospital to evaluate feasibility and user experience and identify areas of improvement. The Beat sensor was designed as a modular patch to be worn on the user's chest and uses standard ECG electrodes. It streams a single-lead ECG wirelessly to a mobile phone using Bluetooth Low Energy. The use of small, low-power electronics, a low device profile, and a tapered enclosure allowed for a device that can be unobtrusively worn under clothing. The sensor was designed to operate with a mobile app that guides users through the BNT exercises to train them to a slow-paced breathing technique for stress recovery. The BNT app uses the ECG captured by the sensor to provide heart rate variability biofeedback in the form of a real-time heart rate waveform to complement and reinforce the impact of the training. Usability testing (n=6) indicated that the overall response to the design and user experience of the system was perceived positively. All participants indicated that the system had a positive effect on stress management and that they

  5. Wearable EEG via lossless compression.

    Science.gov (United States)

    Dufort, Guillermo; Favaro, Federico; Lecumberry, Federico; Martin, Alvaro; Oliver, Juan P; Oreggioni, Julian; Ramirez, Ignacio; Seroussi, Gadiel; Steinfeld, Leonardo

    2016-08-01

    This work presents a wearable multi-channel EEG recording system featuring a lossless compression algorithm. The algorithm, based in a previously reported algorithm by the authors, exploits the existing temporal correlation between samples at different sampling times, and the spatial correlation between different electrodes across the scalp. The low-power platform is able to compress, by a factor between 2.3 and 3.6, up to 300sps from 64 channels with a power consumption of 176μW/ch. The performance of the algorithm compares favorably with the best compression rates reported up to date in the literature.

  6. Augmented reality som wearable technology

    DEFF Research Database (Denmark)

    Rahn, Annette

    2016-01-01

    “How Augmented reality can facilitate learning in visualizing human anatomy “ At this station I demonstrate how Augmented reality can be used to visualize the human lungs in situ and as a wearable technology which establish connection between body, image and technology in education. I will show...... the potential of Augmented reality increasing students level of understanding, interaction and engagement with the object. I will demonstrate the technology and show you the human lungs in your body and the future perspectives of the technology. Organization: developed in collaboration with Mie Buhl, Professor...

  7. UI Design for Wearable Devices

    OpenAIRE

    Vítor Manuel Mota Cardoso da Silva

    2016-01-01

    Smartwatches já existem há algum tempo (ranger de 2015), mas 2015 é o ano que estes wearables vão finalmente obter o seu "boom" em termos de popularidade e crescimento. Grandes nomes da tecnologia como a Apple, Google e Samsung estão a apostar na sua própria linha de produtos como o Apple Watch, Android Wear e Tizen respetivamente (Apple Inc 2015a; 2015b Google Inc; SAMSUNG 2015). Todos estes dispositivos são dotados de ecrãs táteis muito pequenos, um número limitado de botões de hardware, di...

  8. The Validity and Reliability of Global Positioning Systems in Team Sport: A Brief Review.

    Science.gov (United States)

    Scott, Macfarlane T U; Scott, Tannath J; Kelly, Vincent G

    2016-05-01

    The use of global positioning systems (GPS) has increased dramatically over the last decade. Using signals from orbiting satellites, the GPS receiver calculates the exact position of the device and the speed at which the device is moving. Within team sports GPS devices are used to quantify the external load experienced by an athlete, allowing coaches to better manage trainings loads and potentially identify athletes who are overreaching or overtraining. This review aims to collate all studies that have tested either (or both) the validity or reliability of GPS devices in a team sport setting, with a particular focus on (a) measurements of distance, speed, velocities, and accelerations across all sampling rates and (b) accelerometers, player/body load and impacts in accelerometer-integrated GPS devices. A comprehensive search of the online libraries identified 22 articles that fit search criteria. The literature suggests that all GPS units, regardless of sampling rate, are capable of tracking athlete's distance during team sport movements with adequate intraunit reliability. One Hertz and 5Hz GPS units have limitations in their reporting of distance during high-intensity running, velocity measures, and short linear running (particularly those involving changes of direction), although these limitations seem to be overcome during measures recorded during team sport movements. Ten Hertz GPS devices seem the most valid and reliable to date across linear and team sport simulated running, overcoming many limitations of earlier models, whereas the increase to 15Hz GPS devices have had no additional benefit.

  9. Integration of differential global positioning system with ultrawideband synthetic aperture radar for forward imaging

    Science.gov (United States)

    Wong, David C.; Bui, Khang; Nguyen, Lam H.; Smith, Gregory; Ton, Tuan T.

    2003-09-01

    The U.S. Army Research Laboratory (ARL), as part of a customer and mission-funded exploratory development program, has been evaluating low-frequency, ultra-wideband (UWB) imaging radar for forward imaging to support the Army's vision for increased mobility and survivability of unmanned ground vehicle missions. As part of the program to improve the radar system and imaging capability, ARL has incorporated a differential global positioning system (DGPS) for motion compensation into the radar system. The use of DGPS can greatly increase positional accuracy, thereby allowing us to improve our ability to focus better images for the detection of small targets such as plastic mines and other concealed objects buried underground. The ability of UWB radar technology to detect concealed objects could provide an important obstacle avoidance capability for robotic vehicles, which would improve the speed and maneuverability of these vehicles and consequently increase the survivability of the U.S. forces. This paper details the integration and discusses the significance of integrating a DGPS into the radar system for forward imaging. It also compares the difference between DGPS and the motion compensation data collected by the use of the original theodolite-based system.

  10. Global positioning system and associated technologies in animal behaviour and ecological research.

    Science.gov (United States)

    Tomkiewicz, Stanley M; Fuller, Mark R; Kie, John G; Bates, Kirk K

    2010-07-27

    Biologists can equip animals with global positioning system (GPS) technology to obtain accurate (less than or equal to 30 m) locations that can be combined with sensor data to study animal behaviour and ecology. We provide the background of GPS techniques that have been used to gather data for wildlife studies. We review how GPS has been integrated into functional systems with data storage, data transfer, power supplies, packaging and sensor technologies to collect temperature, activity, proximity and mortality data from terrestrial species and birds. GPS 'rapid fixing' technologies combined with sensors provide location, dive frequency and duration profiles, and underwater acoustic information for the study of marine species. We examine how these rapid fixing technologies may be applied to terrestrial and avian applications. We discuss positional data quality and the capability for high-frequency sampling associated with GPS locations. We present alternatives for storing and retrieving data by using dataloggers (biologging), radio-frequency download systems (e.g. very high frequency, spread spectrum), integration of GPS with other satellite systems (e.g. Argos, Globalstar) and potential new data recovery technologies (e.g. network nodes). GPS is one component among many rapidly evolving technologies. Therefore, we recommend that users and suppliers interact to ensure the availability of appropriate equipment to meet animal research objectives.

  11. A scalable global positioning system-free localization scheme for underwater wireless sensor networks

    KAUST Repository

    Mohammed, A.M.

    2013-05-07

    Seaweb is an acoustic communication technology that enables communication between sensor nodes. Seaweb technology utilizes the commercially available telesonar modems that has developed link and network layer firmware to provide a robust undersea communication capability. Seaweb interconnects the underwater nodes through digital signal processing-based modem by using acoustic links between the neighboring sensors. In this paper, we design and investigate a global positioning system-free passive localization protocol by integrating the innovations of levelling and localization with the Seaweb technology. This protocol uses the range data and planar trigonometry principles to estimate the positions of the underwater sensor nodes. Moreover, for precise localization, we consider more realistic conditions namely, (a) small displacement of sensor nodes due to watch circles and (b) deployment of sensor nodes over non-uniform water surface. Once the nodes are localized, we divide the whole network field into circular levels and sectors to minimize the traffic complexity and thereby increases the lifetime of the sensor nodes in the network field. We then form the mesh network inside each of the sectors that increases the reliability. The algorithm is designed in such a way that it overcomes the ambiguous nodes errata and reflected paths and therefore makes the algorithm more robust. The synthetic network geometries are so designed which can evaluate the algorithm in the presence of perfect or imperfect ranges or in case of incomplete data. A comparative study is made with the existing algorithms which proves the efficiency of our newly proposed algorithm. 2013 Mohammed et al.

  12. Global positioning system and associated technologies in animal behaviour and ecological research

    Science.gov (United States)

    Tomkiewicz, Stanley M.; Fuller, Mark R.; Kie, John G.; Bates, Kirk K.

    2010-01-01

    Biologists can equip animals with global positioning system (GPS) technology to obtain accurate (less than or equal to 30 m) locations that can be combined with sensor data to study animal behaviour and ecology. We provide the background of GPS techniques that have been used to gather data for wildlife studies. We review how GPS has been integrated into functional systems with data storage, data transfer, power supplies, packaging and sensor technologies to collect temperature, activity, proximity and mortality data from terrestrial species and birds. GPS 'rapid fixing' technologies combined with sensors provide location, dive frequency and duration profiles, and underwater acoustic information for the study of marine species. We examine how these rapid fixing technologies may be applied to terrestrial and avian applications. We discuss positional data quality and the capability for high-frequency sampling associated with GPS locations. We present alternatives for storing and retrieving data by using dataloggers (biologging), radio-frequency download systems (e.g. very high frequency, spread spectrum), integration of GPS with other satellite systems (e.g. Argos, Globalstar) and potential new data recovery technologies (e.g. network nodes). GPS is one component among many rapidly evolving technologies. Therefore, we recommend that users and suppliers interact to ensure the availability of appropriate equipment to meet animal research objectives.

  13. A GPS (Global Positioning System) Information and Data System for the Civil Commuinity. Volume 2. Appendices to Volume 1. of the Requirements of the Civil GPS User Community

    Science.gov (United States)

    1988-03-08

    34Global Positioning System Differential Positioning Simulations," Technical Report No. 90, University of New Brunswick, Fredericton , New Brunswick...Positioning System for Differential Positioning," Dept. of Surveying Engineering Technical Report No. 108, University of New Brunswick, Fredericton , New

  14. Stability of Enzymatic Biosensors for Wearable Applications.

    Science.gov (United States)

    Sonawane, Apurva; Manickam, Pandiaraj; Bhansali, Shekhar

    2017-05-19

    Technological evolution in wearable sensors is accounting for major growth and transformation in multitude of industries ranging from healthcare to computing & informatics to communication and biomedical sciences. The major driver for this transformation is the new-found ability to continuously monitor and analyze the patients' physiology in patients' natural setting. Numerous wearable sensors are already on the market and are summarized. Most of the current technologies have focused on electro-physiological, electro-mechanical or acoustic measurements. Wearable bio-chemical sensing devices are in their infancy. Traditional challenges in biochemical sensing such as reliability, repeatability, stability, and drift are amplified in wearable sensing systems due to variabilities in operating environment, sample/sensor handling and motion artifacts. Enzymatic sensing technologies, due to reduced fluidic challenges continue to be forerunners for translation into wearable sensors. This paper reviews the recent developments in wearable enzymatic sensors. The wearable sensors have been classified in three major groups based on sensor embodiment and placement relative to the human body: (i) On-body, (ii) Clothing/textile-based biosensors and (iii) Biosensor accessories. The sensors, which come in the forms of stickers, tattoos are categorized as on-body biosensors. The fabric-based biosensor comes in different models such as smart-shirts, socks, gloves and smart undergarments with printed sensors for continuous monitoring.

  15. Design guidelines for wearable pointing devices

    Directory of Open Access Journals (Sweden)

    Joanne E. Zucco

    2016-07-01

    Full Text Available This paper presents design guidelines and recommendations for developing cursor manipulation interaction devices to be employed in a wearable context. The work presented in this paper is the culmination three usability studies designed to understand commercially available pointing (cursor manipulation devices suitable for use in a wearable context. The set of guidelines and recommendations presented are grounded on experimental and qualitative evidence derived from three usability studies and are intended to be used in order to inform the design of future wearable input devices. In addition to guiding the design process, the guidelines and recommendations may also be used to inform users of wearable computing devices by guiding towards the selection of a suitable wearable input device. The synthesis of results derived from a series of usability studies provide insights pertaining to the choice and usability of the devices in a wearable context. That is, the guidelines form a checklist that may be utilized as a point of comparison when choosing between the different input devices available for wearable interaction.

  16. Wireless Sensor Network for Wearable Physiological Monitoring

    Directory of Open Access Journals (Sweden)

    P. S. Pandian

    2008-05-01

    Full Text Available Wearable physiological monitoring system consists of an array of sensors embedded into the fabric of the wearer to continuously monitor the physiological parameters and transmit wireless to a remote monitoring station. At the remote monitoring station the data is correlated to study the overall health status of the wearer. In the conventional wearable physiological monitoring system, the sensors are integrated at specific locations on the vest and are interconnected to the wearable data acquisition hardware by wires woven into the fabric. The drawbacks associated with these systems are the cables woven in the fabric pickup noise such as power line interference and signals from nearby radiating sources and thereby corrupting the physiological signals. Also repositioning the sensors in the fabric is difficult once integrated. The problems can be overcome by the use of physiological sensors with miniaturized electronics to condition, process, digitize and wireless transmission integrated into the single module. These sensors are strategically placed at various locations on the vest. Number of sensors integrated into the fabric form a network (Personal Area Network and interacts with the human system to acquire and transmit the physiological data to a wearable data acquisition system. The wearable data acquisition hardware collects the data from various sensors and transmits the processed data to the remote monitoring station. The paper discusses wireless sensor network and its application to wearable physiological monitoring and its applications. Also the problems associated with conventional wearable physiological monitoring are discussed.

  17. Monitoring elbow isometric contraction by novel wearable fabric sensing device

    Science.gov (United States)

    Wang, Xi; Tao, Xiaoming; So, Raymond C. H.; Shu, Lin; Yang, Bao; Li, Ying

    2016-12-01

    Fabric-based wearable technology is highly desirable in sports, as it is light, flexible, soft, and comfortable with little interference to normal sport activities. It can provide accurate information on the in situ deformation of muscles in a continuous and wireless manner. During elbow flexion in isometric contraction, upper arm circumference increases with the contraction of elbow flexors, and it is possible to monitor the muscles’ contraction by limb circumferential strains. This paper presents a new wireless wearable anthropometric monitoring device made from fabric strain sensors for the human upper arm. The materials, structural design and calibration of the device are presented. Using an isokinetic testing system (Biodex3®) and the fabric monitoring device simultaneously, in situ measurements were carried out on elbow flexors in isometric contraction mode with ten subjects for a set of positions. Correlations between the measured values of limb circumferential strain and normalized torque were examined, and a linear relationship was found during isometric contraction. The average correlation coefficient between them is 0.938 ± 0.050. This wearable anthropometric device thus provides a useful index, the limb circumferential strain, for upper arm muscle contraction in isometric mode.

  18. Wearable feedback systems for rehabilitation

    Directory of Open Access Journals (Sweden)

    Marci Carl

    2005-06-01

    Full Text Available Abstract In this paper we describe LiveNet, a flexible wearable platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification. Based on the MIT Wearable Computing Group's distributed mobile system architecture, LiveNet is a stable, accessible system that combines inexpensive, commodity hardware; a flexible sensor/peripheral interconnection bus; and a powerful, light-weight distributed sensing, classification, and inter-process communications software architecture to facilitate the development of distributed real-time multi-modal and context-aware applications. LiveNet is able to continuously monitor a wide range of physiological signals together with the user's activity and context, to develop a personalized, data-rich health profile of a user over time. We demonstrate the power and functionality of this platform by describing a number of health monitoring applications using the LiveNet system in a variety of clinical studies that are underway. Initial evaluations of these pilot experiments demonstrate the potential of using the LiveNet system for real-world applications in rehabilitation medicine.

  19. Wearable feedback systems for rehabilitation.

    Science.gov (United States)

    Sung, Michael; Marci, Carl; Pentland, Alex

    2005-06-29

    In this paper we describe LiveNet, a flexible wearable platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification. Based on the MIT Wearable Computing Group's distributed mobile system architecture, LiveNet is a stable, accessible system that combines inexpensive, commodity hardware; a flexible sensor/peripheral interconnection bus; and a powerful, light-weight distributed sensing, classification, and inter-process communications software architecture to facilitate the development of distributed real-time multi-modal and context-aware applications. LiveNet is able to continuously monitor a wide range of physiological signals together with the user's activity and context, to develop a personalized, data-rich health profile of a user over time. We demonstrate the power and functionality of this platform by describing a number of health monitoring applications using the LiveNet system in a variety of clinical studies that are underway. Initial evaluations of these pilot experiments demonstrate the potential of using the LiveNet system for real-world applications in rehabilitation medicine.

  20. Detecting gunshots using wearable accelerometers.

    Science.gov (United States)

    Loeffler, Charles E

    2014-01-01

    Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges.

  1. Detecting gunshots using wearable accelerometers.

    Directory of Open Access Journals (Sweden)

    Charles E Loeffler

    Full Text Available Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges.

  2. Maintenance of the Geodetic Reference Frame in the Global Positioning System

    Science.gov (United States)

    Oria, A.; Brodsky, B. L.; Labrecque, J.; Miller, J. J.; Moreau, M.; Pearlman, M.; Nelson, R.

    2007-12-01

    In the Global Positioning System (GPS) measurements of the satellite coordinates and the underlying World Geodetic System 1984 (WGS 84) reference frame are derived from observables such as pseudorandom noise (PRN) signals, and carrier phase, which are referenced to on-board atomic clocks. Systematic errors exist in both the estimated satellite coordinates and the reference frame. The reference frame utilizes external inputs in the form of International Terrestrial Reference Frame (ITRF) coordinates and constrains the results to be compatible with the ITRF coordinates for a set of global reference stations. The ITRF is, in turn, obtained from the combined analysis of GPS, Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI), and Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS) data. The current realization of the reference frame could be described as circular in that an independent method of external verification is currently not available. To ensure the continued successful operation of the GPS it is necessary to have the capability of analyzing systematic errors by an independent means from current radiometric observables and data from foreign sources. In practice, accuracy of the standards used for measurement should be better than the expected, required operational measurement accuracy by a factor of ten to ensure that the desired requirement is met. Currently, the accuracy of both the ITRF and the WGS 84 is estimated to be on the order of 1 to 2 parts per billion, leading to expected drifts of 0.6 to 1.2 cm per year. The experience of the last three decades has indicated an approximate improvement by a factor of ten per decade. Therefore, while current accuracy of the ITRF and WGS 84 reference frames marginally meets civilian and military requirements, it is very likely that, within the lifetime of GPS III, the accuracy of the reference frames will be unable to meet the anticipated requirements. This report examines

  3. Wearable Photoplethysmographic Sensors—Past and Present

    Directory of Open Access Journals (Sweden)

    Toshiyo Tamura

    2014-04-01

    Full Text Available Photoplethysmography (PPG technology has been used to develop small, wearable, pulse rate sensors. These devices, consisting of infrared light-emitting diodes (LEDs and photodetectors, offer a simple, reliable, low-cost means of monitoring the pulse rate noninvasively. Recent advances in optical technology have facilitated the use of high-intensity green LEDs for PPG, increasing the adoption of this measurement technique. In this review, we briefly present the history of PPG and recent developments in wearable pulse rate sensors with green LEDs. The application of wearable pulse rate monitors is discussed.

  4. Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    Full Text Available Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs. The calculated zonal electric field disturbances also help

  5. Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data

    Science.gov (United States)

    Ebinger, Michael R.; Haroldson, Mark A.; van Manen, Frank T.; Costello, Cecily M; Bjornlie, Daniel D; Thompson, Daniel J.; Gunther, Kerry A.; Fortin, Jennifer K.; Teisberg, Justin E.; Pils, Shannon R; White, P J; Cain, Steven L; Cross, Paul C.

    2016-01-01

    Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004–2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods—leaving out individual clusters, or leaving out individual bears—showed that correct prediction of bear visitation to large-biomass carcasses was 78–88%, whereas the false-positive rate was 18–24%. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002–2011) and examined trends in carcass visitation during fall hyperphagia (September–October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.

  6. Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data.

    Science.gov (United States)

    Ebinger, Michael R; Haroldson, Mark A; van Manen, Frank T; Costello, Cecily M; Bjornlie, Daniel D; Thompson, Daniel J; Gunther, Kerry A; Fortin, Jennifer K; Teisberg, Justin E; Pils, Shannon R; White, P J; Cain, Steven L; Cross, Paul C

    2016-07-01

    Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004-2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods-leaving out individual clusters, or leaving out individual bears-showed that correct prediction of bear visitation to large-biomass carcasses was 78-88 %, whereas the false-positive rate was 18-24 %. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002-2011) and examined trends in carcass visitation during fall hyperphagia (September-October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.

  7. Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission

    Science.gov (United States)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra

    2016-01-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  8. Implementasi Sistem Informasi Geografis Daerah Pariwisata Kabupaten Temanggung Berbasis Android dengan Global Positioning System (GPS

    Directory of Open Access Journals (Sweden)

    Kartika Imam Santoso

    2016-02-01

    Full Text Available Pariwisata merupakan aspek yang berharga bagi suatu daerah, dan semakin banyak pengunjung maka dapat memajukan kesejahteraan masyarakat di sekitar obyek pariwisata. Kabupaten Temanggung memiliki banyak obyek pariwisata, penggunaan teknologi informasi seperti menggunakan aplikasi smartphone berbasis Android dapat digunakan untuk membantu wisatawan untuk mengenal daerah pariwisata dan mengetahui rute menuju ke obyek pariwisata yang diinginkan. Implementasi Sistem Informasi Geografis (SIG di daerah wisata Temanggung bertujuan untuk membangun aplikasi Wisata Temanggung berbasis Android dan menerapkan layanan Google Maps Application Programming Interface (API untuk memudahkan wisatawan dalam memperoleh informasi pemetaan lokasi objek wisata, rute dan fasilitas pendukung wisata yang ada di Kabupaten Temanggung. Metode yang digunakan adalah model proses air terjun (waterfall. Implementasi Aplikasi Wisata Temanggung menggunakan pemrograman Javascript dengan Eclipse Luna, basis data SQLite, serta peta yang bersumber dari Google Maps API. Hasilnya berupa aplikasi Wisata Temanggung berbasis Android yang membantu memudahkan wisatawan dalam memperoleh informasi tentang obyek wisata alam, buatan, budaya, kuliner, hotel dan rute dari lokasi sekarang ke lokasi obyek wisata yang diinginkan di Kabupaten Temanggung dengan bantuan Global Positioning System (GPS.  

  9. Global Positioning System-Based Stimulation for Robo-Pigeons in Open Space

    Directory of Open Access Journals (Sweden)

    Junqing Yang

    2017-08-01

    Full Text Available An evaluation method is described that will enable researchers to study fight control characteristics of robo-pigeons in fully open space. It is not limited by the experimental environment and overcomes environmental interference with flight control in small experimental spaces using a compact system. The system consists of two components: a global positioning system (GPS-based stimulator with dimensions of 38 mm × 26 mm × 8 mm and a weight of 18 g that can easily be carried by a pigeon as a backpack and a PC-based program developed in Virtual C++. The GPS-based stimulator generates variable stimulation and automatically records the GPS data and stimulus parameters. The PC-based program analyzes the recorded data and displays the flight trajectory of the tested robo-pigeon on a digital map. This method enables quick and clear evaluation of the flight control characteristics of a robo-pigeon in open space based on its visual trajectory, as well as further optimization of the microelectric stimulation parameters to improve the design of robo-pigeons. The functional effectiveness of the method was investigated and verified by performing flight control experiments using a robo-pigeon in open space.

  10. Gravity field error analysis - Applications of Global Positioning System receivers and gradiometers on low orbiting platforms

    Science.gov (United States)

    Schrama, Ernst J. O.

    1991-11-01

    The concept of a Global Positioning System (GPS) receiver as a tracking facility and a gradiometer as a separate instrument on a low-orbiting platform offers a unique tool to map the earth's gravitational field with unprecedented accuracies. The former technique allows determination of the spacecraft's ephemeris at any epoch to within 3-10 cm, the latter permits the measurement of the tensor of second order derivatives of the gravity field to within 0.01 to 0.0001 Eotvos units depending on the type of gradiometer. First, a variety of error sources in gradiometry where emphasis is placed on the rotational problem pursuing as well a static as a dynamic approach is described. Next, an analytical technique is described and applied for an error analysis of gravity field parameters from gradiometer and GPS observation types. Results are discussed for various configurations proposed on Topex/Poseidon, Gravity Probe-B, and Aristoteles, indicating that GPS only solutions may be computed up to degree and order 35, 55, and 85, respectively, whereas a combined GPS/gradiometer experiment on Aristoteles may result in an acceptable solution up to degree and order 240.

  11. Implementasi Sistem Informasi Geografis Daerah Pariwisata Kabupaten Temanggung Berbasis Android dengan Global Positioning System (GPS

    Directory of Open Access Journals (Sweden)

    Kartika Imam Santoso

    2016-02-01

    Full Text Available Pariwisata merupakan aspek yang berharga bagi suatu daerah, dan semakin banyak pengunjung maka dapat memajukan kesejahteraan masyarakat di sekitar obyek pariwisata. Kabupaten Temanggung memiliki banyak obyek pariwisata, penggunaan teknologi informasi seperti menggunakan aplikasi smartphone berbasis Android dapat digunakan untuk membantu wisatawan untuk mengenal daerah pariwisata dan mengetahui rute menuju ke obyek pariwisata yang diinginkan. Implementasi Sistem Informasi Geografis (SIG di daerah wisata Temanggung bertujuan untuk membangun aplikasi Wisata Temanggung berbasis Android dan menerapkan layanan Google Maps Application Programming Interface (API untuk memudahkan wisatawan dalam memperoleh informasi pemetaan lokasi objek wisata, rute dan fasilitas pendukung wisata yang ada di Kabupaten Temanggung. Metode yang digunakan adalah model proses air terjun (waterfall. Implementasi Aplikasi Wisata Temanggung menggunakan pemrograman Javascript dengan Eclipse Luna, basis data SQLite, serta peta yang bersumber dari Google Maps API. Hasilnya berupa aplikasi Wisata Temanggung berbasis Android yang membantu memudahkan wisatawan dalam memperoleh informasi tentang obyek wisata alam, buatan, budaya, kuliner, hotel dan rute dari lokasi sekarang ke lokasi obyek wisata yang diinginkan di Kabupaten Temanggung dengan bantuan Global Positioning System (GPS.  

  12. Using global positioning systems to study health-related mobility and participation.

    Science.gov (United States)

    Brusilovskiy, Eugene; Klein, Louis A; Salzer, Mark S

    2016-07-01

    Community participation, as indicated by mobility and engagement in socially meaningful activities, is a central component of health based on the International Classification of Health, Functioning, and Disease (WHO, 2001). Global positioning systems (GPS) technology is emerging as a tool for tracking mobility and participation in health and disability-related research. This paper fills a gap in the literature and provides a thorough description of a method that can be used to generate a number of different variables related to the constructs of mobility and participation from GPS data. Here, these variables are generated with the help of ST-DBSCAN, a spatiotemporal data mining algorithm. The variables include the number of unique destinations, activity space area, distance traveled, time in transit, and time at destinations. Data obtained from five individuals with psychiatric disabilities who carried GPS-enabled cell phones for two weeks are presented. Within- and across- individual variability on these constructs was observed. Given the feasibility of gathering data with GPS, larger scale studies of mobility and participation employing this method are warranted.

  13. High accuracy integrated global positioning system/inertial navigation system LDRD: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Owen, T.E.; Meindl, M.A.; Fellerhoff, J.R.

    1997-03-01

    This report contains the results of a Sandia National Laboratories Directed Research and Development (LDRD) program to investigate the integration of Global Positioning System (GPS) and inertial navigation system (INS) technologies toward the goal of optimizing the navigational accuracy of the combined GPSANS system. The approach undertaken is to integrate the data from an INS, which has long term drifts, but excellent short term accuracy, with GPS carrier phase signal information, which is accurate to the sub-centimeter level, but requires continuous tracking of the GPS signals. The goal is to maintain a sub-meter accurate navigation solution while the vehicle is in motion by using the GPS measurements to estimate the INS navigation errors and then using the refined INS data to aid the GPS carrier phase cycle slip detection and correction and bridge dropouts in the GPS data. The work was expanded to look at GPS-based attitude determination, using multiple GPS receivers and antennas on a single platform, as a possible navigation aid. Efforts included not only the development of data processing algorithms and software, but also the collection and analysis of GPS and INS flight data aboard a Twin Otter aircraft. Finally, the application of improved navigation system accuracy to synthetic aperture radar (SAR) target location is examined.

  14. Global Positioning System constraints on fault slip rates in southern California and northern Baja, Mexico

    Science.gov (United States)

    Bennett, Richard A.; Rodi, William; Reilinger, Robert E.

    1996-10-01

    We use Global Positioning System (GPS) estimates of horizontal site velocity to constrain slip rates on faults comprising the Pacific-North America plate boundary in southern California and northern Mexico. We enlist a simple elastic block model to parameterize the distribution and sum of deformation within and across the plate boundary. We estimate a Pacific-North America relative plate motion rate of 49 ± 3 mm/yr (one standard deviation), consistent with NUVEL-1A estimates. We are able to resolve robust slip rate estimates for the southernmost San Andreas, San Jacinto, and Elsinore faults (26 ± 2, 9 ± 2, and 6 ± 2 mm/yr, respectively) and for the Imperial and Cerro Prieto faults (35 ± 2 and 42 ± 1 mm/yr, respectively), accounting for about 86% of the total plate motion. The remaining 14% appears to be accommodated to the west of these fault systems, probably via slip along the San Clemente fault and/or the San Miguel, Vallecitos, Rose Canyon, and Newport-Inglewood fault systems. These results are highly consistent with paleoseismic estimates for slip rates implying that off-fault strain accumulation within the deforming zone of the plate boundary is largely elastic. We estimate that the seismically quiescent, southernmost San Andreas fault has incurred about 8.2 m of slip deficit over the last few hundred years, presumably to be recovered during a future large earthquake.

  15. Distributions of positive correlations in sectoral value added growth in the global economic network*

    Science.gov (United States)

    Maluck, Julian; Donner, Reik V.

    2017-02-01

    International trade has grown considerably during the process of globalization. Complex supply chains for the production of goods have resulted in an increasingly connected International Trade Network (ITN). Traditionally, direct trade relations between industries have been regarded as mediators of supply and demand spillovers. With increasing network connectivity the question arises if higher-order relations become more important in explaining a national sector's susceptibility to supply and demand changes of its trading partner. In this study we address this question by investigating empirically to what extent the topological properties of the ITN provide information about positive correlations in the production of two industry sectors. We observe that although direct trade relations between industries serve as important indicators for correlations in the industries' value added growth, opportunities of substitution for required production inputs as well as second-order trade relations cannot be neglected. Our results contribute to a better understanding of the relation between trade and economic productivity and can serve as a basis for the improvement of crisis spreading models that evaluate contagion threats in the case of a node's failure in the ITN.

  16. Global Positioning System Energetic Particle Data: The Next Space Weather Data Revolution

    Science.gov (United States)

    Knipp, Delores J.; Giles, Barbara L.

    2016-01-01

    The Global Positioning System (GPS) has revolutionized the process of getting from point A to point Band so much more. A large fraction of the worlds population relies on GPS (and its counterparts from other nations) for precision timing, location, and navigation. Most GPS users are unaware that the spacecraft providing the signals they rely on are operating in a very harsh space environment the radiation belts where energetic particles trapped in Earths magnetic field dash about at nearly the speed of light. These subatomic particles relentlessly pummel GPS satellites. So by design, every GPS satellite and its sensors are radiation hardened. Each spacecraft carries particle detectors that provide health and status data to system operators. Although these data reveal much about the state of the space radiation environment, heretofore they have been available only to system operators and supporting scientists. Research scientists have long sought a policy shift to allow more general access. With the release of the National Space Weather Strategy and Action Plan organized by the White House Office of Science Technology Policy (OSTP) a sample of these data have been made available to space weather researchers. Los Alamos National Laboratory (LANL) and the National Center for Environmental Information released a months worth of GPS energetic particle data from an interval of heightened space weather activity in early 2014 with the hope of stimulating integration of these data sets into the research arena. Even before the public data release GPS support scientists from LANL showed the extraordinary promise of these data.

