WorldWideScience

Sample records for wear testing theoretical

  1. Dimethyl Ether: New Advances in Wear Testing: Theoretical and Experimental Results

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Sorenson, Spencer C; Jakobsen, J.;

    2003-01-01

    ) on the ball. Up to now, all analyses indicated that fuel viscosity influences the wear scar size and fuel performance in full-scale pumps. The wear scar size could then be a result of hydrodynamic lubrication (at least a significant part of it) and not of boundary lubrication as it was the original intention...... viscosity sensibility issue is seriously aggravated for this fuel. Molecular dynamics calculations involving straight alkanes with lengths from 3 to 14 carbon atoms have been performed. The model is based on simple inter-atomic and surface interactions and it simulates an asperity contact between curved...... surfaces with long-range elasticity. This last property has enabled the model to correlate well with experimental results. The outcome of the alkane calculations indicates that the longer ones lubricate better than the shorts ones but not necessarily because of viscosity differences. The reason is more...

  2. Wear Resistance and Wear Mechanism of a Hot Dip Aluminized Steel in Sliding Wear Test

    Science.gov (United States)

    Xue, Zhiyong; Hao, Xiaoyang; Huang, Yao; Gu, Lingyun; Ren, Yu; Zheng, Ruipeng

    2016-12-01

    Sliding wear experiments were conducted on a hot dip aluminized steel to investigate its wear resistance and wear mechanism. The wear tests were also carried out on a hot dip galvanized steel and the base material (steel Q345) as a comparison. Results show that the wear resistance and hardness of the hot dip aluminized steel are significantly higher than that of the hot dip galvanized steel and the steel Q345 at room temperature. The better wear resistance of the hot dip aluminized steel attributes mainly to the formation of a transition layer containing abundant Fe-Al intermetallic compounds and the transformation of wear-resisting oxides during the friction process. The main phase in the transition layer is Fe2Al5. The thickness of the transition layer is about 90-120 μm. When the wear load increases from 3 N to 19 N, the wear type of the aluminized layer transform from adhesive wear (3 N) into abrasive wear (7 N) and finally into slight wear mixed with oxidation (higher than 11 N).

  3. Assessment of variations in wear test methodology.

    Science.gov (United States)

    Gouvêa, Cresus V D; Weig, Karin; Filho, Thales R M; Barros, Renata N

    2010-01-01

    The properties of composite resin for dental fillings were improved by development, but its weakness continues to be its wear strength. Several tests have been proposed to evaluate wear in composite resin materials. The aim of this study was to verify how polishing and the type of abrasive can influence the wear rate of composite resin. The test was carried out on two groups. In one group we employed an ormocer and a hybrid composite that was polished group the composite was polished with the same abrasive paper plus a 1 microm and 0.25 microm grit diamond paste. A three-body wear test was performed using the metal sphere of the wear test machine, the composite and an abrasive. A diamond paste and aluminum oxide dispersion were used as abrasive. Analysis of the results showed that there was no difference between polishing techniques, but revealed a difference between abrasives.

  4. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  5. The predictive analysis of wear work-rates in wear test rigs

    Energy Technology Data Exchange (ETDEWEB)

    Phalippou, C.; Delaune, X.

    1996-12-31

    Impact and sliding wear in components is classically studied, as far as the wear laws are concerned, in specific wear test rigs that simulate the vibratory motion induced by the flow. In this paper, an experimental and numerical study on the impact forces and wear work-rates of a typical AECL rig is presented. The mode shapes and frequencies are measured and compared with finite element computations. Impact and sliding motions between the wear specimens are calculated and compared to the experimental results. Impact forces, mean values of wear work-rates as well as the specimen relative motions are found to be close to the experimental data. (authors). 14 refs., 9 figs., 5 tabs.

  6. Calculation of wear (f.i. wear modulus) in the plastic cup of a hip joint prosthesis

    NARCIS (Netherlands)

    Ligterink, D.J.

    1975-01-01

    The wear equation is applied to the wear process in a hip joint prosthesis and a wear modulus is defined. The sliding distance, wear modulus, wear volume, wear area, contact angle and the maximum normal stress were calculated and the theoretical calculations applied to test results. During the wear

  7. The biochemical characteristics of wear testing lubricants affect polyethylene wear in orthopaedic pin-on-disc testing.

    Science.gov (United States)

    Guenther, Leah E; Turgeon, Thomas R; Bohm, Eric R; Brandt, Jan-M

    2015-01-01

    Lubricant protein concentration is known to affect crosslinked polyethylene wear in in vitro testing; however, the biochemical nature of these lubricants may also have a significant effect on wear and dictate its clinical relevance. A modified approach to pin-on-disc testing was implemented to explore the effect of four biochemically different lubricants on the wear of two types of crosslinked polyethylene materials (XLK™ and Marathon™; DePuy Synthes, Warsaw, IN, USA). XLK was associated with higher wear rates than Marathon. In comparison to lubricants containing deionized water, lubricants containing phosphate buffered saline solution and hyaluronic acid increased osmolality by up to 1.2 times and thermal stability by up to 1.4 times. This biochemical change reduced wear by up to 12.5 times. Wear rates for XLK and Marathon differed by a factor of 3.2 using lubricants with phosphate buffered saline solution as the dilutive media, but only 2.0 for lubricants with deionized water. Interestingly, varying the concentration of hyaluronic acid did not have a significant effect on wear, and differences between XLK and Marathon wear rates were not found to be statistically significant when hyaluronic acid was added to the lubricant. The findings of this study showed that increasing the osmolality and thermal stability of lubricants to more clinical levels decreased wear; however, the effect of hyaluronic acid on wear may not be apparent in simplistic pin-on-disc testing. It was suggested that phosphate buffered saline solution be used as the dilutive media of choice in order to better differentiate the ranking of materials while maintaining some clinical relevance.

  8. Manganese steel in impact wear testing; Manganhartstahl in Stossverschleisstest

    Energy Technology Data Exchange (ETDEWEB)

    Patzelt, B.; Hemmann, U.; Deters, L. [Magdeburg Univ. (Germany). Inst. fuer Maschinenkonstruktion

    2000-12-01

    Beating arms in impact crushers show high wear. In order to simulate the process of the mainly occuring impact wear, experimental investigations with a special test device were carried out. With this 11 different charges of manganese steel differing in their chemical composition were tested. The different chemical composition of the charges led to different results concerning the wear resistance. A significant interrelationship between wear resistance and macro-hardness of the charges of the manganese steel could be detected. With a faster rotor speed a considerable increase of wear could be determined as well. Microscopical investigations on worn test pieces exhibit a typical embedding of small particles of concrete into the metal matrix. (orig.) [German] Die Schlagleisten in Prallbrechern unterliegen einen hohen Verschleiss. Um den Prozess des hauptsaechlich auftretenden Stossverschleisses zu simulieren, wurden Modelluntersuchungen mit einer speziellen Pruefeinrichtung durchgefuehrt. Dabei konnten 11 verschiedene Chargen von Manganhartstahl, die sich im wesentlichen in ihrer chemischen Zusammensetzung unterschieden, untersucht werden. Die unterschiedliche chemische Zusammensetzung der einzelnen Chargen fuehrte zu unterschiedlichen Ergebnissen hinsichtlich der Verschleissbestaendigkeit der einzelnen Modellschlagleisten. Hierbei ist ein signifikanter Zusammenhang zwischen der Verschleissbestaendigkeit und der Makrohaerte der Manganhartstaehle zu erkennen. Die Umfangsgeschwindigkeit des Rotors der Pruefeinrichtung beeinflusst ebenfalls das Verschleissverhalten, und zwar fuehrte eine hoehere Umfangsgeschwindigkeit zu hoeherem Verschleiss. Mikroskopische Untersuchungen an geschaedigten Probekoerpern zeigten ein Einbetten von kleinsten Partikeln aus Beton im oberflaechennahen Stoffbereich der Metallmatrix. (orig.)

  9. Wear Tests of a Potential Biolubricant for Orthopedic Biopolymers

    OpenAIRE

    Thompson, Martin; Hunt, Ben; Smith, Alan M.; Joyce, Thomas

    2015-01-01

    Most wear testing of orthopedic implant materials is undertaken with dilute bovine serum used as the lubricant. However, dilute bovine serum is different to the synovial fluid in which natural and artificial joints must operate. As part of a search for a lubricant which more closely resembles synovial fluid, a lubricant based on a mixture of sodium alginate and gellan gum, and which aimed to match the rheology of synovial fluid, was produced. It was employed in a wear test of ultra high mole...

  10. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing

    Energy Technology Data Exchange (ETDEWEB)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  11. Standard test method for ranking resistance of materials to sliding wear using block-on-ring wear test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of materials to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank pairs of materials according to their sliding wear characteristics under various conditions. 1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. However, the interlaboratory testing has been limited to metals. In addition, the test can be run with various lubricants, liquids, or gaseous atmospheres, as desired, to simulate service conditions. Rotational speed and load can also be varied to better correspond to service requirements. 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. Wear test results are reported as the volume loss in cubic millimetres for both the block and ring. Materials...

  12. Wear Tests of a Potential Biolubricant for Orthopedic Biopolymers

    Directory of Open Access Journals (Sweden)

    Martin Thompson

    2015-03-01

    Full Text Available Most wear testing of orthopedic implant materials is undertaken with dilute bovine serum used as the lubricant. However, dilute bovine serum is different to the synovial fluid in which natural and artificial joints must operate. As part of a search for a lubricant which more closely resembles synovial fluid, a lubricant based on a mixture of sodium alginate and gellan gum, and which aimed to match the rheology of synovial fluid, was produced. It was employed in a wear test of ultra high molecular weight polyethylene pins rubbing against a metallic counterface. The test rig applied multidirectional motion to the test pins and had previously been shown to reproduce clinically relevant wear factors for ultra high molecular weight polyethylene. After 2.4 million cycles (125 km of sliding in the presence of the new lubricant, a mean wear factor of 0.099 × 10−6 mm3/Nm was measured for the ultra high molecular weight polyethylene pins. This was over an order of magnitude less than when bovine serum was used as a lubricant. In addition, there was evidence of a transfer film on the test plates. Such transfer films are not seen clinically. The search for a lubricant more closely matching synovial fluid continues.

  13. Defining a Theoretical Model of Wear - Caused Failure of Tool Machine Elements

    Directory of Open Access Journals (Sweden)

    B. Tadic

    2010-09-01

    Full Text Available This paper considers production equipment failures caused by wear. A short overview is given on the results of statistically processed data on production equipment failures, gained by observing 20 representative and, from the point of view of failure frequency, problematic machine elements. The goal of this research is to detect the current equipment condition having in mind reliability and create a theoretical base for optimal renewal part stock planning.

  14. Wear testing of moderate activities of daily living using in vivo measured knee joint loading.

    Directory of Open Access Journals (Sweden)

    Jörn Reinders

    Full Text Available Resumption of daily living activities is a basic expectation for patients provided with total knee replacements. However, there is a lack of knowledge regarding the impact of different activities on the wear performance. In this study the wear performance under application of different daily activities has been analyzed. In vivo load data for walking, walking downstairs/upstairs, sitting down/standing up, and cycling (50 W & 120 W has been standardized for wear testing. Wear testing of each activity was carried out on a knee wear simulator. Additionally, ISO walking was tested for reasons of comparison. Wear was assessed gravimetrically and wear particles were analyzed. In vivo walking produced the highest overall wear rates, which were determined to be three times higher than ISO walking. Moderate wear rates were determined for walking upstairs and downstairs. Low wear rates were determined for standing up/sitting down and cycling at power levels of 50 W and 120 W. The largest wear particles were observed for cycling. Walking based on in vivo data has been shown to be the most wear-relevant activity. Highly demanding activities (stair climbing produced considerably less wear. Taking into account the expected number of loads, low-impact activities like cycling may have a greater impact on articular wear than highly demanding activities.

  15. Standard test method for ranking resistance of plastics to sliding wear using block-on-ring wear test—cumulative wear method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of plastics to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank plastics according to their sliding wear characteristics against metals or other solids. 1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. In addition, the test can be run with different gaseous atmospheres and elevated temperatures, as desired, to simulate service conditions. 1.3 Wear test results are reported as the volume loss in cubic millimetres for the block and ring. Materials of higher wear resistance will have lower volume loss. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with it...

  16. Astronaut Russell Schweickart wears EMU and PLSS for countdown test

    Science.gov (United States)

    1969-01-01

    Astronaut Russell L. Schweickart, lunar module pilot of the Apollo 9 prime crew, wears the extravehicular mobility unit (EMU) which he will use during his scheduled Apollo 9 extravehicular activity. In addition to the space suit and bubble helmet, the EMU also includes a portable life support system (PLSS) back pack, an Oxygen Purge System (seen atop the PLSS), and a Remote Control Unit on his chest. When this photograph was taken, Schweickart was suited up to participate in an Apollo 9 Countdown Demonstration Test.

  17. Standard Test Method for Abrasive Wear Resistance of Cemented

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the determination of abrasive wear resistance of cemented carbides. 1.2 The values stated in inch-pound units are to be regarded as the standard. The SI equivalents of inch-pound units are in parentheses and may be approximate. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. Standard guide for measuring the wear volumes of piston ring segments run against flat coupons in reciprocating wear tests

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide covers and describes a profiling method for use accurately measuring the wear loss of compound-curved (crowned) piston ring specimens that run against flat counterfaces. It does not assume that the wear scars are ideally flat, as do some alternative measurement methods. Laboratory-scale wear tests have been used to evaluate the wear of materials, coatings, and surface treatments that are candidates for piston rings and cylinder liners in diesel engines or spark ignition engines. Various loads, temperatures, speeds, lubricants, and durations are used for such tests, but some of them use a curved piston ring segment as one sliding partner and a flat or curved specimen (simulating the cylinder liner) as its counterface. The goal of this guide is to provide more accurate wear measurements than alternative approaches involving weight loss or simply measuring the length and width of the wear marks. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its ...

  19. In vitro tests of substitute lubricants for wear testing orthopaedic biomaterials.

    Science.gov (United States)

    Scholes, Susan C; Joyce, Thomas J

    2013-06-01

    Bovine serum is the lubricant recommended by several international standards for the wear testing of orthopaedic biomaterials; however, there are issues over its use due to batch variation, degradation, cost and safety. For these reasons, alternative lubricants were investigated. A 50-station Super-CTPOD (circularly translating pin-on-disc) wear test rig was used, which applied multidirectional motion to ultra-high-molecular-weight polyethylene test pins rubbing against cobalt chromium discs. Thirteen possible alternative lubricants were tested. The use of soy protein as a lubricant gave statistically higher wear, while soya oil, olive oil, Channel Island milk, whole milk, whey, wheatgerm oil, 11 mg/mL egg white, albumin/globulin mix and albumin/globulin/chondroitin sulphate mix all gave statistically lower wear than bovine serum. The lubricants giving the closest wear results to bovine serum were 20 and 40 mg/mL egg white solutions. A light absorbance assay found that these egg white solutions suffered from a high degradation rate that increased with increasing protein content. While egg white solutions offer the best alternative lubricant to bovine serum due to the wear volumes produced, cost-effectiveness and safety of handling, protein degradation will still occur, leading to the need for regular lubricant replacement. Of the lubricants tested in this study, none were found to be superior to bovine serum.

  20. Plasma Plume Characterization of the HERMeS during a 1722-hr Wear Test Campaign

    Science.gov (United States)

    Huang, Wensheng; Williams, George J.; Peterson, Peter Y.; Kamhawi, Hani; Gilland, James H.; Herman, Daniel A.

    2017-01-01

    A 1722-hour wear test campaign of NASAs 12.5 kilowatt Hall Effect Rocket with Magnetic Shielding was completed. This wear test campaign, completed in 2016, was divided into four segments including an electrical configuration characterization test, two short duration tests, and one long wear test. During the electrical configuration characterization test, the plasma plume was examined to provide data to support the down select of the electrical configuration for further testing. During the long wear tests, the plasma plume was periodically examined for indications of changes in thruster behavior. Examination of the plasma plume data from the electrical configuration characterization test revealed a correlation between the plume properties and the presence of a conduction path through the front poles. Examination of the long wear test plasma plume data revealed that the plume characteristics remained unchanged during testing to within the measurement uncertainty.

  1. Wear of nanofilled dental composites in a newly-developed in vitro testing device

    Science.gov (United States)

    Lawson, Nathaniel C.

    Purpose. In vivo wear of dental composites can lead to loss of individual tooth function and the need to replace a composite restoration. To evaluate the wear performance of new and existing dental composites, we developed a novel system for measuring in vitro wear and we used this system to analyze the mechanisms of wear of nanofilled composite materials. Methods. A modified wear testing device was designed based on the Alabama wear testing machine. The new device consists of: (1) an antagonist which is lowered to and raised from the composite specimen by weight loading, (2) a motorized stage to cause the antagonist to slide 2mm on the composite surface, and (3) pumps for applying lubricant to the specimens. Various testing parameters of the device were examined before testing, including the impulse force, the third-body medium, the lubricant and antagonist. The parameters chosen for this study were 20N at 1Hz with a 33% glycerine lubricant and stainless steel antagonist. Three nano-composites were fabricated with a BisGMA polymer matrix and 40nm SiO2 filler particles at three filler loads (25%, 50% and 65%). The mechanical properties of the composites were measured. The materials were then tested in the modified wear testing device under impact wear, sliding wear and a combination of impact and sliding wear. The worn surfaces were then analyzed with a non-contact profilometer and SEM. Results. The volumetric wear data indicated that increasing filler content beyond 25% decreased the wear resistance of the composites. Increasing filler content increased hardness and decreased toughness. SEM evaluation of the worn specimens indicated that the 25% filled materials failed by fatigue and the 50% and 65% filled materials failed by abrasive wear. Impact wear produced fretting in this device and sliding wear is more aggressive than impact wear. Conclusion. Based on the results of this study and previous studies on this topic, manufacturers are recommended to use a filler

  2. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    Science.gov (United States)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  3. The High performance of nanocrystalline CVD diamond coated hip joints in wear simulator test.

    Science.gov (United States)

    Maru, M M; Amaral, M; Rodrigues, S P; Santos, R; Gouvea, C P; Archanjo, B S; Trommer, R M; Oliveira, F J; Silva, R F; Achete, C A

    2015-09-01

    The superior biotribological performance of nanocrystalline diamond (NCD) coatings grown by a chemical vapor deposition (CVD) method was already shown to demonstrate high wear resistance in ball on plate experiments under physiological liquid lubrication. However, tests with a close-to-real approach were missing and this constitutes the aim of the present work. Hip joint wear simulator tests were performed with cups and heads made of silicon nitride coated with NCD of ~10 μm in thickness. Five million testing cycles (Mc) were run, which represent nearly five years of hip joint implant activity in a patient. For the wear analysis, gravimetry, profilometry, scanning electron microscopy and Raman spectroscopy techniques were used. After 0.5 Mc of wear test, truncation of the protruded regions of the NCD film happened as a result of a fine-scale abrasive wear mechanism, evolving to extensive plateau regions and highly polished surface condition (Ra<10nm). Such surface modification took place without any catastrophic features as cracking, grain pullouts or delamination of the coatings. A steady state volumetric wear rate of 0.02 mm(3)/Mc, equivalent to a linear wear of 0.27 μm/Mc favorably compares with the best performance reported in the literature for the fourth generation alumina ceramic (0.05 mm(3)/Mc). Also, squeaking, quite common phenomenon in hard-on-hard systems, was absent in the present all-NCD system.

  4. Assessments of Hollow Cathode Wear in the Xenon Ion Propulsion System (XIPs(c)) by Numerical Analyses and Wear Tests

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.

    2008-01-01

    The standard approach presently followed by NASA to qualify electric propulsion for the required mission throughput has been based largely on life tests, which can be costly and time consuming. Revised electric propulsion lifequalification approaches are being formulated that combine analytical and/or computational methods with (shorter-duration) wear tests. As a model case, a wear test is being performed at JPL to assess the lifetime of the discharge hollow cathode in the Xenon Ion Propulsion System (XIPS(c)), a 25-cm ion engine developed by L-3 Communications Electron Technologies, Inc. for commercial applications. Wear and plasma data accumulated throughout this life-assessment program are being used to validate the existing 2-D hollow cathode code OrCa2D. We find that the OrCa2D steady-state solution predicts very well the time-averaged plasma data and the keeper voltage after 5500 hrs of operation in high-power mode. When the wave motion that occurs naturally in these devices is accounted for, based on an estimate of the maximum wave amplitude, the molybdenum-keeper erosion profile observed in the XIPS(c) discharge cathode is also reproduced within a factor of two of the observation. When the same model is applied to predict the erosion of a tantalum keeper we find that erosion is reduced by more than two orders of magnitude compared to the molybdenum keeper due the significantly lower sputtering yield of tantalum. A tantalum keeper would therefore allow keeper lifetimes that greatly exceed the present requirements for deep-space robotic missions considered by NASA. Moreover, such large reduction of the erosion renders the largest uncertainties in the models, which are associated with the wave amplitude estimates and the electron transport model, negligible.

  5. Wearing tests on aluminium coated with diamond by triboadhesion

    Institute of Scientific and Technical Information of China (English)

    J.M.RodríguezLelis; B.D.Angulo; J.O.Colín; J.PorcayoCalderón

    2001-01-01

    In this work the results obtained from subjecting aluminium coated with diamond by tri-boadhesion to a wearing process with a plane rider. Here it is shown the ratio of the normal toshearing forces, called friction factor, as an indication of the resistance of the surface. It was foundthat the film of the aluminium coated with diamond resisted three times compared with the oxida-tion film of commercial aluminium, which for the purpose of this work was considered withoutcoating.

  6. Abrasive Wear Resistance of the Iron- and WC-based Hardfaced Coatings Evaluated with Scratch Test Method

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2013-06-01

    Full Text Available Abrasive wear is one of the most common types of wear, which makesabrasive wear resistance very important in many industries. Thehard facing is considered as useful and economical way to improve theperformance of components submitted to severe abrasive wear conditions, with wide range of applicable filler materials. The abrasive wear resistance of the three different hardfaced coatings (two iron‐based and one WC‐based, which were intended to be used for reparation of the impact plates of the ventilation mill, was investigated and compared. Abrasive wear tests were carried‐out by using the scratch tester under the dry conditions. Three normal loads of 10, 50 and 100 N and the constant sliding speed of 4 mm/s were used. Scratch test was chosen as a relatively easy and quick test method. Wear mechanism analysis showed significant influence of the hardfaced coatings structure, which, along with hardness, has determined coatings abrasive wear resistance.

  7. On the mechanism of running-in during wear tests of a babbitt B83

    Science.gov (United States)

    Valeeva, A. Kh.; Valeev, I. Sh.; Fazlyakhmetov, R. F.; Pshenichnyuk, A. I.

    2015-05-01

    Based on an analysis of changes in the structure of cast babbitt of grade B83 in the process of wear tests and on a comparison of the wear curves of cast babbitt and electroplated coating of the same phase composition, there is proposed a wear mechanism at the running-in stage of B83, which is reduced to the spalling-off of coarse particles of the intermetallic β phase, pressing-in of the cleaved particles into the soft plastic matrix, and the formation of a fairly homogeneous coating uniformly paved by small, hard particles.

  8. State of art report for high temperature wear test of SMART MCP and CEDM bearing material

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Hu; Lee, Jae Seon; Park, Jin Seok; Kim, Ji Ho; Kim, Jong In

    2000-03-01

    Wear resistance properties of machine elements has been more critical in view of its significant effect on life extension, economics and material saving because it has been recognized that nearly 80 percent of damages of mechanical elements in the friction pairs are due to the material loss by wear. And wear properties have direct influence on the life of a machine in a great extend under extremely severe operating condition. Therefore highly improved wear properties of machine elements operating in such circumstances is heavily required. The purpose of this report is to survey current technology for high temperature wear test in order to establish the test plan for the life evaluation of SMART MCP and CEDM bearing materials. Friction and wear test will be done under high pressure (170 MPa) and high temperature (350 degree C) with water as lubricant to simulate the operating condition of the nuclear power reactor. Because pump type for MCP is selected as the caned motor pump which needs no mechanical sealing, the rotating shaft on which bearing is fully submerged by main coolant with high temperature. So MCP bearing operates without additional lubricant. CEDM is adopted as the ball-screw type with fine controllability. So the driving part is designed as the immersed-in type by main coolant. Therefore the anti-wear and reliability of driving parts are much consequent to guarantee the lifetime and the safety of the whole system. Tribometer adapted to high temperature and pressure circumstance is needed to execute bearing material testing. Test parameters are material, sliding speed, sliding distance and applied load. In order to identify the wear mechanism, optical microscope and surface roughness testers are required. The result of this report will provide an elementary data to develop bearing materials and to estimate bearing lifetime for the bearings of MCP and CEDM in SMART. (author)

  9. State of art report for high temperature wear test of SMART MCP and CEDM bearing material

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Hu; Lee, Jae Seon; Park, Jin Seok; Kim, Ji Ho; Kim, Jong In

    2000-03-01

    Wear resistance properties of machine elements has been more critical in view of its significant effect on life extension, economics and material saving because it has been recognized that nearly 80 percent of damages of mechanical elements in the friction pairs are due to the material loss by wear. And wear properties have direct influence on the life of a machine in a great extend under extremely severe operating condition. Therefore highly improved wear properties of machine elements operating in such circumstances is heavily required. The purpose of this report is to survey current technology for high temperature wear test in order to establish the test plan for the life evaluation of SMART MCP and CEDM bearing materials. Friction and wear test will be done under high pressure (170 MPa) and high temperature (350 degree C) with water as lubricant to simulate the operating condition of the nuclear power reactor. Because pump type for MCP is selected as the caned motor pump which needs no mechanical sealing, the rotating shaft on which bearing is fully submerged by main coolant with high temperature. So MCP bearing operates without additional lubricant. CEDM is adopted as the ball-screw type with fine controllability. So the driving part is designed as the immersed-in type by main coolant. Therefore the anti-wear and reliability of driving parts are much consequent to guarantee the lifetime and the safety of the whole system. Tribometer adapted to high temperature and pressure circumstance is needed to execute bearing material testing. Test parameters are material, sliding speed, sliding distance and applied load. In order to identify the wear mechanism, optical microscope and surface roughness testers are required. The result of this report will provide an elementary data to develop bearing materials and to estimate bearing lifetime for the bearings of MCP and CEDM in SMART. (author)

  10. An experimental and theoretical investigation into three-body abrasive wear

    NARCIS (Netherlands)

    Woldman, Martijn

    2014-01-01

    When machines operate under extreme conditions, they often need to perform to maximum capacity. The high demands cause the amount of wear to increase relative to ‘the normal’ situation. Moreover, the extreme conditions are typically variable, making it impossible to define fixed maintenance interval

  11. Integrated experimental and theoretical approach for corrosion and wear evaluation of laser surface nitrided, Ti-6Al-4V biomaterial in physiological solution.

    Science.gov (United States)

    Vora, Hitesh D; Shanker Rajamure, Ravi; Dahotre, Sanket N; Ho, Yee-Hsien; Banerjee, Rajarshi; Dahotre, Narendra B

    2014-09-01

    A laser based surface nitriding process was adopted to further enhance the osseo-integration, corrosion resistance, and tribological properties of the commonly used bioimplant alloy, Ti-6Al-4V. Earlier preliminary osteoblast, electrochemical, and corrosive wear studies of laser nitrided titanium in simulated body fluid clearly revealed improvement of cell adhesion as well as enhancement in corrosion and wear resistance but mostly lacked the in-depth fundamental understanding behind these improvements. Therefore, a novel integrated experimental and theoretical approach were implemented to understand the physical phenomena behind the improvements and establish the property-structure-processing correlation of nitrided surface. The first principle and thermodynamic calculations were employed to understand the thermodynamic, electronic, and elastic properties of TiN for enthalpy of formation, Gibbs free energy, density of states, and elastic properties of TiN were investigated. Additionally, open circuit potential and cyclic potentio-dynamic polarization tests were carried out in simulated body fluid to evaluate the corrosion resistance that in turn linked with the experimentally measured and computationally predicted surface energies of TiN. From these results, it is concluded that the enhancement in the corrosion resistance after laser nitriding is mainly attributed to the presence of covalent bonding via hybridization among Ti (p) and N (d) orbitals. Furthermore, mechanical properties, such as, Poisson׳s ratio, stiffness, Pugh׳s ductility criteria, and Vicker׳s hardness, predicted from first principle calculations were also correlated to the increase in wear resistance of TiN. All the above factors together seem to have contributed to significant improvement in both wear and corrosion performance of nitride surface compared to the bare Ti-6Al-4V in physiological environment indicating its suitability for bioimplant applications.

  12. Low-Frequency Reciprocating Fretting Wear Testing System Design and Experiment Research

    Institute of Scientific and Technical Information of China (English)

    Zhongnan Wang∗,Wuyi Wang; Guangyu Zhang

    2015-01-01

    The fretting wear is resulted from different or same sample’ s surfaces by the small variationand leads to mechanism failures. The main factors consist of the variation of normal load and oscillation frequencies, among which surface topography of different materials are the main factors to the problems of the fretting wear. Therefore, a novel low⁃frequency reciprocating fretting wear test system is designed upon the principle of Friction coefficient measurement. Four metal and non⁃metallic samples are measured under various normal load and oscillation frequencies to obtain the instantaneous friction coefficient in the repeat experiments. In fact, the experimental results show that CoF curves of different samples with the increase of the normal load are the similar exponential decay or parabolic shapes, which are consistent with the literatures to verify the rational design and reliable⁃operation of the system under the conditions of different frequencies.

  13. Property Testing via Set-Theoretic Operations

    CERN Document Server

    Chen, Victor; Xie, Ning

    2010-01-01

    Given two testable properties $\\mathcal{P}_{1}$ and $\\mathcal{P}_{2}$, under what conditions are the union, intersection or set-difference of these two properties also testable? We initiate a systematic study of these basic set-theoretic operations in the context of property testing. As an application, we give a conceptually different proof that linearity is testable, albeit with much worse query complexity. Furthermore, for the problem of testing disjunction of linear functions, which was previously known to be one-sided testable with a super-polynomial query complexity, we give an improved analysis and show it has query complexity $O(1/\\eps^2)$, where $\\eps$ is the distance parameter.

  14. Investigation of piston ring – cylinder liner dry wear using a block-on-ring test rig

    DEFF Research Database (Denmark)

    Bihlet, Uffe; Klit, Peder; Felter, Christian L.;

    material combinations for piston rings and cylinder liners are examined using a block-on-ring test rig. An accelerated wear test run without lubricant is used. Results show that the morphology of cast iron is an important parameter affecting the wear resistance of the material. It is also demonstrated...

  15. Test Methodology of Reproducing Fuel Rod Failure by Debris Fretting Wear

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Joon; Park, Nam Gyu; Kim, Jae Ik [KEPCO NF, Daejeon (Korea, Republic of)

    2015-10-15

    A test was conducted with simple debris to reproduce debris fretting wear. 68% of fuel rod cladding thickness is worn out by Inconel debris in 75 hours. The test result shows that a simple link system is useful to accommodate debris oscillation, and mid grid mixing vanes could be a source of debris forcing. Additional tests will be conducted with various debris such as wire brush, metal chip, etc which are suspected to generate actual debris fretting wear in future works. Debris fretting is one of the most common cause of the nuclear fuel rod failure. Even the most of the nuclear fuels has debris protection system, debris still cause fuel rod failure. From 1994 to 2006, debris fretting failure is around 11% of the total fuel failure. In 2006-2010, the portion of debris rises to over 13%. The total number of fuel rods failure is decreasing, but the portion of the debris fretting wear is growing with time. Therefore reproducing and identifying the mechanism of fuel rod failure by debris fretting wear is needed to improve reliability of the nuclear fuel.

  16. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    Science.gov (United States)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  17. Uncertainty of pin height measurement for the determination of wear in pin-on-plate test

    DEFF Research Database (Denmark)

    Drago, Nicola; De Chiffre, Leonardo; Poulios, Konstantinos

    2014-01-01

    machine (CMM), achieving an expanded measurement uncertainty (k = 2) better than 1 mm. A simple dedicated fixture adaptable to workshop environment was developed and its metrological capability investigated, estimating an average uncertainty of measurement in the order of 5 mm (k = 2). Fixture......The paper concerns measurement of pin height for the determination of wear in a pin-on-plate (POP) or pin-on-disc (POD) test, where a pin is mounted on a holder that can be fixed on the test rig and removed for measurements. The amount of wear is assessed as difference of pin height before...... and after the test, using the distance between holder plane and pin friction plane as measurand. A series of measurements were performed in connection with POP testing of different friction material pins mounted on an aluminium holder. Pin height measurements were carried out on a coordinate measuring...

  18. The five-point bending test applied on wearing courses laid on orthotropic steel decks

    OpenAIRE

    Houel, Adrien; Arnaud, Laurent

    2009-01-01

    This paper deals with the evolving behaviour of wearing courses on steel orthotropic decks, such as the French Millau viaduct bituminous mix or an ultra high performance concrete (UHPC) pavement. This is of great importance when dealing with durability. A five-point bending fatigue test was developed since 2003 at the ENTPE laboratory. It enables to test various bituminous concrete mixes. Recent works on UHPC pavements on steel orthotropic decks are considered to improve service life of such ...

  19. Multiple Hollow Cathode Wear Testing for the Space Station Plasma Contactor

    Science.gov (United States)

    Soulas, George C.

    1994-01-01

    A wear test of four hollow cathodes was conducted to resolve issues associated with the Space Station plasma contactor. The objectives of this test were to evaluate unit-to-unit dispersions, verify the transportability of contamination control protocols developed by the project, and to evaluate cathode contamination control and activation procedures to enable simplification of the gas feed system and heater power processor. These objectives were achieved by wear testing four cathodes concurrently to 2000 hours. Test results showed maximum unit-to-unit deviations for discharge voltages and cathode tip temperatures to be +/-3 percent and +/-2 percent, respectively, of the nominal values. Cathodes utilizing contamination control procedures known to increase cathode lifetime showed no trends in their monitored parameters that would indicate a possible failure, demonstrating that contamination control procedures had been successfully transferred. Comparisons of cathodes utilizing and not utilizing a purifier or simplified activation procedure showed similar behavior during wear testing and pre- and post-test performance characterizations. This behavior indicates that use of simplified cathode systems and procedures is consistent with long cathode lifetimes.

  20. a Development of Multi Purpose Testing Machine for Friction, Wear and Rolling Contact Fatigue

    Science.gov (United States)

    Choi, Gab-Su; Pyun, Young-Sik; Kim, Jun-Hyoung; Kim, Hak-Doo; Tominaga, Yasutoshi; Darisuren, Shirmendagwa

    In this paper, the newly developed tribometer was introduced. Ball-on-disk, pin-on-disk, small-sized journal and thrust bearings tests on friction and wear were carried out using a newly developed tribometer which is built up according to the ASTM G99. Those friction and wear test results were compared with the friction results which were approved by Korean (KOLAS) and CSM Instruments. The comparison revealed that friction characteristics and trends of three different tribometers were similar to each other. The objective of this paper is to demonstrate the capability of the newly developed tribometer. As a result, the newly developed tribometer is capable of performing friction tests using pin-on-disk, disk-on-disk, journal and thrust bearings configurations.

  1. Interpretation of friction and wear in DLC film: role of surface chemistry and test environment

    Science.gov (United States)

    Polaki, S. R.; Kumar, N.; Madapu, K.; Ganesan, K.; Krishna, N. G.; Srivastava, S. K.; Abhaya, S.; Kamruddin, M.; Dash, S.; Tyagi, A. K.

    2016-11-01

    In spite of the large amount of tribological work carried out to explain the friction and wear mechanism in diamond-like carbon (DLC) films, some of the core issues relating to the evolution of reactive species across sliding interfaces and their role on the friction and wear mechanism remain unclear. The phase composition, film density and hydrogen content present in a DLC film can be tailored by substrate biasing during film deposition to achieve a nearly vanishing friction coefficient. Furthermore, nitrogen doping in DLC films significantly improves wear resistance, and sliding occurs in a nearly wearless regime. Undoped and nitrogen-doped DLC films exhibit a nearly frictionless value with ultra-low wear behavior when tests are performed in argon, nitrogen and methane atmospheres. The antifriction and antiwear properties of the DLC films were improved with the reduction of adsorbed oxygen impurities on the film surface. This behavior was understood by correlating the oxygen impurities present at the surface/subsurface region of the DLC film while using x-ray photoelectron spectroscopy and depth-resolved Auger electron spectroscopy.

  2. Test study of corrosion performances and wear characteristics of composite guide in vertical shaft

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, X.; Guo, J.; Xu, W. [Jiaozuo Institute of Technology, Jiaozuo (China)

    2000-10-01

    This paper describes the research of a new composite guide in the light of serious corrosion problem of vertical shaft equipment. Through the experimental study on the corrosion characteristics of the composite guide, it is pointed out that the corrosion resistance of the composite guide which is made of steel and glass fibre reinforced plastic (GFRP) can meet the needs of mine shaft environment. The minimum thickness of the GFRP material of the guide obtained from wear resistance test is put forward. It is found that the corrosion and wear resistance of the GFRP which protects the steel guide is over 30 years. Therefore, the replacement of shaft equipment will be less often, thereby conserving on capital investment. 5 refs., 5 figs., 3 tabs.

  3. A new test machine for measuring friction and wear in controlled atmospheres to 1200 C

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher

    1991-01-01

    This paper describes a new high-temperature friction and wear test apparatus (tribometer). The tribometer can be used as a pin-on-disk or pin-on-ring configuration and is specially designed to measure the tribological properties of ceramics and high temperature metallic alloys from room temperature to 1200 C. Sliding mode can be selected to be either unidirectional at velocities up to 22 m/sec or oscillating at frequencies up to 4.6 Hz and amplitudes up to + or - 60 deg. The test atmosphere is established by a controlled flow rate of a purge gas. All components within the test chamber are compatible with oxidizing, inert or reducing gases.

  4. CR TKA UHMWPE Wear Tested after Artificial Aging of the Vitamin E Treated Gliding Component by Simulating Daily Patient Activities

    Directory of Open Access Journals (Sweden)

    Jens Schwiesau

    2014-01-01

    Full Text Available The wear behaviour of total knee arthroplasty (TKA is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE cruciate retaining (CR total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62±0.53 mg/million cycles falling within the limit of previous reports for established wear test methods.

  5. CR TKA UHMWPE wear tested after artificial aging of the vitamin E treated gliding component by simulating daily patient activities.

    Science.gov (United States)

    Schwiesau, Jens; Fritz, Bernhard; Kutzner, Ines; Bergmann, Georg; Grupp, Thomas M

    2014-01-01

    The wear behaviour of total knee arthroplasty (TKA) is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE) cruciate retaining (CR) total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62 ± 0.53 mg/million cycles falling within the limit of previous reports for established wear test methods.

  6. Comparative wear mapping techniques

    DEFF Research Database (Denmark)

    Alcock, J.; Sørensen, Ole Toft; Jensen, S.

    1996-01-01

    Pin-on-disc tests of tungsten carbide pins against silicon carbide discs were performed and wear rate, mechanism and friction maps constructed. Correlations were observed between the wear mode and the friction of the pin-disc interface, and between the qualitative incidence of disruptive wear...

  7. WEAR TESTS OF SLIDING SURFACES IN THE ENVIRONMENT OF MIXTURES OF LUBRICATING OILS AND REFRIGERANTS

    Directory of Open Access Journals (Sweden)

    Kasper Górny

    2014-03-01

    Full Text Available Elements of refrigeration compressors may be exposed to various types of wear processes, depending on the used oils and refrigerants. The presence of the refrigerant makes the lubricating properties and anti-oil mixture - factor much worse than in case of the lack of refrigerant oil. Current regulations on the use of ODS phase-out of working require refrigeration synthetic refrigerants HCFC (e.g. popular R22. The paper presents the effect of different mixtures of oils and refrigerants on friction coefficient and surface condition of cast iron and aluminium PA6. Tests were performed on a prototype machine using frictional node type block-on-ring, which is located inside a pressure chamber that simulates the refrigeration compressor. The results of the study confirm the possibility of using green refrigerant R290 (propane as a substitute for R22, while keeping the existing mineral oil.

  8. Combining Diagnosis of the Casing and Tooljoint Wear in Mud Fluid While Drilling

    Institute of Scientific and Technical Information of China (English)

    樊建春; 张来斌; 温东; 余磊

    2004-01-01

    A ground monitoring system was developed to diagnose casing and tooljoint wear in a well during drilling by combining the analysis of wear debris with detection of the tooljoints.The result shows that the wear debris concentration in the circulating drilling mud in a well reflects the total wear rate of the tribo-elements in the well, while the wear detection of a tooljoint can indicate its wear loss between two contiguous times of drill-pipe lifting.A diagnosis method that integrates the two types of information was developed to identify severe wear regions in well casing.Theoretical analyses and field test show that the severe casing wear region can be located relatively accurately by the integrated method.This method presents a new ground casing wear diagnosis approach with good real-time results.

  9. Tribological tests of wear-resistant coatings used in the production of drill bits of horizontal and inclined drilling

    Science.gov (United States)

    Maslov, A. L.; Markova, I. Yu; Zakharova, E. S.; Polushin, N. I.; Laptev, A. I.

    2017-05-01

    It is known that modern drilling bit body undergoes significant abrasive wear in the contact area with the solid and the retracted cuttings. For protection of the body rationally use wear-resistant coating, which is welded directly to the body of bit. Before mass use of the developed coverings they need to be investigated by various methods that it was possible to characterize coatings and on the basis of the obtained data to perform optimization of both composition of coatings and technology. Such methods include microstructural studies tribological tests, crack resistance and others. This work is devoted to the tribological tests of imported brand of coatings WokaDur NiA and and domestic brand of coating HR-6750 (both brands manufactured by Ltd “Oerlikon Metco Rus”), used to protect the bit body from abrasive wear.

  10. Wear Scar Similarities between Retrieved and Simulator-Tested Polyethylene TKR Components: An Artificial Neural Network Approach

    Science.gov (United States)

    2016-01-01

    The aim of this study was to determine how representative wear scars of simulator-tested polyethylene (PE) inserts compare with retrieved PE inserts from total knee replacement (TKR). By means of a nonparametric self-organizing feature map (SOFM), wear scar images of 21 postmortem- and 54 revision-retrieved components were compared with six simulator-tested components that were tested either in displacement or in load control according to ISO protocols. The SOFM network was then trained with the wear scar images of postmortem-retrieved components since those are considered well-functioning at the time of retrieval. Based on this training process, eleven clusters were established, suggesting considerable variability among wear scars despite an uncomplicated loading history inside their hosts. The remaining components (revision-retrieved and simulator-tested) were then assigned to these established clusters. Six out of five simulator components were clustered together, suggesting that the network was able to identify similarities in loading history. However, the simulator-tested components ended up in a cluster at the fringe of the map containing only 10.8% of retrieved components. This may suggest that current ISO testing protocols were not fully representative of this TKR population, and protocols that better resemble patients' gait after TKR containing activities other than walking may be warranted. PMID:27597955

  11. Definition and evaluation of testing scenarios for knee wear simulation under conditions of highly demanding daily activities.

    Science.gov (United States)

    Schwiesau, Jens; Schilling, Carolin; Kaddick, Christian; Utzschneider, Sandra; Jansson, Volkmar; Fritz, Bernhard; Blömer, Wilhelm; Grupp, Thomas M

    2013-05-01

    The objective of our study was the definition of testing scenarios for knee wear simulation under various highly demanding daily activities of patients after total knee arthroplasty. This was mainly based on a review of published data on knee kinematics and kinetics followed by the evaluation of the accuracy and precision of a new experimental setup. We combined tibio-femoral load and kinematic data reported in the literature to develop deep squatting loading profiles for simulator input. A servo-hydraulic knee wear simulator was customised with a capability of a maximum flexion of 120°, a tibio-femoral load of 5000N, an anterior-posterior (AP) shear force of ±1000N and an internal-external (IE) rotational torque of ±50Nm to simulate highly demanding patient activities. During the evaluation of the newly configurated simulator the ability of the test machine to apply the required load and torque profiles and the flexion kinematics in a precise manner was examined by nominal-actual profile comparisons monitored periodically during subsequent knee wear simulation. For the flexion kinematics under displacement control a delayed actuator response of approximately 0.05s was inevitable due to the inertia of masses in movement of the coupled knee wear stations 1-3 during all applied activities. The axial load and IE torque is applied in an effective manner without substantial deviations between nominal and actual load and torque profiles. During the first third of the motion cycle a marked deviation between nominal and actual AP shear load profiles has to be noticed but without any expected measurable effect on the latter wear simulation due to the fact that the load values are well within the peak magnitude of the nominal load amplitude. In conclusion the described testing method will be an important tool to have more realistic knee wear simulations based on load conditions of the knee joint during activities of daily living.

  12. Wear tests in a hip joint simulator of different CoCrMo counterfaces on UHMWPE

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Mora, V.A.; Hoffmann, M.; Stroosnijder, R. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, Ispra (Italy); Gil, F.J. [CREB, Dept. Ciencia de Materiales e Ingenieria Metalurgica, ETSEIB, Universidad Politecnica de Cataluna, Av. Diagonal 647, 08028-Barcelona (Spain)], E-mail: francesc.xavier.gil@upc.edu

    2009-01-01

    The objective in this work was to study the effect of different material counterfaces on the Ultra High Molecular Weight Polyethylene (UHMWPE) wear behavior. The materials used as counterfaces were based on CoCrMo: forged with hand polished and mass finished, CoCrMo coating applied on the forged CoCrMo alloy obtained by Physical Vapour Deposition (PVD). A hip joint simulator was designed and built for these studies. The worn surfaces were observed by optical and scanning electron microscopy. The results showed that the hand polished CoCrMo alloy caused the higher UHMWPE wear of the acetabular cups. The CoCrMo coating caused the least UHMWPE wear, while the mass finished CoCrMo alloy caused an intermediate UHMWPE wear. It is shown that the wear rates obtained in this work are closer to clinical studies than to similar hip joints simulator studies.

  13. Coefficients for tests from a decision theoretic point of view

    NARCIS (Netherlands)

    van der Linden, Willem J.; Mellenbergh, Gideon J.

    1978-01-01

    From a decision theoretic point of view a general coefficient for tests, d, is derived. The coefficient is applied to three kinds of decision situations. First, the situation is considered in which a true score is estimated by a function of the observed score of a subject on a test (point

  14. Theoretical evaluation of thermal imaging for detection of erosive wear of internally refractory-lined transfer lines

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, C. K.; Ellingson, W. A.; Su, K. C.

    1980-05-01

    Infrared scanning has potential use in detecting erosive wear (thickness change) of the refractory surface of large-diameter steel pipes internally lined with refractory concrete, which are typical of those used in coal-conversion processes. An analytical study was conducted to determine the viability of this method. Heat-transfer models were developed to predict surface-temperature distributions on the outer metal surface for various erosive-wear conditions on the inner surface, assuming uniform inner-surface temperature. Variables investigated included thermal conductivity of the refractory concrete, thermal contact resistance between the steel shell and the refractory, outer-surface convective coefficient, outer-surface radiative properties, and refractory-lining thickness and composition. The study used two- and three-dimensional heat-transfer models and various well-defined rectangular cavities on the inner surface. Temperature resolution, and thus calculation of cavity sizes from surface-temperature profiles, is better when the convective coefficient is small and the interfacial contact resistance is uniformly low. The presence of dual refractory-concrete liners using a layer of insulating concrete between the hot-face lining and the steel shell, together with thick steel (t > 25 mm), tends to smear temperature patterns and reduce the temperature gradient so that calculation of cavity shapes becomes impractical. 44 figures, 15 tables.

  15. Characterization of protein degradation in serum-based lubricants during simulation wear testing of metal-on-metal hip prostheses.

    Science.gov (United States)

    Maskiewicz, Victoria K; Williams, Paul A; Prates, Sarah J; Bowsher, John G; Clarke, Ian C

    2010-08-01

    A size exclusion high performance liquid chromatography (SEC-HPLC) method has been developed which is capable of separation and quantitation of bovine serum albumin (BSA) and bovine serum globulin (BSG) components of serum-based lubricant (SBL) solutions. This allowed characterization of the stability profiles of these proteins when acting as lubricants during hip wear simulation, and identification of wear-specific mechanisms of degradation. Using cobalt-chromium metal-on-metal (MOM) hip joints, it was observed that BSA remained stable for up to 3 days (215K cycles) of wear testing after which the protein degraded in a fairly linear fashion. BSG on the other hand, began to degrade immediately and in a linear fashion with a rate constant of 5% per day. Loss of both proteins occurred via the formation of high molecular weight aggregates which precipitated out of solution. No fragmentation of the polypeptide backbone of either protein was observed. Data obtained suggest that protein degradation was not due to microbial contamination, denaturation at the air-water interface, or frictional heating of articulating joint surfaces in these studies. We conclude that the primary source of protein degradation during MOM simulation testing occurs via high shear rates experienced by SBL solutions at articulating surfaces, possibly coupled with metal-protein interactions occurring as new and reactive metal surfaces are generated during wear testing. The development of this analytical methodology will allow new studies to clarify the role of SBL solutions in wear simulation studies and the interactions and lubricating properties of serum proteins with prosthetic surfaces other than MOM.

  16. Development and validation of a theoretical test in basic laparoscopy

    DEFF Research Database (Denmark)

    Strandbygaard, Jeanett; Maagaard, Mathilde; Larsen, Christian Rifbjerg;

    2012-01-01

    for first-year residents in obstetrics and gynecology. This study therefore aimed to develop and validate a framework for a theoretical knowledge test, a multiple-choice test, in basic theory related to laparoscopy. METHODS: The content of the multiple-choice test was determined by conducting informal...... levels: senior medical students, first-year residents, and chief physicians. RESULTS: The four conversational interviews resulted in the development of 47 test questions, which were narrowed down to 37 test questions after two Delphi rounds involving 12 chief physicians. Significant differences were.......001). Internal consistency (Cronbach's alpha) was 0.82. There was no evidence of differential item functioning between the three groups tested. CONCLUSIONS: A newly developed knowledge test in basic laparoscopy proved to have content and construct validity. The formula for the development and validation...

  17. The effect of lubricant selection on galling in a model wear test

    NARCIS (Netherlands)

    Heide, van der E.; Huis in 't Veld, A.J.; Schipper, D.J.

    2001-01-01

    Galling is a known failure mechanism in sheet metal forming (SMF) processes. As a result of this wear process, the amount of waste increases, the production process becomes hard to control and eventually expensive maintenance is required in order to continue production. Delaying or avoiding galling

  18. Polymer wear evaluation

    DEFF Research Database (Denmark)

    Lagerbon, Mikkel; Sivebæk, Ion Marius

    2012-01-01

    the safety of the patients. Prediction of the wear of polymers is complicated by the low thermal conductivity of this kind of material. It implies that any acceleration of testing conditions by increased contact pressure and/or sliding velocity will make the polymer fail due to exaggerated heat buildup......Polymer wear plays an increasing role in manufacturing of machine parts for e.g. medical devices. Some of these have an expected lifetime of five to eight years during which very little wear of the components is acceptable. Too much wear compromises the dosage accuracy of the device and thereby....... This is not the kind of wear observed in medical devices. In the present work a method was developed capable of evaluating the wear progression in polymer-polymer contacts. The configuration of the setup is injection moulded specimens consisting of an upper part having a toroid shape and a lower flat part. The sliding...

  19. Polymer wear evaluation

    DEFF Research Database (Denmark)

    Lagerbon, Mikkel; Sivebæk, Ion Marius

    2012-01-01

    Polymer wear plays an increasing role in manufacturing of machine parts for e.g. medical devices. Some of these have an expected lifetime of five to eight years during which very little wear of the components is acceptable. Too much wear compromises the dosage accuracy of the device and thereby...... the safety of the patients. Prediction of the wear of polymers is complicated by the low thermal conductivity of this kind of material. It implies that any acceleration of testing conditions by increased contact pressure and/or sliding velocity will make the polymer fail due to exaggerated heat buildup....... This is not the kind of wear observed in medical devices. In the present work a method was developed capable of evaluating the wear progression in polymer-polymer contacts. The configuration of the setup is injection moulded specimens consisting of an upper part having a toroid shape and a lower flat part. The sliding...

  20. Strength of wood versus rate of testing - A theoretical approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    2007-01-01

    Strength of wood is normally measured in ramp load experiments. Experience shows that strength increases with increasing rate of testing. This feature is considered theoretically in this paper. It is shown that the influence of testing rate is a phenomenon, which depends on the quality...... of the considered wood. Low quality wood shows lesser influence of testing rate. This observation agrees with the well-known statement made by Borg Madsen that weak wood subjected to a constant load, has a longer lifetime than strong wood. In general, the influence of testing rate on strength increases...... with increasing moisture content. This phenomenon applies irrespective of the considered wood quality such that the above-mentioned order of magnitude observations between low and high quality wood are kept....

  1. Monitoring of Wind Turbine Gearbox Condition through Oil and Wear Debris Analysis: A Full-Scale Testing Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2016-10-01

    Despite the wind industry's dramatic development during the past decade, it is still challenged by premature turbine subsystem/component failures, especially for turbines rated above 1 MW. Because a crane is needed for each replacement, gearboxes have been a focal point for improvement in reliability and availability. Condition monitoring (CM) is a technique that can help improve these factors, leading to reduced turbine operation and maintenance costs and, subsequently, lower cost of energy for wind power. Although technical benefits of CM for the wind industry are normally recognized, there is a lack of published information on the advantages and limitations of each CM technique confirmed by objective data from full-scale tests. This article presents first-hand oil and wear debris analysis results obtained through tests that were based on full-scale wind turbine gearboxes rated at 750 kW. The tests were conducted at the 2.5-MW dynamometer test facility at the National Wind Technology Center at the National Renewable Energy Laboratory. The gearboxes were tested in three conditions: run-in, healthy, and damaged. The investigated CM techniques include real-time oil condition and wear debris monitoring, both inline and online sensors, and offline oil sample and wear debris analysis, both onsite and offsite laboratories. The reported results and observations help increase wind industry awareness of the benefits and limitations of oil and debris analysis technologies and highlight the challenges in these technologies and other tribological fields for the Society of Tribologists and Lubrication Engineers and other organizations to help address, leading to extended gearbox service life.

  2. Fabrication and Wear Behavior Analysis on AlCrFeNi High Entropy Alloy Coating Under Dry Sliding and Oil Lubrication Test Conditions

    Science.gov (United States)

    Tang, Yipin; Wang, Shouren; Sun, Bin; Wang, Yan; Qiao, Yang

    2016-03-01

    In this paper, AlCrFeNi high entropy alloy coating was fabricated on the surface of Q235 steel using hot pressing sintering process. The coating has the controlled thickness size and excellent mechanical properties. Scanning electron microscopy (SEM), XRD and hardness testing method were used to study the morphology, phase structure and hardness of high entropy alloys coating. The lattice distortion plays a significant role in increasing the hardness. Coating formation mechanism caused by the element diffusion under the hot pressing effect is also discussed in the paper. Simultaneously, the dry sliding and oil lubrication wear tests, wear morphology observation and wear mechanism discussion were completed. As the result shows, AlCrFeNi high entropy alloys coating exhibits superior wear resistance either at dry sliding or oil lubrication tests owing to its hard high entropy solid solution structure.

  3. WEAR AND SEALING CHARACTERISTICS OF ENGINE VALVE GUIDE

    Institute of Scientific and Technical Information of China (English)

    Qu Shengguan; Xia Wei; Han Lifa; Xiao Zhiyu; Chen Weiping; Li Yuanyuan

    2005-01-01

    A novel powder metallurgy (P/M) material with high wear resistance is developed in order to decrease the wear and lubricant-leakage of a diesel engine valve guide. The friction and wear tests of this material are conducted. It indicates that the wear resistance of the newly developed P/M material has been improved and much better than that of the formerly used alloy steel. Moreover, three different sealing structures are designed and theoretically analyzed with respect to the characteristic of hydrodynamic sealing. Through comparative experiments of component leakage and engine run-in for different valve guide structures, it proves that the structure with a machined sealing groove but not installed with a seal-ring cannot only reduce the specific lubricant consumption (SLC) of cylinder head, but also decrease the wear of valve stem and valve guide.

  4. The fractal characterization of wear particles in relation to the wear status

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The topography and distribution of wear particles produced in the wear process containmuch information about the wear status. Fractal geometry is applied in this paper to describe thewear particle accumulation in order to characterize the wear status change. The sliding wear test isperformed on a pin-on-disc apparatus using steel disc and brass pin. The investigation resultsshow that wear particle accumulation presents a strong bi-fractal behavior. Also, the fractal dimen-sion varies in correspondence to the wear status change. A new fractal index characterizing thewear particle accumulation is put forward. The wear tests of brass pin demonstrate that the fractalindex is effective in describing the wear status change.

  5. Critical component wear in heavy duty engines

    CERN Document Server

    Lakshminarayanan, P A

    2011-01-01

    The critical parts of a heavy duty engine are theoretically designed for infinite life without mechanical fatigue failure. Yet the life of an engine is in reality determined by wear of the critical parts. Even if an engine is designed and built to have normal wear life, abnormal wear takes place either due to special working conditions or increased loading.  Understanding abnormal and normal wear enables the engineer to control the external conditions leading to premature wear, or to design the critical parts that have longer wear life and hence lower costs. The literature on wear phenomenon r

  6. NASA's Evolutionary Xenon Thruster (NEXT) Prototype Model 1R (PM1R) Ion Thruster and Propellant Management System Wear Test Results

    Science.gov (United States)

    VanNoord, Jonathan L.; Soulas, George C.; Sovey, James S.

    2010-01-01

    The results of the NEXT wear test are presented. This test was conducted with a 36-cm ion engine (designated PM1R) and an engineering model propellant management system. The thruster operated with beam extraction for a total of 1680 hr and processed 30.5 kg of xenon during the wear test, which included performance testing and some operation with an engineering model power processing unit. A total of 1312 hr was accumulated at full power, 277 hr at low power, and the remainder was at intermediate throttle levels. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The propellant management system performed without incident during the wear test. The ion engine and propellant management system were also inspected following the test with no indication of anomalous hardware degradation from operation.

  7. Strengthening Theoretical Testing in Criminology Using Agent-based Modeling.

    Science.gov (United States)

    Johnson, Shane D; Groff, Elizabeth R

    2014-07-01

    The Journal of Research in Crime and Delinquency (JRCD) has published important contributions to both criminological theory and associated empirical tests. In this article, we consider some of the challenges associated with traditional approaches to social science research, and discuss a complementary approach that is gaining popularity-agent-based computational modeling-that may offer new opportunities to strengthen theories of crime and develop insights into phenomena of interest. Two literature reviews are completed. The aim of the first is to identify those articles published in JRCD that have been the most influential and to classify the theoretical perspectives taken. The second is intended to identify those studies that have used an agent-based model (ABM) to examine criminological theories and to identify which theories have been explored. Ecological theories of crime pattern formation have received the most attention from researchers using ABMs, but many other criminological theories are amenable to testing using such methods. Traditional methods of theory development and testing suffer from a number of potential issues that a more systematic use of ABMs-not without its own issues-may help to overcome. ABMs should become another method in the criminologists toolbox to aid theory testing and falsification.

  8. Wear Characterization of Carbon Nanotubes Reinforced Acetal Spur, Helical, Bevel and Worm Gears Using a TS Universal Test Rig

    Science.gov (United States)

    Yousef, Samy; Osman, T. A.; Abdalla, Abdelrahman H.; Zohdy, Gamal A.

    2015-12-01

    Although the applications of nanotechnologies are increasing, there remains a significant barrier between nanotechnology and machine element applications. This work aims to remove this barrier by blending carbon nanotubes (CNT) with common types of acetal polymer gears (spur, helical, bevel and worm). This was done by using adhesive oil (paraffin) during injection molding to synthesize a flange and short bars containing 0.02% CNT by weight. The flanges and short bars were machined using hobbing and milling machines to produce nanocomposite polymer gears. Some defects that surfaced in previous work, such as the appearance of bubbles and unmelted pellets during the injection process, were avoided to produce an excellent dispersion of CNT in the acetal. The wear resistances of the gears were measured by using a TS universal test rig using constant parameters for all of the gears that were fabricated. The tests were run at a speed of 1420 rpm and a torque of 4 Nm. The results showed that the wear resistances of the CNT/acetal gears were increased due to the addition of CNT, especially the helical, bevel and worm gears.

  9. Analysis of behaviour of transonic profiles with strong curvature: Test facilities, instrumentation, test results, theoretical interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Pittaluga, G.; Benvenuto, G. (Udine Univ. (Italy); L' Aquila Univ. (Italy))

    1988-06-01

    Relevant to experimental investigations on the performance of a transonic turbine blade cascade, this paper discusses recent developments regarding the following topics: the experimental equipment and relative instrumentation; the results of tests on turbine blade cascades; the conceptual methods specifically developed and aimed at the optimized design of steam turbines systems and turbine blades; the theoretical-numerical procedures developed and applied as supports for theoretical-experimental analyses and the redesign of blade profiles to increase efficiency.