  17. Implementasi Sistem Informasi Geografis Daerah Pariwisata Kota Semarang Berbasis Android dengan Global Positioning System (GPS

    Directory of Open Access Journals (Sweden)

    Richard RF Siahaan

    2014-01-01

    Full Text Available Pariwisata merupakan aspek yang berharga bagi suatu daerah, dengan adanya daerah wisata maka dapat memajukan kesejahteraan masyarakat sekitar. Kota Semarang memiliki daerah pariwisata yang sangat banyak, apabila sarana dan prasarana yang ada dikembangkan lebih lanjut maka dipastikan peningkatan parwisata di Kota Semarang akan semakin bertambah. Penggunaan Teknologi Informasi dapat memajukan daerah pariwisata, sehingga daerah pariwisata dapat dikenal oleh wisatawan yang ingin berkunjung ke Semarang. Sistem Informasi Geografis yang dibangun menggunakan platform android. Pada Tugas Akhir ini menggunakan Java sebagai bahasa pemorgraman dengan eclipse sebagai perangkat lunak pengembangan. Penggunaan Google Map API sebagai fungsi utama peta dalam menjalankan aplikasi serta PHP sebagai bahasa pemorgaraman sisi server dan MySQL dalam penggunaan basis data. Hasil dari perancangan Aplikasi Sistem Infomasi Geografis Kota Semarang berbasis Android ini nantinya akan memberikan informasi dalam bentuk peta yang dapat digunakan sebagai referensi bagi wisatawan yang berkunjung. Penggunaan Global Positioning System (GPS dalam aplikasi ini menjadi hal yang sangat penting dalam menentukan keberadaan wisatawan. Selain itu terdapat rute untuk menuju objek wisata yang dipilih, dalam aplikasi ini juga tersedia fasilitas-fasilitas umum seperti ATM dan Bank, Bandara, Mesjid, Gereja, Rumah Sakit dan lainnya.

  18. Wearable Technology Devices Security and Privacy Vulnerability Analysis

    Directory of Open Access Journals (Sweden)

    Ke Wan Ching

    2016-05-01

    Full Text Available Wearable Technology also called wearable gadget, is acategory of technology devices with low processing capabilities that can be worn by a user with the aim to provide information and ease of access to the master devices its pairing with. Such examples are Google Glass and Smart watch. The impact of wearable technology becomes significant when people start their invention in wearable computing, where their mobile devices become one of the computation sources. However, wearable technology is not mature yet in term of device security and privacy acceptance of the public. There exists some security weakness that prompts such wearable devices vulnerable to attack. One of the critical attack on wearable technology is authentication issue. The low processing due to less computing power of wearable device causethe developer's inability to equip some complicated security mechanisms and algorithm on the device.In this study, an overview of security and privacy vulnerabilities on wearable devices is presented.

  19. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  20. Wearable Device for Objective Sleep Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a critical requirement for a wearable device that can provide objective measures of sleep and activity for its crew during long duration spaceflight. In the...

  1. Wearable PPG Sensor Matrix for Cardiovascular Assessment

    OpenAIRE

    Mečņika, V; Kviesis-Kipge, E; Krieviņš, I; Marcikevics, Z; Schwarz, A.

    2014-01-01

    Wearable biomonitoring systems and smart textiles for healthcare are gaining more importance and significance in the R&D sphere due to their potentials in healthcare and sports. Such biomonitoring systems offer a number of advantages in comparison to the conventional equipment proving mobility of the wearer during a long-term monitoring of vital parameters. There are different options to set up the physiological monitoring using wireless and wearable technologies. One of ...

  2. Wearable Sensor System for Human Dynamics Analysis

    OpenAIRE

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko; Zheng, Rencheng

    2010-01-01

    A new wearable sensor system was developed for measuring tri-directional ground reaction force (GRF) and segment orientations. A stationary force plate can not measure more than one stride; moreover, in studies of stair ascent and descent measurements, a complex system consisting of many stationary force plates and a data fusion method must be constructed (Stacoff et al., 2005; Della and Bonato, 2007). The wearable sensor system proposed in this chapter can be applied to successive walking tr...

  3. Wearable probes for service design

    DEFF Research Database (Denmark)

    Mullane, Aaron; Laaksolahti, Jarmo Matti; Svanæs, Dag

    2014-01-01

    by service employees in reflecting on the delivery of a service. In this paper, we present the ‘wearable probe’, a probe concept that captures sensor data without distracting service employees. Data captured by the probe can be used by the service employees to reflect and co-reflect on the service journey......Probes are used as a design method in user-centred design to allow end-users to inform design by collecting data from their lives. Probes are potentially useful in service innovation, but current probing methods require users to interrupt their activity and are consequently not ideal for use......, helping to identify opportunities for service evolution and innovation....

  4. Stretchable antenna for wearable electronics

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-04-13

    Various examples are provided for stretchable antennas that can be used for applications such as wearable electronics. In one example, a stretchable antenna includes a flexible support structure including a lateral spring section having a proximal end and at a distal end; a metallic antenna disposed on at least a portion of the lateral spring section, the metallic antenna extending along the lateral spring section from the proximal end; and a metallic feed coupled to the metallic antenna at the proximal end of the lateral spring section. In another example, a method includes patterning a polymer layer disposed on a substrate to define a lateral spring section; disposing a metal layer on at least a portion of the lateral spring section, the metal layer forming an antenna extending along the portion of the lateral spring section; and releasing the polymer layer and the metal layer from the substrate.

  5. Localization of Physical Activity in Primary School Children Using Accelerometry and Global Positioning System.

    Directory of Open Access Journals (Sweden)

    Rahel Bürgi

    Full Text Available Ecological approaches have highlighted the importance of the built environment as a factor affecting physical activity. However, knowledge on children's activity patterns is still incomplete. Particularly, data on the spatial context of physical activity is limited, which limits the potential to design location-based interventions effectively. Using global positioning system (GPS and accelerometry, this study aimed to identify locations where children engage in moderate-vigorous physical activity (MVPA.Participants included 119 children (11-14 years, 57% girls from public schools in Winterthur, Switzerland. During a regular school week between February and April 2013, children wore an accelerometer and GPS sensor for seven consecutive days. Time-matched accelerometer and GPS data was mapped with a geographic information system and each data point was assigned to one of seven defined activity settings. Both the absolute amount of MVPA and proportion of time in MVPA were calculated for every setting. Multilevel analyses accounting for the hierarchical structure of the data were conducted to investigate any gender differences.Children achieved most MVPA on streets (34.5% and on school grounds (33.4%. The proportion children spent in MVPA was highest in recreational facilities (19.4%, at other schools (19.2% and on streets (18.6%. Boys accumulated significantly more MVPA overall and on other school grounds (p < 0.05 and showed a significantly higher proportion of time in MVPA at own school and outside of Winterthur (p < 0.05.The results indicate the importance of streets and school grounds as activity-promoting environments. The high use of streets may be an indicator for active transportation, which appears to contribute to an active lifestyle in both genders. In contrast, the school setting is more likely to encourage physical activity in boys. Recreational facilities seem to be conducive for MVPA among both genders, although infrequently visited

  6. Environmental supportiveness for physical activity in English schoolchildren: a study using Global Positioning Systems

    Directory of Open Access Journals (Sweden)

    Griffin Simon J

    2009-07-01

    Full Text Available Abstract Background There is increasing evidence that the environment plays a role in influencing physical activity in children and adults. As children have less autonomy in their behavioural choices, neighbourhood environment supportiveness may be an important determinant of their ability to be active. Yet we know rather little about the types of environment that children use for bouts of physical activity. This study uses accelerometery and global positioning system technologies to identify the charactieristics of environments being used for bouts of continuous moderate to vigorous physical activity (MVPA in a sample of English schoolchildren. Methods The study used a convenience sample of 100 children from SPEEDY (Sport, Physical activity and Eating behaviour: Environmental Determinants in Young people, a cohort of 2064 9–10 year-olds from Norfolk, England, recruited in 2007. Children wore an ActiGraph GT1M accelerometer and a Garmin Forerunner 205 GPS unit over four consecutive days. Accelerometery data points were matched to GPS locations and bouts (5 minutes or more of MVPA were identified. Bout locations were overlaid with a detailed landcover dataset developed in a GIS to identify the types of environment supporting MVPA. Findings are presented using descriptive statistics. Results Boys were also more active than girls, spending an average of 20 (SD 23 versus 11 (SD 15 minutes per day in MVPA bouts. Children who spent more time outside the home were more active (p = 0.002, especially girls and children living in rural locations (both p Conclusion The study has developed a new methodology for the identification of environments in which bouts of continuous physical activity are undertaken. The results highlight the importance of the provision of urban gardens and greenspaces, and the maintenance of safe street environments as places for children to be active.

  7. Evaluation of movement and physiological demands of rugby league referees using global positioning systems tracking.

    Science.gov (United States)

    O'Hara, J P; Brightmore, A; Till, K; Mitchell, I; Cummings, S; Cooke, C B

    2013-09-01

    The use of global positioning systems (GPS) technology within referees of any sport is limited. Therefore, the purpose of the current study was to evaluate the movement and physiological demands of professional rugby league referees using GPS tracking analysis. Time-motion analysis was undertaken on 8 referees using 5-Hz GPS devices and heart rate monitors throughout a series of Super League matches. 44 data sets were obtained with results identifying similar total distance covered between first and second half periods with a significant (P=0.004) reduction in the number of high velocity efforts performed between 5.51-7.0 m.s-1 (1st=21±8, 2nd=18±8). Mean distance covered from greatest to least distance, was 3 717±432 m, 3 009±402 m, 1 411±231 m, 395±133 m and 120±97 m for the following 5 absolute velocity classifications, respectively; 0.51-2.0 m.s-1; 2.1-4.0 m.s-1: 4.01-5.5 m.s-1; 5.51-7.0 m.s-1; <7.01 m.s-1. Heart rate was significantly (P<0.001) greater in the first (85.5±3.4% maxHR) compared to the second (82.9±3.8% maxHR) half. This highlights the intermittent nature of rugby league refereeing, consisting of low velocity activity interspersed with high velocity efforts and frequent changes of velocity. Training should incorporate interval training interspersing high velocity efforts of varying distances with low velocity activity while trying to achieve average heart rates of ~ 84% maxHR to replicate the physiological demands.

  8. Evaluation of Two Computational Techniques of Calculating Multipath Using Global Positioning System Carrier Phase Measurements

    Science.gov (United States)

    Gomez, Susan F.; Hood, Laura; Panneton, Robert J.; Saunders, Penny E.; Adkins, Antha; Hwu, Shian U.; Lu, Ba P.

    1996-01-01

    Two computational techniques are used to calculate differential phase errors on Global Positioning System (GPS) carrier war phase measurements due to certain multipath-producing objects. The two computational techniques are a rigorous computati electromagnetics technique called Geometric Theory of Diffraction (GTD) and the other is a simple ray tracing method. The GTD technique has been used successfully to predict microwave propagation characteristics by taking into account the dominant multipath components due to reflections and diffractions from scattering structures. The ray tracing technique only solves for reflected signals. The results from the two techniques are compared to GPS differential carrier phase ns taken on the ground using a GPS receiver in the presence of typical International Space Station (ISS) interference structures. The calculations produced using the GTD code compared to the measured results better than the ray tracing technique. The agreement was good, demonstrating that the phase errors due to multipath can be modeled and characterized using the GTD technique and characterized to a lesser fidelity using the DECAT technique. However, some discrepancies were observed. Most of the discrepancies occurred at lower devations and were either due to phase center deviations of the antenna, the background multipath environment, or the receiver itself. Selected measured and predicted differential carrier phase error results are presented and compared. Results indicate that reflections and diffractions caused by the multipath producers, located near the GPS antennas, can produce phase shifts of greater than 10 mm, and as high as 95 mm. It should be noted tl the field test configuration was meant to simulate typical ISS structures, but the two environments are not identical. The GZ and DECAT techniques have been used to calculate phase errors due to multipath o the ISS configuration to quantify the expected attitude determination errors.

  9. Use of global positioning system for physical activity research in youth: ESPAÇOS Adolescentes, Brazil.

    Science.gov (United States)

    Alberico, Claudia Oliveira; Schipperijn, Jasper; Reis, Rodrigo S

    2016-12-23

    The built environment is an important factor associated with physical activity and sedentary behavior (SB) during adolescence. This study presents the methods for objective assessment of context-specific moderate to vigorous physical activity (MVPA) and SB, as well as describes results from the first project using such methodology in adolescents from a developing country. An initial sample of 381 adolescents was recruited from 32 census tracts in Curitiba, Brazil (2013); 80 had their homes geocoded and wore accelerometer and GPS devices for seven days. Four domains were defined as important contexts: home, school, transport and leisure. The majority of participants (n=80) were boys (46; 57.5%), with a normal BMI (52; 65.0%) and a mean age (SD) of 14.5 (5.5) years. Adolescents spent most of their time at home, engaging in SB. Overall, the largest proportion of MVPA was while in transport (17.1% of time spent in this context) and SB while in leisure (188.6min per day). Participants engaged in MVPA for a median of 28.7 (IQR 18.2-43.2) and 17.9 (IQR 9.2-32.1) minutes during week and weekend days, respectively. Participants spent most of their day in the leisure and home domains. The use of Geographic Information System (GIS), Global Positioning System (GPS) and accelerometer data allowed objective identification of the amount of time spent in MVPA and SB in four different domains. Though the combination of objective measures is still an emerging methodology, this is a promising and feasible approach to understanding interactions between people and their environments in developing countries.

  10. Wearables for all: development of guidelines to stimulate accessible wearable technology design

    NARCIS (Netherlands)

    Wentzel, Jobke; Velleman, Eric M.; Geest, van der Thea

    2016-01-01

    In this paper, we present the rationale and approach for establishing guidelines for the development of accessible wearables. Wearable technology is increasingly integrated in our everyday lives. Therefore, ensuring accessibility is pivotal to prevent a digital divide between persons who have and pe

  11. Indirect field-oriented control of induction motors is globally asymptotically stable when used to regulate position in rigid robots

    Science.gov (United States)

    Hernández-Guzmán, Victor M.; Santibáñez, Victor; Silva-Ortigoza, Ramón

    2010-10-01

    In this note we prove, for the first time, that indirect field-oriented control of voltage-fed induction motors achieves global asymptotic stability when used to regulate position in rigid robots. This results in the simplest controller proposed until now to solve this problem. Our stability analysis considers inner current loops driven by linear PI controllers and an external position loop driven by a saturated PD controller.

  12. TONGKAT ISTIWA‘, GLOBAL POSITIONING SYSTEM (GPS) DAN GOOGLE EARTH UNTUK MENENTUKAN TITIK KOORDINAT BUMI DAN APLIKASINYA DALAM PENENTUAN ARAH KIBLAT

    OpenAIRE

    Anisah Budiwati

    2016-01-01

    There are at least three ways to determine the position or the coordinates of a spot on the Earth's surface. They are: istiwa' sticks, Global Positioning System (GPS), and Google Earth. Istiwa' stick is used without technology operations, while GPS and Google Earth are used with technology. Until now, the use of GPS and Google Earth is still a passively consumptive, without their critical analytical effort. This qualitative research using descriptive analytic mathematical methods. The objecti...

  13. Wireless wearable network and wireless body-centric network for future wearable computer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The wireless wearable network and wireless body-centric network can assistant to the user anywhere at anytime communicating with wireless components seamlessly. In this paper, the wireless wearable network and wireless body-centric network have been discussed, and the frequency band and human body effect has been estimated. The bluetooth and UWB technology can be used to construct the narrow band and the broad band wireless wearable network and wireless body-centric network separately. Further, the narrow band wireless wearable network and wireless body-centric network based on bluetooth technology has been constructed by integrated planar inverted-F antenna and the communication channel character has been studied by measurement. The results can provide the possibility of producing a prototype radio system that can be integrated with the wearable computers by suitable wireless technologies developed and applied to facilitate a reliable and continuous connectivity between the system units.

  14. Multi-antenna synchronized global navigation satellite system receiver and its advantages in high-precision positioning applications

    Science.gov (United States)

    Dong, Danan; Chen, Wen; Cai, Miaomiao; Zhou, Feng; Wang, Minghua; Yu, Chao; Zheng, Zhengqi; Wang, Yuanfei

    2016-12-01

    The multi-antenna synchronized global navigation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can be eliminated simultaneously by forming between antenna single-differences, which is equivalent to the conventional double-difference model. However, current multi-antenna synchronized global navigation satellite system receiver products have not fully realized their potential to achieve better accuracy, efficiency, and broader applications. This paper introduces the conceptual design and derivable products of multi-antenna synchronized global navigation satellite system receivers involving the aspects of attitude determination, multipath effect mitigation, phase center variation correction, and ground-based carrier phase windup calibration. Through case studies, the advantages of multi-antenna synchronized global navigation satellite system receivers in high-precision positioning applications are demonstrated.

  15. Global Attractivity of Positive Periodic Solution for a Delayed Predator-Prey System with Diffusion and Impulses

    Directory of Open Access Journals (Sweden)

    Yuanfu Shao

    2014-01-01

    Full Text Available By constructing a suitable Lyapunov functional, the global attractivity of positive periodic solutions for a delayed predator-prey system with diffusion and impulses is studied in this paper. Finally, an example and numerical analysis are given to show the effectiveness of the main results.

  16. An Inquiry-Based Approach to Teaching the Spherical Earth Model to Preservice Teachers Using the Global Positioning System

    Science.gov (United States)

    Song, Youngjin; Schwenz, Richard

    2013-01-01

    This article describes an inquiry-based lesson to deepen preservice teachers' understanding of the spherical Earth model using the Global Positioning System. The lesson was designed with four learning goals: (1) to increase preservice teachers' conceptual knowledge of the spherical Earth model; (2) to develop preservice teachers'…

  17. Getting from Here to There and Knowing Where: Teaching Global Positioning Systems to Students with Visual Impairments

    Science.gov (United States)

    Phillips, Craig L.

    2011-01-01

    Global Positioning Systems' (GPS) technology is available for individuals with visual impairments to use in wayfinding and address Lowenfeld's "three limitations of blindness." The considerations and methodologies for teaching GPS usage have developed over time as GPS information and devices have been integrated into orientation and mobility…

  18. The Acceptance of Smart Wearable Devices through Health Cognitive

    Directory of Open Access Journals (Sweden)

    Huang Fen-Fen

    2016-01-01

    Full Text Available Many people have become “health consumers” and “health conscious” by seeking products to more effectively manage health-related lifestyle aspects such as fitness activities, healthcare, sports, and rehabilitation. The results revealed that perceived ease of use, perceived usefulness, and health cognitive had a significant impact on attitude to use. To increase individuals’ intention to use smart wearable devices, it is critical to encourage a positive attitude toward using the devices to acquire health knowledge. Emphasizing devising effective means to communicate the health utility of the devices to customers should be the highest priority for industry producers.

  19. Nonparametric Bayesian Filtering for Location Estimation, Position Tracking, and Global Localization of Mobile Terminals in Outdoor Wireless Environments

    Directory of Open Access Journals (Sweden)

    Mohamed Khalaf-Allah

    2008-01-01

    Full Text Available The mobile terminal positioning problem is categorized into three different types according to the availability of (1 initial accurate location information and (2 motion measurement data.Location estimation refers to the mobile positioning problem when both the initial location and motion measurement data are not available. If both are available, the positioning problem is referred to as position tracking. When only motion measurements are available, the problem is known as global localization. These positioning problems were solved within the Bayesian filtering framework. Filter derivation and implementation algorithms are provided with emphasis on the mapping approach. The radio maps of the experimental area have been created by a 3D deterministic radio propagation tool with a grid resolution of 5 m. Real-world experimentation was conducted in a GSM network deployed in a semiurban environment in order to investigate the performance of the different positioning algorithms.

  20. [The research and expectation on wearable health monitoring system].

    Science.gov (United States)

    Chang, Feiba; Yin, Jun; Zhang, Hehua; Yan, Lexian; Li, Shuying; Zhou, Deqiang

    2015-01-01

    Wearable health monitoring systems that use wearable biosensors capturing human motion and physiological parameters, to achieve the wearer's movement and health management needs. Wearable health monitoring system is a noninvasive continuous detection of human physiological information, data wireless transmission and real-time processing capabilities of integrated system, can satisfy physiological condition monitoring under the condition of low physiological and psychological load. This paper first describes the wearable health monitoring system structure and the relevant technology applied to wearable health monitoring system, and focuses on the current research work what we have done associated with wearable monitoring that wearable respiration and ECG acquisition and construction of electric multi-parameter body area network. Finally, the wearable monitoring system for the future development direction is put forward a simple expectation.

  1. Using Biometrics in Evaluating Ritual Gestures in Wearable Device

    Institute of Scientific and Technical Information of China (English)

    Li Wei

    2015-01-01

    The article emphasized on the versatility of designing interactions with considerations of wearable technology under the principle of slow technology. It also proposed a new way of evaluating the emotional effect of wearable devices by using the biometric approach.

  2. Quantitative wearable sensors for objective assessment of Parkinson's disease

    NARCIS (Netherlands)

    Maetzler, W.; Domingos, J.; Srulijes, K.; Ferreira, J.J.; Bloem, B.R.

    2013-01-01

    There is a rapidly growing interest in the quantitative assessment of Parkinson's disease (PD)-associated signs and disability using wearable technology. Both persons with PD and their clinicians see advantages in such developments. Specifically, quantitative assessments using wearable technology

  3. Wearable Sensors May Spot Illness Before Symptoms Start

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_163021.html Wearable Sensors May Spot Illness Before Symptoms Start New technology ... 12, 2017 THURSDAY, Jan. 12, 2017 (HealthDay News) -- Wearable sensors to track things such as heart rate, activity ...

  4. Globalization

    Institute of Scientific and Technical Information of China (English)

    范玮丽

    2008-01-01

    This paper mainly talks about the currently hot topic-globalization. Firstly, it brings out the general trend about globalization and how to better understand its implication. Secondly, it largely focuses on how to deal with it properly, especially for international marketers. Then, facing with the overwhelming trend, it is time for us to think about seriously what has globalization brought to us. Last but not least, it summarized the author's personal view about the future of globalization and how should we go.

  5. Physical activity intensity can be accurately monitored by smartphone global positioning system 'app'.

    Science.gov (United States)

    Gordon, Brett Ashley; Bruce, Lyndell; Benson, Amanda Clare

    2016-08-01

    Monitoring physical activity is important to better individualise health and fitness benefits. This study assessed the concurrent validity of a smartphone global positioning system (GPS) 'app' and a sport-specific GPS device with a similar sampling rate, to measure physical activity components of speed and distance, compared to a higher sampling sport-specific GPS device. Thirty-eight (21 female, 17 male) participants, mean age of 24.68, s = 6.46 years, completed two 2.400 km trials around an all-weather athletics track wearing GPSports Pro™ (PRO), GPSports WiSpi™ (WISPI) and an iPhone™ with a Motion X GPS™ 'app' (MOTIONX). Statistical agreement, assessed using t-tests and Bland-Altman plots, indicated an (mean; 95% LOA) underestimation of 2% for average speed (0.126 km·h(-1); -0.389 to 0.642; p < .001), 1.7% for maximal speed (0.442 km·h(-1); -2.676 to 3.561; p = .018) and 1.9% for distance (0.045 km; -0.140 to 0.232; p < .001) by MOTIONX compared to that measured by PRO. In contrast, compared to PRO, WISPI overestimated average speed (0.232 km·h(-1); -0.376 to 0.088; p < .001) and distance (0.083 km; -0.129 to -0.038; p < .001) by 3.5% whilst underestimating maximal speed by 2.5% (0.474 km·h(-1); -1.152 to 2.099; p < .001). Despite the statistically significant difference, the MOTIONX measures intensity of physical activity, with a similar error as WISPI, to an acceptable level for population-based monitoring in unimpeded open-air environments. This presents a low-cost, minimal burden opportunity to remotely monitor physical activity participation to improve the prescription of exercise as medicine.

  6. Globalization

    Directory of Open Access Journals (Sweden)

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  7. WEARABLE ELECTRONICS IN THE NEXT YEARS

    Directory of Open Access Journals (Sweden)

    PRINIOTAKIS George

    2015-05-01

    Full Text Available The term ‘Wearable Technologies’, ‘Wearable Electronics’, or ‘Smart Garments’, is associated to those clothing and soft or hard accessories which integrate electronic components, or which are made of smart textiles. Smart textiles research represents a new model for generating creative and novel solutions for integrating electronics into unusual environments and will result in new discoveries that push the boundaries of science forward. Last few years there are several hundreds or maybe thousands of research teams that works and develop such materials and products. But the key driver of the success of the wearable electronics is the acceptance from the end user. It is estimates that only for the next three years the sales in the wearable will be almost multiply by ten times. The flexible wearable computer industry's patent applications arrived at 429 in the second quarter of 2014, up 27.7% year on year, and witnessed a record high in the report's tracking period starting from the first quarter of 2012. The market has already in the shelf commercial products as wristbands (Fitness/well-being/sports devices, smart jewels, smart watches, mobile health devices, tech clothing, and augmented reality glasses. The recently developed enabling technologies eliminates the barriers and help the scientists and developers to launch new types of "wearable". The life style of a large share of population, the low cost of 3D printing for rapid prototyping locally, the large available platforms, the lower cost of sensors and components give a an impetus for large scale of products. In the same time the direct ordering channels to manufacturers of components facilitates the small producers and the scientists for prototype development. In this article we identify key challenges for the success of the wearable and we provide an outlook over the field and a prediction for the near future.

  8. The acceptance of wearable devices for personal healthcare in China

    OpenAIRE

    Weng, M

    2016-01-01

    Context: In recent years, health and fitness have drawn greater attention to consumers in China. The demand of wearable devices has risen and the number of potential customers is large. This study would like to explore if the wearable devices match customers’ desire and expectation, and what influence users’ behavioral intention to use wearable devices. Aim: This thesis aims to examine the acceptance of wearable devices, in particular, smart bands and dedicated healthcare applications, in...

  9. Fabric-based integrated energy devices for wearable activity monitors.

    Science.gov (United States)

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics.

  10. Towards wearability in fingertip haptics: a 3-DoF wearable device for cutaneous force feedback.

    Science.gov (United States)

    Prattichizzo, Domenico; Chinello, Francesco; Pacchierotti, Claudio; Malvezzi, Monica

    2013-01-01

    Wearability will significantly increase the use of haptics in everyday life, as has already happened for audio and video technologies. The literature on wearable haptics is mainly focused on vibrotactile stimulation, and only recently, wearable devices conveying richer stimuli, like force vectors, have been proposed. This paper introduces design guidelines for wearable haptics and presents a novel 3-DoF wearable haptic interface able to apply force vectors directly to the fingertip. It consists of two platforms: a static one, placed on the back of the finger, and a mobile one, responsible for applying forces at the finger pad. The structure of the device resembles that of parallel robots, where the fingertip is placed in between the static and the moving platforms. This work presents the design of the wearable display, along with the quasi-static modeling of the relationship between the applied forces and the platform's orientation and displacement. The device can exert up to 1.5 N, with a maximum platform inclination of 30 degree. To validate the device and verify its effectiveness, a curvature discrimination experiment was carried out: employing the wearable device together with a popular haptic interface improved the performance with respect of employing the haptic interface alone.

  11. Conformal, wearable, thin microwave antenna for sub-skin and skin surface monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Converse, Mark C.; Chang, John T.; Duoss, Eric B.

    2017-05-16

    A wearable antenna is operably positioned on a wearer's skin and is operably connected the wearer's tissue. A first antenna matched to the wearer's tissue is operably positioned on the wearer's skin. A second antenna matched to the air is operably positioned on the wearer's skin. Transmission lines connect the first antenna and the second antenna.

  12. Photogrammetric and Global Positioning System Measurements of Active Pahoehoe Lava Lobe Emplacement on Kilauea, Hawaii

    Science.gov (United States)

    Hamilton, Christopher W.; Glaze, Lori S.; James, Mike R.; Baloga, Stephen M.; Fagents, Sarah A.

    2012-01-01

    Basalt is the most common rock type on the surface of terrestrial bodies throughout the solar system and -- by total volume and areal coverage -- pahoehoe flows are the most abundant form of basaltic lava in subaerial and submarine environments on Earth. A detailed understanding of pahoehoe emplacement processes is necessary for developing accurate models of flow field development, assessing hazards associated with active lava flows, and interpreting the significance of lava flow morphology on Earth and other planetary bodies. Here, we examine the active emplacement of pahoehoe lobes along the margins of the Hook Flow from Pu'u 'O'o on Kilauea, Hawaii. Topographic data were acquired between 21 and 23 February 2006 using stereo-imaging and differential global positing system (DGPS) measurements. During this time, the average discharge rate for the Hook Flow was 0.01-0.05 cubic m/s. Using stereogrammetric point clouds and interpolated digital terrain models (DTMs), active flow fronts were digitized at 1 minute intervals. These areal spreading maps show that the lava lobe grew by a series of breakouts tha t broadly fit into two categories: narrow (0.2-0.6 m-wide) toes that grew preferentially down-slope, and broad (1.4-3.5 m-wide) breakouts that formed along the sides of the lobe, nearly perpendicular to the down-flow axis. These lobes inflated to half of their final thickness within approx 5 minutes, with a rate of inflation that generally deceased with time. Through a combination of down-slope and cross-slope breakouts, lobes developed a parabolic cross-sectional shape within tens of minutes. We also observed that while the average local discharge rate for the lobe was generally constant at 0.0064 +/- 0.0019 cubic m/s, there was a 2 to 6 fold increase in the areal coverage rate every 4.1 +/- 0.6 minutes. We attribute this periodicity to the time required for the dynamic pressurization of the liquid core of the lava lobe to exceed the cooling-induced strength of the

  13. Existence and global attractivity of positive periodic solution for competition-predator system with variable delays

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Hongyong [Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)]. E-mail: hongyongz@126.com; Ding Nan [Department of Mathematics, Xinjiang Normal University, Urumqi 830054 (China)

    2006-07-15

    In this paper, Lotka-Volterra competition-predator system with variable delays is considered. Some sufficient conditions ensuring the existence and global attractivity of periodic solution for this system are obtained by using coincidence degree theory and Lyapunov functional method. An example is also worked out to demonstrate the advantages of our results.

  14. Wearable Sensor Networks for Motion Capture

    Directory of Open Access Journals (Sweden)

    Dennis Arsenault

    2015-08-01

    Full Text Available This work presents the development of a full body sensor-based motion tracking system that functions through wearable inertial sensors. The system is comprised of a total of ten wearable sensors and maps the player's motions to an on-screen character in real-time. A hierarchical skeletal model was implemented that allows players to navigate and interact with the virtual world without the need of a hand-held controller. To demonstrate the capabilities of the system, a simple virtual reality game was created. As a wearable system, the ability for the users to engage in activities while not being tied to a camera system, or being forced indoors presents a significant opportunity for mobile entertainment, augmented reality and interactive systems that use the body as a significant form of input. This paper outlines the key developments necessary to implement such a system.

  15. Analysis of Public Datasets for Wearable Fall Detection Systems

    Directory of Open Access Journals (Sweden)

    Eduardo Casilari

    2017-06-01

    Full Text Available Due to the boom of wireless handheld devices such as smartwatches and smartphones, wearable Fall Detection Systems (FDSs have become a major focus of attention among the research community during the last years. The effectiveness of a wearable FDS must be contrasted against a wide variety of measurements obtained from inertial sensors during the occurrence of falls and Activities of Daily Living (ADLs. In this regard, the access to public databases constitutes the basis for an open and systematic assessment of fall detection techniques. This paper reviews and appraises twelve existing available data repositories containing measurements of ADLs and emulated falls envisaged for the evaluation of fall detection algorithms in wearable FDSs. The analysis of the found datasets is performed in a comprehensive way, taking into account the multiple factors involved in the definition of the testbeds deployed for the generation of the mobility samples. The study of the traces brings to light the lack of a common experimental benchmarking procedure and, consequently, the large heterogeneity of the datasets from a number of perspectives (length and number of samples, typology of the emulated falls and ADLs, characteristics of the test subjects, features and positions of the sensors, etc.. Concerning this, the statistical analysis of the samples reveals the impact of the sensor range on the reliability of the traces. In addition, the study evidences the importance of the selection of the ADLs and the need of categorizing the ADLs depending on the intensity of the movements in order to evaluate the capability of a certain detection algorithm to discriminate falls from ADLs.

  16. Military display market segment: wearable and portable

    Science.gov (United States)

    Desjardins, Daniel D.; Hopper, Darrel G.

    2003-09-01

    The military display market (MDM) is analyzed in terms of one of its segments, wearable and portable displays. Wearable and portable displays are those embedded in gear worn or carried by warfighters. Categories include hand-mobile (direct-view and monocular/binocular), palm-held, head/helmet-mounted, body-strapped, knee-attached, lap-born, neck-lanyard, and pocket/backpack-stowed. Some 62 fielded and developmental display sizes are identified in this wearable/portable MDM segment. Parameters requiring special consideration, such as weight, luminance ranges, light emission, viewing angles, and chromaticity coordinates, are summarized and compared. Ruggedized commercial versus commercial off-the-shelf designs are contrasted; and a number of custom displays are also found in this MDM category. Display sizes having aggregate quantities of 5,000 units or greater or having 2 or more program applications are identified. Wearable and portable displays are also analyzed by technology (LCD, LED, CRT, OLED and plasma). The technical specifications and program history of several high-profile military programs are discussed to provide a systems context for some representative displays and their function. As of August 2002 our defense-wide military display market study has documented 438,882 total display units distributed across 1,163 display sizes and 438 weapon systems. Wearable and portable displays account for 202,593 displays (46% of total DoD) yet comprise just 62 sizes (5% of total DoD) in 120 weapons systems (27% of total DoD). Some 66% of these wearable and portable applications involve low information content displays comprising just a few characters in one color; however, there is an accelerating trend towards higher information content units capable of showing changeable graphics, color and video.