  10. Can pin-on-disk testing be used to assess the wear performance of retrieved UHMWPE components for total joint arthroplasty?

    Science.gov (United States)

    Kurtz, Steven M; MacDonald, Daniel W; Kocagöz, Sevi; Tohfafarosh, Mariya; Baykal, Doruk

    2014-01-01

    The objective of this study was to assess the suitability of using multidirectional pin-on-disk (POD) testing to characterize wear behavior of retrieved ultrahigh molecular weight polyethylene (UHMWPE). The POD wear behavior of 25 UHMWPE components, retrieved after 10 years in vivo, was compared with 25 that were shelf aged for 10-15 years in their original packaging. Components were gamma sterilized (25-40 kGy) in an air or reduced oxygen (inert) package. 9 mm diameter pins were fabricated from each component and evaluated against CoCr disks using a super-CTPOD with 100 stations under physiologically relevant, multidirectional loading conditions. Bovine serum (20 g/L protein concentration) was used as lubricant. Volumetric wear rates were found to vary based on the aging environment, as well as sterilization environment. Volumetric wear rates were the lowest for the pins in the gamma inert, shelf aged cohort. These results support the utility of using modern, multidirectional POD testing with a physiologic lubricant as a novel method for evaluating wear properties of retrieved UHMWPE components. The data also supported the hypothesis that wear rates of gamma-inert liners were lower than gamma-air liners for both retrieved and shelf aging conditions. However, this difference was not statistically significant for the retrieved condition.

  11. Can Pin-on-Disk Testing Be Used to Assess the Wear Performance of Retrieved UHMWPE Components for Total Joint Arthroplasty?

    Directory of Open Access Journals (Sweden)

    Steven M. Kurtz

    2014-01-01

    Full Text Available The objective of this study was to assess the suitability of using multidirectional pin-on-disk (POD testing to characterize wear behavior of retrieved ultrahigh molecular weight polyethylene (UHMWPE. The POD wear behavior of 25 UHMWPE components, retrieved after 10 years in vivo, was compared with 25 that were shelf aged for 10–15 years in their original packaging. Components were gamma sterilized (25–40 kGy in an air or reduced oxygen (inert package. 9 mm diameter pins were fabricated from each component and evaluated against CoCr disks using a super-CTPOD with 100 stations under physiologically relevant, multidirectional loading conditions. Bovine serum (20 g/L protein concentration was used as lubricant. Volumetric wear rates were found to vary based on the aging environment, as well as sterilization environment. Volumetric wear rates were the lowest for the pins in the gamma inert, shelf aged cohort. These results support the utility of using modern, multidirectional POD testing with a physiologic lubricant as a novel method for evaluating wear properties of retrieved UHMWPE components. The data also supported the hypothesis that wear rates of gamma-inert liners were lower than gamma-air liners for both retrieved and shelf aging conditions. However, this difference was not statistically significant for the retrieved condition.

  12. Assessment of wear facets produced by the ACTA wear machine

    DEFF Research Database (Denmark)

    Benetti, Ana R; Larsen, Liselotte; Dowling, Adam H

    2016-01-01

    OBJECTIVE: To investigate the use of a three-dimensional (3D) digital scanning method in determining the accuracy of the wear performance parameters of resin-based composites (RBCs) determined using a two-dimensional (2D) analogue methodology following in-vitro testing in an Academisch Centrum...... an assessment of the potential of the experimental RBC formulations for clinical usage. CONCLUSION: The 3D technique allowed for the assessment of mean maximum wear depth and mean total volumetric wear which enables tribological analyses of the wear facet and therefore the wear mechanisms operative. Employing...... profilers is useful when screening potential new RBC formulations for the restoration of posterior dentition....

  13. Experimental and numerical study on casing wear in highly deviated drilling for oil and gas

    Directory of Open Access Journals (Sweden)

    Hao Yu

    2016-06-01

    Full Text Available Aimed at studying the casing wear in the highly deviated well drilling, the experimental study on the casing wear was carried out in the first place. According to the test data and the linear wear model based on the energy dissipation proposed by White and Dawson, the tool joint–casing wear coefficient was obtained. The finite element model for casing wear mechanism research was established using ABAQUS. The nodal movement of the contact surface was employed to simulate the evolution of the wear depth, exploiting the Umeshmotion user subroutine. In addition, the time-dependent geometry of the contact surfaces between the tool joint and casing was being updated continuously. Consequently, the contact area and contact pressure were changed continuously during the casing wear process, which gives a more realistic simulation. Based on the shapes of worn casing, the numerical simulation research was carried out to determine the remaining collapse strength. Then the change curve of the maximum casing wear depth with time was obtained. Besides, the relationship between the maximum wear depth and remaining collapse strength was established to predict the maximum wear depth and the remaining strength of the casing after a period of accumulative wear, providing a theoretical basis for the safety assessment of worn casing.

  14. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S

    1981-01-01

    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  15. Theoretical and testing performance of an innovative indirect evaporative chiller

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yi; Xie, Xiaoyun [Department of Building Science and Technology, Tsinghua University, Beijing (China)

    2010-12-15

    An indirect evaporative chiller is a device used to produce chilled water at a temperature between the wet bulb temperature and dew point of the outdoor air, which can be used in building HVAC systems. This article presents a theoretical analysis and practical performance of an innovative indirect evaporative chiller. First, the process of the indirect evaporative chiller is introduced; then, the matching characteristics of the process are presented and analyzed. It can be shown that the process that produces cold water by using dry air is a nearly-reversible process, so the ideal produced chilled water temperature of the indirect evaporative chiller can be set close to the dew point temperature of the chiller's inlet air. After the indirect evaporative chiller was designed, simulations were done to analyze the output water temperature, the cooling efficiency relative to the inlet dew point temperature, and the COP that the chiller can performance. The first installation of the indirect evaporative chiller of this kind has been run for 5 years in a building in the city of Shihezi. The tested output water temperature of the chiller is around 14-20 C, which is just in between of the outdoor wet bulb temperature and dew point. The tested COP{sub r,s} of the developed indirect evaporative chiller reaches 9.1. Compared with ordinary air conditioning systems, the indirect evaporative chiller can save more than 40% in energy consumption due to the fact that the only energy consumed is from pumps and fans. An added bonus is that the indirect evaporative chiller uses no CFCs that pollute to the aerosphere. The tested internal parameters, such as the water-air flow rate ratio and heat transfer area for each heat transfer process inside the chiller, were analyzed and compared with designed values. The tested indoor air conditions, with a room temperature of 23-27 C and relative humidity of 50-70%, proved that the developed practical indirect evaporative chiller

  16. Targeted computational probabilistic corroboration of experimental knee wear simulator: the importance of accounting for variability.

    Science.gov (United States)

    Strickland, M A; Dressler, M R; Render, T; Browne, M; Taylor, M

    2011-04-01

    Experimental testing is widely used to predict wear of total knee replacement (TKR) devices. Computational models cannot replace this essential in vitro testing, but they do have complementary strengths and capabilities, which make in silico models a valuable support tool for experimental wear investigations. For effective exploitation, these two separate domains should be closely corroborated together; this requires extensive data-sharing and cross-checking at every stage of simulation and testing. However, isolated deterministic corroborations provide only a partial perspective; in vitro testing is inherently variable, and relatively small changes in the environmental and kinematic conditions at the articulating interface can account for considerable variation in the reported wear rates. Understanding these variations will be key to managing uncertainty in the tests, resulting in a 'cleaner' investigation environment for further refining current theories of wear. This study demonstrates the value of probabilistic in silico methods by describing a specific, targeted corroboration of the AMTI knee wear simulator, using rigid body dynamics software models. A deterministic model of the simulator under displacement-control was created for investigation. Firstly, a large sample of experimental data (N>100) was collated, and a probabilistic computational study (N>1000 trials) was used to compare the kinetic performance envelopes for in vitro and in silico models, to more fully corroborate the mechanical model. Secondly, corresponding theoretical wear-rate predictions were compared to the experimentally reported wear data, to assess the robustness of current wear theories to uncertainty (as distinct from the mechanical variability). The results reveal a good corroboration for the physical mechanics of the wear test rig; however they demonstrate that the distributions for wear are not currently well-predicted. The probabilistic domain is found to be far more sensitive at

  17. DESIGN, BUILDING AND VALIDATION OF A BALL-CRATERING WEAR TEST EQUIPMENT BY FREE-BALL TO MEASURE THE COEFFICIENT OF FRICTION

    Directory of Open Access Journals (Sweden)

    Ronaldo Câmara Cozza

    2014-06-01

    Full Text Available The purpose of this work is to present a ball-cratering equipment configuration to measure the coefficient of friction. Two load cells were used to measure, in real time, the “normal” and “tangential” forces during the experiments to calculate the coefficient of friction. Micro-abrasive wear tests were conducted on an AISI H10 tool steel specimen, with a ball of AISI 52100 steel and an abrasive slurry, prepared with SiC and distilled water; different values of normal force and sliding distance were defined for the wear experiments to investigate and validate the constructed machine. The results showed that due to test conditions, it was observed the occurrence of rolling abrasion. The equipment showed excellent functionality and reproducibility, in terms of formation of the wear craters and measurement of the coefficient of friction.

  18. Eye Wear

    Science.gov (United States)

    Eye wear protects or corrects your vision. Examples are Sunglasses Safety goggles Glasses (also called eyeglasses) Contact ... jobs and some sports carry a risk of eye injury. Thousands of children and adults get eye ...

  19. Wear resistance properties of austempered ductile iron

    Science.gov (United States)

    Lerner, Y. S.; Kingsbury, G. R.

    1998-02-01

    A detailed review of wear resistance properties of austempered ductile iron (ADI) was undertaken to examine the potential applications of this material for wear parts, as an alternative to steels, alloyed and white irons, bronzes, and other competitive materials. Two modes of wear were studied: adhesive (frictional) dry sliding and abrasive wear. In the rotating dry sliding tests, wear behavior of the base material (a stationary block) was considered in relationship to countersurface (steel shaft) wear. In this wear mode, the wear rate of ADI was only one-fourth that of pearlitic ductile iron (DI) grade 100-70-03; the wear rates of aluminum bronze and leaded-tin bronze, respectively, were 3.7 and 3.3 times greater than that of ADI. Only quenched DI with a fully martensitic matrix slightly outperformed ADI. No significant difference was observed in the wear of steel shafts running against ADI and quenched DI. The excellent wear performance of ADI and its countersurface, combined with their relatively low friction coefficient, indicate potential for dry sliding wear applications. In the abrasive wear mode, the wear rate of ADI was comparable to that of alloyed hardened AISI 4340 steel, and approximately one-half that of hardened medium-carbon AISI 1050 steel and of white and alloyed cast irons. The excellent wear resistance of ADI may be attributed to the strain-affected transformation of high-carbon austenite to martensite that takes place in the surface layer during the wear tests.

  20. Measurement of the Resistance of Treated Metal Foils to Scrubbing Abrasion Using a Modified Reciprocating Wear Test

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Sikka, Vinod K [ORNL

    2007-01-01

    A reciprocating wear test method has been developed to evaluate the resistance of metal foils to scrubbing abrasion. Development included the definition of a quantitative measure of the scrubbing resistance. In order to test the ability of the new method to differentiate between surface treatments, four versions of Type 316 stainless steel foils were tested: annealed (A-NT), cold-worked (C-NT), annealed plus a case-hardened (A-T), and cold-worked plus case-hardened (C-T). Measurements were made of their scrubbing resistance using commercial kitchen scrub pads as the counterface material. Results showed that the case-hardening process significantly increased the scrubbing resistance both under dry conditions and with cleaning solutions to lubricate the contact. While this linearly-reciprocating method does not simulate the circular, overlapping motion commonly occurring in service, results indicated that the new test method could sufficiently discriminate levels of two-body abrasion behavior, and therefore can be useful for studying the effects of surface treatments on abrasion resistance.

  1. Wear-testing of a temporomandibular joint prosthesis : UHMWPE and PTFE against a metal ball, in water and in serum

    NARCIS (Netherlands)

    Van Loon, JP; Verkerke, GJ; de Bont, LGM; Liem, RSB

    1999-01-01

    For a temporomandibular joint prosthesis, an estimation of the wear rate was needed, prior to patient application. Therefore, we determined the in vitro wear rate of the ball-socket articulation of this prosthesis, consisting of a metal head and an ultra-high molecular weight polyethylene (UHMWPE) c

  2. Wear performance of neat and vitamin E blended highly cross-linked PE under severe conditions: The combined effect of accelerated ageing and third body particles during wear test.

    Science.gov (United States)

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-12-01

    The objective of this study is to evaluate the effects of third-body particles on the in vitro wear behaviour of three different sets of polyethylene acetabular cups after prolonged testing in a hip simulator and accelerated ageing. Vitamin E-blended, cross-linked polyethylene (XLPE_VE), cross-linked polyethylene (XLPE) and conventional polyethylene (STD_PE) acetabular cups were simulator tested for two million cycles under severe conditions (i.e. by adding third-body particles to the bovine calf serum lubricant). Micro-Fourier Transform Infrared and micro-Raman spectroscopic analyses, differential scanning calorimetry, and crosslink density measurements were used to characterize the samples at a molecular level. The STD_PE cups had twice mass loss than the XLPE_VE components and four times than the XLPE samples; statistically significant differences were found between the mass losses of the three sets of cups. The observed wear trend was justified on the basis of the differences in cross-link density among the samples (XLPE>XLPE_VE>STD_PE). FTIR crystallinity profiles, bulk DSC crystallinity and surface micro-Raman crystallinity seemed to have a similar behaviour upon testing: all of them (as well as the all-trans and ortho-trans contents) revealed the most significant changes in XLPE and XLPE_VE samples. The more severe third-body wear testing conditions determined more noticeable changes in all spectroscopic markers with respect to previous tests. Unexpectedly, traces of bulk oxidation were found in both STD_PE (unirradiated) and XLPE (remelting-stabilized), which were expected to be stable to oxidation; on the contrary, XLPE_VE demonstrated a high oxidative stability in the present, highly demanding conditions.

  3. Micro-impact testing: A novel nano-/micro-tribological tool for assessing the performance of wear-resistant coatings under impact/fatigue conditions

    Institute of Scientific and Technical Information of China (English)

    BenD.Beake; StephenR.Goodes; JamesF.Smith; AiyangZhang; JishengE.

    2001-01-01

    A novel repetitive contact technique, micro-impact testing, has been developed forcoating evaluation. Impact test results have proved a more consistent measure of coating per-formance under impact/fatigue conditions than traditional tribological methods such as scratch orpin-on-disk testing. The operating principles of the technique are described with some illustrativeresults on hard and soft coatings. The technique can provide information on impact wear resis-tance, susceptibility to brittle fracture, and strength of interfacial adhesion to substrate.

  4. Surface and Wear Analysis of Zinc Phosphate Coated Engine Oil Ring and Cylinder Liner Tested with Commercial Lubricant

    Directory of Open Access Journals (Sweden)

    Doğuş Özkan

    2014-09-01

    Full Text Available The objective of this study was to evaluate the tribological performance through investigating protective additive layer and friction coefficient and implementing the quantitative wear measurements on the rubbed surface of the sliding pairs. The specimens of oil ring were rubbed against cast iron engine cylinder liner under boundary lubrication conditions. The ring and liner surfaces were examined by optical, scanning electron microscope and atomic force microscopy. The elemental analysis of surfaces was performed by using energy dispersive X-ray spectroscopy. Surface observations showed that coating was removed from the ring surface. Higher levels of Ca, Zn, P, and S elemental ratios (0.93%, 0.45%, 1.55%, and 1.60% as atomic percent were detected on the cylinder liner surface. Wear width, length, and depth measurements were performed by optical and atomic force microscopies on the ring and cylinder liner surface. The results showed that wear widths for oil ring were 1.59 μm and 1.65 μm; wear widths for cylinder liner were 3.20 μm and 3.18 μm; wear depths for oil ring were 100 nm; and wear depths for cylinder liner were 482 nm. Wear data were taken mostly from the additive layer points detected by SEM and X-ray measurements.

  5. Development of wear-resistant ceramic coatings for diesel engine components. Volume 1, Coating development and tribological testing: Final report: DOE/ORNL Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, M.G.S. [Cummins Engine Co., Inc., Columbus, IN (United States)

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ``ring`` samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased ``soot sensitivity`` is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  6. Development of a synovial fluid analogue with bio-relevant rheology for wear testing of orthopaedic implants.

    Science.gov (United States)

    Smith, Alan M; Fleming, Leigh; Wudebwe, Uchena; Bowen, James; Grover, Liam M

    2014-04-01

    The rheological properties of synovial fluid (SF) are crucial to the performance of joint prostheses. During the development of joint prostheses, wear tests are performed, which simulate joint movements in diluted solutions (usually between 25 and 33% v/v) of bovine serum which has very different rheological properties compared with native SF, where rheology is maintained by hyaluronan. Consequently, there is a need to develop a more suitable artificial SF. In this study, we used rheological techniques to understand SF flow properties which provided an insight into the mechanical behaviour required of a practical SF analogue. Steady-shear viscosity measurements were performed to reveal changes as a function of shear rate. To analyse the viscoelastic properties small deformation oscillatory measurements of storage modulus (G') loss modulus (G″) and complex viscosity (η(⁎)) were made. The rheological properties of the SF where compared with those of the polysaccharides sodium alginate, gellan gum and mixtures of both polymers. Initial results revealed classic shear thinning behaviour for the SF with a small Newtonian plateau at low shear rates with a gradual reduction in viscosity with increasing shear rate. Viscoelasticity measurements also showed that at low frequencies of oscillation there was a viscous response with G″ greater than G' and at higher frequencies there was an elastic response. Rheological properties were found to be similar to that of a 50:50 mix of 2% w/v high molecular weight alginate and 0.75% w/v gellan gum. Importantly, the lubricating behaviour of the serum differed significantly from the biopolymer blend over a full range of sliding velocities. The biopolymer blend was shown to lubricate the opposing surfaces more effectively. This difference was attributed to the more rapid alignment of the polysaccharide during shear when compared with the bovine albumin (the most abundant protein in serum), which typically exhibits a globular

  7. Erosive Wear and Wear Mechanism of in situ TiCp/Fe Composites

    Institute of Scientific and Technical Information of China (English)

    Zhaojing LIU; Zhiliang NING; Fengzhen LI; Xiurong YAO; Shanzhi REN

    2005-01-01

    The base structure of in situ TiCP/Fe composites fabricated under industrial condition was changed by different heat treatments. Erosive wear tests were carried out and the results were compared with that of wear-resistant white cast iron. The results suggest that the wear resistance of the in situ TiCp/Fe composite is higher than that of wear-resistant white cast iron under the sand erosive wear condition. The wear mechanism of the wear-resistant white cast iron was a cycle process that base surface was worn and carbides were exposed, then carbides was broken and wear pits appeared. While the wear mechanism of in situ TiCp/Fe composite was a cycle process that base surface was worn and TiC grains were exposed and dropped. The wear resistance of in situ TiCp/Fe composite was lower than that of wear-resistant white cast iron under the slurry erosive wear condition. Under such circumstance,the material was not only undergone erosive wear but also electrochemistry erosion due to the contact with water in the medium. The wear behaviours can be a combination of two kinds of wear and the sand erosive wear is worse than slurry erosive wear.

  8. 轮轨材料匹配摩擦学试验研究%Study on Friction and Wear Matching Tests between Different Wheel-rail Materials

    Institute of Scientific and Technical Information of China (English)

    张向龙; 钟雯; 蒋文娟; 刘启跃

    2011-01-01

    根据赫兹接触理论,使用MMS-2A微机控制摩擦磨损试验机对3种含碳量不同的车轮材料分别与U71Mn热轧钢轨进行匹配试验,研究其磨损与接触疲劳性能并进行微观形貌分析.结果表明:车轮钢材料的耐磨性与硬度成正比;随着轮轨材料硬度比增大,磨损机制由黏粘着和疲劳磨损转变为磨粒磨损.%According to Hertz contact theory, matching tests between three kinds of wheel materials and U71 Mn were performed using a MMS-2A friction and wear testing machine.The wear and contact fatigue properties were studied and the micro-morphology was analyzed.The results show that the abrasion resistance of wheel steel is proportional to the hardness of the materials.As hardness ratio between wheel and rail increases, the abrasion mechanism transforms from adhesion and fatigue wear to abrasive wear.

  9. A New Design of the Universal Test Rig to Measure the Wear Characterizations of Polymer Acetal Gears (Spur, Helical, Bevel, and Worm

    Directory of Open Access Journals (Sweden)

    Samy Yousef

    2015-01-01

    Full Text Available This work aims to study the wear characterization of common types of acetal polymer gears (spur, helical, bevel, and worm using a new TS universal test rig, in order to obtain reliable results and as a reference when compared with acetal nanocomposite gears later. The TS universal test rig consists of three different units that are connected by a main driver shaft and a pair of constantly meshing metal spur gears, which transfer power to the bevel and worm test units. The first unit is used to test the bevel gears, the second unit is used to test the spur and helical gears, and the third unit is used to test the worm gears. The loading mechanism is similarly designed to block the brake mechanism. Hobbing and milling machines were used to machine an injection-moulded polymer flanges and produce the tested gears. All gear pairs, except the worm gear, have identical gear ratios. The experiments were performed at speed 1420 rpm and the torque was 4 Nm. The results showed that the wear rates (in the form of weight loss of spur gears were consistent with the previous results and the other gear types had larger wear rates.

  10. Comparison of sliding friction and wear behaviour of overhead conveyor steels tested under dry and lubrication conditions; Comportamiento frente al desgaste y friccion de aceros empleados en lineas de manutencion aerea ensayados con y sin lubricacion

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Regal, G.; Fernandez-Vicente, A.; Martinez, M. A.

    2005-07-01

    The sliding friction and wear behaviour of different steel qualities were investigated with and without lubrication conditions. Steel qualities tested are normally used in the overhead conveyor system of many industrial fields, like the automotive sector. Sliding wear tests have been conducted by means of a pin-on-disk machine. A 100Cr6 steel similar to that used within the overhead conveyor trolleys has been employed as a pin. Friction coefficient values obtained under lubrication conditions were three times smaller than those obtained without lubrication. The mechanism that controls wear behaviour under lubrication conditions is an abrasive one and the wear values obtained are almost worthless. On the other hand, mechanism controlling wear during non lubrication tests, was a combination of abrasion and adhesion. (Author) 20 refs.

  11. Tooth wear

    Directory of Open Access Journals (Sweden)

    Tušek Ivan

    2014-01-01

    Full Text Available Tooth wear is the loss of dental hard tissue that was not caused by decay and represents a common clinical problem of modern man. In the etiology of dental hard tissue lesions there are three dominant mechanisms that may act synergistically or separately:friction (friction, which is caused by abrasion of exogenous, or attrition of endogenous origin, chemical dissolution of dental hard tissues caused by erosion, occlusal stress created by compression and flexion and tension that leads to tooth abfraction and microfracture. Wear of tooth surfaces due to the presence of microscopic imperfections of tooth surfaces is clinically manifested as sanding veneers. Tribology, as an interdisciplinary study of the mechanisms of friction, wear and lubrication at the ultrastructural level, has defined a universal model according to which the etiopathogenesis of tooth wear is caused by the following factors: health and diseases of the digestive tract, oral hygiene, eating habits, poor oral habits, bruxism, temporomandibular disorders and iatrogenic factors. Attrition and dental erosion are much more common in children with special needs (Down syndrome. Erosion of teeth usually results from diseases of the digestive tract that lead to gastroesophageal reflux (GER of gastric juice (HCl. There are two basic approaches to the assessment of the degree of wear and dental erosion. Depending on the type of wear (erosion, attrition, abfraction, the amount of calcium that was realised during the erosive attack could be determined qualitatively and quantitatively, or changes in optical properties and hardness of enamel could be recorded, too. Abrasion of teeth (abrasio dentium is the loss of dental hard tissue caused by friction between the teeth and exogenous foreign substance. It is most commonly provoked by prosthetic dentures and bad habits, while its effect depends on the size of abrasive particles and their amount, abrasive particle hardness and hardness of tooth

  12. The chirally rotated Schroedinger functional. Theoretical expectations and perturbative tests

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Brida, Mattia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Vilaseca, Pol [Istituto Nazionale di Fisica Nucleare, Sezione di Roma (Italy)

    2016-03-15

    The chirally rotated Schroedinger functional (χSF) with massless Wilson-type fermions provides an alternative lattice regularization of the Schroedinger functional (SF), with different lattice symmetries and a common continuum limit expected from universality. The explicit breaking of flavour and parity symmetries needs to be repaired by tuning the bare fermion mass and the coefficient of a dimension 3 boundary counterterm. Once this is achieved one expects the mechanism of automatic O(a) improvement to be operational in the χSF, in contrast to the standard formulation of the SF. This is expected to significantly improve the attainable precision for step-scaling functions of some composite operators. Furthermore, the χSF offers new strategies to determine finite renormalization constants which are traditionally obtained from chiral Ward identities. In this paper we consider a complete set of fermion bilinear operators, define corresponding correlation functions and explain the relation to their standard SF counterparts. We discuss renormalization and O(a) improvement and then use this set-up to formulate the theoretical expectations which follow from universality. Expanding the correlation functions to one-loop order of perturbation theory we then perform a number of non-trivial checks. In the process we obtain the action counterterm coefficients to one-loop order and reproduce some known perturbative results for renormalization constants of fermion bilinears. By confirming the theoretical expectations, this perturbative study lends further support to the soundness of the χSF framework and prepares the ground for non-perturbative applications.

  13. Predictors of Career Commitment: A Test of Three Theoretical Models.

    Science.gov (United States)

    Arnold, John

    1990-01-01

    Three theories of commitment were tested by surveying 92 nursing students 3 times during their first year. The social exchange approach and unmet expectations about nursing careers influenced commitment during the latter eight months. The circumstances surrounding the decision to enter nurse training (behavioral approach) predicted commitment only…

  14. Impression Formation and Modifiability: Testing a Theoretical Model

    Science.gov (United States)

    Mrug, Sylvie; Hoza, Betsy

    2007-01-01

    This study proposed and tested a developmental model of impression formation based on observed behavior, prior expectancies, and additional incongruent information. Participants were 51 kindergartners, 53 second graders, and 104 college students who provided trait and liking judgments after watching a child actor engage in behaviors from three…

  15. Theoretical frameworks for testing relativistic gravity: A review

    Science.gov (United States)

    Thorne, K. S.; Will, C. M.; Ni, W.

    1971-01-01

    Metric theories of gravity are presented, including the definition of metric theory, evidence for its existence, and response of matter to gravity with test body trajectories, gravitational red shift, and stressed matter responses. Parametrized post-Newtonian framework and interpretations are reviewed. Gamma, beta and gamma, and varied other parameters were measured. Deflection of electromagnetic waves, radar time delay, geodetic gyroscope precession, perihelion shifts, and periodic effects in orbits are among various studies carried out for metric theory experimentation.

  16. A New Design of the Universal Test Rig to Measure the Wear Characterizations of Polymer Acetal Gears (Spur, Helical, Bevel, and Worm)

    OpenAIRE

    Samy Yousef; Osman, T. A.; Khattab, M.; Bahr, Ahmed A.; Ahmed M. Youssef

    2015-01-01

    This work aims to study the wear characterization of common types of acetal polymer gears (spur, helical, bevel, and worm) using a new TS universal test rig, in order to obtain reliable results and as a reference when compared with acetal nanocomposite gears later. The TS universal test rig consists of three different units that are connected by a main driver shaft and a pair of constantly meshing metal spur gears, which transfer power to the bevel and worm test units. The first unit is used ...

  17. Rub tolerance evaluation of two sintered NiCrAl gas path seal materials. [wear tests of gas turbine engine seals

    Science.gov (United States)

    Bill, R. C.

    1978-01-01

    Two strength level variations of sintered NiCrAl (about 40 percent dense), candidate high pressure turbine seal materials, were subject to rub tolerance testing against AM 355 steel blade tips. The high strength material (17 N/sq mm tensile strength) showed frictional and radial loads that were 20 to 50 percent higher than those measured for the low strength material (15.5 N/ sq mm tensile strength). Measured wear to the AM 355 blade tips was not significantly different for the two sintered NiCrAl seal materials. Wear of the sintered NiCrAl was characterized by material removal to a depth greater than the depth to which blade tips were driven into the seal, indicating self-erosion effects.

  18. Needs and challenges in precision wear measurement

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.

    1996-01-10

    Accurate, precise wear measurements are a key element in solving both current wear problems and in basic wear research. Applications range from assessing durability of micro-scale components to accurate screening of surface treatments and thin solid films. Need to distinguish small differences in wear tate presents formidable problems to those who are developing new materials and surface treatments. Methods for measuring wear in ASTM standard test methods are discussed. Errors in using alterate methods of wear measurement on the same test specimen are also described. Human judgemental factors are a concern in common methods for wear measurement, and an experiment involving measurement of a wear scar by ten different people is described. Precision in wear measurement is limited both by the capabilities of the measuring instruments and by the nonuniformity of the wear process. A method of measuring wear using nano-scale indentations is discussed. Current and future prospects for incorporating advanced, higher-precision wear measurement methods into standards are considered.

  19. Prediction of Wear in Crosslinked Polyethylene Unicompartmental Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Jonathan Netter

    2015-05-01

    Full Text Available Wear-related complications remain a major issue after unicompartmental arthroplasty. We used a computational model to predict knee wear generated in vitro under diverse conditions. Inverse finite element analysis of 2 different total knee arthroplasty designs was used to determine wear factors of standard and highly crosslinked polyethylene by matching predicted wear rates to measured wear rates. The computed wear factor was used to predict wear in unicompartmental components. The articular surface design and kinematic conditions of the unicompartmental and tricompartmental designs were different. Predicted wear rate (1.77 mg/million cycles was very close to experimental wear rate (1.84 mg/million cycles after testing in an AMTI knee wear simulator. Finite element analysis can predict experimental wear and may reduce the cost and time of preclinical testing.

  20. Three Essays In and Tests of Theoretical Urban Economics

    Science.gov (United States)

    Zhao, Weihua

    This dissertation consists of three essays on urban economics. The three essays are related to urban spatial structure change, energy consumption, greenhouse gas emissions, and housing redevelopment. Chapter 1 answers the question: Does the classic Standard Urban Model still describe the growth of cities? Chapter 2 derives the implications of telework on urban spatial structure, energy consumption, and greenhouse gas emissions. Chapter 3 investigates the long run effects of minimum lot size zoning on neighborhood redevelopment. Chapter 1 identifies a new implication of the classic Standard Urban Model, the "unitary elasticity property (UEP)", which is the sum of the elasticity of central density and the elasticity of land area with respect to population change is approximately equal to unity. When this implication of the SUM is tested, it fits US cities fairly well. Further analysis demonstrates that topographic barriers and age of housing stock are the key factors explaining deviation from the UEP. Chapter 2 develops a numerical urban simulation model with households that are able to telework to investigate the urban form, congestion, energy consumption and greenhouse gas emission implications of telework. Simulation results suggest that by reducing transportation costs, telework causes sprawl, with associated longer commutes and consumption of larger homes, both of which increase energy consumption. Overall effects depend on who captures the gains from telework (workers versus firms), urban land use regulation such as height limits or greenbelts, and the fraction of workers participating in telework. The net effects of telework on energy use and GHG emissions are generally negligible. Chapter 3 applies dynamic programming to investigate the long run effects of minimum lot size zoning on neighborhood redevelopment. With numerical simulation, comparative dynamic results show that minimum lot size zoning can delay initial land conversion and slow down demolition and

  1. Developing and Testing a Theoretical Framework for Computer-Mediated Transparency of Local Governments

    NARCIS (Netherlands)

    Grimmelikhuijsen, S.G.|info:eu-repo/dai/nl/313875405; Welch, E.W.

    2012-01-01

    This article contributes to the emerging literature on transparency by developing and empirically testing a theoretical framework that explains the determinants of local government Web site transparency. It aims to answer the following central question: What institutional factors determine the

  2. Theoretical Analyses and Experimental Investigations of Selective Carbothermal Reactions of Vanadium-Bearing Titanomagnetite Concentrates for Preparation of Iron-Based Wear-Resistant Material

    Science.gov (United States)

    Zhang, Guangming; Feng, Keqin; Yue, Huifang

    2016-09-01

    Based on FACTSage® software, this paper focuses on the thermodynamic calculations of selective carbothermal reactions of vanadium-bearing titanomagnetite concentrates for preparing iron-based wear-resistant material directly from vanadium-bearing titanomagnetite concentrates. The calculations show that it was most likely to generate metallic iron, titanium carbide and vanadium carbide among all possible carbothermal reactions of vanadium-bearing titanomagnetite concentrates in a vacuum of 10 Pa. The equilibrium composition calculations indicate that Fe3O4 can be reduced to metallic iron by carbon above 400°C, FeTiO3 can be converted into TiC by carbon above 800°C and V2O5 can be converted into VC by carbon above 600°C in a vacuum of 10 Pa. The investigations demonstrated that the percentage of ferrous oxides reduced to metallic iron was about 96%, the conversion percentage of FeTiO3 into TiC was about 75% and the conversion percentage of V2O5 into VC was about 94% after the selective carbothermal reactions of vanadium-bearing titanomagnetite concentrates at 1300°C for 3 h in a vacuum of 10 Pa.

  3. The wear resistance of cobalt free hard surfaced alloys in nuclear power plant conditions. Test results; Kobolttivapaiden pinnoitteiden kulumiskestaevyys ydinvoimalaitosolosuhteissa. Koetulokset

    Energy Technology Data Exchange (ETDEWEB)

    Kosonen, A.M. [VTT Manufacturing Technology, Espoo (Finland)

    1996-09-01

    Use of cobalt containing materials is restricted in primary circuits of nuclear power plants since the cobalt is activated in the reactor core. The resulting isotope leads to increase of activity in the primary circuit. This report presents the results of the wear resistance tests of four hard facing alloys. The test method was a pin on plate test. The pins were coated with hard-facing alloys and the plates were manufactured from stainless steel. The tested materials were nickel based Stellite 6, wolfram carbide (WC), METCO 442 and cobalt based Stellite 6. Tests were carried out in simulated BWR-environment. According to the results of these tests it is not possible to get any differences between any hard facing alloys if the hardness of the plate material is much lower than that of the hard facing alloys examined. (orig.) (4 refs.).

  4. TIRE WEAR MODELING

    Directory of Open Access Journals (Sweden)

    Rosen IVANOV

    2016-09-01

    Full Text Available On the basis of a known relationship, an enhanced model for specific tire wear per kilometer has been developed. It is appropriate for practical use - for evaluation of the influence of different factors. Two types of experiments have been carried out with a testing device - one without sideslip, but with a known longitudinal slip, and the other one with the same longitudinal slip but also with a known sideslip. As a result, the coefficients of the proportion of the developed model have been evaluated. After the model validation, an analytical investigation concerning the influence of tire pressure, sideslip and longitudinal slip on the tire wear has been carried out. The results are presented graphically.

  5. The Role of the Family in Genetic Testing: Theoretical Perspectives, Current Knowledge, and Future Directions

    Science.gov (United States)

    Peterson, Susan K.

    2005-01-01

    This article addresses conceptual challenges and theoretical approaches for examining the role of the family in responding and adapting to genetic testing for inherited conditions. Using a family systems perspective, family-based constructs that are relevant to genetic testing may be organized into three domains: family communication, organization…

  6. Theoretical Explanation and Improvement to the Flare Model of Lithography Based on the Kirk Test

    Institute of Scientific and Technical Information of China (English)

    CHEN De-Liang; CAO Yi-Ping; HUANG Zhen-Fen

    2011-01-01

    @@ The Kirk test has good precision for measuring stray light in optical lithography and is the usual method of measuring stray light.However, Kirk did not provide a theoretical explanation to his simulation model.We attempt to give Kirk's model a kind of theoretical explanation and a little improvement based on the model of point spread function of scattering and the theory of statistical optics.It is indicated by simulation that the improved model fits Kirk's measurement data better.

  7. Wear behaviour of Al 261

    Directory of Open Access Journals (Sweden)

    N. Mathan Kumar

    2016-03-01

    Full Text Available Al 2618 matrix material was mixed with the Silicon Nitride (Si3N4, Aluminium Nitride (AlN and Zirconium Boride (ZrB2 reinforced particles. AMC was synthesized successfully by the stir casting method with the various X-wt.% of reinforcements (X = 0,2,4,6,8. Tribological behaviour was studied in this composite with various temperature conditions. The working conditions were Temperature (°C, Load (N, Velocity (m/s and Sliding Distances (m. Before wear testing the mechanical behaviour has been analysed. EDAX was confirmed by the matrix material composition. The Al 2618 alloy and the reinforcement mixers were confirmed by the X-ray Diffraction analysis. Wear rate (mm3/m, Wear resistance (m/mm3, Specific Wear rate (m/Nm and Co-efficient of friction (μ were analysed with various conditions. The worn surfaces were analysed before and after wear testing by Scanning Electron Microscope (SEM. Influence of process parameters and Percentage of contribution were analysed by Taguchi and Analysis of Variance (ANOVA methods. Genetic Algorithm (GA was adopted for optimizing the best and mean of the wear rate and to identify the exact influence of input parameters.

  8. Development of Stellite alloy composites with sintering/HIPing technique for wear-resistant applications

    Energy Technology Data Exchange (ETDEWEB)

    Opris, C.D. [Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Liu, R. [Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada)]. E-mail: rliu@mae.carleton.ca; Yao, M.X. [Deloro Stellite Inc., Belleville, Ont., K8N 5C4 (Canada); Wu, X.J. [Institute for Aerospace Research, National Research Council of Canada, Ottawa, Ont., K1A 0R6 (Canada)

    2007-07-01

    Cobalt-based superalloys, Stellite 694 and Stellite 712, composites were developed with the reinforcement of titanium-carbide particles for wear-resistant applications. The specimens were fabricated using the powder metallurgy technique, combined with hot isostatic pressing. Calorimetric effects of the alloy powders were investigated using the differential scanning calorimetry technique, which provided the theoretical basis of designing the sintering cycles. The phases formed in the microstructures were analyzed using the scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS) techniques. The wear test was conducted on a ball-on-disc tribometer. It was demonstrated that the wear resistance of the alloys had been increased significantly by the titanium-carbide reinforcement and the hot isostatic pressing process had enhanced the wear resistance of the materials.

  9. A game-theoretic approach to real-time system testing

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Li, Shuhao

    2008-01-01

    This paper presents a game-theoretic approach to the testing of uncontrollable real-time systems. By modelling the systems with Timed I/O Game Automata and specifying the test purposes as Timed CTL formulas, we employ a recently developed timed game solver UPPAAL-TIGA to synthesize winning...... strategies, and then use these strategies to conduct black-box conformance testing of the systems. The testing process is proved to be sound and complete with respect to the given test purposes. Case study and preliminary experimental results indicate that this is a viable approach to uncontrollable timed...... system testing....

  10. STUDY ON THE WEAR CHARACTERISTICS OF Ni-P BRUSH-PLATING COATING

    Institute of Scientific and Technical Information of China (English)

    WuWenyue; HuangJinruo; QuJinxin; ShaoHesheng

    1996-01-01

    This paper studied the wear characteristics as well as the wear mechanismof the Ni-P alloy brush-plating coating by means of sliding-wear tests, SEM and X-Ray analyses. The results show that Ni-Palloy coating has excellent wear-ability inhigh temperature, and the wear mechanism of the coating is that both the adhesivewear and abrasive wear exist in a boundary lubrication condition. The wear model wasbuilt up.

  11. A Review of Sub-Scale Test Methods to Evaluate the Friction and Wear of Ring and Liner Materials for Spark- and Compression Ignition Engines

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.

    2002-01-22

    A review was conducted of past laboratory-scale test methods and to assess their validity for ranking materials and lubricants for use as piston and liner materials in compression-ignition (CI) and spark-ignition (SI) engines. Most of the previous work was aimed at simulating SI engine environments. This report begins with a discussion of the numerous factors that can affect the validity of an approach to simulating engine conditions in a laboratory. These include not only mechanical, chemical and thermal factors, but also human factors as regards how the vehicle is operated and maintained. The next section provides an annotated review of open literature publications that address the issues of laboratory simulation of engine components. A comparison of these studies indicates a lack of sufficient standardization in procedures to enable a systematic comparison of one publication to another. There were just a few studies that compared several laboratory test methods to engine test results, and these indicated that some test methods correlate, at least qualitatively, better than others. The last section provides a series of recommendations for improving the accuracy and validity of laboratory-scale simulations of engine behavior. It became clear that much of the engine wear damage occurs during start-up when the engine is cold, and this calls into the question the usefulness of test methods that attempt to simulate steady-state running conditions. It is recommended that a new standard test method, perhaps developed with the help of the ASTM wear and erosion committee, be developed. It would use cold start-up conditions in the presence of degraded oil, or simulated degraded oil.

  12. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 3, Traditional approaches to wear prevention

    Energy Technology Data Exchange (ETDEWEB)

    Schwalb, J.A.

    1991-06-01

    Contamination of the lube-oil with hard abrasive particles leads to a three-body abrasive wear mechanism that highly accelerates piston ring/cylinder liner wear in coal-fueled diesel engines. One approach to reducing that wear is to modify the size and orientation of surface asperities on the cylinder to enhance the formation of a hydrodynamic film, and to provide avenues of escape for particles that would otherwise be trapped in the wear zone. Another approach is to introduce additives into the contaminated lube-oil that further enhance hydrodynamic film formation, form chemical films on the wearing surfaces, or form films on the contaminant particles. This work focuses on defining the effects of cylinder liner surface finish, various configurations of slots in the cylinder liner surface, and various additives in the contaminated lube-oil on the wear process. Wear tests were initiated in a bench apparatus using coal-ash contaminated lube-oil to test the various wear configurations. The results of these tests indicate that the formation of a hydrodynamic film between the ring and cylinder specimens is enhanced by increasing surface roughness, and by orienting the surface asperities normal to the direction of ring travel but modifications to the cylinder liner surface did not greatly reduce the wear rate. Additives to the lubricant seemed to have a much more significant effect on wear, with a dispersant additive highly accelerating the wear, while a detergent additive was able to reduce the wear almost to the rate achieved where there was no contaminant.

  13. Modeling wear of cast Ti alloys.

    Science.gov (United States)

    Chan, Kwai S; Koike, Marie; Okabe, Toru

    2007-05-01

    The wear behavior of Ti-based alloys was analyzed by considering the elastic-plastic fracture of individual alloys in response to the relevant contact stress field. Using the contact stresses as the process driving force, wear was computed as the wear rate or volume loss as a function of hardness and tensile ductility for Ti-based cast alloys containing an alpha, alpha+beta or beta microstructure with or without the intermetallic precipitates. Model predictions indicated that wear of Ti alloys increases with increasing hardness but with decreasing fracture toughness or tensile ductility. The theoretical results are compared with experimental data to elucidate the roles of microstructure in wear and contrasted against those in grindability.

  14. NEXT Long-Duration Test Plume and Wear Characteristics after 16,550 h of Operation and 337 kg of Xenon Processed

    Science.gov (United States)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2009-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art. The NEXT ion propulsion system provides improved mission capabilities for future NASA science missions to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. As part of a comprehensive thruster service life assessment utilizing both testing and analyses, a Long-Duration Test (LDT) was initiated to validate and qualify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the mission-derived throughput requirement of 300 kg. This wear test is being conducted with a modified, flight-representative NEXT engineering model ion thruster, designated EM3. As of June 25, 2008, the thruster has accumulated 16,550 h of operation: the first 13,042 h at the thruster full-input-power of 6.9 kW with 3.52 A beam current and 1800 V beam power supply voltage. Operation since 13,042 h, i.e., the most recent 3,508 h, has been at an input power of 4.7 kW with 3.52 A beam current and 1180 V beam power supply voltage. The thruster has processed 337 kg of xenon (Xe) surpassing the NSTAR propellant throughput demonstrated during the extended life testing of the Deep Space 1 flight spare. The NEXT LDT has demonstrated a total impulse of 13.3 106 N s; the highest total impulse ever demonstrated by an ion thruster. Thruster plume diagnostics and erosion measurements are obtained periodically over the entire NEXT throttle table with input power ranging 0.5 to 6.9 kW. Observed thruster component erosion rates are consistent with predictions and the thruster service life assessment. There have not been any observed anomalous erosion and all erosion estimates indicate a thruster throughput capability that exceeds 750 kg of Xe, an equivalent of 36,500 h of continuous operation at the full-power operating condition. This paper presents the erosion measurements and plume

  15. An adjustable parallel-plate capacitor instrument—Test of the theoretical capacitance formula

    Science.gov (United States)

    Wells, Beau; Baker, Emily; Farwell, Austin; Foster, Harrison; Gao, Xiaohan; Gruber, Benjamin; Jones, Erica; Vu, Dennis; Xu, Sonya; Ye, Jingbo

    2016-09-01

    We describe an adjustable parallel-plate capacitor apparatus designed for use in an undergraduate laboratory that permits precise variation of plate separation distances and overlap area. Two experiments are performed with the device to test the ideal capacitor formula derived from Gauss's Law. After correcting for edge effects and minor plate tilt, the device yields capacitance values within 3% of theoretical values.

  16. Testing Theoretical Relationships: Factors Influencing Positive Health Practices (PHP) in Filipino College Students

    Science.gov (United States)

    Ayres, Cynthia; Mahat, Ganga; Atkins, Robert

    2013-01-01

    Objective: To examine variables influencing the positive health practices (PHP) of Filipino college students to gain a better understanding of health practices in this ethnic/racial group. Cross-sectional study tested theoretical relationships postulated among (a) PHP, (b) social support (SS), (c) optimism, and (d) acculturation. Participants: A…

  17. Developing and Testing a Theoretical Framework for Computer-Mediated Transparency of Local Governments

    NARCIS (Netherlands)

    Grimmelikhuijsen, S.G.; Welch, E.W.

    2012-01-01

    This article contributes to the emerging literature on transparency by developing and empirically testing a theoretical framework that explains the determinants of local government Web site transparency. It aims to answer the following central question: What institutional factors determine the diffe

  18. Testing Theoretical Relationships: Factors Influencing Positive Health Practices (PHP) in Filipino College Students

    Science.gov (United States)

    Ayres, Cynthia; Mahat, Ganga; Atkins, Robert

    2013-01-01

    Objective: To examine variables influencing the positive health practices (PHP) of Filipino college students to gain a better understanding of health practices in this ethnic/racial group. Cross-sectional study tested theoretical relationships postulated among (a) PHP, (b) social support (SS), (c) optimism, and (d) acculturation. Participants: A…

  19. Scanning-electron-microscope used in real-time study of friction and wear

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Small friction and wear apparatus built directly into scanning-electron-microscope provides both dynamic observation and microscopic view of wear process. Friction and wear tests conducted using this system have indicated that considerable information can readily be gained.

  20. Tribological Testing of Hemispherical Titanium Pin Lubricated by Novel Palm Oil: Evaluating Anti-Wear and Anti-Friction Properties

    Science.gov (United States)

    Sapawe, Norzahir; Samion, Syahrullail; Ibrahim, Mohd Izhan; Daud, Md Razak; Yahya, Azli; Hanafi, Muhammad Farhan

    2017-05-01

    In this study, the properties of hip implant material and lubricants were examined using a pin on disc apparatus, to compare the effect of metal-on-metal (MoM) contact with a bio-lubricant derived from palm oil. The behaviour of the lubricants was observed during the experiments, in which a hemispherical pin was loaded against a rotating disc with a groove. A titanium alloy was used to modify the hemispherical pin and disc. Before and after the experiments, the weight and surface roughness were analysed, to detect any degradation. The results were compared according to the different kinematic viscosities. The wear rates and level of friction with each lubricant were also examined. The lubricant with the highest viscosity had the lowest frictional value. Therefore, developing suitable lubricants has the potential to prolong the lifespan of prostheses or implants used in biomedical applications. The experiments collectively show that lubricants derived from palm oil could be used as efficient bio-lubricants in the future.

  1. Wear of hard materials by hard particles

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2003-10-01

    Hard materials, such as WC-Co, boron carbide, titanium diboride and composite carbide made up of Mo2C and WC, have been tested in abrasion and erosion conditions. These hard materials showed negligible wear in abrasion against SiC particles and erosion using Al2O3 particles. The WC-Co materials have the highest wear rate of these hard materials and a very different material removal mechanism. Wear mechanisms for these materials were different for each material with the overall wear rate controlled by binder composition and content and material grain size.

  2. A new methodology for predictive tool wear

    Science.gov (United States)

    Kim, Won-Sik

    An empirical approach to tool wear, which requires a series of machining tests for each combination of insert and work material, has been a standard practice for industries since early part of the twentieth century. With many varieties of inserts and work materials available for machining, the empirical approach is too experiment-intensive that the demand for the development of a model-based approach is increasing. With a model-based approach, the developed wear equation can be extended without additional machining experiments. The main idea is that the temperatures on the primary wear areas are increasing such that the physical properties of the tool material degrade substantially and consequently tool wear increases. Dissolution and abrasion are identified to be the main mechanisms for tool wear. Flank wear is predominantly a phenomenon of abrasion as evident by the presence of a scoring mark on the flank surface. Based on this statement, it is reasonable to expect that the flank-wear rate would increase with the content of hard inclusions. However, experimental flank wear results did not necessary correspond to the content of cementite phase present in the steels. Hence, other phenomena are believed to significantly affect wear behavior under certain conditions. When the cutting temperature in the flank interface is subjected to high enough temperatures, pearlitic structure austenizes. During the formation of a new austenitic phase, the existing carbon is dissolved into the ferrite matrix, which will reduce the abrasive action. To verify the austenitic transformation, turning tests were conducted with plain carbon steels. The machined surface areas are imaged using X-ray diffraction the Scanning Electron Microscope (SEM) and the Transmission Electron Microscope (TEM). On the other hand, crater wear occurs as a result of dissolution wear and abrasive wear. To verify the wear mechanisms of crater wear, various coating inserts as well as uncoated inserts were

  3. Wear mechanism and wear prevention in coal-fueled diesel engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  4. Wear mechanism and wear prevention in coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  5. Wearing gloves in the hospital

    Science.gov (United States)

    ... gloves; PPE - wearing gloves; Nosocomial infection - wearing gloves; Hospital acquired infection - wearing gloves ... Wearing gloves in the hospital helps prevent the spread of germs. This helps protect both patients and health care workers from infection.

  6. Wear Debris Analysis:Fundamental Principle of Wear-Graphy

    Institute of Scientific and Technical Information of China (English)

    陈铭; 王伟华; 殷勇辉; 王成焘

    2004-01-01

    A new wear-graphy technology was developed, which can simultaneously identify the shape and composition of wear debris, for both metals and non-metals.The fundamental principles of the wear-graphy system and its wear-gram system are discussed here.A method was developed to distribute wear debris on a slide uniformly to reduce overlapping of wear debris while smearing.The composition identification analyzes the wear debris using the scanning electron microscope (SEM) energy spectrum, infrared-thermal imaging and X-ray imaging technology.A wear debris analysis system based on database techniques is demonstrated, and a visible digitized wear-gram is acquired based on the information of wear debris with image collection and processing of the wear debris.The method gives the morphological characteristics of the wear debris, material composition identification of the wear debris, intelligent recognition of the wear debris, and storage and management of wear debris information.

  7. A Multidirectional Tribo-System: Wear of UHMWPE under Sliding, Rolling, and Rotation

    Science.gov (United States)

    Patten, Elias Wolfgang

    Total knee replacements (TKR) have become a successful surgical procedure for addressing end-stage osteoarthritis, with ultra-high molecular weight polyethylene and cobalt chrome alloy (UHMWPE/Co-Cr) serving as the bearing materials of choice for decades. However, more than 10% of TKRs fail and require revision surgery. The predominant challenge with UHMWPE is the particulate debris generated through wear-mediated processes; wear debris from the UHMWPE tibial bearing surface leading to loosening is still the main cause for post-fifth-year revisions. UHMWPE wear in hip arthroplasty has been linked to microstructural evolution at the surface from multidirectional sliding in the hip joint but little is known about how the microstructure responds to clinically relevant sliding conditions in the knee. This is likely because wear tests are typically performed under basic motion parameters with simplified geometry (pin-on-disk tests) while the knee has more complex kinematics: it is neither a ball-and-socket joint nor a simple hinge joint, but has 2D sliding, rolling/slip motion, and rotation. There is also disagreement over how to best quantify cross-shear and how to model how much wear it will cause. A custom multidirectional tribo-system was used to investigate the individual and combined effects of the different motions in TKR: 2D sliding, rolling, and rotation, for a total of eight separate kinematic conditions. The trends in wear rates and wear factors for these different motions were compared with many different definitions for magnitudes and ratios of cross-shear. Additionally, the wear surfaces were examined for wear mechanism and the microstructural changes in lamellae orientation for the different motions were analyzed. To mimic the tribological conditions of a condyle in a TKR, polished Co-Cr spheres were articulated against flat, smooth UHMWPE disks with physiologically relevant loading, speed, and lubrication conditions. The motion parameters were selected

  8. A View on Wear Mechanism of Metallic Card Clothing

    Institute of Scientific and Technical Information of China (English)

    WU Liang; WANG Wen-qiang; NI Huai-sheng

    2008-01-01

    The wear mechanism of metallic card clothing,used in textile industry, was analyzed. A fast wear test for metallic card clothing racks was developed, which was used as collecting the wear metal particles. The failure type of card clothing was analyzed by the mean of scanning electron microscopy (SEM) and ferro-spectrum technology. The results show that the main wear mechanism of metallic card clothing is low load and high repetition interval fatigue wear caused by friction force between fiber and metal wire teeth.The appropriate quenching microstmcture, which improves the wear resistance of the metallic card clothing rack is also discussed.

  9. Information-theoretic indices and an approximate significance test for testing the molecular clock hypothesis with genetic distances.

    Science.gov (United States)

    Xia, Xuhua

    2009-09-01

    Distance-based phylogenetic methods are widely used in biomedical research. However, distance-based dating of speciation events and the test of the molecular clock hypothesis are relatively underdeveloped. Here I develop an approximate test of the molecular clock hypothesis for distance-based trees, as well as information-theoretic indices that have been used frequently in model selection, for use with distance matrices. The results are in good agreement with the conventional sequence-based likelihood ratio test. Among the information-theoretic indices, AICu is the most consistent with the sequence-based likelihood ratio test. The confidence in model selection by the indices can be evaluated by bootstrapping. I illustrate the usage of the indices and the approximate significance test with both empirical and simulated sequences. The tests show that distance matrices from protein gel electrophoresis and from genome rearrangement events do not violate the molecular clock hypothesis, and that the evolution of the third codon position conforms to the molecular clock hypothesis better than the second codon position in vertebrate mitochondrial genes. I outlined evolutionary distances that are appropriate for phylogenetic reconstruction and dating.

  10. The Friction and Wear of Active Lubricants in theSleeve-ring Pair Lubricated by Presence of Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    ZHOUQiang; LIJian-ping; LONGHong-sheng

    2004-01-01

    The effect of magnetic fteld on the tribological process of sleeve-ring pair lubricated by WRL lu-bricants was investigated by means of a NG-x wear tester and a PS5013 video microscope. The friction coefficient (f) and the wear weight(W) in lubricating test with WRL lubricant were decreased with the increase in the ,mag-netic field vertical to the rubbing surface, and an almost zero wear lubricating situation was gained in a magneticfield of 1000A/m. The captured wear micro particles on the rubbing surface were observed in the testing process,and the theoretical analysis of magnetic effects was completed. It is indicated that the magnetic field has not only a capturing action of wear micro particles on the worn surface, but also a inducing polarization0 of magnetic anisotropy of lubricant molecular. The actions promote the absorption of WRL lubricant into the wear swrface aswell as wear micro-particles, so that a good tribological effect is obtained when both magnetic field and WRL pr-esent.

  11. Optimal allocation of testing effort during testing and debugging phases: a control theoretic approach

    Science.gov (United States)

    Kapur, P. K.; Pham, Hoang; Chanda, Udayan; Kumar, Vijay

    2013-09-01

    Allocation of efforts to a software development project during the testing phase is a multifaceted task for software managers. The challenges become stiffer when the nature of the development process is considered in the dynamic environment. Many software reliability growth models have been proposed in last decade to minimise the total testing-effort expenditures, but mostly under static assumption. The main purpose of this article is to investigate an optimal resource allocation plan to minimise the cost of software during the testing and operational phase under dynamic condition. An elaborate optimisation policy based on the optimal control theory is proposed and numerical examples are illustrated. This article also studies the optimal resource allocation problems for various conditions by examining the behaviour of the model parameters and also suggests policy for the optimal release time of the software. The experimental results greatly help us to identify the contribution of each selected parameter and its weight.

  12. Theoretical test of Jarzynski's equality for reversible volume-switching processes of an ideal gas system.

    Science.gov (United States)

    Sung, Jaeyoung

    2007-07-01

    We present an exact theoretical test of Jarzynski's equality (JE) for reversible volume-switching processes of an ideal gas system. The exact analysis shows that the prediction of JE for the free energy difference is the same as the work done on the gas system during the reversible process that is dependent on the shape of path of the reversible volume-switching process.

  13. Experiments to test theoretical models of the polarization of light by rough surfaces

    Science.gov (United States)

    Geake, J. E.; Geake, M.; Zellner, B. H.

    1984-01-01

    A number of attempts have been made to provide theoretical models of the physical processes involved in the polarization of light scattered by a rough surface, such as the regolith of an atmosphereless planet. Some laboratory experiments designed to test different aspects of these models are described. It is concluded that double Fresnel reflection is usually the dominant process in producing negative polarization, but that diffraction effects may play a significant part in double events involving small-scale surface features.

  14. Theoretical Rationale of Heating Block for Testing Bench of Aerospace Crafts Thermal Protection Elements

    Directory of Open Access Journals (Sweden)

    Petrova Anna A.

    2016-01-01

    Full Text Available The theoretical rationale for the structural layout of a testing bench with zirconium dioxide heating elements on the basis of modelling radiative-conductive heat transfer are presented. The numerical simulation of radiative-conductive heat transfer for the two-dimensional scaled model of the testing segment with the finite-element analysis software package Ansys 15.0 are performed. The simulation results showed that for the selected layout of the heaters the temperature non-uniformity along the length of the sample over time will not exceed 3 % even at a temperature of 2000 K.

  15. Theoretical Analysis of Effective Thermal Conductivity for the Chinese HTR-PM Heat Transfer Test Facility

    Directory of Open Access Journals (Sweden)

    Cheng Ren

    2017-01-01

    Full Text Available The Chinese high temperature gas-cooled reactor pebble bed module (HTR-PM demonstration project has attracted increasing attention. In order to support the project, a large-scale heat transfer test facility has been constructed for pebble bed effective thermal conductivity measurement over the whole temperature range (0~1600 °C. Based on different heat transfer mechanisms in the randomly packed pebble bed, three different types of effective thermal conductivity have been theoretically evaluated. A prediction of the total effective thermal conductivity of the pebble bed over the whole temperature range is provided for the optimization of the test facility and guidance of further experiments.

  16. Effect of differentiation of self on adolescent risk behavior: test of the theoretical model.

    Science.gov (United States)

    Knauth, Donna G; Skowron, Elizabeth A; Escobar, Melicia

    2006-01-01

    Innovative theoretical models are needed to explain the occurrence of high-risk sexual behaviors, alcohol and other-drug (AOD) use, and academic engagement among ethnically diverse, inner-city adolescents. The aim of this study was to test the credibility of a theoretical model based on the Bowen family systems theory to explain adolescent risk behavior. Specifically tested was the relationship between the predictor variables of differentiation of self, chronic anxiety, and social problem solving and the dependent variables of high-risk sexual behaviors, AOD use, and academic engagement. An ex post facto cross-sectional design was used to test the usefulness of the theoretical model. Data were collected from 161 racially/ethnically diverse, inner-city high school students, 14 to 19 years of age. Participants completed self-report written questionnaires, including the Differentiation of Self Inventory, State-Trait Anxiety Inventory, Social Problem Solving for Adolescents, Drug Involvement Scale for Adolescents, and the Sexual Behavior Questionnaire. Consistent with the model, higher levels of differentiation of self related to lower levels of chronic anxiety (p relationship between differentiation of self and social problem solving (p < .001), indicating that differentiation influences social problem solving through chronic anxiety. Higher levels of social problem solving were related to less drug use (p < .05), less high-risk sexual behaviors (p < .01), and an increase in academic engagement (p < .01). Findings support the theoretical model's credibility and provide evidence that differentiation of self is an important cognitive factor that enables adolescents to manage chronic anxiety and motivates them to use effective problem solving, resulting in less involvement in health-comprising behaviors and increased academic engagement.

  17. Analysis of bacterial culture test among three gloves wearing techniques%三种戴手套法的无菌效果分析

    Institute of Scientific and Technical Information of China (English)

    周晓虹; 谭丽; 何思勤; 谭吉林

    2015-01-01

    目的:对比分析三种戴手套法即传统戴手套法、半封闭式戴手套法、全封闭式(非接触式)戴手套法的无菌效果。方法选3名手术室护士,先按外科手消毒规范洗手,穿无菌衣,用碘伏擦手消毒,然后分别用三种方法各戴手套10双,戴手套时发现有向内卷边者或戴手套后发现手套外粘有碘伏者视之为污染,并用棉试子涂抹采样作细菌培养。结果传统戴手套法:60只手套中有21只污染,占35%;半封闭式戴手套法:60只手套中有1只污染,占1.67%;全封闭式戴手套法:60只手套中有1只污染占1.67%。半封闭式和全封闭式戴手套法与传统戴手套法相比,其差异均具有统计学意义(χ2=22.26,P<0.01)。细菌培养结果:在传统戴手套法中有1只手套取样发现细菌生长。结论半封闭式和全封闭式戴手套法,均有效避免了传统戴手套法易卷边污染无菌面的缺点,能有效减少感染机会;其中半封闭式戴手套法其戴手套方式类同传统戴手套法,操作更简单,更易推广。%Objective Contrastive analysis of bacterial culture test among three techniques of wearing opera‐tion gloves :traditional ,semi‐closed ,full‐closed (non‐contacted) .Methods Selected five operation room nurses ,hand‐washing with traditional surgical hands disinfection standard ,wearing asepsis clothing ,and disinfected with povidone‐iodine ,then wearing 10 pairs of operation gloves respectively by above three techniques ,contamination was deter‐mined while inward curling of glove edge or povidone‐iodine was found outside of the gloves ,take cotton‐swab smear sampling method for the germiculture .Results Traditional method :21 of 60 (35% ) gloves were found polluted ;Semi‐closed method :1 of 60 (1 .67% ) gloves was polluted ;full‐closed method :1 of 60 (1 .67% )gloves were pollu‐ted .The difference between the traditional and

  18. INFLUENCE TOOL WEAR IN MATERIAL FLOW

    Directory of Open Access Journals (Sweden)

    Vladimíra Schindlerová

    2017-03-01

    Full Text Available The cold bulk forming is a technology that is commonly used in many industrial enterprises. Even though nowadays high demands are posed on labour productivity, quality and own production costs, the findings from practice suggests that not sufficient attention is paid to the issue of tool manage-ment. Also, the theoretical backgrounds and knowledge in this area are not processed in a sufficiently detailed and comprehensive way. This paper submitted to conference deals with the issue of predic-tion of the wear surface of the forming tools and their subsequent renewal. The research at selected materials was focused on the course of their straining in contact of the blank with the tool in the process of cold bulk forming. The experiments were based on a simple performance of the conven-tional upsetting test. On the basis of analysis of the results was determined the mechanism of tool wear by abrasion and was evaluated its impact on the service life time of the tool and also the possi-bility of influencing the quality of final parts.

  19. Enamel wear opposing polished and aged zirconia.

    Science.gov (United States)

    Burgess, J O; Janyavula, S; Lawson, N C; Lucas, T J; Cakir, D

    2014-01-01

    Aging of dental zirconia roughens its surface through low temperature degradation. We hypothesized that age-related roughening of zirconia crowns may cause detrimental wear to the enamel of an opposing tooth. To test our hypothesis, we subjected artificially aged zirconia and reference specimens to simulated mastication in a wear device and measured the wear of an opposing enamel cusp. Additionally, the roughness of the pretest surfaces was measured. The zirconia specimens, artificially aged by autoclave, showed no significant increase in roughness compared to the nonaged specimens. Furthermore, no significant difference in material or opposing enamel wear between the aged and nonaged zirconia was seen. All zirconia specimens showed less material and opposing enamel wear than the enamel to enamel control or veneering porcelain specimens. Scanning electron micrographs showed relatively smooth surfaces of aged and nonaged zirconia following wear testing. The micrographs of the veneering ceramic showed sharp fractured edges and fragments of wear debris. Zirconia may be considered a wear-friendly material for restorations opposing enamel, even after simulated aging.

  20. Wear and microstructure in fine ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vijande-Diaz, R.; Belzunce, J.; Fernandez, E. (ETS de Ingenieros Industriales, Area de Ingeneria Mecanica, Gijon (Spain)); Rincon, A.; Perez, M.C. (Inst. de Fisica-Quimica ' Roco Solano' , CSIC, Madrid (Spain))

    1991-08-15

    This paper presents a study of the wear resistance of two ceramic, plasma sprayed coatings of Al{sub 2}O{sub 3} and Cr{sub 2}O{sub 3}. Tests were carried out using an LWF-1 standard machine, with lineal contact, under dry friction, abrasion and lubricant conditions. The purpose of the tests were to study how load and speed affect material wear. Results show the lower wear rate of the ceramic coating compared with the steel one, as well as how remarkably load affects wear. On the other hand, however, considering the speed ranges used, wear resistance does not depend significantly on speed. The paper proves that the wear process follows Czichos' law. At the same time, reformulation of Archard's equation allows us to quantify wear using easily measurable factors such as pressure, speed, hardness, and those factors typically featuring this type of coatings, e.g. porosity. Also, a micrographic study of the coatings carried out by means of a scanning electron microscope has evidenced three stages in the wear mechanism: (a) plastic deformation of particles; (b) crack nucleation and propagation; and (c) loosening of ceramic particles. (orig.).

  1. A Bayesian Decision-Theoretic Approach to Logically-Consistent Hypothesis Testing

    Directory of Open Access Journals (Sweden)

    Gustavo Miranda da Silva

    2015-09-01

    Full Text Available This work addresses an important issue regarding the performance of simultaneous test procedures: the construction of multiple tests that at the same time are optimal from a statistical perspective and that also yield logically-consistent results that are easy to communicate to practitioners of statistical methods. For instance, if hypothesis A implies hypothesis B, is it possible to create optimal testing procedures that reject A whenever they reject B? Unfortunately, several standard testing procedures fail in having such logical consistency. Although this has been deeply investigated under a frequentist perspective, the literature lacks analyses under a Bayesian paradigm. In this work, we contribute to the discussion by investigating three rational relationships under a Bayesian decision-theoretic standpoint: coherence, invertibility and union consonance. We characterize and illustrate through simple examples optimal Bayes tests that fulfill each of these requisites separately. We also explore how far one can go by putting these requirements together. We show that although fairly intuitive tests satisfy both coherence and invertibility, no Bayesian testing scheme meets the desiderata as a whole, strengthening the understanding that logical consistency cannot be combined with statistical optimality in general. Finally, we associate Bayesian hypothesis testing with Bayes point estimation procedures. We prove the performance of logically-consistent hypothesis testing by means of a Bayes point estimator to be optimal only under very restrictive conditions.

  2. New synthesizing feature parameter of wear particles image

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper outlines the application of wavelet analysis method to computering wear par-ticles image processing and introduces the concept of grain parameter for wear particle imagebased on statistical feature parameters. The feature of wear particles image can be obtained fromthe wavelet decomposition and the statistics analysis. Test results showed that grain parametercan be used as a synthesizing feature parameter for wear particle image.

  3. Wear mechanism and wear prevention in coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Schwalb, J.A.

    1991-06-01

    Contamination of the lube-oil with hard abrasive particles leads to a three-body abrasive wear mechanism that highly accelerates piston ring/cylinder liner wear in coal-fueled diesel engines. One approach to reducing that wear is to modify the size and orientation of surface asperities on the cylinder to enhance the formation of a hydrodynamic film, and to provide avenues of escape for particles that would otherwise be trapped in the wear zone. Another approach is to introduce additives into the contaminated lube-oil that further enhance hydrodynamic film formation, form chemical films on the wearing surfaces, or form films on the contaminant particles. This work focuses on defining the effects of cylinder liner surface finish, various configurations of slots in the cylinder liner surface, and various additives in the contaminated lube-oil on the wear process. Wear tests were initiated in a bench apparatus using coal-ash contaminated lube-oil to test the various wear configurations. The results of these tests indicate that the formation of a hydrodynamic film between the ring and cylinder specimens is enhanced by increasing surface roughness, and by orienting the surface asperities normal to the direction of ring travel but modifications to the cylinder liner surface did not greatly reduce the wear rate. Additives to the lubricant seemed to have a much more significant effect on wear, with a dispersant additive highly accelerating the wear, while a detergent additive was able to reduce the wear almost to the rate achieved where there was no contaminant.

  4. Improvements of harrows wear resistance

    Directory of Open Access Journals (Sweden)

    Warouma Arifa

    2015-12-01

    Full Text Available Wear is the main reason for the loss of performance of the parts for agricultural machinery. It leads to the degradation of the soil working quality. This work aims to highlight the wear resistance of the harrows discs manufactured, consolidated and sharpened differently. The tests were conducted in the laboratory and the field of the Faculty of Exploitation and Repair of Agricultural Machinery of the State Technical University of Kirovograd (Ukraine in 2015. The technical equipment consists of devices for consolidation by electric discharge and for measurement the linear wear of discs, a harrow, a sand test bed, a tractor and discs made of different materials and technologies. Some parameterized were collected during the laboratory test each 5 ha and up to 20 ha of operation and in the fields each 30 ha until the time limit of exploitation. The Laboratory tests have shown that after twenty (20 ha of operation, the wear resistance of the experimental discs made of steel 65G and consolidated by electric discharge with simultaneous grinding (sharpening angle of 30° is 2.95 times higher than the discs in series made of steel 28MnB5. The field experiment gave the following results: According to agro technical requirements, the plowing depth limit of serial discs made of steel 28MnB5 was reached after an operating duration of 120 ha while for experimental discs made of steel 65G and consolidated by electric discharge with simultaneous grinding (sharpening angle of 30 degrees this duration is of 156 ha. The diameter wear limit of experimental discs was reached after an operating duration of 179 ha against 154 ha for the serial ones. Therefore, the new technology can be applied during the manufacture and / or the repair of the discs.

  5. Adhesive Wear of Rollers in Vacuum

    Science.gov (United States)

    Shaeef, Iqbal; Krantz, Timothy L.

    2012-01-01

    This work was done to support NASA's James Webb Space Telescope that is equipped with a Near Infrared Camera and Spectrograph and Micro Shutter Assembly (MSA). A MSA mechanism's qualification test in cryogenic vacuum at 30deg K for 96K cycles resulted in roller wear and formation of some debris. Lab tests in vacuum were conducted at NASA Glenn Research Center (GRC) to understand the wear of Ti6Al4V mated with 440F steel rollers. Misalignment angle was found to have the most significant effect on debris formation. At misalignment angle of 1.4deg, significant amount of wear debris were formed within 50,000 cycles. Very few wear particles were found for a zero misalignment angle, and the total wear was small even after 367,000 cycles. The mode of wear in all the tests was attributed to adhesion, which was clearly evident from video records as well as the plate-like amalgamated debris material from both rollers. The adhesive wear rate was found to be approximately proportional to the misalignment angle. The wear is a two-way phenomenon, and the mixing of both roller materials in wear debris was confirmed by x-ray fluorescence (XRF) and EDX spectra. While there was a net loss of mass from the steel rollers, XRF and energy dispersive x-ray (EDX) spectra showed peaks of Ti on steel rollers, and peaks of Fe on Ti rollers. These results are useful for designers in terms of maintaining appropriate tolerances to avoid misalignment of rolling elements and the resulting severe wear

  6. Effect of Contact Temperature Rise During Sliding on the Wear Resistance of TiNi Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    S.K. Roy Chowdhury

    2013-03-01

    Full Text Available The high wear resistance of TiNi shape memory alloys has generally been attributed to its pseudoelastic nature. In the present work the hardening effect due to its phase transformation from martensite to austenite due to frictional heating during sliding has been considered. Based on existing constitutive models that represent the experimental results of TiNi shape memory alloys a theoretical model of the dependence of wear-resistance on the contact temperature rise has been developed. The analysis was further extended to include the operating and surface roughness parameters. The model essentially indicates that for these alloys wear decreases with the rise in contact temperature over a wide range of load, speed and surface roughness combination during sliding. This means that the wear resistance of these alloys results from the very cause that is normally responsible for the increased wear and seizure of common engineering materials. Preliminary wear tests were carried out with TiNi alloys at varying ambient temperature and varying load-speed combinations and the results agree well with the theoretical predictions.

  7. Dimensional Description of On-line Wear Debris Images for Wear Characterization

    Institute of Scientific and Technical Information of China (English)

    WU Tonghai; PENG Yeping; DU Ying; WANG Junqun

    2014-01-01

    As one of the most wear monitoring indicator, dimensional feature of individual particles has been studied mostly focusing on off-line analytical ferrograph. Recent development in on-line wear monitoring with wear debris images shows that merely wear debris concentration has been extracted from on-line ferrograph images. It remains a bottleneck of obtaining the dimension of on-line particles due to the low resolution, high contamination and particle’s chain pattern of an on-line image sample. In this work, statistical dimension of wear debris in on-line ferrograph images is investigated. A two-step procedure is proposed as follows. First, an on-line ferrograph image is decomposed into four component images with different frequencies. By doing this, the size of each component image is reduced by one fourth, which will increase the efficiency of subsequent processing. The low-frequency image is used for extracting the area of wear debris, and the high-frequency image is adopted for extracting contour. Second, a statistical equivalent circle dimension is constructed by equaling the overall wear debris in the image into equivalent circles referring to the extracted total area and premeter of overall wear debris. The equivalent circle dimension, reflecting the statistical dimension of larger wear debris in an on-line image, is verified by manual measurement. Consequently, two preliminary applications are carried out in gasoline engine bench tests of durability and running-in. Evidently, the equivalent circle dimension, together with the previously developed concentration index, index of particle coverage area (IPCA), show good performances in characterizing engine wear conditions. The proposed dimensional indicator provides a new statistical feature of on-line wear particles for on-line wear monitoring. The new dimensional feature conveys profound information about wear severity.

  8. A P-value model for theoretical power analysis and its applications in multiple testing procedures

    Directory of Open Access Journals (Sweden)

    Fengqing Zhang

    2016-10-01

    Full Text Available Abstract Background Power analysis is a critical aspect of the design of experiments to detect an effect of a given size. When multiple hypotheses are tested simultaneously, multiplicity adjustments to p-values should be taken into account in power analysis. There are a limited number of studies on power analysis in multiple testing procedures. For some methods, the theoretical analysis is difficult and extensive numerical simulations are often needed, while other methods oversimplify the information under the alternative hypothesis. To this end, this paper aims to develop a new statistical model for power analysis in multiple testing procedures. Methods We propose a step-function-based p-value model under the alternative hypothesis, which is simple enough to perform power analysis without simulations, but not too simple to lose the information from the alternative hypothesis. The first step is to transform distributions of different test statistics (e.g., t, chi-square or F to distributions of corresponding p-values. We then use a step function to approximate each of the p-value’s distributions by matching the mean and variance. Lastly, the step-function-based p-value model can be used for theoretical power analysis. Results The proposed model is applied to problems in multiple testing procedures. We first show how the most powerful critical constants can be chosen using the step-function-based p-value model. Our model is then applied to the field of multiple testing procedures to explain the assumption of monotonicity of the critical constants. Lastly, we apply our model to a behavioral weight loss and maintenance study to select the optimal critical constants. Conclusions The proposed model is easy to implement and preserves the information from the alternative hypothesis.

  9. Contact lens wear is intrinsically inflammatory.

    Science.gov (United States)

    Efron, Nathan

    2017-01-01

    Eye-care practitioners typically associate ocular inflammation during contact lens wear with serious complications such as microbial keratitis; however, more subtle mechanisms may be at play. This paper tests the notion that contact lens wear is intrinsically inflammatory by exploring whether uncomplicated contact lens wear meets the classical, clinical definition of inflammation - rubor (redness), calor (heat), tumor (swelling), dolor (pain) and functio laesa (loss of function) - as well as the contemporary, sub-clinical definition of inflammation (cellular and biochemical reactions). It is demonstrated that all of these clinical and sub-clinical criteria are met with hydrogel lens wear and most are met with silicone hydrogel lens wear, indicating that uncomplicated contact lens wear is intrinsically inflammatory. Consideration of both traditional and contemporary thinking about the role of inflammation in the human body leads to the perhaps surprising conclusion that the chronic, low grade, sub-clinical inflammatory status of the anterior eye during contact lens wear, which may be termed 'para-inflammation', is a positive, protective phenomenon, whereby up-regulation of the immune system, in a non-damaging way, maintains the eye in a state of 'heightened alert', ready to ward off any extrinsic noxious challenge. Characterisation of this inflammatory status may lead to the development of lens engineering or pharmacological strategies to modulate contact lens-induced inflammation, so as to render lens wear more safe and comfortable. © 2016 Optometry Australia.

  10. Role of PET in improving wear properties of PP in dry sliding condition

    Indian Academy of Sciences (India)

    Somit Neogi; S A R Hashmi; Navin Chand

    2003-10-01

    The sliding wear of isotactic polypropylene (PP), polyethylene terephthalate (PET) and their blends was evaluated as a function of applied pressure and composition against a stainless steel counter face in dry condition. Wear rate decreases with the addition of PET in the blend. The wear was observed in two stages, the moderate wear and high wear while increasing the applied pressure on test samples. The addition of PET in PP helps in increasing the limit of moderate wear towards the high-pressure side. Microstructure and worn surfaces of samples were observed by scanning electron microscope. The wear phenomenon has been discussed based on wear losses and worn surfaces.

  11. [Theoretical patterns of the panel D-15 test in congenital dichromatic color vision defects].

    Science.gov (United States)

    Kandatsu, A; Okabe, T; Kitahara, K

    1989-12-01

    In order to study the theoretical patterns of the panel D-15 test for congenital dichromatic color vision defects, the spectral reflectance for the 16 color caps of the panel D-15 test was measured with a spectro-photometer. Then, the chromaticity-coordinates of each color cap were calculated using the spectral distribution of standard illuminant C. The theoretical patterns of the panel D-15 test for dichromats were obtained based on the confusion lines. For this procedure, the slope of the line between the color cap and the convergence point on the CIE chromaticity diagram was obtained first. Then, the order of the arrangement was decided starting with the slope having the smallest cap number and continuing progressively. For the chromaticity coordinates of the convergence points the following values were used; x = 0.7465, y = 0.2535 for protanopia, x = 1.08, y = -0.08, x = 1.40, y = -0.40, and x = 1.70, y = -0.70 for deuteranopia, and x = 0.171, y = 0.000 for tritanopia. The results show a very clear similarity between the orientation axis obtained by simulation and the actual data. Therefore, it was confirmed that dichromats arrange the color caps in the order of the slope of the line between the color cap and the convergence point, when performing the panel D-15 test. Furthermore, it was suggested that the patterns of the panel D-15 test differ by the convergence points among dichromats even of the same type.

  12. Contact Thermal Analysis and Wear Simulation of a Brake Block

    Directory of Open Access Journals (Sweden)

    Nándor Békési

    2013-01-01

    Full Text Available The present paper describes an experimental test and a coupled contact-thermal-wear analysis of a railway wheel/brake block system through the braking process. During the test, the friction, the generated heat, and the wear were evaluated. It was found that the contact between the brake block and the wheel occurs in relatively small and slowly moving hot spots, caused by the wear and the thermal effects. A coupled simulation method was developed including numerical frictional contact, transient thermal and incremental wear calculations. In the 3D simulation, the effects of the friction, the thermal expansion, the wear, and the temperature-dependent material properties were also considered. A good agreement was found between the results of the test and the calculations, both for the thermal and wear results. The proposed method is suitable for modelling the slowly oscillating wear caused by the thermal expansions in the contact area.

  13. An Investigation into the Behavior of Disc Blake Wear

    Directory of Open Access Journals (Sweden)

    Muneer A. H.Jassim

    2007-01-01

    Full Text Available A real method of predication brake pad wear ,could lead to substantiol economies of time and money. This paper describes how such a procedure has been used and gives the results to establish is reliability by comparing the predicted wear with that which actually occurs in an existing service. The experimental work was carried out on three different commercial samples ,tested under different operation conditions (speed,load,time...etcusing a test ring especially modified for this purpose. Abrasive wear is mainly studied , since it is the type of wear that takes place in such arrangements. Samples wear tested in presences of sand or mud between the mating surfaces under different operational conditions of speed, load and braking time .Mechanical properties of the pad material samples (hardness, young,s modulus and collapse load under pure bending condition wear established . The thermal conductivity and surface roughness of the pad material wear also found in order to enable comparison between the surface condition before and after testing. Sliding velocity had a small effect on the wear rate but it had great effect on friction coefficient. Wear rate was affected mainly by the surface temperature which causing a reduction friction coefficient and increasing the wear rate. Surface roughness had almost no effect on the wear rate since it was proved experimentally ,that the surface becomes softer during operation .mechanical properties of the pad material had fluctuating effect on wear rate. The existence of solid particles between pad and disc increasing wear rate and friction coefficient while the mud caused a reduction in wear rate of the pad surface since it acts as a lubricant absorbing the surface heat generated during sliding the area of contact between pad and disc. wear rate obtained experimentally agreed fairly well that found from empirically obtained equations.

  14. What drives long-distance dispersal? A test of theoretical predictions.

    Science.gov (United States)

    Lowe, Winsor H

    2009-06-01

    Long-distance dispersal (LDD) may contribute disproportionately to species persistence in fragmented landscapes, non-native invasions, and range shifts in response to climate change. However, direct data on LDD are extremely limited, leaving us with little understanding of why it occurs. I used six years of mark-recapture data on the stream salamander Gyrinophilus porphyriticus to test theoretical predictions of how variation in habitat quality affects LDD. Frequency of LDD was quantified using the kurtosis of yearly movement distributions from recaptured animals in a 1-km headwater stream. Temporal and spatial variation in habitat quality were quantified with spatially explicit data on the body condition and dispersion of individuals throughout the study stream. Using information-theoretic model selection criteria, I found that LDD increased during periods of low average body condition and low spatial variation in body condition. Consistent with basic theory, my results indicate that temporal variation in habitat quality is critical to initiating dispersal, and that LDD increases when animals must move farther to encounter higher-quality habitat. This suggests that information on how habitat quality varies in time and space can be useful for predicting LDD. More broadly, this study highlights the value of direct data on animal movement for testing dispersal theory.

  15. In Vitro Wear Testing of a CoCr-UHMWPE Finger Prosthesis with Hydroxyapatite Coated CoCr Stems

    Directory of Open Access Journals (Sweden)

    Andrew Naylor

    2015-04-01

    Full Text Available A finger prosthesis consisting of a Cobalt-chromium (CoCr proximal component and an Ultra-high-molecular-weight-polyethylene (UHMWPE medial component (both mounted on hydroxyapatite coated stems was evaluated to 5,000,000 cycles in an in vitro finger simulator. One “test” prosthesis was cycled through flexion-extension (90°–30° with a dynamic load of 10 N, whilst immersed in a lubricant of dilute bovine serum. Additionally, a static load of 100 N was applied for 45 s every 3000 cycles to simulate a static gripping force. A second “control” prosthesis was immersed in the same lubricant to account for absorption. Gravimetric and Sa (3D roughness measurements were taken at 1,000,000 cycle intervals. Micrographs and Sa values revealed negligible change to the CoCr surfaces after 5,000,000 cycles. The UHMWPE also exhibited no distinctive Sa trend, however the micrographs indicate that polishing occurred. Both the CoCr and UHMWPE test components progressively decreased in weight. The CoCr control component did not change in weight, whilst the UHMWPE component gained weight through absorption. To account for the disparity between surface and gravimetric results, the hydroxyapatite coatings were examined. Micrographs of the test stems revealed that the hydroxyapatite coating was partially removed, whilst the micrographs of the control stems exhibited a uniform coating.

  16. Wear Studies on Metal Matrix Composites: a Taguchi Approach

    Institute of Scientific and Technical Information of China (English)

    S. Basavarajappa; G. Chandramohan

    2005-01-01

    An attempt has been made to study the influence of wear parameters like applied load, sliding speed, sliding distance and percentage of reinforcement on the dry sliding wear of the metal matrix composites. A plan of experiments,based on techniques of Taguchi, was pedormed to acquire data in controlled way. An orthogonal array and the analysis of variance were employed to investigate the influence of process parameters on the wear of composites. The objective is to establish a correlation between dry sliding wear of composites and wear parameters. These correlations were obtained by multiple regressions. Finally, confirmation tests were conducted to verify the experimental results foreseen from the mentioned correlations.

  17. IASI's sensitivity to near-surface carbon monoxide (CO): Theoretical analyses and retrievals on test cases

    Science.gov (United States)

    Bauduin, Sophie; Clarisse, Lieven; Theunissen, Michael; George, Maya; Hurtmans, Daniel; Clerbaux, Cathy; Coheur, Pierre-François

    2017-03-01

    Separating concentrations of carbon monoxide (CO) in the boundary layer from the rest of the atmosphere with nadir satellite measurements is of particular importance to differentiate emission from transport. Although thermal infrared (TIR) satellite sounders are considered to have limited sensitivity to the composition of the near-surface atmosphere, previous studies show that they can provide information on CO close to the ground in case of high thermal contrast. In this work we investigate the capability of IASI (Infrared Atmospheric Sounding Interferometer) to retrieve near-surface CO concentrations, and we quantitatively assess the influence of thermal contrast on such retrievals. We present a 3-part analysis, which relies on both theoretical forward simulations and retrievals on real data, performed for a large range of negative and positive thermal contrast situations. First, we derive theoretically the IASI detection threshold of CO enhancement in the boundary layer, and we assess its dependence on thermal contrast. Then, using the optimal estimation formalism, we quantify the role of thermal contrast on the error budget and information content of near-surface CO retrievals. We demonstrate that, contrary to what is usually accepted, large negative thermal contrast values (ground cooler than air) lead to a better decorrelation between CO concentrations in the low and the high troposphere than large positive thermal contrast (ground warmer than the air). In the last part of the paper we use Mexico City and Barrow as test cases to contrast our theoretical predictions with real retrievals, and to assess the accuracy of IASI surface CO retrievals through comparisons to ground-based in-situ measurements.

  18. Wear behavior of austenite containing plate steels

    Science.gov (United States)

    Hensley, Christina E.

    As a follow up to Wolfram's Master of Science thesis, samples from the prior work were further investigated. Samples from four steel alloys were selected for investigation, namely AR400F, 9260, Hadfield, and 301 Stainless steels. AR400F is martensitic while the Hadfield and 301 stainless steels are austenitic. The 9260 exhibited a variety of hardness levels and retained austenite contents, achieved by heat treatments, including quench and tempering (Q&T) and quench and partitioning (Q&P). Samples worn by three wear tests, namely Dry Sand/Rubber Wheel (DSRW), impeller tumbler impact abrasion, and Bond abrasion, were examined by optical profilometry. The wear behaviors observed in topography maps were compared to the same in scanning electron microscopy micrographs and both were used to characterize the wear surfaces. Optical profilometry showed that the scratching abrasion present on the wear surface transitioned to gouging abrasion as impact conditions increased (i.e. from DSRW to impeller to Bond abrasion). Optical profilometry roughness measurements were also compared to sample hardness as well as normalized volume loss (NVL) results for each of the three wear tests. The steels displayed a relationship between roughness measurements and observed wear rates for all three categories of wear testing. Nanoindentation was used to investigate local hardness changes adjacent to the wear surface. DSRW samples generally did not exhibit significant work hardening. The austenitic materials exhibited significant hardening under the high impact conditions of the Bond abrasion wear test. Hardening in the Q&P materials was less pronounced. The Q&T microstructures also demonstrated some hardening. Scratch testing was performed on samples at three different loads, as a more systematic approach to determining the scratching abrasion behavior. Wear rates and scratch hardness were calculated from scratch testing results. Certain similarities between wear behavior in scratch testing

  19. 润滑油中磨粒的X-荧光能谱测试方法研究与应用%Research and Application of Wear Particles Test Method in Lubricant Based on EDXRF Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    刘东风; 石新发; 周志才

    2015-01-01

    Seven standar d oil samples with different concentration levels of wear particles were applied to research the method of test wear particles in lubricant based on EDXRF spectroscopy.By selecting appropriate characteristic elements, test parameters and test combinations of elements program,the method of test wear particles in lubricant based on EDXRF spectroscopy was established in subsection according to two kinds of mass fraction range of wear particles at 0~1 × 10-4 and 1×10-4~5×10-4,which includes the establishment of standard curves and analysis flows.The established testing method was used to monitor a diesel lubricant,and the monitoring and tracking ability of the method was verified.The oil samples from twenty six of same type equipments were selected to carry out a comparative analysis of the established EDXRF spec⁃troscopy method,and the atomic emission spectroscopy method and the PQ ferromagnetic particle analysis method.The re⁃sults show the established EDXRF spectroscopy method can effective monitor wear particles in lubricating oil,and has a special advantage to large wear particles.%采用7种不同磨粒含量标准油样,通过选择合理的特征元素、测试参数和元素测试组合方案,按照0~1×10-4、1×10-4~5×10-4两种磨粒质量分数范围,分段建立包含标准曲线、分析流程的润滑油中磨粒的EDXRF光谱测试方法。应用建立的测试方法,对某柴油机润滑油进行跟踪监测,验证该方法的跟踪监测能力;以26个同型设备油样为对象,对该方法与原子发射光谱、 PQ铁磁性颗粒分析仪分析结果进行比较。结果表明,建立的润滑油EDXRF光谱测试方法能够有效地监测润滑油中的磨损颗粒,特别是针对大的磨损颗粒有着特殊的优势。

  20. Theoretical Investigation of Dissolution Test Criteria for Waiver of Clinical Bioequivalence Study.

    Science.gov (United States)

    Sugano, Kiyohiko

    2016-06-01

    The purpose of the present study was to provide a theoretical basis for the dissolution test criteria of a biowaiver scheme. The critical dissolution number (Dncrit) was defined as a value to show bioequivalence of AUC and Cmax against infinitely rapid dissolution (Dn = ∞). The gastrointestinal tract was represented by the one-compartment model. The dissolution of a drug was expressed by the Noyes-Whitney equation. The permeation of a drug was expressed by the first-order equation. The approximate analytical solutions of Dncrit were derived from the analytical solution for the fraction of a dose absorbed [Fa = 1 - exp(-1/(1/Dn + Do/Pn)]; Do, the dose number; Pn, the permeation number). Numerical integration was also performed to calculate Dncrit more accurately. Dncrit was found to become smaller as Pn and Do became smaller. Dncrit for Cmax was found to be dependent on the elimination half-life of a drug as well as Pn and Do. The Fa equation can be an appropriate theoretical basis for a biowaiver scheme.

  1. Wear Characteristics of Metallic Biomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hussein

    2015-05-01

    Full Text Available Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  2. Theoretical foundations for on-ground tests of LISA PathFinder thermal diagnostics

    CERN Document Server

    Lobo, A; Ramos-Castro, J; Sanjuan, J; Lobo, Alberto; Nofrarias, Miquel; Ramos-Castro, Juan; Sanjuan, Josep

    2006-01-01

    This paper reports on the methods and results of a theoretical analysis to design an insulator which must provide a thermally quiet environment to test on ground delicate temperature sensors and associated electronics. These will fly on board ESA's LISA PathFinder (LPF) mission as part of the thermal diagnostics subsystem of the LISA Test-flight Package (LTP). We evaluate the heat transfer function (in frequency domain) of a central body of good thermal conductivity surrounded by a layer of a very poorly conducting substrate. This is applied to assess the materials and dimensions necessary to meet temperature stability requirements in the metal core, where sensors will be implanted for test. The analysis is extended to evaluate the losses caused by heat leakage through connecting wires, linking the sensors with the electronics in a box outside the insulator. The results indicate that, in spite of the very demanding stability conditions, a sphere of outer diameter of the order one metre is sufficient.

  3. Third abrasive wear mode: is it possible?

    Directory of Open Access Journals (Sweden)

    Ronaldo Câmara Cozza

    2014-04-01

    Full Text Available The objective of this paper is to propose an initial discussion on the characterization of a third abrasive wear mode. The results obtained in a previous work [1] under different test conditions revealed the occurrence of the superposition of the “rolling” and “grooving” abrasive wear modes. This phenomenon was denoted “micro-rolling abrasion” due to the observation that “rolling abrasion” was found to act on “grooving abrasion”.

  4. Biotribology :articular cartilage friction, wear, and lubrication

    OpenAIRE

    Schroeder, Matthew O

    1995-01-01

    This study developed, explored, and refined techniques for the in vitro study of cartilage-on-cartilage friction, deformation, and wear. Preliminary results of in vitro cartilage-on- cartilage experiments with emphasis on wear and biochemistry are presented. Cartilage-bone specimens were obtained from the stifle joints of steers from a separate controlled study. The load, sliding speed, and traverse of the lower specimens were held constant as lubricant and test length were varied. Lubric...

  5. 精密切削刀具磨损监控系统设计%Designing of test and control system on tools wear in precision cutting

    Institute of Scientific and Technical Information of China (English)

    马廉洁

    2011-01-01

    设计了刀具磨损检测控制系统,采用EPF10K10TC144-4主控芯片、位移传感器,采用分布式算法编制了控制软件并进行了系统仿真.将数据输入到CNC系统,修改刀具参数,并在数控车床上进行了切削实验.对比研究结果表明,该系统避免了人工检测误差、机床频繁停机,减少了换刀次数和重新对刀引入的二次误差,延长了刀具有效使用时间,且加工效率、加工精度、产品合格率都有明显提高.%The test and control system was designed on tools wear, it selected EPF10K10TC144-4 type controlling chip, displacement sensor, the control software was programmed using distributed algorithm, and system simulation was carried out. The data was input into the CNC system, tools parameters were modified. The cutting experiment was carried out in turning machine. The results of comparing study indicate that the manual examination errors and machine tools on-and-off frequently are avoided, the quadric errors introduced by the number of change tools and re-adjust tools are reduced, the effective time of using the tools was extended, in addition , machining efficiency, machining precision and product qualification rate have been obviously improved.

  6. Development and validation of a theoretical test in non-anaesthesiologist-administered propofol sedation for gastrointestinal endoscopy

    DEFF Research Database (Denmark)

    Jensen, Jeppe Thue; Savran, Mona Meral; Møller, Ann Merete

    2016-01-01

    OBJECTIVE: Safety with non-anaesthesiologist-administered propofol sedation (NAAP) during gastrointestinal (GI) endoscopy is related to theoretical knowledge. A summative testing of knowledge before attempting supervised nurse-administered propofol sedation (NAPS) in the clinic is advised. The aims...... of this study were to develop a theoretical test about propofol sedation, to gather validity evidence for the test and to measure the effect of a NAPS-specific training course. MATERIAL AND METHODS: A three-phased psychometric study on multiple choice questionnaire (MCQ) test development, gathering of validity...

  7. Wear characterization of abrasive waterjet nozzles and nozzle materials

    Science.gov (United States)

    Nanduri, Madhusarathi

    Parameters that influence nozzle wear in the abrasive water jet (AWJ) environment were identified and classified into nozzle geometric, AWJ system, and nozzle material categories. Regular and accelerated wear test procedures were developed to study nozzle wear under actual and simulated conditions, respectively. Long term tests, using garnet abrasive, were conducted to validate the accelerated test procedure. In addition to exit diameter growth, two new measures of wear, nozzle weight loss and nozzle bore profiles were shown to be invaluable in characterizing and explaining the phenomena of nozzle wear. By conducting nozzle wear tests, the effects of nozzle geometric, and AWJ system parameters on nozzle wear were systematically investigated. An empirical model was developed for nozzle weight loss rate. To understand the response of nozzle materials under varying AWJ system conditions, erosion tests were conducted on samples of typical nozzle materials. The effect of factors such as jet impingement angle, abrasive type, abrasive size, abrasive flow rate, water pressure, traverse speed, and target material was evaluated. Scanning electron microscopy was performed on eroded samples as well as worn nozzles to understand the wear mechanisms. The dominant wear mechanism observed was grain pullout. Erosion models were reviewed and along the lines of classical erosion theories a semi-empirical model, suitable for erosion of nozzle materials under AWJ impact, was developed. The erosion data correlated very well with the developed model. Finally, the cutting efficiency of AWJ nozzles was investigated in conjunction with nozzle wear. The cutting efficiency of a nozzle deteriorates as it wears. There is a direct correlation between nozzle wear and cutting efficiency. The operating conditions that produce the most efficient jets also cause the most wear in the nozzle.

  8. Study on the Anti- Wear Performance of Diesel Engine Oil Containing Soot Based on 4 - Ball Test Machine%利用四球机考察含烟炱柴油机油的抗磨损性能

    Institute of Scientific and Technical Information of China (English)

    雷爱莲; 谢惊春; 徐小红; 王爱香; 夏群英

    2012-01-01

    高档柴油机油研发中,烟炱引起的磨损是要解决的关键问题之一。该研究采用炭黑作为烟炱模拟物,加入试验油获得了被烟炱污染的柴油机油,以模拟实际发动机试验过程中产生的含烟炱油。并且利用四球磨损试验机为平台,研究建立了模拟试验方法,考察了含烟炱柴油机油的抗磨损性能。结果表明:方法能够有效区分含烟炱柴油机油的抗磨损性能,对不同类型分散剂和黏度指数改进剂在含烟炱柴油机油中的抗磨损性能具有较好的区分性,试验方法有较好的重复性,可以帮助高档柴油机油的研发。%Wear generated by soot in oil is a critical problem in high grade diesel engine oil research work. This soot genera- ted in the full size engine test stand was replaced by a simulator which is called carbon black in this bench test method re- search work. A related simulation test method was established based on 4 - ball wear test machine and the anti - wear per- formance of the diesel engine oil containing soot was also studied. A series of test results showed that the newly developed bench test method is a good screening tool for diesel engine oil formulation research work with regard to its anti - wear per- formance. And this test method has good discrimination to the anti -wear performance of oils blended with different kinds of dispersants and Ⅵ improvers. The satisfied repeatability is achieved also.

  9. Brush seal shaft wear resistant coatings

    Science.gov (United States)

    Howe, Harold

    1995-03-01

    Brush seals suffer from high wear, which reduces their effectiveness. This work sought to reduce brush seal wear by identifying and testing several industry standard coatings. One of the coatings was developed for this work. It was a co-sprayed PSZ with boron-nitride added for a high temperature dry lubricant. Other coatings tested were a PSZ, chrome carbide and a bare rotor. Testing of these coatings included thermal shocking, tensile testing and wear/coefficient of friction testing. Wear testing consisted of applying a coating to a rotor and then running a sample tuft of SiC ceramic fiber against the coating. Surface speeds at point of contact were slightly over 1000 ft/sec. Rotor wear was noted, as well as coefficient of friction data. Results from the testing indicates that the oxide ceramic coatings cannot withstand the given set of conditions. Carbide coatings will not work because of the need for a metallic binder, which oxidizes in the high heat produced by friction. All work indicated a need for a coating that has a lubricant contained within itself and the coating must be resistant to an oxidizing environment.

  10. Microstructure-Wear Resistance Correlation and Wear Mechanisms of Spark Plasma Sintered Cu-Pb Nanocomposites

    Science.gov (United States)

    Sharma, Amit Siddharth; Biswas, Krishanu; Basu, Bikramjit

    2014-01-01

    The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (~1.5 × 10-6 mm3/Nm) and a modest COF (~0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (~2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall-Petch-like relationship with grain size of nanocrystalline Cu.

  11. Strategy for a Rock Mechanics Site Descriptive Model. Development and testing of the theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Staub, Isabelle; Fredriksson, Anders; Outters, Nils [Golder Associates AB, Uppsala (Sweden)

    2002-05-01

    In the purpose of studying the possibilities of a Deep Repository for spent fuel, the Swedish Nuclear and Fuel Management Company (SKB) is currently planning for Site Investigations. Data collected from these Site Investigations are interpreted and analysed to achieve the full Site Description, which is built up of models from all the disciplines that are considered of importance for the Site Description. One of these models is the Rock Mechanical Descriptive Model,which would be developed for any site in hard crystalline rock, and is a combination and evaluation of the characterisation of rock mass by means of empirical relationships and a theoretical approach based on numerical modelling. The present report describes the theoretical approach. The characterisation of the mechanical properties of the rock mass, viewed as a unit consisting of intact rock and fractures, is achieved by numerical simulations with following input parameters: initial stresses, fracture geometry, distribution of rock mechanical properties, such as deformation and strength parameters, for the intact rock and for the fractures. The numerical modelling was performed with the two-dimensional code UDEC, and the rock block models were generated from 2D trace sections extracted from the 3D Discrete Fracture Network (DFN) model. Assumptions and uncertainties related to the set-up of the model are considered. The numerical model was set-up to simulate a plain strain-loading test. Different boundary conditions were applied on the model for simulating stress conditions (I) in the undisturbed rock mass, and (II) at the proximity of a tunnel. In order to assess the reliability of the model sensitivity analyses have been conducted on some rock block models for defining the dependency of mechanical properties to in situ stresses, the influence of boundary conditions, rock material and joint constitutive models used to simulate the behaviour of intact rock and fractures, domain size and anisotropy. To

  12. Development and Validation of a Wear Model to Predict Polyethylene Wear in a Total Knee Arthroplasty: A Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Bernardo Innocenti

    2014-11-01

    Full Text Available Ultra-high molecular weight polyethylene (UHMWPE wear in total knee arthroplasty (TKA components is one of the main reasons of the failure of implants and the consequent necessity of a revision procedure. Experimental wear tests are commonly used to quantify polyethylene wear in an implant, but these procedures are quite expensive and time consuming. On the other hand, numerical models could be used to predict the results of a wear test in less time with less cost. This requires, however, that such a model is not only available, but also validated. Therefore, the aim of this study is to develop and validate a finite element methodology to be used for predicting polyethylene wear in TKAs. Initially, the wear model was calibrated using the results of an experimental roll-on-plane wear test. Afterwards, the developed wear model was applied to predict patello-femoral wear. Finally, the numerical model was validated by comparing the numerically-predicted wear, with experimental results achieving good agreement.

  13. Null tests of nonlocal gravity with multi-axis gravity gradiometers in elliptic orbits: A theoretical study

    Science.gov (United States)

    Bao, Qianzong; Qiang, Li-E.

    2017-08-01

    A theoretical study of testing nonlocal gravity in its Newtonian regime with gravity gradient measurements in space is given. For certain solutions of the modification to Newton’s law in nonlocal gravity, a null test and a lower bound on related parameters may be given with future high precision multi-axis gravity gradiometers along elliptic orbits.

  14. A comparative study of sliding wear of nonmetallic dental restorative materials with emphasis on micromechanical wear mechanisms.

    Science.gov (United States)

    Dupriez, Nataliya Deyneka; von Koeckritz, Ann-Kristin; Kunzelmann, Karl-Heinz

    2015-05-01

    The purpose of this study is to investigate the in vitro tribological behavior of modern nonmetallic restorative materials. Specimen prepared of IPS e.max Press lithium disilicate glass ceramic, IPS Empress Esthetic leucite-reinforced glass ceramic, Everest ZS Blanks yttria-stabilized zirconia and Lava Ultimate composite were subjected to wear using a wear machine designed to simulate occlusal loads. The wear of the investigated materials and antagonists were evaluated by a three-dimensional surface scanner. The quantitative wear test results were used to compare and rank the materials. Specimens were divided into two groups with steatite and alumina antagonists. For each antagonist material an analysis of variance was applied. As a post hoc test of the significant differences, Tukey's honest significant difference test was used. With steatite antagonist: wear of zirconia materials mechanical properties (hardness and fracture toughness) and with materials microstructure. Wear mechanisms are discussed. © 2014 Wiley Periodicals, Inc.

  15. Effect of bionic coupling units' forms on wear resistance of gray cast iron under dry linear reciprocating sliding condition

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Xie, Guofeng; Cong, Dalong; Meng, Chao; Ren, Luquan

    2015-07-01

    In order to get close to the wear form of guide rails, the homemade linear reciprocating wear testing machine was used for the wear test. In order to improve the wear-resistance of gray cast iron guide rail, bionic coupling units of different forms were manufactured by a laser. Wear behavior of gray-cast-iron with bionic-coupling units has been studied under dry sliding condition at room temperature using the wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that bionic coupling unit could improve the wear resistance of gray cast iron. The wear resistance of gray cast iron with reticulation bionic coupling unit is the best. When the load and speed changed, reticulation bionic coupling unit still has excellent performance in improving the wear resistance of gray cast iron.

  16. Utility of Web search query data in testing theoretical assumptions about mephedrone.

    Science.gov (United States)

    Kapitány-Fövény, Máté; Demetrovics, Zsolt

    2017-05-01

    With growing access to the Internet, people who use drugs and traffickers started to obtain information about novel psychoactive substances (NPS) via online platforms. This paper aims to analyze whether a decreasing Web interest in formerly banned substances-cocaine, heroin, and MDMA-and the legislative status of mephedrone predict Web interest about this NPS. Google Trends was used to measure changes of Web interest on cocaine, heroin, MDMA, and mephedrone. Google search results for mephedrone within the same time frame were analyzed and categorized. Web interest about classic drugs found to be more persistent. Regarding geographical distribution, location of Web searches for heroin and cocaine was less centralized. Illicit status of mephedrone was a negative predictor of its Web search query rates. The connection between mephedrone-related Web search rates and legislative status of this substance was significantly mediated by ecstasy-related Web search queries, the number of documentaries, and forum/blog entries about mephedrone. The results might provide support for the hypothesis that mephedrone's popularity was highly correlated with its legal status as well as it functioned as a potential substitute for MDMA. Google Trends was found to be a useful tool for testing theoretical assumptions about NPS. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Theoretical and experimental researches of size effect in micro-indentation test

    Institute of Scientific and Technical Information of China (English)

    魏悦广; 王学峥; 武晓雷; 白以龙

    2001-01-01

    Micro-indentation tests at scales on the order of sub-micron have shown that the measured hardness increases strongly with the indent depth or indent size decreasing, which is frequently referred to as the size effect. However, the trend is at odds with the size-independence implied by conventional elastic-plastic theory. In this paper, strain gradient plasticity theory is used to model the size effect for materials undergoing the micro-indenting. Meanwhile, the micro-indentation experiments for single crystal copper and single crystal aluminum are carried out. By the comparison of the theoretical predictions with experimental measurements, the micro-scale parameter of strain gradient plasticity theory is predicted, which is fallen into the region of 0.8—1.5 micron for the conventional metals such as copper (Cu), aluminum (Al) and silver (Ag). Moreover, the phenomena of the pile-up and sink-in near micro-indent boundary are investigated and analyzed in detail.

  18. Linking predator risk and uncertainty to adaptive forgetting: a theoretical framework and empirical test using tadpoles.

    Science.gov (United States)

    Ferrari, Maud C O; Brown, Grant E; Bortolotti, Gary R; Chivers, Douglas P

    2010-07-22

    Hundreds of studies have examined how prey animals assess their risk of predation. These studies work from the basic tennet that prey need to continually balance the conflicting demands of predator avoidance with activities such as foraging and reproduction. The information that animals gain regarding local predation risk is most often learned. Yet, the concept of 'memory' in the context of predation remains virtually unexplored. Here, our goal was (i) to determine if the memory window associated with predator recognition is fixed or flexible and, if it is flexible, (ii) to identify which factors affect the length of this window and in which ways. We performed an experiment on larval wood frogs, Rana sylvatica, to test whether the risk posed by, and the uncertainty associated with, the predator would affect the length of the tadpoles' memory window. We found that as the risk associated with the predator increases, tadpoles retained predator-related information for longer. Moreover, if the uncertainty about predator-related information increases, then prey use this information for a shorter period. We also present a theoretical framework aiming at highlighting both intrinsic and extrinsic factors that could affect the memory window of information use by prey individuals.

  19. Testing the Validity of Some Theoretical Signs of Vocational Decision-Making Ability

    Science.gov (United States)

    Holland, John L.; And Others

    1975-01-01

    The validity of some theoretically derived vocational diagnostic signs was examined to learn if a person's self-knowledge, occupational knowledge, and decision-making ability were predictable. The positive results imply some practical applications and the need for further theoretical investigation. (Author)

  20. Sliding wear and friction behaviour of zircaloy-4 in water

    Science.gov (United States)

    Sharma, Garima; Limaye, P. K.; Jadhav, D. T.

    2009-11-01

    In water cooled nuclear reactors, the sliding of fuel bundles in fuel channel handling system can lead to severe wear and it is an important topic to study. In the present study, sliding wear behaviour of zircaloy-4 was investigated in water (pH ˜ 10.5) using ball-on-plate sliding wear tester. Sliding wear resistance zircaloy-4 against SS 316 was examined at room temperature. Sliding wear tests were carried out at different load and sliding frequencies. The coefficient of friction of zircaloy-4 was also measured during each tests and it was found to decrease slightly with the increase in applied load. The micro-mechanisms responsible for wear in zircaloy-4 were identified to be microcutting, micropitting and microcracking of deformed subsurface zones in water.

  1. Wear mechanism for spray deposited Al-Si/SiCp composites under dry sliding condition

    Institute of Scientific and Technical Information of China (English)

    滕杰; 李华培; 陈刚

    2015-01-01

    Al-Si/15%SiCp (volume fraction) composites with different silicon contents were fabricated by spray deposition technique, and typical microstructures of these composites were studied by optical microscopy (OM). Dry sliding wear tests were carried out using a block-on-ring wear machine to investigate the effect of applied load range of 10−220 N on the wear and friction behavior of these composites sliding against SAE 52100 grade bearing steel. Scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX) were utilized to examine the morphologies of the worn surfaces in order to observe the wear characteristics and investigate the wear mechanism. The results show that the wear behavior of these composites is dependent on the silicon content in the matrix alloy and the applied load. Al-Si/15%SiCp composites with higher silicon content exhibit better wear resistance in the applied load range. Under lower loads, the major wear mechanisms are oxidation wear and abrasive wear for all tested composites. Under higher loads, severe adhesive wear becomes the main wear mechanisms for Al-7Si/15%SiCp and Al-13Si/15%SiCp composites, while Al-20Si/15%SiCp presents a compound wear mechanism, consisting of oxidation, abrasive wear and adhesion wear.

  2. Wear effects and mechanisms of soot-contaminated automotive lubricants

    OpenAIRE

    Green, D. A.; Lewis, R; Dwyer-Joyce, R.S.

    2006-01-01

    A study has been carried out to investigate the influence of soot-contaminated automotive lubricants in the wear process of a simulated engine valve train contact. Previous research on this topic has been mainly performed from a chemical point of view in fundamental studies, with insufficient relevance to real engine conditions, i.e. load and geometry. This study investigates the conditions under which wear occurs through specimen testing. The objective of the work was to understand the wear ...

  3. THE WEAR RESISTANCE INCREASE OF CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. M. Ilyushenko

    2016-01-01

    Full Text Available The article presents the results of the tests on the wear resistance of chromium cast irons of different compositions obtained in sand forms. It has been shown that increase of the wear resistance and mechanical properties of the cast iron is possible to obtain using the casting in metal molds. A further increase in wear resistance of parts produced in metal molds is possible by changing the technological parameters of casting and alloying by titanium.

  4. Dry Friction and Wear Characteristics of Impregnated Graphite in a Corrosive Environment

    Institute of Scientific and Technical Information of China (English)

    JIA Qian; YUAN Xiaoyang; ZHANG Guoyuan; DONG Guangneng; ZHAO Weigang

    2014-01-01

    Tribological properties of impregnated graphite are greatly influenced by preparation technology and working conditions and it’s highly susceptible to corrosion environmental impacts, but the experimental research about it are few. In this paper, three kinds of impregnated graphite samples are prepared with different degree of graphitization, the tribological properties of these samples in the dry friction environment and in a corrosive environment are analyzed and contrasted. The tribo-test results show that the friction coefficient of samples is reduced and the amount of wear of samples increase when the graphitization degree of samples increases in dry friction condition. While in a corrosive environment (samples are soaked N2O4), the friction coefficient and amount of wear are changed little if the graphitization degree of samples are low. If the degree of graphitization increase, the friction coefficient and amount of wear of samples increase too, the amount of wear is 2 to 3 times as the samples tested in the non-corrosive environment under pv value of 30 MPa•m/s. The impregnated graphite, which friction coefficient is stable and graphitization degree is in mid level, such #2, is more appropriate to have a work in the corrosion conditions. In this paper, preparation and tribological properties especially in corrosive environment of the impregnated graphite is studied, the research conclusion can provide an experimental and theoretical basis for the selection and process improvement of graphite materials, and also provide some important design parameters for contact seal works in a corrosive environment.

  5. Wear Behaviour of Pressible Lithium Disilicate Glass Ceramic

    Science.gov (United States)

    Peng, Zhongxiao; Rahman, Muhammad Izzat Abdul; Zhang, Yu; Yin, Ling

    2015-01-01

    This paper reports effects of surface preparation and contact loads on abrasive wear properties of highly aesthetic and high-strength pressible lithium disilicate glass-ceramics (LDGC). Abrasive wear testing was performed using a pin-on-disk device in which LDGC disks prepared with different surface finishes were against alumina pins at different contact loads. Coefficients of friction and wear volumes were measured as functions of initial surface finishes and contact loads. Wear-induced surface morphology changes in both LDGC disks and alumina pins were characterized using 3D laser scanning microscopy, scanning electron microscopy and energy dispersive x-ray spectroscopy. The results show that initial surface finishes of LDGC specimens and contact loads significantly affected the friction coefficients, wear volumes and wear-induced surface roughness changes of the material. Both wear volumes and friction coefficients of LDGC increased as the load increased while surface roughness effects were complicated. For rough LDGC surfaces, three-body wear was dominant while for fine LDGC surfaces, two-body abrasive wear played a key role. Delamination, plastic deformation and brittle fracture were observed on worn LDGC surfaces. The adhesion of LDGC matrix materials to alumina pins was also discovered. This research has advanced our understanding of the abrasive wear behaviour of LDGC and will provide guidelines for better utilisation and preparation of the material for long-term success in dental restorations. PMID:25980530

  6. Optical wear monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kidane, Getnet S; Desilva, Upul P.; He, Chengli; Ulerich, Nancy H.

    2016-07-26

    A gas turbine includes first and second parts having outer surfaces located adjacent to each other to create an interface where wear occurs. A wear probe is provided for monitoring wear of the outer surface of the first part, and includes an optical guide having first and second ends, wherein the first end is configured to be located flush with the outer surface of the first part. A fiber bundle includes first and second ends, the first end being located proximate to the second end of the optical guide. The fiber bundle includes a transmit fiber bundle comprising a first plurality of optical fibers coupled to a light source, and a receive fiber bundle coupled to a light detector and configured to detect reflected light. A processor is configured to determine a length of the optical guide based on the detected reflected light.

  7. Thermal benefits of melanism in cordylid lizards: a theoretical and field test.

    Science.gov (United States)

    Clusella-Trullas, Susana; van Wyk, Johannes H; Spotila, James R

    2009-08-01

    The hypothesis that low skin reflectance (melanism) provides an advantage for thermoregulation under cold conditions has received mixed support in ectothermic vertebrates. We selected a model system, three allopatric closely related species of cordylid lizards that differ in skin reflectance, to test this hypothesis. Cordylus niger and Cordylus oelofseni are melanistic and inhabit peninsular and montane areas, respectively, whereas Cordylus cordylus is more widespread and inhabits low inland areas. By combining theoretical, experimental, and field data on these species, we demonstrate that the difference in body temperature (T(b)) between melanistic and non-melanistic lizards under ecologically relevant climate variation ranged from 0 degrees to 2 degrees C. Despite its small magnitude, however, the faster heating rate and higher T(b) of melanistic species relative to non-melanistic species conferred an advantage under cold conditions. Comparison of habitat thermal quality (d(e)) and thermal accuracy (d(b)) across species indicated that, in winter, melanism conferred the greatest advantage during small windows of thermal opportunity. This finding was most pronounced for C. oelofseni, which is most constrained by cold temperatures in its habitat. By contrast, due to their rock-dwelling habits, melanistic and non-melanistic species benefited from rock refugia in summer, giving similar levels of thermoregulatory effectiveness across species, regardless of skin reflectance. This study therefore demonstrates that skin reflectance variation across cordylids has significant effects on their thermal balance. Furthermore, studies investigating the role of varying skin reflectance in field populations and species should incorporate fine and broad temporal scales (daily, monthly, and seasonal), environmental variability, and cost-benefit trade-offs of thermoregulation.

  8. Abrasive wear property of laser melting/deposited Ti2Ni/TiNi intermetallic alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A wear resistant intermetallic alloy consisting of TiNi primary dendrites and Ti2Ni matrix was fabricated by the laser melting deposition manufacturing process. Wear resistance of Ti2Ni/TiNi alloy was evaluated on an abrasive wear tester at room temperature under the different loads. The results show that the intermetallic alloy suffers more abrasive wear attack under low wear test load of 7, 13 and 25 N than high-chromium cast-iron. However, the intermetallic alloy exhibits better wear resistance under wear test load of 49 N. Abrasive wear of the laser melting deposition Ti2Ni/TiNi alloy is governed by micro-cutting and plowing.Pseudoelasticity of TiNi plays an active role in contributing to abrasive wear resistance.

  9. Abrasive Wear Behavior of High Chromium Cast Iron and Hadfield Steel-- A Comparison

    Institute of Scientific and Technical Information of China (English)

    Mehdi Mazar Atabaki; Sajjad Jafari; Hassan Abdollah-pour

    2012-01-01

    Wear properties of two different crushers used for grinding raw materials of cement industry are compared using pin-on-disk wear test.The wear test was carried out with different loads on a pin.Abrasive wear behavior of two alloys was evaluated by comparing mass loss,wear resistance,microhardness and friction coefficient.The microstructure of the specimens was detected using optical microscope.The results showed that abrasive wear of high chromium cast iron is lower than that of Hadfield steel.Due to the presence of M7C3 carbides on the high chromium cast iron matrix,impact crushers exhibited higher friction coefficient

  10. Reciprocating wear in a steam environment

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.J.; Gee, M.G. [National Physical Laboratory, Teddington, Middlesex (United Kingdom)

    2010-07-01

    Tests to simulate the wear between sliding components in steam power plant have been performed using a low frequency wear apparatus at elevated temperatures under static load, at ambient pressure, in a steam environment. The apparatus was modified to accept a novel method of steam delivery. The materials tested were pre-exposed in a flowing steam furnace at temperature for either 500 or 3000 hours to provide some simulation of long term ageing. The duration of each wear test was 50 hours and tests were also performed on as-received material for comparison purposes. Data has been compared with results of tests performed on non-oxidised material for longer durations and also on tests without steam to examine the effect of different environments. Data collected from each test consists of mass change, stub height measurement and friction coefficient as well as visual inspection of the wear track. Within this paper, it is reported that both pre-ageing and the addition of steam during testing clearly influence the friction between material surfaces. (orig.)

  11. Microstructure, Impact Fatigue Resistance and Impact Wear Resistance of Wear Resistant Low Cr-Si Cast Iron

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A great amount of iron and steel has been consumed in impact wear resistance parts such as grinding balls and lining plates in tube mills. Under this working conditions, the failure of wear resistant white irons is generally caused by fatigue spalling. The martensitic high chromium cast iron (WCr=15 %) has good wear resistance, but its cost is higher. The impact wear resistance of low chromium cast iron sometimes is not good. In the present paper ,a new wear resistant material-low Cr-Si cast iron was introduced. The influence of microstructure of cast iron on impact fatigue resistance and impact wear resistance was discussed. The ball-on-ball impact fatigue test, the high stress impact wear test and the field test of the grinding balls have been carried out. The results showed that the impact fatigue resistance (IFR) and impact wear resistance (IWR) of low Cr-Si cast iron are superior to typical low chromium cast irons and close to the martensitic high chromium cast iron. The main reasons are: ① The as-cast matrix of the low Cr-Si cast iron with stress released is pearlite with better plasticity and toughness; ② The high Si content improves the morphology of eutectic carbide, and has no secondary carbide resulting in less crack sources. All these factors are beneficial to the improvement of impact fatigue spalling resistance and impact wear resistance.

  12. Ceramic-like wear behaviour of human dental enamel.

    Science.gov (United States)

    Arsecularatne, J A; Hoffman, M

    2012-04-01

    This paper reports a transmission electron microscopy (TEM) analysis of subsurfaces of enamel specimens following in vitro reciprocating wear tests with an enamel cusp sliding on a flat enamel specimen under hydrated conditions. The obtained results show that crack formation occurred in the wear scar subsurface. The path followed by these cracks seems to be dictated either by the histological structure of enamel or by the contact stress field. Moreover, the analysis of a set of enamel wear results obtained from the literature and application of fracture-based models, originally developed for ceramics, correlate well, confirming the similar wear processes taking place in these materials. This analysis also reveals a marked influence of coefficient of friction on the enamel wear rate: for a higher coefficient of friction value, enamel wear can be severe even under forces generated during normal operation of teeth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. A physically-based abrasive wear model for composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gun Y.; Dharan, C.K.H.; Ritchie, Robert O.

    2001-05-01

    A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of the reinforcement is estimated by modeling the three primary wear mechanisms, specifically plowing, interfacial cracking and particle removal. Critical variables describing the role of the reinforcement, such as its relative size and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy matrix composite material.