  17. Existence, uniqueness, and global attractivity of positive solutions and MLE of the parameters to the Logistic equation with random perturbation

    Institute of Scientific and Technical Information of China (English)

    Da-qing JIANG; Bao-xue ZHANG; De-hui WANG; Ning-zhong SHI

    2007-01-01

    This paper discusses a randomized Logistic equation (N)(t) = (r + α(B)(t))N(t)[1 - N(t)/K]with an initial value N(0) = No, and No is a random variable satisfying 0 < No < K. The existence,uniqueness and global attractivity of positive solutions and maximum likelihood estimate (MLE) of the parameters of the equation are studied.

  18. Breast or bottle? HIV-positive women's responses to global health policy on infant feeding in India.

    Science.gov (United States)

    Van Hollen, Cecilia

    2011-12-01

    This article describes how local responses to global health initiatives on infant feeding for HIV-positive mothers reflect and transform sociocultural values in Tamil Nadu, India. Drawing from ethnographic research conducted from 2002 to 2008, the article compares guidelines for counseling HIV-positive mothers established by UNICEF and WHO with decision-making processes and perceptions of HIV-positive mothers. In addition to the financial considerations, three factors are identified as impinging on this decision: (1) a strong sociocultural value in favor of breastfeeding linked to historical traditions and contemporary state and international development discourses, (2) constructions of class identity, (3) the influence of a rights-based discourse in HIV/AIDS advocacy. This wide range of factors points to the difficulty of implementing the international protocols. This is the first study of its kind to closely examine the complex determinants in HIV-positive women's decisions and evaluations of infant feeding methods in India.

  19. Towards Wearable Gaze Supported Augmented Cognition

    DEFF Research Database (Denmark)

    Toshiaki Kurauchi, Andrew; Hitoshi Morimoto, Carlos; Mardanbeigi, Diako;

    to reduce the amount of information and provide an appropriate mechanism for low and divided attention interaction. We claim that most current gaze interaction paradigms are not appropriate for wearable computing because they are not designed for divided attention. We have used principles suggested...... by the wearable computing community to develop a gaze supported augmented cognition application with three interaction modes. The application provides information of the person being looked at. The continuous mode updates information every time the user looks at a different face. The key activated discrete mode...

  20. Wearable Sensor Networks for Motion Capture

    OpenAIRE

    Dennis Arsenault; Anthony Whitehead

    2015-01-01

    This work presents the development of a full body sensor-based motion tracking system that functions through wearable inertial sensors. The system is comprised of a total of ten wearable sensors and maps the player's motions to an on-screen character in real-time. A hierarchical skeletal model was implemented that allows players to navigate and interact with the virtual world without the need of a hand-held controller. To demonstrate the capabilities of the system, a simple virtual reality ga...

  1. Geoscience Australia Continuous Global Positioning System (CGPS) Station Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Ruddick, R. [Geoscience Australia, Symonston (Australia); Twilley, B. [Geoscience Australia, Symonston (Australia)

    2016-03-01

    This station formed part of the Australian Regional GPS Network (ARGN) and South Pacific Regional GPS Network (SPRGN), which is a network of continuous GPS stations operating within Australia and its Territories (including Antarctica) and the Pacific. These networks support a number of different science applications including maintenance of the Geospatial Reference Frame, both national and international, continental and tectonic plate motions, sea level rise, and global warming.

  2. Global Positioning System surveys of storm-surge sensors deployed during Hurricane Ike, Seadrift, Texas, to Lake Charles, Louisiana, 2008

    Science.gov (United States)

    Payne, Jason; Woodward, Brenda K.; Storm, John B.

    2009-01-01

    The U.S. Geological Survey installed a network of pressure sensors at 65 sites along the Gulf Coast from Seadrift, Texas, northeast to Lake Charles, Louisiana, to record the timing, areal extent, and magnitude of inland storm surge and coastal flooding caused by Hurricane Ike in September 2008. A Global Positioning System was used to obtain elevations of reference marks near each sensor. A combination of real-time kinematic (RTK) and static Global Positioning System surveys were done to obtain elevations of reference marks. Leveling relative to reference marks was done to obtain elevations of sensor orifices above the reference marks. This report summarizes the Global Positioning System data collected and processed to obtain reference mark and storm-sensor-orifice elevations for 59 storm-surge sensors recovered from the original 65 installed as a necessary prelude to computation of storm-surge elevations. National Geodetic Survey benchmarks were used for RTK surveying. Where National Geodetic Survey benchmarks were not within 12 kilometers of a sensor site, static surveying was done. Additional control points for static surveying were in the form of newly established benchmarks or reestablished existing benchmarks. RTK surveying was used to obtain positions and elevations of reference marks for 29 sensor sites. Static surveying was used to obtain positions and elevations of reference marks for 34 sensor sites; four sites were surveyed using both methods. Multiple quality checks on the RTK-survey and static-survey data were applied. The results of all quality checks indicate that the desired elevation accuracy for the surveys of this report, less than 0.1-meter error, was achieved.

  3. GLOBAL BEHAVIOR OF POSITIVE SOLUTIONS TO A KIND OF THREE-POINT BOUNDARY VALUE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, using the fixed-point index theorems and the cone theory we study the structure of the positive solutions to a kind of second-order three-point boundary value problems. We obtain the result which guarantee that the positive solution set of the three-point boundary value problem has a continuum, which means that there exists a nonempty, closed and connected subset.

  4. The sustainable management and protection of forests: analysis of the current position globally.

    Science.gov (United States)

    Freer-Smith, Peter; Carnus, Jean-Michel

    2008-06-01

    The loss of forest area globally due to change of land use, the importance of forests in the conservation of biodiversity and in carbon and other biogeochemical cycles, together with the threat to forests from pollution and from the impacts of climate change, place forestry policy and practice at the center of global environmental and sustainability strategy. Forests provide important economic, environmental, social, and cultural benefits, so that in forestry, as in other areas of environmental policy and management, there are tensions between economic development and environmental protection. In this article we review the current information on global forest cover and condition, examine the international processes that relate to forest protection and to sustainable forest management, and look at the main forest certification schemes. We consider the link between the international processes and certification schemes and also their combined effectiveness. We conclude that in some regions of the world neither mechanism is achieving forest protection, while in others local or regional implementation is occurring and is having a significant impact. Choice of certification scheme and implementation of management standards are often influenced by a consideration of the associated costs, and there are some major issues over the monitoring of agreed actions and of the criteria and indicators of sustainability. There are currently a number of initiatives seeking to improve the operation of the international forestry framework (e.g., The Montreal Process, the Ministerial Convention of the Protection of Forests in Europe and European Union actions in Europe, the African Timber Organisation and International Tropical Timber Organisation initiative for African tropical forest, and the development of a worldwide voluntary agreement on forestry in the United Nations Forum on Forests). We suggest that there is a need to improve the connections between scientific understanding

  5. Global trophic position comparison of two dominant mesopelagic fish families (Myctophidae, Stomiidae) using amino acid nitrogen isotopic analyses

    Science.gov (United States)

    Choy, C. Anela; Davison, Peter C.; Drazen, Jeffrey C.; Flynn, Adrian; Gier, Elizabeth J.; Hoffman, Joel C.; McClain-Counts, Jennifer P.; Miller, Todd W.; Popp, Brian N.; Ross, Steve W.; Sutton, Tracey T.

    2012-01-01

    The δ15N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ15N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ15N values. Regional differences in the δ15N values of phenylalanine confirmed that bulk tissue δ15N values reflect region-specific water mass biogeochemistry controlling δ15N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP) for lanternfishes (family Myctophidae) (AA-TP ~2.9) largely align with expectations from stomach content studies (TP ~3.2), while AA-TPs for dragonfishes (family Stomiidae) (AA-TP ~3.2) were lower than TPs derived from stomach content studies (TP~4.1). We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure.

  6. Global trophic position comparison of two dominant mesopelagic fish families (Myctophidae, Stomiidae using amino acid nitrogen isotopic analyses.

    Directory of Open Access Journals (Sweden)

    C Anela Choy

    Full Text Available The δ(15N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ(15N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ(15N values. Regional differences in the δ(15N values of phenylalanine confirmed that bulk tissue δ(15N values reflect region-specific water mass biogeochemistry controlling δ(15N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP for lanternfishes (family Myctophidae (AA-TP ∼2.9 largely align with expectations from stomach content studies (TP ∼3.2, while AA-TPs for dragonfishes (family Stomiidae (AA-TP ∼3.2 were lower than TPs derived from stomach content studies (TP∼4.1. We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure.

  7. Global asymptotic stabilization of large-scale hydraulic networks using positive proportional controls

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard; Wisniewski, Rafal

    2014-01-01

    An industrial case study involving a large-scale hydraulic network underlying a district heating system subject to structural changes is considered. The problem of controlling the pressure drop across the so-called end-user valves in the network to a designated vector of reference values under......-users. Furthermore, by a proper design of controller gains the closed-loop equilibrium point can be designed to belong to an arbitrarily small neighborhood of the desired equilibrium point. Since there exists a globally asymptotically stable equilibrium point independently on the number of end-users in the system...

  8. Ionospheric Slant Total Electron Content Analysis Using Global Positioning System Based Estimation

    Science.gov (United States)

    Sparks, Lawrence C. (Inventor); Mannucci, Anthony J. (Inventor); Komjathy, Attila (Inventor)

    2017-01-01

    A method, system, apparatus, and computer program product provide the ability to analyze ionospheric slant total electron content (TEC) using global navigation satellite systems (GNSS)-based estimation. Slant TEC is estimated for a given set of raypath geometries by fitting historical GNSS data to a specified delay model. The accuracy of the specified delay model is estimated by computing delay estimate residuals and plotting a behavior of the delay estimate residuals. An ionospheric threat model is computed based on the specified delay model. Ionospheric grid delays (IGDs) and grid ionospheric vertical errors (GIVEs) are computed based on the ionospheric threat model.

  9. Effects of Alu elements on global nucleosome positioning in the human genome

    Directory of Open Access Journals (Sweden)

    Yamashita Riu

    2010-05-01

    Full Text Available Abstract Background Understanding the genome sequence-specific positioning of nucleosomes is essential to understand various cellular processes, such as transcriptional regulation and replication. As a typical example, the 10-bp periodicity of AA/TT and GC dinucleotides has been reported in several species, but it is still unclear whether this feature can be observed in the whole genomes of all eukaryotes. Results With Fourier analysis, we found that this is not the case: 84-bp and 167-bp periodicities are prevalent in primates. The 167-bp periodicity is intriguing because it is almost equal to the sum of the lengths of a nucleosomal unit and its linker region. After masking Alu elements, these periodicities were greatly diminished. Next, using two independent large-scale sets of nucleosome mapping data, we analyzed the distribution of nucleosomes in the vicinity of Alu elements and showed that (1 there are one or two fixed slot(s for nucleosome positioning within the Alu element and (2 the positioning of neighboring nucleosomes seems to be in phase, more or less, with the presence of Alu elements. Furthermore, (3 these effects of Alu elements on nucleosome positioning are consistent with inactivation of promoter activity in Alu elements. Conclusions Our discoveries suggest that the principle governing nucleosome positioning differs greatly across species and that the Alu family is an important factor in primate genomes.

  10. Combination of Wearable Multi-Biosensor Platform and Resonance Frequency Training for Stress Management of the Unemployed Population

    Directory of Open Access Journals (Sweden)

    Wanqing Wu

    2012-09-01

    Full Text Available Currently considerable research is being directed toward developing methodologies for controlling emotion or releasing stress. An applied branch of the basic field of psychophysiology, known as biofeedback, has been developed to fulfill clinical and non-clinical needs related to such control. Wearable medical devices have permitted unobtrusive monitoring of vital signs and emerging biofeedback services in a pervasive manner. With the global recession, unemployment has become one of the most serious social problems; therefore, the combination of biofeedback techniques with wearable technology for stress management of unemployed population is undoubtedly meaningful. This article describes a wearable biofeedback system based on combining integrated multi-biosensor platform with resonance frequency training (RFT biofeedback strategy for stress management of unemployed population. Compared to commercial system, in situ experiments with multiple subjects indicated that our biofeedback system was discreet, easy to wear, and capable of offering ambulatory RFT biofeedback.Moreover, the comparative studies on the altered autonomic nervous system (ANS modulation before and after three week RFT biofeedback training was performed in unemployed population with the aid of our wearable biofeedback system. The achieved results suggested that RFT biofeedback in combination with wearable technology was capable of significantly increasingoverall HRV, which indicated by decreasing sympathetic activities, increasing parasympathetic activities, and increasing ANS synchronization. After 3-week RFT-based respiration training, the ANS’s regulating function and coping ability of unemployed population have doubled, and tended toward a dynamic balance.

  11. Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Differential Global Positioning (DGPS), Inertial and Vision Sensors.

    Science.gov (United States)

    Heredia, Guillermo; Caballero, Fernando; Maza, Iván; Merino, Luis; Viguria, Antidio; Ollero, Aníbal

    2009-01-01

    This paper presents a method to increase the reliability of Unmanned Aerial Vehicle (UAV) sensor Fault Detection and Identification (FDI) in a multi-UAV context. Differential Global Positioning System (DGPS) and inertial sensors are used for sensor FDI in each UAV. The method uses additional position estimations that augment individual UAV FDI system. These additional estimations are obtained using images from the same planar scene taken from two different UAVs. Since accuracy and noise level of the estimation depends on several factors, dynamic replanning of the multi-UAV team can be used to obtain a better estimation in case of faults caused by slow growing errors of absolute position estimation that cannot be detected by using local FDI in the UAVs. Experimental results with data from two real UAVs are also presented.

  12. Application of global positioning system to determination of tectonic plate movements and crustal deformations

    Science.gov (United States)

    Anderle, R. J.

    1978-01-01

    It is shown that pseudo-range measurements to four GPS satellites based on correlation of the pseudo random code transmissions from the satellites can be used to determine the relative position of ground stations which are separated by several hundred kilometers to a precision at the centimeter level. Carrier signal measurements during the course of passage of satellites over a pair of stations also yield centimeter precision in the relative position, but oscillator instabilities limit the accuracy. The accuracy of solutions based on either type of data is limited by unmodeled tropospheric refraction effects which would reach 5 centimeters at low elevation angles for widely separated stations.

  13. Digital architecture, wearable computers and providing affinity

    DEFF Research Database (Denmark)

    Guglielmi, Michel; Johannesen, Hanne Louise

    2005-01-01

    will, through research, a workshop and participation in a cumulus competition, focus on the exploration of boundaries between digital architecture, performative space and wearable computers. Our design method in general focuses on the interplay between the performing body and the environment – between...

  14. Wearable Sensors for Chemical & Biological Detection

    Energy Technology Data Exchange (ETDEWEB)

    Ozanich, Richard M.

    2017-08-31

    One of PNNL’s strengths is the ability to conduct comprehensive technology foraging and objective assessments of various technology areas. The following examples highlight leading research by others in the area of chemical and biological (chem/bio) detection that could be further developed into a robust, highly integrated wearables to aid preparedness, response and recovery.

  15. A Wearable All-Solid Photovoltaic Textile.

    Science.gov (United States)

    Zhang, Nannan; Chen, Jun; Huang, Yi; Guo, Wanwan; Yang, Jin; Du, Jun; Fan, Xing; Tao, Changyuan

    2016-01-13

    A solution is developed to power portable electronics in a wearable manner by fabricating an all-solid photovoltaic textile. In a similar way to plants absorbing solar energy for photosynthesis, humans can wear the as-fabricated photovoltaic textile to harness solar energy for powering small electronic devices.

  16. Mental Fatigue Monitoring Using a Wearable Transparent Eye Detection System

    Directory of Open Access Journals (Sweden)

    Kota Sampei

    2016-01-01

    Full Text Available We propose mental fatigue measurement using a wearable eye detection system. The system is capable of acquiring movement of the pupil and blinking from the light reflected from the eye. The reflection is detected by dye-sensitized photovoltaic cells. Since these cells are patterned onto the eyeglass and do not require external input power, the system is notable for its lightweight and low power consumption and can be combined with other wearable devices, such as a head mounted display. We performed experiments to correlate information obtained by the eye detection system with the mental fatigue of the user. Since it is quite difficult to evaluate mental fatigue objectively and quantitatively, we assumed that the National Aeronautics and Space Administration Task Load Index (NASA-TLX had a strong correlation with te mental fatigue. While a subject was requested to conduct calculation tasks, the eye detection system collected his/her information that included position, velocity and total movement of the eye, and amount and frequency of blinking. Multiple regression analyses revealed the correlation between NASA-TLX and the information obtained for 3 out of 5 subjects.

  17. Non-existence of global solutions to generalized dissipative Klein-Gordon equations with positive energy

    Directory of Open Access Journals (Sweden)

    Maxim Olegovich Korpusov

    2012-07-01

    Full Text Available In this article the initial-boundary-value problem for generalized dissipative high-order equation of Klein-Gordon type is considered. We continue our study of nonlinear hyperbolic equations and systems with arbitrary positive energy. The modified concavity method by Levine is used for proving blow-up of solutions.

  18. ThimbleSense: a fingertip-wearable tactile sensor for grasp analysis.

    Science.gov (United States)

    Battaglia, Edoardo; Bianchi, Matteo; Altobelli, Alessandro; Grioli, Giorgio; Catalano, Manuel; Serio, Alessandro; Santello, Marco; Bicchi, Antonio

    2015-10-08

    Accurate measurement of contact forces between hand and grasped objects is crucial to study sensorimotor control during grasp and manipulation. In this work we introduce ThimbleSense, a prototype of individual-digit wearable force/torque sensor based on the principle of intrinsic tactile sensing. By exploiting the integration of this approach with an active marker-based motion capture system, the proposed device simultaneously measures absolute position and orientation of the fingertip, which in turn yields measurements of contacts and force components expressed in a global reference frame. The main advantage of this approach with respect to more conventional solutions is its versatility. Specifically, ThimbleSense can be used to study grasping and manipulation of a wide variety of objects, while still retaining complete force/torque measurements. Nevertheless, validation of the proposed device is a necessary step before it can be used for experimental purposes. In this work we present the results of a series of experiments designed to validate the accuracy of ThimbleSense measurements and evaluate the effects of distortion of tactile afferent inputs caused by the device's rigid shells on grasp forces.

  19. Kidney Disease: Improving Global Outcomes guidelines on anaemia management in chronic kidney disease: a European Renal Best Practice position statement.

    Science.gov (United States)

    Locatelli, Francesco; Bárány, Peter; Covic, Adrian; De Francisco, Angel; Del Vecchio, Lucia; Goldsmith, David; Hörl, Walter; London, Gerard; Vanholder, Raymond; Van Biesen, Wim

    2013-06-01

    Recently, the Kidney Disease: Improving Global Outcomes (KDIGO) group has produced comprehensive clinical practice guidelines for the management of anaemia in CKD patients. These guidelines addressed all of the important points related to anaemia management in CKD patients, including therapy with erythropoieis stimulating agents (ESA), iron therapy, ESA resistance and blood transfusion use. Because most guidelines were 'soft' rather than 'strong', and because global guidelines need to be adapted and implemented into the regional context where they are used, on behalf of the European Renal Best Practice Advisory Board some of its members, and other external experts in this field, who were not participants in the KDIGO guidelines group, were invited to participate in this anaemia working group to examine and comment on the KDIGO documents in this position paper. In this article, the group concentrated only on those guidelines which we considered worth amending or adapting. All guidelines not specifically mentioned are fully endorsed.

  20. A hand-held 3D laser scanning with global positioning system of subvoxel precision

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Nestor [GOM, Departamento de Fisica y Geologia, Universidad de Pamplona (Colombia); Meneses, Nestor; Meneses, Jaime [GOTS-CENM, Escuela de Fisica, UIS, Bucaramanga (Colombia); Gharbi, Tijani, E-mail: nesariher@unipamplona.edu.co [Departement D' Optique, FEMTO-ST, 16 Route de Gray, 25030 Besancon (France)

    2011-01-01

    In this paper we propose a hand-held 3D laser scanner composed of an optical head device to extract 3D local surface information and a stereo vision system with subvoxel precision to measure the position and orientation of the 3D optical head. The optical head is manually scanned over the surface object by the operator. The orientation and position of the 3D optical head is determined by a phase-sensitive method using a 2D regular intensity pattern. This phase reference pattern is rigidly fixed to the optical head and allows their 3D location with subvoxel precision in the observation field of the stereo vision system. The 3D resolution achieved by the stereo vision system is about 33 microns at 1.8 m with an observation field of 60cm x 60cm.

  1. Globalization

    DEFF Research Database (Denmark)

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  2. Wearables and the Internet of Things for Health: Wearable, Interconnected Devices Promise More Efficient and Comprehensive Health Care.

    Science.gov (United States)

    Metcalf, David; Milliard, Sharlin T J; Gomez, Melinda; Schwartz, Michael

    2016-01-01

    In our recent book Health-e Everything: Wearables and the Internet of Things for Health, we capture in an interactive e-book format some global thought-leader perspectives as well as early examples of case studies and novel innovations that are driving this emerging technology domain. Here, we provide a brief snapshot of key findings related to these novel technologies and use cases, which are driving both health care practitioners and health consumers (patients). As technologists, having a firm understanding of customer-driven innovation and the actual user benefits of interconnective devices for health will help us engineer better solutions that are more targeted to the triple aim of better, faster, and cheaper health solutions.

  3. Existence and Global Asymptotic Behavior of Positive Solutions for Nonlinear Fractional Dirichlet Problems on the Half-Line

    Directory of Open Access Journals (Sweden)

    Imed Bachar

    2014-01-01

    Full Text Available We are interested in the following fractional boundary value problem: Dαu(t+atuσ=0, t∈(0,∞, limt→0⁡t2-αu(t=0, limt→∞⁡t1-αu(t=0, where 1<α<2, σ∈(-1,1, Dα is the standard Riemann-Liouville fractional derivative, and a is a nonnegative continuous function on (0,∞ satisfying some appropriate assumptions related to Karamata regular variation theory. Using the Schauder fixed point theorem, we prove the existence and the uniqueness of a positive solution. We also give a global behavior of such solution.

  4. Existence and Global Attractivity of Positive Periodic Solutions for The Neutral Multidelay Logarithmic Population Model with Impulse

    Directory of Open Access Journals (Sweden)

    Zhenguo Luo

    2013-01-01

    Full Text Available Suffiicient and realistic conditions are established in this paper for the existence and global attractivity of a positive periodic solution to the neutral multidelay logarithmic population model with impulse by using the theory of abstract continuous theorem of k-set contractive operator and some inequality techniques. The results improve and generalize the known ones in Li 1999, Lu and Ge 2004, Y. Luo and Z. G. Luo 2010, and Wang et al. 2009. As an application, we also give an example to illustrate the feasibility of our main results.

  5. Global health and climate change: moving from denial and catastrophic fatalism to positive action.

    Science.gov (United States)

    Costello, Anthony; Maslin, Mark; Montgomery, Hugh; Johnson, Anne M; Ekins, Paul

    2011-05-13

    The health effects of climate change have had relatively little attention from climate scientists and governments. Climate change will be a major threat to population health in the current century through its potential effects on communicable disease, heat stress, food and water security, extreme weather events, vulnerable shelter and population migration. This paper addresses three health-sector strategies to manage the health effects of climate change-promotion of mitigation, tackling the pathways that lead to ill-health and strengthening health systems. Mitigation of greenhouse gas (GHG) emissions is affordable, and low-carbon technologies are available now or will be in the near future. Pathways to ill-health can be managed through better information, poverty reduction, technological innovation, social and cultural change and greater coordination of national and international institutions. Strengthening health systems requires increased investment in order to provide effective public health responses to climate-induced threats to health, equitable treatment of illness, promotion of low-carbon lifestyles and renewable energy solutions within health facilities. Mitigation and adaptation strategies will produce substantial benefits for health, such as reductions in obesity and heart disease, diabetes, stress and depression, pneumonia and asthma, as well as potential cost savings within the health sector. The case for mitigating climate change by reducing GHGs is overwhelming. The need to build population resilience to the global health threat from already unavoidable climate change is real and urgent. Action must not be delayed by contrarians, nor by catastrophic fatalists who say it is all too late.

  6. Global gravity field models from the GPS positions of CHAMP, GRACE and GOCE satellites

    Science.gov (United States)

    Bezděk, A.; Sebera, J.; Klokočník, J.; Kostelecký, J.

    2012-04-01

    The aim of our work is to generate Earth's gravity field models from the GPS positions of low Earth orbiters. We will present our inversion method and numerical results based on the real-world data of CHAMP, GRACE and GOCE satellites. The presented inversion method is based on Newton's second law of motion, which relates the observed acceleration of the satellite with the forces acting on it. The vector of the observed acceleration is obtained through a numerical second-derivative filter applied to the time series of the kinematic positions. Forces other than those due to the geopotential are either modelled (lunisolar perturbations, tides) or provided by the onboard measurements (nongravitational perturbations). Then the observation equations are formulated using the gradient of the spherical harmonic expansion of the geopotential. From this linear system the harmonic coefficients are directly obtained. We do not use any a priori gravity field model. Although the basic scheme of the acceleration approach is straightforward, the implementation details play a crucial role in obtaining reasonable results. The numerical derivative of noisy data (here the GPS positions) strongly amplifies the high frequency noise and creates autocorrelation in the observation errors. We successfully solve both of these problems by using the generalized least squares method, which defines a linear transformation of the observation equations. In the transformed variables the errors become uncorrelated, so the ordinary least squares estimation may be used to find the regression parameters with correct estimates of their uncertainties. The digital filter of the second derivative is an approximation to the analytical operation. We will show how different the results might be depending on the particular choice of the parameters defining the filter. Another problem is the correlation of the errors in the GPS positions. Here we use the tools from time series analysis. The systematic behaviour

  7. Performance Enhancement of Underwater Target Tracking by Fusing Data of Array of Global Positioning System Sonobuoys

    Directory of Open Access Journals (Sweden)

    Ahmed El-Shafie

    2009-01-01

    Full Text Available Problem statement: An accurate knowledge of geographic positions of sonobuoys is critical for the conduct of antisubmarine warfare operations and detected target localization. Deployed from an airborne platform or a surface vessel, arrays of sonobuoys could be used to efficiently track and localize submarines. Lastly, some sonobuoys were being equipped with GPS for improving system accuracy and potentially allowing networked Sonobuoy positioning. However, the computation of the range using the propagation loss profile and the data of one sonobuoy usually leads to inaccurate target localization due to several effects and uncertainties. It was, alternatively, reported that if the target is within the detection rage of two or more sonobuoys, greatly improved target localization can be achieved. Approach: Aim of this research was to investigate the feasibility of fusing data from a distributed field of GPS sonobuoys to create an Artificial Intelligence (AI based model for the error of the range computation in case of the target being detected by only one sonobuoy. Proposed module was designed utilizing Adaptive Neuron-Fuzzy Inference Systems (ANFIS to estimate the range error associated with the computation using the propagation loss profile when the target is within the detection range of only one sonobuoy. The architecture of the proposed ANFIS system had two unique features. First was the real-time cross-validation applied during the update (training procedure of the ANFIS-based module while the target was detected by two sonobuoys and the range was computed. Second feature was the use of non-overlapping and moving window for the real-time implementation of the ANFIS-based data fusion module. Results: Performance of the proposed system was examined with simulation data considering different scenarios for both the array of GPS sonobuoys and the target. Results showed that the corrected positioning by one sonobuoy is completely following the

  8. Inverse spiking filter based acquisition enhancement in software based global positioning system receiver

    Directory of Open Access Journals (Sweden)

    G. Arul Elango

    2015-01-01

    Full Text Available The lower visibility of the satellite in the acquisition stage of a GPS receiver under worst noisy situation leads to reacquisition of the data and thereby takes a longer time to obtain the first position fix. If the impulse noise affects the GPS signal, the conventional ways of acquiring the satellites do not guarantee to meet the minimum requirement of four satellites to find the user position. The performance of GPS receiver acquisition can be improved in the low SNR level using inverse spiking filtering technique. In the proposed method, the estimate of the desired GPS L1 signal corrupted by impulse noise (gn is obtained by the prediction error filter (hopt, which is the optimum inverse filter that reshapes the noisy signal (yn into a desired GPS signal (xn. In the proposed method, to detect the visible satellites under weak signal conditions the traditional differential coherent approach is combined with the inverse spiking filter method to increase the number of visible satellites and to avoid the reacquisition process. Montecarlo simulation is carried out to assess the performance of the proposed method for C/N0 of 20 dB-Hz and results indicate that the modified differential coherent method effectively excises the noise with 90% probability of detection. Subsequently tracking operation is also tested to confirm the acquisition performance by demodulating the navigation data successfully.

  9. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    Science.gov (United States)

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-02-09

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments.

  10. Global evidence of positive impacts of freshwater biodiversity on fishery yields

    Science.gov (United States)

    Holland, Robert Alan; Darwall, William Robert Thomas; Eigenbrod, Felix; Tittensor, Derek

    2016-01-01

    need for more data to fully understand and monitor the contribution of biodiversity to inland fisheries globally. PMID:27587980

  11. Positioning in the Global Value Chain as a Sustainable Strategy: A Case Study in a Mature Industry

    Directory of Open Access Journals (Sweden)

    Jose Albors-Garrigos

    2014-06-01

    Full Text Available As a result of the development of new industrialized countries, such as Brazil, China and other Southern Asian economies, as well as a globalized economy, traditional competitive paradigms based on advantages associated with costs and quality efficiencies or even innovation are no longer sufficient. These previous classical paradigms related competitiveness either to costs or technology innovation and the resources of industry incumbents. However, the combination of adequate knowledge and relationship management with marketing efforts brings forth a reconsideration of the present competitive models that go beyond those analyses from the point of view of global value chains. The objective of this investigation will analyze the governance structure of the territorial value chain in the Spanish and Italian ceramic tile industry, through the understanding of the previous and current roles of several industries involved in the value creation system. By way of both a case study and quantitative methodology approach, we will explore the paradigm change where traditional chain actors are losing their grip on their contribution to the territorial value creation system as new actors appear with a more stable status. The article concludes that proper positioning in the global value chain is a key strategy for the sustainability of the involved firms, especially Small and Medium Enterprises (SME.

  12. Contemporary velocity field of crustal movement of Chinese mainland from Global Positioning System measurements

    Institute of Scientific and Technical Information of China (English)

    NIU Zhijun; WANG Yongqing; WANG Yongxiang; LI Bai; WANG Min; SUN Hanrong; SUN Jianzhong; YOU Xinzhao; GAN Weijun; XUE Guijiang; HAO Jinxin; XIN Shaohua

    2005-01-01

    @@ Significant advancement for the monitoring of crustal deformation in the Chinese mainland was accomplished in 1998 when the Crustal Movement Observation Network of China (CMONOC) was established. This National Key Scientific Infrastructural Project provides important information on present-day crustal deformation that can be used for many aspects of earth sciences such as navigation, positioning, and surveying. The principal GPS data used for this study come from the CMONOC collected from 1998 to 2004, including 27 fiducial stations which operate continuously since 1988, 56 basic stations observed annually with an occupation of at least 7 days (~168 hours' data collection) in each survey, and 961 regional stations observed in 1999, 2001, and 2004 with an occupation of at least 3 days (~72 hours' data collection) in each survey[1,2].

  13. Wearable technology smart watches to Google Glass for libraries

    CERN Document Server

    Bruno, Tom

    2015-01-01

    Emerging devices are placing powerful computing abilities into the wardrobes of consumers through wearable technology which combines fashion and function in new and exciting ways. The most recognizable of these emerging gadgets is Google Glass. Wearable Technology: Smart Watches to Google Glass for Libraries provides a comprehensive overview of the current wearable technology landscape, the types of devices and functionality available, the benefits and limitations of this type of technology, and how you can make use of it in yo

  14. Soft, Embodied, Situated & Connected: enriching interactions with soft wearables

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2016-01-01

    Soft wearables include clothing and textile-based accessories that incorporate smart textiles and soft electronic interfaces to enable responsive and interactive experiences. When designed well, soft wearables leverage the cultural, sociological and material qualities of textiles, fashion and dress...... approaches impact use. Finally, we reflect on how embodied and collocated interactions might extend understanding of how to frame wearables research and development to arrive at rich interactions that are soft, embodied, situated and connected....