  14. Fretting wear behavior of AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN An-hua; HUANG Wei-jiu; LI Zhao-feng

    2006-01-01

    The fretting behaviour of the AZ91D magnesium alloy was investigated. The influence of the number of cycles, normal load (contact pressure) and the amplitude of slip on the fretting behavior of the material were focused. Fretting tests were performed under various running conditions with regard to normal load levels and slip amplitudes. The friction coefficient between the surfaces at the fretting junction was continuously recorded. The fretting damage on the magnesium specimens was studied by SEM. The results show that the wear volume increases with the increase of slip amplitude, and linearly increases with the increase of normal load in the mixed and gross slip regime, but the normal load has no obvious effect on the wear volume in the partial slip regime. The predominant fretting wear mechanism of magnesium alloy in the slip regime is the oxidation wear, delaminated wear and abrasive wear.

  15. Effect of filler size on wear resistance of resin cement.

    Science.gov (United States)

    Shinkai, K; Suzuki, S; Katoh, Y

    2001-11-01

    The purpose of this study was to evaluate the effect of filler size on the wear of resin cements. Materials tested included four experimental dual-cure resin cements (Kuraray) consisting of different-sized filler particles. A rectangular box cavity was prepared on the flattened occlusal surface of extracted human molars. Ceramic inlays for the cavities were fabricated using the Cerec 2 system. The Cerec inlays were cemented with the respective cements and adhesive systems according to the manufacturer's directions. The restored surface was finished by wet-grinding with an 800-grit silicon carbide paper. Six specimens were prepared for each resin cement. Half of the specimens were subjected to a three-body wear test for 200,000 cycles, and the others were subjected to a toothbrush abrasion test for 30,000 cycles. The worn surface of each restoration was scanned by a profilometer (Surfcom 475 A) at eight different points for each restoration. The wear value was determined by measuring the vertical gap depth on the profilometric tracings. The data were statistically analyzed by one-way analysis of variance (ANOVA) and Scheffe's test. The results showed that, with increase of filler size, the wear value decreased in the toothbrush test and increased in the three-body wear test. The cement with 0.04-microm filler exhibited the lowest wear value among the materials in the three-body wear test, and the same wear value as the cement with 0.97-microm filler in the toothbrush test. Based upon the results of this study, it is concluded that the wear of resin cements was affected by the filler size as well as the mode of wear test.

  16. Wear behaviour of epoxy resin filled with hard powders

    Science.gov (United States)

    Formisano, A.; Boccarusso, L.; Minutolo, F. Capece; Carrino, L.; Durante, M.; Langella, A.

    2016-10-01

    The development of high performance materials based on epoxy resin finds a growing number of applications in which high wear resistance is required. One major drawback in many of these applications is the relatively poor wear resistance of the epoxy resin. Therefore, in order to investigate on the possibility of increasing wear resistance of thermoset polymers filled with hard powders, sliding tests are carried out by means of a pin on disc apparatus. In particular, composite resins, constituted by an epoxy resin filled with different contents and sizes of Silicon Carbide powder, are analyzed; the wear resistance, in terms of volume loss, is measured for different abrasive counterfaces and loads.

  17. Experimental Research on the Determination of the Coefficient of Sliding Wear under Iron Ore Handling Conditions

    Directory of Open Access Journals (Sweden)

    G. Chen

    2017-09-01

    Full Text Available The handling of iron ore bulk solids maintains an increasing trend due to economic development. Because iron ore particles have hard composites and irregular shapes, the bulk solids handling equipment surface can suffer from severe sliding wear. Prediction of equipment surface wear volume is beneficial to the efficient maintenance of worn areas. Archard’s equation provides a theoretical solution to predict wear volume. To use Archard’s equation, the coefficient of sliding wear must be determined. To our best knowledge, the coefficient of sliding wear for iron ore handling conditions has not yet been determined. In this research, using a pin-on-disk tribometer, the coefficients of sliding wear for both Sishen particles and mild steel are determined with regard to iron ore handling conditions. Both naturally irregular and spherical shapes of particles are used to estimate average values of wear rate. Moreover, the hardness and inner structures of Sishen particles are examined, which adds the evidence of the interpretation of wear results. It is concluded that the coefficients of sliding wear can vary largely for both Sishen particle and mild steel. The wear rate decreases from transient- to steady-state. The average coefficient of sliding wear is capable of predicting wear with respect to long distances at the steady-state. Two types of sliding friction are distinguished. In addition, it is found that the temperature rise of the friction pairs has negligible influence on wear rate.

  18. Diagnostic accuracy: theoretical models for preimplantation genetic testing of a single nucleus using the fluorescence in situ hybridization technique

    NARCIS (Netherlands)

    P.N. Scriven; P.M.M. Bossuyt

    2010-01-01

    The aim of this study was to develop and use theoretical models to investigate the accuracy of the fluorescence in situ hybridization (FISH) technique in testing a single nucleus from a preimplantation embryo without the complicating effect of mosaicism. Mathematical models were constructed for thre

  19. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  20. Wear Behavior of an Unstable Knee: Stabilization via Implant Design?

    Directory of Open Access Journals (Sweden)

    Jörn Reinders

    2014-01-01

    Full Text Available Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anterior cruciate ligament was simulated. In the second, a ligamentous-unstable knee with additionally insufficient posterior cruciate ligament and medial collateral ligament was simulated. Wear was determined gravimetrically and wear particles were analyzed. Implant kinematics was recorded during simulation. Results. Significantly higher wear rates (P≤0.001 were observed for the unstable knee (14.58±0.56 mg/106 cycles compared to the stable knee (7.97 ± 0.87 mg/106 cycles. A higher number of wear particles with only small differences in wear particle characteristics were observed. Under unstable knee conditions, kinematics increased significantly for translations and rotations (P≤0.01. This increase was mainly attributed to higher tibial posterior translation and internal rotations. Conclusion. Higher kinematics under unstable test conditions is a result of insufficient stabilization via implant design. Due to the higher kinematics, increased wear was observed in this study.

  1. Prediction of Cone Crusher Performance Considering Liner Wear

    Directory of Open Access Journals (Sweden)

    Yanjun Ma

    2016-12-01

    Full Text Available Cone crushers are used in the aggregates and mining industries to crush rock material. The pressure on cone crusher liners is the key factor that influences the hydraulic pressure, power draw and liner wear. In order to dynamically analyze and calculate cone crusher performance along with liner wear, a series of experiments are performed to obtain the crushed rock material samples from a crushing plant at different time intervals. In this study, piston die tests are carried out and a model relating compression coefficient, compression ratio and particle size distribution to a corresponding pressure is presented. On this basis, a new wear prediction model is proposed combining the empirical model for predicting liner wear with time parameter. A simple and practical model, based on the wear model and interparticle breakage, is presented for calculating compression ratio of each crushing zone along with liner wear. Furthermore, the size distribution of the product is calculated based on existing size reduction process model. A method of analysis of product size distribution and shape in the crushing process considering liner wear is proposed. Finally, the validity of the wear model is verified via testing. The result shows that there is a significant improvement of the prediction of cone crusher performance considering liner wear as compared to the previous model.

  2. Incisor wear and age in Yellowstone bison

    Science.gov (United States)

    Christianson, D.A.; Gogan, P.J.P.; Podruzny, K.M.; Olexa, E.M.

    2005-01-01

    Biologists commonly use tooth eruption and wear patterns or cementum annuli techniques to estimate age of ungulates. However, in some situations the accuracy or sampling procedures of either approach are undesirable. We investigated the progression of several quantitative measures of wear with age, using permanent first incisors from Yellowstone bison (Bison bison), and tested for differences between sexes and herds. We further investigated the relationship of wear and age to explore an age-estimation method. Labial-lingual width (LLW) correlated best with assigned age (r2=0.66, males; r2=0.76 females). Labial-lingual width differed between sexes, with females showing ∼0.2 mm more wear than males. Additionally, differences in rate of wear existed between bison of the northern and central Yellowstone herds (1.2 and 0.9 mm/year, respectively). We developed a regression formula to test the power of LLW as an estimator of Yellowstone bison age. Our method provided estimated ages within 1 year of the assigned age 73% and 82% of the time for female and male bison, respectively.

  3. The Wear Behavior of HVOF Sprayed Near-Nanostructured WC-17%Ni(80/20)Cr Coatings in Dry and Slurry Wear Conditions

    Science.gov (United States)

    Ben Mahmud, Tarek A.; Atieh, Anas M.; Khan, Tahir I.

    2017-07-01

    The ability to deposit nanostructured feedstock by using high-velocity oxygen-fuel (HVOF) spray offers potential improvements in coating hardness, wear resistance and toughness for applications in the oil sands industry. In this study, the wear behavior of a near-nanostructured coating was compared under dry and slurry abrasive wear test using an uncoated AISI-1018 low-carbon steel substrate as a reference. The coating microstructures were analyzed in the as-sprayed, dry and slurry test conditions using scanning electron microscopy, x-ray diffraction and microhardness measurements. Wear behavior of the steel and coating surfaces were assessed using a pin-on-plate wear test under various loads. The results showed that a coating could be successfully deposited using the HVOF spraying technique and with retention of the near-nanosized WC dispersion within the coating structure. The wear rate under dry test conditions was greater for the steel and coating compared to tests performed under slurry conditions. Examination of the wear tracks revealed that the wear mechanism was different for the two test conditions. Wear in the dry test condition resulted from 2-body abrasion, while 3-body abrasion dominated wear in slurry conditions. The latter showed lower wear rates due to a lubricating effect of the oil.

  4. Comparative wear mapping techniques

    DEFF Research Database (Denmark)

    Alcock, J.; Sørensen, Ole Toft; Jensen, S.

    1996-01-01

    Pin surfaces were analysed by laser profilometry. Two roughness parameters, R(a) and the fractal dimension, were investigated as a first step towards methods of quantitative wear mechanism mapping. Both parameters were analysed for their relationship to the severity and prevalence of a mechanism....

  5. The action and analysis of magnetic field on the lubricants and wear products in the process of wearing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The magnetic field is an important factor in the conditioning and controlling tribologicalproperty. This paper analyzes and describes the physical effects and chemical natures of magneticfield to affect the friction, wear and lubrication, and characterize the tribochemical effect of mag-netic field on WRL lubricant by infrared(IR) spectrum method. At same time, the tribological prop-erty of WRL lubricant was examined by using the reciprocating friction-wear tester of NG-x type inthe condition of magnetic field. The results show that the present of magnetic field can decreasethe friction coefficient(f) and wear weight(W), even realize the zero-wear testing situation.

  6. Wear behaviour of powder metallurgy tool steel M3/2 reinforced with niobium carbide by pin-on-disk test; Estudio del desgaste de aceros rapidos pulvimetalurgicos M3/2 reforzados con carburo de niobio mediante el ensayo pin-on-disk

    Energy Technology Data Exchange (ETDEWEB)

    Candela, N.; Lopez, A.; Ruano, O. A.; Jimenez, J. a.

    2005-07-01

    In this work, composite materials M3/2 high-speed steel reinforced with 5, 10 and 15%, in volume, of niobium carbide have been obtained to improve the wear behaviour. The materials were prepared by powder metallurgy using steel and carbide powders that were mechanically ball milled in a planetary mill, and then hot isostatically pressed. The wear mechanically ball milled in a planetary mill, and then hot isostatically pressed. The wear behaviour was determined by pin-on-disk tests. The materials present a microstructure consisting of grains with a few microns in size and fine MC and M{sub 6}C particles homogeneously dispersed in its interior. In the case of reinforced materials, reinforcing carbides particles are placed mainly at the surface of the prior steel powder particle boundaries. the wear behaviour was evaluated from friction and wear coefficients, and also from weight loss. the addition of niobium carbide improves the wear properties of the tool steel in both martensitic and tempered conditions. A decrease of the weight loss and the wear coefficient is observed with increasing volume fraction of NbC. (Author) 7 refs.

  7. Corrosive wear. Evaluation of wear and corrosive resistant materials; Noetningskorrosion. Utvaerdering av noetnings- och korrosionsbestaendiga material

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H.; Hjertsen, D.; Waara, P.; Prakash, B.; Hardell, J.

    2007-12-15

    With a new purchase of a waste conveyer screw at hand, for the 'A-warehouse' at the combined power and heating plant at E.ON Norrkoeping, the request for improved construction materials was raised. The previous screw required maintenance with very short intervals due to the difficult operation conditions. With the new screw the expectation is to manage 6 months of operation without interruption. The environment for the screw has two main components that sets the demand on the materials, on one hand the corrosive products that comes along and which forms at digestion of the waste and on the other hand the abrasive content in the waste. The term of the mechanism is wear-corrosion and can give considerably higher material loss than the two mechanisms wear and corrosion separately. Combination of a strong corrosive environment together with extensive wear is something that we today have limited knowledge about. The overall objective of the project has been to establish better wear and corrosive resistant construction materials for a waste conveyer screw that will lead to reduced operational disturbance costs. The evaluation has been performed in both controlled laboratory environments and in field tests, which has given us a better understanding of what materials are more suitable in this tough environment and has given us a tool for future predictions of the wear rate of the different material. The new conveyer screw, installed in February 2007 and with which the field test have been performed, has considerably reduced the wear of the construction and the target of 6 month maintenance-free operation is met with this screw for all the evaluated materials. The wear along the screw varies very much and with a clear trend for all the materials to increase towards the feeding direction of the screw. As an example, the wear plate SS2377 (stainless duplex steel) has a useful life at the most affected areas that is calculated to be 1077 days of operation with the

  8. Development of wear-resistant coatings for cobalt-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.

    1999-10-22

    The level of nuclear plant radiation exposure due to activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. Laboratory pin-on-disc and rolling contact wear tests were used to evaluate the wear performance of several coatings. Based on the results of these tests, multilayer Cr-nitride coatings and ion nitriding are the most promising approaches.

  9. Variations in erosive wear of metallic materials with temperature via the electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaochen; Yu, Bin [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Yan, X.G. [School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China); Li, D.Y., E-mail: dongyang.li@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China)

    2016-04-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  10. In vitro wear of flowable resin composite for posterior restorations.

    Science.gov (United States)

    Shinkai, Koichi; Taira, Yoshihisa; Suzuki, Shiro; Suzuki, Masaya

    2016-01-01

    The purpose of this study was to examine three- and two-body wear values of flowable resin composites for posterior restorations, using a mechanical loading device. The cavities prepared on flattened extracted molars were restored with flowable resin composites (Clearfil Majesty LV: MLV, Estelite Flow Quick: EFQ, Beautifil Flow Plus F00: BFP, and MI Fill: MIF) using accompanying adhesive systems. A universal resin composite (Clearfil Majesty) was used as a control. The specimens were subjected to in vitro three- and two-body wear testing. MLV showed high wear value (three-body: 14.69 µm, two-body: 0.268 mm(3)) compared with other materials tested in both three- and two-body wear tests. BFP showed high three-body wear value (5.78 µm), whereas low two-body wear value (0.008 mm(3)). MIF and EFQ showed equivalent wear values (MIF, three-body: 0.42 µm, two-body: 0.026 mm(3); EFQ, three-body: 1.15 µm, two-body: 0.14 mm(3)) to that of the control in both wear tests.

  11. Tribological Bench and Engine Dynamometer Tests of a Low Viscosity SAE 0W-16 Engine Oil Using a Combination of Ionic Liquid and ZDDP as Anti-wear Additives

    Directory of Open Access Journals (Sweden)

    William C Barnhill

    2015-09-01

    Full Text Available We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL with effective anti-wear functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated using a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil was first evaluated using tribological bench tests: anti-wear performance in boundary lubrication and friction behavior (Stribeck curves in elastohydrodynamic, mixed, and boundary lubrication. The forthcoming standard Sequence VIE engine dynamometer test was then conducted to demonstrate improved fuel economy. Results were benchmarked against those of another experimental engine oil with almost the same formulation except using ZDDP only without the IL (similar total phosphorus content and a baseline SAE 20W-30 engine oil. The IL-ZDDP formulation consistently outperformed the ZDDP-only formulation and the results from the bench and engine tests are well correlated.

  12. Achievement Goals and Discrete Achievement Emotions: A Theoretical Model and Prospective Test

    Science.gov (United States)

    Pekrun, Reinhard; Elliot, Andrew J.; Maier, Markus A.

    2006-01-01

    A theoretical model linking achievement goals to discrete achievement emotions is proposed. The model posits relations between the goals of the trichotomous achievement goal framework and 8 commonly experienced achievement emotions organized in a 2 (activity/outcome focus) x 2 (positive/negative valence) taxonomy. Two prospective studies tested…

  13. Testing the Efficacy of Theoretically Derived Improvements in the Treatment of Social Phobia

    Science.gov (United States)

    Rapee, Ronald M.; Gaston, Jonathan E.; Abbott, Maree J.

    2009-01-01

    Recent theoretical models of social phobia suggest that targeting several specific cognitive factors in treatment should enhance treatment efficacy over that of more traditional skills-based treatment programs. In the current study, 195 people with social phobia were randomly allocated to 1 of 3 treatments: standard cognitive restructuring plus in…

  14. Spiritual Wellness and Depression: Testing a Theoretical Model with Older Adolescents and Midlife Adults

    Science.gov (United States)

    Briggs, Michele Kielty; Shoffner, Marie F.

    2006-01-01

    Overall spiritual wellness, as well as 4 individual components of spiritual wellness, has been theoretically and empirically linked with depression. Prior to this investigation, no study has examined the relationship between spiritual wellness and depression by using a 4-component measurement model of spiritual wellness. In this study of older…

  15. Testing Social Cognitive Theory as a Theoretical Framework to Predict Smoking Relapse among Daily Smoking Adolescents

    NARCIS (Netherlands)

    Zundert, R.M.P. van; Nijhof, L.M.; Engels, R.C.M.E.

    2009-01-01

    Predictors of adolescent smoking relapse are largely unknown, since studies either focus on relapse among adults, or address (long-term) smoking cessation but not relapse. In the present study, Social Cognitive Theory (SCT) was used as a theoretical framework to examine the first and second lapses,

  16. Consideration of wear rates at high velocity

    Science.gov (United States)

    Hale, Chad S.

    The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models

  17. On the Prospects of Using Nanoindentation and Wear Test to Study the Mechanical Behavior of Fe-Based Metallic Glass Coating Reinforced by B4C Nanoparticles

    Science.gov (United States)

    Movahedi, Behrooz

    2017-03-01

    In this study, Fe-based metallic glass was served as the matrix in which various ratios of hard B4C nanoparticles as reinforcing agents were prepared using a high-energy mechanical milling. The feedstock nanocomposite powders were transferred to the coatings using a high-velocity oxygen fuel process. The results showed that the microstructure of the nanocomposite coating was divided into two regions, namely a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10 to 50 nm in a residual amorphous matrix. As the B4C content is increased, the hardness of the composite coatings is increased too, but the fracture toughness begins to be decreased at the B4C content higher than 20 vol pct. The optimal mechanical properties are obtained with 15 vol pct B4C due to the suitable content and uniform distribution of nanoparticles. The addition of 15 vol pct B4C to the Fe-based metallic glass matrix reduced the friction coefficient from 0.49 to 0.28. The average specific wear rate of the nanocomposite coating (0.48 × 10-5 mm3 Nm-1) was much less than that for the single-phase amorphous coating (1.23 × 10-5 mm3Nm-1). Consequently, the changes in wear resistance between both coatings were attributed to the changes in the brittle to ductile transition by adding B4C reinforcing nanoparticles.

  18. On the Prospects of Using Nanoindentation and Wear Test to Study the Mechanical Behavior of Fe-Based Metallic Glass Coating Reinforced by B4C Nanoparticles

    Science.gov (United States)

    Movahedi, Behrooz

    2017-01-01

    In this study, Fe-based metallic glass was served as the matrix in which various ratios of hard B4C nanoparticles as reinforcing agents were prepared using a high-energy mechanical milling. The feedstock nanocomposite powders were transferred to the coatings using a high-velocity oxygen fuel process. The results showed that the microstructure of the nanocomposite coating was divided into two regions, namely a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10 to 50 nm in a residual amorphous matrix. As the B4C content is increased, the hardness of the composite coatings is increased too, but the fracture toughness begins to be decreased at the B4C content higher than 20 vol pct. The optimal mechanical properties are obtained with 15 vol pct B4C due to the suitable content and uniform distribution of nanoparticles. The addition of 15 vol pct B4C to the Fe-based metallic glass matrix reduced the friction coefficient from 0.49 to 0.28. The average specific wear rate of the nanocomposite coating (0.48 × 10-5 mm3 Nm-1) was much less than that for the single-phase amorphous coating (1.23 × 10-5 mm3Nm-1). Consequently, the changes in wear resistance between both coatings were attributed to the changes in the brittle to ductile transition by adding B4C reinforcing nanoparticles.

  19. Effects of rare earths on friction and wear characteristics of magnesium alloy AZ91D

    Institute of Scientific and Technical Information of China (English)

    祁庆琚; 刘勇兵; 杨晓红

    2003-01-01

    The influence of various rare-earth contents on the friction and wear characteristics of magnesium alloyAZ91D was studied. The results show that the wear resistance properties of rare-earth magnesium alloys are betterthan those of the matrix alloy under the testing conditions. Magnesium alloys undergo transition from mild wear tosevere wear. The addition of rare earths refines the structure of alloys, improves the comprehensive behaviors of themagnesium alloys, increases the stability of oxidation films on worn surfaces, enhances the loading ability of rare-earth magnesium alloys, and delays the transition from mild wear to severe wear effectively.

  20. Research on a Diamond Tip Wear Mechanism in Atomic Force Microscope-based Micro/nano-machining

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The object is to investigate the wear of an atomic forcemicroscope (AFM) diamond tip when conducting micro/nano-machining on single crystal silicon surface. The experimental research and theoretical analysis were carried out on the worn tip in terms of wear rate, wear mechanism and the effect of the tip wear on micro-machining process. The wear rate was calculated as 1.7(10~10mm3/(N*m) by using a theoretical model combined with the experimental results. Through an integration of an AFM observation on the worn tip features with the FEM simulation of the stress distribution, in addition to the unit cutting force calculation on the AFM diamond tip, the wear mechanism of the AFM diamond tip was concluded as mainly chemical wear, and the wear process was also elaborated as well.

  1. Impact wear behaviors of Hadfield manganese steel

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; XU Yun-hua; CEN Qi-hong; ZHU Jin-hua

    2005-01-01

    Impact wear behaviors of Hadfield manganese steel at different impact angles were investigated. The results of impact wear tests show that there exists a critical impact load for Hadfield steel. The wear rate suddenly turns down after some impact cycles when the impact load is greater than the critical load. The critical impact load is smaller than 8.2 J in this research because the nano-sized austenitic grains embedded in amorphous delay the crack propagation in subsurface. From high resolution transmission electron microscope (HRTEM) examination of subsurface microstructure, it is found that a large amount of nano-sized grains embedded in bulk amorphous matrix are fully developed and no martensitic transformation occurs during the impact wear process. The analytical results of worn surface morphology and debris indicate that the initiation of crack, propagation and spalling are restricted in the amorphous phase, resulting in the size distribution of debris in nano-sizes, which is the reason why the wear rate of Hadfield steel is greatly decreased at high impact load.

  2. Wear Modalities and Mechanisms of the Mining Non-asbestos Composite Brake Material

    Science.gov (United States)

    Bao, Jiusheng; Yin, Yan; Zhu, Zhencai; Tong, Minming; Lu, Yuhao; Peng, Yuxing

    2013-08-01

    The mining brake material is generally made of composite materials and its wear has important influences on the braking performance of disc brakes. In order to improve the braking reliability of mine hoisters, this paper did some tribological investigations on the mining brake material to reveal its wear modalities and mechanisms. The mining non-asbestos brake shoe and 16Mn steel were selected as braking pairs and tested on a pad-on-disc friction tester. And a SEM was used to observe the worn surface of the brake shoe. It is shown that the non-asbestos brake material has mainly five wear modalities: adhesive wear, abrasive wear, cutting wear, fatigue wear and high heat wear. At the front period of a single braking the wear modality is mainly composed of some light mechanical wear such as abrasive, cutting and point adhesive. With the temperature rising at the back period it transforms to some heavy mechanical wear such as piece adhesive and fatigue. While in several repeated brakings once the surface temperature rises beyond the thermal-decomposition point of the bonding material, the strong destructive high heat wear takes leading roles on the surface. And a phenomenon called friction catastrophe (FC) occurs easily, which as a result causes a braking failure. It is considered that the friction heat has important influences on the wear modalities of the brake material. And the reduction of friction heat must be an effective technical method for decreasing wear and avoiding braking failures.

  3. Wear and cutting performance of diamond composite material-a comparison with tungsten carbide

    Institute of Scientific and Technical Information of China (English)

    LI Xing-sheng; J. N. Boland

    2004-01-01

    A series of wear and rock cutting tests were undertaken to assess the wear and cutting performance of a thermally stable diamond composite (TSDC). The wear tests were conducted on a newly designed wear testing rig in which a rotating aluminium oxide grinding wheel is turned (also known as machined) by the testing tool element.The rock cutting tests were performed on a linear rock-cutting planer. The thrust and cutting forces acting on the tool were measured during these tests. A tungsten carbide element was also studied for comparative purposes. The wear coefficients of both materials were used to evaluate wear performance while cutting performance was assessed by tool wear and the rates of increase in forces with cutting distance.

  4. Test of the theoretical hyperfine structure of the molecular hydrogen ion at the 1-ppm level

    CERN Document Server

    Korobov, Vladimir I; Hilico, Laurent; Karr, Jean-Philippe

    2015-01-01

    We revisit the $m \\alpha^6 (m/M)$ order corrections to the hyperfine splitting in the H$_2^+$ ion, and find a hitherto unrecognized second-order relativistic contribution associated with the vibrational motion of the nuclei. Inclusion of this correction term produces theoretical predictions which are in excellent agreement with experimental data [K. B. Jefferts, Phys.\\ Rev.\\ Lett.\\ \\textbf{23}, 1476 (1969)], thereby concluding a nearly fifty years long theoretical quest to explain the experimental results within their 1-ppm error. The agreement between theory and experiment corroborates the proton structural properties as derived from the hyperfine structure of atomic hydrogen. Our work furthermore indicates that for future improvements, a full three-body evaluation of the $m \\alpha^6 (m/M)$ correction term will be mandatory.

  5. Theoretical Perspectives and Empirical Tests in the Field of Sexual Abuse Against Minors

    Directory of Open Access Journals (Sweden)

    SORIN M. RĂDULESCU

    2009-02-01

    Full Text Available The article reviews the main theoretical and practical contributions in the field of sexual abuse against children. To this end, the article examines the following key issues in this area of research: the main obstacles faced by empirical research in this field, the risk factors which reinforce the perpetration of acts of sexual abuse, the incidence of sexual abuse in the contemporary world, the explanatory models of this phenomenon (biological, psychological, psychiatric, psycho-social, sociological, the specific theories and research with respect to the main characteristics of sexualaggressors. In this context, the article verifies the validity of the theoretical model of the "four factors" (emotional congruence, sexual arousal, blockage and disinhibition proposed by David Finkelhor. The author of the present article opts, instead, for a multiple-factor explanation of the subject in question.

  6. Sub-millimeter Spatial Oscillations of Newton's Constant: Theoretical Models and Laboratory Tests

    CERN Document Server

    Perivolaropoulos, Leandros

    2016-01-01

    We investigate the viability of sub-millimeter wavelength oscillating deviations from the Newtonian potential at both the theoretical and the experimental/observational level. At the theoretical level such deviations are generic predictions in a wide range of extensions of General Relativity (GR) including $f(R)$ theories, massive Brans-Dicke (BD)- scalar tensor theories, compactified extra dimension models and nonlocal extensions of GR. However, the range of parameters associated with such oscillating deviations is usually connected with instabilities present at the perturbative level. An important exception emerges in nonlocal gravity theories where oscillating deviations from Newtonian potential occur naturally on sub-millimeter scales without any instabilities. As an example of a model with unstable Newtonian oscillations we review an $f(R)$ expansion around General Relativity of the form $f(R)=R+\\frac{1}{6 m^2} R^2$ with $m^2<0$ pointing out possible stabilization mechanisms. As an example of a model ...

  7. Theoretical and Computational Studies of Rare Earth Substitutes: A Test-bed for Accelerated Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, Lorin X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Hard permanent magnets in wide use typically involve expensive Rare Earth elements. In this effort, we investigated candidate permanent magnet materials which contain no Rare Earths, while simultaneously exploring improvements in theoretical methodology which enable the better prediction of magnetic properties relevant for the future design and optimization of permanent magnets. This included a detailed study of magnetocrystalline anisotropy energies, and the use of advanced simulation tools to better describe magnetic properties at elevated temperatures.

  8. Family Leadership: Constructing and Testing a Theoretical Model of Family Well-Being

    OpenAIRE

    Galbraith, Kevin A.

    2000-01-01

    Leadership in organizational contexts has received considerable attention through the years. Although much is known about what constitutes effective leadership in an organizational setting, little is known about leadership as it pertains to the family. To address this limitation, a theoretical model of family leadership was developed. This model draws on transformational leadership and proposes five areas in which leadership could be carried out to lead and strengthen the family unit. These f...

  9. Engine oil wear resistance

    Directory of Open Access Journals (Sweden)

    A.N. Farhanah

    2015-03-01

    Full Text Available Lubricants play a vital role in an internal combustion engine to lubricate parts and help to protect and prolong the engine life. Lubricant also will help to reduce wear by creating lubricating film between the moving parts hence reduce metal-to-metal contacts. Engine oil from three different manufacturers with the same SAE viscosity grade available in market does not mean it will have the same lubricity for an engine. In this study, commercial mineral lubrication oil (SAE 10W-30 from three manufacturers was investigated to compare the lubrication performance at three different temperatures (40˚C, 70˚C and 100˚C in 60 minutes time duration by using four ball wear tester. The speed will be varied from 1000 rpm to 2500 rpm. Results show that all three lubricants have different lubricity performance; the smaller the wear scar, the better the lubricant since the lubricant can protect the moving surfaces from direct metal-to-metal contact occur.

  10. Asphalt wear and pollution transport

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Asa [Division of Traffic Engineering, Lulea University of Technology Lulea (Sweden)

    1996-09-06

    Studded tires cause extensive wear of road surfaces during winter producing small particles. Besides transporting different adsorbed pollutants these particles also discharge metal ions by their own natural content. The major part (95%) of the asphalt is composed of stone fractions. The rest consists mainly of bitumen, which contains trace quantities of metals. Laboratory studies in this study have demonstrated different adsorbing properties of metal ions, as well as differences in adsorption when comparing stone materials. Two stone materials, a gabbro and a porphyry, have been tested for their adsorption properties concerning Pb, Cu, Zn and Cd. The gabbro showed better adsorption capacity than the porphyry. Gabbro has coarser grains, it is softer, and also has a higher content of most metals compared to the porphyry. In all tests lead and copper are more adsorbed than zinc and cadmium. All metal ions are released at about the same pH ({approx}4)

  11. Evaluation of Two Total Hip Bearing Materials for Resistance to Wear Using a Hip Simulator

    Directory of Open Access Journals (Sweden)

    Kenneth R. St. John

    2015-06-01

    Full Text Available Electron beam crosslinked ultra high molecular weight polyethylene (UHMWPE 32 mm cups with cobalt alloy femoral heads were compared with gamma-irradiation sterilized 26 mm cups and zirconia ceramic heads in a hip wear simulator. The testing was performed for a total of ten million cycles with frequent stops for cleaning and measurement of mass losses due to wear. The results showed that the ceramic on UHMWPE bearing design exhibited higher early wear than the metal on highly crosslinked samples. Once a steady state wear rate was reached, the wear rates of the two types of hip bearing systems were similar with the ceramic on UHMPWE samples continuing to show a slightly higher rate of wear than the highly crosslinked samples. The wear rates of each of the tested systems appear to be consistent with the expectations for low rates of wear in improved hip replacement systems.

  12. Coupling behavior between adhesive and abrasive wear mechanism of aero-hydraulic spool valves

    Institute of Scientific and Technical Information of China (English)

    Chen Yunxia; Gong Wenjun; Kang Rui

    2016-01-01

    Leakage due to wear is one of the main failure modes of aero-hydraulic spool valves. This paper established a practical coupling wear model for aero-hydraulic spool valves based on dynamic system modelling theory. Firstly, the experiment for wear mechanism verification proved that adhesive wear and abrasive wear did coexist during the working process of spool valves. Sec-ondly coupling behavior of each wear mechanism was characterized by analyzing actual time-variation of model parameters during wear evolution process. Meanwhile, Archard model and three-body abrasive wear model were utilized for adhesive wear and abrasive wear, respectively. Furthermore, their coupling wear model was established by calculating the actual wear volume. Finally, from the result of formal test, all the required parameters for our model were obtained. The relative error between model prediction and data of pre-test was also presented to verify the accuracy of model, which demonstrated that our model was useful for providing accurate prediction of spool valve’s wear life.

  13. Friction and wear behaviour of self lubricating bearing liners

    Science.gov (United States)

    Gay, Russell

    The thesis describes a numerical model for evaluating the variation of friction and wear of a self lubricating bearing liner over its useful wear life. Self-lubricating bearings have been in widespread use since the mid-1950s, particularly in the aerospace industry where they have the advantage of being low maintenance components. They are commonly used in relatively low speed, reciprocating applications such as control surface actuators, and usually consist of a spherical bearing with the inner and outer elements separated by a composite textile resin-bonded liner. A finite element model has been developed to predict the local stiffness of a particular liner at different states of wear. Results obtained using the model were used to predict the overall friction coefficient as it evolves due to wear, which is a novel approach. Experimental testing was performed on a bespoke flat-on-flat wear test rig with a reciprocating motion to validate the results of the friction model.. These tests were carried out on a commercially-available bearing liner, predominantly at a high contact pressure and an average sliding speed of 0.2 ms-1. Good agreement between predicted and experimentally measured wear was obtained when appropriate coefficients of friction were used in the friction model, and when the reciprocating sliding distance was above a critical value. A numerical wear model was also developed to predict the trend of backlash development in real bearing geometries using a novel approach. Results from the wear model were validated against full-scale bearing tests carried out elsewhere by the sponsoring company. Good agreement was obtained between the model predictions and the experimental results for the first 80% of the bearing wear life, and explanations for the discrepancy during the last 20% of the wear life have been proposed..

  14. Microstructural aspects and wear behavior of sinter hardened distaloy HP

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhi Moghaddam, K.; Ghambari, M.; Farhangi, H. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of); Solimanjad, N.; Bergmark, A. [Hoeganaes AB, Bruksgatan, Hoeganaes (Sweden); Khorsand, H. [K.N. Toosi University, Tehran (Iran, Islamic Republic of)

    2011-11-15

    Effect of cooling rate during sinter hardening on the microstructure and wear behavior of sintered steel grade Distaloy HP has been studied. Wear performances are closely related to macro and micro hardness of the materials. Dry sliding wear tests have been conducted using a reciprocating pin on flat wear testing machine under normal loads of 25, 35 and 45N and at a constant speed of 0.3 m/s. The samples were sinter hardened at different cooling rates 0.5-3 C/s in order to investigate the influence of microstructure and hardness on wear behavior. It has been shown that, sintering process and cooling rate change the microstructure and hence the hardness and wear behavior of the material. The best wear resistance was detected at a cooling rate of 3 C/s. At this cooling rate the material had an almost martensitic microstructure and the wear rate was some how independent of the applied load. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Assessment of the amount of tooth wear on dental casts and intra-oral photographs

    NARCIS (Netherlands)

    Wetselaar, P.; Wetselaar-Glas, M.J.M.; Koutris, M.; Visscher, C.M.; Lobbezoo, F.

    2016-01-01

    Tooth wear is a multifactorial condition, leading to the loss of dental hard tissues. Many grading scales are available to assess the amount of tooth wear, one of which is the tooth wear evaluation system (TWES). A grading scale can be used chairside, on casts and on photographs. The aim was to test

  16. Pure mechanical wear loss measurement in corrosive wear

    Indian Academy of Sciences (India)

    Yanliang Huang; Xiaoxia Jiang; Sizuo Li

    2000-12-01

    The method for the measurement of the pure mechanical wear loss for 321 stainless steel, 1045 steel and pure iron in the study of the synergy between corrosion and wear was studied. The methods studied included the measurement in distilled water, by cathodic protection and by adding inhibitor KI, and all were compared with the wear loss in air. The experiment showed that the pure mechanical wear losses and friction coefficients obtained by the three methods were close to each other and can be used to calculate the various wear components in the study of the interaction of corrosion and wear, but the measurements in distilled water for pure iron and 1045 steel are not recommended due to their corrosion.

  17. Solid Bonded Films or Monolithic Ceramics in Tracked Chains of Construction Equipments for Wear Management

    Science.gov (United States)

    2004-06-01

    and the sprocket, in which abrasive wear is predominant. According to Rabinowicz [17], the abrasive wear is shared into three regions of low wear/high...12 RTO-MP-AVT-109 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED The methodology of Rabinowicz is more valid for metals and represents a...494-499 [17] E. Rabinowicz Abrasive wear resistance as a material test, Lubrication Engineering 33 (1977), p. 378 [18] Uetz, H. (ed

  18. Communication research between working capacity of hard- alloy cutting tools and fractal dimension of their wear

    Science.gov (United States)

    Arefiev, K.; Nesterenko, V.; Daneykina, N.

    2016-06-01

    The results of communication research between the wear resistance of the K applicability hard-alloy cutting tools and the fractal dimension of the wear surface, which is formed on a back side of the cutting edge when processing the materials showing high adhesive activity are presented in the paper. It has been established that the wear resistance of tested cutting tools samples increases according to a fractal dimension increase of their wear surface.

  19. Study of the theoretical tensile strength of Fe by a first-principles computational tensile test

    Institute of Scientific and Technical Information of China (English)

    Liu Yue-Lin; Zhang Ying; Hong Rong-Jie; Lu Guang-Hong

    2009-01-01

    This paper employs a first-principles total-energy method to investigate the theoretical tensile strengths of bcc and fcc Fe systemically. It indicates that the theoretical tensile strengths are shown to be 12.4, 32.7, 27.5 Gpa for bcc Fe, and 48.1, 34.6, 51.2 Gpa for fcc Fe in the [001], [110] and [111] directions, respectively. For bec Fe, the [001] direction is shown to be the weakest direction due to the occurrence of a phase transition from ferromagnetic bcc Fe to high spin ferromagnetic fcc Fe. For fcc Fe, the [110] direction is the weakest direction duc to the formation of an instable saddle-point 'bct structure' in the tensile process. Furthermore, it demonstrates that a magnetic instability will occur under a tensile strain of 14%, characterized by the transition of ferromagnetic bcc Fe to paramagnetic fcc Fe. The results provide a good reference to understand the intrinsic mechanical properties of Fe as a potential structural material in the nuclear fusion Tokamak.

  20. Theoretical morphology and development of flight feather vane asymmetry with experimental tests in parrots.

    Science.gov (United States)

    Feo, Teresa J; Prum, Richard O

    2014-06-01

    Asymmetry in flight feather vane width is a major functional innovation associated with the evolution of flight in the ancestors of birds. However, the developmental and morphological basis of feather shape is not simple, and the developmental processes involved in vane width asymmetry are poorly understood. We present a theoretical model of feather morphology and development that describes the possible ways to modify feather development and produce vane asymmetry. Our model finds that the theoretical morphospace of feather shape is redundant, and that many different combinations of parameters could be responsible for vane asymmetry in a given feather. Next, we empirically measured morphological and developmental model parameters in asymmetric and symmetric feathers from two species of parrots to identify which combinations of parameters create vane asymmetry in real feathers. We found that both longer barbs, and larger barb angles in the relatively wider trailing vane drove asymmetry in tail feathers. Developmentally, longer barbs were the result of an offset of the radial position of the new barb locus, whereas larger barb angles were produced by differential expansion of barbs as the feather unfurls from the tubular feather germ. In contrast, the helical angle of barb ridge development did not contribute to vane asymmetry and could be indicative of a constraint. This research provides the first comprehensive description of both the morphological and developmental modifications responsible for vane asymmetry within real feathers, and identifies key steps that must have occurred during the evolution of vane asymmetry.

  1. Assessment of organizational readiness for health promotion policy implementation: test of a theoretical model.

    Science.gov (United States)

    Rütten, A; Röger, U; Abu-Omar, K; Frahsa, A

    2009-09-01

    Models explaining the engagement of organizations in different policy sectors in health promotion policy implementation often utilize retrospective data. The current study attempted to model determinants of organizational readiness (goals, resources, obligation, opportunities) in supporting health policy implementation prospectively. Twenty qualitative interviews with representatives of organizations from different policy sectors, levels of government and organizational legal entities were conducted at the beginning of a project for the promotion of physical activity among women in difficult life situations. Organizational support in developing, implementing and disseminating the project was documented over 36 months. Results indicated that in most organizations, determinants were not favorable for health promotion policy action for physical activity among women in difficult life situations. Six organizations did not report any favorable determinant, and two organizations reported four. The other 12 organizations reported positive results for some of the determinants. Project work received support from 6 out of the 20 organizations. A case study of three organizations indicated that engagement or disengagement of organizations in health promotion policy actions might be partly explained by the theoretical model. The prospective assessment of organizational readiness in implementing health promotion policy is highly relevant for health promotion. Considering the proposed theoretical framework may aid in advancing our understanding of factors that are related to organizational engagement in health promotion actions.

  2. A Wear Geometry Model of Plain Woven Fabric Composites

    Directory of Open Access Journals (Sweden)

    Gu Dapeng

    2014-09-01

    Full Text Available The paper g describes a model meant for analysis of the wear geometry of plain woven fabric composites. The referred model consists of a mathematical description of plain woven fabric based on Peirce’s model coupled with a stratified method for the solution of the wear geometry. The evolutions of the wear area ratio of weft yarn, warp yarn and matrix resin on the worn surface are simulated by MatLab software in combination of warp and weft yarn diameters, warp and weft yarn-to-yarn distances, fabric structure phases (SPs. By comparing theoretical and experimental results from the PTFE/Kevlar fabric wear experiment, it can be concluded that the model can present a trend of the component area ratio variations along with the thickness of fabric, but has a inherently large error in quantitative analysis as an idealized model.

  3. Friction and wear methodologies for design and control

    CERN Document Server

    Straffelini, Giovanni

    2015-01-01

    This book introduces the basic concepts of contact mechanics, friction, lubrication, and wear mechanisms, providing simplified analytical relationships that are useful for quantitative assessments. Subsequently, an overview on the main wear processes is provided, and guidelines on the most suitable design solutions for each specific application are outlined. The final part of the text is devoted to a description of the main materials and surface treatments specifically developed for tribological applications and to the presentation of tribological systems of particular engineering relevance. The text is up to date with the latest developments in the field of tribology and provides a theoretical framework to explain friction and wear problems, together with practical tools for their resolution. The text is intended for students on Engineering courses (both bachelor and master degrees) who must develop a sound understanding of friction, wear, lubrication, and surface engineering, and for technicians or professi...

  4. Investigation into the high temperature wear properties of alloys contacting against different counterfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wood, P.D.; Datta, P.K.; Burnell-Gray, J.S. [Northumbria Univ., Newcastle (United Kingdom). Surface Eng. Res. Group; Wood, N.

    1997-12-31

    Wear tests have been conducted on a reciprocating high temperature rig at 750 C and a load of 7N using a stellite 6 and incoloy 800 counterface. The ODS alloys (MA956, PM2000 and PM2000SD) all showed poor wear resistance and the absence of glaze formation when worn against Incoloy 800. Glaze formation occurred when the ODS alloys were tested againststellite 6 providing very good wear protection. Nimonic 80A tested under similar conditions exhibited good wear resistance against Incoloy 800 (presence of glazes) and poor wear resistance against stellite 6 (absence of glazes). Titanium aluminide showed very good wear resistance when tested against incoloy 800 and stellite 6. In both cases, the glaze and underlying oxide particles were entirely formed from the counterface material. These results show the strong influence of the counterface materials on the formation of wear resistant glazes. (orig.) 5 refs.

  5. Wear resistance of TiAlSiN thin coatings.

    Science.gov (United States)

    Silva, F J G; Martinho, R P; Alexandre, R J D; Baptista, A P M

    2012-12-01

    In the last decades TiAIN coatings deposited by PVD techniques have been extensively investigated but, nowadays, their potential development for tribological applications is relatively low. However, new coatings are emerging based on them, trying to improve wear behavior. TiAlSiN thin coatings are now investigated, analyzing if Si introduction increases the wear resistance of PVD films. Attending to the application, several wear test configurations has been recently used by some researchers. In this work, TiAISiN thin coatings were produced by PVD Unbalanced Magnetron Sputtering technique and they were conveniently characterized using Scanning Electron Microscopy (SEM) provided with Energy Dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), Electron Probe Micro-Analyzer (EPMA), Micro Hardness (MH) and Scratch Test Analysis. Properties as morphology, thickness, roughness, chemical composition and structure, hardness and film adhesion to the substrate were investigated. Concerning to wear characterization, two very different ways were chosen: micro-abrasion with ball-on-flat configuration and industrial non-standardized tests based on samples inserted in a feed channel of a selected plastic injection mould working with 30% (wt.) glass fiber reinforced polypropylene. TiAISiN coatings with a small amount of about 5% (wt.) Si showed a similar wear behavior when compared with TiAIN reported performances, denoting that Si addition does not improve the wear performance of the TiAIN coatings in these wear test conditions.

  6. The chirally rotated Schrödinger functional: theoretical expectations and perturbative tests

    Energy Technology Data Exchange (ETDEWEB)

    Brida, Mattia Dalla [NIC, DESY,Platanenallee 6, 15738 Zeuthen (Germany); Sint, Stefan [School of Mathematics, Trinity College Dublin,Dublin 2 (Ireland); Vilaseca, Pol [Istituto Nazionale di Fisica Nucleare, Sezione di Roma,P.le A. Moro 2, I-00185, Roma (Italy)

    2016-08-17

    The chirally rotated Schrödinger functional (χSF) with massless Wilson-type fermions provides an alternative lattice regularization of the Schrödinger functional (SF), with different lattice symmetries and a common continuum limit expected from universality. The explicit breaking of flavour and parity symmetries needs to be repaired by tuning the bare fermion mass and the coefficient of a dimension 3 boundary counterterm. Once this is achieved one expects the mechanism of automatic O(a) improvement to be operational in the χSF, in contrast to the standard formulation of the SF. This is expected to significantly improve the attainable precision for step-scaling functions of some composite operators. Furthermore, the χSF offers new strategies to determine finite renormalization constants which are traditionally obtained from chiral Ward identities. In this paper we consider a complete set of fermion bilinear operators, define corresponding correlation functions and explain the relation to their standard SF counterparts. We discuss renormalization and O(a) improvement and then use this set-up to formulate the theoretical expectations which follow from universality. Expanding the correlation functions to one-loop order of perturbation theory we then perform a number of non-trivial checks. In the process we obtain the action counterterm coefficients to one-loop order and reproduce some known perturbative results for renormalization constants of fermion bilinears. By confirming the theoretical expectations, this perturbative study lends further support to the soundness of the χSF framework and prepares the ground for non-perturbative applications.

  7. The chirally rotated Schrödinger functional: theoretical expectations and perturbative tests

    Science.gov (United States)

    Brida, Mattia Dalla; Sint, Stefan; Vilaseca, Pol

    2016-08-01

    The chirally rotated Schrödinger functional (χSF) with massless Wilson-type fermions provides an alternative lattice regularization of the Schrödinger functional (SF), with different lattice symmetries and a common continuum limit expected from universality. The explicit breaking of flavour and parity symmetries needs to be repaired by tuning the bare fermion mass and the coefficient of a dimension 3 boundary counterterm. Once this is achieved one expects the mechanism of automatic O( a) improvement to be operational in the χSF, in contrast to the standard formulation of the SF. This is expected to significantly improve the attainable precision for step-scaling functions of some composite operators. Furthermore, the χSF offers new strategies to determine finite renormalization constants which are traditionally obtained from chiral Ward identities. In this paper we consider a complete set of fermion bilinear operators, define corresponding correlation functions and explain the relation to their standard SF counterparts. We discuss renormalization and O( a) improvement and then use this set-up to formulate the theoretical expectations which follow from universality. Expanding the correlation functions to one-loop order of perturbation theory we then perform a number of non-trivial checks. In the process we obtain the action counterterm coefficients to one-loop order and reproduce some known perturbative results for renormalization constants of fermion bilinears. By confirming the theoretical expectations, this perturbative study lends further support to the soundness of the χSF framework and prepares the ground for non-perturbative applications.

  8. Development and validation of a theoretical test of proficiency for video-assisted thoracoscopic surgery (VATS) lobectomy

    DEFF Research Database (Denmark)

    Savran, Mona M; Hansen, Henrik Jessen; Horsleben Petersen, René;

    2015-01-01

    BACKGROUND: Testing stimulates learning, improves long-term retention, and promotes technical performance. No purpose-orientated test of competence in the theoretical aspects of VATS lobectomy has previously been presented. The purpose of this study was, therefore, to develop and gather validity...... with existing guidelines for multiple-choice questions (step 2). The experts rated the relevance of the items to confirm content validity in a modified Delphi approach (step 3). Finally, the test was administered to physicians, who were categorised into different experience levels based on their experience...... in VATS procedures overall and in VATS lobectomies specifically. Their answers were used to achieve construct validity (step 4). RESULTS: Initially, 81 items were constructed and two Delphi iterations reduced the test to 50 items. Item analysis led to the exclusion of 19 items and the mean discrimination...

  9. Speed enforcement in Norway: Testing a game-theoretic model of the interaction between drivers and the police.

    Science.gov (United States)

    Elvik, Rune

    2015-11-01

    This paper probes the relationship between changes in the risk of apprehension for speeding in Norway and changes in the amount of speeding. The paper is based on a game-theoretic model of how the rate of violations and the amount of enforcement is determined by the interaction between drivers and the police. This model makes predictions both about how drivers will adapt to changes in the amount of enforcement (the more enforcement, the less violations) as well as how the police will adapt to changes in the rate of violations (the less violations, the less enforcement). The paper attempts to test the game-theoretic model empirically. Testing the model rigorously is difficult, mainly because some of the relevant variables are not reliably measured and are endogenous. Two models were developed: one to identify sources of changes in the rate of violations, one to identify sources of changes in the amount of enforcement. The predictions of the game-theoretic model were supported, although the results were not statistically significant in the model of how the police adapt enforcement to changes in the rate of violations.

  10. Enhanced DLC wear performance by the presence of lubricant additives

    Directory of Open Access Journals (Sweden)

    Romina Paula de Castro Costa

    2011-01-01

    Full Text Available Lubricant additives play significant role for reducing friction and wear of mechanical elements. The additives presented in 5W30 oil were developed for metal surfaces. However, they have been used in engine pieces covered with DLC coatings because they also offer the potential to reduce friction losses and wear in automotive applications. The friction and wear tests were carried out by using a UMT-CETR ball-on-disk tribometer in rotational mode under 5W30 synthetic oil at 100 °C. The X-ray photoelectron spectroscopy (XPS showed the presence of Mo and S in the wear tracks. These elements are from decomposition of ZDDP and MoDTC additives producing MoS2 in DLC surface, which offers enhanced durability by low wear rate.

  11. Research on Wear Behavior of ATC Cermet Material

    Institute of Scientific and Technical Information of China (English)

    ZHULiu; LINGGuo-ping; LIJian; WANGYou-wen

    2004-01-01

    By electroless chemical deposition process, a layer of metal cobalt film was coated on the surface of nano-ceramic powders of Al2O3 and TiC. The mixture of the two kinds of Co-coated power (about 70wt.% Al2O3-Co+30wt.%TiC-Co) was hot-pressed into ATC (Al2O3-TiC-Co8wt% ) cermet samples. The wear test was carried out under dry sliding wear condition by the pin-on-disk rig. The volume-loss of the samples in three sliding pairs, ATC/Steel, ATC/SiC and ATC/artificial diamond (AD) were investigated. The wear morphologies were examined by SEM. The wear-resistance between ATC cermet and Co-cemented WC were compared. The results show that the effect of fracture toughness is better than that of hardness to the wear resistance of high hardness materials. The wear mechanisms of ATC cermet samples were found that abrasion predominated in the wear process. The wear surface of ATC cermet samples became smoother with fine asperities spalling off and the volume loss was decreased.

  12. Research on Wear Behavior of ATC Cermet Material

    Institute of Scientific and Technical Information of China (English)

    ZHU Liu; LING Guo-ping; LI Jian; WANG You-wen

    2004-01-01

    By electroless chemical deposition process, a layer of metal cobalt film was coated on the surface of nano-ceramic powders of Al203 and TiC. The mixture of the two kinds of Co-coated power (about 70wt.%Al2O3-Co+30wt.%TiC-Co) was hot-pressed into ATC (Al2O3-TiC-Co8wt%) cermet samples. The wear test was carried out under dry sliding wear condition by the pin-on-disk rig. The volume-loss of the samples in three sliding pairs,ATC/Steel, ATC/SiC and ATC/artificial diamond (AD) were investigated. The wear morphologies were examined by SEM.The wear-resistance between ATC cermet and Co-cemented WC were compared. The results show that the effect of fracture toughness is better than that of hardness to the wear resistance of high hardness materials. The wear mechanisms of ATC cermet samples were found that abrasion predominated in the wear process. The wear surface of ATC cermet samples became smoother with fine asperities spalling off and the volume loss was decreased.

  13. Sensitivity of Dielectric Properties to Wear Process on Carbon Nanofiber/High-Density Polyethylene Composites.

    Science.gov (United States)

    Liu, Tian; Wood, Weston; Zhong, Wei-Hong

    2011-12-01

    We examined the correlation of wear effects with dielectric properties of carbon nanofibers (CNFs; untreated and organosilane-treated)-reinforced high-density polyethylene (HDPE) composites. Wear testing for the nanocomposites over up to 120 h was carried out, and then, dielectric permittivity and dielectric loss factor of the polymer composites with the increased wear time were studied. Scanning electron microscope and optical microscope observations were made to analyze the microstructure features of the nanocomposites. The results reveal that there exist approximate linear relationships of permittivity with wear coefficient for the nanocomposites. Composites containing silanized CNFs with the sufficiently thick coating exhibited high wear resistance. The change in permittivity was more sensitive to the increased wear coefficient for the nanocomposites with lower wear resistance. This work provides potential for further research on the application of dielectric signals to detect the effects of wear process on lifetime of polymeric materials.

  14. Sensitivity of Dielectric Properties to Wear Process on Carbon Nanofiber/High-Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Liu Tian

    2011-01-01

    Full Text Available Abstract We examined the correlation of wear effects with dielectric properties of carbon nanofibers (CNFs; untreated and organosilane-treated-reinforced high-density polyethylene (HDPE composites. Wear testing for the nanocomposites over up to 120 h was carried out, and then, dielectric permittivity and dielectric loss factor of the polymer composites with the increased wear time were studied. Scanning electron microscope and optical microscope observations were made to analyze the microstructure features of the nanocomposites. The results reveal that there exist approximate linear relationships of permittivity with wear coefficient for the nanocomposites. Composites containing silanized CNFs with the sufficiently thick coating exhibited high wear resistance. The change in permittivity was more sensitive to the increased wear coefficient for the nanocomposites with lower wear resistance. This work provides potential for further research on the application of dielectric signals to detect the effects of wear process on lifetime of polymeric materials.

  15. Wear of polymers and composites

    CERN Document Server

    Abdelbary, Ahmed

    2015-01-01

    In the field of tribology, the wear behaviour of polymers and composite materials is considered a highly non-linear phenomenon. Wear of Polymers and Composites introduces fundamentals of polymers and composites tribology. The book suggests a new approach to explore the effect of applied load and surface defects on the fatigue wear behaviour of polymers, using a new tribometer and thorough experiments. It discusses effects of surface cracks, under different static and cyclic loading parameters on wear, and presents an intelligent algorithm, in the form of a neural network, to map the relations

  16. Investigation on the Tribological Behavior and Wear Mechanism of Five Different Veneering Porcelains.

    Directory of Open Access Journals (Sweden)

    Jie Min

    Full Text Available The primary aim of this research was to investigate the wear behavior and wear mechanism of five different veneering porcelains.Five kinds of veneering porcelains were selected in this research. The surface microhardness of all the samples was measured with a microhardness tester. Wear tests were performed on a ball-on-flat PLINT fretting wear machine, with lubrication of artificial saliva at 37°C. The friction coefficients were recorded by the testing system. The microstructure features, wear volume, and damage morphologies were recorded and analyzed with a confocal laser scanning microscope and a scanning electron microscope. The wear mechanism was then elucidated.The friction coefficients of the five veneering porcelains differ significantly. No significant correlation between hardness and wear volume was found for these veneering porcelains. Under lubrication of artificial saliva, the porcelain with higher leucite crystal content exhibited greater wear resistance. Additionally, leucite crystal size and distribution in glass matrix influenced wear behavior. The wear mechanisms for these porcelains were similar: abrasive wear dominates the early stage, whereas delamination was the main damage mode at the later stage. Furthermore, delamination was more prominent for porcelains with larger crystal sizes.Wear compatibility between porcelain and natural teeth is important for dental restorative materials. Investigation on crystal content, size, and distribution in glass matrix can provide insight for the selection of dental porcelains in clinical settings.

  17. Indirect multisignal monitoring and diagnosis of drill wear

    OpenAIRE

    Jantunen, Erkki

    2006-01-01

    A machine tool utilisation rate can be improved by an advanced condition monitoring system using modern sensor and signal processing techniques. A drilling test and analysis program for indirect tool wear measurement forms the basis of this thesis. For monitoring the drill wear a number of monitoring methods such as vibration, acoustic emission, sound, spindle power and axial force were tested. The signals were analysed in the time domain using statistical methods such as root mean square (rm...

  18. The wear of two orthopaedic biopolymers against each other.

    Science.gov (United States)

    Joyce, T J

    2005-01-01

    The potential for all-polymer prostheses has not been widely investigated. It might be expected that the wear of such biomaterial combinations would be excessive, but an in vivo study of all polymer knee prostheses reported that there were no failures due to wear, even after ten years of clinical use. This design of knee prosthesis used polyacetal and ultra high molecular weight polyethylene (UHMWPE) as the biopolymers. Similarly, an earlier in vitro study of polyacetal and UHMWPE hip prostheses indicated lower wear than for a cobalt chrome and UHMWPE combination. Therefore this study set out to test the poly-acetal and UHMWPE combination in a wear screening rig which had previously been validated against clinical data for artificial hip joints. Two different motion conditions were applied to the test samples and each biopolymer was tested as both pin and plate. Interestingly it was found that, whatever the contribution from pin or plate, the total mean wear factors were 1.5 10 -6 mm 3/Nm under reciprocation-only, and 4.1 10 -6 mm 3 /Nm under multi-directional motion. These wear factors were greater than those found when a conventional metal-on-UHMWPE couple was tested under the same loading, motion and lu-bricant conditions. A comparison was also undertaken with the wear of other orthopaedic biopolymer combinations, namely cross-linked polyethylene (XLPE) against itself, and UHMWPE against itself. The XLPE pairing showed somewhat lower wear than the polyacetal and UHMWPE couple, while the UHMWPE pairing showed the highest wear of all, approximately an or-der of magnitude greater than the polyacetal and UHMWPE combination.

  19. Theoretical study of the circuit architecture of the basic CFOA and testing techniques

    Science.gov (United States)

    Tammam, A. A.; Hayatleh, K.; Barker, S.; Terzopoulos, N.

    2016-09-01

    This paper examines the closed-loop characteristics of the basic Current-Feedback Operational Amplifier (CFOA), and in particular, the dynamic response. Additionally, it also examines the design and advantages of the CFOA regarding its ability to provide a significantly constant closed-loop bandwidth for closed-loop voltage gain. Secondly, the almost limitless slew-rate provided by the class AB input stage that makes it superior to the voltage-mode operational amplifier (VOA) counterpart. Additionally, this paper also concerns the definitions and measurements of the terminal parameters of the CFOA, regarded as a 'black box'. It does not deal with the way that these parameters are related to the properties of the active passive and active components of a particular circuit configuration. Simulation is used in terminal parameter determination: this brings with it the facility of using test conditions that would not normally prevail in a laboratory test on silicon implementations of the CFOAs. Thus, we can apply 1mA and 1mV test signals from, respectively, infinite and zero source impedances that range in frequency from d.c to some tens of GHz. Also, we assume the existence of resistors with identical Ohmic value and very high value ideal capacitors. Where appropriate, practical test methods are referred to physical laboratory prototypes.

  20. Troubleshooting Assessment and Enhancement (TAE) Program: Theoretical, Methodological, Test and Evaluation Issues

    Science.gov (United States)

    1991-04-01

    Related to Troubleshooting Proficiency. Henneman and Rouse (1984) also specify prescriptive measures which appear related to problem solving skill and...studies: ACT evaluative reasoning, reading, problem solving skill in social sciences. (4) Natural sciences: ACT natural science test. (5) Composite of

  1. Railway noise annoyance: exposure-response relationships and testing a theoretical model by structural equation analysis.