  15. The Use of Wearable Microsensors to Quantify Sport-Specific Movements.

    Science.gov (United States)

    Chambers, Ryan; Gabbett, Tim J; Cole, Michael H; Beard, Adam

    2015-07-01

    Microtechnology has allowed sport scientists to understand the locomotor demands of various sports. While wearable global positioning technology has been used to quantify the locomotor demands of sporting activities, microsensors (i.e. accelerometers, gyroscopes and magnetometers) embedded within the units also have the capability to detect sport-specific movements. The objective of this study was to determine the extent to which microsensors (also referred to as inertial measurement units and microelectromechanical sensors) have been utilised in quantifying sport-specific movements. A systematic review of the use of microsensors and associated terms to evaluate sport-specific movements was conducted; permutations of the terms used included alternate names of the various technologies used, their applications and different applied environments. Studies for this review were published between 2008 and 2014 and were identified through a systematic search of six electronic databases: Academic Search Complete, CINAHL, PsycINFO, PubMed, SPORTDiscus, and Web of Science. Articles were required to have used athlete-mounted sensors to detect sport-specific movements (e.g. rugby union tackle) rather than sensors mounted to equipment and monitoring generic movement patterns. A total of 2395 studies were initially retrieved from the six databases and 737 results were removed as they were duplicates, review articles or conference abstracts. After screening titles and abstracts of the remaining papers, the full text of 47 papers was reviewed, resulting in the inclusion of 28 articles that met the set criteria around the application of microsensors for detecting sport-specific movements. Eight articles addressed the use of microsensors within individual sports, team sports provided seven results, water sports provided eight articles, and five articles addressed the use of microsensors in snow sports. All articles provided evidence of the ability of microsensors to detect sport

  16. Global positioning system measurements over a strain monitoring network in the eastern two-thirds of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Strange, W.E.

    1991-09-01

    A 45-station geodetic network was established in 1987 using global positioning system (GPS) technology to provide a means of monitoring strain and deformation in the central and eastern United States. Reduction of the initial epoch data showed that accuracies of 1 to 3 cm can be achieved for horizontal position, provided sufficient observations are available and there are four or more fiducial stations whose positions are known a priori, for example from Very Long Baseline Interferometry measurements. Accuracies obtained provide the ability to determine strain at the 1:10{sup 7} to 1:10{sup 8} level. Vertical positions are less accurate because of problems in modeling refraction and are determined at the 5 to 7 cm level. It is planned to remeasure this network at regular intervals in the coming years to place bounds on the strain occurring in the central and eastern United States. This network is also expected to serve as a reference network for more detailed monitoring networks in areas of high risk such as the New Madrid area. Future measurements are expected to provide more accurate results because of increased numbers of GPS satellites available and improved computation software. The improved software will also allow future upgrading of the accuracy of the 1987 observations. 3 figs., 5 tabs.

  17. The Routing Algorithm Based on Fuzzy Logic Applied to the Individual Physiological Monitoring Wearable Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jie Jiang

    2015-01-01

    Full Text Available In recent years, the research of individual wearable physiological monitoring wireless sensor network is in the primary stage. The monitor of physiology and geographical position used in wearable wireless sensor network requires performances such as real time, reliability, and energy balance. According to these requirements, this paper introduces a design of individual wearable wireless sensor network monitoring system; what is more important, based on this background, this paper improves the classical Collection Tree Protocol and puts forward the improved routing protocol F-CTP based on the fuzzy logic routing algorithm. Simulation results illustrate that, with the F-CTP protocol, the sensor node can transmit data to the sink node in real time with higher reliability and the energy of the nodes consumes balance. The sensor node can make full use of network resources reasonably and prolong the network life.

  18. Global Positioning System Technology (GPS for Psychological Research: A Test of Convergent and Nomological Validity

    Directory of Open Access Journals (Sweden)

    Pedro eWolf

    2013-06-01

    Full Text Available The purpose of this paper is to examine the convergent and nomological validity of a GPS-based measure of daily activity, operationalized as Number of Places Visited (NPV. Relations among the GPS-based measure and two self-report measures of NPV, as well as relations among NPV and two factors made up of self-reported individual differences were examined. The first factor was composed of variables related to an Active Lifestyle (AL (e.g. positive affect, extraversion… and the second factor was composed of variables related to a Sedentary Lifestyle (SL (e.g. depression, neuroticism…. NPV was measured over a four-day period. This timeframe was made up of two week and two weekend days. A bi-variate analysis established one level of convergent validity and a Split-Plot GLM examined convergent validity, nomological validity, and alternative hypotheses related to constraints on activity throughout the week simultaneously. The first analysis revealed significant correlations among NPV measures- weekday, weekend, and the entire four day blocks, supporting the convergent validity of the Diary-, Google Maps-, and GPS-NPV measures. Results from the second analysis, indicating non-significant mean differences in NPV regardless of method, also support this conclusion. We also found that AL is a statistically significant predictor of NPV no matter how NPV was measured. We did not find a statically significant relation among NPV and SL. These results permit us to infer that the GPS-based NPV measure has convergent and nomological validity.

  19. Development of a Wearable Device for Motion Capturing Based on Magnetic and Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Bin Fang

    2017-01-01

    Full Text Available This paper presents a novel wearable device for gesture capturing based on inertial and magnetic measurement units that are made up of micromachined gyroscopes, accelerometers, and magnetometers. The low-cost inertial and magnetic measurement unit is compact and small enough to wear and there are altogether thirty-six units integrated in the device. The device is composed of two symmetric parts, and either the right part or the left one contains eighteen units covering all the segments of the arm, palm, and fingers. The offline calibration and online calibration are proposed to improve the accuracy of sensors. Multiple quaternion-based extended Kalman filters are designed to estimate the absolute orientations, and kinematic models of the arm-hand are considered to determine the relative orientations. Furthermore, position algorithm is deduced to compute the positions of corresponding joint. Finally, several experiments are implemented to verify the effectiveness of the proposed wearable device.

  20. Localization of wearable users using invisible retro-reflective markers and an IR camera

    Science.gov (United States)

    Nakazato, Yusuke; Kanbara, Masayuki; Yokoya, Naokazu

    2005-03-01

    This paper describes a localization method for wearable computer users. To realize applications of wearable computers like a navigation system, the position of a user is required for location-based services. Many localization methods in indoor environments have been proposed. One of the methods estimates user's position using IR beacons or visual markers. However, these methods have same problems concerning power supply and/or undesirable visual effects. In order to avoid the problems, we propose a new localization method which is based on using an IR camera and invisible markers consisting of translucent retro-reflectors. In the proposed method, to extract the regions of the markers from the captured images stably, the camera captures the reflection of IR LEDs which are flashed on and off synchronously.

  1. Detecting vital signs with wearable wireless sensors.

    Science.gov (United States)

    Yilmaz, Tuba; Foster, Robert; Hao, Yang

    2010-01-01

    The emergence of wireless technologies and advancements in on-body sensor design can enable change in the conventional health-care system, replacing it with wearable health-care systems, centred on the individual. Wearable monitoring systems can provide continuous physiological data, as well as better information regarding the general health of individuals. Thus, such vital-sign monitoring systems will reduce health-care costs by disease prevention and enhance the quality of life with disease management. In this paper, recent progress in non-invasive monitoring technologies for chronic disease management is reviewed. In particular, devices and techniques for monitoring blood pressure, blood glucose levels, cardiac activity and respiratory activity are discussed; in addition, on-body propagation issues for multiple sensors are presented.

  2. Wearable Textile Electrodes for ECG Measurement

    Directory of Open Access Journals (Sweden)

    Lukas Vojtech

    2013-01-01

    Full Text Available The electrocardiogram (ECG is one of the most important parameters for monitoring of the physiological state of a person. Currently available systems for ECG monitoring are both stationary and wearable, but the comfort of the monitored person is not at a satisfactory level because these systems are not part of standard clothing. This article is therefore devoted to the development and measurement of wearable textile electrodes for ECG measurement device with high comfort for the user. The electrode material is made of electrically conductive textile. This creates a textile composite that guarantees high comfort for the user while ensuring good quality of ECG measurements. The composite is implemented by a carrier (a T-shirt with flame retardant and sensing electrodes embroidered with yarn based on a mixture of polyester coated with silver nanoparticles and cotton. The electrodes not only provide great comfort but are also antibacterial and antiallergic due to silver nanoparticles.

  3. Optimization-Based Wearable Tactile Rendering.

    Science.gov (United States)

    Perez, Alvaro G; Lobo, Daniel; Chinello, Francesco; Cirio, Gabriel; Malvezzi, Monica; San Martin, Jose; Prattichizzo, Domenico; Otaduy, Miguel A

    2016-10-20

    Novel wearable tactile interfaces offer the possibility to simulate tactile interactions with virtual environments directly on our skin. But, unlike kinesthetic interfaces, for which haptic rendering is a well explored problem, they pose new questions about the formulation of the rendering problem. In this work, we propose a formulation of tactile rendering as an optimization problem, which is general for a large family of tactile interfaces. Based on an accurate simulation of contact between a finger model and the virtual environment, we pose tactile rendering as the optimization of the device configuration, such that the contact surface between the device and the actual finger matches as close as possible the contact surface in the virtual environment. We describe the optimization formulation in general terms, and we also demonstrate its implementation on a thimble-like wearable device. We validate the tactile rendering formulation by analyzing its force error, and we show that it outperforms other approaches.

  4. Detecting Vital Signs with Wearable Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Yang Hao

    2010-12-01

    Full Text Available The emergence of wireless technologies and advancements in on-body sensor design can enable change in the conventional health-care system, replacing it with wearable health-care systems, centred on the individual. Wearable monitoring systems can provide continuous physiological data, as well as better information regarding the general health of individuals. Thus, such vital-sign monitoring systems will reduce health-care costs by disease prevention and enhance the quality of life with disease management. In this paper, recent progress in non-invasive monitoring technologies for chronic disease management is reviewed. In particular, devices and techniques for monitoring blood pressure, blood glucose levels, cardiac activity and respiratory activity are discussed; in addition, on-body propagation issues for multiple sensors are presented.

  5. Medical Wearable Technologies: Applications, Problems and Solutions

    OpenAIRE

    Bostanci, Erkan

    2015-01-01

    The focus of this paper is on wearable technologies which are increasingly being employed in the medical field. From smart watches to smart glasses, from electronic textile to data gloves; several gadgets are playing important roles in diagnosis and treatment of various medical conditions. The threats posed by these technologies are another matter of concern that must be seriously taken into account. Numerous threats ranging from data privacy to big data problems are facing us as adverse effe...

  6. Wearable sensors network for health monitoring using e-Health platform

    OpenAIRE

    I. Orha; S. Oniga

    2015-01-01

    In this paper we have proposed to present a wearable system for automatic recording of the main physiological parameters of the human body: body temperature, galvanic skin response, respiration rate, blood pressure, pulse, blood oxygen content, blood glucose content, electrocardiogram (ECG), electromyography(EMG), and patient position. To realize this system, we have developed a program that can read and automatically save in a file, the data from specialized sensors. ...

  7. A review of wearable technology in medicine.

    Science.gov (United States)

    Iqbal, Mohammed H; Aydin, Abdullatif; Brunckhorst, Oliver; Dasgupta, Prokar; Ahmed, Kamran

    2016-10-01

    With rapid advances in technology, wearable devices have evolved and been adopted for various uses, ranging from simple devices used in aiding fitness to more complex devices used in assisting surgery. Wearable technology is broadly divided into head-mounted displays and body sensors. A broad search of the current literature revealed a total of 13 different body sensors and 11 head-mounted display devices. The latter have been reported for use in surgery (n = 7), imaging (n = 3), simulation and education (n = 2) and as navigation tools (n = 1). Body sensors have been used as vital signs monitors (n = 9) and for posture-related devices for posture and fitness (n = 4). Body sensors were found to have excellent functionality in aiding patient posture and rehabilitation while head-mounted displays can provide information to surgeons to while maintaining sterility during operative procedures. There is a potential role for head-mounted wearable technology and body sensors in medicine and patient care. However, there is little scientific evidence available proving that the application of such technologies improves patient satisfaction or care. Further studies need to be conducted prior to a clear conclusion. © The Royal Society of Medicine.

  8. Wearable textile battery rechargeable by solar energy.

    Science.gov (United States)

    Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

    2013-01-01

    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities.

  9. Advances in wearable technology for rehabilitation.

    Science.gov (United States)

    Bonato, Paolo

    2009-01-01

    Assessing the impact of rehabilitation interventions on the real life of individuals is a key element of the decision-making process required to choose a rehabilitation strategy. In the past, therapists and physicians inferred the effectiveness of a given rehabilitation approach from observations performed in a clinical setting and self-reports by patients. Recent developments in wearable technology have provided tools to complement the information gathered by rehabilitation personnel via patient's direct observation and via interviews and questionnaires. A new generation of wearable sensors and systems has emerged that allows clinicians to gather measures in the home and community settings that capture patients' activity level and exercise compliance, the effectiveness of pharmacological interventions, and the ability of patients to perform efficiently specific motor tasks. Available unobtrusive sensors allow clinical personnel to monitor patients' movement and physiological data such as heart rate, respiratory rate, and oxygen saturation. Cell phone technology and the widespread access to the Internet provide means to implement systems designed to remotely monitor patients' status and optimize interventions based on individual responses to different rehabilitation approaches. This chapter summarizes recent advances in the field of wearable technology and presents examples of application of this technology in rehabilitation.

  10. Wearable ear EEG for brain interfacing

    Science.gov (United States)

    Schroeder, Eric D.; Walker, Nicholas; Danko, Amanda S.

    2017-02-01

    Brain-computer interfaces (BCIs) measuring electrical activity via electroencephalogram (EEG) have evolved beyond clinical applications to become wireless consumer products. Typically marketed for meditation and neu- rotherapy, these devices are limited in scope and currently too obtrusive to be a ubiquitous wearable. Stemming from recent advancements made in hearing aid technology, wearables have been shrinking to the point that the necessary sensors, circuitry, and batteries can be fit into a small in-ear wearable device. In this work, an ear-EEG device is created with a novel system for artifact removal and signal interpretation. The small, compact, cost-effective, and discreet device is demonstrated against existing consumer electronics in this space for its signal quality, comfort, and usability. A custom mobile application is developed to process raw EEG from each device and display interpreted data to the user. Artifact removal and signal classification is accomplished via a combination of support matrix machines (SMMs) and soft thresholding of relevant statistical properties.

  11. Supine Versus Prone Position During Percutaneous Nephrolithotomy: A Report from the Clinical Research Office of the Endourological Society Percutaneous Nephrolithotomy Global Study

    DEFF Research Database (Denmark)

    G. Vadivia, José; M. Scarpa, Roberto; Duvdevani, Mordechai

    2011-01-01

    To determine differences in patients' characteristics, operative time and procedures, and perioperative outcomes between prone and supine positioning in percutaneous nephrolithotomy (PCNL) using the Clinical Research Office of the Endourological Society (CROES) PCNL Global Study database....

  12. Evolution of the Global Aurora During Positive IMF B(sub z) and Varying IMF B(sub y) Conditions

    Science.gov (United States)

    Cumnock, J. A.; Sharber, J. A.; Heelis, R. A.; Hairston, M. R.; Craven, J. D.

    1997-01-01

    The DE 1 imaging instrumentation provides a full view of the entire auroral oval every 12 min for several hours during each orbit. We examined five examples of global evolution of the aurora that occurred during the northern hemisphere winter of 1981-1982 when the z component of the interplanetary magnetic field (IMF) was positive and the y component was changing sign. Evolution of an expanded auroral emission region into a theta aurora appears to require a change in the sign of B(sub y) during northward Interplanetary Magnetic Field. Theta aurora are formed both from expanded duskside emission regions (B(sub y) changes from positive to negative) and dawnside emission regions (B(sub y) changes from negative to positive), however the dawnside-originating and duskside-originating evolutions are not mirror images. The persistence of a theta aurora after its formation suggests that there may be no clear relationship between the theta aurora pattern and the instantaneous configuration of the IMF.

  13. Ground-penetrating radar and differential global positioning system data collected from Long Beach Island, New Jersey, April 2015

    Science.gov (United States)

    Zaremba, Nicholas J.; Smith, Kathryn E.L.; Bishop, James M.; Smith, Christopher G.

    2016-08-04

    Scientists from the United States Geological Survey, St. Petersburg Coastal and Marine Science Center, U.S. Geological Survey Pacific Coastal and Marine Science Center, and students from the University of Hawaii at Manoa collected sediment cores, sediment surface grab samples, ground-penetrating radar (GPR) and Differential Global Positioning System (DGPS) data from within the Edwin B. Forsythe National Wildlife Refuge–Holgate Unit located on the southern end of Long Beach Island, New Jersey, in April 2015 (FAN 2015-611-FA). The study’s objective was to identify washover deposits in the stratigraphic record to aid in understanding barrier island evolution. This report is an archive of GPR and DGPS data collected from Long Beach Island in 2015. Data products, including raw GPR and processed DGPS data, elevation corrected GPR profiles, and accompanying Federal Geographic Data Committee metadata can be downloaded from the Data Downloads page.

  14. Estimation of crustal movements using the Global Positioning System (GPS measurements along Nile Valley area, Egypt from 2007 to 2012

    Directory of Open Access Journals (Sweden)

    Kamal Sakr

    2015-06-01

    The present study aimed to determine the recent crustal movement parameters along the Nile Valley using the Global Positioning System (GPS measurements. To achieve this mission, a GPS network consisting of ten geodetic stations has been established on both sides along the Nile Valley area. GPS measurements have been collected from 2007 to 2012. The collected data were processed using Bernese 5.0 Software. The result of the data analysis indicates that the rate of local velocity is small ranging from 1 to 4 mm/year. This rate is consistent with the low rate of occurrence of recent earthquakes activity along the Nile Valley area. But, the results obtained from the calculation of the regional velocity indicated that the velocity of the GPS stations including the African Plate motion is about 25 mm/year in the northeast direction which is consistent with the African Plate motion direction.

  15. The precise computation of geoid undulation differences with comparison to results obtained from the global positioning system

    Science.gov (United States)

    Engelis, T.; Rapp, R. H.; Tscherning, C. C.

    1984-01-01

    Ellipsoidal height differences have been determined for 13 station pairs in the central Ohio region using measurements made with the Global Positioning System. This information was used to compute geoid undulation differences based on known orthometric heights. These differences were compared to gravimetrically-computed undulations (using a Stokes integration procedure, and least squares collocation having an internal r.m.s. agreement of plus or minus 1 cm in undulation differences). The two sets of undulation differences have an r.m.s. discrepancy of plus or minus 5 cm while the average station separation is of the order of 14 km. This good agreement suggests that gravimetric data can be used to compute accurate geoid undulation differences that can be used to convert ellipsoidal height differences obtained from GPS to orthometric height differences.

  16. Regaining America's leading global position in the innovation of science and technology: Increasing engineering program enrollment in higher education

    Science.gov (United States)

    Burklo, Daniel A.

    While the United States has always been a global leader in the innovation of science and technology, this leading global position is in jeopardy. As other developing countries produce intellectual capital in the form of engineers at increasing rates, the country will continue to lose ground. Today the need for the country to produce engineers is greater than ever before. Recognizing this need, attempts have been made to increase entrance into engineering fields in higher education by providing STEM (science, technology, engineering, and mathematics) activities during K-12 education. While STEM initiatives create awareness and interest, this study investigates what actually motivates individuals to choose engineering programs in higher education. A quantitative study utilizing survey results from 202 first year engineering students in the state of Ohio illustrates what has motivated them to choose engineering as a major. The study examines who, when, and what motivated the students to choose engineering by examining the relationship of influential people and STEM initiatives participated in during their K-12 education to enrollment in engineering programs at colleges and universities in the state of Ohio. The study proved the general hypothesis that there are influential people in an individual's college choice, such as the parent, and there are time periods during K-12 education when individuals are more motivated, such as the high school years. The study also showed a positive correlation between the motivation toward engineering programs and the number of STEM opportunities in which individuals participated yet there was little difference when comparing the different types of STEM initiatives.

  17. Estimating the position and orientation of a mobile robot with respect to a trajectory using omnidirectional imaging and global appearance.

    Science.gov (United States)

    Payá, Luis; Reinoso, Oscar; Jiménez, Luis M; Juliá, Miguel

    2017-01-01

    Along the past years, mobile robots have proliferated both in domestic and in industrial environments to solve some tasks such as cleaning, assistance, or material transportation. One of their advantages is the ability to operate in wide areas without the necessity of introducing changes into the existing infrastructure. Thanks to the sensors they may be equipped with and their processing systems, mobile robots constitute a versatile alternative to solve a wide range of applications. When designing the control system of a mobile robot so that it carries out a task autonomously in an unknown environment, it is expected to take decisions about its localization in the environment and about the trajectory that it has to follow in order to arrive to the target points. More concisely, the robot has to find a relatively good solution to two crucial problems: building a model of the environment, and estimating the position of the robot within this model. In this work, we propose a framework to solve these problems using only visual information. The mobile robot is equipped with a catadioptric vision sensor that provides omnidirectional images from the environment. First, the robot goes along the trajectories to include in the model and uses the visual information captured to build this model. After that, the robot is able to estimate its position and orientation with respect to the trajectory. Among the possible approaches to solve these problems, global appearance techniques are used in this work. They have emerged recently as a robust and efficient alternative compared to landmark extraction techniques. A global description method based on Radon Transform is used to design mapping and localization algorithms and a set of images captured by a mobile robot in a real environment, under realistic operation conditions, is used to test the performance of these algorithms.

  18. Effects of Reliability and Global Context on Explicit and Implicit Measures of Sensed Hand Position in Cursor-Control Tasks

    Science.gov (United States)

    Rand, Miya K.; Heuer, Herbert

    2016-01-01

    In a cursor-control task in which the motion of the cursor is rotated randomly relative to the movement of the hand, the sensed directions of hand and cursor are mutually biased. In our previous study, we used implicit and explicit measures of the bias of sensed hand direction toward the direction of the cursor and found different characteristics. The present study serves to explore further differences and commonalities of these measures. In Experiment 1, we examined the effects of different relative reliabilities of visual and proprioceptive information on the explicitly and implicitly assessed bias of sensed hand direction. In two conditions, participants made an aiming movement and returned to the start position immediately or after a delay of 6 s during which the cursor was no longer visible. The unimodal proprioceptive information on final hand position in the delayed condition served to increase its relative reliability. As a result, the bias of sensed hand direction toward the direction of the cursor was reduced for the explicit measure, with a complementary increase of the bias of sensed cursor direction, but unchanged for the implicit measure. In Experiment 2, we examined the influence of global context, specifically of the across-trial sequence of judgments of hand and cursor direction. Both explicitly and implicitly assessed biases of sensed hand direction did not significantly differ between the alternated condition (trial-to-trial alternations of judgments of hand and cursor direction) and the blocked condition (judgments of hand or cursor directions in all trials). They both substantially decreased from the alternated to the randomized condition (random sequence of judgments of hand and cursor direction), without a complementary increase of the bias of sensed cursor direction. We conclude that our explicit and implicit measures are equally sensitive to variations of coupling strength as induced by the variation of global context in Experiment 2, but

  19. Wearable thermoelectric generators for body-powered devices

    NARCIS (Netherlands)

    Leonov, V.; Vullers, R.J.M.

    2009-01-01

    This paper presents a discussion on energy scavenging for wearable devices in conjunction with human body properties. Motivation, analysis of the relevant properties of the human body, and results of optimization of a thermopile and a thermoelectric generator for wearable and portable devices are

  20. Low-power wearable sensing for preventive healthcare

    NARCIS (Netherlands)

    Penders, Julien; Altini, Marco; Wijsman, Jacqueline; Vullers, Rudolf; Van Hoof, C.

    2013-01-01

    Low-power wearable sensing will soon allow the quantitative and continuous measurement of health parameters. In this paper we illustrate how wearable sensors can be used to track activity and energy expenditure, and measure stress. Soon such information may empower people in managing their own healt

  1. Wearable thermoelectric generators for body-powered devices

    NARCIS (Netherlands)

    Leonov, V.; Vullers, R.J.M.

    2009-01-01

    This paper presents a discussion on energy scavenging for wearable devices in conjunction with human body properties. Motivation, analysis of the relevant properties of the human body, and results of optimization of a thermopile and a thermoelectric generator for wearable and portable devices are pr

  2. Quantitative wearable sensors for objective assessment of Parkinson's disease

    NARCIS (Netherlands)

    Maetzler, W.; Domingos, J.; Srulijes, K.; Ferreira, J.J.; Bloem, B.R.

    2013-01-01

    There is a rapidly growing interest in the quantitative assessment of Parkinson's disease (PD)-associated signs and disability using wearable technology. Both persons with PD and their clinicians see advantages in such developments. Specifically, quantitative assessments using wearable technology ma

  3. Special Article Personal Wearable Technologies in Education: Value or Villain?

    Science.gov (United States)

    Borthwick, Arlene C.; Anderson, Cindy L.; Finsness, Elizabeth S.; Foulger, Teresa S.

    2015-01-01

    Wearable personal learning technologies can gather data from the person wearing the device or from the surrounding environment and enable that data to be transferred to another device or shared via the cloud. Wearable technologies can serve as a valuable asset in the classroom enhancing differentiation of instruction and student engagement. They…

  4. Wearable Keyboard Using Conducting Polymer Electrodes on Textiles.

    Science.gov (United States)

    Takamatsu, Seiichi; Lonjaret, Thomas; Ismailova, Esma; Masuda, Atsuji; Itoh, Toshihiro; Malliaras, George G

    2016-06-01

    A wearable keyboard is demonstrated in which conducting polymer electrodes on a knitted textile sense tactile input as changes in capacitance. The use of a knitted textile as a substrate endows stretchability and compatibility to large-area formats, paving the way for a new type of wearable human-machine interface.

  5. Solar fashion: An embodied approach to wearable technology

    NARCIS (Netherlands)

    Smelik, A.M.; Toussaint, L.; Dongen, P. van

    2016-01-01

    Using Pauline van Dongen’s ‘Wearable Solar’ project as a case study, the authors argue that materiality and embodiment should be taken into account both in the design of and the theoretical reflection on wearable technology. Bringing together a fashion designer and scholars from cultural studies, th

  6. What Does Big Data Mean for Wearable Sensor Systems?

    Science.gov (United States)

    Lovell, N. H.; Yang, G. Z.; Horsch, A.; Lukowicz, P.; Murrugarra, L.; Marschollek, M.

    2014-01-01

    Summary Objectives The aim of this paper is to discuss how recent developments in the field of big data may potentially impact the future use of wearable sensor systems in healthcare. Methods The article draws on the scientific literature to support the opinions presented by the IMIA Wearable Sensors in Healthcare Working Group. Results The following is discussed: the potential for wearable sensors to generate big data; how complementary technologies, such as a smartphone, will augment the concept of a wearable sensor and alter the nature of the monitoring data created; how standards would enable sharing of data and advance scientific progress. Importantly, attention is drawn to statistical inference problems for which big datasets provide little assistance, or may hinder the identification of a useful solution. Finally, a discussion is presented on risks to privacy and possible negative consequences arising from intensive wearable sensor monitoring. Conclusions Wearable sensors systems have the potential to generate datasets which are currently beyond our capabilities to easily organize and interpret. In order to successfully utilize wearable sensor data to infer wellbeing, and enable proactive health management, standards and ontologies must be developed which allow for data to be shared between research groups and between commercial systems, promoting the integration of these data into health information systems. However, policy and regulation will be required to ensure that the detailed nature of wearable sensor data is not misused to invade privacies or prejudice against individuals. PMID:25123733

  7. Global Positioning System Bibliography

    Science.gov (United States)

    1992-03-01

    Morgan, P. (1987). "Models for GPS network design." Australian Journal of Geodesy , Photogrammetry and Surveying, December, Nos. 46 & 47, pp. pp. 41-55...Morgan, P., C. Xing, C. Rogers, and D. R. Larden (1986). "Validation procedures in GPS surveys." Australian Journal of Geodesy , Photogrammetry, and...Luck (1987). "The Australian GPS orbit determination pilot project." Australian Journal of Geodesy , Photogrammetry and Surveying, December, No. 46

  8. Algorithms for Global Positioning

    DEFF Research Database (Denmark)

    Borre, Kai; Strang, Gilbert

    and replaces the authors' previous work, Linear Algebra, Geodesy, and GPS (1997). An initial discussion of the basic concepts, characteristics and technical aspects of different satellite systems is followed by the necessary mathematical content which is presented in a detailed and self-contained fashion...

  9. GLOBAL POSITIONING SYSTEM (GPS

    Directory of Open Access Journals (Sweden)

    Celalettin Karaali

    1996-02-01

    Full Text Available Use of GPS is becoming more widespread on surveying engineering. Especially, preference to GPS is increased by getting accuracy of order of milimeter, making observation on every weather forecast, without requiring intervisibility between station. Besides, developing new observation techniques and technologies in GPS increased its use in deformation easurements, monitoring crustal movements, mapping precise geoid maps, detail surveying, etc.

  10. TONGKAT ISTIWA‘, GLOBAL POSITIONING SYSTEM (GPS DAN GOOGLE EARTH UNTUK MENENTUKAN TITIK KOORDINAT BUMI DAN APLIKASINYA DALAM PENENTUAN ARAH KIBLAT

    Directory of Open Access Journals (Sweden)

    Anisah Budiwati

    2016-04-01

    Full Text Available There are at least three ways to determine the position or the coordinates of a spot on the Earth's surface. They are: istiwa' sticks, Global Positioning System (GPS, and Google Earth. Istiwa' stick is used without technology operations, while GPS and Google Earth are used with technology. Until now, the use of GPS and Google Earth is still a passively consumptive, without their critical analytical effort. This qualitative research using descriptive analytic mathematical methods. The objective of this study is the to know the theory, applications, and accuracy of the istiwa' stick, GPS, and Google Earth comparatively. The study found that the istiwa' stick is one of the alternatives way to determine the coordinates of the Earth which uses the theory of spherical trigonometry calculations simply without assistance. Whereas GPS and Google Earth use principles of geodetic scientifically. In terms of applications, the most practical and accurate is GPS, and then followed by Google Earth, and the last is istiwa' stick.

  11. Evaluation of the Effect of Radio Frequency Interference on Global Positioning System (GPS Accuracy via GPS Simulation

    Directory of Open Access Journals (Sweden)

    Dinesh Sathyamoorthy

    2012-09-01

    Full Text Available In this study, Global positioning system (GPS simulation is employed to study the effect of radio frequency interference (RFI on the accuracy of two handheld GPS receivers; Garmin GPSmap 60CSx (evaluated GPS receiver and Garmin GPSmap 60CS (reference GPS receiver. Both GPS receivers employ the GPS L1 coarse acquisition (C/A signal. It was found that with increasing interference signal power level, probable error values of the GPS receivers increase due to decreasing carrier-to-noise density (C/N0 levels for GPS satellites tracked by the receivers. Varying probable error patterns are observed for readings taken at different locations and times. This was due to the GPS satellite constellation being dynamic, causing varying GPS satellite geometry over location and time, resulting in GPS accuracy being location/time dependent. In general, the highest probable error values were observed for readings with the highest position dilution of precision (PDOP values, and vice versa.Defence Science Journal, 2012, 62(5, pp.338-347, DOI:http://dx.doi.org/10.14429/dsj.62.1606

  12. Tačnost i modernizacija globalnog pozicionog sistema / Accuracy and modernization of the global positioning system

    Directory of Open Access Journals (Sweden)

    Slobodan M. Radojević

    2009-10-01

    Full Text Available U radu su pregledno prikazani sadašnja koncepcija i razvoj globalnog sistema pozicioniranja (GPS. Ukratko je opisan osnovni princip rada, glavne karakteristike i njegova tačnost. Sadašnja tačnost sistema je, uglavnom, dovoljna za orijentaciju, navigaciju na vodi, u vazdušnom prostoru i na kopnu, ali ne i za brojne druge delatnosti. U radu se analiziraju načini poboljšanja karakteristika sistema satelitskog pozicioniranja, koji bi trebalo da zadovolje strože sigurnosne zahteve. Na kraju je predstavljen razvoj programa modernizacije GPS do 2030. godine. / The development and the present concept of the Global Positioning System (GPS are presented clearly. There is also a short description of the basic operation principle and of the main GPS characteristics given, as well as its accuracy. The present accuracy of the system is mostly appropriate for orientation, nautical navigation, land navigation and aero navigation; however, for many other activities better accuracy is required. The article analyses methods to improve the characteristics of the satellite positioning system so as to comply with more stringent safety demands. The paper gives a clear overview of the development of a GPS modernization program up to the year 2030.

  13. Global positive expectancies in adolescence and health-related behaviours: longitudinal models of latent growth and cross-lagged effects.

    Science.gov (United States)

    Carvajal, Scott C

    2012-01-01

    Constructs representative of global positive expectancies (GPE) such as dispositional optimism and hope have been theoretically and empirically linked to many positive mental and physical health outcomes. However such expectancies' health implications for adolescents, as well as their trajectory over time, are less well understood than for adult populations. This study tested whether GPE predict the key indicators of adolescents' future physical health status, their health-related behaviours. A prospective longitudinal study design was employed whereby a diverse population-based cohort (N = 744; mean age at baseline = 12) completed three surveys over approximately 18 months. Rigorous tests of causal predominance and reciprocal effects were conducted through latent growth and cross-panel structural equation models. Results showed GPE systematically decreased during the course of the study, yet higher initial levels of GPE predicted less alcohol drinking, healthier food choice and greater physical activity over time. GPE's protective relationships towards health protective behaviours (vs. health risk behaviours that also included tobacco smoking) appear more independent from depressive symptomatology, and the primary findings were robust across socio-demographic groups.

  14. Adaptive Correlation Space Adjusted Open-Loop Tracking Approach for Vehicle Positioning with Global Navigation Satellite System in Urban Areas.

    Science.gov (United States)

    Ruan, Hang; Li, Jian; Zhang, Lei; Long, Teng

    2015-08-28

    For vehicle positioning with Global Navigation Satellite System (GNSS) in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N₀) varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA) is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N₀. The novel Equivalent Weighted Pseudo Range Error (EWPRE) is raised to obtain the optimal code search grid sizes for different C/N₀. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area.

  15. Wearable high-tech gear for homeland security personnel

    Science.gov (United States)

    Venkateswarlu, Ronda; Hui Wei, Choo; Li Lian, Ngiam; Lim, E. T.; Zhu, Zijian; Yang, Mingjiang

    2006-05-01

    Recent homeland security problems in various countries indicate that fixed surveillance systems at important places are not adequate enough. As the security threats take new dimensions in future, mobile smart security personnel wearing high-tech gear will form the basic infrastructure. See first, listen first, detect first, track first, communicate first with peers, assess the threat and coordinate with security head-quarters are the functions of high-tech gear. This paper proposes a high-tech gear involving (i) hands-free and obtrusion-free textile-based wearable microphone array to capture users voice and interface with body-worn computer, (ii) microphone arrays embedded in textiles to listen and record others voices from a distance, (iii) miniature cameras embedded in the shirt to provide the user with omni vision (iv) wireless personal display as GUI hidden in textile or natural glasses, (v) GPS and body area network for positional awareness for information in the form of text or textile integrated, (vi) reconfigurable HW/SW for all the above functions configured in the form of a usual belt. The main focus of this paper is how to configure the high-tech gear with all these sophisticated functions to disappear into the natural wearables of the user giving him normal look in the public. This project is sponsored by Defence Science & Technology Agency, Ministry of Defence, Singapore. This paper covers multi-discipline technologies at system level, hence not possible to go into details of any subsystem. The main objective of this paper is to share our thoughts and get feedback. Progress and some critical design issues are discussed in this paper.

  16. Recent advances in wearable sensors for animal health management

    Directory of Open Access Journals (Sweden)

    Suresh Neethirajan

    2017-02-01

    Full Text Available Biosensors, as an application for animal health management, are an emerging market that is quickly gaining recognition in the global market. Globally, a number of sensors being produced for animal health management are at various stages of commercialization. Some technologies for producing an accurate health status and disease diagnosis are applicable only for humans, with few modifications or testing in animal models. Now, these innovative technologies are being considered for their future use in livestock development and welfare. Precision livestock farming techniques, which include a wide span of technologies, are being applied, along with advanced technologies like microfluidics, sound analyzers, image-detection techniques, sweat and salivary sensing, serodiagnosis, and others. However, there is a need to integrate all the available sensors and create an efficient online monitoring system so that animal health status can be monitored in real time, without delay. This review paper discusses the scope of different wearable technologies for animals, nano biosensors and advanced molecular biology diagnostic techniques for the detection of various infectious diseases of cattle, along with the efforts to enlist and compare these technologies with respect to their drawbacks and advantages in the domain of animal health management. The paper considers all recent developments in the field of biosensors and their applications for animal health to provide insight regarding the appropriate approach to be used in the future of enhanced animal welfare.

  17. A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Yunpeng Yang

    2017-01-01

    Full Text Available Catabolite control protein A (CcpA is the master regulator in Gram-positive bacteria that mediates carbon catabolite repression (CCR and carbon catabolite activation (CCA, two fundamental regulatory mechanisms that enable competitive advantages in carbon catabolism. It is generally regarded that CcpA exerts its regulatory role by binding to a typical 14- to 16-nucleotide (nt consensus site that is called a catabolite response element (cre within the target regions. However, here we report a previously unknown noncanonical flexible architecture of the CcpA-binding site in solventogenic clostridia, providing new mechanistic insights into catabolite regulation. This novel CcpA-binding site, named crevar, has a unique architecture that consists of two inverted repeats and an intervening spacer, all of which are variable in nucleotide composition and length, except for a 6-bp core palindromic sequence (TGTAAA/TTTACA. It was found that the length of the intervening spacer of crevar can affect CcpA binding affinity, and moreover, the core palindromic sequence of crevar is the key structure for regulation. Such a variable architecture of crevar shows potential importance for CcpA’s diverse and fine regulation. A total of 103 potential crevar sites were discovered in solventogenic Clostridium acetobutylicum, of which 42 sites were picked out for electrophoretic mobility shift assays (EMSAs, and 30 sites were confirmed to be bound by CcpA. These 30 crevar sites are associated with 27 genes involved in many important pathways. Also of significance, the crevar sites are found to be widespread and function in a great number of taxonomically different Gram-positive bacteria, including pathogens, suggesting their global role in Gram-positive bacteria.

  18. An application of Global Positioning System data from the Plate Boundary Observatory for deformation monitoring purposes (Invited)

    Science.gov (United States)

    Murray-Moraleda, J. R.; Liu, Z.; Segall, P.

    2009-12-01

    The Plate Boundary Observatory (PBO) represents a major step forward in Global Positioning System (GPS) coverage for the western United States by increasing the spatial density of stations, generating daily position estimates, and providing the infrastructure for high-rate and real-time positioning. In addition to producing vital input for a wide range of crustal deformation studies, PBO significantly expands opportunities for monitoring and event response. This presentation will focus on one such effort. Data from large continuous GPS networks like PBO should be monitored for temporal changes, be they tectonic, volcanic, hydrologic, anthropogenic, or instrumental in origin. Since it is not feasible to review time series by eye on a daily basis, automated approaches are required. Here we apply a Kalman filtering based method, termed the Network Inversion Filter (Segall and Matthews, 1997; McGuire and Segall, 2003), to monitor daily GPS data for deformation-related transient signals. This approach relies on the spatial coherence of signals due to transient sources such as fault slip in order to separate them from spatially-localized time-dependent noise. The dense GPS coverage provided by PBO has augmented pre-existing continuous GPS networks making it now feasible to test this method in California. Results from synthetic tests using the >400 station southern California continuous GPS network configuration demonstrate this approach can extract fault slip signals from data contaminated by plausible noise processes. We will present results using real data from the San Francisco Bay Area and discuss the role and limitations of this methodology in hazard monitoring.

  19. Improve wildlife species tracking—Implementing an enhanced global positioning system data management system for California condors

    Science.gov (United States)

    Waltermire, Robert G.; Emmerich, Christopher U.; Mendenhall, Laura C.; Bohrer, Gil; Weinzierl, Rolf P.; McGann, Andrew J.; Lineback, Pat K.; Kern, Tim J.; Douglas, David C.

    2016-05-03

    U.S. Fish and Wildlife Service (USFWS) staff in the Pacific Southwest Region and at the Hopper Mountain National Wildlife Refuge Complex requested technical assistance to improve their global positioning system (GPS) data acquisition, management, and archive in support of the California Condor Recovery Program. The USFWS deployed and maintained GPS units on individual Gymnogyps californianus (California condor) in support of long-term research and daily operational monitoring and management of California condors. The U.S. Geological Survey (USGS) obtained funding through the Science Support Program to provide coordination among project participants, provide GPS Global System for Mobile Communication (GSM) transmitters for testing, and compare GSM/GPS with existing Argos satellite GPS technology. The USFWS staff worked with private companies to design, develop, and fit condors with GSM/GPS transmitters. The Movebank organization, an online database of animal tracking data, coordinated with each of these companies to automatically stream their GPS data into Movebank servers and coordinated with USFWS to improve Movebank software for managing transmitter data, including proofing/error checking of incoming GPS data. The USGS arranged to pull raw GPS data from Movebank into the USGS California Condor Management and Analysis Portal (CCMAP) (https://my.usgs.gov/ccmap) for production and dissemination of a daily map of condor movements including various automated alerts. Further, the USGS developed an automatic archiving system for pulling raw and proofed Movebank data into USGS ScienceBase to comply with the Federal Information Security Management Act of 2002. This improved data management system requires minimal manual intervention resulting in more efficient data flow from GPS data capture to archive status. As a result of the project’s success, Pinnacles National Park and the Ventana Wildlife Society California condor programs became partners and adopted the same

  20. Wearable wireless cerebral oximeter (Conference Presentation)

    Science.gov (United States)

    Zhang, Xin; Jiang, Tianzi

    2016-03-01

    Cerebral oximeters measure continuous cerebral oxygen saturation using near-infrared spectroscopy (NIRS) technology noninvasively. It has been involved into operating room setting to monitor oxygenation within patient's brain when surgeons are concerned that a patient's levels might drop. Recently, cerebral oxygen saturation has also been related with chronic cerebral vascular insufficiency (CCVI). Patients with CCVI would be benefited if there would be a wearable system to measure their cerebral oxygen saturation in need. However, there has yet to be a wearable wireless cerebral oximeter to measure the saturation in 24 hours. So we proposed to develop the wearable wireless cerebral oximeter. The mechanism of the system follows the NIRS technology. Emitted light at wavelengths of 740nm and 860nm are sent from the light source penetrating the skull and cerebrum, and the light detector(s) receives the light not absorbed during the light pathway through the skull and cerebrum. The amount of oxygen absorbed within the brain is the difference between the amount of light sent out and received by the probe, which can be used to calculate the percentage of oxygen saturation. In the system, it has one source and four detectors. The source, located in the middle of forehead, can emit two near infrared light, 740nm and 860nm. Two detectors are arranged in one side in 2 centimeters and 3 centimeters from the source. Their measurements are used to calculate the saturation in the cerebral cortex. The system has included the rechargeable lithium battery and Bluetooth smart wireless micro-computer unit.

  1. Interoperability of wearable cuffless BP measuring devices.

    Science.gov (United States)

    Liu, Jing; Zhang, Yuan-Ting

    2014-01-01

    While a traditional cuff-based Blood Pressure (BP) measuring device can only take a snap shot of BP, real-time and continuous measurement of BP without an occluding cuff is preferred which usually use the pulse transit time (PTT) in combination with other physiological parameters to estimate or track BP over a certain period of time after an initial calibration. This article discusses some perspectives of interoperability of wearable medical devices, based on IEEE P1708 draft standard that focuses on the objective performance evaluation of wearable cuffless BP measuring devices. The ISO/IEEE 11073 family of standards, supporting the plug-and play feature, is intended to enable medical devices to interconnect and interoperate with other medical devices and with computerized healthcare information systems in a manner suitable for the clinical environment. In this paper, the possible adoption of ISO/IEEE 11073 for the interoperability of wearable cuffless BP devices is proposed. In the consideration of the difference of the continuous and cuffless BP measuring methods from the conventional ones, the existing device specialization standards of ISO/IEEE 11073 cannot be directly followed when designing the cuffless BP device. Specifically, this paper discusses how the domain information model (DIM), in which vital sign information is abstracted as objects, is used to structure the information about the device and that generated from the device. Though attention should also be paid to adopt the communication standards for other parts for the communication system, applying communication standards that enable plug-and-play feature allows achieving the interoperability of different cuffless BP measuring devices with possible different configurations.

  2. Existence and global asymptotic stability of positive periodic solutions of a Lotka-Volterra type competition systems with delays and feedback controls

    Directory of Open Access Journals (Sweden)

    Anh Tuan Trinh

    2013-11-01

    Full Text Available The existence of positive periodic solutions of a periodic Lotka-Volterra type competition system with delays and feedback controls is studied by applying the continuation theorem of coincidence degree theory. By contracting a suitable Liapunov functional, a set of sufficient conditions for the global asymptotic stability of the positive periodic solution of the system is given. A counterexample is given to show that the result on the existence of positive periodic solution in [4] is incorrect.

  3. Combining a differential global positioning system and double electric compass to improve multi-path error correction for a high-precision agricultural robotic vehicle

    OpenAIRE

    Chung-Teh Cheng

    2011-01-01

    This work has addressed the improving of the multi-path error in positioning systems by coupling a differential global positioning system (DGPS) and double electric compass (DEC) in the navigation system of an orchard robotic vehicle. A novel corrective algorithm model was applied to predicting the positioning coordinates during vehicle movement. The model manipulates a combination of data from both the DEC and the DGPS when the DGPS receiver is in problematic conditions in which the horizont...

  4. A hybrid piezoelectric structure for wearable nanogenerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minbaek; Wang, Sihong; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Chen, Chih-Yen [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013 (China); Cha, Seung Nam; Park, Yong Jun; Kim, Jong Min [Frontier Research Lab, Samsung Advanced Institute of Technology, Samsung Electronics, Gyeonggi-Do 446-712 (Korea, Republic of); Chou, Li-Jen [Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013 (China)

    2012-04-03

    A hybrid-fiber nanogenerator comprising a ZnO nanowire array, PVDF polymer and two electrodes is presented. Depending on the bending or spreading action of the human arm, at an angle of {proportional_to}90 , the hybrid fiber reaches electrical outputs of {proportional_to}0.1 V and {proportional_to}10 nA cm{sup -2}. The unique structure of the hybrid fiber may inspire future research in wearable energy-harvesting technology. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Innovation in wearable and flexible antennas

    CERN Document Server

    Khaleel, Haider

    2014-01-01

    This book deals with the design, numerical simulation, state of the art fabrication processes and methods, qualitative and quantitative tests, and measurement techniques of wearable and flexible antennas of different topologies, such as: Planar Inverted F, Printed Monopoles, Micropoles and Microstrips. Novel trends, materials, and fabrication and measurement techniques used in this vital field of antenna systems are also discussed.To the best of the editor's knowledge, at the time of publication, there are no published books targeting the vital topic of flexible antennas specifically and/or se

  6. Wearable impedance monitoring system for dialysis patients.

    Science.gov (United States)

    Bonnet, S; Bourgerette, A; Gharbi, S; Rubeck, C; Arkouche, W; Massot, B; McAdams, E; Montalibet, A; Jallon, P

    2016-08-01

    This paper describes the development and the validation of a prototype wearable miniaturized impedance monitoring system for remote monitoring in home-based dialysis patients. This device is intended to assess the hydration status of dialysis patients using calf impedance measurements. The system is based on the low-power AD8302 component. The impedance calibration procedure is described together with the Cole parameter estimation and the hydric volume estimation. Results are given on a test cell to validate the design and on preliminary calf measurements showing Cole parameter variations during hemodialysis.

  7. Adaptive Correlation Space Adjusted Open-Loop Tracking Approach for Vehicle Positioning with Global Navigation Satellite System in Urban Areas

    Directory of Open Access Journals (Sweden)

    Hang Ruan

    2015-08-01

    Full Text Available For vehicle positioning with Global Navigation Satellite System (GNSS in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N0 varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N0. The novel Equivalent Weighted Pseudo Range Error (EWPRE is raised to obtain the optimal code search grid sizes for different C/N0. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area.

  8. Comparison of bottom-track to global positioning system referenced discharges measured using an acoustic Doppler current profiler

    Science.gov (United States)

    Wagner, C.R.; Mueller, D.S.

    2011-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks. ?? 2011 Published by Elsevier B.V.

  9. Mapping Typha Domingensis in the Cienega de Santa Clara Using Satellite Images, Global Positioning System, and Spectrometry

    Science.gov (United States)

    Sanchez, Richard D.; Burnett, Earl E.; Croxen, Fred

    2000-01-01

    The Cienega de Santa Clara, Sonora, Mexico, a brackish wetland area created near the delta of the Colorado River from drainage effluent flowing from the United States since 1977, may undergo changes owing to the operation of the Yuma Desalting Plant in the United States. This has become the largest wetland in the delta region containing rare and endangered species, yet little is known about the environmental impact of these changes. The water quality of the marsh is of growing concern to the Bureau of Reclamation (BOR) which operates the Desalting Plant. Consequently, the BOR solicited the U.S. Geological Survey to investigate the limits and usefulness of satellite, global positioning system (GPS), and spectra data to map the Typha domingensis (cattail) of the Cienega de Santa Clara. Typha domingensis was selected by the BOR as the Cienega de Santa Clara indicator species to best predict the environmental effects of effl uent from the Yuma Desalting Plant. The successful base mapping of Typha domingensis will provide a viable tool for long-term monitoring and stress detection in the Cienega de Santa Clara.

  10. CytR Is a Global Positive Regulator of Competence, Type VI Secretion, and Chitinases in Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Samit S Watve

    Full Text Available The facultative pathogen Vibrio cholerae transitions between its human host and aquatic reservoirs where it colonizes chitinous surfaces. Growth on chitin induces expression of chitin utilization genes, genes involved in DNA uptake by natural transformation, and a type VI secretion system that allows contact-dependent killing of neighboring bacteria. We have previously shown that the transcription factor CytR, thought to primarily regulate the pyrimidine nucleoside scavenging response, is required for natural competence in V. cholerae. Through high-throughput RNA sequencing (RNA-seq, we show that CytR positively regulates the majority of competence genes, the three type VI secretion operons, and the four known or predicted chitinases. We used transcriptional reporters and phenotypic analysis to determine the individual contributions of quorum sensing, which is controlled by the transcription factors HapR and QstR; chitin utilization that is mediated by TfoX; and pyrimidine starvation that is orchestrated by CytR, toward each of these processes. We find that in V. cholerae, CytR is a global regulator of multiple behaviors affecting fitness and adaptability in the environment.

  11. Position-independent geometric error identification and global sensitivity analysis for the rotary axes of five-axis machine tools

    Science.gov (United States)

    Guo, Shijie; Jiang, Gedong; Zhang, Dongsheng; Mei, Xuesong

    2017-04-01

    Position-independent geometric errors (PIGEs) are the fundamental errors of a five-axis machine tool. In this paper, to identify ten PIGEs peculiar to the rotary axes of five-axis machine tools with a tilting head, the mathematic model of the ten PIGEs is deduced and four measuring patterns are proposed. The measuring patterns and identifying method are validated on a five-axis machine tool with a tilting head, and the ten PIGEs of the machine tool are obtained. The sensitivities of the four adjustable PIGEs of the machine tool in different measuring patterns are analyzed by the Morris global sensitivity analysis method and the modifying method, and the procedure of the four adjustable PIGEs of the machine tool is given accordingly. Experimental results show that after and before modifying the four adjustable PIGEs, the average compensate rate reached 52.7%. It is proved that the proposed measuring, identifying, analyzing and modifying method are effective for error measurement and precision improvement of the five-axis machine tool.

  12. Metabolic Power Method: Underestimation of Energy Expenditure in Field-Sport Movements Using a Global Positioning System Tracking System.

    Science.gov (United States)

    Brown, Darcy M; Dwyer, Dan B; Robertson, Samuel J; Gastin, Paul B

    2016-11-01

    The purpose of this study was to assess the validity of a global positioning system (GPS) tracking system to estimate energy expenditure (EE) during exercise and field-sport locomotor movements. Twenty-seven participants each completed a 90-min exercise session on an outdoor synthetic futsal pitch. During the exercise session, they wore a 5-Hz GPS unit interpolated to 15 Hz and a portable gas analyzer that acted as the criterion measure of EE. The exercise session was composed of alternating 5-minute exercise bouts of randomized walking, jogging, running, or a field-sport circuit (×3) followed by 10 min of recovery. One-way analysis of variance showed significant (P consumption (VO2) -derived EE for all field-sport circuits (% difference ≈ -44%). No differences in EE were observed for the jog (7.8%) and run (4.8%), whereas very large overestimations were found for the walk (43.0%). The GPS metabolic power EE over the entire 90-min session was significantly lower (P < .01) than the VO2 EE, resulting in a moderate underestimation overall (-19%). The results of this study suggest that a GPS tracking system using the metabolic power model of EE does not accurately estimate EE in field-sport movements or over an exercise session consisting of mixed locomotor activities interspersed with recovery periods; however, is it able to provide a reasonably accurate estimation of EE during continuous jogging and running.

  13. CytR Is a Global Positive Regulator of Competence, Type VI Secretion, and Chitinases in Vibrio cholerae.

    Science.gov (United States)

    Watve, Samit S; Thomas, Jacob; Hammer, Brian K

    2015-01-01

    The facultative pathogen Vibrio cholerae transitions between its human host and aquatic reservoirs where it colonizes chitinous surfaces. Growth on chitin induces expression of chitin utilization genes, genes involved in DNA uptake by natural transformation, and a type VI secretion system that allows contact-dependent killing of neighboring bacteria. We have previously shown that the transcription factor CytR, thought to primarily regulate the pyrimidine nucleoside scavenging response, is required for natural competence in V. cholerae. Through high-throughput RNA sequencing (RNA-seq), we show that CytR positively regulates the majority of competence genes, the three type VI secretion operons, and the four known or predicted chitinases. We used transcriptional reporters and phenotypic analysis to determine the individual contributions of quorum sensing, which is controlled by the transcription factors HapR and QstR; chitin utilization that is mediated by TfoX; and pyrimidine starvation that is orchestrated by CytR, toward each of these processes. We find that in V. cholerae, CytR is a global regulator of multiple behaviors affecting fitness and adaptability in the environment.

  14. Road grade quantification based on global positioning system data obtained from real-world vehicle fuel use and emissions measurements

    Science.gov (United States)

    Yazdani Boroujeni, Behdad; Frey, H. Christopher

    2014-03-01

    Real-world vehicle fuel use and emission rates depend on engine load, which is quantified in terms of Vehicle Specific Power (VSP). VSP depends on vehicle speed, acceleration, and road grade. There is not a standard method for measuring road grade from a moving vehicle. A method for quantifying grade is evaluated based on statistical analysis of multiple runs using low cost consumer grade Global Positioning System (GPS) receivers with in-built Barometric Altimeter (GPS/BA). The average grade precision is ±0.71, ±0.46, and ±0.31 percentage points, for sample sizes of 9, 18, and 36 GPS/BA runs, respectively, among 2213 individual 0.08 km road segments. In addition, 4 sets of repeated measurements were performed on the same routes using a high cost, high accuracy Differential GPS (DGPS). Both sets of GPS-based grade estimates compared well with those derived from LIght Detection And Ranging (LIDAR) data. GPS/BA and DGPS grade estimates were similar, except for high magnitude grades of 8-10 percent for which DGPS estimates are more accurate. DGPS is more sensitive to loss of signal; thus, a hybrid approach for substituting GPS/BA data for missing DGPS data at specific locations along a route is demonstrated. The local and overall effects of road grade on fuel use and emission rates are investigated for an example light duty gasoline vehicle.

  15. Analysis of performance in orienteering with treadmill tests and physiological field tests using a differential global positioning system.

    Science.gov (United States)

    Larsson, Peter; Burlin, Lennart; Jakobsson, Erkki; Henriksson-Larsén, Karin

    2002-07-01

    The aim of this study was to determine the physiological responses to orienteering by examining the interrelationships between the information provided by a differential global positioning system (dGPS) about an orienteer's route, speed and orienteering mistakes, portable metabolic gas analyser data during orienteering and data from incremental treadmill tests. Ten male orienteers completed a treadmill threshold test and a field test; the latter was performed on a 4.3 km course on mixed terrain with nine checkpoints. The anaerobic threshold, threshold of decompensated metabolic acidosis, respiratory exchange ratio, onset of blood lactate accumulation and peak oxygen uptake (VO2peak) were determined from the treadmill test. Time to complete the course, total distance covered, mean speed, distance and timing of orienteering mistakes, mean oxygen uptake, mean relative heart rate, mean respiratory exchange ratio and mean running economy were computed from the dGPS data and metabolic gas analyser data. Correlation analyses showed a relationship between a high anaerobic threshold and few orienteering mistakes (r = - 0.64, P < 0.05). A high threshold of decompensated metabolic acidosis and VO2peak were related to a fast overall time (r = -0.70 to -0.72, P < 0.05) and high running speed (r = 0.64 to 0.79, P < 0.05 and P < 0.01, respectively), and were thus the best predictors of performance.

  16. Physical game demands in elite rugby union: a global positioning system analysis and possible implications for rehabilitation.

    Science.gov (United States)

    Coughlan, Garrett F; Green, Brian S; Pook, Paul T; Toolan, Eoin; O'Connor, Sean P

    2011-08-01

    Descriptive. To evaluate the physical demands of an international Rugby Union-level game using a global positioning system (GPS). Elite Rugby Union teams currently employ the latest technology to monitor and evaluate physical demands of training and games on their players. GPS data from 2 players, a back and a forward, were collected during an international Rugby Union game. Locomotion speed, total body load, and body load sustained in tackles and scrums were analyzed. Players completed an average distance of 6715 m and spent the major portion of the game standing or walking, interspersed with medium- and high-intensity running activities. The back performed a higher number of high-intensity sprints and reached a greater maximal speed. Body load data revealed that high levels of gravitational force are sustained in tackling and scrum tasks. The current study provides a detailed GPS analysis of the physical demands of international Rugby Union players. These data, when combined with game video footage, may assist sports medicine professionals in understanding the demands of the game and mechanism of injury, as well as improving injury rehabilitation.

  17. Global positioning system measurements of deformations associated with the 1987 Superstition Hills earthquake - Evidence for conjugate faulting

    Science.gov (United States)

    Larsen, Shawn; Reilinger, Robert; Neugebauer, Helen; Strange, William

    1992-01-01

    Large station displacements observed from Imperial Valley Global Positioning System (GPS) compaigns are attributed to the November 24, 1987 Superstition Hills earthquake sequence. Thirty sites from a 42 station GPS network established in 1986 were reoccupied during 1988 and/or 1990. Displacements at three sites within 3 kilometers of the surface rupture approach 0.5 m. Eight additional stations within 20 km of the seismic zone are displaced at least 10 cm. This is the first occurrence of a large earthquake (M(sub S) 6.6) within a preexisting GPS network. Best-fitting uniform slip models of rectangular dislocations in an elastic half-space indicate 130 + or - 8 cm right-lateral displacement along the northwest-trending Superstition Hills fault and 30 + or - 10 cm left-lateral displacement along the conjugate northeast-trending Elmore Ranch fault. The geodetic moments are 9.4 x 10 (exp 25) dyne-cm and 2.3 x 10 (exp 25) dyne-cm for the Superstition Hills and Elmore Ranch faults, respectively, consistent with teleseismic source parameters. The data also suggest the post seismic slip along the Superstition Hills fault is concentrated at shallow depths. Distributed slip solutions using Singular Value Decomposition indicate near uniform displacement along the Elmore Ranch fault and concentrated slip to the northwest and southeast along the Superstition Hills fault. A significant component of non-seismic displacement is observed across the Imperial Valley, which is attributed in part to interseismic plate-boundary deformation.

  18. Combined Tracking Strategy Based on Unscented Kalman Filter for Global Positioning System L2C CM/CL Signal

    Directory of Open Access Journals (Sweden)

    Xuefen Zhu

    2015-09-01

    Full Text Available In a global positioning system receiver, the tracking algorithm plays a dominant role since the code delay and Doppler frequency shift need to be accurately estimated as well as their variation over time need to be continuously updated. Combine unscented Kalman filter (UKF with CM/CL signal to improve the signal tracking precision is proposed. It allow weighting assignment between CM code and CL code incoming signal, masked by a mass of noise, and to describe a UKF tracking loop aiming at decreasing numerical errors. UKF here involves state and measuring equations which calculate absolute offsets to adjust initial code and carrier phase then dramatically decrease the tracking error. In particular, the algorithm is implemented in both open space and jammed environment to highlight the advantages of tracking approach, by comparing single code and combined code, UKF and EKF tracking loop. It proves that signal tracking based on UKF, with low energy dissipation as well as high precision, is particularly appealing for a software receiver implementation.

  19. The validity and reliability of 5-Hz global positioning system units to measure team sport movement demands.

    Science.gov (United States)

    Johnston, Richard J; Watsford, Mark L; Pine, Matthew J; Spurrs, Robert W; Murphy, Aron J; Pruyn, Elizabeth C

    2012-03-01

    The purpose of this research was to investigate the validity and the reliability of 5-Hz MinimaxX global positioning system (GPS) units measuring athlete movement demands. A team sport simulation circuit (files collected from each unit = 12) and flying 50-m sprints (files collected from each unit = 34) were undertaken, during which the total distance covered; peak speed; player load; the distance covered; time spent and number of efforts performed walking, jogging, running, high-speed running, and sprinting were examined. Movement demands were also separately categorized into low-intensity activity, high-intensity running, and very high-intensity running. The results revealed that GPS was a valid and reliable measure of total distance covered (p > 0.05, percentage typical error of measurement [%TEM] 0.05, %TEM 5-10%). Further, GPS was found to be a reliable measure of player load (%TEM 4.9%) and the distance covered, time spent, and number of efforts performed at certain velocity zones (%TEM 10%). The level of GPS error was found to increase along with the velocity of exercise. The findings demonstrated that GPS is capable of measuring movement demands performed at velocities 20 km·h(-1).

  20. Personal customizing exercise with a wearable measurement and control unit

    Directory of Open Access Journals (Sweden)

    Tamura Naoki

    2005-06-01

    Full Text Available Abstract Background Recently, wearable technology has been used in various health-related fields to develop advanced monitoring solutions. However, the monitoring function alone cannot meet all the requirements of customizing machine-based exercise on an individual basis by relying on biosignal-based controls. We propose a new wearable unit design equipped with measurement and control functions to support the customization process. Methods The wearable unit can measure the heart rate and electromyogram signals during exercise performance and output workload control commands to the exercise machines. The workload is continuously tracked with exercise programs set according to personally customized workload patterns and estimation results from the measured biosignals by a fuzzy control method. Exercise programs are adapted by relying on a computer workstation, which communicates with the wearable unit via wireless connections. A prototype of the wearable unit was tested together with an Internet-based cycle ergometer system to demonstrate that it is possible to customize exercise on an individual basis. Results We tested the wearable unit in nine people to assess its suitability to control cycle ergometer exercise. The results confirmed that the unit could successfully control the ergometer workload and continuously support gradual changes in physical activities. Conclusion The design of wearable units equipped with measurement and control functions is an important step towards establishing a convenient and continuously supported wellness environment.

  1. Re-examining the general positivity model of subjective well-being: the discrepancy between specific and global domain satisfaction.

    Science.gov (United States)

    Oishi, S; Diener, E

    2001-08-01

    Three studies were conducted to examine the role of global life satisfaction in the discrepancy between specific and global domain satisfaction. Participants rated both global (e.g., education) and the corresponding, specific domain (e.g., professors, textbooks) satisfactions. In 3 studies, we found that individuals with higher life satisfaction evaluated global domain as a whole as more satisfying than those with lower life satisfaction, given the same level of satisfaction with specific domains. In Study 3, we also found that, given the same level of satisfaction during the previous 2 weeks, individuals with higher life satisfaction rated the global domains in general as more satisfying than those with lower life satisfaction. Overall, the association between globallife satisfaction and evaluative enhancement of global domains was most consistent in "self" and "social relationships." Finally, the effect of global life satisfaction on evaluative enhancement remained significant, controlling for extraversion and neuroticism.

  2. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System.

    Science.gov (United States)

    Jan, Shau-Shiun; Tao, An-Lin

    2016-05-13

    The Chinese BeiDou navigation satellite system (BDS) aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS) is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA) methods, three signal quality analysis (SQA) methods, and four measurement quality analysis (MQA) methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region.

  3. Initial development and testing of a novel foam-based pressure sensor for wearable sensing

    Directory of Open Access Journals (Sweden)

    Smyth Barry

    2005-03-01

    Full Text Available Abstract Background This paper provides an overview of initial research conducted in the development of pressure-sensitive foam and its application in wearable sensing. The foam sensor is composed of polypyrrole-coated polyurethane foam, which exhibits a piezo-resistive reaction when exposed to electrical current. The use of this polymer-coated foam is attractive for wearable sensing due to the sensor's retention of desirable mechanical properties similar to those exhibited by textile structures. Methods The development of the foam sensor is described, as well as the development of a prototype sensing garment with sensors in several areas on the torso to measure breathing, shoulder movement, neck movement, and scapula pressure. Sensor properties were characterized, and data from pilot tests was examined visually. Results The foam exhibits a positive linear conductance response to increased pressure. Torso tests show that it responds in a predictable and measurable manner to breathing, shoulder movement, neck movement, and scapula pressure. Conclusion The polypyrrole foam shows considerable promise as a sensor for medical, wearable, and ubiquitous computing applications. Further investigation of the foam's consistency of response, durability over time, and specificity of response is necessary.

  4. Wearable Systems for Monitoring Mobility-Related Activities in Chronic Disease: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Eling D. de Bruin

    2010-10-01

    Full Text Available The use of wearable motion sensing technology offers important advantages over conventional methods for obtaining measures of physical activity and/or physical functioning in individuals with chronic diseases. This review aims to identify the actual state of applying wearable systems for monitoring mobility-related activity in individuals with chronic disease conditions. In this review we focus on technologies and applications, feasibility and adherence aspects, and clinical relevance of wearable motion sensing technology. PubMed (Medline since 1990, PEdro, and reference lists of all relevant articles were searched. Two authors independently reviewed randomised trials systematically. The quality of selected articles was scored and study results were summarised and discussed. 163 abstracts were considered. After application of inclusion criteria and full text reading, 25 articles were taken into account in a full text review. Twelve of these papers evaluated walking with pedometers, seven used uniaxial accelerometers to assess physical activity, six used multiaxial accelerometers, and two papers used a combination approach of a pedometer and a multiaxial accelerometer for obtaining overall activity and energy expenditure measures. Seven studies mentioned feasibility and/or adherence aspects. The number of studies that use movement sensors for monitoring of activity patterns in chronic disease (postural transitions, time spent in certain positions or activities is nonexistent on the RCT level of study design. Although feasible methods for monitoring human mobility are available, evidence-based clinical applications of these methods in individuals with chronic diseases are in need of further development.