    Science.gov (United States)

    Pennig, Sibylle; Schady, Arthur

    2014-01-01

    In some regions the exposure to railway noise is extremely concentrated, which may lead to high residential annoyance. Nonacoustical factors contribute to these reactions, but there is limited evidence on the interrelations between the nonacoustical factors that influence railway noise annoyance. The aims of the present study were (1) to examine exposure-response relationships between long-term railway noise exposure and annoyance in a region severely affected by railway noise and (2) to determine a priori proposed interrelations between nonacoustical factors by structural equation analysis. Residents (n = 320) living close to railway tracks in the Middle Rhine Valley completed a socio-acoustic survey. Individual noise exposure levels were calculated by an acoustical simulation model for this area. The derived exposure-response relationships indicated considerably higher annoyance at the same noise exposure level than would have been predicted by the European Union standard curve, particularly for the night-time period. In the structural equation analysis, 72% of the variance in noise annoyance was explained by the noise exposure (L(den)) and nonacoustical variables. The model provides insights into several causal mechanisms underlying the formation of railway noise annoyance considering indirect and reciprocal effects. The concern about harmful effects of railway noise and railway traffic, the perceived control and coping capacity, and the individual noise sensitivity were the most important factors that influence noise annoyance. All effects of the nonacoustical factors on annoyance were mediated by the perceived control and coping capacity and additionally proposed indirect effects of the theoretical model were supported by the data.

  2. Railway noise annoyance: Exposure-response relationships and testing a theoretical model by structural equation analysis

    Directory of Open Access Journals (Sweden)

    Sibylle Pennig

    2014-01-01

    Full Text Available In some regions the exposure to railway noise is extremely concentrated, which may lead to high residential annoyance. Nonacoustical factors contribute to these reactions, but there is limited evidence on the interrelations between the nonacoustical factors that influence railway noise annoyance. The aims of the present study were (1 to examine exposure-response relationships between long-term railway noise exposure and annoyance in a region severely affected by railway noise and (2 to determine a priori proposed interrelations between nonacoustical factors by structural equation analysis. Residents (n = 320 living close to railway tracks in the Middle Rhine Valley completed a socio-acoustic survey. Individual noise exposure levels were calculated by an acoustical simulation model for this area. The derived exposure-response relationships indicated considerably higher annoyance at the same noise exposure level than would have been predicted by the European Union standard curve, particularly for the night-time period. In the structural equation analysis, 72% of the variance in noise annoyance was explained by the noise exposure (Lden and nonacoustical variables. The model provides insights into several causal mechanisms underlying the formation of railway noise annoyance considering indirect and reciprocal effects. The concern about harmful effects of railway noise and railway traffic, the perceived control and coping capacity, and the individual noise sensitivity were the most important factors that influence noise annoyance. All effects of the nonacoustical factors on annoyance were mediated by the perceived control and coping capacity and additionally proposed indirect effects of the theoretical model were supported by the data.

  3. Test of theoretical models for ultrafast heterogeneous electron transfer with femtosecond two-photon photoemission data

    Indian Academy of Sciences (India)

    Lars Gundlach; Tobias Letzig; Frank Willig

    2009-09-01

    The energy distribution of electrons injected into acceptor states on the surface of TiO2 was measured with femtosecond two-photon photoemission. Shape and relative energetic position of these distribution curves with respect to the corresponding donor states, i.e. of perylene chromophores in the first excited singlet state attached via different bridge-anchor groups to the TiO2 surface, were compared with the predictions of different theoretical models for light-induced ultrafast heterogeneous electron transfer (HET). Gerischer’s early scenario for light-induced HET was considered and two recent explicit calculations, i.e. a fully quantum mechanical analytical model and a time-dependent density functional theory model based on molecular dynamics simulations for the vibrational modes were also considered. Based on the known vibrational structure in the photoionization spectrum of perylene in the gas phase and that measured in the linear absorption spectra of the perylene chromophores anchored on the TiO2 surface the energy distribution curves for the injected electrons were fitted assuming the excitation of the dominant 0.17 eV vibrational mode in the ionized perylene chromophore leading to a corresponding Franck-Condon dictated progression in the energy distribution curves. Each individual peak was fitted with a Voigt profile where the Lorentzian contribution was taken from the time-resolved HET data and the Gaussian contribution attributed to inhomogeneous broadening. The measured room temperature energy distribution curves for the injected electrons are explained with the fully quantum mechanical model for light-induced HET with the high energy, 0.17 eV, skeletal stretching mode excited in the ionized perylene chromophore. The corresponding energy distribution of the injected electrons is fully accommodated in acceptor states on the TiO2 surface fulfilling the wide band limit.

  4. A theoretical treatment of interval mapping of a disease gene using transmission disequilibrium tests

    Indian Academy of Sciences (India)

    P Narain

    2007-12-01

    The genetic basis of the transmission disequilibrium test (TDT) for two-marker loci is explored from first principles. In this case, parents doubly heterozygous for a given haplotype at the pair of marker loci that are each in linkage disequilibrium with the disease gene with the further possibility of a second-order linkage disequilibrium are considered. The number of times such parents transmit the given haplotype to their affected offspring is counted and compared with the frequencies of haplotypes that are not transmitted. This is done separately for the coupling and repulsion phases of doubly heterozygous genotypes. Expectations of the counts for each of the sixteen cells possible with four-marker gametic types (transmitted vs not transmitted) are derived. Based on a test of symmetry in a square 4 × 4 contingency table, chi-square tests are proposed for the null hypothesis of no linkage between the markers and the disease gene. The power of the tests is discussed in terms of the corresponding non-centrality parameters for the alternative hypothesis that both the markers are linked with the disease locus. The results indicate that the power increases with the decrease in recombination probability and that it is higher for a lower frequency of the disease gene. Taking a pair of markers in an interval for exploring the linkage with the disease gene seems to be more informative than the single-marker case since the values of the non-centrality parameters tend to be consistently higher than their counterparts in the single-marker case. Limitations of the proposed test are also discussed.

  5. Theoretical Analysis and Bench Tests of a Control-Surface Booster Employing a Variable Displacement Hydraulic Pump

    Science.gov (United States)

    Mathews, Charles W.; Kleckner, Harold F.

    1947-01-01

    The NACA is conducting a general investigation of servo-mechanisms for use in powering aircraft control surfaces. This paper presents a theoretical analysis and the results of bench tests of a control-booster system which employs a variable displacement hydraulic pump. The booster is intended for use in a flight investigation to determine the effects of various booster parameters on the handling qualities of airplanes. Such a flight investigation would aid in formulating specific requirements concerning the design of control boosters in general. Results of the theoretical analysis and the bench tests indicate that the subject booster is representative of types which show promise of satisfactory performance. The bench tests showed that the following desirable features were inherent in this booster system: (1) No lost motion or play in any part of the system; (2) no detectable lag between motion of the contra1 stick and control surface; and (3) Good agreement between control displacements and stick-force variations with no hysteresis in the stick-force characteristics. The final design configuration of this booster system showed no tendency to oscillate, overshoot, or have other undesirable transient characteristics common to boosters.

  6. Friction and wear behavior of steam-oxidized ferrous PM compacts

    Energy Technology Data Exchange (ETDEWEB)

    Raj, P. Philomen-D-Anaand; GopalaKrishna, A. [Dept. of Mechanical Engineering, Jawaharlal Nehru Technological University, Kakinada (India); Palaniradja, K [Dept. of Mechanical Engineering, Pondicherry Engineering College, Pondicherry (India)

    2016-10-15

    This study determines density effect by assessing sintering temperature and graphite content on the dry sliding wear characteristics of steam-treated iron materials using a pin-on-disk wear test. The specimens were prepared from atomized premixed iron base powders and contained 0.1 to 1.0 wt.% carbon compacted at different densities (5.9 g/cc to 6.8 g/cc). The specimens were sintered for 1 h at different sintering temperatures (1090°C to 1130°C), and then subjected to continuous steam treatment at 540°C for 95 min through in situ Powder metallurgy (PM) technique. Steam treatment was proposed to improve the wear performances of the components of PM. Wear tests were conducted using a pin-on-disk-type machine. Load ranged from 20 N to 60 N. Sliding distance and sliding velocity of 312 m and 0.26 m/s, respectively, were adopted for all tests. Scanning electron microscope was used to analyze wear surface. Increased density and graphite content reduced the wear rate of steam-treated materials. Hardness increased with increasing graphite content. Wear mechanism, wear rate map, and wear maps were drawn for the test result data. Wear transition map identified mild, severe, and ultra-severe wear regimes as functions of applied load.

  7. Galactic Globular and Open Clusters in the Sloan Digital Sky Survey. II. Test of Theoretical Stellar Isochrones

    CERN Document Server

    An, Deokkeun; Masseron, Thomas; Delahaye, Franck; Johnson, Jennifer A; Terndrup, Donald M; Beers, Timothy C; Ivans, Inese I; Ivezic, Zeljko

    2009-01-01

    We perform an extensive test of theoretical stellar models for main-sequence stars in ugriz, using cluster fiducial sequences obtained in the previous paper of this series. We generate a set of isochrones using the Yale Rotating Evolutionary Code (YREC) with updated input physics, and derive magnitudes and colors in ugriz from MARCS model atmospheres. These models match cluster main sequences over a wide range of metallicity within the errors of the adopted cluster parameters. However, we find a large discrepancy of model colors at the lower main sequence (Teff < ~4500 K) for clusters at and above solar metallicity. We also reach similar conclusions using the theoretical isochrones of Girardi et al. and Dotter et al., but our new models are generally in better agreement with the data. Using our theoretical isochrones, we also derive main-sequence fitting distances and turn-off ages for five key globular clusters, and demonstrate the ability to derive these quantities from photometric data in the Sloan Digi...

  8. Tribocorrosion wear of austenitic and martensitic steels

    Directory of Open Access Journals (Sweden)

    G. Rozing

    2016-07-01

    Full Text Available This paper explores the impact of tribocorrosion wear caused by an aggressive acidic media. Tests were conducted on samples made of stainless steel AISI 316L, 304L and 440C. Austenitic steels were tested in their nitrided state and martensitic in quenched and tempered and then induction hardened state. Electrochemical corrosion resistance testing and analysis of the microstructure and hardness in the cross section was carried out on samples of selected steels. To test the possibility of applying surface modification of selected materials in conditions of use, tests were conducted on samples/parts in a worm press for final pressing.

  9. Testing a Theoretical Model of the Stress Process in Alzheimer's Caregivers With Race as a Moderator

    OpenAIRE

    Hilgeman, Michelle M.; Durkin, Daniel W.; Sun, Fei; DeCoster, Jamie; Allen, Rebecca S.; Gallagher-Thompson, Dolores; Burgio, Louis D.

    2009-01-01

    Purpose: The primary aim of this study was to test the stress process model (SPM; Pearlin, Mullan, Semple, & Skaff, 1990) in a racially diverse sample of Alzheimer's caregivers (CGs) using structural equation modeling (SEM) and regression techniques. A secondary aim was to examine race or ethnicity as a moderator of the relation between latent constructs (e.g., subjective stressors and role strain) in the SPM. Sample: Participants included White or Caucasian (n = 212), Black or African Americ...

  10. Nonsuicidal self-injury in sexual minority college students: a test of theoretical integration

    OpenAIRE

    Muehlenkamp, Jennifer J.; Hilt, Lori M.; Ehlinger, Peter P.; McMillan, Taylor

    2015-01-01

    Background Individuals identifying as a sexual minority report engaging in nonsuicidal self-injury (NSSI) at substantially higher rates compared to their heterosexual peers. Given that NSSI is a known risk factor for suicide, it is important to understand the processes unique to being a sexual minority that increases risk for NSSI so that adequate prevention efforts can be established. The current study integrated Minority Stress Theory and the Interpersonal Theory of Suicide to test a model ...

  11. Wear of micro end mills

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper addresses the important issue of wear on micro end mills considering relevant metrological tools for its characterization and quantification. Investigation of wear on micro end mills is particularly difficult and no data are available in the literature. Small worn volumes cause large d...

  12. [Infants wearing teething necklaces].

    Science.gov (United States)

    Taillefer, A; Casasoprana, A; Cascarigny, F; Claudet, I

    2012-10-01

    Numerous infants wear teething necklaces, a quack remedy with a real risk of strangulation or aspiration of small beads. Evaluate parental perceptions and beliefs about the use of teething necklaces and analyze parental knowledge about the associated dangers. Between March and July 2011, in three different pediatric units of a tertiary children's hospital and a general hospital in Toulouse and Montauban (southwest France), voluntary parents were invited to be interviewed about their child wearing a teething necklace. The interviews were conducted following an anthropological approach: they were recorded and then fully transcribed and analyzed. Parents were informed that the conversation was recorded. During the study period, 48 children were eligible. Eleven families refused to participate, 29 parents were interviewed face to face. The children's mean age was 14 years ± 7 months, the male:female ratio was equal to 0.8 (12 boys, 15 girls). The mean age of children when necklace wearing was started was equal to 4 ± 2 months. The mean mother's age was 31 ± 5 years and 33 ± 4 years for fathers. The parents' religion was mostly Catholic (60%). Teething necklaces were mainly made of amber (n=23). Sales information about the risks associated with the necklaces was for the most part absent (92%). The most frequent positive parental perceptions were analgesic properties and a soothing remedy (73%); a birth accessory and memory (64%); an esthetic accessory (60%); a protective amulet (60%); and an alternative or additional element to other traditional therapeutics (55%). The negative parental perceptions (n=4) were an unnecessary accessory, costume jewelry, a pure commercial abuse of a popular belief, a dangerous item with a risk of strangulation, and the absence of proof of its efficacy. Although parents concede that teeth eruption is benign, they fear its related symptoms. To a natural phenomenon a natural response: they use a necklace to satisfy the analogy. The

  13. Theoretical study of some nodal methods for the solution of the diffusion equation. Numerical tests

    Energy Technology Data Exchange (ETDEWEB)

    Fedon-Magnaud, C.

    1983-08-01

    The nodal methods used in the solution of the neutron multigroup diffusion equation are described. A new formulation of this methods is obtained in order to have a comparison with the finite element methods. After a brief review of nonconforming finite element theory, we use a Radau formula to establish the equivalence with nodal schemes. Convergence theorems and error estimations are then obtained. In the last part, numerical calculations are performed for two reactor test configurations. Comparisons are done between nodal or nonconforming schemes and more classical methods (F.D., conforming F.E.) wich are used in reactor analysis.

  14. Nonsuicidal self-injury in sexual minority college students: a test of theoretical integration.

    Science.gov (United States)

    Muehlenkamp, Jennifer J; Hilt, Lori M; Ehlinger, Peter P; McMillan, Taylor

    2015-01-01

    Individuals identifying as a sexual minority report engaging in nonsuicidal self-injury (NSSI) at substantially higher rates compared to their heterosexual peers. Given that NSSI is a known risk factor for suicide, it is important to understand the processes unique to being a sexual minority that increases risk for NSSI so that adequate prevention efforts can be established. The current study integrated Minority Stress Theory and the Interpersonal Theory of Suicide to test a model of NSSI and suicide risk. A total of 137 college students who identified as a sexual minority completed an anonymous on-line study assessing NSSI, suicidal thoughts/behaviors, and constructs of the minority stress and interpersonal theories. Two linear regressions using bootstrapping analyses were conducted to test our hypotheses. Minority stress was directly associated with NSSI and via perceived burdensomeness, explaining 27 % of the variance. NSSI was associated with increased risk for suicide thoughts/behaviors directly, and through acquired capability, explaining 45 % of the variance. These findings provide evidence that unique stressors individuals face as a result of their sexual minority status increases risk for self-harm by influencing cognitive and emotional processes such as burdensomeness and acquired capability. Implications for prevention, intervention, and future research are briefly discussed.

  15. Predicting cyberbullying perpetration in emerging adults: A theoretical test of the Barlett Gentile Cyberbullying Model.

    Science.gov (United States)

    Barlett, Christopher; Chamberlin, Kristina; Witkower, Zachary

    2017-04-01

    The Barlett and Gentile Cyberbullying Model (BGCM) is a learning-based theory that posits the importance of positive cyberbullying attitudes predicting subsequent cyberbullying perpetration. Furthermore, the tenants of the BGCM state that cyberbullying attitude are likely to form when the online aggressor believes that the online environment allows individuals of all physical sizes to harm others and they are perceived as anonymous. Past work has tested parts of the BGCM; no study has used longitudinal methods to examine this model fully. The current study (N = 161) employed a three-wave longitudinal design to test the BGCM. Participants (age range: 18-24) completed measures of the belief that physical strength is irrelevant online and anonymity perceptions at Wave 1, cyberbullying attitudes at Wave 2, and cyberbullying perpetration at Wave 3. Results showed strong support for the BGCM: anonymity perceptions and the belief that physical attributes are irrelevant online at Wave 1 predicted Wave 2 cyberbullying attitudes, which predicted subsequent Wave 3 cyberbullying perpetration. These results support the BGCM and are the first to show empirical support for this model. Aggr. Behav. 43:147-154, 2017. © 2016 Wiley Periodicals, Inc.

  16. Capacitively-Coupled Resistivity measurements to determine frequency dependent electrical parameters in periglacial environment - theoretical considerations and first field tests.

    Science.gov (United States)

    Przyklenk, A.; Hördt, A.; Radić, T.

    2016-05-01

    Capacitively-Coupled Resistivity (CCR) is conventionally used to emulate DC resistivity measurements and may provide important information about the ice content of material in periglacial areas. The application of CCR theoretically enables the determination of both electrical parameters, i.e. the resistivity and the electrical permittivity, by analyzing magnitude and phase shift spectra. The electrical permittivity may dominate the impedance, especially in periglacial areas or regions of hydrogeological interest. However, previous theoretical work suggested that the phase shift may strongly depend on electrode height above ground, implying that electrode height must be known with great accuracy to determine electrical permittivity. Here, we demonstrate with laboratory test measurements, theoretical modelling and by analysing the Jacobian matrix of the inversion, that the sensitivity towards electrode height is drastically reduced if the electrical permittivity is frequency dependent in a way that is typical for ice. For the fist time, we used a novel broadband CCR device "Chameleon" for a field test located in one of the ridge galleries beneath the crest of Mount Zugspitze. A permanently ice covered bottom of a tunnel was examined. For the inversion of the measured spectra, the frequency dependance of the electrical parameters was parameterized in 3 different ways. A Debye Model for pure ices, a Cole-Cole Model for pure ices and a dual Cole-Cole Model including interfacial water additionally. The frequency-dependent resistivity and permittivity spectra obtained from the inversion, including low and high frequency limits, agree reasonably well with laboratory and field measurements reported in the literature.

  17. Friction and Wear Behavior of GCr15 Under Multiple Movement Condition

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Friction and wear of GCr15 under cross-sliding condition is tested on a ball-on-disc wear test machine. This result shows that the cross-sliding of friction pair leads to different friction and wear behavior. For the condition described in this paper, the friction coefficients with ball reciprocating are smaller than that without ball reciprocating. The friction coefficients increase with the increase of reciprocating frequency.. The wear weight loss of the ball subjected reciprocating sliding decreases, however, the wear weight loss of disc against the reciprocating ball increases. In cross-sliding friction, the worn surfaces of the ball show crinkle appearance along the circumferential sliding traces. Delaminating of small strip debris is formed along the plowing traces on the disc worn surface. The plowing furrow on the disc surfaces looks deeper and wider than that without reciprocating sliding. The size of wear particles from cross-sliding wear is larger than those without reciprocating sliding.

  18. Dry sliding wear behavior of Ti-6Al-4V alloy in air

    Institute of Scientific and Technical Information of China (English)

    刘勇; 杨德庄; 武万良; 杨士勤

    2002-01-01

    The dry sliding wear properties of Ti-6Al-4V alloy sliding against GCr15 steel under different velocities(between 0.2 and 1.2 m/s)and applied loads(from 30 to 90 N)were tested using a pin-on-disk tester in air. The wear occurred on both surfaces of the tested couplings. The wear rate of the Ti-6Al-4V alloy ranged from 23.0 to 123.8 mg/km. The wear of Ti-6Al-4V samples was in severe wear. The wear rate of Ti-6Al-4V samples increased with the increasing of load and shows a minimum on the curves of wear rate versus sliding velocity. SEM morphologies of worn surfaces and debris were observed. Phases in the debris were analyzed by means of XRD spectra.

  19. Lubricity Additives and Wear with DME in Diesel Injection Pumps

    DEFF Research Database (Denmark)

    Nielsen, Kasper; Sorenson, Spencer C.

    1999-01-01

    In recent years it has been demonstrated that Dimethyl Ether (DME) possess many characteristics that could make it a successful alternative to diesel in the next century. High wear of the fuel injection system has been reported. This is caused by lack of natural protective constituents of Dimethyl...... wear of standard diesel jerk pump plungers elements were made with weight measurements, diameter measurements, 2-D and 3-D surface roughness measurements, and photography by a Michelson interferometer. Several lubricity additives were tested, but none reduced wear levels to those for diesel fuel...

  20. Use of GPR technique in surveying gravel road wearing course

    Science.gov (United States)

    Saarenketo, Timo; Vesa, Heikki

    2000-04-01

    During summer 1998 a series of tests were conducted in Finland in order to find out how Ground Penetrating Radar (GPR) technology can be utilized at both the project and network level, when surveying the wearing course thickness of gravel roads. The second objective was to investigate the possibilities of applying dielectricity information obtained using the GPR surface reflection method when determining the quality of the gravel road wearing course. In this study GPR was tested at the project level on highway 9241 Simo in Northern Finland, where the information provided by the GPR and laboratory research was used in designing and proportioning a new wearing course. In the network level studies, performed in the maintenance areas of Kemi and Karstula in Northern and Central Finland the goal for using GPR was to inspect the condition and thickness of the wearing course and evaluate the need for additional wearing course material. The total length of the roads under survey was approximately 200 km and both a 1.5 GHz ground-coupled antenna and a 1.0 GHz horn antenna were tested in this study. The research results show that GPR can be used to measure the thickness of the wearing course, the average measuring error against reference drilling measurements being 25 mm, which is considerably larger than the error of radar measurements in paved roads. To a great extent this is due to the fact that the thickness of the wearing course varies greatly even in the road's cross-section and thus a single reference thickness does not represent the actual thickness of the area measured with the GPR. The wearing course can often get mixed up with lower layers, which makes it difficult to determine the exact layer interfaces. For this reason reference information must always be used along with the GPR measurement results. Of the two GPR antennae tested, the horn antenna proved to be the more effective in measurements. The dielectric value of the wearing course, measured using the horn

  1. Wear resistance of nodular cast iron with carbides

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2011-07-01

    Full Text Available In this paper results of abrasive and adhesive wear resistance of selected grades of nodular cast iron with carbides are presented. It was demonstrated, that the maximum wear resistance has got nodular cast iron with the microstructure of upper bainite, lower bainite and carbides. This cast iron with hardened steel and sulfonitrided steel is the most advantageous friction pair during adhesive wear testing. It was found, that the least advantageous friction pair is pearlitic nodular cast iron with carbides and normalized steel.

  2. Switch wear leveling

    Science.gov (United States)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2015-09-01

    An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.

  3. Hydraulic Conductivity Estimate via Tracer Test and Ensemble Kalman Filter Data Assimilation: Theoretical and Numerical Fundamentals

    Science.gov (United States)

    Crestani, E.; Camporese, M.; Salandin, P.

    2011-12-01

    Hydraulic properties of natural aquifers, such as porosity, hydraulic conductivity, and storativity, exhibit an erratic spatial variability at different scales that is difficult to recognize without expensive in situ sampling campaigns, laboratory analyses, and, when available, spatially distributed pumping tests. Nevertheless, the importance of the heterogeneous structure of natural formations on solute transport is well recognized, being the non-Fickian evolution of contaminant plumes and the relevant dispersive phenomena controlled by the variability of the hydraulic conductivity K at the local scale. Tracer test analyses have been widely adopted to identify the complex distribution of in situ hydraulic properties. In particular, the use of geophysical methods like the borehole Electrical Resistivity Tomography (ERT) have been in rapid increase, due to their potential to accurately describe the spatio-temporal evolution of the injected solute. Under the assumptions that the solute spreads as a passive tracer and with high values of the Peclet number, the plume evolution is controlled by the porosity and the spatial distribution of hydraulic conductivity. Combining the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) data assimilation technique, the purpose of this study is to infer the spatial distribution of K at the local scale from a sequence of time-lapse concentration imaging. The capabilities of the proposed approach are investigated simulating various assimilation experiments via synthetic tracer tests in a three-dimensional finite domain reproducing a heterogeneous aquifer. In a first scenario, all the available concentration measurements are assimilated and the entire hydraulic conductivity field is updated, while in the remaining scenarios the K values are updated only in a limited number of nodes by assimilating the concentrations in these same nodes, the hydraulic conductivity in the rest of the domain being the result of a

  4. Low friction wear resistant graphene films

    Science.gov (United States)

    Sumant, Anirudha V.; Berman, Diana; Erdemir, Ali

    2017-02-07

    A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.

  5. GNSS spoofing detection: Theoretical analysis and performance of the Ratio Test metric in open sky

    Directory of Open Access Journals (Sweden)

    Jie Huang

    2016-03-01

    Full Text Available Nowadays more and more applications rely on the information provided by Global Navigation Satellite Systems (GNSSs, but the vulnerability of GNSS signals to interference, jamming and spoofing is a growing concern. Among all the possible sources of intentional interference, spoofing is extremely deceptive and sinister. In fact, the victim receiver may not be able to warn the user and discern between authentic and false signals. For this reason, a receiver featuring spoofing detection capabilities might become a need in many cases. Different types of spoofing detection algorithms have been presented in recent literature. One of the first, referred to as Ratio Metric, allows for the monitoring of possible distortions in the signal correlation. The effectiveness of the Ratio Test has been widely discussed and demonstrated, while in this paper we analyze its performance, proposing a mathematical model that is used to assess the false alarm and detection probabilities.

  6. Effects of tool flank wear on orthogonal cutting process of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    YUAN Ping; KE Ying-lin

    2006-01-01

    The tool flank begins to wear out as soon as cutting process proceeds. Cutting parameters such as cutting forces and cutting temperature will vary with increasing degree of flank wear. In order to reveal the relationship between them, the theoretical situations of cutting process were analyzed considering the tool flank wear effect. The variation rules of cutting force, residual stress and temperature distributions along with the tool flank wear were analyzed comparing with the sharp tool tip. Through FEM simulation method, affections of the tool flank wear value VB on cutting forces, residual stress and temperature distributions were analyzed. A special result in this simulation is that the thrust force is more sensitive to tool flank wear, which can be used as a recognition method of tool condition monitoring. The FEM simulation analysis result agrees well with the experimental measuring data in public literatures and some experiments made also by the authors.

  7. Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests

    CERN Document Server

    Bamba, Kazuharu; Nojiri, Shin'ichi; Odintsov, Sergei D

    2012-01-01

    We review different dark energy cosmologies. In particular, we present the $\\Lambda$CDM cosmology, Little Rip and Pseudo-Rip universes, the phantom and quintessence cosmologies with Type I, II, III and IV finite-time future singularities and non-singular dark energy universes. In the first part, we explain the $\\Lambda$CDM model and well-established observational tests which constrain the current cosmic acceleration. After that, we investigate the dark fluid universe where a fluid has quite general equation of state (EoS) [including inhomogeneous or imperfect EoS]. All the above dark energy cosmologies for different fluids are explicitly realized, and their properties are also explored. It is shown that all the above dark energy universes may mimic the $\\Lambda$CDM model currently, consistent with the recent observational data. Furthermore, special attention is paid to the equivalence of different dark energy models. We consider single and multiple scalar field theories, tachyon scalar theory and holographic ...

  8. "The liability of newness" revisited: Theoretical restatement and empirical testing in emergent organizations.

    Science.gov (United States)

    Yang, Tiantian; Aldrich, Howard E

    2017-03-01

    The mismatch between Stinchcombe's original propositions regarding "the liability of newness" and subsequent attempts to test those propositions suggests to us that the form and causes of the liability remain open to further investigation. Taking organizational emergence as a process comprising entrepreneurs engaging in actions that produce outcomes, we propose hypotheses about the social mechanisms of organizational construction involved in investing resources, developing routines, and maintaining boundaries. Distinguishing between initial founding conditions versus subsequent activities, our results not only confirm the liability of newness hypothesis, but also reveal a much higher risk of failure in organizations' early lifetime than rates found in previous research. Moreover, our results highlight the importance of entrepreneurs' continuing effort after their initial organizing attempts. Whereas only a few initial founding conditions lower the risk of failure, subsequent entrepreneurial activities play a major role in keeping the venture alive. Entrepreneurs contribute to whether a venture survives through raising more resources, enacting routines, and gaining increased public recognition of organizational boundaries. After controlling for financial performance, our results still hold. Based on our analysis, we offer suggestions for theory and research on organizations and entrepreneurship.

  9. Influence Factors of Fractal Characterization of Reciprocating Sliding Wear Surfaces

    Institute of Scientific and Technical Information of China (English)

    周新聪; 冯伟; 严新平; 萧汉梁

    2004-01-01

    The principal purpose of this paper is to investigate influence factors of fractal characterization of reciprocating sliding wear surfaces.The wear testing was completed to simulate the real running condition of the diesel engine 8NVD48A-2U.The test results of wear surface morphology dimension characterization show that wear surface profiles have statistical self-affine fractal characteristics.In general, there are no effects of the profilometer sampling spacing and sampling length and evaluation length on the fractal dimensions of the surfaces.However, if the evaluation length is too short, the structure function logarithm of the surface profile is scattered.The sampling length acting as a filter is an important part of the fractal dimension measurement.If the sampling length is too short, the evaluation of the fractal dimension will have a larger standard deviation.The continuous wavelet transform can be used to improve surface profile dimension characterization.

  10. Structurally Integrated Coatings for Wear and Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18

    techniques, balanced with overall materials performance. State-of-the-art design and simulation capabilities were used to guide materials and process refinement. Caterpillar was the lead of the multi-partner collaborative project. Specific tasks were performed by the partners base on their unique capabilities. The project team was selected to include leaders in the field of material development, processing, modeling, and material characterization. Specifically, industrial members include the suppliers Deloro Stellite and Powder Alloy Corporation., who provided the experimental alloys and who aided in the development of the costs for the alloys, the Missouri University of Science and Technology and Iowa State University, who provided help in the alloy development and material characterization, QuesTek Innovations, a small company specializing the microstructural modeling of materials, and the DOE laboratories, Oak Ridge National Laboratory and National Energy Technology Laboratory (Albany), who provided unique coating process capability and wear characterization testing. The technologies developed in this program are expected to yield energy savings of about 50% over existing technologies, or 110 trillion BTUs per year by 2020 when fully implemented. Primary applications by Caterpillar are to replace the surface of machine components which are currently carburized and heat treated with new cladding materials with double the wear life. The new cladding technologies will consume less energy than carburizing. Thus, nearly 50% energy savings can be expected as a result from elimination of the heat treat process and the reduce wear of the materials. Additionally, when technologies from this project are applied on titanium or other non-ferrous substrates to make lighter weight, more wear resistant, and more efficient structures, significant fuel savings can be realized. With the anticipated drastic reduction in cost for refining titanium-containing ores, the usage of titanium

  11. Friction and Wear Properties of Cold Gas Dynamic Sprayed α-Al2O3-Al Composite Coatings

    Directory of Open Access Journals (Sweden)

    Jie Wu

    2013-01-01

    Full Text Available Different proportions of α-Al2O3 and pure Al powders were coated onto AZ91D magnesium alloy substrates by cold gas dynamic spray. The microstructure and morphologies of the coatings were observed by scanning electron microscope. The friction and wear properties were tested by a ball-on-disk wear tester. It was found that the interfaces between grains and substrates formed close boundaries. It is revealed that the composite coatings could increase the friction or wear properties of the coatings. It was observed that the wear of coatings was converted from adhesive wear into abrasive wear with α-Al2O3 particles increasing and that the adhesive wear accompanied with abrasive wear would increase the wear rate of coatings.

  12. Theoretical and experimental researches of size effect in micro-indentation test

    Institute of Scientific and Technical Information of China (English)

    WEI; Yueguang

    2001-01-01

    [1]Nix, W. D., Gao, H., Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solids, 998, 46(3): 4.[2]McElhaney, K. W., Vlassak, J. J., Nix, W. D., Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J. Mater. Res., 998, 3(5): 300.[3]Begley, M., Hutchinson, J. W., The mechanics of size-dependent indentation, J. Mech. Phys. Solids, 998, 46: 029.[4]Shu, J. Y., Fleck, N. A., The prediction of a size effect in micro-indentation, Int. J. Solids Structures, 998, 35(3): 363.[5]Poole, W. J., Ashby, M. F., Fleck, N. A., Micro-hardness tests on annealed and work-hardened copper polycrystals, Scripta Metall Mater, 996, 34: 559.[6]Atkinson, M., Further analysis of the size effective in indentation hardness tests of some metals, J. Mater. Res., 995, 0: 2908.[7]Ma, Q., Clarke, D. R., Size dependent hardness of silver single crystals, J. Mater. Res., 995, 0: 853.[8]Stelmashenko, N. A., Walls, M. G., Brown, L. M. et al., Microindentation on W and Mo priented single crystals: an STM study, Acta Metall Mater, 993, 4: 2855.[9]Cheng, Y. T., Cheng, C. M., Scaling relationships in conical indentation of elastic-perfectly plastic solids, Int. J. Solids Structures, 999, 36: 23.[10]Fleck, N. A., Hutchinson, J. W., Strain gradient plasticity, in Advances in Applied Mechanics (eds. Hutchinson, J. W., Wu, T. Y.), 997, 33: 295.[11]Gao, H., Huang, Y., Nix, W. D. et al., Mechanism-based strain gradient plasticity —Ⅰ, Theory. J Mech Phys Solids, 999, 47: 239.[12]Aifantis, E. C., On the microstructural origin of certain inelastic models, Trans. ASME J. Eng. Mater. Tech., 984, 06: 326.[13]Wei, Y., Hutchinson, J. W., Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity, J. Mech. Phys. Solids, 997, 45(8): 253.[14]Timoshenko, S. P., Goodier, J. N., Theory of Elasticity, 3rd ed., New

  13. Corrosion and wear in plasma electrosurgical devices

    Science.gov (United States)

    Gaspredes, J.; Ryan, T. P.; Stalder, K. R.; Woloszko, J.

    2017-02-01

    Data were previously reported on studies of the effects of electrical discharges on the corrosion and wear of simple, single-wire test devices immersed in isotonic saline 1 . This work showed that there are a wide variety of mechanisms that can explain various aspects of electrode mass loss, even with very simple electrode geometries and operating conditions. It was found that the electrode material composition played an important role. Subsequently, our studies were expanded to include more realistic device geometries and operating conditions. This paper shows the results of studies on wear characteristics of electrodes made from a variety of highly corrosion resistant metals and alloys, including Waspaloy, Hastelloy, Inconel, Havar, Monel, and other pure metals such as Hafnium. All of these metals underwent wear testing under clinically relevant conditions. Depending on the operating conditions, multiple discrete physical and chemical effects were observed at different locations on the surface of an individual millimeter-scale device electrode. Scanning electron microscope (SEM) micrographs, Energy-dispersive X-ray spectroscopy (EDS) and area loss data will be presented for a variety of test conditions and electrode materials.

  14. Nuclear graphite wear properties and estimation of graphite dust production in HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaowei, E-mail: xwluo@tsinghua.edu.cn; Wang, Xiaoxin; Shi, Li; Yu, Xiaoyu; Yu, Suyuan

    2017-04-15

    Highlights: • Graphite dust. • The wear properties of graphite. • Pebble bed. • High Temperature Gas-cooled Reactor. • Fuel element. - Abstract: The issue of the graphite dust has been a research focus for the safety of High Temperature Gas-cooled Reactors (HTGRs), especially for the pebble bed reactors. Most of the graphite dust is produced from the wear of fuel elements during cycling of fuel elements. However, due to the complexity of the motion of the fuel elements in the pebble bed, there is no systematic method developed to predict the amount the graphite dust in a pebble bed reactor. In this paper, the study of the flow of the fuel elements in the pebble bed was carried out. Both theoretical calculation and numerical analysis by Discrete Element Method (DEM) software PFC3D were conducted to obtain the normal forces and sliding distances of the fuel elements in pebble bed. The wearing theory was then integrated with PFC3D to estimate the amount of the graphite dust in a pebble bed reactor, 10 MW High Temperature gas-cooled test Reactor (HTR-10).

  15. Effect of the microhardness difference between base metal and bionic coupling unit on wear resistance of gray cast iron

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Chang, Fang; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-12-01

    In order to improve the wear resistance of gray cast iron guide rail, the samples with different microhardness difference between bionic coupling units and base metal were manufactured by laser surface remelting. Wear behavior of gray cast iron with bionic coupling units has been studied under dry sliding condition at room temperature using a homemade liner reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that when the microhardness difference is 561 HV0.2, the wear resistance of sample is the best.

  16. Corrosion and wear resistant metallic layers produced by electrochemical methods

    DEFF Research Database (Denmark)

    Christoffersen, Lasse; Maahn, Ernst Emanuel

    1999-01-01

    Corrosion and wear-corrosion properties of novel nickel alloy coatings with promising production characteristics have been compared with conventional bulk materials and hard platings. Corrosion properties in neutral and acidic environments have been investigated with electrochemical methods....... Determination of polarisation resistance during 100 hours followed by stepwise anodic polarisation seems to be a promising technique to obtain steady state data on slowly corroding coatings with transient kinetics. A slurry test enables determination of simultaneous corrosion and abrasive wear. Comparison...

  17. Tool wear mechanism in turning of novel wear-resisting aluminum bronze

    Institute of Scientific and Technical Information of China (English)

    倪东惠; 夏伟; 张大童; 郭国文; 邵明

    2003-01-01

    Tool wear and wear mechanism during the turning of a wear-resisting aluminum bronze have been stud-ied. Tool wear samples were prepared by using M2 high-speed steel and YW1 cemented carbide tools to turn a novelhigh strength, wear resisting aluminum bronze without coolant and lubricant. Adhesion of workpiece materials wasfound on tool's surface. Under the turning condition used in this study major wear mechanisms for turning aluminumbronze using M2 high-speed steel tool are diffusion wear, adhesive wear and plastic deformation and shear on thecrater. Partial melting of high-speed steel on the rake plays a role in the tool wear also. Major wear mechanisms forturning aluminum bronze using YW1 cemented carbide tool are diffusion wear, attrition wear and sliding wear. Tocontrol the machining temperature is essential to reduce tool wear.

  18. Clinical assessment of enamel wear caused by monolithic zirconia crowns.

    Science.gov (United States)

    Stober, T; Bermejo, J L; Schwindling, F S; Schmitter, M

    2016-08-01

    The purpose of this study was to measure enamel wear caused by antagonistic monolithic zirconia crowns and to compare this with enamel wear caused by contralateral natural antagonists. Twenty monolithic zirconia full molar crowns were placed in 20 patients. Patients with high activity of the masseter muscle at night (bruxism) were excluded. For analysis of wear, vinylpolysiloxane impressions were prepared after crown incorporation and at 6-, 12-, and 24-month follow-up. Wear of the occlusal contact areas of the crowns, of their natural antagonists, and of two contralateral natural antagonists (control teeth) was measured by use of plaster replicas and a 3D laser-scanning device. Differences of wear between the zirconia crown antagonists and the control teeth were investigated by means of two-sided paired Student's t-tests and linear regression analysis. After 2 years, mean vertical loss was 46 μm for enamel opposed to zirconia, 19-26 μm for contralateral control teeth and 14 μm for zirconia crowns. Maximum vertical loss was 151 μm for enamel opposed to zirconia, 75-115 μm for control teeth and 60 μm for zirconia crowns. Statistical analysis revealed significant differences between wear of enamel by zirconia-opposed teeth and by control teeth. Gender, which significantly affected wear, was identified as a possible confounder. Monolithic zirconia crowns generated more wear of opposed enamel than did natural teeth. Because of the greater wear caused by other dental ceramics, the use of monolithic zirconia crowns may be justified.

  19. Friction and Wear Characteristics of Mg-Al Alloy Containing Rare Earths

    Institute of Scientific and Technical Information of China (English)

    祁庆琚; 刘勇兵; 杨晓红

    2003-01-01

    The influence of rare earth on the friction and wear characteristics of magnesium alloy AZ91 and AM60 were studied. The results show that the wear resistance properties of rare earth magnesium alloys are better than those of matrix alloy under the testing conditions. The anti-wear behaviour of AZ91 alloy is much better than that of AM60 alloy. In dry sliding process,magnesium alloys undergo a transition from mild wear to severe wear. The addition of rare earths refine the structure of alloys, improve the comprehensive behaviors of magnesium alloys, increase the stability of oxidation films on worn surfaces, enhance the loading ability of rare earth magnesium alloys, and delay the transition from mild wear to severe wear effectively.

  20. Sliding wear and friction behavior of zirconium alloy with heat-treated Inconel718

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H., E-mail: kimjhoon@cnu.ac.kr [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.M. [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.K.; Jeon, K.L. [Nuclear Fuel Technology Department, Korea Nuclear Fuel, 1047 Daedukdae-ro, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-04-01

    In water-cooled nuclear reactors, the sliding of fuel rod can lead to severe wear and it is an important issue to sustain the structural integrity of nuclear reactor. In the present study, sliding wear behavior of zirconium alloy in dry and water environment using Pin-On-Disk sliding wear tester was investigated. Wear resistance of zirconium alloy against heat-treated Inconel718 pin was examined at room temperature. Sliding wear tests were carried out at different sliding distance, axial load and sliding speed based on ASTM (G99-05). The results of these experiments were verified with specific wear rate and coefficient of friction. The micro-mechanisms responsible for wear in zirconium alloy were identified to be microcutting and microcracking in dry environment. Moreover, micropitting and delamination were observed in water environment.

  1. Characterization and Empirical Modelling of Sliding Wear on Sintered Aluminium-Graphite Composites

    Directory of Open Access Journals (Sweden)

    Amrishraj Doraisamy

    2014-01-01

    Full Text Available Aluminium-graphite composites were synthesized using powder metallurgy route. Graphite was added as reinforcement in the range of 0, 3, and 6 weight % and composites were prepared by P/M. Microstructural analysis of the newly synthesized composites was carried out using SEM. The hardness of the composites was studied using Vickers microhardness tester, by applying a load of 1 kg for 5 sec. Also the amount of porosity was determined. Further the wear test was conducted on the sintered specimens using pin-on-disc wear apparatus according to ASTM-G99 standards. A regression model was developed to predict the wear rate of the specimen. Then the worn images were studied using SEM based on response surface methodology in order to understand the various wear mechanisms involved. The study revealed that mild wear, oxidational wear, plowing, cutting, and plastic deformation are the main mechanisms responsible for causing the wear.

  2. Evaluation of sliding wear behavior of graphite particle-containing magnesium alloy composites

    Institute of Scientific and Technical Information of China (English)

    QI Qing-ju

    2006-01-01

    The influence of graphite particle content on the friction and wear characteristics of AZ91 magnesium alloy matrix composite was studied. The results show that the wear resistances of graphite-containing composite are much better than those of the matrix under the test conditions. The anti-wear ability of magnesium alloy composite is improved substantially with the increase of the graphite content from 5% to 20%, and both wear mass loss and coefficient of friction are decreased to low level. Different wear mechanisms operate at different sliding stages. A continuous black lubricating film forms progressively on the worn surface along sliding, which effectively limits the direct interaction between the composite tribosurface and the counterpart, and also remarkably delays the transition from mild wear to severe wear for magnesium alloy composite.

  3. High Temperature Dry Sliding Friction and Wear Performance of Laser Cladding WC/Ni Composite Coating

    Directory of Open Access Journals (Sweden)

    YANG Jiao-xi

    2016-06-01

    Full Text Available Two different types of agglomerate and angular WC/Ni matrix composite coatings were deposited by laser cladding. The high temperature wear resistance of these composite coatings was tested with a ring-on-disc MMG-10 apparatus. The morphologies of the worn surfaces were observed using a scanning electron microscopy (SEM equipped with an energy dispersive spectroscopy (EDS for elemental composition. The results show that the high temperature wear resistance of the laser clad WC/Ni-based composite coatings is improved significantly with WC mass fraction increasing. The 60% agglomerate WC/Ni composite coating has optimal high temperature wear resistance. High temperature wear mechanism of 60% WC/Ni composite coating is from abrasive wear of low temperature into composite function of the oxidation wear and abrasive wear.

  4. Evaluation Of Saltstone Mixer Paddle Configuration For Improved Wear Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M.; Fowley, M. D.; Pickenheim, B. R.

    2012-09-27

    A soft metal with low wear resistance (6000 series aluminum), was used to minimize run time while maximizing wear rate. Two paddle configurations were tested, with the first four paddles after the augers replaced by the wear paddles. The first configuration was all flat paddles, with the first paddle not aligned with the augers and is consistent with present SPF mixer. The second configuration had helical paddles for the first three stages after the augers and a flat paddle at the fourth stage. The first helical paddle was aligned with the auger flight for the second configuration. The all flat paddle configuration wear rate was approximately double the wear rate of the helical paddles for the first two sets of paddles after the augers. For both configurations, there was little or no wear on the third and fourth paddle sets based on mass change, indicating that the fully wetted premix materials are much less abrasive than the un-wetted or partially wetted premix. Additionally, inspection of the wear surface of the paddles at higher magnification showed the flat paddles were worn much more than the helical and is consistent with the wear rates. Aligning the auger discharge flight with the first set of helical paddles was effective in reducing the wear rate as compared to the flat paddle configuration. Changing the paddle configuration from flat to helical resulted in a slight increase in rheological properties. Although, both tests produced grout-like material that is within the processing rage of the SPF, it should be noted that cement is not included in the premix and water was used rather than salt solution, which does affect the rheology of the fresh grout. The higher rheological properties from the helical wear test are most likely due to the reduced number of shearing paddles in the mixer. In addition, there is variation in the rheological data for each wear test. This is most likely due to the way that the dry feeds enter the mixer from the dry feeder. The

  5. The wear of cross-linked polyethylene against itself.

    Science.gov (United States)

    Joyce, T J; Ash, H E; Unsworth, A

    1996-01-01

    Cross-linked polyethylene (XLPE) may have an application as a material for an all-plastic surface replacement finger joint. It is inexpensive, biocompatible and can be injection-moulded into the complex shapes that are found on the ends of the finger bones. Further, the cross-linking of polyethylene has significantly improved its mechanical properties. Therefore, the opportunity exists for an all-XLPE joint, and so the wear characteristics of XLPE sliding against itself have been investigated. Wear tests were carried out on both reciprocating pin-on-plate machines and a finger function simulator. The reciprocating pin-on-plate machines had pins loaded at 10 N and 40 N. All pin-on-plate tests show wear factors from the plates very much greater than those of the pins. After 349 km of sliding, a mean wear factor of 0.46 x 10(-6) mm3/N m was found for the plates compared with 0.021 x 10(-6) mm3/N m for the pins. A fatigue mechanism may be causing this phenomenon of greater plate wear. Tests using the finger function simulator give an average wear rate of 0.22 x 10(-6) mm3/N m after 368 km. This sliding distance is equivalent to 12.5 years of use in vivo. The wear factors found were comparable with those of ultra-high molecular weight polyethylene (UHMWPE) against a metallic counterface and, therefore, as the loads across the finger joint are much less than those across the knee or the hip, it is probable that an all-XLPE finger joint will be viable from a wear point of view.

  6. Wear aspects of internal combustion engine valves

    Science.gov (United States)

    Panţuru, M.; Chicet, D.; Paulin, C.; Alexandru, A.; Munteanu, C.

    2016-08-01

    Because the surface engineering is becoming an increasingly viable alternative to the constructive changes made to improve the efficiency of internal combustion engines, have been proposed and tested various types of coatings of some organs of internal combustion engines. One vital organ is the engine valves, which is subjected during operation to combined thermal, mechanical, corrosion and wear solicitations, which are leading to severe corrosion and complete breakdown. In this paper were analyzed aspects of valves wear and the active surfaces were coated using the atmospheric plasma spraying method (APS) with two commercial powders: Ni-Al and YSZ. Microstructural analyzes were made on these layers and also observations regarding the possibility of using them as thermal barrier and anti-oxidant coatings.

  7. Exposure and risks from wearing asbestos mitts

    Directory of Open Access Journals (Sweden)

    Tindall Matthew

    2005-10-01

    Full Text Available Abstract Background Very high fibre inhalation exposure has been measured while people were wearing personal protective equipment manufactured from chrysotile asbestos. However, there is little data that relates specifically to wearing asbestos gloves or mitts, particularly when used in hot environments such as those found in glass manufacturing. The aim of this study was to assess the likely personal exposure to asbestos fibres when asbestos mitts were used. Results Three types of work activity were simulated in a small test room with unused mitts and artificially aged mitts. Neither pair of mitts were treated to suppress the dust emission. The measured respirable fibre exposure levels ranged from Conclusion People who wore asbestos mitts were likely to have been exposed to relatively low levels of airborne chrysotile asbestos fibres, certainly much lower than the standards that were accepted in the 1960's and 70's. The cancer risks from this type of use are likely to be very low.

  8. Wear measurement by surface layer activation

    Energy Technology Data Exchange (ETDEWEB)

    Blatchley, C.

    1987-05-01

    The purpose of these projects was to demonstrate the capability for precisely but remotely measuring small increments of wear, erosion or corrosion in utility components using detectors mounted outside the system to monitor the presence of radionuclide surface markers. These gamma ray emitting markers are produced by surface layer activation (SLA) using a high energy particle beam from a Van de Graaff or cyclotron particle accelerator. The work was divided into three major projects: (1) determination of the feasibility of applying SLA based surface monitoring techniques to key power plant systems; (2) a field demonstration of SLA monitoring in steam turbine components subject to severe solid particle erosion; and (3) a field demonstration of SLA wear or corrosion monitoring of components in boiler auxiliaries. In the field tests, surface material removal was successfully measured from both selected systems, demonstrating the feasibility of the technique for long term diagnostic condition monitoring. Three bearing components in a boiler circulation pump were monitored almost continuously for a period of over 5 months until the pump was stopped due to electrical problems unrelated to the wear measurements. Solid particle erosion from two stop valve bypass valves was measured during a series of nine startup cycles. Both test demonstrations confirmed the earlier feasibility estimates and showed how SLA markers can be used to provide valuable diagnostic information to plant operators. 22 refs., 63 figs., 29 tabs.

  9. Analysis of Impact of Chosen Parameters on the Wear of Camshft

    Directory of Open Access Journals (Sweden)

    Burdzik R.

    2014-10-01

    Full Text Available The paper provides an analysis of the reasons for excessive wear of the camshafts system components based on models developed to describe the impact of selected material, technological and operational factors. The subject of the research was wear of camshaft cams studied in accordance with results of operation tests. Based on the said tests, the dependence of wear intensity of cams from their angular position was established. The respective calculation results enabled the function of cam fallibility to be determined.

  10. They shall wear fringes.

    Science.gov (United States)

    Sugar, M

    1999-01-01

    The multiple functions of clothes include utility, protection, rivalry, disguise, camouflage, display for seduction purposes, aggression, totemism, and status. Here the focus is on a decorative and distinctive hierarchical aspect of ancient dress, the tsitsit or fringes, whose original function is long absent, but that has endured for 3,500 years in Judaism. The beginning of their use beyond the totemic appears related to issues of changing identity from slavery to liberty, endowing noble status, exhibitionism, a symbol of identity, identification with the aggressor, a talisman, and potency. It is conceptualized that they became a symbol, or a specifier, that helped promote group cohesion in ex-slaves who were frightened, dependent, anxious, and not hopeful about their future. The tsitsit aided the development of a new identity and made all Israelites equal and noble to the observer. The durability of this symbol to the present is evident in its daily wear, as an accompaniment to daily prayers, as well as in its use as a burial shroud for males. It appears that the tsitsit have additional multiple functions. These are the promise of oral and genital satisfaction, and the pleasure of the after-life, superego warnings and control of sexual impulses, protection, survival value, and affirmation. Since they offer sublimation with acceptable gratification of instincts, the tsitsit have become ritualized and endure.

  11. Intelligent Detection of Drill Wear

    Science.gov (United States)

    Liu, T. I.; Chen, W. Y.; Anatharaman, K. S.

    1998-11-01

    Backpropagation neural networks (BPNs) were used for on-line detection of drill wear. The neural network consisted of three layers: input, hidden, and output. The input vector comprised drill size, feed rate, spindle speed, and eight features obtained by processing the thrust and torque signals. The output was the drill wear state which either usable or failure. Drilling experiments with various drill sizes, feed rates and spindle speeds were carried out. The learning process was performed effectively by utilising backpropagation with smoothing and an activation function slope. The on-line detection of drill wear states using BPNs achieved 100% reliability even when the drill size, feed rate and spindle speed were changed. In other words, the developed on-line drill wear detection systems have very high robustness and hence can be used in very complex production environments, such as flexible manufacturing systems.

  12. Experimental Study of the Hygrothermal Effect on Wear Behavior of Composite Materials

    Directory of Open Access Journals (Sweden)

    Fadhel Abbas. Abdulla

    2017-07-01

    Full Text Available The hygrothermal effect on the wear behavior of composite material (fiberglass and polyester resin vf=40% was investigated experimentally in this work. The study includes manufacturing of test device (pin on disc according to ASTM G 99. In order to study the hygrothermal effect on wear behavior of composite materials the hygrothermal chamber was manufactured. The experimental results show that the wear of glass fiber/polyester increased with increasing the load, sliding speed and sliding distance. The load and sliding distance were more effective on the wear of the composite rather than sliding speed. Also, it has been revealed that, the hygrothermal is considerable effect that, the wear rate of glass fiber/polyester without hygrothermal effect is lower than wear with hygrothermal effect. Applied load is the wear factor that has the highest physical influence on the wear of composites materials than other wear factors. Also, the wear of glass fiber/polyester without hygrothermal effect is lower than wear with hygrothermal effect.

  13. Wear Behavior and Mechanism of H13 Steel in Different Environmental Media

    Science.gov (United States)

    Li, Xinxing; Zhou, Yin; Cao, Huan; Li, Yixian; Wang, Lan; Wang, Shuqi

    2016-10-01

    Sliding wear tests were performed for H13 steel in atmosphere, distilled water, 3.5% NaCl, and 5% NaOH water solutions under various loads on a pin-on-disk wear tester. The results showed that for different environmental media, the wear rate of H13 steel in atmosphere was the maximum and that in 3.5% NaCl solution was the minimum. The maximum wear rate in atmosphere was caused by a larger quantity of heat produced in the friction process. In this case, the adhesive wear prevailed. In three wet environments, the mild wear prevailed due to the good lubrication and cooling capacity of media as well as corrosion product film on worn surface. In distilled water, the wear mechanism was a typical fatigue wear. On the other hand, in 3.5% NaCl and 5% NaOH solutions, corrosive wear prevailed. The minimum wear rate in 3.5% NaCl solution was attributed to the protective function of corrosion product film. On the contrary, noncompact corrosion product film in 5% NaOH solution resulted in higher wear rate.

  14. Wear Behavior of Laser-Cladded Co-Cr-Mo Coating on γ-TiAl Substrate

    Science.gov (United States)

    Barekat, Masoud; Shoja Razavi, Reza; Ghasemi, Ali

    2017-07-01

    In this study, laser cladding of Co-Cr-Mo alloy on a γ-TiAl substrate was performed to investigate the wear behavior of coated and uncoated TiAl alloy at room temperature. Dry sliding wear tests were conducted for coated and uncoated counterfaces against three pins of alumina, Inconel 718 and Co-Cr-Mo. Overall, laser cladding of Co-Cr-Mo powder resulted in the formation of a thick coating with minimal imperfections, as well as increasing the wear resistance of TiAl alloy. The results of wear tests indicated that the relative wear resistance was about 1.97, 2.17, and 1.92 for sliding against alumina, Inconel 718, and Co-Cr-Mo pins, respectively. The investigation of worn surfaces also showed that the abrasive wear mechanism was dominant for all samples. In addition, severe abrasive wear was changed to mild abrasive wear by local formation of chromium-based oxides.

  15. Computational prediction and experimental validation of revolute joint clearance wear in the low-velocity planar mechanism

    Science.gov (United States)

    Lai, Xiongming; He, Huang; Lai, Qinfang; Wang, Cheng; Yang, Jianhong; Zhang, Yong; Fang, Huaiying; Liao, Shuirong

    2017-02-01

    Within the multibody dynamics framework, the paper proposed an efficient procedure to calculate revolute joint wear of planar mechanism with low velocity. Firstly, based on the wear test data, a method to calculate the wear coefficient that corresponds to the actual working condition of the mechanism is proposed. Then, an efficient iterative prediction method for joint clearance wear evolving in the multibody dynamic system in is proposed based on the Archard's wear model. Meanwhile, the wear tests of the typical mechanism have verified the method proposed in this paper. The research shows that when the increments of the wear depth of revolute joints are not big, the method can provide high prediction accuracy; however, as the predicted wear depth increases, the prediction error increases as well.

  16. Wear properties of nanosilica filled epoxy polymers and FRP composites

    Directory of Open Access Journals (Sweden)

    A. Jumahat

    2015-09-01

    Full Text Available This paper is aimed to determine the wear properties of nanosilica filled epoxy polymers and FRP composites. Woven fiberglass has been deployed as the reinforcement material. The fibers were mixed with three different percentages of nanosilica-modified epoxy resin, i.e: 5wt%; 13wt%; 25wt%, in order to fabricate the desired samples of FRP composites. The effect of nanosilica on wear properties was evaluated using dry sliding wear and slurry tests. The results show that increasing the amount of nanosilica content has reduced the amount of accumulated mass loss. It was found that the FRP laminates with 25wt% of nanosilica have the highest wear resistance. The nanosilica filled fiber reinforced polymer composites have a high potential in tribological application such as ball bearing housing and snow sleds.

  17. Abrasive wear behaviour of as cast and austempered ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Baydogan, M.; Koekden, M.U.; Cimenoglu, H. [Istanbul Technical Univ., Dept. of Metallurgy and Materials Science Engineering Istanbul (Turkey)

    2000-07-01

    In this study, abrasive wear behaviour of as cast and austempered GGG 50 and GGG 80 quality ductile irons was investigated. In the as cast condition, GGG 50 and GGG 80 quality ductile irons were having ferritic and pearlitic matrix structures, respectively. Austempering at 250 C after austenitisation at 900 C for 100 minutes produced bainitic matrix structure in both of the investigated ductile irons. Abrasive wear tests performed by rubbing the as cast and austempered specimens on Al{sub 2}O{sub 3} abrasive bands, revealed that austempering treatment improves abrasion resistance about 10-70% depending on the abrasive particle size and composition of the base iron. In the as cast condition, pearlitic GGG 80 grade ductile iron, has higher wear resistance than ferritic GGG 50 grade ductile iron. In the austempered condition GGG 50 and GGG 80 grade ductile irons which have bainitic matrix structure, exhibit almost similar wear resistance. (orig.)

  18. The Delamination Theory of Wear

    Science.gov (United States)

    1974-09-01

    junctions, it is still based on the assumption that the deformation occurs at the asperities. Rabinowicz [14] advanced an adhesion theory of friction...shown that bronze particles were indeed bigger than steel particles. The compilation of wear particle sizes given by Rabinowicz [14] also indicates...Waterhouse [32] has shown that, in fact, fretting occurs by delamination. 6) Minimum Load for Loose Particle Formation Rabinowicz [14] found that no wear

  19. A Rigorous Test of the Fit of the Circumplex Model to Big Five Personality Data: Theoretical and Methodological Issues and Two Large Sample Empirical Tests.

    Science.gov (United States)

    DeGeest, David Scott; Schmidt, Frank

    2015-01-01

    Our objective was to apply the rigorous test developed by Browne (1992) to determine whether the circumplex model fits Big Five personality data. This test has yet to be applied to personality data. Another objective was to determine whether blended items explained correlations among the Big Five traits. We used two working adult samples, the Eugene-Springfield Community Sample and the Professional Worker Career Experience Survey. Fit to the circumplex was tested via Browne's (1992) procedure. Circumplexes were graphed to identify items with loadings on multiple traits (blended items), and to determine whether removing these items changed five-factor model (FFM) trait intercorrelations. In both samples, the circumplex structure fit the FFM traits well. Each sample had items with dual-factor loadings (8 items in the first sample, 21 in the second). Removing blended items had little effect on construct-level intercorrelations among FFM traits. We conclude that rigorous tests show that the fit of personality data to the circumplex model is good. This finding means the circumplex model is competitive with the factor model in understanding the organization of personality traits. The circumplex structure also provides a theoretically and empirically sound rationale for evaluating intercorrelations among FFM traits. Even after eliminating blended items, FFM personality traits remained correlated.