  5. Physical Human Activity Recognition Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Ferhat Attal

    2015-12-01

    Full Text Available This paper presents a review of different classification techniques used to recognize human activities from wearable inertial sensor data. Three inertial sensor units were used in this study and were worn by healthy subjects at key points of upper/lower body limbs (chest, right thigh and left ankle. Three main steps describe the activity recognition process: sensors’ placement, data pre-processing and data classification. Four supervised classification techniques namely, k-Nearest Neighbor (k-NN, Support Vector Machines (SVM, Gaussian Mixture Models (GMM, and Random Forest (RF as well as three unsupervised classification techniques namely, k-Means, Gaussian mixture models (GMM and Hidden Markov Model (HMM, are compared in terms of correct classification rate, F-measure, recall, precision, and specificity. Raw data and extracted features are used separately as inputs of each classifier. The feature selection is performed using a wrapper approach based on the RF algorithm. Based on our experiments, the results obtained show that the k-NN classifier provides the best performance compared to other supervised classification algorithms, whereas the HMM classifier is the one that gives the best results among unsupervised classification algorithms. This comparison highlights which approach gives better performance in both supervised and unsupervised contexts. It should be noted that the obtained results are limited to the context of this study, which concerns the classification of the main daily living human activities using three wearable accelerometers placed at the chest, right shank and left ankle of the subject.

  6. Wearable Sensors for Remote Health Monitoring.

    Science.gov (United States)

    Majumder, Sumit; Mondal, Tapas; Deen, M Jamal

    2017-01-12

    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  7. Optimization of a wearable power system

    Energy Technology Data Exchange (ETDEWEB)

    Kovacevic, I.; Round, S. D.; Kolar, J. W.; Boulouchos, K.

    2008-07-01

    In this paper the optimization of wearable power system comprising of an internal combustion engine, motor/generator, inverter/rectifier, Li-battery pack, DC/DC converters, and controller is performed. The Wearable Power System must have the capability to supply an average 20 W for 4 days with peak power of 200 W and have a system weight less then 4 kg. The main objectives are to select the engine, fuel and battery type, to match the weight of fuel and the number of battery cells, to find the optimal working point of engine and minimizing the system weight. The minimization problem is defined in Matlab as a nonlinear constrained optimization task. The optimization procedure returns the optimal system design parameters: the Li-polymer battery with eight cells connected in series for a 28 V DC output voltage, the selection of gasoline/oil fuel mixture and the optimal engine working point of 12 krpm for a 4.5 cm{sup 3} 4-stroke engine. (author)

  8. Wearable Sensors for Remote Health Monitoring

    Directory of Open Access Journals (Sweden)

    Sumit Majumder

    2017-01-01

    Full Text Available Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  9. Wearable Sensors for Remote Health Monitoring

    Science.gov (United States)

    Majumder, Sumit; Mondal, Tapas; Deen, M. Jamal

    2017-01-01

    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed. PMID:28085085

  10. Wearable electronics sensors for safe and healthy living

    CERN Document Server

    2015-01-01

    This edited book contains invited papers from renowned experts working in the field of Wearable Electronics Sensors. It includes 14 chapters describing recent advancements in the area of Wearable Sensors, Wireless Sensors and Sensor Networks, Protocols, Topologies, Instrumentation architectures, Measurement techniques, Energy harvesting and scavenging, Signal processing, Design and Prototyping. The book will be useful for engineers, scientist and post-graduate students as a reference book for their research on wearable sensors, devices and technologies which is experiencing a period of rapid growth driven by new applications such as heart rate monitors, smart watches, tracking devices and smart glasses.  .

  11. Axial Permanent Magnet Generator for Wearable Energy Harvesting

    DEFF Research Database (Denmark)

    Högberg, Stig; Sødahl, Jakob Wagner; Mijatovic, Nenad

    2016-01-01

    An increasing demand for battery-free electronics is evident by the rapid increase of wearable devices, and the design of wearable energy harvesters follows accordingly. An axial permanent magnet generator was designed to harvest energy from human body motion and supplying it to a wearable...... in order to reduce the rotor inertia and to reduce losses. Analytical models and finite element simulations were employed for the analyses of both generator types, and verified experimentally by prototypes. The results suggested that a generator of this size and power rating (20 mm radius, and 5 m...

  12. A Preliminary Test of Measurement of Joint Angles and Stride Length with Wireless Inertial Sensors for Wearable Gait Evaluation System

    Directory of Open Access Journals (Sweden)

    Takashi Watanabe

    2011-01-01

    Full Text Available The purpose of this study is to develop wearable sensor system for gait evaluation using gyroscopes and accelerometers for application to rehabilitation, healthcare and so on. In this paper, simultaneous measurement of joint angles of lower limbs and stride length was tested with a prototype of wearable sensor system. The system measured the joint angles using the Kalman filter. Signals from the sensor attached on the foot were used in the stride length estimation detecting foot movement automatically. Joint angles of the lower limbs were measured with stable and reasonable accuracy compared to those values measured with optical motion measurement system with healthy subjects. It was expected that the stride length measurement with the wearable sensor system would be practical by realizing more stable measurement accuracy. Sensor attachment position was suggested not to affect significantly measurement of slow and normal speed movements in a test with the rigid body model. Joint angle patterns measured in 10 m walking with a healthy subject were similar to common patterns. High correlation between joint angles at some characteristic points and stride velocity were also found adequately. These results suggested that the wireless wearable inertial sensor system could detect characteristics of gait.

  13. The physical environment and health-enhancing activity during the school commute: global positioning system, geographical information systems and accelerometry

    Directory of Open Access Journals (Sweden)

    David McMinn

    2014-05-01

    Full Text Available Active school travel is in decline. An understanding of the potential determinants of health-enhancing physical activity during the school commute may help to inform interventions aimed at reversing these trends. The purpose of this study was to identify the physical environmental factors associated with health-enhancing physical activity during the school commute. Data were collected in 2009 on 166 children commuting home from school in Scotland. Data on location and physical activity were measured using global positioning systems (GPS and accelerometers, and mapped using geographical information systems (GIS. Multi-level logistic regression models accounting for repeated observations within participants were used to test for associations between each land-use category (road/track/path, other man-made, greenspace, other natural and moderate-to-vigorous physical activity (MVPA. Thirty-nine children provided 2,782 matched data points. Over one third (37.1% of children’s school commute time was spent in MVPA. Children commuted approximately equal amounts of time via natural and man-made land-uses (50.2% and 49.8% respectively. Commuting via road/track/path was associated with increased likelihood of MVPA (Exp(B=1.23, P <0.05, but this association was not seen for commuting via other manmade land-uses. No association was noted between greenspace use and MVPA, but travelling via other natural land-uses was associated with lower odds of MVPA (Exp(B=0.32, P <0.05. Children spend equal amounts of time commuting to school via man-made and natural land-uses, yet man-made transportation route infrastructure appears to provide greater opportunities for achieving health-enhancing physical activity levels.

  14. Estimation of crustal movements using the Global Positioning System (GPS) measurements along Nile Valley area, Egypt from 2007 to 2012

    Science.gov (United States)

    Sakr, Kamal; Radwan, Ali M.; Rashwan, Mohamed; Gomaa, Mahmoud

    2015-06-01

    The Nile Valley in Egypt is located to the west of the Red Sea Rift and to the south of the Mediterranean Sea. Recently, some moderate earthquakes were occurred along the Nile Valley at the eastern and western side. Tectonically, the Nile Valley is controlled by NW-SE, NE-SW, E-W and N-S tectonic trends due to the exerted forces and stresses. A program of studying the recent crustal movements in Egypt has been started since 1984 to cover some areas which are characterized by the occurrence of felt Earthquakes. One of these areas is the Nile Valley. About 6 moderate earthquakes with magnitudes more than 4 were occurred on both sides of River Nile. The present study aimed to determine the recent crustal movement parameters along the Nile Valley using the Global Positioning System (GPS) measurements. To achieve this mission, a GPS network consisting of ten geodetic stations has been established on both sides along the Nile Valley area. GPS measurements have been collected from 2007 to 2012. The collected data were processed using Bernese 5.0 Software. The result of the data analysis indicates that the rate of local velocity is small ranging from 1 to 4 mm/year. This rate is consistent with the low rate of occurrence of recent earthquakes activity along the Nile Valley area. But, the results obtained from the calculation of the regional velocity indicated that the velocity of the GPS stations including the African Plate motion is about 25 mm/year in the northeast direction which is consistent with the African Plate motion direction.

  15. On Fast Post-Processing of Global Positioning System Simulator Truth Data and Receiver Measurements and Solutions Data

    Science.gov (United States)

    Kizhner, Semion; Day, John H. (Technical Monitor)

    2000-01-01

    Post-Processing of data related to a Global Positioning System (GPS) simulation is an important activity in qualification of a GPS receiver for space flight. Because a GPS simulator is a critical resource it is desirable to move off the pertinent simulation data from the simulator as soon as a test is completed. The simulator data files are usually moved to a Personal Computer (PC), where the post-processing of the receiver logged measurements and solutions data and simulated data is performed. Typically post-processing is accomplished using PC-based commercial software languages and tools. Because of commercial software systems generality their general-purpose functions are notoriously slow and more than often are the bottleneck problem even for short duration experiments. For example, it may take 8 hours to post-process data from a 6-hour simulation. There is a need to do post-processing faster, especially in order to use the previous test results as feedback for a next simulation setup. This paper demonstrates that a fast software linear interpolation algorithm is applicable to a large class of engineering problems, like GPS simulation data post-processing, where computational time is a critical resource and is one of the most important considerations. An approach is developed that allows to speed-up post-processing by an order of magnitude. It is based on improving the post-processing bottleneck interpolation algorithm using apriori information that is specific to the GPS simulation application. The presented post-processing scheme was used in support of a few successful space flight missions carrying GPS receivers. A future approach to solving the post-processing performance problem using Field Programmable Gate Array (FPGA) technology is described.

  16. The physical environment and health-enhancing activity during the school commute: global positioning system, geographical information systems and accelerometry.

    Science.gov (United States)

    McMinn, David; Oreskovic, Nicolas M; Aitkenhead, Matt J; Johnston, Derek W; Murtagh, Shemane; Rowe, David A

    2014-05-01

    Active school travel is in decline. An understanding of the potential determinants of health-enhancing physical activity during the school commute may help to inform interventions aimed at reversing these trends. The purpose of this study was to identify the physical environmental factors associated with health-enhancing physical activity during the school commute. Data were collected in 2009 on 166 children commuting home from school in Scotland. Data on location and physical activity were measured using global positioning systems (GPS) and accelerometers, and mapped using geographical information systems (GIS). Multi-level logistic regression models accounting for repeated observations within participants were used to test for associations between each land-use category (road/track/path, other man-made, greenspace, other natural) and moderate-to-vigorous physical activity (MVPA). Thirty-nine children provided 2,782 matched data points. Over one third (37.1%) of children's school commute time was spent in MVPA. Children commuted approximately equal amounts of time via natural and man-made land-uses (50.2% and 49.8% respectively). Commuting via road/track/path was associated with increased likelihood of MVPA (Exp(B)=1.23, P <0.05), but this association was not seen for commuting via other manmade land-uses. No association was noted between greenspace use and MVPA, but travelling via other natural land-uses was associated with lower odds of MVPA (Exp(B)=0.32, P <0.05). Children spend equal amounts of time commuting to school via man-made and natural land-uses, yet man-made transportation route infrastructure appears to provide greater opportunities for achieving health-enhancing physical activity levels.

  17. The use of a vest equipped with a global positioning system to assess water-contact patterns associated with schistosomiasis

    Directory of Open Access Journals (Sweden)

    Edmund Y.W. Seto

    2007-05-01

    Full Text Available The real exposure to many of the tropical diseases is difficult to assess at the individual-level due to problems of recall, self-reported diaries, personnel requirements, and altered behaviour related to observation. We present a study in an area endemic for Schistosoma japonicum in which global positioning system (GPS receivers were used for personal time-activity monitoring to assess water-contact associated with schistosomiasis transmission. The study subjects were equipped with a vest with an embedded GPS receiver for 8-hour periods. The resulting data were used to create hourly time-activity maps, which were subsequently used in interviews to ascertain the timing and location of the water-contacts. Based on a sample of twenty-four 8-hour person-days we found that individuals averaged 1.4 ± 1.2 water-contacts per day, and were surprisingly mobile, with 39% of the participants having spent time out of the village (0.8 ± 1.4 hours outside of village. Such mobility suggests the need for further research into social patterns that may facilitate the spread of parasites, and contribute to sustained transmission. We present an assessment of the accuracy of cheaper commercially- available GPS units that have shown promise in such applications. We feel that a speed-filtering method is effective in managing measurement errors commonly encountered during personal activity monitoring with GPS. We conclude that personal GPS units can help reduce recall problems associated with other methods of assessing water-contact, and that they offer valuable insights into time-activity patterns that influence schistosomiasis transmission.

  18. An Analysis of Mobility in Global Rankings: Making Institutional Strategic Plans and Positioning for Building World-Class Universities

    Science.gov (United States)

    Hou, Angela Yung Chi; Morse, Robert; Chiang, Chung-Lin

    2012-01-01

    Since the start of the twenty-first century, university rankings have become internationalized. Global rankings have a variety of uses, levels of popularity and rationales and they are here to stay. An examination of the results of the current global ranking reveals that well-reputed world-class universities are amongst the top ranked ones. A…

  19. Wearable Beat to Beat Blood Pressure Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A key component of NASA's human exploration programs is a system that monitors the health of the crew during the space missions. The wearable physiological monitor...

  20. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors

    National Research Council Canada - National Science Library

    Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio

    2015-01-01

    .... The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors...

  1. Efficient Wearable Antennas for Astronaut EVA Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA SBIR Subtopic O1.02 (Antenna Technology), Pharad proposes to create a new class of highly efficient body wearable antennas suitable for astronaut...

  2. Multiobjective Design of Wearable Sensor Systems for Electrocardiogram Monitoring

    Directory of Open Access Journals (Sweden)

    F. J. Martinez-Tabares

    2016-01-01

    Full Text Available Wearable sensor systems will soon become part of the available medical tools for remote and long term physiological monitoring. However, the set of variables involved in the performance of these systems are usually antagonistic, and therefore the design of usable wearable systems in real clinical applications entails a number of challenges that have to be addressed first. This paper describes a method to optimise the design of these systems for the specific application of cardiac monitoring. The method proposed is based on the selection of a subset of 5 design variables, sensor contact, location, and rotation, signal correlation, and patient comfort, and 2 objective functions, functionality and wearability. These variables are optimised using linear and nonlinear models to maximise those objective functions simultaneously. The methodology described and the results achieved demonstrate that it is possible to find an optimal solution and therefore overcome most of the design barriers that prevent wearable sensor systems from being used in normal clinical practice.

  3. Pneumatic Feedback for Wearable Lower Limb Exoskeletons Further Explored

    NARCIS (Netherlands)

    Muijzer-Witteveen, Heidi; Guerra, Francisco; Sluiter, Victor; Kooij, van der Herman; Bello, Fernando; Kajimoto, Hiroyuki; Visell, Yon

    2016-01-01

    For optimal control of wearable lower limb exoskeletons the sensory information flow should also be (partly) restored, especially when the users are Spinal Cord Injury subjects. Several methods, like electrotactile or electromechanical vibrotactile stimulation, to provide artificial sensory feedback

  4. Assessing physical activity using wearable monitors: measures of physical activity

    National Research Council Canada - National Science Library

    Butte, Nancy F; Ekelund, Ulf; Westerterp, Klaas R

    2012-01-01

    .... Six main categories of wearable monitors are currently available to investigators: pedometers, load transducers/foot-contact monitors, accelerometers, HR monitors, combined accelerometer and HR monitors, and multiple sensor systems...

  5. Pneumatic Feedback for Wearable Lower Limb Exoskeletons Further Explored

    NARCIS (Netherlands)

    Muijzer-Witteveen, Heintje Johanna Berendina; Guerra, Francisco; Sluiter, Victor IJzebrand; van der Kooij, Herman; Bello, Fernando; Kajimoto, Hiroyuki; Visell, Yon

    2016-01-01

    For optimal control of wearable lower limb exoskeletons the sensory information flow should also be (partly) restored, especially when the users are Spinal Cord Injury subjects. Several methods, like electrotactile or electromechanical vibrotactile stimulation, to provide artificial sensory feedback

  6. Wearable and augmented reality displays using MEMS and SLMs

    OpenAIRE

    Ürey, Hakan; Ulusoy, Erdem; Akşit, Kaan; Hossein, Amir; Niaki, Ghanbari

    2016-01-01

    In this talk, we present the various types of 3D displays, head-mounted projection displays and wearable displays developed in our group using MEMS scanners, compact RGB laser light sources, and spatial light modulators.

  7. Activity recognition with wearable sensors on loose clothing

    National Research Council Canada - National Science Library

    Brendan Michael; Matthew Howard

    2017-01-01

    .... However, wearable sensors suffer from motion artefacts introduced by the non-rigid attachment of sensors to the body, and the prevailing view is that it is necessary to eliminate these artefacts...

  8. Wearable Beat to Beat Blood Pressure Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A key component of NASA's human exploration programs is a system that monitors the health of the crew during space missions. The wearable beat-to-beat blood pressure...

  9. Wearable and augmented reality displays using MEMS and SLMs

    Science.gov (United States)

    Urey, Hakan; Ulusoy, Erdem; Kazempourradi, Seyedmahdi M. K.; Mengu, Deniz; Olcer, Selim; Holmstrom, Sven T.

    2016-03-01

    In this talk, we present the various types of 3D displays, head-mounted projection displays and wearable displays developed in our group using MEMS scanners, compact RGB laser light sources, and spatial light modulators.

  10. Respiratory rate detection using a wearable electromagnetic generator.

    Science.gov (United States)

    Padasdao, Bryson; Boric-Lubecke, Olga

    2011-01-01

    Wearable health and fitness monitoring systems are a promising new way of collecting physiological data without inconveniencing patients. Human energy harvesting may be used to power wearable sensors. In this paper, we explore this zero-net energy biosensor concept through sensing and harvesting of respiratory effort. An off the shelf servo motor operation in reverse was used to successfully obtain respiratory rate, while also demonstrating significant harvested power. These are the first reported respiratory rate sensing results using electromagnetic generators.

  11. Wearable technology a new paradigm in Educational Universities

    Directory of Open Access Journals (Sweden)

    T. Naga Swathi

    2015-04-01

    Full Text Available Wearable technology, making a mark as the emerging technology where the goal of computing is to minimize the time and accessing the technology everywhere. It helps students in many ways. For identifying buildings by combining Google mobile app and on the campus map. For displaying supplemental material, during lectures. In labs it is used in demonstrations, teaching students doctor surgery techniques.There are different wearable devices available in the market, whichis utilized in the real world.

  12. A flexible inkjet printed antenna for wearable electronics applications

    KAUST Repository

    Karimi, Muhammad Akram

    2016-11-02

    Wearable electronics has gained enormous attention since past few years because it is a promising technology to enhance the human experience. This paper shows a modified inverted-F antenna (IFA), inkjet printed directly on the fabric. A flexible and UV curable interface layer has been used to reduce the surface roughness of the fabric to realize the antenna on top of fabric with fine features. Flexibility tests of the prototype confirm the viability of the design for the wearable applications.

  13. Positive affect and negative affect correlate differently with distress and health-related quality of life in patients with cardiac conditions: Validation of the Danish Global Mood Scale

    DEFF Research Database (Denmark)

    Spindler, Helle; Denollet, Johan; Kruse, Charlotte

    2009-01-01

    The Global Mood Scale (GMS), assessing negative affect (NA) and positive affect (PA), is sensitive to tapping treatment-related changes in patients with cardiac conditions. We examined the psychometric properties of the Danish GMS and the influence of NA and PA on distress and health-related qual...

  14. Global Positioning System (GPS) and Geographic Information System (GIS) analysis of mobile harvesting equipment and sediment delivery to streams during forest harvest operations on steep terrain: Experimental design

    Science.gov (United States)

    Daniel Bowker; Jeff Stringer; Chris Barton; Songlin. Fei

    2011-01-01

    Sediment mobilized by forest harvest machine traffic contributes substantially to the degradation of headwater stream systems. This study monitored forest harvest machine traffic to analyze how it affects sediment delivery to stream channels. Harvest machines were outfitted with global positioning system (GPS) dataloggers, recording machine movements and working status...

  15. Raw and processed ground-penetrating radar and postprocessed differential global positioning system data collected from Assateague Island, Maryland, October 2014

    Science.gov (United States)

    Zaremba, Nicholas J.; Bernier, Julie C.; Forde, Arnell S.; Smith, Christopher G.

    2016-06-08

    Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center acquired sediment cores, sediment surface grab samples, ground-penetrating radar (GPR) and Differential Global Positioning System (DGPS) data from Assateague Island, Maryland, in October 2014. The objectives were to identify washover deposits in the stratigraphic record to aid in understanding barrier island evolution.

  16. Development of a wearable haptic game interface

    Directory of Open Access Journals (Sweden)

    J. Foottit

    2016-04-01

    Full Text Available This paper outlines the ongoing development of a wearable haptic game interface, in this case for controlling a flight simulator. The device differs from many traditional haptic feedback implementations in that it combines vibrotactile feedback with gesture based input, thus becoming a two-way conduit between the user and the virtual environment. The device is intended to challenge what is considered an “interface” and sets out to purposefully blur the boundary between man and machine. This allows for a more immersive experience, and a user evaluation shows that the intuitive interface allows the user to become the aircraft that is controlled by the movements of the user's hand.

  17. Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    J. G. Joshi

    2012-01-01

    Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.

  18. Wearable computer technology for dismounted applications

    Science.gov (United States)

    Daniels, Reginald

    2010-04-01

    Small computing devices which rival the compact size of traditional personal digital assistants (PDA) have recently established a market niche. These computing devices are small enough to be considered unobtrusive for humans to wear. The computing devices are also powerful enough to run full multi-tasking general purpose operating systems. This paper will explore the wearable computer information system for dismounted applications recently fielded for ground-based US Air Force use. The environments that the information systems are used in will be reviewed, as well as a description of the net-centric, ground-based warrior. The paper will conclude with a discussion regarding the importance of intuitive, usable, and unobtrusive operator interfaces for dismounted operators.

  19. A flexible and wearable terahertz scanner

    Science.gov (United States)

    Suzuki, D.; Oda, S.; Kawano, Y.

    2016-12-01

    Imaging technologies based on terahertz (THz) waves have great potential for use in powerful non-invasive inspection methods. However, most real objects have various three-dimensional curvatures and existing THz technologies often encounter difficulties in imaging such configurations, which limits the useful range of THz imaging applications. Here, we report the development of a flexible and wearable THz scanner based on carbon nanotubes. We achieved room-temperature THz detection over a broad frequency band ranging from 0.14 to 39 THz and developed a portable THz scanner. Using this scanner, we performed THz imaging of samples concealed behind opaque objects, breakages and metal impurities of a bent film and multi-view scans of a syringe. We demonstrated a passive biometric THz scan of a human hand. Our results are expected to have considerable implications for non-destructive and non-contact inspections, such as medical examinations for the continuous monitoring of health conditions.

  20. Features and application of wearable biosensors in medical care

    Science.gov (United States)

    Ajami, Sima; Teimouri, Fotooheh

    2015-01-01

    One of the new technologies in the field of health is wearable biosensor, which provides vital signs monitoring of patients, athletes, premature infants, children, psychiatric patients, people who need long-term care, elderly, and people in impassable regions far from health and medical services. The aim of this study was to explain features and applications of wearable biosensors in medical services. This was a narrative review study that done in 2015. Search conducted with the help of libraries, books, conference proceedings, through databases of Science Direct, PubMed, Proquest, Springer, and SID (Scientific Information Database). In our searches, we employed the following keywords and their combinations; vital sign monitoring, medical smart shirt, smart clothing, wearable biosensors, physiological monitoring system, remote detection systems, remote control health, and bio-monitoring system. The preliminary search resulted in 54 articles, which published between 2002 and 2015. After a careful analysis of the content of each paper, 41 sources selected based on their relevancy. Although the use of wearable in healthcare is still in an infant stage, it could have a magic effect on healthcare. Smart wearable in the technology industry for 2015 is one that is looking to be a big and profitable market. Wearable biosensors capable of continuous vital signs monitoring and feedback to the user will be significantly effective in timely prevention, diagnosis, treatment, and control of diseases. PMID:26958058

  1. Features and application of wearable biosensors in medical care

    Directory of Open Access Journals (Sweden)

    Sima Ajami

    2015-01-01

    Full Text Available One of the new technologies in the field of health is wearable biosensor, which provides vital signs monitoring of patients, athletes, premature infants, children, psychiatric patients, people who need long-term care, elderly, and people in impassable regions far from health and medical services. The aim of this study was to explain features and applications of wearable biosensors in medical services. This was a narrative review study that done in 2015. Search conducted with the help of libraries, books, conference proceedings, through databases of Science Direct, PubMed, Proquest, Springer, and SID (Scientific Information Database. In our searches, we employed the following keywords and their combinations; vital sign monitoring, medical smart shirt, smart clothing, wearable biosensors, physiological monitoring system, remote detection systems, remote control health, and bio-monitoring system. The preliminary search resulted in 54 articles, which published between 2002 and 2015. After a careful analysis of the content of each paper, 41 sources selected based on their relevancy. Although the use of wearable in healthcare is still in an infant stage, it could have a magic effect on healthcare. Smart wearable in the technology industry for 2015 is one that is looking to be a big and profitable market. Wearable biosensors capable of continuous vital signs monitoring and feedback to the user will be significantly effective in timely prevention, diagnosis, treatment, and control of diseases.

  2. A novel system identification technique for improved wearable hemodynamics assessment.

    Science.gov (United States)

    Wiens, Andrew D; Inan, Omer T

    2015-05-01

    Recent advances have led to renewed interest in ballistocardiography (BCG), a noninvasive measure of the small movements of the body due to cardiovascular events. A broad range of platforms have been developed and verified for BCG measurement including beds, chairs, and weighing scales: while the body is coupled to such a platform, the cardiogenic movements are measured. Wearable BCG, measured with an accelerometer affixed to the body, may enable continuous, or more regular, monitoring during the day; however, the signals from such wearable BCGs represent local or distal accelerations of skin and tissue rather than the whole body. In this paper, we propose a novel method to reconstruct the BCG measured with a weighing scale (WS BCG) from a wearable sensor via a training step to remove these local effects. Preliminary validation of this method was performed with 15 subjects: the wearable sensor was placed at three locations on the surface of the body while WS BCG measurements were recorded simultaneously. A regularized system identification approach was used to reconstruct the WS BCG from the wearable BCG. Preliminary results suggest that the relationship between local and central disturbances is highly dependent on both the individual and the location where the accelerometer is placed on the body and that these differences can be resolved via calibration to accurately measure changes in cardiac output and contractility from a wearable sensor. Such measurements could be highly effective, for example, for improved monitoring of heart failure patients at home.

  3. Features and application of wearable biosensors in medical care.

    Science.gov (United States)

    Ajami, Sima; Teimouri, Fotooheh

    2015-12-01

    One of the new technologies in the field of health is wearable biosensor, which provides vital signs monitoring of patients, athletes, premature infants, children, psychiatric patients, people who need long-term care, elderly, and people in impassable regions far from health and medical services. The aim of this study was to explain features and applications of wearable biosensors in medical services. This was a narrative review study that done in 2015. Search conducted with the help of libraries, books, conference proceedings, through databases of Science Direct, PubMed, Proquest, Springer, and SID (Scientific Information Database). In our searches, we employed the following keywords and their combinations; vital sign monitoring, medical smart shirt, smart clothing, wearable biosensors, physiological monitoring system, remote detection systems, remote control health, and bio-monitoring system. The preliminary search resulted in 54 articles, which published between 2002 and 2015. After a careful analysis of the content of each paper, 41 sources selected based on their relevancy. Although the use of wearable in healthcare is still in an infant stage, it could have a magic effect on healthcare. Smart wearable in the technology industry for 2015 is one that is looking to be a big and profitable market. Wearable biosensors capable of continuous vital signs monitoring and feedback to the user will be significantly effective in timely prevention, diagnosis, treatment, and control of diseases.

  4. Wearable joystick for gloves-on human/computer interaction

    Science.gov (United States)

    Bae, Jaewook; Voyles, Richard M.

    2006-05-01

    In this paper, we present preliminary work on a novel wearable joystick for gloves-on human/computer interaction in hazardous environments. Interacting with traditional input devices can be clumsy and inconvenient for the operator in hazardous environments due to the bulkiness of multiple system components and troublesome wires. During a collapsed structure search, for example, protective clothing, uneven footing, and "snag" points in the environment can render traditional input devices impractical. Wearable computing has been studied by various researchers to increase the portability of devices and to improve the proprioceptive sense of the wearer's intentions. Specifically, glove-like input devices to recognize hand gestures have been developed for general-purpose applications. But, regardless of their performance, prior gloves have been fragile and cumbersome to use in rough environments. In this paper, we present a new wearable joystick to remove the wires from a simple, two-degree of freedom glove interface. Thus, we develop a wearable joystick that is low cost, durable and robust, and wire-free at the glove. In order to evaluate the wearable joystick, we take into consideration two metrics during operator tests of a commercial robot: task completion time and path tortuosity. We employ fractal analysis to measure path tortuosity. Preliminary user test results are presented that compare the performance of both a wearable joystick and a traditional joystick.

  5. Investigation for improving Global Positioning System (GPS) orbits using a discrete sequential estimator and stochastic models of selected physical processes

    Science.gov (United States)

    Goad, Clyde C.; Chadwell, C. David

    1993-01-01

    GEODYNII is a conventional batch least-squares differential corrector computer program with deterministic models of the physical environment. Conventional algorithms were used to process differenced phase and pseudorange data to determine eight-day Global Positioning system (GPS) orbits with several meter accuracy. However, random physical processes drive the errors whose magnitudes prevent improving the GPS orbit accuracy. To improve the orbit accuracy, these random processes should be modeled stochastically. The conventional batch least-squares algorithm cannot accommodate stochastic models, only a stochastic estimation algorithm is suitable, such as a sequential filter/smoother. Also, GEODYNII cannot currently model the correlation among data values. Differenced pseudorange, and especially differenced phase, are precise data types that can be used to improve the GPS orbit precision. To overcome these limitations and improve the accuracy of GPS orbits computed using GEODYNII, we proposed to develop a sequential stochastic filter/smoother processor by using GEODYNII as a type of trajectory preprocessor. Our proposed processor is now completed. It contains a correlated double difference range processing capability, first order Gauss Markov models for the solar radiation pressure scale coefficient and y-bias acceleration, and a random walk model for the tropospheric refraction correction. The development approach was to interface the standard GEODYNII output files (measurement partials and variationals) with software modules containing the stochastic estimator, the stochastic models, and a double differenced phase range processing routine. Thus, no modifications to the original GEODYNII software were required. A schematic of the development is shown. The observational data are edited in the preprocessor and the data are passed to GEODYNII as one of its standard data types. A reference orbit is determined using GEODYNII as a batch least-squares processor and the

  6. Can positive matrix factorization help to understand patterns of organic trace gases at the continental Global Atmosphere Watch site Hohenpeissenberg?

    Science.gov (United States)

    Leuchner, M.; Gubo, S.; Schunk, C.; Wastl, C.; Kirchner, M.; Menzel, A.; Plass-Dülmer, C.