  20. Wear of Steel and Ti6Al4V Rollers in Vacuum

    Science.gov (United States)

    Krantz, Timothy L.; Shareef, Iqbal

    2012-01-01

    This investigation was prompted by results of a qualification test of a mechanism to be used for the James Webb Space Telescope. Post-test inspections of the qualification test article revealed some loose wear debris and wear of the steel rollers and the mating Ti6Al4V surfaces. An engineering assessment of the design and observations from the tested qualification unit suggested that roller misalignment was a controlling factor. The wear phenomena were investigated using dedicated laboratory experiments. Tests were done using a vacuum roller rig for a range of roller misalignment angles. The wear in these tests was mainly adhesive wear. The measured wear rates were highly correlated to the misalignment angle. For all tests with some roller misalignment, the steel rollers lost mass while the titanium rollers gained mass indicating strong adhesion of the steel with the titanium alloy. Inspection of the rollers revealed that the adhesive wear was a two-way process as titanium alloy was found on the steel rollers and vice versa. The qualification test unit made use of 440F steel rollers in the annealed condition. Both annealed 440F steel rollers and hardened 440C rollers were tested in the vacuum roller rig to investigate possibility to reduce wear rates and the risk of loose debris formation. The 440F and 440C rollers had differing wear behaviors with significantly lesser wear rates for the 440C. For the test condition of zero roller misalignment, the adhesive wear rates were very low, but still some loose debris was formed

  1. Influence of carbon content on wear resistance and wear mechanism of Mn13Cr2 and Mn18Cr2 cast steels

    Directory of Open Access Journals (Sweden)

    Ding-shan Lu

    2015-01-01

    Full Text Available By means of impact abrasion tests, micro-hardness tests, and worn surface morphology observation via SEM, a comparison research based upon different impact abrasive wear conditions was conducted in this research to study the influence of different carbon contents (1.25wt.%, 1.35wt.%, and 1.45 wt.% on the wear resistance and wear mechanism of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The research results show that the wear resistance of the Mn18Cr2 cast steel is superior to that of the Mn13Cr2 cast steel under the condition of the same carbon content and different impact abrasive wear conditions because the Mn18Cr2 cast steel possesses higher worn work hardening capacity as well as a more desirable combination of high hardness and impact toughness than that of the Mn13Cr2 cast steel. When a 4.5 J impact abrasive load is applied, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the former dominates. When the carbon content is increased, the worn work hardening effect becomes increasingly dramatic, while the wear resistance of both steels decreases, which implies that an increase in impact toughness is beneficial to improving the wear resistance under severe impact abrasive wear conditions. Under the condition of a 1.0 J impact abrasive load, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the latter plays a leading role. The worn work hardening effect and wear resistance intensify when the carbon content is increased, which implies that a higher hardness can be conducive to better wear resistance under low impact abrasive condition.

  2. Two-body wear of dental porcelain and substructure oxide ceramics.

    Science.gov (United States)

    Rosentritt, Martin; Preis, Verena; Behr, Michael; Hahnel, Sebastian; Handel, Gerhard; Kolbeck, Carola

    2012-06-01

    The aim of this in vitro study was to investigate the two-body wear of different ceramics. Two-body wear tests were performed in a chewing simulator with steatite and enamel antagonists, respectively. Specimens were loaded in a pin-on-block design with a vertical load of 50 N for 1.2 × 10(5) cycles; (f = 1.6 Hz; lateral movement, 1 mm; mouth opening: 2 mm). Human enamel was used as a reference. Three zirconia ceramics, three veneering porcelains, two glass-infiltrated and one lithium disilicate ceramic were investigated. Veneering and lithium disilicate ceramics were glazed before testing. Surface roughness Ra (SP6, Perthen-Feinprüf, G) and wear depth were determined using a 3D scanner (Laserscan 3D, Willytec, G). SEM (Quanta FEG 400, FEI, USA) pictures of the worn specimens and antagonists were made for evaluating wear performance. Veneering porcelain provided wear traces between 71.2 and 124.1 μm (enamel antagonist) and 117.4 and 274.1 μm (steatite). Wear of the steatite antagonists varied between 0.618 and 2.85 mm². No wear was found for zirconia and glass-infiltrated substructure ceramics. Also, no wear was found for the corresponding antagonists. Wear of specimens and antagonists was strongly material dependent. No visible wear was found on zirconia and glass-infiltrated ceramics. Porcelain and lithium disilicate ceramic showed a comparable or lower wear than the enamel reference. Antagonist wear was found to be lower when specimens were made of substructure oxide ceramics instead of veneering porcelain. From the point of wear testing, zirconia may be used for the fabrication of fixed dental prosthesis without veneering.

  3. Engine valve and seat insert wear study with a simulator

    Institute of Scientific and Technical Information of China (English)

    Y.S.Wang; S.Narasimhan

    2001-01-01

    The demands on higher performance and the increasing use of alternative fuels chal-lenge engine valves now with greater wear problems than before. A seat wear simulator was builtto evaluate the compatibility and wear of valve and seat insert. The rig test results have been suc-cessfully correlated with engine test results. In this study, intake valves made from Sil 1 materialwere treated with salt bath nitride processes and tested against six different insert materials. Wearresistance of these combinations was ranked and compared to the Sil 1 valve without nitriding.The test results demonstrate that nitriding improved valve seat wear resistance. In the total valveseat recession ranking, the combination of nitrided Sil 1 valve against T 400 insert exhibited theleast total recession among the nineteen combinations of valve and insert tested. The results indi-cate that the valve seat wear mechanisms are a complex combination of adhesion and shearstrain. The nitrides in the compound layer of nitrided valves gave strong atomic bonding, higherhardness, compressive residual stresses, and possible low friction, thus resulted in the superiorwear performance.

  4. Total hip wear assessment: a comparison between computational and in vitro wear assessment techniques using ISO 14242 loading and kinematics.

    Science.gov (United States)

    Matsoukas, George; Willing, Ryan; Kim, Il Yong

    2009-04-01

    In the present study a direct comparison was made between in vitro total hip wear testing and a computational analysis considering the effects of time and a nonlinear stress-strain relationship for ultrahigh molecular weight polyethylene (UHMWPE) at 37 degrees C. The computational simulation was made correct through calibration to experimental volumetric wear results, and the predicted damage layout on the acetabular liner surface was compared with results estimated from laser scanning of the actual worn specimens. The wear rates for the testing specimens were found to be 17.14+/-1.23 mg/10(6) cycles and 19.39+/-0.79 mg/10(6) cycles, and the cumulative volumetric wear values after 3x10(6) cycles were 63.70 mm(3) and 64.02 mm(3) for specimens 1 and 2, respectively. The value of the calibrated wear coefficient was found to be 5.32(10(-10)) mm(3)/N mm for both specimens. The major difference between the computational and experimental wear results was the existence of two damage vectors in the experimental case. The actual location of damage was virtually the same in both cases, and the maximum damage depth of the computational model agreed well with the experiment. The existence of multiple wear vectors may indicate the need for computational approaches to account for multidirectional sliding or strain hardening of UHMWPE. Despite the limitation in terms of describing the overall damage layout, the present computational model shows that simulation can mimic some of the behavior of in vitro wear.

  5. The microstructural dependence of wear resistance in austenite containing plate steels

    Science.gov (United States)

    Wolfram, Preston Charles

    The purpose of this project was to examine the microstructural dependence of wear resistance of various plate steels, with interests in exploring the influence of retained austenite (RA). Materials resistant to abrasive wear are desirable in the industrial areas of agriculture, earth moving, excavation, mining, mineral processing, and transportation. Abrasive wear contributes to significant financial cost associated with wear to the industry. The motivation for the current study was to determine whether it would be beneficial from a wear resistance perspective to produce plate steels with increased amounts of retained austenite. This thesis investigates this motivation through a material matrix containing AR400F, Abrasive (0.21 wt pct C, 1.26 wt pct Mn, 0.21 wt pct Si, 0.15 wt pct Ni, 0.18 wt pct Mo), Armor (0.46 wt pct C, 0.54 wt pct Mn, 0.36 wt pct Si, 1.74 wt pct Ni, 0.31 wt pct Mo), 9260, 301SS, Hadfield, and SAE 4325 steels. The Abrasive, Armor and 9260 steels were heat treated using different methods such as quench and temper, isothermal bainitic hold, and quench and partitioning (Q&P). These heat treatments yielded various microstructures and the test matrix allowed for investigation of steels with similar hardness and varying levels of RA. The wear test methods used consisted of dry sand rubber wheel (DSRW), impeller-tumbler impact-abrasion (impeller), and Bond abrasion wear testing. DSRW and impeller wear resistance was found to increase with hardness and retained austenite levels at certain hardness levels. Some Q&P samples exhibited similar or less wear than the Hadfield steels in DSRW and impeller tests. Scanning electron microscopy investigation of wear surfaces revealed different wear mechanisms for the different wear test methods ranging from micro-plowing, to micro-cutting and to fragmentation.

  6. Friction Wear Property of Brake Materials by Copper-based Powder Metallurgy With Various Brake Speeds

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-xiu; GAO Hong-xia; WEI Xiu-lan

    2004-01-01

    The experiment is conducted on MM-1000 friction test machine, which tests friction wear property of copper-based brake materials by powder metallurgy at different brake speeds. It shows that the coefficient of friction and wear volume are greatly influenced by brake speed. When the brake speed is 4000 r/min, which is a bit higher, the material still has a higher coefficient of friction with 0.47. When the brake speed is over 4000r/min, the coefficient of friction decreased rapidly. When the brake speed is 3000r/min, the material's wear is in its minimum. That is to say no matter how higher or lower the brake speed is the wear volume is bigger relatively. With the brake speed of the lower one it mainly refers to fatigue wear; while of higher one it mainly refers to abradant and oxidation wear.

  7. Wear resistance of a Cr3C2-NiCr detonation spray coating

    Science.gov (United States)

    Wang, Jun; Wang, Jun; Sun, Baode; Guo, Qixin; Nishio, Mitsuhiro; Ogawa, Hiroshi

    2002-06-01

    Coatings can be applied to surfaces to improve the surface characteristics over those of the bulk properties and are widely used in tribological applications either to reduce wear and/or to modify friction during contact. One of the foremost coating methods for combating wear is thermal spraying. To prolong the life of steel slab continuous casting rolls, Cr3C2-NiCr detonation spray coating was processed on the roll surface in a steelmaking plant in China. This article studies the mechanical properties and wear resistance of this coating. The abrasive and dry frictional wear testing were performed using a pin-on-disk tester. Experimental results show that the wear resistance of the coated samples, i.e., coating reduces the risk of seizure compared to uncoated samples, is much better than those of the uncoated steel at room and elevated temperatures with any load and sliding velocity. The coating wear mechanisms under different test conditions are discussed.

  8. Gay identity, interpersonal violence, and HIV risk behaviors: an empirical test of theoretical relationships among a probability-based sample of urban men who have sex with men.

    Science.gov (United States)

    Relf, Michael V; Huang, Bu; Campbell, Jacquelyn; Catania, Joe

    2004-01-01

    The highest absolute number of new HIV infections and AIDS cases still occur among men who have sex with men (MSM). Numerous theoretical approaches have been used to understand HIV risk behaviors among MSM; however, no theoretical model examines sexual risk behaviors in the context of gay identity and interpersonal violence. Using a model testing predictive correlational design, the theoretical relationships between childhood sexual abuse, adverse early life experiences, gay identity, substance use, battering, aversive emotions, HIV alienation, cue-to-action triggers, and HIV risk behaviors were empirically tested using confirmatory factor analysis and structural equation modeling. The relationships between these constructs are complex, yet childhood sexual abuse and gay identity were found to be theoretically associated with HIV risk behaviors. Also of importance, battering victimization was identified as a key mediating variable between childhood sexual abuse, gay identity, and adverse early life experiences and HIV risk behaviors among urban MSM.

  9. 3D cutting tool-wear monitoring in the process

    Energy Technology Data Exchange (ETDEWEB)

    Cerce, Luka; Pusavec, Franci; Kopac Janez [University of Ljubljana, Askerceva (Slovenia)

    2015-09-15

    The tool-wear of cutting tools has a very strong impact on the product quality as well as efficiency of the machining processes. Therefore, it in-the process characterization is crucial. This paper presents an innovative and reliable direct measuring procedure for measuring spatial cutting tool-wear with usage of laser profile sensor. The technique provides possibility for determination of 3D wear profiles, as advantage to currently used 2D techniques. The influence of the orientation of measurement head on the accuracy and the amount of captured reliable data was examined and the optimal setup of the measuring system was defined. Further, a special clamping system was designed to mount the measurement device on the machine tool turret. To test the measurement system, tool-life experiment was performed. Additionally, a new tool-life criterion was developed, including spatial characteristics of the tool-wear. The results showed that novel tool-wear and tool-life diagnostic represent objective and robust estimator of the machining process. Additionally, such automation of tool-wear diagnostics on machine tool provides higher productivity and quality of the machining process.

  10. Wear Performance of Cu-Alloyed Austempered Ductile Iron

    Science.gov (United States)

    Batra, Uma; Batra, Nimish; Sharma, J. D.

    2013-04-01

    An investigation was carried out to examine the influence of structural and mechanical properties on wear behavior of austempered ductile iron (ADI). Ductile iron (DI) samples were austenitized at 900 °C for 60 min and subsequently austempered for 60 min at three temperatures: 270, 330, and 380 °C. Microstructures of the as-cast DI and ADIs were characterized using optical and scanning microscopy, respectively. The structural parameters, volume fraction of austenite, carbon content of austenite, and ferrite particle size were determined using x-ray diffraction technique. Mechanical properties including Vicker's hardness, 0.2% proof strength, ultimate tensile strength, ductility, and strain hardening coefficient were determined. Wear tests were carried out under dry sliding conditions using pin-on-disk machine with a linear speed of 2.4 m/s. Normal load and sliding distance were 45 N and 1.7 × 104 m, respectively. ADI developed at higher austempering temperature has large amounts of austenite, which contribute toward improvement in the wear resistance through stress-induced martensitic transformation, and strain hardening of austenite. Wear rate was found to depend on 0.2% proof strength, ductility, austenite content, and its carbon content. Study of worn surfaces and nature of wear debris revealed that the fine ausferrite structure in ADIs undergoes oxidational wear, but the coarse ausferrite structure undergoes adhesion, delamination, and mild abrasion too.

  11. Wear mechanisms of dental composite restorative materials by two different in-vitro methods

    Directory of Open Access Journals (Sweden)

    Juliana Antonino de Souza

    2013-04-01

    Full Text Available In this work two very simple apparatuses, namely the ball crater (or ball-on-plate and the linear reciprocating (or pin-on-plate tests, were used in order to investigate the wear mechanisms of TPH Spectrum® and Resilab Master® dental composite resins. Loads in the range of 100 g to 1 kg and a total number of up to 24000 cycles were employed. During some of these tests, aqueous aluminum oxide suspensions were used as abrasive agent either diluted or not in distilled water. In case of the ball-on-plate test wear is dominated by abrasive and/or adhesive mechanisms, and is characterized by scratches which are composed of wear defects comprising particle detachment, wear of the polymer matrix and ceramic particle abrasion. However, the relative contributions of the two wear mechanisms could not be determined separately. In case of the pin-on-plate test wear is governed by the fatigue mechanism, although abrasive and adhesive wear mechanism are also present. After a certain number of cycles fatigue wear dominates the wear behavior and results in severe material loss. This mechanism seems to be more important in case of more brittle materials and when higher loads are employed. Qualitative analysis of the results suggests that the combination of these two very simple methods under appropriate conditions can yield sound results which may be representative of a number of clinical situations.

  12. Wear mechanisms of dental composite restorative materials by two different in-vitro methods

    Directory of Open Access Journals (Sweden)

    Juliana Antonino de Souza

    2012-01-01

    Full Text Available In this work two very simple apparatuses, namely the ball crater (or ball-on-plate and the linear reciprocating (or pin-on-plate tests, were used in order to investigate the wear mechanisms of TPH Spectrum® and Resilab Master® dental composite resins. Loads in the range of 100 g to 1 kg and a total number of up to 24000 cycles were employed. During some of these tests, aqueous aluminum oxide suspensions were used as abrasive agent either diluted or not in distilled water. In case of the ball-on-plate test wear is dominated by abrasive and/or adhesive mechanisms, and is characterized by scratches which are composed of wear defects comprising particle detachment, wear of the polymer matrix and ceramic particle abrasion. However, the relative contributions of the two wear mechanisms could not be determined separately. In case of the pin-on-plate test wear is governed by the fatigue mechanism, although abrasive and adhesive wear mechanism are also present. After a certain number of cycles fatigue wear dominates the wear behavior and results in severe material loss. This mechanism seems to be more important in case of more brittle materials and when higher loads are employed. Qualitative analysis of the results suggests that the combination of these two very simple methods under appropriate conditions can yield sound results which may be representative of a number of clinical situations.

  13. Degradation of titanium drillpipe from corrosion and wear

    Energy Technology Data Exchange (ETDEWEB)

    Ferg, T.E.; Aldrich, C.S. (Colorado School of Mines, Golden, CO (United States)); Craig, B.D. (Metallurgical Consultants Inc., Montebello (United States))

    1993-06-01

    Drilling deeper than 35,000 ft is limited by the extreme hook loads of steel drillpipe and temperature constraints of aluminum drillpipe. Titanium Alloys Ti-6Al-4V and Beta C have been proposed for use in drillpipe for wells deeper than 35,000 ft because of their high strength/weight ratios, superior high-temperature corrosion resistance, and thermal stability. Their suitability in drilling environments, however, has not been evaluated. To determine the corrosion and wear characteristics of two types of titanium-alloy drillpipe under dogleg conditions, a test cell was constructed to test titanium drillpipe joints in contact with API Spec. 5CT Grade P-110 casing in different drilling muds. Titanium-alloy pipe and Grade P-110 casing wear rates were measured, and tests showed that both titanium-alloy pipes exhibited much greater wear than did steel drillpipe in water-based mud under the same conditions. Test data showed that the total wear rate of Alloys Ti-6Al-4V and Beta C in a drilling environment is a combination of mechanical wear and corrosion.

  14. Influence of solid contaminants in oil on wear characteristics of nano-Al2O3/Ni composite coating

    Institute of Scientific and Technical Information of China (English)

    杜令忠; 徐滨士; 董世运; 杨华; 吴毅雄

    2004-01-01

    Solid contaminants in lubrication system will cause severe wear of sliding components. In order to improve the wear resistance of the material in oil containing solid contaminants, the brush plated nano-A12 O3/Ni composite coating was prepared and the influence of the sand content and sand size on the tribological property of the coating in oil containing solid contaminants was tested with ball-on-disc tester. The results show that the wear volume increases with increasing the sand content and sand size, and the wear resistance of the composite coating is 20% higher than that of the high-speed plain nickel coating. The main wear mechanisms of the coatings are abrasive wear and adhesive wear. And due to the nano-particle strengthening effect, the wear resistance of the composite coating is improved.

  15. Fundamental studies on dynamic wear behavior of SBR rubber compounds modified by SBR rubber powder

    OpenAIRE

    Euchler, Eric; Heinrich, Gert; Michael, Hannes; Gehde, Michael; Stocek, Radek; Kratina, Ondrej; Kipscholl, Reinhold; Bunzel, Jörg-Michael; Saal, Wolfgang

    2016-01-01

    The aim of this study is focused on the experimental investigation of dynamic wear behavior of carbon black filled rubber compounds comprising pristine styrene butadiene rubber (SBR) together with incorporated SBR ground rubber (rubber powder). We also analyzed and described quantitatively the service conditions of some dynamically loaded rubber products, which are liable to wear (e.g. conveyor belts, tires). Beside the well-known standard test method to characterize wear resistance at steady...

  16. Surface roughness and wear of resin cements after toothbrush abrasion

    Directory of Open Access Journals (Sweden)

    Sérgio Kiyoshi ISHIKIRIAMA

    2015-01-01

    Full Text Available Increased surface roughness and wear of resin cements may cause failure of indirect restorations. The aim of this study was to evaluate quantitatively the surface roughness change and the vertical wear of four resin cements subjected to mechanical toothbrushing abrasion. Ten rectangular specimens (15 × 5 × 4 mm were fabricated according to manufacturer instructions for each group (n = 10: Nexus 3, Kerr (NX3; RelyX ARC, 3M ESPE (ARC; RelyX U100, 3M ESPE (U100; and Variolink II, Ivoclar/Vivadent (VL2. Initial roughness (Ra, µm was obtained through 5 readings with a roughness meter. Specimens were then subjected to toothbrushing abrasion (100,000 cycles, and further evaluation was conducted for final roughness. Vertical wear (µm was quantified by 3 readings of the real profile between control and brushed surfaces. Data were subjected to analysis of variance, followed by Tukey’s test (p < 0.05. The Pearson correlation test was performed between the surface roughness change and wear (p < 0.05. The mean values of initial/final roughness (Ra, µm/wear (µm were as follows: NX3 (0.078/0.127/23.175; ARC (0.086/0.246/20.263; U100 (0.296/0.589/16.952; and VL2 (0.313/0.512/22.876. Toothbrushing abrasion increased surface roughness and wear of all resin cements tested, although no correlation was found between those variables. Vertical wear was similar among groups; however, it was considered high and may lead to gap formation in indirect restorations.

  17. Theoretical Design and First Test in Laboratory of a Composite Visual Servo-Based Target Spray Robotic System

    Directory of Open Access Journals (Sweden)

    Dongjie Zhao

    2016-01-01

    Full Text Available In order to spray onto the canopy of interval planting crop, an approach of using a target spray robot with a composite vision servo system based on monocular scene vision and monocular eye-in-hand vision was proposed. Scene camera was used to roughly locate target crop, and then the image-processing methods for background segmentation, crop canopy centroid extraction, and 3D positioning were studied. Eye-in-hand camera was used to precisely determine spray position of each crop. Based on the center and area of 2D minimum-enclosing-circle (MEC of crop canopy, a method to calculate spray position and spray time was determined. In addition, locating algorithm for the MEC center in nozzle reference frame and the hand-eye calibration matrix were studied. The processing of a mechanical arm guiding nozzle to spray was divided into three stages: reset, alignment, and hovering spray, and servo method of each stage was investigated. For preliminary verification of the theoretical studies on the approach, a simplified experimental prototype containing one spray mechanical arm was built and some performance tests were carried out under controlled environment in laboratory. The results showed that the prototype could achieve the effect of “spraying while moving and accurately spraying on target.”

  18. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yan [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Guo, Xingwu [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhou, Zhifeng [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Dong, Jie [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, Yixiong [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China)

    2015-02-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating.

  19. Wear of sequentially enhanced 9-Mrad polyethylene in 10 million cycle knee simulation study.

    Science.gov (United States)

    Tsukamoto, Riichiro; Williams, Paul Allen; Shoji, Hiromu; Hirakawa, Kazuo; Yamamoto, Kengo; Tsukamoto, Mikiko; Clarke, Ian C

    2008-07-01

    Highly crosslinked polyethylene (HXPE) has been shown to be effective in reducing wear in total hip replacements. HXPE has not found widespread use in TKR, because the crosslinking inevitably leads to reductions in critical properties such as toughness and fatigue strength. Sequentially enhanced crosslinking (SXPE) have been suggested for improved wear resistance for tibial inserts with maintenance of mechanical properties and anticipated high oxidation resistance superior to conventional polyethylene (XLPE). We compared the wear of SXPE (9Mrad) to XLPE inserts (3Mrad) to 10 million cycles. Triathlon femoral condyles were identical in both. This is the first wear study of SXPE inserts. According to the power law relating irradiation dose to wear of XLPE inserts, wear of 9 Mrad inserts should be reduced by 70% compared to 3Mrad controls. The wear rates of the SXPE inserts were reduced by 86% at 10 million cycles duration, somewhat greater than predicted. The one prior investigation by the manufacturer reported a 79% wear reduction for SXPE compared to controls in a 5 million cycle simulator study in knee design and test parameters. There were important differences between the two studies. Nevertheless there clearly appeared to be a major benefit for sequentially enhanced polyethylene in tibial inserts. This combined wear reduction of 80-85% with improved oxidation resistance and retention of mechanical properties may prove beneficial for active patients who may otherwise risk high wear rates over many years of use.

  20. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2014-01-06

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  1. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2016-01-06

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  2. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2015-01-07

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  3. Structurally Integrated Coatings for Wear and Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18

    techniques, balanced with overall materials performance. State-of-the-art design and simulation capabilities were used to guide materials and process refinement. Caterpillar was the lead of the multi-partner collaborative project. Specific tasks were performed by the partners base on their unique capabilities. The project team was selected to include leaders in the field of material development, processing, modeling, and material characterization. Specifically, industrial members include the suppliers Deloro Stellite and Powder Alloy Corporation., who provided the experimental alloys and who aided in the development of the costs for the alloys, the Missouri University of Science and Technology and Iowa State University, who provided help in the alloy development and material characterization, QuesTek Innovations, a small company specializing the microstructural modeling of materials, and the DOE laboratories, Oak Ridge National Laboratory and National Energy Technology Laboratory (Albany), who provided unique coating process capability and wear characterization testing. The technologies developed in this program are expected to yield energy savings of about 50% over existing technologies, or 110 trillion BTUs per year by 2020 when fully implemented. Primary applications by Caterpillar are to replace the surface of machine components which are currently carburized and heat treated with new cladding materials with double the wear life. The new cladding technologies will consume less energy than carburizing. Thus, nearly 50% energy savings can be expected as a result from elimination of the heat treat process and the reduce wear of the materials. Additionally, when technologies from this project are applied on titanium or other non-ferrous substrates to make lighter weight, more wear resistant, and more efficient structures, significant fuel savings can be realized. With the anticipated drastic reduction in cost for refining titanium-containing ores, the usage of titanium

  4. Investigation of austenitizing temperature on wear behavior of austempered gray iron (AGI)

    Science.gov (United States)

    Sarkar, T.; Sutradhara, G.

    2016-09-01

    This study is about finding the effect of austenitizing temperature on microstructure and wear behavior of copper alloyed austempered gray iron (AGI), and then comparing it with an as- cast (solidified) state. Tensile and wear tests specimens are prepared from as-cast gray iron material, and austenitized at different temperatures and then austempered at a fixed austempering temperature. Resulting microstructures are characterized through optical microscopy, scanning electron microscope (SEM) and X-Ray diffraction. Wear test is carried out using a block-on-roller multi-tribotester with sliding speed of 1.86 m/sec. In this investigation, wear behavior of all these austempered materials are determined and co-related with the micro structure. Hence the wear surface under scanning electron microscope showed that wear occurred mainly due to adhesion and delamination under dry sliding condition. The test results indicate that the austenitizing temperature has remarkable effect on resultant micro structure and wear behavior of austempered materials. Wear behavior is also found to be dependent on the hardness, tensile strength, austenite content and carbon content in austenite. It is shown that coarse ausferrite micro structure exhibited higher wear depth than fine ausferrite microstructure.

  5. RPP-WPT Slurry Wear Evaluation: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    2001-06-12

    Tests are planned to measure the wear rates in scaled flow loops that represent full-scale systems in Pretreatment sections of the Waste Treatment Plant to be built as part of the Department of Energy (DOE) River Protection Project. Those tests are to be done in the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center at the DOE Savannah River Site.

  6. REDUCED ENGINE FRICTION AND WEAR

    Energy Technology Data Exchange (ETDEWEB)

    Ron Matthews

    2005-05-01

    This Final Technical Report discusses the progress was made on the experimental and numerical tasks over the duration of this project regarding a new technique for decreasing engine friction and wear via liner rotation. The experimental subtasks involved quantifying the reduction in engine friction for a prototype rotating liner engine relative to a comparable baseline engine. Both engine were single cylinder conversions of nominally identical production four-cylinder engines. Hot motoring tests were conducted initially and revealed that liner rotation decreased engine friction by 20% under motoring conditions. A well-established model was used to estimate that liner rotation should decrease the friction of a four-cylinder engine by 40% under hot motoring conditions. Hot motoring tear-down tests revealed that the crankshaft and valve train frictional losses were essentially the same for the two engines, as expected. However, the rotating liner engine had much lower (>70%) piston assembly friction compared to the conventional engine. Finally, we used the Instantaneous IMEP method to compare the crank-angle resolved piston assembly friction for the two engines. Under hot motoring conditions, these measurements revealed a significant reduction in piston assembly friction, especially in the vicinity of compression TDC when the lubrication regime transitions from hydrodynamic through mixed and into boundary friction. We have some remaining problems with these measurements that we expect to solve during the next few weeks. We will then perform these measurements under firing conditions. We also proposed to improve the state-of-the-art of numerical modeling of piston assembly friction for conventional engines and then to extend this model to rotating liner engines. Our research team first modeled a single ring in the Purdue ring-liner test rig. Our model showed good agreement with the test rig data for a range of speeds and loads. We then modeled a complete piston

  7. Alternate paddle configuration for improved wear resistance in the saltstone mixer

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-09-23

    The Saltstone Production Facility has a 10-inch Readco-Kurimoto continuous mixer that mixes the premix dry feeds and low-level waste salt solution to make fresh (uncured) saltstone. Inspection of the mixer in January 2013 showed significant wear on the third, fourth and fifth paddle pairs after the conveying augers. A 2-inch Readco-Kurimoto continuous mixer was used to test alternate paddle configurations for use in the 10-inch mixer to decrease the wear rate on the paddles. Two wear tests were conducted to investigate a method of reducing wear on the mixer paddles. The first test (wear test 2a) had a paddle configuration similar to the currently installed 10-inch mixer in the SPF. This test established baseline wear. The second test (wear test 2b) had a reconfigured paddle arrangement that replaced the flat paddles with helical paddles for paddle pairs 2 - 6 and aligned paddle pair 1 with the augers. The intent of the reconfiguration was to more effectively convey the partially wetted dry feeds through the transition region and into the liquid feed where paddle wear is reduced due to dry feeds and salt solution being mixed at the intended water to premix ratio. The design of the helical paddles provides conveyance through the transition region to the liquid feed inlet. The alignment with the auger is aimed to provide a smoother transition (minimizing the discontinuity between the auger and paddle pair 1) into the downstream paddles. A soft metal with low wear resistance (6000 series aluminum) was used for the wear testing paddles to determine wear patterns while minimizing run time and maximizing wear rate. For the two paddle configurations tested using the scaled 2-inch Readco-Kurimoto continuous mixer, with the first six paddles after the augers replaced by the wear paddles and the remaining paddles were stainless steel. Since the 10-inch SPF mixer is designed with the liquid inlet centered over paddle pairs 5 and 6, the scaled 2-inch mixer was configured the

  8. Cavitation wear resistance of engine bearing materials

    Science.gov (United States)

    Rac, Aleksandar

    1994-04-01

    The resistance to cavitation erosion of aluminum alloy, and cast and sinte-red lead-bronze, materials which are most frequently used for engine bearings, has been evaluated. The tests were carried out in motor oil at a temperature of 80 C, using a magnetostrictive vibratory tester (20 kHz). The results showed that the cavitation erosion resistance was the greatest in cast lead-bronze. On the contrary, sintered lead-bronze, though of the same chemical composition, had the greatest erosion rate. Additionally, the investigation of the overlay plated bearings showed the overlay was nonresistive to this type of wear.

  9. Fundamentals of friction and wear on the nanoscale

    CERN Document Server

    Gnecco, Enrico

    2014-01-01

    This book provides an updated review on the development of scanning probe microscopy and related techniques, and the availability of computational techniques not even imaginable a few decades ago. The 36 chapters cover instrumental aspects, theoretical models and selected experimental results, thus offering a broad panoramic view on fundamental issues in nanotribology which are currently being investigated. Compared to the first edition, several topics have been added, including triboluminescence, graphene mechanics, friction and wear in liquid environments, capillary condensation, and multisc

  10. Industrial tribology tribosystems, friction, wear and surface engineering, lubrication

    CERN Document Server

    Mang, Theo; Bartels, Thorsten

    2010-01-01

    Integrating very interesting results from the most important R & D project ever made in Germany, this book offers a basic understanding of tribological systems and the latest developments in reduction of wear and energy consumption by tribological measures. This ready reference and handbook provides an analysis of the most important tribosystems using modern test equipment in laboratories and test fields, the latest results in material selection and wear protection by special coatings and surface engineering, as well as with lubrication and lubricants.This result is a quick introductio

  11. Friction and wear behavior of electrodeposited amorphous Fe-Co-W alloy deposits

    Institute of Scientific and Technical Information of China (English)

    何凤姣; 雷惊天; 陆欣; 黄宇宁

    2004-01-01

    The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome deposit under the same testing condition was also made. The experimental results show that the hardness and wear resistance of amorphous Fe-Co-W alloy deposits are improved with the increasing of heat treatment temperature, and reach the maximum value at 800 ℃, then decrease above 800 ℃. Under 40 N load, the wear resistance properties of the alloy deposits heat treated at 800 ℃ are superior to those of hard chrome deposit. The main wear mechanisms of amorphous Fe-Co-W alloy deposits heat treated below 600 ℃ are peeling, plastic and flowing deformation; when the deposits are heat treated above 700 ℃, they are plastic and flowing deformation. While the main wear mechanisms of hard chrome are abrasive wear, fatigue and peeling.

  12. The Effect of Nodular Cast Iron Metal Matrix on the Wear Resistance

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2012-04-01

    Full Text Available The paper presents results of studies on the effect of the nodular cast iron metal matrix composition on the abrasive and adhesive wear resistance. Nodular cast iron with different metal matrix obtained in the rough state and ADI were tested. To research of abrasive and adhesive wear the pearlitic and bainitic cast iron with carbides and without this component were chosen. The influence of the carbides amount for cast iron wear resistance was examined. It was found, that the highest abrasive and adhesive wear resistance under conditions of dry friction has a nodular cast iron with carbides with upper and lower bainite. Carbides in bainitic and pearlitic cast iron significantly increase the wear resistance in these conditions. In terms of fluid friction the largest wear resistance had cast iron group with the highest hardness.

  13. Wear and Grip Loss Evaluation of High Chromium Welding Deposits Applied on Sugar Cane Rolls1

    OpenAIRE

    Diaz Millan, Sebastian; Rugbeño S.A.S; Aguilar Castro, Yesid; Escuela de Ingeniería de Materiales, Universidad del Valle, Cali, Colombia; Casanova García, Gonzalo Fernando; Escuela de Ingeniería Mecánica,Universidad del Valle, Cali, Colombia

    2015-01-01

    Wear on sugar cane rolls is an expensive maintenance problem for the sugar cane industry. Wear produces loss of sucrose extraction and loss of grip of the roll on the bagasse. This paper presents the evaluation of wear and loss of grip of hypoeutectic and hypereutectic high chromium welding deposits applied on ASTM A-36 steel and gray cast iron. A modified ASTM G-65 standard test was used. Wear was produced by the abrasive action of wet bagasse with three levels of mineral extraneous matter. ...

  14. Wear and Corrosion of Cast Al Alloy Piston with and without Brake Oil

    OpenAIRE

    Olawale Olarewaju Ajibola; Daniel Toyin Oloruntoba

    2015-01-01

    The effects of wear and corrosion of cast AA6061 aluminium alloy were studied with and without brake fluid using a wear jig while the corrosion rate was determined in brake fluid for 70 days under two experimental set-ups. The tests, yielded 0.00000123 g/mm2/min highest wear rate at 147000 wear cycles and 0.0334 mg/mm2/yr as the highest corrosion rate within the early 39th day of immersion in oil, the values being considered comparatively lower than those obtained for Al alloy in most common ...

  15. Backside Wear Analysis of Retrieved Acetabular Liners with a Press-Fit Locking Mechanism in Comparison to Wear Simulation In Vitro

    Directory of Open Access Journals (Sweden)

    Ana Laura Puente Reyna

    2016-01-01

    Full Text Available Backside wear due to micromotion and poor conformity between the liner and its titanium alloy shell may contribute to the high rates of retroacetabular osteolysis and consequent aseptic loosening. The purpose of our study was to understand the wear process on the backside of polyethylene liners from two acetabular cup systems, whose locking mechanism is based on a press-fit cone in combination with a rough titanium conical inner surface on the fixation area. A direct comparison between in vitro wear simulator tests (equivalent to 3 years of use and retrieved liners (average 13.1 months in situ was done in order to evaluate the backside wear characteristics and behavior of these systems. Similar wear scores between in vitro tested and retrieved liners were observed. The results showed that this locking mechanism did not significantly produce wear marks at the backside of the polyethylene liners due to micromotion. In all the analyzed liners, the most common wear modes observed were small scratches at the cranial fixation zone directly below the rough titanium inner surface of the shell. It was concluded that most of the wear marks were produced during the insertion and removal of the liner, rather than during its time in situ.

  16. A statistical model for sliding wear of metals in metal/composite systems

    Science.gov (United States)

    Wang, A.; Rack, H. J.

    1992-09-01

    The wear of a nominally harder single-phase metal sliding against a nominally softer metal-matrix composite containing a dispersion of hard second-phase reinforcement is described by a statistical wear model which considers the effects of local variations in hardness and microstructure on asperity interactions. It was shown theoretically that the wear rate of the unreinforced component varies exponentially with nominal reinforcement volume fraction. Model experiments performed on a SiC(w)-2124 Al composite/17-4 PH steel system confirmed the validity of the theory.

  17. Determining the functional and material properties needed for abrasive wear prediction

    Science.gov (United States)

    Petre, I.

    2016-08-01

    Abrassive wear is a complex mechanical process with specific characteristics, dependent on the bodies velocities and load, the quality of contact surfaces, the mechanical properties of the superficial layers, lubrication etc. During the friction of the bodies in contact, the mechanical properties and the micro-topography of superficial layers change, most of the time irrecoverable, leading to the shut-down of the technical system they are part of. The present paper proposes a theoretical and experimental analysis of the abrassive wear behaviour of a coupling made of steel/cast iron as well as the detection of the wear trace dependent on the inclination angle of the harder material asperities (penetrator).

  18. Method For Testing Properties Of Corrosive Lubricants

    Science.gov (United States)

    Ohi, James; De La Cruz, Jose L.; Lacey, Paul I.

    2006-01-03

    A method of testing corrosive lubricating media using a wear testing apparatus without a mechanical seal. The wear testing apparatus and methods are effective for testing volatile corrosive lubricating media under pressure and at high temperatures.

  19. Comparative gravimetric wear analysis in mobile versus fixed-bearing posterior stabilized total knee prostheses.

    Science.gov (United States)

    Delport, Hendrik P; Sloten, Jos Vander; Bellemans, Johan

    2010-06-01

    Polyethylene (PE) wear is the limiting factor for the longevity of a conventional total knee arthroplasty (TKA). Excessive wear leads to loosening and eventual implant failure. The aim of our in vitro study was to investigate wear of a PE tibial insert on a rotating platform as compared to the same insert fixed to the tibial baseplate and articulating with a similar femoral component. All tests were performed at Endolab Laboratories, Rosenheim, Germany using a knee joint simulator following ISO 14243-1. Three specific configurations were tested and compared to a loaded soak control: (1) the rotating platform using machined polyethylene (PE), (2) fixed bearing using machined PE, (3) fixed bearing using compression-moulded PE. Calf serum with a high protein concentration of 30 g/l was chosen as test lubricant. PE wear was measured gravimetrically using the ISO 14243-2 protocol. The total wear rates found for all systems tested were low. The mean wear rate was 1.40 mg per million cycles for the moulded fixed bearing, 4.07 mg per million cycles for the machined fixed bearing type and 0.82 mg per million cycles for the machined rotating platform bearing type. We conclude that the TKA system we tested (Performance, Biomet, Warsaw, IND, USA) demonstrated very low gravimetric wear. The wear rate of the same implant in the fixed mode compared to the rotating platform mode was four times higher.

  20. Influence on the wear resistance of the particle size used in coatings of Alumina

    Science.gov (United States)

    Santos, A.; Guzmán, R.; Ramirez, Z. Y.

    2017-01-01

    In the literature, it is common to find that the size of the particles used in coatings through thermal spraying processes influences the hardness and wear resistance thereof; this project aimed to quantify the importance of this parameter in the adhesive and abrasive wear resistance when aluminium oxide is deposited on a substrate of AISI 1020 steel, through a thermal spraying by flame process. The methodology consisted of: a) morphological characterization of the powder used in the coatings by scanning electron microscopy, b) deposition of coatings, c) testing of adhesive and abrasive wear (ASTM G99-05 Standard test method for wear testing with a pin-on-disk apparatus and ASTM G65–04 Standard test method for measuring abrasion using dry sand/rubber wheel apparatus), and d) statistical analysis to determine the influence of particle size on wear resistance. The average size of the powder used for coatings was 92, 1690, 8990 and 76790nm. The obtained results allow to identify an inversely proportional behaviour between particle size and wear resistance, in both types of wear (adhesive and abrasive) is shown a logarithmic trend indicating an increase in loss mass during the test as the particle size is also increased and therefore a decrease in wear resistance of the coating.

  1. Laser cladding of Zr-based coating on AZ91D magnesium alloy for improvement of wear and corrosion resistance

    Indian Academy of Sciences (India)

    Kaijin Huang; Xin Lin; Changsheng Xie; T M Yue

    2013-02-01

    To improve the wear and corrosion resistance of AZ91D magnesium alloy, Zr-based coating made of Zr powder was fabricated on AZ91D magnesium alloy by laser cladding. The microstructure of the coating was characterized by XRD, SEM and TEM techniques. The wear resistance of the coating was evaluated under dry sliding wear test condition at room temperature. The corrosion resistance of the coating was tested in simulated body fluid. The results show that the coating mainly consists of Zr, zirconium oxides and Zr aluminides. The coating exhibits excellent wear resistance due to the high microhardness of the coating. The main wear mechanism of the coating and the AZ91D sample are different, the former is abrasive wear and the latter is adhesive wear. The coating compared to AZ91D magnesium alloy exhibits good corrosion resistance because of the good corrosion resistance of Zr, zirconium oxides and Zr aluminides in the coating.

  2. Anti-wear properties on 20CrMnTi steel surfaces with biomimetic non-smooth units

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to gain a sufficient wear resistance for applications, the biomimetic non-smooth units in concave were fabricated on the surfaces of 20CrMnTi steel using a biomimetic laser remelting technology. The diameter and distribution of the concaves were optimized using orthogonal experiment. The microstructures of the biomimetic non-smooth units were examined. The anti-wear behaviors were investigated by the rolling wear test with lubricant. The results of wear tests indicated that the biomimetic surfaces exhibit a higher anti-wear ability than the smooth surfaces. The biomimetic surface with concaves of 250 μm in diameter and transverse distance of 270 μm and longitudinal distance of 400 μm exhibits the best anti-wear property. The enhancement of wear resistance can be mainly attributed to the action of biomimetic non-smooth units and the super fined microstructure and hardness in the biomimetic unit zones.

  3. Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys

    Science.gov (United States)

    Yan, Lina; Liu, Yong

    2016-06-01

    Owing to good biocompatibility, good fatigue resistance, and excellent superelasticity, various types of bio-medical devices based on NiTi shape memory alloy (SMA) have been developed. Due to the complexity in deformation mode in service, for example NiTi implants, accurate assessment/prediction of the surface wear process is difficult. This study aims at providing a further insight into the effect of deformation mode on the wear behavior of NiTi SMA. In the present study, two types of wear testing modes were used, namely sliding wear mode and reciprocating wear mode, to investigate the effect of deformation mode on the wear behavior of NiTi SMA in both martensitic and austenitic states. It was found that, when in martensitic state and under high applied loads, sliding wear mode resulted in more surface damage as compared to that under reciprocating wear mode. When in austenitic state, although similar trends in the coefficient of friction were observed, the coefficient of friction and surface damage in general is less under reciprocating mode than under sliding mode. These observations were further discussed in terms of different deformation mechanisms involved in the wear tests, in particular, the reversibility of martensite variant reorientation and stress-induced phase transformation, respectively.

  4. A comparative wear study on Al-Li and Al-Li/SiC composite

    Science.gov (United States)

    Okumus, S. Cem; Karslioglu, Ramazan; Akbulut, Hatem

    2013-12-01

    Aluminum-lithium based unreinforced (Al-8090) alloy and Al-8090/SiCp/17 vol.% metal matrix composite produced by extrusion after spray co-deposition. A dry ball-on disk wear test was carried out for both alloy and composite. The tests were performed against an Al2O3 ball, 10 mm in diameter, at room temperature and in laboratory air conditions with a relative humidity of 40-60%. Sliding speed was chosen as 1.0 ms-1 and normal loads of 1.0, 3.0 and 5.0 N were employed at a constant sliding distance of 1000 m. The wear damage on the specimens was evaluated via measurement of wear depth and diameter. Microstructural and wear characterization was carried out via scanning electron microscopy (SEM). The results showed that wear loss of the Al-8090/SiC composite was less than that of the Al-8090 matrix alloy. Plastic deformation observed on the wear surface of the composite and the matrix alloy, and the higher the applied load the greater the plastic deformation. Scanning electron microscopy examinations of wear tracks also reveal that delamination fracture was the dominant wear mechanism during the wear progression. Friction coefficient was maximum at the low applied load in the case of the Al-8090/SiC composite while a gradual increase was observed with applied load for the matrix alloy.

  5. Wear resistance of experimental titanium alloys for dental applications.

    Science.gov (United States)

    Faria, Adriana Cláudia Lapria; Rodrigues, Renata Cristina Silveira; Claro, Ana Paula Rosifini Alves; da Gloria Chiarello de Mattos, Maria; Ribeiro, Ricardo Faria

    2011-11-01

    The present study evaluated microstructure, microhardness and wear resistance of experimental titanium alloys containing zirconium and tantalum. Alloys were melted in arc melting furnace according to the following compositions: Ti-5Zr, Ti-5Ta and Ti-5Ta-5Zr (%wt). Hemispheres and disks were obtained from wax patterns that were invested and cast by plasma. Microstructures were evaluated using optical microscopy and X-ray diffraction (XRD) analysis and also Vickers microhardness was measured. Hemispherical samples and disks were used for 2-body wear tests, performed by repeated grinding of the samples. Wear resistance was assessed as height loss after 40,000 cycles. The data were compared using ANOVA and post-hoc Tukey test. Ti-5Zr presented a Widmanstätten structure and the identified phases were α and α' while Ti-5Ta and Ti-5Ta-5Zr presented α, β, α' and α" phases, but the former presented a lamellar structure, and the other, acicular. The microhardness of Ti-5Zr was significantly greater than other materials and cp Ti presented wear resistance significantly lower than experimental alloys. It was concluded that wear resistance was improved when adding Ta and Zr to titanium and Zr increased microhardness of Ti-5Zr alloy.

  6. On the Friction and Wear Behaviors of Dental Machinable Porcelain

    Institute of Scientific and Technical Information of China (English)

    YU Hai-yang; ZHOU Zhong-rong; CAI Zhen-Bing

    2004-01-01

    In order to well design tribosystems of dental CAD-CAM restorations, an understanding of the tribological mechanisms of dental machinable porcelain are essential. The friction and wear behavior of new generation industrially prefabricated Cerec Vitablocs Mark Ⅱ against uniform Si3N4 ball has been performed using a small amplitude reciprocating apparatus under simulating oral conditions. The loads of 10-40 N, reciprocating amplitudes of 100-500 μm, frequencies of 1-4 Hz and two lubrications (no / artificial saliva lubrication) were selected. Tests lasting up to 10 000 cycles were conducted. The results show that Cerec Vitablocs Mark Ⅱ record a friction coefficient of 0.55-0.84. Artificial saliva plays a lubricant effect during wear process. Among three parameters of the test on friction coefficient and wear depth of dental machinable porcelains, the load effect is prominent. Abrasive wear is the main wear mechanism, but brittle cracks and delamination are more popular especially under unlubricated friction.

  7. On the Friction and Wear Behaviors of Dental Machinable Porcelain

    Institute of Scientific and Technical Information of China (English)

    YUHai-yang; ZHOUZhong-rong; CAIZhen-Bing

    2004-01-01

    In order to well design tribosystems of dental CAD-CAM restorations, an understanding of the tribological mechanisms of dental machinable porcelain are essential. The friction and wear behavior of new generation industrially prefabricated Cerec Vitablocs Mark II against uniform Si3N4ball has been performed using a small amplitude reciprocating apparatus under simulating oral conditions. The loads of 10-40N, reciprocating amplitudes of 100-500μm, frequencies of 1-4Hz and two lubrications (no / artificial saliva lubrication) were selected. Tests lasting up to 10 000 cycles were conducted. The results show that Cerec Vitablocs Mark Ⅱ record a friction coefficient of 0.55-0.84. Artificial saliva plays a lubricant effect during wear process. Among three parameters of the test on friction coefficient and wear depth of dental machinable porcelains, the load effect is prominent. Abrasive wear is the main wear mechanism, but brittle cracks and delamination are more popular especially under unlubricated friction.

  8. Characterization of polyethylene wear particle: The impact of methodology.

    Science.gov (United States)

    Schröder, Christian; Reinders, Jörn; Zietz, Carmen; Utzschneider, Sandra; Bader, Rainer; Kretzer, J Philippe

    2013-12-01

    Due to the prevalence of problems caused by wear particles, the reduced durability of total joint replacements is well documented. The characterization of wear debris enables the size and morphology of these wear particles to be measured and provides an assessment of the biological response in vivo. However, the impact of different methodologies of particle analysis is not yet clear. Hence, the aim of this investigation was to analyze the influence of different particle characterization methods performed by three research centers within the scope of a "round robin test". To obtain knowledge about possible pitfalls, single steps of the particle characterization process (storage, pore size of the filter, coating durations by gold sputtering and scanning electron microscopy (SEM) magnification) were analyzed. The round robin test showed significant differences between the research groups, especially for the morphology of the particles. The SEM magnification was identified as having the greatest influence on the size and shape of the particles, followed by the storage conditions of the wear particle containing lubricant. Gold sputter coating and filter pore size also exhibit significant effects. However, even though they are statistically significant, it should be emphasized that the differences are small. In conclusion, particle characterization is a complex analytical method with a multiplicity of influencing factors. It becomes apparent that a comparison of wear particle results between different research groups is challenging.

  9. Transitions in Wear and Friction of Carbon Fiber Reinforced Copper Matrix Composite Sliding Against AISI-1045 Steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The friction and wear properties of carbon fiber reinforced copper matrix composite in dry sliding against AISI-1045 steel was evaluated by a block-on-ring test machine. It was shown that the low frictional factor and wear rate of the composite block could be maintained when pressure or velocity was below a certain value. But when the pressure or velocity exceeded the critical value, the friction factor and wear rate tended to increase rapidly with pressure and sliding velocity. The morphologies, elemental compositions, and surface profile of worn composite surfaces at different wear stages were analyzed by means of scanning electron microscopy, energy dispersive spectrometry, and profile-meter. It was found that low values of friction and wear were due to a thin solid film forming on the surface of the composite block which includes carbon and copper at a mild wear stage. The film could impede adhesion and provide some degree of self-lubrication. When the film included more metal elements and were damaged, severe wear happened, and the wear rate increased sharply. As a result, a transition diagram in friction and wear was constructed, which provided pressure and velocity conditions of change from mild wear and low friction to severe wear and high friction for the wear-resisting design.

  10. Synthetic industrial gear oils for drive engineering - energy saving potentials, enhanced wear protection - most advanced results from practice and test stands; Synthetische Industriegetriebeoele in der Antriebstechnik - Energiesparpotentiale, verbesserter Verschleissschutz - neueste Ergebnisse aus der Praxis und dem Pruefstand

    Energy Technology Data Exchange (ETDEWEB)

    Bock, W.; Heinemann, H.; Braun, J. [FUCHS Europe Schmierstoffe GmbH, Mannehim (Germany)

    2009-07-01

    Increasing economic and technical demands will lead increasingly to the use of synthetic lubricants and lubricating oils. These synthetic oils have many excellent properties, resulting in longer oil change intervals, lower friction, higher efficiency, and higher reliability. The wear protection properties of synthetic lubricants are far better than those of mineral oil products, so systems will be reliably protected against wear for longer periods of time and in the most varied operating conditions, e.g. high or low rotational speed, changing temperatures, environmental influences. Synthetic lubricating oils will enhance the efficiency of plants, machine elements, and gearing, and also offer a great potential for energy conservation.

  11. Study on quantitative relation between characteristics of striature bionic coupling unit and wear resistance of gray cast iron

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-03-01

    In order to improve the wear resistance of gray cast iron guide rail, striature bionic coupling units of different characteristics were manufactured by laser surface remelting. Wear behavior of gray cast iron with striature bionic coupling units has been studied under dry sliding condition at room temperature using a homemade linear reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that there is a relationship between weight loss and the area of striature bionic coupling units and α: Δm = Δm0 - 0.0212S × cos α - 0.0241S × sin α.

  12. Should School Nurses Wear Uniforms?

    Science.gov (United States)

    Journal of School Health, 2001

    2001-01-01

    This 1958 paper questions whether school nurses should wear uniforms (specifically, white uniforms). It concludes that white uniforms are often associated with the treatment of ill people, and since many people have a fear reaction to them, they are not necessary and are even undesirable. Since school nurses are school staff members, they should…

  13. Tooth wear patterns in the deciduous dentition.

    Science.gov (United States)

    Warren, John J; Yonezu, Takuro; Bishara, Samir E

    2002-12-01

    Tooth wear is common in the deciduous dentition. A recent study suggests that tooth wear in the deciduous dentition is related to subsequent tooth wear in adults, so that early identification of factors related to tooth wear could be of long-term benefit. The purposes of this study were to describe patterns of tooth wear in the deciduous dentition and to relate tooth wear to occlusal characteristics and longitudinal dietary patterns. Data were collected as part of a longitudinal study of a cohort of children recruited at birth from Iowa hospitals. Stone casts were obtained in the deciduous dentition stage, and 355 children, 4 to 5 years old, met the selection criteria. Tooth wear was categorized for each tooth as none, mild, moderate, or severe, and related to occlusal characteristics and longitudinal data on fruit juice and soft drink consumption. All children exhibited some tooth wear on at least 1 tooth, and nearly 16% of them had at least 1 tooth with severe wear. Tooth wear was generally more severe in the maxillary arch and the anterior teeth. Severe tooth wear on the molars was significantly related to posterior crossbites, but severe tooth wear on the incisors was related to Class III canine relationships. There were no statistically significant relationships between tooth wear and soft drink or fruit juice consumption. Based on our results, we concluded that mild tooth wear is universal in the deciduous dentition, but only a few occlusal factors are related to severe tooth wear. Tooth wear was not related to any dietary patterns we investigated.

  14. Investigation of the time-dependent wear behavior of veneering ceramic in porcelain fused to metal crowns during chewing simulations.

    Science.gov (United States)

    Guo, Jiawen; Tian, Beimin; Wei, Ran; Wang, Weiguo; Zhang, Hongyun; Wu, Xiaohong; He, Lin; Zhang, Shaofeng

    2014-12-01

    The excessive abrasion of occlusal surfaces in ceramic crowns limits the service life of restorations and their clinical results. However, little is known about the time-dependent wear behavior of ceramic restorations during the chewing process. The aim of this in vitro study was to investigate the dynamic evolution of the wear behavior of veneering porcelain in PFM crowns as wear progressed, as tested in a chewing simulator. Twenty anatomical metal-ceramic crowns were prepared using Ceramco III as the veneering porcelain. Stainless steel balls served as antagonists. The specimens were dynamically loaded in a chewing simulator with 350N up to 2.4×10(6) loading cycles, with additional thermal cycling between 5 and 55°C. During the testing, several checkpoints were applied to measure the substance loss of the crowns' occlusal surfaces and to evaluate the microstructure of the worn areas. After 2.4×10(6) cycles, the entire wear process of the veneering porcelain in the PFM crowns revealed three wear stages (running-in, steady and severe wear stages). The occlusal surfaces showed traces of intensive wear on the worn areas during the running-in wear stage, and they exhibited the propagation of cracks in the subsurface during steady wear stage. When the severe wear stage was reached, the cracks penetrated the ceramic layer, causing the separation of porcelain pieces. It also exhibited a good correlation among the microstructure, the wear loss and the wear rate of worn ceramic restorations. The results suggest that under the conditions of simulated masticatory movement, the wear performance of the veneering porcelain in PFM crowns indicates the apparent similarity of the tribological characteristics of the traditional mechanical system. Additionally, the evaluation of the wear behavior of ceramic restorations should be based on these three wear stages.

  15. THE EFFECT OF WEARING HEADSCARVES ON CERVICAL SPINE PROPRIOCEPTION

    Directory of Open Access Journals (Sweden)

    Samiah F. Alqabbani

    2016-04-01

    Full Text Available Background: Proprioception plays an important role in sensorimotor control of posture and movement. Impairments in cervical proprioception have been demonstrated in subjects with whiplash-associated disorder, patients with age-related degeneration, and patients with articular diseases or spondylosis. The joint position error test is widely used to measure head repositioning accuracy. Objective: The purpose of this pilot study was to compare cervical spine joint position error in females who routinely wear headscarves to females that do not wear headscarves. Methods: Twelve females with mean age 27.5±4.0 years were divided into two groups: females who routinely wear headscarves (n=6, and females who never wear headscarves (n=6. Joint position error was measured using a head-mounted laser while subjects were seated. The tasks involved relocating the head to neutral after flexion, extension, right rotation, and left rotation. A total of six trials were done for each direction. Results: The joint position error was higher in females wearing headscarves compared to females who do not wear them in the cumulative joint position error score (8.2±1.0 vs. 4.4±1.0, p=0.06 as well as during head rotation to the right (9.3±1.6 vs. 3.1±1.6, p=0.06. Conclusion: Wearing headscarves may increase the cervical joint position error and can negatively impact postural control. However, further studies are needed to confirm this finding.

  16. Fissure sealant materials: Wear resistance of flowable composite resins.

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  17. Comparative Evaluation of Wear Rate of Different Riva Glass Ionomers

    Directory of Open Access Journals (Sweden)

    Vahid Yaghoubi

    2016-12-01

    Full Text Available Introduction: wear is one of the most important factors that cause loss of restorations. The aim of this study was to evaluate the wear rate in light-cured glass ionomers SDI. Materials and Methods: 20 samples consisted of light-cured Ionomer Glass Riva and Riva HV and Fuji II and composit Z250 to 2mm and length and width 10mm in Copper generator were prepared (n = 5 and were put in a wear device. Samples in wear cycles, in the course of 5000, 10000, 20000, 40000, 80000, 120000 respectively cycles via cobalt chrome cylindrical abrasive was under wear. Digital scale with 0.1 mg precision was used for gravimetric. Data using One Way Anova and Post hoc Tukey test and Spss software was analyzed. Results: The weight loss was as follows: Glass Ionomer light cure Riva ˂Glass Ionomer light cure Riva HV ˂Glass Ionomer light cure Fuji II ˂composite Z250. The other three groups were statistically significant weight loss between the composite Z250 and but the difference in weight loss between the groups and Glass Ionomer light cure Riva, Glass Ionomer light cure Riva HV, Glass Ionomer light cure Fuji II was found after 120,000 cycles. Conclusion: The results of this study showed the wear of glass ionomers Capsule Riva is similar Fuji II LC but the wear of glass inomers is much more than composite Z250 which seems ready to take in areas not exposed to occlusal stress.

  18. Fissure sealant materials: Wear resistance of flowable composite resins

    Directory of Open Access Journals (Sweden)

    Sohrab Asefi

    2016-08-01

    Full Text Available Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow, Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists. A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  19. Fissure sealant materials: Wear resistance of flowable composite resins

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics. PMID:27651887

  20. Consideration of Wear Rates at High Velocities

    Science.gov (United States)

    2010-03-01

    tionally, the texts by Bayer [3; 4], Rabinowicz [30], and Stachowiak [32] thoroughly cover the topic of wear mechanisms. A summary of the material is...March 1976. 30. Rabinowicz , E. Friction and Wear of Metals. John Wiley & Sons, New York, 1995. 31. Saka, N., A. M. Eleiche, and N. P. Suh. “Wear of

  1. An Evaluation of High Velocity Wear

    Science.gov (United States)

    2007-03-01

    x10F~ -4 [18:18-19]. Authors such as Hutchings and Rabinowicz however, do not explicitly limit equation (12) to plastic wear. They suggest that...Surface Melting of Rotating Bands. Wear, Vol. 38, 235- 243 21. Rabinowicz , E. (1965). Friction and Wear of Materials (Second ed.). New York, NY

  2. Studies on Wear and Corrosion Resistances of Carbon Nitride Thin Films on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    Li Jin-chai; Guo Huai-xi; Lu Xian-feng; Zhang Zhi-hong; Ye Ming-sheng

    2003-01-01

    CNx/SiCN composite films were prepared on titanium ( Ti ) alloy substrates by Radio Frequency Plasma Enhanced Chemical Vapor Deposition ( RF-PECVD ). As a buffer layer, SiCN ensured the adhesion of the CNx thin films on Ti substrates. X-ray diffraction (XRD) measurement revealed that the composite films possessed α-C3N4 structure.The microhardness of the films was 48 to 50 GPa. In order to test the characteristics of wear and corrosion resistances, we prepared Ti alloy samples with and without CNx/SiCN composite films. Also for strengthening the effect of wear and corrosion, the wear tests were carried out under high load (12 MPa) and in 0. 9% NaCl solution. Results of the wear tests and the corrosive electrochemical measurements showed that the samples coated with CNx films had excellent characteristics of wear and corrosion resistances compared with Ti alloy substrate samples.

  3. Abrasive wear behavior of heat-treated ABC-silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  4. Effect of temperature on friction and wear behavior of CuO-zirconia composites

    NARCIS (Netherlands)

    Valefi, Mahdiar; de Rooij, Matthias B.; Schipper, Dirk J.; Winnubst, Aloysius J.A.

    2012-01-01

    Results of wear tests using an alumina ball sliding against 5 wt% copper oxide doped tetragonal zirconia polycrystalline (CuO-TZP) ceramics are reported as a function of temperature up to 700 °C. The specific wear rate and friction coefficient are strongly dependent on temperature. Below a critical

  5. Effect of temperature on friction and wear behavior of CuO-zirconia composites

    NARCIS (Netherlands)

    Valefi, M.; Rooij, de M.B.; Schipper, D.J.; Winnubst, A.J.A.

    2012-01-01

    Results of wear tests using an alumina ball sliding against 5 wt% copper oxide doped tetragonal zirconia polycrystalline (CuO-TZP) ceramics are reported as a function of temperature up to 700 °C. The specific wear rate and friction coefficient are strongly dependent on temperature. Below a critical

  6. EVALUATION AND RECOMMENDATION OF SALTSTONE MIXER AUGER/PADDLES MATERIALS OF CONSTRUCTION FOR IMPROVED WEAR RESISTANCE

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Torres, R.

    2012-08-15

    Wear and corrosion testing were conducted to evaluate alternate materials of construction for the Saltstone mixer auger and paddles. These components have been degraded by wear from the slurry processed in the mixer. Material test options included PVD coatings (TiN, TiCN, and ZrN), weld overlays (Stellite 12 and Ultimet) and higher hardness steels and carbides (D2 and tungsten carbide). The corrosion testing demonstrated that the slurry is not detrimental to the current materials of construction or the new candidates. The ASTM G75 Miller wear test showed that the high hardness materials and the Stellite 12 weld overlay provide superior wear relative to the Astralloy and CF8M stainless steel, which are the current materials of construction, as well as the PVD coatings and Ultimet. The following recommendations are made for selecting new material options and improving the overall wear resistance of the Saltstone mixer components: A Stellite 12 weld overlay or higher hardness steel (with toughness equivalent to Astralloy) be used to improve the wear resistance of the Saltstone mixer paddles; other manufacturing specifications for the mixer need to be considered in this selection. The current use of the Stellite 12 weld overlay be evaluated so that coverage of the 316 auger can be optimized for improved wear resistance of the auger. The wear surfaces of the Saltstone mixer auger and paddles be evaluated so that laboratory data can be better correlated to actual service. The 2-inch Saltstone mixer prototype be used to verify material performance.

  7. Application of a Neural Network Model for Prediction of Wear Properties of Ultrahigh Molecular Weight Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Halil Ibrahim Kurt

    2015-01-01

    Full Text Available In the current study, the effect of applied load, sliding speed, and type and weight percentages of reinforcements on the wear properties of ultrahigh molecular weight polyethylene (UHMWPE was theoretically studied. The extensive experimental results were taken from literature and modeled with artificial neural network (ANN. The feed forward (FF back-propagation (BP neural network (NN was used to predict the dry sliding wear behavior of UHMWPE composites. Eleven input vectors were used in the construction of the proposed NN. The carbon nanotube (CNT, carbon fiber (CF, graphene oxide (GO, and wollastonite additives are the main input parameters and the volume loss is the output parameter for the developed NN. It was observed that the sliding speed and applied load have a stronger effect on the volume loss of UHMWPE composites in comparison to other input parameters. The proper condition for achieving the desired wear behaviors of UHMWPE by tailoring the weight percentage and reinforcement particle size and composition was presented. The proposed NN model and the derived explicit form of mathematical formulation show good agreement with test results and can be used to predict the volume loss of UHMWPE composites.

  8. Tribochemistry of Carbon Films in Oxygen and Humid Environments: Oxidative Wear and Galvanic Corrosion.

    Science.gov (United States)

    Alazizi, Ala; Draskovics, Andrew; Ramirez, Giovanni; Erdemir, Ali; Kim, Seong H

    2016-03-01

    The effects of oxidation on wear of carbon/steel tribological interfaces were studied. When mechanical wear was small, the oxidation behavior of hydrogenated diamond-like carbon (H-DLC) and stainless steel (SS) sliding interface varied depending on the nature of the oxidizing environment. In dry air or oxygen, both H-DLC and SS wore readily. The wear debris of SS did not form iron oxide in dry air and oxygen. In humid nitrogen, however, the wear of H-DLC diminished with increasing humidity, and the SS surface showed mild wear and iron oxide debris accumulated around the sliding contact region. These results revealed that different tribochemical reactions occur in dry oxygen and humid environments. In the absence of water, oxygen oxidizes the H-DLC surface, making it susceptible to wear, creating debris, and inducing wear on both H-DLC and SS. In contrast, adsorbed water molecules at less than 40% RH act as a molecular lubricant of the oxidized DLC surface, while multiwater layers adsorbed at near-saturation act as electrolyte inducing electrochemical galvanic corrosion reactions on the SS surface. When hydrogen-free amorphous carbon (a-C) was used in tribo-tests, severe wear of the SS surface occurs, in addition to the tribochemical wear observed for H-DLC, due to the high hardness of the a-C film.

  9. Wear behavior of tetragonal zirconia polycrystal versus titanium and titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kanbara, Tsunemichi; Yajima, Yasutomo [Department of Oral Implantology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502 (Japan); Yoshinari, Masao, E-mail: yosinari@tdc.ac.jp [Division of Oral Implant Research, Oral Health Science Center, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502 (Japan)

    2011-04-15

    The aim of this study was to clarify the influence of tetragonal zirconia polycrystal (TZP) on the two-body wear behavior of titanium (Ti). Two-body wear tests were performed using TZP, two grades of cp-Ti or Ti alloy in distilled water, and the cross-sectional area of worn surfaces was measured to evaluate the wear behavior. In addition, the surface hardness and coefficient of friction were determined and an electron probe microanalysis performed to investigate the underlying mechanism of wear. The hardness of TZP was much greater than that of Ti. The coefficient of friction between Ti and Ti showed a higher value than the Ti/TZP combination. Ti was more susceptible to wear by both TZP and Ti than TZP, indicating that the mechanism of wear between TZP and Ti was abrasive wear, whereas that between Ti and Ti was adhesive wear. No remarkable difference in the amount of wear in Ti was observed between TZP and Ti as the opposite material, despite the hardness value of Ti being much smaller than that of TZP. (communication)

  10. Agave Chewing and Dental Wear: Evidence from Quids.

    Directory of Open Access Journals (Sweden)

    Emily E Hammerl

    Full Text Available Agave quid chewing is examined as a potential contributing behavior to hunter-gatherer dental wear. It has previously been hypothesized that the contribution of Agave quid chewing to dental wear would be observed in communities wherever phytolith-rich desert succulents were part of subsistence. Previous analysis of coprolites from a prehistoric agricultural site, La Cueva de los Muertos Chiquitos in Durango, Mexico, showed that Agave was a consistent part of a diverse diet. Therefore, quids recovered at this site ought to be useful materials to test the hypothesis that dental wear was related to desert succulent consumption. The quids recovered from the site were found to be largely derived from chewing Agave. In this study, the quids were found to be especially rich in phytoliths, and analysis of dental casts made from impressions left in the quids revealed flat wear and dental attrition similar to that of Agave-reliant hunter-gatherers. Based on evidence obtained from the analysis of quids, taken in combination with results from previous studies, it is determined that Agave quid chewing was a likely contributing factor to dental wear in this population. As such, our method provides an additional avenue of dental research in areas where quids are present.

  11. Agave Chewing and Dental Wear: Evidence from Quids.

    Science.gov (United States)

    Hammerl, Emily E; Baier, Melissa A; Reinhard, Karl J

    2015-01-01

    Agave quid chewing is examined as a potential contributing behavior to hunter-gatherer dental wear. It has previously been hypothesized that the contribution of Agave quid chewing to dental wear would be observed in communities wherever phytolith-rich desert succulents were part of subsistence. Previous analysis of coprolites from a prehistoric agricultural site, La Cueva de los Muertos Chiquitos in Durango, Mexico, showed that Agave was a consistent part of a diverse diet. Therefore, quids recovered at this site ought to be useful materials to test the hypothesis that dental wear was related to desert succulent consumption. The quids recovered from the site were found to be largely derived from chewing Agave. In this study, the quids were found to be especially rich in phytoliths, and analysis of dental casts made from impressions left in the quids revealed flat wear and dental attrition similar to that of Agave-reliant hunter-gatherers. Based on evidence obtained from the analysis of quids, taken in combination with results from previous studies, it is determined that Agave quid chewing was a likely contributing factor to dental wear in this population. As such, our method provides an additional avenue of dental research in areas where quids are present.

  12. Wear mechanism of electrodeposited amorphous Ni-Fe-P alloys

    Institute of Scientific and Technical Information of China (English)

    高诚辉; 赵源

    2004-01-01

    The wear mechanism of amorphous Ni-Fe-P coating was discussed. The wear resistance of the amor phous Ni-Fe-P coatings was tested on a Timken wear apparatus, and the wear track of the amorphous Ni-Fe-P coat ings as-deposited and heated at various temperatures was observed by SEM. The results show that the wear resistthe coating will change with the heating temperature increasing from pitting+plowing at 200 ℃ to pitting at 400 ℃,and to plowing at 600 ℃. The pits on the worn surface of the amorphous Ni-Fe-P coating result from the tribo-fatigue fracture. The cracks of spalling initiate at pits and propagate at certain angle with the sliding direction on sur face, and then extend into sub-surface along the poor P layers or the interface between layers. Finally under repeated action of the stress in the rubbing process the cracks meet and the debris forms. The generation of the pits and spal-ling is related with the internal stress, brittleness and layer structure of the amorphous Ni-Fe-P coating.

  13. ROLLING CONTACT FATIGUE AND WEAR OF CrL AND CrM MODE POWDER METALLURGY STEELS

    Directory of Open Access Journals (Sweden)

    Dušan Rodziňák

    2010-03-01

    Full Text Available Contact fatigue properties of sintered steels type CrM and CrL with addition of 0,3-0,7 %C were examined on the device type „pin on disc“ and confronted with wear tests on the same principle. Achieved outcomes are better for CrM material; the higher carbon content the better they are. Fatigue strength ranges from 925 - 1410 MPa and is consistent with the value of hardness. Dry wear tests show that the wear is dependent on the hardness of carbide particles (microhardness and not on macrohardness of material. These causes wear of indentor. Between values obtained from tests of contact fatigue and wear testing is not possible to find relevant compliance. Both rupture mechanisms are based on breaches of other principles, particularly the PM materials are in the mode of wear that is not sufficiently explored.

  14. Dry wear behaviors of wear resistant composite coatings produced by laser cladding

    Institute of Scientific and Technical Information of China (English)

    Jiang Xu; Wenjin Liu; Minlin Zhong

    2004-01-01

    Using different proportional mixtures of Ni-coated MoS2, TiC and pure Ni powders, new typical wear resistant and selflubricant coatings were formed on low carbon steel by laser cladding process. The microstructures and phase composition of the composite coatings were studied by SEM and XRD. The typical microstructure of the composite coating is composed of multisulfide phases including binary element sulfide and ternary element sulfide, γ-Ni, TiC and Mo2C. Wear tests were carried out using an FALEX-6 type pin-on-disc machine. The friction coefficient and mass loss of three kinds of MoS2/TiC/Ni laser clad coatings are lower than those of quenched 45 steel, and the worn surfaces of the laser cladding coatings are very smooth. Because of high hardness combined with low friction, the laser cladding composite coating with a mixture of 70% Ni-coated MoS2, 20%TiC and 10%pure Ni powder presents better wear behaviors than the composite coating with other powder blends. The composition analysis of the worn surface of GCr15 bearing steel shows that the transferred film from the laser cladding coating to the opposite surface of GCr15beating steel contains an amount of sulfide, which can change the micro-friction mechanism and lead to a reduced friction coefficient.

  15. Sliding wear resistance of iron aluminides

    Indian Academy of Sciences (India)

    Garima Sharma; M Sundararaman; N Prabhu; G L Goswami

    2003-04-01

    Room temperature dry sliding wear behaviour of iron aluminides containing 28% aluminium and various amounts of chromium has been investigated using pin on disk wear tester. The aluminides were heat treated to have ordered 3 structure. It was found that wear rate of the aluminides increased with the increase of applied normal load and sliding speed. Wear resistance of the aluminides increased with increase in chromium content. SEM observation of the worn surface showed that the microcutting and microploughing were the dominant sliding wear mechanisms.

  16. Effect of Heat Treatment on the Abrasive Wear Behavior of High Chromium Iron under Dry Sliding Condition

    Directory of Open Access Journals (Sweden)

    A.A. Ayeni

    2012-06-01

    Full Text Available The effect of heat treatment on the abrasive wear behavior of high chromium cast iron (NF253AHT under dry sliding condition has been investigated. Rectangular cross sectioned samples of the alloy were produced by sand casting. After casting, the samples were machined to equal dimensions of 50 mm x 15 mm x 10 mm and heat treated by annealing, hardening and tempering. Abrasive wear tests were carried out on the samples using the pin-on-disc wear test. The tests were carried out under restricted values of speed, load and time. Within this limit, the hardened sample displayed a superior wear resistance, while the annealed sample displayed the weakest wear resistance. A graphical model (wear map displaying all the wear regimes of the alloy, which may serve as a wear predictive tool was subsequently developed from the results of the wear tests. With the exception of the as-cast and annealed specimen, all other specimens (hardened and tempered have functioned adequately in wear prone environment, but with different degree of effectiveness. Hence, the hardened and tempered samples can be used in shot blast equipments and in the grinding of minerals.

  17. Wear resistance of a metal surface modified with minerals

    Science.gov (United States)

    Kislov, S. V.; Kislov, V. G.; Balasch, P. V.; Skazochkin, A. V.; Bondarenko, G. G.; Tikhonov, A. N.

    2016-02-01

    The article describes the advantages of the new technology of mineral coating of metal products for the friction pair of mechanical systems. It presents the research results of the wear rate of the samples made of 12X13 steel (X12Cr13) with mineral layers, in the experiments with a piston ring sliding inside a cylinder liner with grease. The wear rate of the samples with mineral layers is lower almost by two factors than that of the samples made of grey foundry iron and untreated samples. As the result of slip/rolling abrasion tests of parts with mineral layers under conditions of high contact pressure, a suggestion was made concerning probable mechanics of surface wear.

  18. Wear prediction in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, E.J. [USDOE Morgantown Energy Technology Center, WV (United States); Rogers, W.A. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

    1993-06-01

    A procedure to model the wear of surfaces exposed to a fluidized bed is formulated. A stochastic methodology adapting the kinetic theory of gases to granular flows is used to develop an impact wear model. This uses a single-particle wear model to account for impact wear from all possible-particle collisions. An adaptation of a single-particle abrasion model to describe the effects of many abrading particles is used to account for abrasive wear. Parameters describing granular flow within the fluidized bed, necessary for evaluation of the wear expressions, are determined by numerical solution of the fluidized bed hydrodynamic equations. Additional parameters, describing the contact between fluidized particles and the wearing surface, are determined by optimization based on wear measurements. The modeling procedure was used to analyze several bubbling and turbulent fluidized bed experiments with single-tube and tube bundle configurations. Quantitative agreement between the measured and predicted wear rates was found, with some exceptions for local wear predictions. This work demonstrates a methodology for wear predictions in fluidized beds.

  19. Reappraisal of Color Change in Women's Wears in China

    Institute of Scientific and Technical Information of China (English)

    CONG Shan; ZHOU Xu-dong

    2002-01-01

    This paper attempts to quantify color attribute change in women's wear products in China by the computer-aided color design system. A method of classification and analysis of fashion color is proposed. In addition, data from several popular ragazines are classified and tested for evidence of evolving activity of fashion color.

  20. Fluoridation and tooth wear in Irish adults.

    LENUS (Irish Health Repository)

    Burke, F M

    2010-10-01

    The aim of this study was to determine the prevalence of tooth wear in adults in Ireland and its relationship with water fluoridation. The National Survey of Adult Oral Health was conducted in 2000\\/2001. Tooth wear was determined using a partial mouth examination assessing the upper and lower anterior teeth. A total of 2456 subjects were examined. In this survey, increasing levels and severity of tooth wear were associated with ageing. Men were more affected by tooth wear and were more likely to be affected by severe tooth wear than women. It was found that age, and gender were significant predictors of tooth wear (P < 0.01). Overall, there was no significant relationship between fluoridation and tooth wear in this study.

  1. Wearing Quality of Austenitic, Duplex Cast Steel, Gray and Spheroidal Graphite Iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-04-01

    Full Text Available The current work presents the research results of abrasion wear and adhesive wear at rubbing and liquid friction of new austenitic, austenitic-ferritic (“duplex” cast steel and gray cast iron EN-GJL-250, spheroidal graphite iron EN-GJS-600-3, pearlitic with ledeburitic carbides and spheroidal graphite iron with ledeburitic carbides with a microstructure of the metal matrix: pearlitic, upper bainite, mixture of upper and lower bainite, martensitic with austenite, pearlitic-martensitic-bainitic-ausferritic obtained in the raw state. The wearing quality test was carried out on a specially designed and made bench. Resistance to abrasion wear was tested using sand paper P40. Resistance to adhesive wear was tested in interaction with steel C55 normalized, hardened and sulfonitrided. The liquid friction was obtained using CASTROL oil. It was stated that austenitic cast steel and “duplex” are characterized by a similar value of abrasion wear and adhesive wear at rubbing friction. The smallest decrease in mass was shown by the cast steel in interaction with the sulfonitrided steel C55. Austenitic cast steel and “duplex��� in different combinations of friction pairs have a higher wear quality than gray cast iron EN-GJL- 250 and spheroidal graphite iron EN-GJS-600-3. Austenitic cast steel and “duplex” are characterized by a lower wearing quality than the spheroidal graphite iron with bainitic-martensitic microstructure. In the adhesive wear test using CASTROL oil the tested cast steels and cast irons showed a small mass decrease within the range of 1÷2 mg.

  2. Wear of micro end mills

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper addresses the important issue of wear on micro end mills considering relevant metrological tools for its characterization and quantification. Investigation of wear on micro end mills is particularly difficult and no data are available in the literature. Small worn volumes cause large...... deviations from the ideal micro tool shape, dramatically changing the cutting edge profile as well as rake and clearance angles. This critically affects the performance of the micro tool leading to increased cutting forces and micro tool deflections with detrimental effects on the accuracy of the machined...... part. For this investigation 200 microns end mills are considered. Visual inspection of the micro tools requires high magnification and depth of focus. 3D reconstruction based on scanning electron microscope (SEM) images and stereo-pair technique is foreseen as a possible method for quantification...

  3. PMMA Third-Body Wear after Unicondylar Knee Arthroplasty Decuples the UHMWPE Wear Particle Generation In Vitro

    Directory of Open Access Journals (Sweden)

    Alexander Christoph Paulus

    2015-01-01

    Full Text Available Introduction. Overlooked polymethylmethacrylate after unicondylar knee arthroplasty can be a potential problem, since this might influence the generated wear particle size and morphology. The aim of this study was the analysis of polyethylene wear in a knee wear simulator for changes in size, morphology, and particle number after the addition of third-bodies. Material and Methods. Fixed bearing unicondylar knee prostheses (UKA were tested in a knee simulator for 5.0 million cycles. Following bone particles were added for 1.5 million cycles, followed by 1.5 million cycles with PMMA particles. A particle analysis by scanning electron microscopy of the lubricant after the cycles was performed. Size and morphology of the generated wear were characterized. Further, the number of particles per 1 million cycles was calculated for each group. Results. The particles of all groups were similar in size and shape. The number of particles in the PMMA group showed 10-fold higher values than in the bone and control group (PMMA: 10.251×1012; bone: 1.145×1012; control: 1.804 × 1012. Conclusion. The addition of bone or PMMA particles in terms of a third-body wear results in no change of particle size and morphology. PMMA third-bodies generated tenfold elevated particle numbers. This could favor an early aseptic loosening.

  4. Comparative Study of Wear Resistance of the Composite with Microhybrid Structure and Nanocomposite

    Directory of Open Access Journals (Sweden)

    Pieniak Daniel

    2016-12-01

    Full Text Available The aim of the study was to compare microhardness and wear resistance of ceramic-polymer composites with micro and nano-hybrid structure. For the studies commercial composites were used, containing filler particles of the same type but different sizes, nano-sized (Filtek Ultimate and micro-sized (Filtek Z250 composites. Tribological testing was conducted using ball-on-disc micro-tribometer. Vickers testing method was applied for microhardness studies with the use of Futertech FM 700 device. It has been demonstrated that the wear of Filtek Ultimate is almost twice lower in comparison to wear of Filtek Z250 composite. It has been concluded that the use of filler nanoparticles significantly increased wear resistance of the material. Additionally, lack of correlation between material microhardness and wear resistance has been demonstrated.

  5. Temperature effect of friction and wear characteristics for solid lubricating graphite

    Science.gov (United States)

    Kim, Yeonwook; Kim, Jaehoon

    2015-03-01

    Graphite is one of the effective lubricant additives due to its excellent high-temperature endurance and self-lubricating properties. In this study, wear behavior of graphite used as sealing materials to cut off hot gas is evaluated at room and elevated temperature. Wear occurs on graphite seal due to the friction of driving shaft and graphite. Thus, a reciprocating wear test to evaluate the wear generated for the graphite by means of the relative motion between a shaft material and a graphite seal was carried out. The friction coefficient and specific wear rate for the changes of applied load and sliding speed were compared under different temperature conditions considering the actual operating environment. Through SEM observation of the worn surface, the lubricating film was observed and compared with test conditions.

  6. Studies on Wear and Corrosion Resistances of Carbon Nitride Thin Films on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    LiJin-chai; GuoHuai-xi; LuXlan-feng; ZhangZhi-hong; YeMing-sheng

    2003-01-01

    CNx/SiCN composite films were prepared on titanium ( Ti ) alloy substrates by Radio Frequency Plasma Enhanced Chemical Vapor Deposition ( RF-PECVD ). As a buffer layer, SiCN ensured the adhesion of the CNx thin films on Ti substrates. X-ray diffraction (XRD) measurement revealed that the composite films possessed α-C3N4 structure.The microhardness of the films was 48 to 50 GPa. In or der totest the characteristics of wear and corrosion resistances, we prepared Ti alloy samples with and without CNx/SiCN composite films. Also for strengthening the effect of wear and corrosion, the wear tests were carried out under high load (12 MPa) and in 0. 9% NaCl solution. Results of the wear tests and the corrosive electrochemical measurements showed that the samples coated with CNx films had excellent charac-teristics of wear and corrosion resistances compared with Ti alloy substrate samples.

  7. Hydraulic System Wear Debris Analysis.

    Science.gov (United States)

    1982-08-03

    drawn. Each one-=L sample was drawn with a clean plastic pipette of one-mL capacity. The samples were placed in clean Ferrogram preparation bottles ...and from cavities in a block which held linear seals into sampling bottles . Several photographs of this debris , which was deposited on Ferro- grams...silicon in the glass overshadowed the elements of the wear debris . To overcome this difficulty, the Ferrogram should be pre- pared on a carbon-filled

  8. EFFECT OF TOOL WEAR ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND ACOUSTIC EMISSION OF FRICTION STIR WELDED 6061 Al ALLOY

    Institute of Scientific and Technical Information of China (English)

    W.M. Zeng; H.L. Wu; J. Zhang

    2006-01-01

    Tool condition is one of the main concerns in friction stir welding (FSW), because the geometrical condition of the tool pin including size and shape is strongly connected to the microstructure and mechanical performance of the weld. Tool wear occurs during FSW, especially for welding metal matrix composites with large amounts of abrasive particles, and high melting point materials, which significantly expedite tool wear and deteriorate the mechanical performance of welds.Tools with different pin-wear levels are used to weld 6061 Al alloy, while acoustic emission (AE) sensing, metallographic sectioning, and tensile testing are employed to evaluate the weld quality in various tool wear conditions. Structural characterization shows that the tool wear interferes with the weld quality and accounts for the formation of voids in the nugget zone. Tensile test analysis of samples verifies that both the ultimate tensile strength and the yield strength are adversely affected by the formation of voids in the nugget due to the tool wear. The failure location during tensile test clearly depends on the state of the tool wear, which led to the analysis of the relationships between the structure of the nugget and tool wear. AE signatures recorded during welding reveal that the AE hits concentrate on the higher amplitudes with increasing tool wear. The results show that the AE sensing provides a potentially effective method for the on-line monitoring of tool wear.

  9. Corrosion wear fracture of new {beta} biomedical titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Niinomi, M.; Fukunaga, K.-I. [Toyohashi Univ. of Technol. (Japan). Dept. of Production Syst. Eng.; Kuroda, D.; Morinaga, M.; Kato, Y.; Yashiro, T.; Suzuki, A.

    1999-05-15

    Metallic materials such as stainless steel, Co-Cr alloy, pure titanium and titanium alloys have been used for surgical implant materials. The {alpha} + {beta} type titanium alloy such as Ti-6Al-4V ELI has been most widely used as an implant material for artificial hip joint and dental implant because of its high strength and excellent corrosion resistance. Toxicity of alloying elements in conventional biomedical titanium alloys like Al and V, and the high modulus of elasticity of these alloy as compared to that of bone have been, however, pointed out [1,2]. New {beta} type titanium alloys composed of non-toxic elements like Nb, Ta, Zr, Mo and Sn with lower moduli of elasticity, greater strength and greater corrosion resistance were, therefore, designed in this study. The friction wear properties of titanium alloys are, however, low as compared to those of other conventional metallic implant materials such as stainless steels and Co-Cr alloy. Tensile tests and friction wear tests in Ringer`s solution were conducted in order to investigate the mechanical properties of designed alloys. The friction wear characteristics of designed alloys and typical conventional biomedical titanium alloys were evaluated using a pin-on-disk type friction wear testing system and measuring the weight loss and width of groove of the specimen. (orig.) 8 refs.

  10. Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment

    Science.gov (United States)

    Bensely, A.; Prabhakaran, A.; Mohan Lal, D.; Nagarajan, G.

    2005-12-01

    All mechanical components that undergo sliding or rolling contact are subject to some degree of wear. So wear is an important tribological phenomenon while studying the failure of components. The observed frequent failure of crown and pinion due to wear and fatigue lead to this study on effect of cryogenic treatment on the wear resistance of case carburized steel (En 353). This paper deals with the pin on disk wear test without lubrication as per ASTM standard, designation: G 99-95A. The test was carried out for three different load conditions and seven sliding speeds for the samples, which has undergone three different treatment conditions namely conventional heat treatment (CHT), shallow cryogenic treatment (SCT) and deep cryogenic treatment (DCT). It has been found that the wear resistance has been considerably increased due to shallow cryogenic treatment and deep cryogenic treatment includes much more improvement in wear resistance when compared to conventional heat treatment. Also it is concluded that for better wear resistance, it is advisable to go for deep cryogenic treatment. The results are consistent with the previous studies reported in the literature on cryogenic treatments for other materials.

  11. Effect of ageing treatment on wear properties and electrical conductivity of Cu–Cr–Zr alloy

    Indian Academy of Sciences (India)

    Ibrahim Sağlam; Dursun Özyürek; Kerim Çetinkaya

    2011-12-01

    In this study, the effect of ageing processes on the wear behaviour and electrical conductivity was investigated. Prior to solid solution heat treatment at 920°C and ageing at 470°C, 500°C and 530°C for 1 h, 2 h and 3 h, respectively, the prepared samples were homogenized at 920°C for 1 h. After the ageing processes, all samples were characterized in terms of electrical conductivity, scanning electron microscope (with energy dispersive X-ray spectrum (EDS)) and hardness (HV5). In wear tests, pin-on-disc type standard wearing unit was used. As a result, starting from 1 h aged specimens, orderly increase of electrical conductivity was defined. From EDS analyses it was observed that Cr rate increases as precipitates grow. With increase of Cr rate there was also a defined rise of electrical conductivity. From the wear tests, it was observed that the least wear loss was in Cu–Cr–Zr alloy aged at 500°C for 2 h and the most wear loss was in specimens aged at 530°C for 2 h. Furthermore, it was observed that the friction coefficient values resulting from wear rate were overlapped with hardness results and there is a decrease tendency of friction coefficient as wear distance increases.

  12. Wear resistance of four types of vacuum-formed retainer materials: a laboratory study.

    Science.gov (United States)

    Raja, Taiyub A; Littlewood, Simon J; Munyombwe, Theresa; Bubb, Nigel L

    2014-07-01

    To investigate the resistance to wear of four different vacuum-formed retainer (VFR) materials: Essix C+, Essix ACE, Duran, and Tru-Tain. Essix C+ is a polypropylene polymer; the other materials are polyethylene co-polymers. The study was undertaken at the Leeds Dental Institute, Leeds, UK, with 26 samples in each group. The specimens were vacuum-formed according to the manufacturers' guidelines, and a custom-made wear-simulation machine was used to conduct the test. Each specimen was subjected to 1000 cycles of the wear simulation, with steatite balls as the antagonist material. The resistance to wear of the VFR materials was evaluated by measuring the maximum wear depth using noncontact, three-dimensional surface profilometry. The wear depth was given in micrometers. The median wear depth was 63.20 µm for the Essix C+ group, 7.88 µm for the Essix ACE group, 9.75 µm for the Duran group, and 12.08 µm for the Tru-Tain group. The Kruskal-Wallis test to compare the four VFR materials detected a statistically significant difference between the groups (P study, the three polyethylene co-polymer materials-Essix ACE, Duran, and Tru-Tain-exhibited significantly less wear than the polypropylene material, Essix C+.

  13. Effect of Pearlite Interlamellar Spacing on Predominant Abrasive Wear Mechanism of Fully Pearlitic Steel

    Institute of Scientific and Technical Information of China (English)

    J.Ahmadi; M.Monirvaghefi; M.Salehi; B.Niroumand

    2004-01-01

    The aim of this investigation was the determination of the predominant wear mechanism an three-body abrasion of fully pearlitic low ahoy steel. Furthermore. the effect of pearlite interlamellar spacing on wear behavior was investigated, For this purpase, the samples were subjected to the different heat treating to artainthg different interlamellar spacing. Mechanical properties such as hardness, yield strength, tensile strength, elongation, and impact toughness were evaluated. Three body abrasion tests were conducted under ASTM standard condition using a rubber wheel abrasion test apparatus. Abraded surface and wear debris were investigated by light optical microscopy and scanning electron microscopy. The results showed that wear resistance of fully pearlitic steel depended to pearlite interlamellar spacing the and lower spacing has the greater wear realstance, so it may be due to subsurface work hardening and interlamellar spacing and cernentite in fine and/or coarse pearlite, thai influence on surface destruction during wear. Although during wear process the several mechanisms play roles, but study of surface and debris shows that with decreasing interlamellar spacing, the predominant mechanism wear changed front ploughing to cuttthg mode.

  14. Effect of Pearlite Interlamellar Spacing on Predominant Abrasive Wear Mechanism of Fully Pearlitic Steel

    Institute of Scientific and Technical Information of China (English)

    J. Ahmadi; M. Monirvaghefi; M. Salehi; B. Niroumand

    2004-01-01

    The aim of this investigation was the determination of the predominant wear mechanism on three-body abrasion of fully pearlitic low alloy steel. Furthermore, the effect of pearlite interlamellar spacing on wear behavior was investigated.For this purpose, the samples were subjected to the different heat treating to attaining different interlamellar spacing.Mechanical properties such as hardness, yield strength, tensile strength, elongation, and impact toughness were evaluated.Three body abrasion tests were conducted under ASTM standard condition using a rubber wheel abrasion test apparatus.Abraded surface and wear debris were investigated by light optical microscopy and scanning electron microscopy.The results showed that wear resistance of fully pearlitic steel depended to pearlite interlamellar spacing the and lower spacing has the greater wear resistance, so it may be due to subsurface work hardening and interlamellar spacing and cementite in fine and/or coarse pearlite, that influence on surface destruction during wear. Although during wear process the several mechanisms play roles, but study of surface and debris shows that with decreasing interlamellar spacing, the predominant mechanism wear changed from ploughing to cutting mode.

  15. Abrasive Wear of Fe-Mn-Si-Cr-Ni Shape Memory Stainless Steel: Preliminary Results

    Science.gov (United States)

    Silva, Christian Egidio Da; Bernardi, Heide Heloise; Otubo, Jorge

    2011-07-01

    This study was developed to understand the influence of chemical composition and austenitic grain size on the wear resistance in stainless shape memory steel. A two-body abrasive wear device was used to understand the wear mechanism involved. They were tested pins with the following chemical composition: Fe-10.3Mn-5.3Si-9.9Cr-4.9Ni-0.006C and Fe-14.2Mn-5.3Si-8.8Cr-4.6Ni-0.008C after being austenitized at 900 and 1050 °C, followed by water quenching. The surface characterization was performed by optical microscopy and scanning electron microscopy, and the roughness profile evaluation was also conducted. The weight loss was measured after conducting the wear testing, and the wear rates were estimated. The results demonstrated that the alloy with less manganese and higher chromium content has the best wear resistance (between 17.5 and 18.9%). With an increase of the austenitic grain size there was a small reduction on the wear resistance (between 3.0 and 4.1%). The chemical composition demonstrated to have higher influence on the wear behavior than the austenitic grain size.

  16. Sliding Wear Behavior of Plasma Sprayed Zirconia Coating on Cast Aluminum against Silicon Carbide Ceramic

    Institute of Scientific and Technical Information of China (English)

    Thuong-Hien LE; Young-Hun CHAE; Seock-Sam KIM

    2005-01-01

    The sliding wear behaviors of ZrO2-22 wt pct MgO (MZ) and ZrO2-8 wt pct Y2O3 (YZ) coatings deposited on a cast aluminum alloy with bond layer (NiCrCoAlY) by plasma spray were investigated under dry test conditions at room temperature. Under all load conditions, the wear mechanisms of the MZ and YZ coatings were almost the same.The material transfer and pullout were involved in the wear process of the studied coatings under the test conditions.The wear rate of the MZ coating was less than that of the YZ coating. While increasing the normal load, the wear rates of the MZ and YZ coatings increased. SEM was used to examine the worn surfaces and to elucidate likely wear mechanisms. Energy dispersive X-ray spectroscopy (EDX) analysis of the worn surfaces indicated that material transfer occurred in the direction from the SiC ball to the disk. Fracture toughness had a significant influence on the wear performance of the coatings. It was suggested that the material transfer played an important role in the wear behavior.

  17. Wear characterization and modelling of Mn−steel liners used in rock crushers

    Directory of Open Access Journals (Sweden)

    Rahul Sinha

    2016-09-01

    Full Text Available There are several techniques such as surface profilometry, advanced technique of electron microscopy and optical methods which have been used by researchers to determine the measurement of wear and it is found useful to understand the surface geometry of the material. In mining industries, wear is acute in rock crusher. This work explores the characterization of wear observed on the surface of liner material of roll crusher crushing coal. Wear characterization like ploughing, scratching, cavities has been observed on the surface of liners. To correlate wear characterization due to abrasion on roll crusher liner wear, experiments have been performed. To perform abrasive wear test, pin-shaped sample of liner material has been developed for the purpose of testing. The abrasive wear experiment was conducted using pin-on-disc tribometer. During the investigation, experiments based on full factorial design adopted from statistical modelling software. In this methodology, the input parameters like load, sliding distance, hardness of coal, hardness of liner material are taken into consideration, and weight loss was considered as the output response. The influence of each input parameters were examined to understand its effect for weight loss. The regression equation obtained from analysis of variance table was used for the prediction of weight loss. The regression equation developed was validated with the experimental results. The percentage error was observed less than ±10%.

  18. THE USE OF THE METHOD OF SIMULATION MODELING TO ESTIMATE THE EFFECT OF STRUCTURE PARAMETERS ON THE WEAR RESISTANCE OF THE BEARINGS OF THE MOTORS OF ELECTRIC LOCOMOTIVES

    Directory of Open Access Journals (Sweden)

    Т. M. Meshcheriakova

    2008-03-01

    Full Text Available A method of structure simulation was used to investigate the influence of the hard phase quantity on parameters of the wear resistance of antifriction alloy B16. A method of optimization of linear intensity of wear depending on the quantitative correlation between the structural components is developed; the calculation data obtained correlate with the results of the wear resistance tests.

  19. High-resolution electron spectroscopy of the 1s{sup 2}3lnl' Be-like series in oxygen and neon. Test of theoretical data: I. Experimental method and theoretical background

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D [Laboratoire CAR-IRSAMC, UMR 5589 CNRS - Universite Paul Sabatier, 31062 Toulouse (France)

    2003-01-14

    A complete and accurate experimental test of theoretical spectroscopic data sets (state positions, lifetimes) available for the n = 3-5 terms of the 1s{sup 2}3lnl' Rydberg series of oxygen and neon ions is presented in a series of two papers. This result was achieved by fitting our high resolution electron spectra with post-collisional lineshapes calculated with the help of these spectroscopic data. In this paper the method which has been developed for this fitting procedure is explained. In addition, as a first test, a comparison of all the available calculated spectroscopic data is presented and discussed. Strong deviations of transition energies and decay lifetimes are observed in many cases. Best data are selected in the following companion paper through a quantitative comparison with our experimental electron spectra.

  20. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Rigali

    2001-10-01

    Published mechanical and thermal properties data on a variety of materials was gathered, with focus on materials that have potential with respect to developing wear resistant and damage tolerant composite for mining industry applications. Preliminary core materials of interest include but are not limited to: Diamond, Tungsten Carbide and Cemented Tungsten Carbides, Carbides of Boron, Silicon, Titanium and Aluminum, Diboride of Titanium and Aluminum, Nitrides of Aluminum, Silicon, Titanium, and Boron, Aluminum Oxide, Tungsten, Titanium, Iron, Cobalt and Metal Alloys. Preliminary boundary materials of interest include but are not limited to: W metal, WC-Co, W-Co, WFeNi, and Mo metal and alloys. Several FM test coupons were fabricated with various compositions using the above listed materials. These coupons were consolidated to varying degrees by uniaxial hot pressing, then cut and ground to expose the FM cell structure. One promising system, WC-Co core and WFeNi boundary, was consolidated to 97% of theoretical density, and demonstrates excellent hardness. Data on standard mechanical tests was gathered, and tests will begin on the consolidated test coupons during the upcoming reporting period. The program statements of work for ACR Inc. and its subcontractors, as well as the final contract negotiations, were finalized during the current reporting period. The program start date was February 22nd, 2001. In addition to the current subcontractors, Kennametal Inc., a major manufacturer of cutting tools and wear resistant tooling for the mining industry, expressed considerable interest in ACR's Fibrous Monolith composites for both machine and mining applications. At the request of Kennametal, ARC Inc fabricated and delivered several Fibrous Monolith coupons and components for testing and evaluation in the mining and machine tool applications. Additional samples of Diamond/Tungsten Carbide-6%Cobalt Fibrous Monolith were fabricated and delivered for testing Kennametal

  1. Effect of wear on the burst strength of l-80 steel casing

    Science.gov (United States)

    Irawan, S.; Bharadwaj, A. M.; Temesgen, B.; Karuppanan, S.; Abdullah, M. Z. B.

    2015-12-01

    Casing wear has recently become one of the areas of research interest in the oil and gas industry especially in extended reach well drilling. The burst strength of a worn out casing is one of the significantly affected mechanical properties and is yet an area where less research is done The most commonly used equations to calculate the resulting burst strength after wear are Barlow, the initial yield burst, the full yield burst and the rupture burst equations. The objective of this study was to estimate casing burst strength after wear through Finite Element Analysis (FEA). It included calculation and comparison of the different theoretical bursts pressures with the simulation results along with effect of different wear shapes on L-80 casing material. The von Misses stress was used in the estimation of the burst pressure. The result obtained shows that the casing burst strength decreases as the wear percentage increases. Moreover, the burst strength value of the casing obtained from the FEA has a higher value compared to the theoretical burst strength values. Casing with crescent shaped wear give the highest burst strength value when simulated under nonlinear analysis.

  2. Tribological Bench and Engine Dynamometer Tests of a Low Viscosity SAE 0W-16 Engine Oil Using a Combination of Ionic Liquid and ZDDP as Anti-Wear Additives

    OpenAIRE

    2015-01-01

    We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL) with effective anti-wear functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP) for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated using a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil w...

  3. INCREASING OF WEAR RESISTANCE OF THE GRAPHITIZED STEEL

    Directory of Open Access Journals (Sweden)

    I. V. Akimov

    2013-11-01

    Full Text Available Purpose. Graphitized steels are alloys, in which carbon is partly in form of graphite inclusions. Due to this such steels possess good antifriction properties, wear resistance, heat conductivity and a variety of other mechanical properties, which decently distinguish them from cast irons. However, such steels are not studied enough and practically are not used in mechanical engineering. Purpose of the work is the research of the possibility of wear resistance increase for graphitized steels in the conditions of metal-to-metal dry friction sliding to use them in the railway systems. Methodology. Graphitized hypoeutectoid, eutectoid and hypereutectoid steels have been used as a research material. Experimental alloys have been studied in the condition after thermal hardening. Hardness of alloys has been determined by the Vickers method. Wear resistance of steels has been studied in the conditions of metal-to-metal dry friction sliding with the use of МI-1 friction machine (disk to disk. Findings. Data, which allow assessing the wear resistance of experimental graphitized steels depending on carbon, silicon and copper content have been obtained in this work. The regression dependence obtained as a result of statistical processing of the experimental data allowed determining an optimal chemical content of the steel, which is characterized by high wear resistance. Originality. A dependence describing carbon, silicon and copper content on the specimen's weight loss during metal-to-metal dry friction tests has been obtained in the work. Practical value. The optimized content of the graphitized steel can be used for production of products working in the conditions of wear such as brake blocks of rolling stock, separators of high-speed bearings, dies and others.

  4. Wear monitoring of single point cutting tool using acoustic emission techniques

    Indian Academy of Sciences (India)

    P Kulandaivelu; P Senthil Kumar; S Sundaram

    2013-04-01

    This paper examines the flank and crater wear characteristics of coated carbide tool inserts during dry turning of steel workpieces. A brief review of tool wear mechanisms is presented together with new evidence showing that wear of the TiC layer on both flank and rake faces is dominated by discrete plastic deformation, which causes the coating to be worn through to the underlying carbide substrate when machining at high cutting speeds and feed rates. Wear also occurs as a result of abrasion, as well as cracking and attrition, with the latter leading to the wearing through the coating on the rake face under low speed conditions. When moderate speeds and feeds are used, the coating remains intact throughout the duration of testing. Wear mechanism maps linking the observed wear mechanisms to machining conditions are presented for the first time. These maps demonstrate clearly that transitions from one dominant wear mechanism to another may be related to variations in measured tool wear rates. Comparisons of the present wear maps with similar maps for uncoated carbide tools show that TiC coatings dramatically expand the range of machining conditions under which acceptable rates of tool wear might be experienced. However, the extent of improvement brought about by the coatings depends strongly on the cutting conditions, with the greatest benefits being seen at higher cutting speeds and feed rates. Among these methods, tool condition monitoring using Acoustic Techniques (AET) is an emerging one. Hence, the present work was carried out to study the stability, applicability and relative sensitivity of AET in tool condition monitoring in turning.

  5. Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis

    Science.gov (United States)

    Zhang, Ruiliang; Gu, Fengshou; Mansaf, Haram; Wang, Tie; Ball, Andrew D.

    2017-09-01

    Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear's lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable

  6. Wear evaluation of a cross-linked medical grade polyethylene by ultra thin layer activation compared to gravimetry

    Science.gov (United States)

    Stroosnijder, Marinus F.; Hoffmann, Michael; Sauvage, Thierry; Blondiaux, Gilbert; Vincent, Laetitia

    2005-01-01

    Most of today's artificial joints rely on an articulating couple consisting of a CoCrMo alloy and a medical grade polyethylene. The wear of the polyethylene component is the major cause for long-term failure of these prostheses since the wear debris leads to adverse biological reactions. The polyethylene wear is usually measured by gravimetric methods, which are limited due to a low sensitivity and accuracy. To demonstrate the reliability of ultra thin layer activation (UTLA) as an alternative technique, wear tests on a cross-linked ultra-high-molecular weight polyethylene (XLPE) sliding against CoCrMo were performed on a wear tester featuring multi-directional sliding motion. The amount of polyethylene wear was evaluated by both UTLA and gravimetry. The particular TLA method used in this work employed the implantation of 7Be radioactive recoils into the polyethylene surface by means of a light mass particle beam. The results indicate that apart from its relatively high sensitivity, UTLA also offers the possibility for on-line measurements of polyethylene wear. This makes it a viable and complementary technique in wear test studies for medical implant purposes especially for those involving wear resistant materials and for rapid wear screening.

  7. [AVIATION MEDICINE: THEORETICAL CONCEPTS AND FOCAL FUNDAMENTAL AND PRACTICAL ISSUES (for the 80th anniversary of the Research Test Center of Aerospace Medicine and Military Ergonomics)].

    Science.gov (United States)

    Zhdanko, I M; Pisarev, A A; Vorona, A A; Lapa, V V; Khomenko, M N

    2015-01-01

    The article discloses postulates of theoretical concepts that make the methodological basis for addressing the real-world aviation medicine challenges of humanizing aviator's environment, labor content and means, and health and performance maintenance. Under consideration are focal fundamental and practical issues arising with the technological progress in aviation and dealt with at the AF CRI Research Test Center of Aerospace Medicine and Military Ergonomics.

  8. Microstructure and wear resistance of in situ porous TiO/Cu composites

    Science.gov (United States)

    Qin, Qingdong; Huang, Bowei; Li, Wei

    2016-07-01

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti2CO and Cu powder. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. Dry sliding un-lubricated wear tests show that the wear resistance of the composite is higher than that of the Cu-Al alloy ingot. The coefficient of friction test shows that, as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear rate variation trend of the oil-lubricated wear test results is similar to that of the un-lubricated wear test results. The coefficient of friction for oil lubrication is similar for different volume fractions of the reinforced phase. The wear resistance of the composite at a sliding velocity of 200 rpm is slightly larger than that at 50 rpm. The porosity of the composites enhances the high-velocity oil-lubricated sliding wear resistance.

  9. Wear of double crown systems: electroplated vs. casted female part

    Directory of Open Access Journals (Sweden)

    Stefan Bayer

    2012-06-01

    Full Text Available OBJECTIVES: The wear of telescopic crowns is a common problem often reducing the patient's satisfaction with the denture and resulting in a renewal of the denture. The study aims to compare the wear behavior of conical crowns using electroplated copings (group E with standard telescopic crowns with cast female parts (group C. MATERIAL AND METHODS: 10 conical crowns were milled for each group of a cast gold alloy. The specimen of group E had a conicity of 2º. The cast secondary crowns of group C had a 0º design. The electroplated coping was established by direct electroforming. An apparatus accomplishing 10,000 wear cycles performed the wear test. The retentive forces and the correlating distance during insertion and separation were measured. The wear test was separated in a start phase, an initial wear phase and the long term wear period. The retention force value and the force-distance integral of the first 0.33 mm of each cycle were calculated. RESULTS: The retentive forces were significantly higher for group E and the integrals were significantly lower for this group except the integral at cycle 10,000. The changes of retention force and integral did not differ significantly between both groups in all phases. The change of the integrals as well as the integral at the particular cycles showed higher interquartile distances for group C. CONCLUSIONS: Within the limitations of this study the tested conical crowns showed clinically acceptable retentive properties. The values reached a range comparable to retentive elements tested in recent literature. The values of group C showed higher ranges. The force measured for group E was significantly higher than for group C but the integrals showed an opposite tendency. The results indicate that an exclusive analysis of the force is not sufficient as the integral is not equivalent to the force although it describes the retentive property of the system in a better way than the force over a distance is

  10. Wear of nanofilled dental composites at varying filler concentrations.

    Science.gov (United States)

    Lawson, Nathaniel C; Burgess, John O

    2015-02-01

    The aim of this study is to examine the effects of nanofiller concentration on the mechanisms of wear of a dental composite. Nanofilled composites were fabricated with a bisphenol A glycidyl methacrylate polymer and 40 nm SiO2 filler particles at three filler loads (25, 50, and 65 wt %). The elastic modulus, flexural strength, and hardness of the composites and the unfilled resin were measured. The materials (n = 8) were tested in the modified wear testing device at 50,000, 100,000, and 200,000 cycles with 20N force at 1 Hz. A 33% glycerine lubricant and stainless steel antagonist were used. The worn composite and antagonist surfaces were analyzed with noncontact profilometry and SEM. The volumetric wear data indicated that there are significant differences between filler concentrations and cycles (p composites. Increasing filler content increased hardness and modulus and increased flexural strength up to 50% fill. SEM evaluation of the worn specimens indicated that the resin and 25% filled materials exhibited cracking and failed by fatigue and the 50 and 65% filled materials exhibited microcutting and failed by abrasive wear. Based on the results of this study, composite manufacturers are recommended to use a filler concentration between 25 and 50% when using nanosized filler particles. © 2014 Wiley Periodicals, Inc.

  11. Wear properties of potassium titanate whiskers-reinforced Al-12Si alloy composites

    Directory of Open Access Journals (Sweden)

    Wu Shenqing

    2010-02-01

    Full Text Available Potassium titanate (K2O·6TiO2 whiskers-reinforced Al-12Si alloy composites were prepared by the squeeze casting technique. Wear properties of the composites were investigated by pin-on-disc tests under dry conditions. The experimental results showed that K2O·6TiO2 whiskers can effectively reinforce the matrix alloy and improve the wear resistance of the composite when the volume fraction of whiskers is low at 10 vol%. However, the composites with a high volume fraction of whiskers showed lower wear resistance than the Al-12Si alloy. The main wear mechanism of the composites is clarified as de-lamination and abrasive wear.

  12. Tool Wear Analysis due to Machining In Super Austenitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Polishetty Ashwin

    2017-01-01

    Full Text Available This paper presents tool wear study when a machinability test was applied using milling on Super Austenitic Stainless Steel AL6XN alloy. Eight milling trials were performed under two cutting speeds, 100 m/min and 150 m/min, combined with two feed rates at 0.1mm/tooth and 0.15 mm/tooth and two depth of cuts at 2 mm and 3 mm. An Alicona 3D optical surface profilometer was used to scan cutting inserts flank and rake face areas for wear. Readings such as maximum and minimum deviations were extracted and used to analyse the outcomes. Results showed various types of wear were generated on the tool rake and flank faces. The common formed wear was the crater wear. The formation of the build-up edge was observed on the rake face of the cutting tool.

  13. High friction and low wear properties of laser-textured ceramic surface under dry friction

    Science.gov (United States)

    Xing, Youqiang; Deng, Jianxin; Wu, Ze; Wu, Fengfang

    2017-08-01

    Two kinds of grooved textures with different spacing were fabricated on Al2O3/TiC ceramic surface by an Nd:YAG laser. The dry tribological properties of the textured samples were investigated by carrying out unidirectional rotary sliding friction and wear tests using a ball-on-disk tribometer. Results show that the laser textured samples exhibit higher friction coefficient and excellent wear resistance compared with the smooth sample under dry friction conditions. Furthermore, the texture morphology and spacing have a significant influence on the tribological properties. The sample with small texture spacing may be beneficial to increasing the friction coefficient, and the wavy-grooved sample exhibits the highest friction coefficient and shallowest wear depth. The increasing friction coefficient and anti-wear properties are attributed to the combined effects of the increased surface roughness, reduced real contact area, micro-cutting effect by the texture edges and entrapment of wear debris.

  14. Friction and wear of HNBR with different fillers under dry rolling and sliding conditions

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available Peroxide cured hydrogenated acrylonitrile/butadiene rubber (HNBR compounds with 20 parts per hundred rubber (phr active fillers, such as carbon black (CB, multiwall carbon nanotube (MWCNT and silica were produced and their friction and wear properties under unlubricated rolling and sliding conditions were evaluated. The network-related properties of the HNBR compounds were deduced from dynamic-mechanical thermal analysis (DMTA. The coefficient of friction (COF and the specific wear rate (Ws were determined in different home-made test rigs. The CB and MWCNT containing HNBR compounds exhibited the best resistance to rolling and sliding wear, respectively, among the HNBR systems studied. The worn surfaces were inspected in scanning electron microscope (SEM and the wear mechanisms were analyzed and discussed in respect to the types of wear and fillers.

  15. Effect of microseparation and third-body particles on dual-mobility crosslinked hip liner wear.

    Science.gov (United States)

    Netter, Jonathan D; Hermida, Juan C; Chen, Peter C; Nevelos, James E; D'Lima, Darryl D

    2014-09-01

    Large heads have been recommended to reduce the risk of dislocation after total hip arthroplasty. One of the issues with larger heads is the risk of increased wear and damage in thin polyethylene liners. Dual-mobility liners have been proposed as an alternative to large heads. We tested the wear performance of highly crosslinked dual-mobility liners under adverse conditions simulating microseparation and third-body wear. No measurable increase in polyethylene wear rate was found in the presence of third-body particles. Microseparation induced a small increase in wear rate (2.9mm(3)/million cycles). A finite element model simulating microseparation in dual-mobility liners was validated using these experimental results. The results of our study indicate that highly crosslinked dual-mobility liners have high tolerance for third-body particles and microseparation.

  16. Investigation of friction and wear characteristics of cast iron material under various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Ji Hoon; Kim, Chang Lae; Oh, Jeong Taek; Kim, Dae Eun [Yonsei University, Seoul (Korea, Republic of); Nemati, Narguess [School of Materials and Metallurgy, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-08-15

    Cast iron is widely used in fields such as the transport and heavy industries. For parts where contact damage is expected to occur, it is necessary to understand the friction and wear characteristics of cast iron. In this study, we use cast iron plates as the specimens to investigate their friction and wear characteristics. We perform various experiments using a reciprocating type tribotester. We assess the frictional characteristics by analyzing the friction coefficient values that were obtained during the sliding tests. We observe the wear surfaces of cast iron and steel balls using a scanning electron microscope, confocal microscope, and 3D profiler. We investigate the friction and wear characteristics of cast iron by injecting sand and alumina particles having various sizes. Furthermore, we estimate the effect of temperature on the friction and wear characteristics. The results obtained are expected to aid in the understanding of the tribological characteristics of cast iron in industry.

  17. Wear characteristics of trimethylolpropane trimethacrylate filler-containing resins for the full crown restoration of primary molars.

    Science.gov (United States)

    Wada, Kanae; Ikeda, Eri; Wada, Junichiro; Inoue, Go; Miyasaka, Munenaga; Miyashin, Michiyo

    2016-01-01

    Although the demand for aesthetic restoration of primary molars has increased, the full-crown restorations using resin and the details of the wear characteristics of trimethylolpropane trimethacrylate (TMPT) filler containing resins for primary molars are not well understood. This study was conducted to determine whether new light-cured composite resin (Fantasista) and 4-META/MMATBB resin (Bondfill SB) are appropriate for full crown restoration of primary molars by evaluating their wear characteristics. Both resins products contain TMPT filler. The properties of the resins were evaluated through in vitro impacting-sliding wear tests; the wear properties of the opposing enamel specimens used in the tests were also studied. The properties of the resins were compared with those of Litefill, MetafilC, and Clearfil FII, which had been evaluated previously. Fantasista exhibited simple shape of wear that was suggestive of a higher wear resistance than that of Litefill. Fantasista caused the least damage to the antagonistic primary enamel.

  18. Relationship among wear-resistance of three-body abrasion,substructure and property in martensite steels

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of subsurface hardness on wear-resistance of martensitic steel 20Cr, 40CrSi, 60Mn, T8 and T10 in three-body abrasion under static load was investigated. It shows that the characteristic ofthe subsurface hardness distribution and the abrasive wear resistanceis related to the substructure near the worn surface. The substructure of the tested martensite steel has an apparent relationship with thecarbon content and steels with moderate carbon content and hardness exhibit good resistance to abrasive wear. The competition of the work-hardening effect and the temper softening effect, which resulted from deformation and friction heat generating during abrasive wear is considered to be a main reason for the relation among wear-resistance, hardness and substructure. At the test conditions, the wear-resistance of 40CrSi is the best.

  19. Modeling of Complex Wear Behavior Associated with Grid-to-Rod Fretting in Light Water Nuclear Reactors

    Science.gov (United States)

    Blau, P. J.; Qu, J.; Lu, R.

    2016-09-01

    Fretting wear damage to fuel cladding from flow-induced vibrations can be a significant concern in the operation of light water nuclear reactors. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. The multi-stage model accounts for oxide layers and wear rate transitions. This paper describes the basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.

  20. Modeling of Complex Wear Behavior Associated with Grid-to-Rod Fretting in Light Water Nuclear Reactors

    Science.gov (United States)

    Blau, P. J.; Qu, J.; Lu, R.

    2016-11-01

    Fretting wear damage to fuel cladding from flow-induced vibrations can be a significant concern in the operation of light water nuclear reactors. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. The multi-stage model accounts for oxide layers and wear rate transitions. This paper describes the basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.

  1. Wear Behaviour of Hard Cr Coatings for Cold Forming Tools Under Dry Sliding Conditions

    Directory of Open Access Journals (Sweden)

    S. Mitrović

    2012-03-01

    Full Text Available Cr hard coatings are largely used in industry in metal cutting and cold forming processes; This work on quantitative way represents improvement, in terms of wear resistance, which is obtained by depositing Cr hard coating on foundation material. Wear testing is done on tribometer with block –on –disc contact geometry at sliding contact of Cr hard coated sample with steel disc. Testing was performed in conditions without lubrication at variable value of contact parameters (normal load, sliding speed. Cr hard coatings in all contact conditions show smaller values of wear rate.

  2. Towards Phosphorus Free Ionic Liquid Anti-Wear Lubricant Additives

    Directory of Open Access Journals (Sweden)

    Anthony E. Somers

    2016-06-01

    Full Text Available The development of improved anti-wear additives would enable the use of lower viscosity oils that would lead to improved efficiency. Ionic liquids have the potential to be this type of new anti-wear additive. However, currently the best performing ionic liquids that are miscible in non-polar base oils, the phosphonium phosphates, contain phosphorus on both the cation and anion. Manufacturers are seeking to reduce the presence of phosphorus in oils. Here, as a first step towards phosphorus-free anti-wear additives, we have investigated ionic liquids similar to the phosphonium phosphates but having either a phosphorus-free cation or anion. Two quaternary ammonium phosphates (N6,6,6,14(BEHP and (N8,8,8,8(BEHP and a phosphonium silyl-sulfonate (P6,6,6,14(SSi were compared to a phosphonium phosphate (P6,6,6,14(BEHP and a traditional zinc dithiophosphate (ZDDP as anti-wear additives in mineral oil. The change from a phosphonium to a quaternary ammonium cation drastically reduced the miscibility of the Ionic liquid (IL in the oil, while the change to a smaller silicon containing anion also resulted in limited miscibility. For the pin-on-disk wear test conditions used here none of the ionic liquids outperformed the ZDDP except the (P6,6,6,14(BEHP at a relatively high loading of 0.10 mol·kg−1 (approximately 8 wt%. At a more moderate loading of 0.025 mol·kg−1 the (P6,6,6,14(SSi was the best performing ionic liquid by a significant amount, reducing the wear to 44% of the neat mineral oil, while the ZDDP reduced the wear to 25% of the mineral oil value. Electron microscopy and energy dispersive X-ray spectroscopy showed that the presence of a silicon containing tribofilm was responsible for this protective behaviour, suggesting that silicon containing ionic liquids should be further investigated as anti-wear additives for oils.

  3. Surface Wear Measurement Using Optical Correlation Technique

    Science.gov (United States)

    Acinger, Kresimir

    1983-12-01

    The coherent optical correlation technique was applied for measuring the surface wear of a tappet (part of car engine), worn by friction with the camshaft. It was found that maximum correlation intensity decays exponentially with the number of wear cycles (i.e. camshaft revolutions). Tappets of the same make have an identical rate of correlation decay. Tappets of different makes have different rates of correlation decay which are in agreement with observed long term wear.

  4. The importance of extractives and abrasives in wood materials on the wearing of cutting tools

    Directory of Open Access Journals (Sweden)

    Wayan Darmawan

    2012-11-01

    Full Text Available For many wood cutting processes, the interest of high-speed tool steels and tungsten carbides remains very important because of their good tool edge accuracy and easy grinding. The wear of high-speed steel and tungsten carbide is an important economic parameter. Wood extractives and silica have a potential adverse effect on tool wear. Rapid chemical wearing due to corrosion and mechanical wearing has been attributed to the presence of extractives and silica in wood and wood composites. This paper presents the wear characteristics of SKH51 high-speed steel and K10 tungsten carbide caused by extractive and abrasive materials present in the lesser-known Tapi-Tapi wood and wood composites of wood cement board, particleboard, MDF, and oriented strand board (OSB. Experimental results showed that wearing of the cutting tools tested was determined by extractives and silica contained in the wood and wood composites. Wood cement board, which is high in silica content, caused severe damage to the cutting edge of the high-speed steel. A corrosion/oxidation mechanism was found to contribute to the wear of SKH51 and K10 when cutting the Tapi-Tapi wood, MDF, particleboard, wood cement board, and OSB. The silica and extractives determined the abrasion and corrosion wear mechanism to a varying degree.