    2015-02-01

    From the rural Global Atmosphere Watch (GAW) site Hohenpeissenberg in the pre-alpine area of southern Germany, a data set of 24 C2-C8 non-methane hydrocarbons over a period of 7 years was analyzed. Receptor modeling was performed by positive matrix factorization (PMF) and the resulting factors were interpreted with respect to source profiles and photochemical aging. Differing from other studies, no direct source attribution was intended because, due to chemistry along transport, mass conservation from source to receptor is not given. However, at remote sites such as Hohenpeissenberg, the observed patterns of non-methane hydrocarbons can be derived from combinations of factors determined by PMF. A six-factor solution showed high stability and the most plausible results. In addition to a biogenic and a background factor of very stable compounds, four additional anthropogenic factors were resolved that could be divided into two short- and two long-lived patterns from evaporative sources/natural gas leakage and incomplete combustion processes. The volume or mass contribution at the site over the entire period was, in decreasing order, from the following factor categories: background, gas leakage and long-lived evaporative, residential heating and long-lived combustion, short-lived evaporative, short-lived combustion, and biogenic. The importance with respect to reactivity contribution was generally in reverse order, with the biogenic and the short-lived combustion factors contributing most. The seasonality of the factors was analyzed and compared to results of a simple box model using constant emissions and the photochemical decay calculated from the measured annual cycles of OH radicals and ozone. Two of the factors, short-lived combustion and gas leakage/long-lived evaporative, showed winter/summer ratios of about 9 and 7, respectively, as expected from constant source estimations. Contrarily, the short-lived evaporative emissions were about 3 times higher in summer

  7. Existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with several deviating arguments.

    Science.gov (United States)

    Fan, M; Wang, K; Jiang, D

    1999-08-01

    In this paper, we study the existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems. By using the method of coincidence degree and Lyapunov functional, a set of easily verifiable sufficient conditions are derived for the existence of at least one strictly positive (componentwise) periodic solution of periodic n-species Lotka-Volterra competition systems with several deviating arguments and the existence of a unique globally asymptotically stable periodic solution with strictly positive components of periodic n-species Lotka-Volterra competition system with several delays. Some new results are obtained. As an application, we also examine some special cases of the system we considered, which have been studied extensively in the literature. Some known results are improved and generalized.

  8. Wearable and Implantable Sensors: The Patient’s Perspective

    Directory of Open Access Journals (Sweden)

    Alison McGregor

    2012-12-01

    Full Text Available There has been a rising interest in wearable and implantable biomedical sensors over the last decade. However, many technologies have not been integrated into clinical care, due to a limited understanding of user-centered design issues. Little information is available about these issues and there is a need to adopt more rigorous evidence standards for design features to allow important medical sensors to progress quicker into clinical care. Current trends in patient preferences need to be incorporated at an early stage into the design process of prospective clinical sensors. The first comprehensive patient data set, discussing mobile biomedical sensor technology, is presented in this paper. The study population mainly consisted of individuals suffering from arthritis. It was found that sensor systems needed to be small, discreet, unobtrusive and preferably incorporated into everyday objects. The upper extremity was seen as the favored position on the body for placement, while invasive placement yielded high levels of acceptance. Under these conditions most users were willing to wear the body-worn sensor for more than 20 h a day. This study is a first step to generate research based user-orientated design criteria’s for biomedical sensors.

  9. Examination of the Locus of Positional Effects on Children's Production of Plural -"s": Considerations from Local and Global Speech Planning

    Science.gov (United States)

    Theodore, Rachel M.; Demuth, Katherine; Shattuck-Hufnagel, Stefanie

    2015-01-01

    Purpose: Prosodic and articulatory factors influence children's production of inflectional morphemes. For example, plural -"s" is produced more reliably in utterance-final compared to utterance-medial position (i.e., the positional effect), which has been attributed to the increased planning time in utterance-final position. In previous…

  10. Development of Compact Flexible Displacement Sensors Using Ultrasonic Sensor for Wearable Actuators

    Directory of Open Access Journals (Sweden)

    Akagi Tetsuya

    2016-01-01

    Full Text Available In position control of wearable actuator such as a rubber artificial muscle, a compact flexible displacement sensor is much attractive and required. In this paper, two types of flexible displacement sensor using the ultrasonic sensor were introduced. One is a built-in displacement sensor for rubber artificial muscle. Another is a sensor that can measure the sliding displacement on a flexible tube for flexible robot. Both sensors use ultrasonic displacement sensors. The construction, operating principle and measuring performance of two sensors were also described.

  11. On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization

    Institute of Scientific and Technical Information of China (English)

    LIAO Xiaoxin; FU Yuli; XIE Shengli

    2005-01-01

    Constructing a family of generalized Lyapunov functions, a new method is proposed to obtain new global attractive set and positive invariant set of the Lorenz chaotic system. The method we proposed greatly simplifies the complex proofs of the two famous estimations presented by the Russian scholar Leonov. Our uniform formula can derive a series of the new estimations. Employing the idea of intersection in set theory, we extract a new Leonov formula-like estimation from the family of the estimations. With our method and the new estimation, one can confirm that there are no equilibrium, periodic solutions, almost periodic motions, wandering motions or other chaotic attractors outside the global attractive set. The Lorenz butterfly-like singular attractors are located in the global attractive set only. This result is applied to the chaos control and chaos synchronization. Some feedback control laws are obtained to guarantee that all the trajectories of the Lorenz systems track a periodic solution, or globally stabilize an unstable (or locally stable but not globally asymptotically stable) equilibrium. Further, some new global exponential chaos synchronization results are presented. Our new method and the new results are expected to be applied in real secure communication systems.

  12. Global attractivity of positive periodic solutions for an impulsive delay periodic “food limited” population model

    Directory of Open Access Journals (Sweden)

    Jian Song

    2006-01-01

    conditions for the global attractivity of N*(t. Our results imply that under the appropriate periodic impulsive perturbations, the impulsive delay equation preserves the original periodic property of the nonimpulsive delay equation. In particular, our work extends and improves some known results.

  13. Existence,uniqueness,and global attractivity of positive solutions and MLE of the parameters to the Logistic equation with random perturbation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper discusses a randomized Logistic equation N(t)=(r+αB(t))N(t)[1-(N(t)/K)] with an initial value N(0)=N0,and N0 is a random variable satisfying 0<N0<K.The existence, uniqueness and global attractivity of positive solutions and maximum likelihood estimate(MLE)of the parameters of the equation are studied.

  14. Wearable Systems for Service based on Physiological Signals.

    Science.gov (United States)

    Ryoo, Dong-Wan; Kim, Young-Sung; Lee, Jeun-Woo

    2005-01-01

    Many researches for useful status information on humans have been done using the bio-signals. The bio-signal acquisition systems can be used to connect a user and a ubiquitous computing environment. The ubiquitous computing environment has to give various services anywhere, anytime. Consequently, ubiquitous computing requires new technology, such as a new user interface, dynamic service mechanism based on context and mobility support, which is different from technology used in desktop environment. To do this, we developed a wearable system, which can sense physiological data, determine emotional status and execute service based on the emotion. In this paper, we described wearable systems for personalized service based on physiological signals. The wearable system is composed of three subsystems, the physiological data sensing subsystem, the human status awareness subsystem and the service management subsystem. The physiological data sensing subsystem senses PPG, GSR and SKT signals from the data glove and sends the data to a wearable system using Bluetooth. The human status awareness subsystem in the wearable system receives the data from bio-sensors and determines emotional status using nonlinear mapping and rule-base. After determining emotion, the service management subsystem activates proper service automatically, and the service management subsystem can provide personalized service for users based on acquired bio-signals. Also, we presented various feature extraction using bio-signals such as PPG, GSR, SKT considering mobility, and emotion recognition of human status for the ubiquitous computing service.

  15. Wearable Fall Detector using Integrated Sensors and Energy Devices.

    Science.gov (United States)

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-24

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  16. A Method of Data Aggregation for Wearable Sensor Systems.

    Science.gov (United States)

    Shen, Bo; Fu, Jun-Song

    2016-06-23

    Data aggregation has been considered as an effective way to decrease the data to be transferred in sensor networks. Particularly for wearable sensor systems, smaller battery has less energy, which makes energy conservation in data transmission more important. Nevertheless, wearable sensor systems usually have features like frequently dynamic changes of topologies and data over a large range, of which current aggregating methods can't adapt to the demand. In this paper, we study the system composed of many wearable devices with sensors, such as the network of a tactical unit, and introduce an energy consumption-balanced method of data aggregation, named LDA-RT. In the proposed method, we develop a query algorithm based on the idea of 'happened-before' to construct a dynamic and energy-balancing routing tree. We also present a distributed data aggregating and sorting algorithm to execute top-k query and decrease the data that must be transferred among wearable devices. Combining these algorithms, LDA-RT tries to balance the energy consumptions for prolonging the lifetime of wearable sensor systems. Results of evaluation indicate that LDA-RT performs well in constructing routing trees and energy balances. It also outperforms the filter-based top-k monitoring approach in energy consumption, load balance, and the network's lifetime, especially for highly dynamic data sources.

  17. A Method of Data Aggregation for Wearable Sensor Systems

    Directory of Open Access Journals (Sweden)

    Bo Shen

    2016-06-01

    Full Text Available Data aggregation has been considered as an effective way to decrease the data to be transferred in sensor networks. Particularly for wearable sensor systems, smaller battery has less energy, which makes energy conservation in data transmission more important. Nevertheless, wearable sensor systems usually have features like frequently dynamic changes of topologies and data over a large range, of which current aggregating methods can’t adapt to the demand. In this paper, we study the system composed of many wearable devices with sensors, such as the network of a tactical unit, and introduce an energy consumption-balanced method of data aggregation, named LDA-RT. In the proposed method, we develop a query algorithm based on the idea of ‘happened-before’ to construct a dynamic and energy-balancing routing tree. We also present a distributed data aggregating and sorting algorithm to execute top-k query and decrease the data that must be transferred among wearable devices. Combining these algorithms, LDA-RT tries to balance the energy consumptions for prolonging the lifetime of wearable sensor systems. Results of evaluation indicate that LDA-RT performs well in constructing routing trees and energy balances. It also outperforms the filter-based top-k monitoring approach in energy consumption, load balance, and the network’s lifetime, especially for highly dynamic data sources.

  18. Wearable Fall Detector using Integrated Sensors and Energy Devices

    Science.gov (United States)

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  19. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System

    Directory of Open Access Journals (Sweden)

    Shau-Shiun Jan

    2016-05-01

    Full Text Available The Chinese BeiDou navigation satellite system (BDS aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA methods, three signal quality analysis (SQA methods, and four measurement quality analysis (MQA methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region.

  20. Accelerometry-based Recognition of the Placement Sites of a Wearable Sensor.

    Science.gov (United States)

    Mannini, Andrea; Sabatini, Angelo M; Intille, Stephen S

    2015-08-01

    This work describes an automatic method to recognize the position of an accelerometer worn on five different parts of the body: ankle, thigh, hip, arm and wrist from raw accelerometer data. Automatic detection of body position of a wearable sensor would enable systems that allow users to wear sensors flexibly on different body parts or permit systems that need to automatically verify sensor placement. The two-stage location detection algorithm works by first detecting time periods during which candidates are walking (regardless of where the sensor is positioned). Then, assuming that the data refer to walking, the algorithm detects the position of the sensor. Algorithms were validated on a dataset that is substantially larger than in prior work, using a leave-one-subject-out cross-validation approach. Correct walking and placement recognition were obtained for 97.4% and 91.2% of classified data windows, respectively.

  1. The Changing Position of the State and State Power in Global Affairs - Views from two scholars in International Political Economy

    OpenAIRE

    Marthinus J. Du Plessis

    2012-01-01

    A great deal of enlightening work has been done since studies in international political economy have become a recognised academic discipline. This has changed our conception of the domain of international politics and economics. Still, there are some scholars who prefer to use old spectacles to view new problems. This review article concentrates on two books, one from each of these camps. Stephen Krasner's Structural Conflict - The World Against Global Liberalism, belongs to the realist camp...

  2. Gait analysis using gravitational acceleration measured by wearable sensors.

    Science.gov (United States)

    Takeda, Ryo; Tadano, Shigeru; Todoh, Masahiro; Morikawa, Manabu; Nakayasu, Minoru; Yoshinari, Satoshi

    2009-02-09

    A novel method for measuring human gait posture using wearable sensor units is proposed. The sensor units consist of a tri-axial acceleration sensor and three gyro sensors aligned on three axes. The acceleration and angular velocity during walking were measured with seven sensor units worn on the abdomen and the lower limb segments (both thighs, shanks and feet). The three-dimensional positions of each joint are calculated from each segment length and joint angle. Joint angle can be estimated mechanically from the gravitational acceleration along the anterior axis of the segment. However, the acceleration data during walking includes three major components; translational acceleration, gravitational acceleration and external noise. Therefore, an optimization analysis was represented to separate only the gravitational acceleration from the acceleration data. Because the cyclic patterns of acceleration data can be found during constant walking, a FFT analysis was applied to obtain some characteristic frequencies in it. A pattern of gravitational acceleration was assumed using some parts of these characteristic frequencies. Every joint position was calculated from the pattern under the condition of physiological motion range of each joint. An optimized pattern of the gravitational acceleration was selected as a solution of an inverse problem. Gaits of three healthy volunteers were measured by walking for 20s on a flat floor. As a result, the acceleration data of every segment was measured simultaneously. The characteristic three-dimensional walking could be shown by the expression using a stick figure model. In addition, the trajectories of the knee joint in the horizontal plane could be checked by visual imaging on a PC. Therefore, this method provides important quantitive information for gait diagnosis.

  3. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications

    Directory of Open Access Journals (Sweden)

    Alvaro Muro-de-la-Herran

    2014-02-01

    Full Text Available This article presents a review of the methods used in recognition and analysis of the human gait from three different approaches: image processing, floor sensors and sensors placed on the body. Progress in new technologies has led the development of a series of devices and techniques which allow for objective evaluation, making measurements more efficient and effective and providing specialists with reliable information. Firstly, an introduction of the key gait parameters and semi-subjective methods is presented. Secondly, technologies and studies on the different objective methods are reviewed. Finally, based on the latest research, the characteristics of each method are discussed. 40% of the reviewed articles published in late 2012 and 2013 were related to non-wearable systems, 37.5% presented inertial sensor-based systems, and the remaining 22.5% corresponded to other wearable systems. An increasing number of research works demonstrate that various parameters such as precision, conformability, usability or transportability have indicated that the portable systems based on body sensors are promising methods for gait analysis.

  4. Low-Power Wearable Respiratory Sound Sensing

    Directory of Open Access Journals (Sweden)

    Dinko Oletic

    2014-04-01

    Full Text Available Building upon the findings from the field of automated recognition of respiratory sound patterns, we propose a wearable wireless sensor implementing on-board respiratory sound acquisition and classification, to enable continuous monitoring of symptoms, such as asthmatic wheezing. Low-power consumption of such a sensor is required in order to achieve long autonomy. Considering that the power consumption of its radio is kept minimal if transmitting only upon (rare occurrences of wheezing, we focus on optimizing the power consumption of the digital signal processor (DSP. Based on a comprehensive review of asthmatic wheeze detection algorithms, we analyze the computational complexity of common features drawn from short-time Fourier transform (STFT and decision tree classification. Four algorithms were implemented on a low-power TMS320C5505 DSP. Their classification accuracies were evaluated on a dataset of prerecorded respiratory sounds in two operating scenarios of different detection fidelities. The execution times of all algorithms were measured. The best classification accuracy of over 92%, while occupying only 2.6% of the DSP’s processing time, is obtained for the algorithm featuring the time-frequency tracking of shapes of crests originating from wheezing, with spectral features modeled using energy.

  5. Nanopatterned textile-based wearable triboelectric nanogenerator.

    Science.gov (United States)

    Seung, Wanchul; Gupta, Manoj Kumar; Lee, Keun Young; Shin, Kyung-Sik; Lee, Ju-Hyuck; Kim, Tae Yun; Kim, Sanghyun; Lin, Jianjian; Kim, Jung Ho; Kim, Sang-Woo

    2015-01-01

    Here we report a fully flexible, foldable nanopatterned wearable triboelectric nanogenerator (WTNG) with high power-generating performance and mechanical robustness. Both a silver (Ag)-coated textile and polydimethylsiloxane (PDMS) nanopatterns based on ZnO nanorod arrays on a Ag-coated textile template were used as active triboelectric materials. A high output voltage and current of about 120 V and 65 μA, respectively, were observed from a nanopatterned PDMS-based WTNG, while an output voltage and current of 30 V and 20 μA were obtained by the non-nanopatterned flat PDMS-based WTNG under the same compressive force of 10 kgf. Furthermore, very high voltage and current outputs with an average value of 170 V and 120 μA, respectively, were obtained from a four-layer-stacked WTNG under the same compressive force. Notably it was found there are no significant differences in the output voltages measured from the multilayer-stacked WTNG over 12 000 cycles, confirming the excellent mechanical durability of WTNGs. Finally, we successfully demonstrated the self-powered operation of light-emitting diodes, a liquid crystal display, and a keyless vehicle entry system only with the output power of our WTNG without any help of external power sources.

  6. SURFACING ELECTRODE WITH CRACKING RESISTANCE AND WEARABILITY

    Institute of Scientific and Technical Information of China (English)

    Yang Shanglei; Lu Xueqin; Lou Songnian; Zou Zengda

    2005-01-01

    A new surfacing electrode is developed with cracking resistance and wearability based on high microhardness of TiC and VC, carbides of Ti and V are formed in deposited metal by means of high temperature arc metallurgic reaction. The results show the hardness of surfacing metal increases with the increase of ferrotitanium (Fe-Ti), ferrovanadium (Fe-V) and graphite in the coat. However,when graphite reaches the volume fraction of 11%, the hardness reaches its peak value, and when beyond 11%, the hardness falls off. As Fe-Ti, Fe-V and graphite increase, the cracking resistance of deposited metal and usability of electrode declines. Carbides are dispersedly distributed in the matrix structure. The matrix microstructure of deposited metal is lath martensite. Carbides present irregular block. When using the researched surfacing electrode to continue weld with non-preheated, no seeable crack or only a few micro-cracks can be observed in the surface of deposited metal. The hardness is above 60 HRC. The wear resistance is better than that of EDZCr-C-15.

  7. Flexible heartbeat sensor for wearable device.

    Science.gov (United States)

    Kwak, Yeon Hwa; Kim, Wonhyo; Park, Kwang Bum; Kim, Kunnyun; Seo, Sungkyu

    2017-03-08

    We demonstrate a flexible strain-gauge sensor and its use in a wearable application for heart rate detection. This polymer-based strain-gauge sensor was fabricated using a double-sided fabrication method with polymer and metal, i.e., polyimide and nickel-chrome. The fabrication process for this strain-gauge sensor is compatible with the conventional flexible printed circuit board (FPCB) processes facilitating its commercialization. The fabricated sensor showed a linear relation for an applied normal force of more than 930 kPa, with a minimum detectable force of 6.25Pa. This sensor can also linearly detect a bending radius from 5mm to 100mm. It is a thin, flexible, compact, and inexpensive (for mass production) heart rate detection sensor that is highly sensitive compared to the established optical photoplethysmography (PPG) sensors. It can detect not only the timing of heart pulsation, but also the amplitude or shape of the pulse signal. The proposed strain-gauge sensor can be applicable to various applications for smart devices requiring heartbeat detection.

  8. Gait Recognition Using Wearable Motion Recording Sensors

    Directory of Open Access Journals (Sweden)

    Davrondzhon Gafurov

    2009-01-01

    Full Text Available This paper presents an alternative approach, where gait is collected by the sensors attached to the person's body. Such wearable sensors record motion (e.g. acceleration of the body parts during walking. The recorded motion signals are then investigated for person recognition purposes. We analyzed acceleration signals from the foot, hip, pocket and arm. Applying various methods, the best EER obtained for foot-, pocket-, arm- and hip- based user authentication were 5%, 7%, 10% and 13%, respectively. Furthermore, we present the results of our analysis on security assessment of gait. Studying gait-based user authentication (in case of hip motion under three attack scenarios, we revealed that a minimal effort mimicking does not help to improve the acceptance chances of impostors. However, impostors who know their closest person in the database or the genders of the users can be a threat to gait-based authentication. We also provide some new insights toward the uniqueness of gait in case of foot motion. In particular, we revealed the following: a sideway motion of the foot provides the most discrimination, compared to an up-down or forward-backward directions; and different segments of the gait cycle provide different level of discrimination.

  9. Gait Recognition Using Wearable Motion Recording Sensors

    Science.gov (United States)

    Gafurov, Davrondzhon; Snekkenes, Einar

    2009-12-01

    This paper presents an alternative approach, where gait is collected by the sensors attached to the person's body. Such wearable sensors record motion (e.g. acceleration) of the body parts during walking. The recorded motion signals are then investigated for person recognition purposes. We analyzed acceleration signals from the foot, hip, pocket and arm. Applying various methods, the best EER obtained for foot-, pocket-, arm- and hip- based user authentication were 5%, 7%, 10% and 13%, respectively. Furthermore, we present the results of our analysis on security assessment of gait. Studying gait-based user authentication (in case of hip motion) under three attack scenarios, we revealed that a minimal effort mimicking does not help to improve the acceptance chances of impostors. However, impostors who know their closest person in the database or the genders of the users can be a threat to gait-based authentication. We also provide some new insights toward the uniqueness of gait in case of foot motion. In particular, we revealed the following: a sideway motion of the foot provides the most discrimination, compared to an up-down or forward-backward directions; and different segments of the gait cycle provide different level of discrimination.

  10. A wearable sensor based on CLYC scintillators

    Science.gov (United States)

    McDonald, Benjamin S.; Myjak, Mitchell J.; Zalavadia, Mital A.; Smart, John E.; Willett, Jesse A.; Landgren, Peter C.; Greulich, Christopher R.

    2016-06-01

    We have developed a wearable radiation sensor using Cs2LiYCl6:Ce (CLYC) for simultaneous gamma-ray and neutron detection. The system includes two ∅ 2.5 × 2.5cm3 crystals coupled to small, metal-body photomultiplier tubes. A custom, low-power electronics base digitizes the output signal at three time points and enables both pulse height and pulse shape discrimination of gamma rays and neutrons. The total counts, anomaly detection metrics, and identified isotopes are displayed on a small screen. Users may leave the device in unattended mode to collect long-dwell energy spectra. The system stores up to 18 h of one-second data, including energy spectra, and may transfer the data to a remote computer via a wired or wireless connection. The prototype is 18 × 13 × 7.5cm3, weighs 1.3 kg, not including the protective pouch, and runs on six AA alkaline batteries for 29 h with the wireless link active, or 41 h with the wireless link disabled. In this paper, we summarize the system design and present characterization results from the detector modules. The energy resolution is about 6.5% full width at half maximum at 662 keV due to the small photomultiplier tube selected, and the linearity and pulse shape discrimination performance are very good.

  11. Novel compliant actuator for wearable robotics applications.

    Science.gov (United States)

    Claros, M; Soto, R; Rodríguez, J J; Cantú, C; Contreras-Vidal, José L

    2013-01-01

    In the growing fields of wearable robotics, rehabilitation robotics, prosthetics, and walking robots, variable impedance and force actuators are being designed and implemented because of their ability to dynamically modulate the intrinsic viscoelastic properties such as stiffness and damping. This modulation is crucial to achieve an efficient and safe human-robot interaction that could lead to electronically generate useful emergent dynamical behaviors. In this work we propose a novel actuation system in which is implemented a control scheme based on equilibrium forces for an active joint capable to provide assistance/resistance as needed and also achieve minimal mechanical impedance when tracking the movement of the user limbs. The actuation system comprises a DC motor with a built in speed reducer, two force-sensing resistors (FSR), a mechanism which transmits to the FSRs the torque developed in the joint and a controller which regulate the amount of energy that is delivered to the DC motor. The proposed system showed more impedance reduction, by the effect of the controlled contact forces, compared with the ones in the reviewed literature.

  12. A wearable sensor based on CLYC scintillators

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Benjamin S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Myjak, Mitchell J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zalavadia, Mital A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smart, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Willett, Jesse A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Landgren, Peter C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greulich, Christopher R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-01

    We developed a wearable radiation sensor using Cs2LiYCl6:Ce (CLYC) for simultaneous gamma-ray and neutron detection. The system includes two ø2.5×2.5 cm3 crystals coupled to small, metal-body photomultiplier tubes. A custom, low-power electronics base digitizes the output signal at three time points and enables both pulse height and pulse shape discrimination of neutrons and gamma-rays. Data, including spectra, can be transferred via a wired or wireless connection. The total gamma-ray and neutron counts, anomaly detection metrics, and identified isotopes are displayed on a small screen on the device. Users may leave the system in unattended mode to collect long-dwell energy spectra. The prototype system has overall dimensions of 13×7.5×18 cm3 and weight of 1.3 kg, not including the protective pouch, and runs on six AA alkaline batteries for 29 hours with a 1% wireless transmission duty cycle and 41 hours with the wireless turned off . In this paper, we summarize the system design and present characterization results from the detector modules. The energy resolution is about 6.5% full width at half maximum at 662 keV due to the small photomultiplier tube selected, and the linearity and pulse shape discrimination performance are very good.

  13. An Emerging Era in the Management of Parkinson's Disease: Wearable Technologies and the Internet of Things.

    Science.gov (United States)

    Pasluosta, Cristian F; Gassner, Heiko; Winkler, Juergen; Klucken, Jochen; Eskofier, Bjoern M

    2015-11-01

    Current challenges demand a profound restructuration of the global healthcare system. A more efficient system is required to cope with the growing world population and increased life expectancy, which is associated with a marked prevalence of chronic neurological disorders such as Parkinson's disease (PD). One possible approach to meet this demand is a laterally distributed platform such as the Internet of Things (IoT). Real-time motion metrics in PD could be obtained virtually in any scenario by placing lightweight wearable sensors in the patient's clothes and connecting them to a medical database through mobile devices such as cell phones or tablets. Technologies exist to collect huge amounts of patient data not only during regular medical visits but also at home during activities of daily life. These data could be fed into intelligent algorithms to first discriminate relevant threatening conditions, adjust medications based on online obtained physical deficits, and facilitate strategies to modify disease progression. A major impact of this approach lies in its efficiency, by maximizing resources and drastically improving the patient experience. The patient participates actively in disease management via combined objective device- and self-assessment and by sharing information within both medical and peer groups. Here, we review and discuss the existing wearable technologies and the Internet-of-Things concept applied to PD, with an emphasis on how this technological platform may lead to a shift in paradigm in terms of diagnostics and treatment.

  14. Sustainably powering wearable electronics solely by biomechanical energy

    Science.gov (United States)

    Wang, Jie; Li, Shengming; Yi, Fang; Zi, Yunlong; Lin, Jun; Wang, Xiaofeng; Xu, Youlong; Wang, Zhong Lin

    2016-09-01

    Harvesting biomechanical energy is an important route for providing electricity to sustainably drive wearable electronics, which currently still use batteries and therefore need to be charged or replaced/disposed frequently. Here we report an approach that can continuously power wearable electronics only by human motion, realized through a triboelectric nanogenerator (TENG) with optimized materials and structural design. Fabricated by elastomeric materials and a helix inner electrode sticking on a tube with the dielectric layer and outer electrode, the TENG has desirable features including flexibility, stretchability, isotropy, weavability, water-resistance and a high surface charge density of 250 μC m-2. With only the energy extracted from walking or jogging by the TENG that is built in outsoles, wearable electronics such as an electronic watch and fitness tracker can be immediately and continuously powered.

  15. Monitoring of Vital Signs with Flexible and Wearable Medical Devices.

    Science.gov (United States)

    Khan, Yasser; Ostfeld, Aminy E; Lochner, Claire M; Pierre, Adrien; Arias, Ana C

    2016-06-01

    Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements.

  16. Wearable devices for blood purification: principles, miniaturization, and technical challenges.

    Science.gov (United States)

    Armignacco, Paolo; Lorenzin, Anna; Neri, Mauro; Nalesso, Federico; Garzotto, Francesco; Ronco, Claudio

    2015-01-01

    The prevalences of end-stage renal disease (ESRD) and renal replacement therapy (RRT) continue to increase across the world imposing staggering costs on providers. Therefore, strategies to optimize the treatment and improve survival are of fundamental importance. Despite the benefits of daily dialysis, its implementation is difficult and wearable hemodialysis might represent an alternative by which frequent treatments can be delivered to ESRD patients with much less interference in their routines promoting better quality of life. The development of the wearable artificial kidney (WAK) requires incorporation of basic components of a dialysis system into a wearable device that allows mobility, miniaturization, and above all, patient-oriented management. The technical requirements necessary for WAK can be divided into the following broad categories: dialysis membranes, dialysis regeneration, vascular access, patient monitoring systems, and power sources. Pumping systems for blood and other fluids are the most critical components of the entire device.

  17. International Conference on Wearable Sensors and Robots 2015

    CERN Document Server

    Virk, G; Yang, Huayong

    2017-01-01

    These proceedings present the latest information on regulations and standards for medical and non-medical devices, including wearable robots for gait training and support, design of exoskeletons for the elderly, innovations in assistive robotics, and analysis of human–machine interactions taking into account ergonomic considerations. The rapid development of key mechatronics technologies in recent years has shown that human living standards have significantly improved, and the International Conference on Wearable Sensor and Robot was held in Hangzhou, China from October 16 to 18, 2015, to present research mainly focused on personal-care robots and medical devices. The aim of the conference was to bring together academics, researchers, engineers and students from across the world to discuss state-of-the-art technologies related to various aspects of wearable sensors and robots. .

  18. Location tracking system using wearable on-body GPS antenna

    Directory of Open Access Journals (Sweden)

    Sabapathy Thennarasan

    2017-01-01

    Full Text Available An on-body location tracking system is developed and integrated with a wearable GPS antenna. Such system is beneficial in human location tracking of patients and elderly within a radius of 1 km. The system consists of a wearable antenna, a GPS module, a low cost microcontroller, two RF modules and a local monitoring system. A user equipped with the GPS antenna, GPS module and a RF transmitter is able send his/her location to the local monitoring system via a RF receiver. The proposed wearable antenna is validated to be safe for human use in terms of specific absorption rate (SAR. This antenna was then incorporated into the complete prototype and tested. Several suggestions for future improvements are also proposed and discussed.

  19. Sustainably powering wearable electronics solely by biomechanical energy.

    Science.gov (United States)

    Wang, Jie; Li, Shengming; Yi, Fang; Zi, Yunlong; Lin, Jun; Wang, Xiaofeng; Xu, Youlong; Wang, Zhong Lin

    2016-09-28

    Harvesting biomechanical energy is an important route for providing electricity to sustainably drive wearable electronics, which currently still use batteries and therefore need to be charged or replaced/disposed frequently. Here we report an approach that can continuously power wearable electronics only by human motion, realized through a triboelectric nanogenerator (TENG) with optimized materials and structural design. Fabricated by elastomeric materials and a helix inner electrode sticking on a tube with the dielectric layer and outer electrode, the TENG has desirable features including flexibility, stretchability, isotropy, weavability, water-resistance and a high surface charge density of 250 μC m(-2). With only the energy extracted from walking or jogging by the TENG that is built in outsoles, wearable electronics such as an electronic watch and fitness tracker can be immediately and continuously powered.

  20. Carbon nanotube strain sensors for wearable patient monitoring applications

    Science.gov (United States)

    Abraham, Jose K.; Aryasomayajula, Lavanya; Whitchurch, Ashwin; Varadan, Vijay K.

    2008-03-01

    Wearable health monitoring systems have recently attracted widespread interest for their application in long term patient monitoring. Wireless wearable technology enables continuous observation of patients while they perform their normal everyday activities. This involves the development of flexible and conformable sensors that could be easily integrated to the smart fabrics. Carbon nanotubes are found to be one of the ideal candidate materials for the design of multifunctional e-textiles because of their capability to change conductance based on any mechanical deformation as well as surface functionalization. This paper presents the development and characterization of a carbon nanotube (CNT)-polymer nanocomposite flexible strain sensor for wearable health monitoring applications. These strain sensors can be used to measure the respiration rhythm which is a vital signal required in health monitoring. A number of strain sensor prototypes with different CNT compositions have been fabricated and their characteristics for both static as well as dynamic strain have been measured.

  1. Triboelectric generators and sensors for self-powered wearable electronics.

    Science.gov (United States)

    Ha, Minjeong; Park, Jonghwa; Lee, Youngoh; Ko, Hyunhyub

    2015-04-28

    In recent years, the field of wearable electronics has evolved at a rapid pace, requiring continued innovation in technologies in the fields of electronics, energy devices, and sensors. In particular, wearable devices have multiple applications in healthcare monitoring, identification, and wireless communications, and they are required to perform well while being lightweight and having small size, flexibility, low power consumption, and reliable sensing performances. In this Perspective, we introduce two recent reports on the triboelectric generators with high-power generation achieved using flexible and lightweight textiles or miniaturized and hybridized device configurations. In addition, we present a brief overview of recent developments and future prospects of triboelectric energy harvesters and sensors, which may enable fully self-powered wearable devices with significantly improved sensing capabilities.

  2. Smart Woven Fabrics With Portable And Wearable Vibrating Electronics

    Directory of Open Access Journals (Sweden)

    Özdemir Hakan

    2015-06-01

    Full Text Available The portable and wearable instrumented fabrics capable of measuring biothermal variable is essential for drivers, especially long-distance drivers. Here we report on portable and wearable devices that are able to read the temperature of human body within the woven fabric. The sensory function of the fabric is achieved by temperature sensors, soldered on conductive threads coated with cotton. The presence of stainless steel wires gives these materials conductive properties, enabling the detection of human body temperature and transmitting the signal form sensors to the motors on the fabric. When body temperature decreases, hardware/software platforms send a signal to the vibration motors in order to stimulate the driver. The ‘smart woven fabric’-sensing architecture can be divided into two parts: a textile platform, where portable and wearable devices acquire thermal signals, and hardware/software platforms, to which a sensor sends the acquired data, which send the signals to the vibration motors.

  3. Sustainably powering wearable electronics solely by biomechanical energy

    Science.gov (United States)

    Wang, Jie; Li, Shengming; Yi, Fang; Zi, Yunlong; Lin, Jun; Wang, Xiaofeng; Xu, Youlong; Wang, Zhong Lin

    2016-01-01

    Harvesting biomechanical energy is an important route for providing electricity to sustainably drive wearable electronics, which currently still use batteries and therefore need to be charged or replaced/disposed frequently. Here we report an approach that can continuously power wearable electronics only by human motion, realized through a triboelectric nanogenerator (TENG) with optimized materials and structural design. Fabricated by elastomeric materials and a helix inner electrode sticking on a tube with the dielectric layer and outer electrode, the TENG has desirable features including flexibility, stretchability, isotropy, weavability, water-resistance and a high surface charge density of 250 μC m−2. With only the energy extracted from walking or jogging by the TENG that is built in outsoles, wearable electronics such as an electronic watch and fitness tracker can be immediately and continuously powered. PMID:27677971

  4. Predictive monitoring of mobile patients by combining clinical observations with data from wearable sensors.

    Science.gov (United States)

    Clifton, Lei; Clifton, David A; Pimentel, Marco A F; Watkinson, Peter J; Tarassenko, Lionel

    2014-05-01

    The majority of patients in the hospital are ambulatory and would benefit significantly from predictive and personalized monitoring systems. Such patients are well suited to having their physiological condition monitored using low-power, minimally intrusive wearable sensors. Despite data-collection systems now being manufactured commercially, allowing physiological data to be acquired from mobile patients, little work has been undertaken on the use of the resultant data in a principled manner for robust patient care, including predictive monitoring. Most current devices generate so many false-positive alerts that devices cannot be used for routine clinical practice. This paper explores principled machine learning approaches to interpreting large quantities of continuously acquired, multivariate physiological data, using wearable patient monitors, where the goal is to provide early warning of serious physiological determination, such that a degree of predictive care may be provided. We adopt a one-class support vector machine formulation, proposing a formulation for determining the free parameters of the model using partial area under the ROC curve, a method arising from the unique requirements of performing online analysis with data from patient-worn sensors. There are few clinical evaluations of machine learning techniques in the literature, so we present results from a study at the Oxford University Hospitals NHS Trust devised to investigate the large-scale clinical use of patient-worn sensors for predictive monitoring in a ward with a high incidence of patient mortality. We show that our system can combine routine manual observations made by clinical staff with the continuous data acquired from wearable sensors. Practical considerations and recommendations based on our experiences of this clinical study are discussed, in the context of a framework for personalized monitoring.

  5. Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems.

    Science.gov (United States)

    Wan, Liangtian; Han, Guangjie; Wang, Hao; Shu, Lei; Feng, Nanxing; Peng, Bao

    2016-03-12

    In health monitoring systems, the base station (BS) and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO) system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA) estimation algorithm for incoherently-distributed (ID) and coherently-distributed (CD) sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI) algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT)-based algorithm is valid only for one-dimensional (1D) DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs). Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA), can be regarded as the location of the biosensor (wearable sensor). Three BSs adopting the smart antenna (SA) technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm.

  6. Elbow spasticity during passive stretch-reflex: clinical evaluation using a wearable sensor system

    Science.gov (United States)

    2013-01-01

    Background Spasticity is a prevalent chronic condition among persons with upper motor neuron syndrome that significantly impacts function and can be costly to treat. Clinical assessment is most often performed with passive stretch-reflex tests and graded on a scale, such as the Modified Ashworth Scale (MAS). However, these scales are limited in sensitivity and are highly subjective. This paper shows that a simple wearable sensor system (angle sensor and 2-channel EMG) worn during a stretch-reflex assessment can be used to more objectively quantify spasticity in a clinical setting. Methods A wearable sensor system consisting of a fibre-optic goniometer and 2-channel electromyography (EMG) was used to capture data during administration of the passive stretch-reflex test for elbow flexor and extensor spasticity. A kinematic model of unrestricted passive joint motion was used to extract metrics from the kinematic and EMG data to represent the intensity of the involuntary reflex. Relationships between the biometric results and clinical measures (MAS, isometric muscle strength and passive range of motion) were explored. Results Preliminary results based on nine patients with varying degrees of flexor and extensor spasticity showed that kinematic and EMG derived metrics were strongly correlated with one another, were correlated positively (and significantly) with clinical MAS, and negatively correlated (though mostly non-significant) with isometric muscle strength. Conclusions We conclude that a wearable sensor system used in conjunction with a simple kinematic model can capture clinically relevant features of elbow spasticity during stretch-reflex testing in a clinical environment. PMID:23782931

  7. Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems

    Directory of Open Access Journals (Sweden)

    Liangtian Wan

    2016-03-01

    Full Text Available In health monitoring systems, the base station (BS and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA estimation algorithm for incoherently-distributed (ID and coherently-distributed (CD sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT-based algorithm is valid only for one-dimensional (1D DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs. Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA, can be regarded as the location of the biosensor (wearable sensor. Three BSs adopting the smart antenna (SA technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm.

  8. Combining a differential global positioning system and double electric compass to improve multi-path error correction for a high-precision agricultural robotic vehicle

    Directory of Open Access Journals (Sweden)

    Chung-Teh Cheng

    2011-05-01

    Full Text Available This work has addressed the improving of the multi-path error in positioning systems by coupling a differential global positioning system (DGPS and double electric compass (DEC in the navigation system of an orchard robotic vehicle. A novel corrective algorithm model was applied to predicting the positioning coordinates during vehicle movement. The model manipulates a combination of data from both the DEC and the DGPS when the DGPS receiver is in problematic conditions in which the horizontal dilution of precision (HDOP is higher than three and the number of satellites is fewer than six. The constructed corrective algorithm model, the DEC and the DGPS together form a combined DGPS-DEC system that is inexpensive and of high-precision fitting for a vehicle-guiding instrument. In a field test in an outdoor environment with sections of tree shade in the guiding path, the combined DGPS-DEC positioning system effectively improved the reliability of positioning by correcting the DGPS multi-path error precisely to within 20 cm. By applying a mini-sprayer, further agricultural applications were feasible. In summary, the combined DGPS-DEC positioning system can obtain the correct position of a vehicle in real time for agricultural applications.

  9. Examination of the Locus of Positional Effects on Children's Production of Plural -s: Considerations From Local and Global Speech Planning.

    Science.gov (United States)

    Theodore, Rachel M; Demuth, Katherine; Shattuck-Hufnagel, Stefanie

    2015-06-01

    Prosodic and articulatory factors influence children's production of inflectional morphemes. For example, plural -s is produced more reliably in utterance-final compared to utterance-medial position (i.e., the positional effect), which has been attributed to the increased planning time in utterance-final position. In previous investigations of plural -s, utterance-medial plurals were followed by a stop consonant (e.g., dogsbark), inducing high articulatory complexity. We examined whether the positional effect would be observed if the utterance-medial context were simplified to a following vowel. An elicited imitation task was used to collect productions of plural nouns from 2-year-old children. Nouns were elicited utterance-medially and utterance-finally, with the medial plural followed by either a stressed or an unstressed vowel. Acoustic analysis was used to identify evidence of morpheme production. The positional effect was absent when the morpheme was followed by a vowel (e.g., dogseat). However, it returned when the vowel-initial word contained 2 syllables (e.g., dogsarrive), suggesting that the increased processing load in the latter condition negated the facilitative effect of the easy articulatory context. Children's productions of grammatical morphemes reflect a rich interaction between emerging levels of linguistic competence, raising considerations for diagnosis and rehabilitation of language disorders.

  10. [Key Technology and Quantity Control of Wearable Medical Devices].

    Science.gov (United States)

    Cui, Hongen; Yao, Shaowei

    2015-03-01

    In recent years, because the wearable medical devices can indicate the health monitoring index of blood sugar, blood pressure, heart rate, oxygen content, temperature, respiration of the human body anytime and anywhere, can also be used for the treatment of various diseases, accompanied by the development of large data, which will bring a subversive revolution for the medical device industry. This paper introduces the development of wearable devices, key technical index of main products, and to make a preliminary study on its quantity control.

  11. Designing Wearable Personal Assistants for Surgeons: An Egocentric Approach

    DEFF Research Database (Denmark)

    Jalaliniya, Shahram; Pederson, Thomas

    2015-01-01

    The design of general-purpose wearable computers demands particular care for how human perception, cognition, and action work and work together. The authors propose a human body-and-mind centric (egocentric as opposed to device-centric) design framework and present initial findings from deploying...... it in the design of a wearable personal assistant (WPA) for orthopedic surgeons. The result is a Google Glass-based prototype system aimed at facilitating touchless interaction with x-ray images, browsing of electronic patient records (EPR) when on the move, and synchronized ad hoc remote collaboration...

  12. Wearable System for Acquisition and Monitoring of Biological Signals

    Science.gov (United States)

    Piccinini, D. J.; Andino, N. B.; Ponce, S. D.; Roberti, MA; López, y. N.

    2016-04-01

    This paper presents a modular, wearable system for acquisition and wireless transmission of biological signals. Configurable slaves for different signals (such as ECG, EMG, inertial sensors, and temperature) based in the ADS1294 Medical Analog Front End are connected to a Master, based in the CC3200 microcontroller, both from Texas Instruments. The slaves are configurable according to the specific application, providing versatility to the wearable system. The battery consumption is reduced, through a couple of Li-ion batteries and the circuit has also a battery charger. A custom made box was designed and fabricated in a 3D printer, preserving the requirements of low cost, low weight and safety recommendations.

  13. Low power signal processing electronics for wearable medical devices.

    Science.gov (United States)

    Casson, Alexander J; Rodriguez-Villegas, Esther

    2010-01-01

    Custom designed microchips, known as Application Specific Integrated Circuits (ASICs), offer the lowest possible power consumption electronics. However, this comes at the cost of a longer, more complex and more costly design process compared to one using generic, off-the-shelf components. Nevertheless, their use is essential in future truly wearable medical devices that must operate for long periods of time from physically small, energy limited batteries. This presentation will demonstrate the state-of-the-art in ASIC technology for providing online signal processing for use in these wearable medical devices.

  14. The wearable cardioverter-defibrillator: current technology and evolving indications.

    Science.gov (United States)

    Reek, Sven; Burri, Haran; Roberts, Paul R; Perings, Christian; Epstein, Andrew E; Klein, Helmut U

    2016-10-04

    The wearable cardioverter-defibrillator has been available for over a decade and now is frequently prescribed for patients deemed at high arrhythmic risk in whom the underlying pathology is potentially reversible or who are awaiting an implantable cardioverter-defibrillator. The use of the wearable cardioverter-defibrillator is included in the new 2015 ESC guidelines for the management of ventricular arrhythmias and prevention of sudden cardiac death. The present review provides insight into the current technology and an overview of this approach.

  15. Exposure Control Indoors with Wearable Personal Exhaust Unit

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Barova, Maria I.; Melikov, Arsen Krikor

    2013-01-01

    A wearable personalized ventilation (PV) unit to reduce the risk from airborne disease contamination is reported. The PV unit consists of a nozzle, installed on a headset, which is used to locally exhaust the exhaled air before it mixes with the surroundings. Experiments at 22 °C were performed...... background air distribution at 3, 6 and 12 ACH. The use of the device showed a great potential in reducing the concentration of exhaled air in the room to the level measured under mixing ventilation alone at 12 ACH. The high potential to capture exhaled air, makes the wearable PV applicable as an efficient...

  16. Global regulator IscR positively contributes to antimonite resistance and oxidation in Comamonas testosteroni S44

    DEFF Research Database (Denmark)

    Liu, Hongliang; Zhuang, Weiping; Zhang, Shengzhe;

    2015-01-01

    (III). Results of electrophoretic mobility shift assay (EMSA) and bacterial one-hybrid (B1H) system demonstrated a positive interaction between IscR and its promoter region. The diverse defective phenotypes and various expression patterns suggest a role for IscR in contributing to multi-metal(loid)s resistance...

  17. Citizen Journalism and Digital Voices: Instituting a Collaborative Process between Global Youth, Technology and Media for Positive Social Change

    Science.gov (United States)

    Worley, Robin

    2011-01-01

    Millions of youths in developing countries are described by UNICEF as "invisible and excluded." They live at the margins of society, facing challenges to their daily existence, powerless to make positive changes. But the emergence of citizen journalism and digital storytelling may offer these youths a chance to share their voices and…

  18. NASA Wearable Technology CLUSTER 2013-2014 Report

    Science.gov (United States)

    Simon, Cory; Dunne, Lucy; Zeagler, Clint; Martin, Tom; Pailes-Friedman, Rebecca

    2014-01-01

    Wearable technology has the potential to revolutionize the way humans interact with one another, with information, and with the electronic systems that surround them. This change can already be seen in the dramatic increase in the availability and use of wearable health and activity monitors. These devices continuously monitor the wearer using on-­-body sensors and wireless communication. They provide feedback that can be used to improve physical health and performance. Smart watches and head mounted displays are also receiving a great deal of commercial attention, providing immediate access to information via graphical displays, as well as additional sensing features. For the purposes of the Wearable Technology CLUSTER, wearable technology is broadly defined as any electronic sensing, human interfaces, computing, or communication that is mounted on the body. Current commercially available wearable devices primarily house electronics in rigid packaging to provide protection from flexing, moisture, and other contaminants. NASA mentors are interested in this approach, but are also interested in direct integration of electronics into clothing to enable more comfortable systems. For human spaceflight, wearable technology holds a great deal of promise for significantly improving safety, efficiency, autonomy, and research capacity for the crew in space and support personnel on the ground. Specific capabilities of interest include: Continuous biomedical monitoring for research and detection of health problems. Environmental monitoring for individual exposure assessments and alarms. Activity monitoring for responsive robotics and environments. Multi-modal caution and warning using tactile, auditory, and visual alarms. Wireless, hands-free, on-demand voice communication. Mobile, on-demand access to space vehicle and robotic displays and controls. Many technical challenges must be overcome to realize these wearable technology applications. For example, to make a wearable

  19. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    Science.gov (United States)

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  20. A Vibrotactile and Plantar Force Measurement-Based Biofeedback System: Paving the Way towards Wearable Balance-Improving Devices

    Directory of Open Access Journals (Sweden)

    Christina Zong-Hao Ma

    2015-12-01

    Full Text Available Although biofeedback systems have been used to improve balance with success, they were confined to hospital training applications. Little attempt has been made to investigate the use of in-shoe plantar force measurement and wireless technology to turn hospital training biofeedback systems into wearable devices. This research developed a wearable biofeedback system which detects body sway by analyzing the plantar force and provides users with the corresponding haptic cues. The effects of this system were evaluated in thirty young and elderly subjects with simulated reduced foot sensation. Subjects performed a Romberg test under three conditions: (1 no socks, system turned-off; (2 wearing five layers of socks, system turned-off; (3 wearing five layers of socks, and system turned-on. Degree of body sway was investigated by computing the center of pressure (COP movement measured by a floor-mounted force platform. Plantar tactile sensation was evaluated using a monofilament test. Wearing multiple socks significantly decreased the plantar tactile sensory input (p < 0.05, and increased the COP parameters (p < 0.017, indicating increased postural sway. After turning on the biofeedback system, the COP parameters decreased significantly (p < 0.017. The positive results of this study should inspire future development of wearable plantar force-based biofeedback systems for improving balance in people with sensory deficits.

  1. Conceptual privacy framework for health information on wearable device.

    Science.gov (United States)

    Safavi, Seyedmostafa; Shukur, Zarina

    2014-01-01

    Wearable health tech provides doctors with the ability to remotely supervise their patients' wellness. It also makes it much easier to authorize someone else to take appropriate actions to ensure the person's wellness than ever before. Information Technology may soon change the way medicine is practiced, improving the performance, while reducing the price of healthcare. We analyzed the secrecy demands of wearable devices, including Smartphone, smart watch and their computing techniques, that can soon change the way healthcare is provided. However, before this is adopted in practice, all devices must be equipped with sufficient privacy capabilities related to healthcare service. In this paper, we formulated a new improved conceptual framework for wearable healthcare systems. This framework consists of ten principles and nine checklists, capable of providing complete privacy protection package to wearable device owners. We constructed this framework based on the analysis of existing mobile technology, the results of which are combined with the existing security standards. The approach also incorporates the market share percentage level of every app and its respective OS. This framework is evaluated based on the stringent CIA and HIPAA principles for information security. This evaluation is followed by testing the capability to revoke rights of subjects to access objects and ability to determine the set of available permissions for a particular subject for all models Finally, as the last step, we examine the complexity of the required initial setup.

  2. A Dual-Core System Solution for Wearable Health Monitors

    NARCIS (Netherlands)

    Santana Arnaiz, O.A.; Bouwens, F.; Huisken, J.A.; De Groot, H.; Bennebroek, M.T.; Van Meerbergen, J.L.; Abbo, A.A.; Fraboulet, A.

    2011-01-01

    This paper presents a system design study for wearable sensor devices intended for healthcare and lifestyle applications based on ECG,EEG and activity monitoring. In order to meet the low-power requirement of these applications, a dual-core signal processing system is proposed which combines an ultr

  3. Deformable devices with integrated functional nanomaterials for wearable electronics.

    Science.gov (United States)

    Kim, Jaemin; Lee, Jongsu; Son, Donghee; Choi, Moon Kee; Kim, Dae-Hyeong

    2016-01-01

    As the market and related industry for wearable electronics dramatically expands, there are continuous and strong demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanomaterials have been also developed to pursue both high performance and multifunctionality. Here, we provide an overview of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an introduction of materials strategies, we describe device designs and the roles of individual ones in integrated systems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also presented.

  4. Creating a wearable artificial kidney : where are we now?

    NARCIS (Netherlands)

    Kooman, Jeroen P; Joles, Jaap A.; Gerritsen, Karin G F

    2015-01-01

    A wearable and, ultimately, an implantable artificial kidney is a long-held aim in the treatment of patients with end-stage renal disease, provided that it would combine continuous blood purification, preventing the fluctuations in the internal environment associated with hemodialysis, while maintai

  5. Educational Behavior Apps and Wearable Devices: Current Research and Prospects

    Science.gov (United States)

    Lowe, Heather

    2016-01-01

    Dartmouth and MIT have developed educational behavior apps and wearable devices that collect contiguous streams of data from student users. Given the consent of the user, the app collects information about a student's physical activity, sleep patterns, and location to form conjectures about social and academic behavior. These apps have the…

  6. Designing Wearable Personal Assistants for Surgeons: An Egocentric Approach

    DEFF Research Database (Denmark)

    Jalaliniya, Shahram; Pederson, Thomas

    2015-01-01

    it in the design of a wearable personal assistant (WPA) for orthopedic surgeons. The result is a Google Glass-based prototype system aimed at facilitating touchless interaction with x-ray images, browsing of electronic patient records (EPR) when on the move, and synchronized ad hoc remote collaboration...

  7. Towards Mental Stress Detection Using Wearable Physiological Sensors

    NARCIS (Netherlands)

    Wijsman, J.L.P; Grundlehner, Bernard; Liu, Hao; Liu, H.; Hermens, Hermanus J.; Penders, Julien

    2011-01-01

    Early mental stress detection can prevent many stress related health problems. This study aimed at using a wearable sensor system to measure physiological signals and detect mental stress. Three different stress conditions were presented to a healthy subject group. During the procedure, ECG,

  8. Deformable devices with integrated functional nanomaterials for wearable electronics

    Science.gov (United States)

    Kim, Jaemin; Lee, Jongsu; Son, Donghee; Choi, Moon Kee; Kim, Dae-Hyeong

    2016-03-01

    As the market and related industry for wearable electronics dramatically expands, there are continuous and strong demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanomaterials have been also developed to pursue both high performance and multifunctionality. Here, we provide an overview of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an introduction of materials strategies, we describe device designs and the roles of individual ones in integrated systems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also presented.

  9. Wearable technology: using Google Glass as a teaching tool.

    Science.gov (United States)

    Knight, Hui Min; Gajendragadkar, Parag Ravindra; Bokhari, Awais

    2015-05-12

    Wearable technology holds great promise in revolutionising healthcare delivery. The benefits can also be seen in medical education and delivering healthcare in remote places. We report the use of Google Glass technology as a teaching tool in broadcasting a procedure onto a mobile phone as a viewer, replacing expensive and often cumbersome existing equipment.

  10. Wearable sensors and systems. From enabling technology to clinical applications.

    Science.gov (United States)

    Bonato, Paolo

    2010-01-01

    It is now more than 50 years since the time when clinical monitoring of individuals in the home and community settings was first envisioned. Until recently, technologies to enable such vision were lacking. However, wearable sensors and systems developed over the past decade have provided the tools to finally implement and deploy technology with the capabilities required by researchers in the field of patients' home monitoring. As discussed, potential applications of these technologies include the early diagnosis of diseases such as congestive heart failure, the prevention of chronic conditions such as diabetes, improved clinical management of neurodegenerative conditions such as Parkinson's disease, and the ability to promptly respond to emergency situations such as seizures in patients with epilepsy and cardiac arrest in subjects undergoing cardiovascular monitoring. Current research efforts are now focused on the development of more complex systems for home monitoring of individuals with a variety of preclinical and clinical conditions. Recent research on the clinical assessment of wearable technology promises to deliver methodologies that are expected to lead to clinical adoption within the next five to ten years. In particular, combining home robots and wearable technology is likely to be a key step toward achieving the goal of effectively monitoring patients in the home. These efforts to merge home robots and wearable technology are expected to enable a new generation of complex systems with the ability to monitor subjects' status, facilitate the administration of interventions, and provide an invaluable tool to respond to emergency situations.

  11. Manufacturing of Wearable Sensors for Human Health and Performance Monitoring

    Science.gov (United States)

    Alizadeh, Azar

    2015-03-01

    Continuous monitoring of physiological and biological parameters is expected to improve performance and medical outcomes by assessing overall health status and alerting for life-saving interventions. Continuous monitoring of these parameters requires wearable devices with an appropriate form factor (lightweight, comfortable, low energy consuming and even single-use) to avoid disrupting daily activities thus ensuring operation relevance and user acceptance. Many previous efforts to implement remote and wearable sensors have suffered from high cost and poor performance, as well as low clinical and end-use acceptance. New manufacturing and system level design approaches are needed to make the performance and clinical benefits of these sensors possible while satisfying challenging economic, regulatory, clinical, and user-acceptance criteria. In this talk we will review several recent design and manufacturing efforts aimed at designing and building prototype wearable sensors. We will discuss unique opportunities and challenges provided by additive manufacturing, including 3D printing, to drive innovation through new designs, faster prototyping and manufacturing, distributed networks, and new ecosystems. We will also show alternative hybrid self-assembly based integration techniques for low cost large scale manufacturing of single use wearable devices. Coauthors: Prabhjot Singh and Jeffrey Ashe.

  12. Towards Mental Stress Detection Using Wearable Physiological Sensors

    NARCIS (Netherlands)

    Wijsman, Jacqueline; Grundlehner, Bernard; Liu, Hao; Hermens, Hermie; Penders, Julien

    2011-01-01

    Early mental stress detection can prevent many stress related health problems. This study aimed at using a wearable sensor system to measure physiological signals and detect mental stress. Three different stress conditions were presented to a healthy subject group. During the procedure, ECG, respira

  13. Conceptual privacy framework for health information on wearable device.

    Directory of Open Access Journals (Sweden)

    Seyedmostafa Safavi

    Full Text Available Wearable health tech provides doctors with the ability to remotely supervise their patients' wellness. It also makes it much easier to authorize someone else to take appropriate actions to ensure the person's wellness than ever before. Information Technology may soon change the way medicine is practiced, improving the performance, while reducing the price of healthcare. We analyzed the secrecy demands of wearable devices, including Smartphone, smart watch and their computing techniques, that can soon change the way healthcare is provided. However, before this is adopted in practice, all devices must be equipped with sufficient privacy capabilities related to healthcare service. In this paper, we formulated a new improved conceptual framework for wearable healthcare systems. This framework consists of ten principles and nine checklists, capable of providing complete privacy protection package to wearable device owners. We constructed this framework based on the analysis of existing mobile technology, the results of which are combined with the existing security standards. The approach also incorporates the market share percentage level of every app and its respective OS. This framework is evaluated based on the stringent CIA and HIPAA principles for information security. This evaluation is followed by testing the capability to revoke rights of subjects to access objects and ability to determine the set of available permissions for a particular subject for all models Finally, as the last step, we examine the complexity of the required initial setup.

  14. Determination of locational error associated with global positioning system (GPS) radio collars in relation to vegetation and topography in north-central New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K.; Biggs, J.; Fresquez, P.R.

    1997-02-01

    In 1996, a study was initiated to assess seasonal habitat use and movement patterns of Rocky Mountain elk (Cervus elaphus nelsoni) using global positioning system (GPS) radio collars. As part of this study, the authors attempted to assess the accuracies of GPS (non-differentially corrected) positions under various vegetation canopies and terrain conditions with the use of a GPS ``test`` collar. The test collar was activated every twenty minutes to obtain a position location and continuously uplinked to Argos satellites to transfer position data files. They used a Telonics, Inc. uplink receiver to intercept the transmission and view the results of the collar in real time. They placed the collar on a stand equivalent to the neck height of an adult elk and then placed the stand within three different treatment categories: (1) topographical influence (canyon and mesa tops), (2) canopy influence (open and closed canopy), and (3) vegetation type influence (ponderosa pine and pinion pine-juniper). The collar was kept at each location for one hour (usually obtaining three fixes). In addition, the authors used a hand-held GPS to obtain a position of the test collar at the same time and location.

  15. Setting the scene: Mobile and wearable technology for managing healthcare and wellbeing.

    Science.gov (United States)

    Amor, James D; James, Christopher J

    2015-01-01

    The growing proliferation of mobile and wearable technology (MWT) offers interesting use cases when applied to health and wellness management. Current trends towards more longer term health and wellness management coupled with global challenges around the provision of healthcare to aging populations with tighter budget constraints, create rich opportunities to exploit this new technology to maintain health and wellness. This paper provides an overview of commonly available MWT and examines how it can be used in health and wellness systems. Case studies are given from two recent research projects and the issues and challenges that arise in the use of MWT are discussed. We conclude that MWT offers some key advantages in some healthcare situations, but that care must be taken to select appropriate technology for each use.

  16. Application of data fusion techniques and technologies for wearable health monitoring.

    Science.gov (United States)

    King, Rachel C; Villeneuve, Emma; White, Ruth J; Sherratt, R Simon; Holderbaum, William; Harwin, William S

    2017-02-22

    Technological advances in sensors and communications have enabled discrete integration into everyday objects, both in the home and about the person. Information gathered by monitoring physiological, behavioural, and social aspects of our lives, can be used to achieve a positive impact on quality of life, health, and well-being. Wearable sensors are at the cusp of becoming truly pervasive, and could be woven into the clothes and accessories that we wear such that they become ubiquitous and transparent. To interpret the complex multidimensional information provided by these sensors, data fusion techniques are employed to provide a meaningful representation of the sensor outputs. This paper is intended to provide a short overview of data fusion techniques and algorithms that can be used to interpret wearable sensor data in the context of health monitoring applications. The application of these techniques are then described in the context of healthcare including activity and ambulatory monitoring, gait analysis, fall detection, and biometric monitoring. A snap-shot of current commercially available sensors is also provided, focusing on their sensing capability, and a commentary on the gaps that need to be bridged to bring research to market.

  17. Wearable sensors network for health monitoring using e-Health platform

    Directory of Open Access Journals (Sweden)

    I. Orha

    2014-06-01

    Full Text Available In this paper we have proposed to present a wearable system for automatic recording of the main physiological parameters of the human body: body temperature, galvanic skin response, respiration rate, blood pressure, pulse, blood oxygen content, blood glucose content, electrocardiogram (ECG, electromyography(EMG, and patient position. To realize this system, we have developed a program that can read and automatically save in a file, the data from specialized sensors. The results can be later interpreted, by comparing them with known normal values and thus offering the possibility for a primary health status diagnosis by specialized personnel. The data received from the wearable sensors is taken by an interface circuit, provided with signal conditioning (filtering, amplification, etc. A microcontroller controls the data acquisition. In this applications we used an Arduino Uno standard development platform. The data are transferred to a PC, using serial communication port of Arduino platform and a communications shield. The whole process of health assessment is commissioned by a program developed by us in the Python programming language. The program provides automatic recording of the aforementioned parameters in a predetermined sequence, or only certain parameters are registered.

  18. Improving Kinematic Accuracy of Soft Wearable Data Gloves by Optimizing Sensor Locations.

    Science.gov (United States)

    Kim, Dong Hyun; Lee, Sang Wook; Park, Hyung-Soon

    2016-05-26

    Bending sensors enable compact, wearable designs when used for measuring hand configurations in data gloves. While existing data gloves can accurately measure angular displacement of the finger and distal thumb joints, accurate measurement of thumb carpometacarpal (CMC) joint movements remains challenging due to crosstalk between the multi-sensor outputs required to measure the degrees of freedom (DOF). To properly measure CMC-joint configurations, sensor locations that minimize sensor crosstalk must be identified. This paper presents a novel approach to identifying optimal sensor locations. Three-dimensional hand surface data from ten subjects was collected in multiple thumb postures with varied CMC-joint flexion and abduction angles. For each posture, scanned CMC-joint contours were used to estimate CMC-joint flexion and abduction angles by varying the positions and orientations of two bending sensors. Optimal sensor locations were estimated by the least squares method, which minimized the difference between the true CMC-joint angles and the joint angle estimates. Finally, the resultant optimal sensor locations were experimentally validated. Placing sensors at the optimal locations, CMC-joint angle measurement accuracies improved (flexion, 2.8° ± 1.9°; abduction, 1.9° ± 1.2°). The proposed method for improving the accuracy of the sensing system can be extended to other types of soft wearable measurement devices.

  19. Improving Kinematic Accuracy of Soft Wearable Data Gloves by Optimizing Sensor Locations

    Directory of Open Access Journals (Sweden)

    Dong Hyun Kim

    2016-05-01

    Full Text Available Bending sensors enable compact, wearable designs when used for measuring hand configurations in data gloves. While existing data gloves can accurately measure angular displacement of the finger and distal thumb joints, accurate measurement of thumb carpometacarpal (CMC joint movements remains challenging due to crosstalk between the multi-sensor outputs required to measure the degrees of freedom (DOF. To properly measure CMC-joint configurations, sensor locations that minimize sensor crosstalk must be identified. This paper presents a novel approach to identifying optimal sensor locations. Three-dimensional hand surface data from ten subjects was collected in multiple thumb postures with varied CMC-joint flexion and abduction angles. For each posture, scanned CMC-joint contours were used to estimate CMC-joint flexion and abduction angles by varying the positions and orientations of two bending sensors. Optimal sensor locations were estimated by the least squares method, which minimized the difference between the true CMC-joint angles and the joint angle estimates. Finally, the resultant optimal sensor locations were experimentally validated. Placing sensors at the optimal locations, CMC-joint angle measurement accuracies improved (flexion, 2.8° ± 1.9°; abduction, 1.9° ± 1.2°. The proposed method for improving the accuracy of the sensing system can be extended to other types of soft wearable measurement devices.

  20. Validity of a Wearable Accelerometer Device to Measure Average Acceleration Values During High-Speed Running.

    Science.gov (United States)

    Alexander, Jeremy P; Hopkinson, Trent L; Wundersitz, Daniel W T; Serpell, Benjamin G; Mara, Jocelyn K; Ball, Nick B

    2016-11-01

    Alexander, JP, Hopkinson, TL, Wundersitz, DWT, Serpell, BG, Mara, JK, and Ball, NB. Validity of a wearable accelerometer device to measure average acceleration values during high-speed running. J Strength Cond Res 30(11): 3007-3013, 2016-The aim of this study was to determine the validity of an accelerometer to measure average acceleration values during high-speed running. Thirteen subjects performed three sprint efforts over a 40-m distance (n = 39). Acceleration was measured using a 100-Hz triaxial accelerometer integrated within a wearable tracking device (SPI-HPU; GPSports). To provide a concurrent measure of acceleration, timing gates were positioned at 10-m intervals (0-40 m). Accelerometer data collected during 0-10 m and 10-20 m provided a measure of average acceleration values. Accelerometer data was recorded as the raw output and filtered by applying a 3-point moving average and a 10-point moving average. The accelerometer could not measure average acceleration values during high-speed running. The accelerometer significantly overestimated average acceleration values during both 0-10 m and 10-20 m, regardless of the data filtering technique (p < 0.001). Body mass significantly affected all accelerometer variables (p < 0.10, partial η = 0.091-0.219). Body mass and the absence of a gravity compensation formula affect the accuracy and practicality of accelerometers. Until GPSports-integrated accelerometers incorporate a gravity compensation formula, the usefulness of any accelerometer-derived algorithms is questionable.