  5. Development of a gear vibration indicator and its application in gear wear monitoring

    Science.gov (United States)

    Hu, Chongqing; Smith, Wade A.; Randall, Robert B.; Peng, Zhongxiao

    2016-08-01

    Gear tooth wear is an inevitable phenomenon and has a significant influence on gear dynamic features. Although vibration analysis has been widely used to diagnose localised gear tooth faults, its techniques for gear wear monitoring have not been well-established. This paper aims at developing a vibration indicator to evaluate the effects of wear on gear performance. For this purpose, a gear state vector is extracted from time synchronous averaged gear signals to describe the gear state. This gear state vector consists of the sideband ratios obtained from a number of tooth meshing harmonics and their sidebands. Then, two averaged logarithmic ratios, ALR and mALR, are defined with fixed and moving references, respectively, to provide complementary information for gear wear monitoring. Since a fixed reference is utilised in the definition of ALR, it reflects the cumulated wear effects on the gear state. An increase in the ALR value indicates that the gear state deviates further from its reference condition. With the use of a moving reference, the indicator mALR shows changes in the gear state within short time intervals, making it suitable for wear process monitoring. The efficiency of these vibration indicators is demonstrated using experimental results from two sets of tests, in which the gears experienced different wear processes. In addition to gear wear monitoring, the proposed indicators can be used as general parameters to detect the occurrence of other faults, such as a tooth crack or shaft misalignment, because these faults would also change the gear vibrations.

  6. Increased conformity offers diminishing returns for reducing total knee replacement wear.

    Science.gov (United States)

    Fregly, Benjamin J; Marquez-Barrientos, Carlos; Banks, Scott A; DesJardins, John D

    2010-02-01

    Wear remains a significant problem limiting the lifespan of total knee replacements (TKRs). Though increased conformity between TKR components has the potential to decrease wear, the optimal amount and planes of conformity have not been investigated. Furthermore, differing conformities in the medial and lateral compartments may provide designers the opportunity to address both wear and kinematic design goals simultaneously. This study used a computational model of a Stanmore knee simulator machine and a previously validated wear model to investigate this issue for simulated gait. TKR geometries with different amounts and planes of conformity on the medial and lateral sides were created and tested in two phases. The first phase utilized a wide range of sagittal and coronal conformity combinations to blanket a physically realistic design space. The second phase performed a focused investigation of the conformity conditions from the first phase to which predicted wear volume was sensitive. For the first phase, sagittal but not coronal conformity was found to have a significant effect on predicted wear volume. For the second phase, increased sagittal conformity was found to decrease predicted wear volume in a nonlinear fashion, with reductions gradually diminishing as conformity increased. These results suggest that TKR geometric design efforts aimed at minimizing wear should focus on sagittal rather than coronal conformity and that at least moderate sagittal conformity is desirable in both compartments.

  7. Casting fabrication of in situ Al3Ti-Al composites and their wear behaviors

    Institute of Scientific and Technical Information of China (English)

    Chen Tijun; Li Jian; Hao Yuan

    2009-01-01

    The Al3li intermetallic reinforced pure Al, Al-13Si and Al-17Cu matrix composites were prepared by casting method. Their microstructures and dry sliding wear behaviors at room temperature and 100℃ were particularly investigated. The results indicated that the Al3Ti phases in these composites were all in flaky form. But the aspect ratio of the Al3Ti platelets decreased with the increase of Ti content in the pure AI, Al-Cu and Al-Si matrix composites, in order of effectiveness. The effect of Si on the Al3Ti morphology seemed to be greater than that of Cu. The distributions of the Al3Ti platelets were different in the different matrix composites, leading to different grain refining effects. Except for the sub-wear regime of adhesive wear, the plastic deformation induced wear was a dominant wear mechanism for all of the composites at room temperature and 100℃. Increasing the testing temperature, decreasing the Al3Ti content or the hardness of materials could enhance these two wear mechanisms, and thus increase the wear rate. The Al-Cu matrix composite had the best wear resistance, while the pure Al matrix composite showed the worst for the same Ti content. These differences or changes were attributed to the differences in materials' hardness or the strengthening effects of the Al3Ti platelets.

  8. The effect of insert conformity and material on total knee replacement wear.

    Science.gov (United States)

    Abdelgaied, Abdellatif; Brockett, Claire L; Liu, Feng; Jennings, Louise M; Jin, Zhongmin; Fisher, John

    2014-01-01

    The mean average life is increasing; therefore, there is a need to increase the lifetime of the prostheses. To fulfil this requirement, new prosthetic designs and materials are being introduced. Two of the design parameters that may affect wear of total knee replacements, and hence the expected lifetime, are the insert conformity and material. Computational models have been used extensively for wear prediction and optimisation of artificial knee designs. The objective of the present study was to use a previously validated non-dimensional wear coefficient-based computational wear model to investigate the effect of insert conformity and material on the predicted wear in total knee replacements. Four different inserts (curved, lipped, partial flat and custom flat), with different conformity levels, were tested against the same femoral and under two different kinematic inputs (intermediate and high), with different levels of cross-shear. The insert bearing materials were either conventional or moderately cross-linked ultra-high molecular weight polyethylene (UHMWPE). Wear predictions were validated against the experimental data from Leeds knee simulation tests. The predicted wear rates for the curved insert (most conformed) were more than three times those for the flat insert (least conformed). In addition, the computationally predicted average volumetric wear rates for moderately cross-linked UHMWPE bearings were less than half of their corresponding conventional UHMWPE bearings. Moreover, the wear of the moderately cross-linked UHMWPE was shown to be less dependent on the degree of cross-shear, compared to conventional UHMWPE. These results along with supporting experimental studies provide insight into the design variables, which may reduce wear in knee replacements.

  9. Wear behaviour of cross-linked polyethylene assessed in vitro under severe conditions.

    Science.gov (United States)

    Affatato, Saverio; Bersaglia, Gianluca; Rocchi, Mirko; Taddei, Paola; Fagnano, Concezio; Toni, Aldo

    2005-06-01

    The polyethylene (PE) for hip implants presents serious clinical problems; the production of debris may induce adverse tissue reactions that may lead to extensive bone loss around the implant and consequently osteolysis and implant loosening. Several attempts have been made to improve the wear properties of ultra-high molecular weight polyethylene (UHMWPE). More recently the attention of various researchers has been focused on cross-linked polyethylene (XLPE), due to its improved wear resistance with respect to conventional UHMWPE. This study was aimed at comparing the wear performances of clinically available acetabular liners (Zimmer Inc.) made of electron beam XLPE and conventional UHMWPE. To evaluate the influence of the material properties on wear, conventional UHMWPE and XLPE acetabular cups were tested against deliberately scratched CoCrMo femoral heads (Ra = 0.12-0.14 microm) in a hip joint wear simulator run for 3 million cycles with bovine calf serum as lubricant. Gravimetric measurements revealed significant differences between the wear behaviours of the two sets of acetabular cups: XLPE exhibited a wear rate about 40 times lower than conventional UHMWPE. Raman spectroscopy coupled to partial least-squares analysis was used to evaluate the possible crystallinity changes induced by mechanical stress (and thus the material wear resistance): only the UHMWPE cup which showed the highest weight loss displayed significant crystallinity changes. These results were correlated to the thickness of the plasticity-induced damage layer. The wear debris produced during the tests were isolated according to a validated protocol and imaged by scanning electron microscopy . The wear particles produced by XLPE were smaller than those produced by UHMWPE; the latter were observed as fibrillar and agglomerated particles. The mean equivalent circle diameter was 0.71 and 0.26 microm for UHMWPE and XLPE, respectively.

  10. Facilitators and barriers to chlamydia testing in general practice for young people using a theoretical model (COM-B): a systematic review protocol

    Science.gov (United States)

    McDonagh, Lorraine K; Saunders, John M; Cassell, Jackie; Bastaki, Hamad; Hartney, Thomas; Rait, Greta

    2017-01-01

    Introduction Chlamydia is a key health concern with high economic and social costs. There were over 200 000 chlamydia diagnoses made in England in 2015. The burden of chlamydia is greatest among young people where the highest prevalence rates are found. Annual testing for sexually active young people is recommended; however, many of those at risk do not receive testing. General practice has been identified as an ideal setting for testing, yet efforts to increase testing in this setting have not been effective. One theoretical model which may provide insight into the underpinnings of chlamydia testing is the Capability, Opportunity and Motivation Model of Behaviour (COM-B model). The aim of this systematic review is to: (1) identify barriers and facilitators to chlamydia testing for young people in general practice and (2) use a theoretical model to conduct a behavioural analysis of chlamydia testing behaviour. Methods and analysis Qualitative, quantitative and mixed methods studies published after 2000 will be included. Seven databases (MEDLINE, PubMed, EMBASE, Informit, PsycInfo, Scopus, Web of Science) will be searched to identify peer-reviewed publications which examined barriers and facilitators to chlamydia testing in general practice. Risk of bias will be assessed using the Critical Appraisal Skills Programme. Data regarding study design and key findings will be extracted. The data will be analysed using thematic analysis and the resultant factors will be mapped onto the COM-B model components. All findings will be reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Ethics and dissemination Ethical approval is not required. The results will be disseminated via submission for publication to a peer-review journal when complete and for presentation at national and international conferences. The review findings will be used to inform the development of interventions to facilitate effective and efficient

  11. Surface and sliding wear behaviour of different coatings and steels

    Energy Technology Data Exchange (ETDEWEB)

    Vera-Cardenas, E.E. [Universidad Politecnica de Pachuca, Zempoala, Hidalgo (Mexico)]. E-mail: evera@upp.edu.mx; Vite-Torres, M. [Instituto Politecnico Nacional, Mexico D.F. (Mexico)]. E-mail: drmanulvite9@hotmail.com; Lewis, R. [University of Sheffield (United Kingdom)]. E-mail: roger.lewis@sheffield.ac.uk

    2012-01-15

    In this work, the sliding wear behaviour of the coatings TiN, CrN and WC/C applied on steel substrates was studied using a reciprocating wear test machine. All tests were carried out in dry conditions, at room temperature (20-23 degrees Celsius and 45% - 50% relative humidity). The average sliding velocity was 0.08 m/s and an amplitude of 2 mm was used. The applied loads were 11.76 N (Po = 1.74 GPa) and 7.84 N (Po = 1.52 GPa). Optical microscopy was used to observe the characteristics of wear scars and spalls and possible causes of their formation. The variation of the friction coefficient against the number of cycles was obtained. This was used to determine more precisely the time (number of cycles) where the coating presented the first signs of wear, in addition Energy Dispersive X-ray analysis (EDS) was performed, as well as Scanning Electron Microscopy (SEM) and hardness tests on the wear traces, which reinforced the previous observations. Thus it was possible to know the wear life of different coatings and possible causes of variation. Increasing the load was an important factor in the variation of wear life results. But it is also important to consider other factors such as surface roughness and thickness of coatings. [Spanish] En este trabajo se estudio el comportamiento en desgaste por deslizamiento de los recubrimientos de TiN, CrN y WC/C aplicados sobre sustratos de acero. Las pruebas se realizaron con una maquina reciprocante en condiciones secas a temperatura ambiente (20-23 grados centigrados y 45% - 50% de humedad relativa). Se empleo una velocidad promedio de 0.08 m/s y una amplitud de 2 mm. Las cargas aplicadas fueron de 11.76N (Po = 1.74 GPa) y de 7.84 N (Po = 1.52 GPa). Se realizo microscopia optica para observar las caracteristicas de las zonas de desgaste y sus posibles causas de formacion. Se obtuvo graficamente la variacion del coeficiente de friccion con el numero de ciclos. Estos datos se emplearon para determinar con mayor precision el

  12. 高硼低碳耐磨合金磨料磨损性能研究%Study on Abrasive Wear Performance of High Boron Low Carbon Wear-resistant Alloy

    Institute of Scientific and Technical Information of China (English)

    麻健梅; 王顺波; 苏广才; 汤宏群

    2013-01-01

    借助光学显微镜和SEM电镜观察,运用磨损试验手段及对比研究法,研究了高硼低碳耐磨合金的磨料磨损性能.结果表明,在中、低冲击工况下,高硼低碳耐磨合金的磨损质量损失、相对磨损率均小于高铬铸铁和高锰钢,且磨面磨损形成的沟槽少,压坑小,这显示出了良好的耐磨料磨损性.%The high boron low carbon wear-resistant alloy abrasive wear performance was researched by OM, SEM observation, wear test methods and comparision approach. The results show that in the medium or low impact conditions, the wear mass loss and relative wear rate of high boron low carbon wear-resistant alloy are less than that of high chromium cast iron and high manganese steel. The number of the wear grooves and the pits on the wear surface morphology is smaller, which shows the good characteristics in abrasive wear performance of high boron low carbon wear-resistant alloy.

  13. Fretting wear behavior of Cr-coated fuel rod for accident-tolerant fuel in flowing fluid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Kim, Hyung Kyu; Kim, Hyun Gil; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Fretting wear test of the Cr-coated fuel clading candidate have been performed in the flowing fluid condition in order to verify the reliability of Cr-coated layer on zirconium-based fuel cladding. Rod wear volume at each grid spring and dimple is dramaically increased with GTR gap even though each wear scar is not evenly distributed within a 1x1 grid cell.

  14. The design and testing of a caring teaching model based on the theoretical framework of caring in the Chinese Context: a mixed-method study.

    Science.gov (United States)

    Guo, Yujie; Shen, Jie; Ye, Xuchun; Chen, Huali; Jiang, Anli

    2013-08-01

    This paper aims to report the design and test the effectiveness of an innovative caring teaching model based on the theoretical framework of caring in the Chinese context. Since the 1970's, caring has been a core value in nursing education. In a previous study, a theoretical framework of caring in the Chinese context is explored employing a grounded theory study, considered beneficial for caring education. A caring teaching model was designed theoretically and a one group pre- and post-test quasi-experimental study was administered to test its effectiveness. From Oct, 2009 to Jul, 2010, a cohort of grade-2 undergraduate nursing students (n=64) in a Chinese medical school was recruited to participate in the study. Data were gathered through quantitative and qualitative methods to evaluate the effectiveness of the caring teaching model. The caring teaching model created an esthetic situation and experiential learning style for teaching caring that was integrated within the curricula. Quantitative data from the quasi-experimental study showed that the post-test scores of each item were higher than those on the pre-test (p<0.01). Thematic analysis of 1220 narratives from students' caring journals and reports of participant class observation revealed two main thematic categories, which reflected, from the students' points of view, the development of student caring character and the impact that the caring teaching model had on this regard. The model could be used as an integrated approach to teach caring in nursing curricula. It would also be beneficial for nursing administrators in cultivating caring nurse practitioners. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Wear behavior of an austempered ductile iron containing Mo-Ni-Cu

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, S.; Rahimi, M.A. [Faculty of Materials Engineering, Sahand Univ. of Technology, Tabriz (Iran)

    2005-07-01

    The aim of the this investigation is to study the influence of Ni on tribiological behavior of an austempered ductile iron (ADI) containing Mo, Ni and Cu. Ductile irons with chemical composition Fe-3.56%C-2.67%Si -0.25%Mo-0.5%Cu and Ni contents of 0.8 and 1.5% were cast into standard Y-blocks. Wear test samples were machined off from the bottom section of blocks. Austenitizing heat treatment was carried out at 870 C temperature followed by austempering at 270, 320, and 370 C for 5-1140 minutes. The wear test was carried out by using block-on-ring test machine. Sliding dry wear behavior was studied under applied loads of 50, 100 and 150 N. The results show that wear resistance is independent of austempering temperature with an applied load of 50 N, but there is a strong dependence at higher austempering temperatures with applied loads of 100 and 150 N. Wear mechanism is described as being due to subsurface fatigue, with cracks nucleated at plastically, deformed graphite interfaces. The wear controlling mechanism is the crack growth when wear shows a dependence on applied load and austempering temperature. (orig.)

  16. Wear Performance of A356 Matrix Composites Reinforced with Different Types of Reinforcing Particles

    Science.gov (United States)

    Akbari, Mostafa; Shojaeefard, Mohammad Hasan; Asadi, Parviz; Khalkhali, Abolfazl

    2017-09-01

    To improve the wear resistance of Al-Si alloys, different types of reinforcing particles such as SiC, TiC, ZrO2, and B4C were used to produce matrix composites by friction stir processing (FSP). First, microstructural properties of different locations of stir zone (SZ) in the FSPed specimens such as advancing side, retreating side, shoulder-affected area, and pin-affected area were investigated. The results demonstrate that Si particles size is not the same in different SZ subdomains. SEM investigation was performed in order to investigate the particles distribution in different areas of the SZ as well as bonding quality between particles and metal matrix. Hardness and wear tests were carried out to determine mechanical and wear properties of the composites. The pin-on-disk wear tests were performed at room temperature, with the normal applied loads of 5, 10, and 20 N and sliding speed of 1 and 2 m/s. All fabricated composites show higher resistance in wear than A356 alloy. Wear test results show, by increasing the normal load and sliding velocity, the wear loss weight of all composites increased gradually.

  17. A Non-Invasive Ultrasonic Urinary Bladder Internal Pressure Monitoring Technique: Its Theoretical Foundation and Feasibility Test

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Min Joo; Kang, Gwan Suk [Jeju National University, Jeju (Korea, Republic of); Lee, Kang Il [Department of Physics, Kangwon National University, Chuncheon (Korea, Republic of)

    2012-10-15

    A new approach was proposed in this article, named, a non-invasive ultrasonic method to monitor the urinary bladder internal pressure which can resolve the shortcomings of the existing methods. The proposed method makes use of acoustic cavitation. It is based on a physical phenomenon that an extracorporeal high intensity focused ultrasonic pulse generates bubbles inside the urinary bladder and the dynamic properties of the bubbles are related to the urinary bladder internal pressure. The article presents the theoretical foundation for the proposed technique and verifies its feasibility with preliminary experimental data. The suggested ultrasonic urinary bladder internal pressure monitoring method is non-invasive and can be used any time regardless of sex and age.

  18. Abrasive Wear Map of Polymer Tapes in Sand Dust Environment

    Institute of Scientific and Technical Information of China (English)

    WU Tong-hai; DIAO Dong-feng

    2006-01-01

    To make clear the wear conditions of ATM (Automatic Teller Machine) tribosystem when servicing in Chinese sand dust environment, abrasive wear of two kinds of polymer tapes specified for ATM, PI (Polyimide) and PEN (Polyethylene-2, 6-naphthalenedicarboxylate), was investigated in simulated sand dust environment with ATM tape-scraper tribosystem under various conditions of loads and sliding distances. The surface profiles of worn tape were measured with a surface profiler in order to calculating the wear cross-section areas and the wear volumes. The specific wear rates of polymer tapes were calculated under load conditions of 0.6, 1 and 1.5 N, and wear mechanisms were investigated with optical topography photos. As main results, the specific wear rates show stage variations in the wear process and the wear resistance of polymer tape shows good relationship with the mechanical deformation factors. In consideration of the service life, four wear models are generalized according to the magnitude of specific wear rates,which include no wear, mild wear, normal wear and severe wear model and the corresponding wear mechanisms for the four wear models are discussed with typical worn topographies. Based on the wear models and corresponding wear mechanisms, the abrasive wear maps of two polymer tapes servicing in sand dust environments are concluded for its industrial applications.

  19. Protiobrabne lastnosti jekla 42CrMo4, nitriranega v nepulzirajoči in pulzirajoči plazmi: Wear properties of plasma and pulse plasma nitrided 42CrMo4 steel:

    OpenAIRE

    Leskovšek, Vojteh; Podgornik, Bojan; Vižintin, Jožef

    1999-01-01

    The tribological properties of plasma and pulse plasma nitrided 42CrMo4 steel were investigated and compared to hardened steel. Contact surfaces of the samples were characterized by metallographic, SEM microscopic, microhardness and profilometric techniques before and after wear testing. Wear tests were performed on a pin-on-disc wear testing machine in which nitrided pins were mated to hardened ball bearing steel discs under dry sliding conditions. The resulting wear loss as well as the coef...

  20. IN VITRO WEAR RESISTANCE OF THREE TYPES OF POLYMETHYL METHACRYLATE DENTURE TEETH

    Science.gov (United States)

    Reis, Katia Rodrigues; Bonfante, Gerson; Pegoraro, Luiz Fernando; Conti, Paulo Cesar Rodrigues; de Oliveira, Pedro Cesar Garcia; Kaizer, Osvaldo Bazzan

    2008-01-01

    The wear resistance of denture teeth is important to the longevity of removable prostheses of edentulous patients. The ability of denture teeth to maintain a stable occlusal relationship over time may be influenced by this property. The purpose of this in vitro study was to evaluate the wear resistance of polymethyl methacrylate (PMMA) denture teeth based on their chemical composition when opposed by a ceramic antagonist. The maxillary canines (n=10) of 3 PMMA denture teeth (Trubyte Biotone, cross-linked PMMA; Trilux, highly cross-linked IPN (interpenetrating polymer network)-PMMA; and Vivodent, highly cross-linked PMMA) were secured in an in vitro 2-body wear-testing apparatus that produced sliding contact of the specimens (4.5 cycles/s, sliding distance of 20 mm, under 37°C running water) against glazed or airborne particle abraded ceramic. Wear resistance was measured as height loss (mm) under 300 g (sliding force) after 100,000 cycles, using a digital measuring microscope. Mean values were analyzed by 2-way ANOVA and Tukey's test (α=0.05). The wear of Trubyte Biotone (0.93 ± 0.14 mm) was significantly higher than that of both other types of teeth tested against abraded ceramic (p0.05) in wear among the 3 denture teeth evaluated against glazed ceramic. Trilux and Vivodent teeth tested against either glazed or airborne particle abraded ceramic did not differ significantly from each other (p<0.05). All teeth showed significantly more wear against airborne particle abraded ceramic than against glazed ceramic (p<0.05). In conclusion, the three types of PMMA denture teeth presented significantly different wear resistance against the abraded ceramic. The high-strength PMMA denture teeth were more wear-resistant than the conventional PMMA denture tooth. PMID:19089214

  1. In vitro wear resistance of three types of polymethyl methacrylate denture teeth

    Directory of Open Access Journals (Sweden)

    Katia Rodrigues Reis

    2008-06-01

    Full Text Available The wear resistance of denture teeth is important to the longevity of removable prostheses of edentulous patients. The ability of denture teeth to maintain a stable occlusal relationship over time may be influenced by this property. The purpose of this in vitro study was to evaluate the wear resistance of polymethyl methacrylate (PMMA denture teeth based on their chemical composition when opposed by a ceramic antagonist. The maxillary canines (n=10 of 3 PMMA denture teeth (Trubyte Biotone, cross-linked PMMA; Trilux, highly cross-linked IPN (interpenetrating polymer network-PMMA; and Vivodent, highly cross-linked PMMA were secured in an in vitro 2-body wear-testing apparatus that produced sliding contact of the specimens (4.5 cycles/s, sliding distance of 20 mm, under 37°C running water against glazed or airborne particle abraded ceramic. Wear resistance was measured as height loss (mm under 300 g (sliding force after 100,000 cycles, using a digital measuring microscope. Mean values were analyzed by 2-way ANOVA and Tukey's test (a=0.05. The wear of Trubyte Biotone (0.93 ± 0.14 mm was significantly higher than that of both other types of teeth tested against abraded ceramic (p0.05 in wear among the 3 denture teeth evaluated against glazed ceramic. Trilux and Vivodent teeth tested against either glazed or airborne particle abraded ceramic did not differ significantly from each other (p<0.05. All teeth showed significantly more wear against airborne particle abraded ceramic than against glazed ceramic (p<0.05. In conclusion, the three types of PMMA denture teeth presented significantly different wear resistance against the abraded ceramic. The high-strength PMMA denture teeth were more wear-resistant than the conventional PMMA denture tooth.

  2. Tests of Parameters Instability: Theoretical Study and Empirical Applications on Two Types of Models (ARMA Model and Market Model

    Directory of Open Access Journals (Sweden)

    Sahbi FARHANI

    2012-01-01

    Full Text Available This paper considers tests of parameters instability and structural change with known, unknown or multiple breakpoints. The results apply to a wide class of parametric models that are suitable for estimation by strong rules for detecting the number of breaks in a time series. For that, we use Chow, CUSUM, CUSUM of squares, Wald, likelihood ratio and Lagrange multiplier tests. Each test implicitly uses an estimate of a change point. We conclude with an empirical analysis on two different models (ARMA model and simple linear regression model.

  3. Tribological Wear Behaviour and Hardness Measurement of SiC, Al2O3 Reinforced Al. Matrix Hybrid Composite

    Science.gov (United States)

    Subramanian, Senthil Murugan; Vijayan, Jegan; Muthaiah, Velmurugan

    2017-01-01

    In the present study, Aluminium Matrix Hybrid Composite (AMHC) of 6061-T6 alloy reinforced with silicon carbide (SiC) particulate and further addition of aluminium oxide (Al2O3) particulate was fabricated by stir casting process. The wear resistance and frictional properties of that AMHC were studied by performing dry sliding wear test using a pin on disk wear tester. The experiments were conducted at a constant sliding velocity of 1.57 m/s and sliding distance of 1800 m under loading conditions of 10 and 20 N. Further tests were also carried out by keeping Al2O3 percentage (7%) constant and increasing the SiC percentage (10, 15, and 20%). The results show that the reinforcement of the metal matrix with SiC and Al2O3 reduces the wear rate range and also indicate that the wear of the test specimen increases with the increasing load and sliding distance. The coefficient of friction increases with load and increasing volume content of reinforcement. The worn surfaces were examined by scanning electron microscope to study the wear mechanism. By using wear mechanism analysis, the wear surfaces and wear properties of AMHC were determined.

  4. Screening of stabilized crosslinked polyethylene using a novel wear tester.

    Science.gov (United States)

    Hoffmann, M; Gonzalez-Mora, V; Chiesa, R; Cigada, A; Stroosnijder, M F

    2002-01-01

    A novel pin-on-disk type wear tester is described allowing a rapid screening of different types of polyethylene under both unidirectional and multidirectional sliding motion. The wear of four polyethylene materials sliding against a roughened CoCrMo alloy was evaluated: a non-irradiated UHMWPE, a UHMWPE irradiated with a dose of 25 kGy in air, and two types of crosslinked UHMWPE (100 kGy, air), which were subjected to a stabilization heat treatment in nitrogen at 155 degrees C for 72 hours (XLPE I) and in water at 130 degrees C for 72 hours (XLPE II), respectively.Under multidirectional sliding conditions both types of XLPE exhibited significantly less wear with respect to the 25 kGy irradiated UHMWPE and the non-irradiated UHMWPE, even under the rough counterface conditions applied. Under unidirectional sliding motion both types of XLPE exhibited the highest wear of all materials tested, because the orientation hardening effect acting under linear lubricated condition is less pronounced for crosslinked polyethylene.

  5. Comparison of Wear Resistance of Hawley and Vacuum Formed Retainers: An in-vitro Study

    Directory of Open Access Journals (Sweden)

    Moshkelgosha V

    2016-06-01

    Full Text Available Statement of Problem: As a physical property, wear resistance of the materials used in the fabrication of orthodontic retainers play a significant role in the stability and long term use of the appliances. Objectives: To evaluate the wear resistance of two commonly used materials for orthodontic retainers: Acropars OP, i.e. a polymethyl methacrylate based material, and 3A-GS060, i.e. a polyethylene based material. Materials and Methods: For each material, 30 orthodontic retainers were made according to the manufacturers’ instructions and a 30×30×2 mm block was cut out from the mid- palatal area of each retainer. Each specimen underwent 1000 cycles of wear stimulation in a pin on disc machine. The depth of wear of each specimen was measured using a Nano Wizard II atomic force microscope in 3 random points of each specimen’s wear trough. The average of these three measurements was calculated and considered as mean value wear depth of each specimen (µm. Results: The mean wear depth was 6.10µm and 2.15µm for 3A-GS060 and Acropars OP groups respectively. Independent t-test showed a significant difference between the two groups (p < 0.001. The results show Polymethyl methacrylate base (Acropars is more wear resistance than the polyethylene based material (3A-GS060. Conclusions: As the higher wear resistance of the fabrication material can improve the retainers’ survival time and its cost-effectiveness, VFRs should be avoided in situations that the appliance needs high wear resistance such as bite blocks opposing occlusal forces.

  6. Structural transformations and tribological properties of amorphous alloys upon wear at room and cryogenic temperatures

    Science.gov (United States)

    Korshunov, L. G.; Chernenko, N. L.; Goikhenberg, Yu. N.

    2009-09-01

    The abrasive wear resistance of the Fe64Co30Si3B3, Co86.5Cr4Si7B2.5, Fe73.5Nb3Cu1Si13.5B9, and Fe82.6Nb5Cu3Si8B1.4 commercial amorphous alloys (ribbon 0.03 mm thick and 12 mm wide) has been investigated under the conditions of abrasive and adhesive wear upon sliding friction. The character of fracture of the surface and structural transformations that occur in these materials upon wear have been studied by the metallographic and electron-microscopic methods. It has been shown that at room and cryogenic (-196°C) temperatures of tests the abrasive wear resistance of the amorphous alloys is two-three times lower than that of tool steels Kh12M and U8. A comparatively small abrasive wear resistance of the amorphous alloys is explained by local softening of these materials in the process of wear. Under the conditions of adhesive wear of like friction pairs at room temperature in air and argon, the amorphous alloys are characterized by the rate of wear that is smaller approximately by an order of magnitude than in steels 12Kh13 and 12Kh18N9. It has been established that upon wear the deformed surface layer of the alloys under study retains a predominantly amorphous state but in local sections of this layer nanocrystalline structures that consist of crystals of bcc and fcc phases and borides are formed. The possible effects of this partial crystallization on the microhardness, friction coefficient, and wear resistance of these alloys have been considered.

  7. Enamel wear caused by monolithic zirconia crowns after 6 months of clinical use.

    Science.gov (United States)

    Stober, T; Bermejo, J L; Rammelsberg, P; Schmitter, M

    2014-04-01

    The purpose of this study was to evaluate enamel wear caused by monolithic zirconia crowns and to compare this with enamel wear caused by contralateral natural antagonists. Twenty monolithic zirconia crowns were placed in 20 patients requiring full molar crowns. For measurement of wear, impressions of both jaws were made at baseline after crown cementation and at 6-month follow-up. Mean and maximum wear of the occlusal contact areas of the crowns, of their natural antagonists and of the two contralateral natural antagonists were measured by the use of plaster replicas and 3D laser scanning methods. Wear differences were investigated by the use of two-sided paired Student's t-tests and by linear regression analysis. Mean vertical loss (maximum vertical loss in parentheses) was 10 (43) μm for the zirconia crowns, 33 (112) μm for the opposing enamel, 10 (58) μm for the contralateral teeth and 10 (46) μm for the contralateral antagonists. Both mean and maximum enamel wear were significantly different between the antagonists of the zirconia crowns and the contralateral antagonists. Gender and activity of the masseter muscle at night (bruxism) were identified as possible confounders which significantly affected wear. Under clinical conditions, monolithic zirconia crowns seem to be associated with more wear of opposed enamel than are natural teeth. With regard to wear behaviour, clinical application of monolithic zirconia crowns is justifiable because the amount of antagonistic enamel wear after 6 months is comparable with, or even lower than, that caused by other ceramic materials in previous studies.

  8. Three years in vivo wear: core-ceramic, veneers, and enamel antagonists.

    Science.gov (United States)

    Esquivel-Upshaw, Josephine F; Rose, William F; Barrett, Allyson A; Oliveira, Erica R; Yang, Mark C K; Clark, Arthur E; Anusavice, Kenneth J

    2012-06-01

    Test the hypotheses that there are equivalent wear rates for enamel-versus-enamel and ceramic-versus-enamel, analyzing the in vivo wear of crown ceramics, their natural enamel antagonists, and the corresponding two contralateral teeth; and, that bite force does not correlate with the wear. A controlled, clinical trial was conducted involving patients needing full coverage crowns opposing enamel antagonists. Bite forces were measured using a bilateral gnathodynamometer. Single-unit restorations of metal/ceramic (Argedent 62, Argen Corp/IPS d.SIGN veneer); or, core-ceramic/veneer from either, Empress2/Eris, or e.max Press core/e.max Ceram glaze (ceramics: Ivoclar Vivadent, USA) were randomly assigned, fabricated and cemented. Impressions were made of the ceramic crowns, as well as each maxillary and mandibular quadrant at one week (baseline) and one, two and three years. Resulting models were scanned (3D laser scanner). Maximum wear was calculated by superimposing baseline with annual images. There were a total of thirty-six crowns required for thirty-one patients. Each restoration had three associated enamel teeth: crown, (1) antagonist, (2) contralateral and (3) contralateral-antagonist. SAS PROC MIXED (α=0.05) indicated no statistical significance for mean maximum wear among crown ceramics, enamel antagonists and contralaterals. However, enamel wear was statistically significant in relation to intraoral location (p=0.04) and among years (p<0.02). Analyzed alone, the enamel contralateral-antagonist exhibited significantly greater wear (p<0.001). Considering all wear sites, there was no correlation with bite force (p=0.15). The ceramics and their antagonists exhibited in vivo wear rates within the range of normal enamel. Future studies should examine the wear implications of the contralateral-antagonist enamel. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Room-temperature sliding wear properties of laser melt deposited Cr13Ni5Si2/γalloy

    Institute of Scientific and Technical Information of China (English)

    FANG Yanli; WANG Huaming

    2007-01-01

    A wear-resistant alloy consisting of Cr13Ni5Si2 ternary silicide dendrites and the interdendritic nickel-base solid solution (γ) was designed and fabricated by the laser melting/continuous deposition (LMCD) process.The wear resistance of Cr13Ni5Si2/γalloy was evaluated on an MM-200 block-on-wheel dry sliding wear tester at room temperature. Results indicate that the Cr13Ni5Si2/γ alloy has excellent wear resistance and extremely low load-sensitivity of wear under dry sliding wear test conditions due to the high toughness and the high strength,as well as the transferred cover-layer on the worn surface of the alloy.

  10. Relation between in-vitro wear and nanomechanical properties of commercial light-cured dental composites coated with surface sealants

    Directory of Open Access Journals (Sweden)

    Emanuel Santos Jr

    2013-01-01

    Full Text Available This work investigates the correlation between the in-vitro wear resistance and the nanomechanical properties of dental sealants commercially available. Mechanical properties, namely hardness (H and elastic modulus (E, were assessed by nanoindentation technique. The coated samples presented lower H and E values than the Z250 composite resin substrate. Such measurements were used to calculate H/E ratios. Wear tests were carried out in water by using a pin-on-plate apparatus. Scars formed on the samples were qualitatively examined by optical microscopy, while their wear depths were measured by contact profilometry. Based on the findings, an empirical correlation between the wear depths and H/E was obtained. A high H/E ratio was associated to surfaces with enhanced wear resistance. For the tribological conditions here employed, the H/E ratio could be, therefore, considered a useful parameter for ranking the in-vitro wear of dental sealants.

  11. Wear resistance of a pressable low-fusing ceramic opposed by dental alloys.

    Science.gov (United States)

    Faria, Adriana Cláudia Lapria; de Oliveira, André Almeida; Alves Gomes, Erica; Silveira Rodrigues, Renata Cristina; Faria Ribeiro, Ricardo

    2014-04-01

    Dental alloys have increasingly replaced by dental ceramics in dentistry because of aesthetics. As both dental alloys and ceramics can be present in the oral cavity, the evaluation of the wear resistance of ceramics opposed by dental alloys is important. The aim of the present study was to evaluate wear resistance of a pressable low-fusing ceramic opposed by dental alloys as well as the microhardness of the alloys and the possible correlation of wear and antagonist microhardness. Fifteen stylus tips samples of pressable low-fusing ceramic were obtained, polished and glazed. Samples were divided into three groups according to the disk of alloy/metal to be used as antagonist: Nickel-Chromium (Ni-Cr), Cobalt-Chromium (Co-Cr) and commercially pure titanium (cp Ti). Vickers microhardness of antagonist disks was evaluated before wear tests. Then, antagonist disks were sandblasted until surface roughness was adjusted to 0.75μm. Wear tests were performed at a speed of 60 cycles/min and distance of 10mm, in a total of 300,000 cycles. Before and after wear tests, samples were weighted and had their profile designed in an optical comparator to evaluate weight and height loss, respectively. Ni-Cr and cp Ti caused greater wear than Co-Cr, presenting greater weight (p=.009) and height (p=.002) loss. Cp Ti microhardness was lower than Ni-Cr and Co-Cr (p<.05). There is a positive correlation between weight and height loss (p<.05), but weight (p=.204) and height (p=.05) loss are not correlated to microhardness. The results suggest that pressable low-fusing ceramic presents different wear according to the dental alloy used as antagonist and the wear is not affected by antagonist microhardness.

  12. Gear Wear Process Monitoring Using a Sideband Estimator Based on Modulation Signal Bispectrum

    Directory of Open Access Journals (Sweden)

    Ruiliang Zhang

    2017-03-01

    Full Text Available As one of the most common gear failure modes, tooth wear can produce nonlinear modulation sidebands in the vibration frequency spectrum. However, limited research has been reported in monitoring the gear wear based on vibration due to the lack of tools which can effectively extract the small sidebands. In order to accurately monitor gear wear progression in a timely fashion, this paper presents a gear wear condition monitoring approach based on vibration signal analysis using the modulation signal bispectrum-based sideband estimator (MSB-SE method. The vibration signals are collected using a run-to-failure test of gearbox under an accelerated test process. MSB analysis was performed on the vibration signals to extract the sideband information. Using a combination of the peak value of MSB-SE and the coherence of MSB-SE, the overall information of gear transmission system can be obtained. Based on the amplitude of MSB-SE peaks, a dimensionless indicator is proposed to assess the effects of gear tooth wear. The results demonstrated that the proposed indicator can be used to accurately and reliably monitor gear tooth wear and evaluate the wear severity.

  13. Wear resistance of alloy вт-22 with non-ferrous alloys at reverse

    Directory of Open Access Journals (Sweden)

    А.М. Хімко

    2010-01-01

    Full Text Available  The article presents the results of tests of non hardened titanium alloy ВТ-22 with aviation non-ferrous alloys in reverse sliding friction. The main objective of the work is the selection of the optimum combination of materials depending on changes in loading conditions. Study of alloy ВТ-22 wear resistance was carried out in pairs with БрОФ-10-1, БрБ2, БрАЖ-9-4, ВТ-22, МЛ5, Д16Т, 7Х21ГАН5Ш and 95Х18Ш. The dependencies of the materials wear at pressures 10, 20 and 30 Mpa we determined. The linear nature of titanium alloy wear curves indicates that the change in the wear mechanism occurs gradually. The histograms of non-ferrous materials wear and the total wear of the friction pair are presented. It is established that the bronze БрАЖ-9-4 is the most preferable material for contact with non hardened titanium alloy ВТ-22, the least wear among the tested materials. The established coefficients of the titanium alloy ВТ-22 friction in pair with aviation structural non-ferrous alloys are presented. The results of research will be relevant for the engineering industry, where non hardened titanium alloy ВТ-22 in pair with non-ferrous alloys is applied.

  14. Wear and Corrosion of Cast Al Alloy Piston with and without Brake Oil

    Directory of Open Access Journals (Sweden)

    Olawale Olarewaju Ajibola

    2015-01-01

    Full Text Available The effects of wear and corrosion of cast AA6061 aluminium alloy were studied with and without brake fluid using a wear jig while the corrosion rate was determined in brake fluid for 70 days under two experimental set-ups. The tests, yielded 0.00000123 g/mm2/min highest wear rate at 147000 wear cycles and 0.0334 mg/mm2/yr as the highest corrosion rate within the early 39th day of immersion in oil, the values being considered comparatively lower than those obtained for Al alloy in most common wet abrasion test and corrosion in aqueous solutions as previously reported in literature. The material loss rates to wear and corrosion were determined from the equations relating to wear and corrosion based on the ASTM designations. The results show that the combined actions of wear and corrosion contribute to the total loss of piston material immersed in brake oil. This is greater than either of their effects individually on cast Al alloy in the brake oil.

  15. A high sensitivity wear debris sensor using ferrite cores for online oil condition monitoring

    Science.gov (United States)

    Zhu, Xiaoliang; Zhong, Chong; Zhe, Jiang

    2017-07-01

    Detecting wear debris and measuring the increasing number of wear debris in lubrication oil can indicate abnormal machine wear well ahead of machine failure, and thus are indispensable for online machine health monitoring. A portable wear debris sensor with ferrite cores for online monitoring is presented. The sensor detects wear debris by measuring the inductance change of two planar coils wound around a pair of ferrite cores that make the magnetic flux denser and more uniform in the sensing channel, thereby improving the sensitivity of the sensor. Static testing results showed this wear debris sensor is capable of detecting 11 µm and 50 µm ferrous debris in 1 mm and 7 mm diameter fluidic pipes, respectively; such a high sensitivity has not been achieved before. Furthermore, a synchronized sampling method was also applied to reduce the data size and realize real-time data processing. Dynamic testing results demonstrated that the sensor is capable of detecting wear debris in real time with a high throughput of 750 ml min-1 the measured debris concentration is in good agreement with the actual concentration.

  16. Effect of periwinkles shell particle size on the wear behavior of asbestos free brake pad

    Science.gov (United States)

    Amaren, S. G.; Yawas, D. S.; Aku, S. Y.

    The effect of periwinkle shell particle size on the wear behavior of asbestos free brake pad has been investigated. The asbestos free brake pad produced by varying the periwinkle shell particles was from +125 to +710 μm with phenolic resin as the binder. The wear test was performed using pin on disk machine by varying the sliding speed, applied load, temperatures and periwinkle shell particle size. Full factorial design of four factor-two levels and analysis of variance were used in the study of the wear test. The results shown that wear rate increases with increasing the sliding speed, load, temperatures and periwinkle particle size. The co-efficient of friction obtained is within the recommended standard for automobile brake pad. The +125 μm particles of periwinkles gave the best wear resistance. Factorial design of the experiment can be successfully employed to describe the wear behavior of the samples and developed linear equation for predicting wear rate within selected experimental conditions. The results of this research indicate that periwinkle shell particles can be effectively used as a replacement for asbestos in brake pad manufacture.

  17. Microtomography evaluation of dental tissue wear surface induced by in vitro simulated chewing cycles on human and composite teeth

    Directory of Open Access Journals (Sweden)

    Rossella Bedini

    2012-01-01

    Full Text Available In this study a 3D microtomography display of tooth surfaces after in vitro dental wear tests has been obtained. Natural teeth have been compared with prosthetic teeth, manufactured by three different polyceramic composite materials. The prosthetic dental element samples, similar to molars, have been placed in opposition to human teeth extracted by paradontology diseases. After microtomography analysis, samples have been subjected to in vitro fatigue test cycles by servo-hydraulic mechanical testing machine. After the fatigue test, each sample has been subjected again to microtomography analysis to obtain volumetric value changes and dental wear surface images. Wear surface images were obtained by 3D reconstruction software and volumetric value changes were measured by CT analyser software. The aim of this work has been to show the potential of microtomography technique to display very clear and reliable wear surface images. Microtomography analysis methods to evaluate volumetric value changes have been used to quantify dental tissue and composite material wear.

  18. Numerical prediction of car tire wear

    NARCIS (Netherlands)

    Lupker, H.A.; Cheli, F.; Braghin, F.; Gelosa, E.; Keckman, A.

    2004-01-01

    Due to their many economic and ecological implications, the possibility to predict tire wear is of major importance to tire manufacturers, fleet owners and governments. Based on these observations, in 2000, a three-year project named TROWS (Tire and Road Wear and Slip assessment was started. One of

  19. Concrete ice abrasion rig and wear measurements

    NARCIS (Netherlands)

    Shamsutdinova, G.; Rike, P.B.; Hendriks, M.A.N.; Jacobsen, S.

    2015-01-01

    The wear of concrete material due to ice movement is a challenge for offshore and coastal structures. Concrete surfaces exposed to moving ice are subjected to wear at various rates depending on concrete and ice properties. At NTNU, Department of Structural Engineering, concrete ice abrasion phenomen

  20. Inhibition of erosive wear by fluoride varnish

    NARCIS (Netherlands)

    Vieira, A.; Jager, D. H. J.; Ruben, J. L.; Huysmans, M. C. D. N. J. M.

    2007-01-01

    It has been suggested that fluoride products with a protective mechanical component are advantageous in the prevention of erosive wear. The aim of this study was to evaluate in situ the effect of fluoride varnish (FV) in the prevention of wear due to erosion and combined erosion and toothbrush abras

  1. Concrete ice abrasion rig and wear measurements

    NARCIS (Netherlands)

    Shamsutdinova, G.; Rike, P.B.; Hendriks, M.A.N.; Jacobsen, S.

    2015-01-01

    The wear of concrete material due to ice movement is a challenge for offshore and coastal structures. Concrete surfaces exposed to moving ice are subjected to wear at various rates depending on concrete and ice properties. At NTNU, Department of Structural Engineering, concrete ice abrasion phenomen

  2. Friction and Wear Behaviors of Nanostructured Metals

    Institute of Scientific and Technical Information of China (English)

    Zhong HAN; Yusheng ZHANG; Ke LU

    2008-01-01

    Nanostructured (ns) materials, i.e., polycrystalline materials with grain sizes in the nanometer regime (typically below 100 nm), have drawn considerable attention in the past decades due to their unique properties such as high strength and hardness. Wear resistance of ns materials, one of the most important properties for engineering materials, has been extensively investigated in the past decades. Obvious differences have been identified in friction and wear behaviors Between the ns materials and their corresponding coarse-grained (cg) counterparts, consistently correlating with their unique structure characteristics and mechanical properties. On the other hand, the superior tribological properties of ns materials illustrate their potential applications under contact loads. The present overview will summarize the important progresses achieved on friction and wear behaviors of ns metallic materials, including ultrafine-grained (ufg) materials in recent years. Tribological properties and effects on friction and wear behaviors of ns materials will be discussed under different wear conditions including abrasive wear, sliding wear, and fretting wear. Their correlations with mechanical properties will be analyzed. Perspectives on development of this field will be highlighted as well.

  3. Inhibition of erosive wear by fluoride varnish

    NARCIS (Netherlands)

    Vieira, A.; Jager, D. H. J.; Ruben, J. L.; Huysmans, M. C. D. N. J. M.

    2007-01-01

    It has been suggested that fluoride products with a protective mechanical component are advantageous in the prevention of erosive wear. The aim of this study was to evaluate in situ the effect of fluoride varnish (FV) in the prevention of wear due to erosion and combined erosion and toothbrush

  4. Fault Wear and Friction Evolution: Experimental Analysis

    Science.gov (United States)

    Boneh, Y.; Chang, J. C.; Lockner, D. A.; Reches, Z.

    2011-12-01

    Wear is an inevitable product of frictional sliding of brittle rocks as evidenced by the ubiquitous occurrence of fault gouge and slickenside striations. We present here experimental observations designed to demonstrate the relationship between wear and friction and their governing mechanisms. The experiments were conducted with a rotary shear apparatus on solid, ring-shaped rock samples that slipped for displacements up to tens of meters. Stresses, wear and temperature were continuously monitored. We analyzed 86 experiments of Kasota dolomite, Sierra White granite, Pennsylvania quartzite, Karoo gabbro, and Tennessee sandstone at slip velocities ranging from 0.002 to 0.97 m/s, and normal stress from 0.25 to 6.9 MPa. We conducted two types of runs: short slip experiments (slip distance mechanisms; and long slip experiments (slip distance > 3 m) designed to achieve mature wear conditions and to observe the evolution of wear and friction as the fault surfaces evolved. The experiments reveal three wear stages: initial, running-in, and steady-state. The initial stage is characterized by (1) discrete damage striations, the length of which is comparable to total slip , and local pits or plow features; (2) timing and magnitude of fault-normal dilation corresponds to transient changes of normal and shear stresses; and (3) surface roughness increasing with the applied normal stress. We interpret these observations as wear mechanisms of (a) plowing into the fresh rock surfaces; (b) asperity breakage; and (c) asperity climb. The running-in stage is characterized by (1) intense wear-rate over a critical wear distance of Rd = 0.3-2 m; (2) drop of friction coefficient over a weakening distance of Dc = 0.2-4 m; (3) Rd and Dc display positive, quasi-linear relation with each other. We interpret these observations as indicating the organizing of newly-created wear particles into a 'three-body' structure that acts to lubricate the fault (Reches & Lockner, 2010). The steady

  5. Dynamic and kinematic effects in the friction and wear of rubber

    Science.gov (United States)

    Gerrard, David Peter

    Research is presented which focuses on the micro-mechanical processes that dominate the friction and wear of rubber. New test concepts and equipment were developed to study the dynamic and kinematic effects involved in these processes. Several new analytical tools were presented to explain the observed results in quantifiable terms. Experiments conducted on filled NR confirmed that a transition in wear behavior does not occur across a wide range of power inputs. Examination of the debris distributions across the contact revealed that an agglomeration process of intrinsic particles occurs, the extent of which is purely a function of distance from the contact's leading edge. This revelation is used to explain the commonly reported bimodal size distribution of debris generated during rubber wear and to expose the mechanical process that generates intrinsic debris as the primary cause of wear. The effect of contact length (i.e. extent of agglomeration) on corresponding friction and wear levels was studied. The effects of dynamically changing slip orientation on the properties of a coated abrasive and the friction and wear of a filled SBR were studied. The process of removal of intrinsic debris from a rubber surface was described in terms of a micro-mechanical fatigue fracture process that occurs at varying rates that are dependent on the frictional work acting on the average intrinsic nodule. The model was successfully tested against previously published data and new data and was shown to account for pressure and abrasive effects with one set of two constants. The potential effects of pattern morphologies on rubber friction and wear were examined as well. The wear patterns showed a clear tendency to roll up as opposed to peeling back. The intrinsic wear model was then applied to a description of pattern wear by assuming that the rate of intrinsic abrasion across a pattern is simply a function of the local pressure distribution which varies from the front to the back

  6. Characterization of Wear Particles Generated from CoCrMo Alloy under Sliding Wear Conditions.

    Science.gov (United States)

    Pourzal, R; Catelas, I; Theissmann, R; Kaddick, C; Fischer, A

    2011-07-29

    Biological effects of wear products (particles and metal ions) generated by metal-on-metal (MoM) hip replacements made of CoCrMo alloy remain a major cause of concern. Periprosthetic osteolysis, potential hypersensitivity response and pseudotumour formation are possible reactions that can lead to early revisions. To accurately analyse the biological response to wear particles from MoM implants, the exact nature of these particles needs to be characterized. Most previous studies used energy-dispersive X-ray spectroscopy (EDS) analysis for characterization. The present study used energy filtered transmission electron microscopy (TEM) and electron diffraction pattern analysis to allow for a more precise determination of the chemical composition and to gain knowledge of the crystalline structure of the wear particles.Particles were retrieved from two different test rigs: a reciprocating sliding wear tribometer (CoCrMo cylinder vs. bar) and a hip simulator according to ISO 14242-1 (CoCrMo head vs. CoCrMo cup). All tests were conducted in bovine serum. Particles were retrieved from the test medium using a previously published enzymatic digestion protocol.Particles isolated from tribometer samples had a size of 100 - 500 nm. Diffraction pattern analysis clearly revealed the lattice structure of strain induced hcp ε-martensite. Hip simulator samples revealed numerous particles of 15 - 30 nm and 30 - 80 nm size. Most of the larger particles appeared to be only partially oxidized and exhibited cobalt locally. The smallest particles were Cr(2)O(3) with no trace of cobalt. It optically appeared that these Cr(2)O(3) particles were flaking off the surface of larger particles that depicted a very high intensity of oxygen, as well as chromium, and only background noise of cobalt. The particle size difference between the two test rigs is likely related to the conditions of the two tribosystems, in particular the difference in the sample geometry and in the type of sliding

  7. Quantification of the effect of cross-shear and applied nominal contact pressure on the wear of moderately cross-linked polyethylene.

    Science.gov (United States)

    Abdelgaied, Abdellatif; Brockett, Claire L; Liu, Feng; Jennings, Louise M; Fisher, John; Jin, Zhongmin

    2013-01-01

    Polyethylene wear is a great concern in total joint replacement. It is now considered a major limiting factor to the long life of such prostheses. Cross-linking has been introduced to reduce the wear of ultra-high-molecular-weight polyethylene (UHMWPE). Computational models have been used extensively for wear prediction and optimization of artificial knee designs. However, in order to be independent and have general applicability and predictability, computational wear models should be based on inputs from independent experimentally determined wear parameters (wear factors or wear coefficients). The objective of this study was to investigate moderately cross-linked UHMWPE, using a multidirectional pin-on-plate wear test machine, under a wide range of applied nominal contact pressure (from 1 to 11 MPa) and under five different kinematic inputs, varying from a purely linear track to a maximum rotation of +/- 55 degrees. A computational model, based on a direct simulation of the multidirectional pin-on-plate wear tester, was developed to quantify the degree of cross-shear (CS) of the polyethylene pins articulating against the metallic plates. The moderately cross-linked UHMWPE showed wear factors less than half of that reported in the literature for, the conventional UHMWPE, under the same loading and kinematic inputs. In addition, under high applied nominal contact stress, the moderately crosslinked UHMWPE wear showed lower dependence on the degree of CS compared to that under low applied nominal contact stress. The calculated wear coefficients were found to be independent of the applied nominal contact stress, in contrast to the wear factors that were shown to be highly pressure dependent. This study provided independent wear data for inputs into computational models for moderately cross-linked polyethylene and supported the application of wear coefficient-based computational wear models.

  8. Biologically Based Restorative Management of Tooth Wear

    Directory of Open Access Journals (Sweden)

    Martin G. D. Kelleher

    2012-01-01

    Full Text Available The prevalence and severity of tooth wear is increasing in industrialised nations. Yet, there is no high-level evidence to support or refute any therapeutic intervention. In the absence of such evidence, many currently prevailing management strategies for tooth wear may be failing in their duty of care to first and foremost improve the oral health of patients with this disease. This paper promotes biologically sound approaches to the management of tooth wear on the basis of current best evidence of the aetiology and clinical features of this disease. The relative risks and benefits of the varying approaches to managing tooth wear are discussed with reference to long-term follow-up studies. Using reference to ethical standards such as “The Daughter Test”, this paper presents case reports of patients with moderate-to-severe levels of tooth wear managed in line with these biologically sound principles.

  9. Wear simulation effects on overdenture stud attachments.

    Science.gov (United States)

    Rutkunas, Vygandas; Mizutani, Hiroshi; Takahashi, Hidekazu; Iwasaki, Naohiko

    2011-01-01

    The aim of this study was to evaluate wear effects on overdenture resilient attachments. Six commercially available attachments were investigated: ERA orange and white (EO and EW), Locator pink, white and blue (LRP, LRW and LRB) and OP anchor (OP). Five specimens were used for wear simulation while other two specimens served as controls. Fifteen thousands insertion-removal cycles were simulated. Dimensional changes and surface characteristics were evaluated using light microscopy and SEM, respectively. Sudden decrease of retentive force was characteristic for EO and EW attachments. Retentive force of Locator attachments fluctuated throughout the wear simulation period. Dimensional changes and surface wear was more expressed on plastic cores than on plastic rings of attachment males. Based on SEM analysis, some of the specimens obtained smoother surface after wear simulation. Mechanism of retention loss of resilient overdenture attachments can be only partially explained by dimensional changes and surface alterations.

  10. Some Theoretical Considerations of Longitudinal Stability in Power-on Flight with Special reference to Wind-Tunnel Testing

    Science.gov (United States)

    1942-11-01

    to plane of propeller dlek Sw wing area St horizontal tail area se elevator area Sp propeller-disk area (nIla/4) D propoller diameter n propeller...involving the.variation of propoller thrust. If the constant-thrust test proceduro is omployod (Tc: = cunstaqt), oquatlon (12) roducos to t1stdcLt+~c8~Kda

  11. Empirical Testing of a Theoretical Extension of the Technology Acceptance Model: An Exploratory Study of Educational Wikis

    Science.gov (United States)

    Liu, Xun

    2010-01-01

    This study extended the technology acceptance model and empirically tested the new model with wikis, a new type of educational technology. Based on social cognitive theory and the theory of planned behavior, three new variables, wiki self-efficacy, online posting anxiety, and perceived behavioral control, were added to the original technology…

  12. Theoretical geodesy

    Science.gov (United States)

    Borkowski, Andrzej; Kosek, Wiesław

    2015-12-01

    The paper presents a summary of research activities concerning theoretical geodesy performed in Poland in the period of 2011-2014. It contains the results of research on new methods of the parameter estimation, a study on robustness properties of the M-estimation, control network and deformation analysis, and geodetic time series analysis. The main achievements in the geodetic parameter estimation involve a new model of the M-estimation with probabilistic models of geodetic observations, a new Shift-Msplit estimation, which allows to estimate a vector of parameter differences and the Shift-Msplit(+) that is a generalisation of Shift-Msplit estimation if the design matrix A of a functional model has not a full column rank. The new algorithms of the coordinates conversion between the Cartesian and geodetic coordinates, both on the rotational and triaxial ellipsoid can be mentioned as a highlights of the research of the last four years. New parameter estimation models developed have been adopted and successfully applied to the control network and deformation analysis. New algorithms based on the wavelet, Fourier and Hilbert transforms were applied to find time-frequency characteristics of geodetic and geophysical time series as well as time-frequency relations between them. Statistical properties of these time series are also presented using different statistical tests as well as 2nd, 3rd and 4th moments about the mean. The new forecasts methods are presented which enable prediction of the considered time series in different frequency bands.

  13. The hardness, adhesion, and wear resistance of coatings developed for cobalt-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.; Wilson, W.L.

    2000-05-01

    One potential approach for reducing the level of nuclear plant radiation exposure that results from activated cobalt wear debris is the use of a wear resistant coating. However, large differences in stiffness between a coating/substrate can result in high interfacial stresses that produce coating de-adhesion when a coated substrate is subjected to high stress wear contact. Scratch adhesion and indentation tests have been used to identify four promising coating processes [1,2]: (1) the use of a thin Cr-nitride coating with a hard and less-stiff interlayer, (2) the use of a thick, multilayered Cr-nitride coating with graded layers, (3) use of the duplex approach, or nitriding to harden the material subsurface followed by application of a multilayered Cr-nitride coating, and (4) application of nitriding alone. The processing, characterization, and adhesion of these coating systems are discussed. The wear resistance and performance has been evaluated using laboratory pin-on-disc, 4-ball, and high stress rolling contact tests. Based on the results of these tests, the best coating candidate from the high-stress rolling contact wear test was the thin duplex coating, which consists of ion nitriding followed deposition of a thin Cr-nitride coating, while the thin Cr-nitride coating exhibited the best results in the 4-ball wear test.

  14. Technical and theoretical considerations about gradient perfusion culture for epithelia used in tissue engineering, biomaterial testing and pharmaceutical research

    Energy Technology Data Exchange (ETDEWEB)

    Minuth, Will W [Department of Molecular and Cellular Anatomy, University of Regensburg, D-93053 Regensburg, University Street 31 (Germany); Strehl, Raimund [Cellartis AB, S-41346 Goeteborg, Arvid Wallgrens Backe 20 (Sweden)

    2007-06-01

    Epithelia act as biological barriers, which are exposed to different environments at the luminal and basal sides. To simulate this situation and to improve functional features an in vitro gradient perfusion culture technique was developed in our laboratory. This innovative technique appears to be simple at first sight, but the performance needs practical and theoretical knowledge. To harvest intact epithelia after a long-term gradient culture period of many days, leakage, edge damage and pressure differences in the system have to be avoided so that the epithelial barrier function is maintained continuously. Unexpectedly, one of the major obstacles are micro-injuries in the epithelia caused by gas bubbles, which arise during transportation of the medium or due to respiration of the cultured tissue. Gas bubbles randomly accumulate either at the luminal or basal fluid flow of the gradient perfusion culture container. This phenomenon results in fluid pressure differences between the luminal and basal perfusion compartments of the gradient container, which in turn leads to damage of the barrier function. Consequently, the content of gas bubbles in the transported culture medium has to be minimized. Thus, our technical concept is the reduction of gas bubbles while keeping the content of oxygen constant. To follow this strategy we developed a new type of screw cap for media bottles specifically designed to allow fluid contact only with tube and not with cap material. Furthermore, a gas expander module separates gas bubbles from the liquid phase during transportation of the medium. Finally, a new type of gradient culture container allows a permanent elimination of transported gas bubbles. Application of this innovative equipment optimizes the parallel transportation of fluid in the luminal and basal compartments of a gradient culture container. (topical review)

  15. Can physical joint simulators be used to anticipate clinical wear problems of new joint replacement implants prior to market release?

    Science.gov (United States)

    Medley, John B

    2016-05-01

    One of the most important mandates of physical joint simulators is to provide test results that allow the implant manufacturer to anticipate and perhaps avoid clinical wear problems with their new products. This is best done before market release. This study gives four steps to follow in conducting such wear simulator testing. Two major examples involving hip wear simulators are discussed in which attempts had been made to predict clinical wear performance prior to market release. The second one, involving the DePuy ASR implant systems, is chosen for more extensive treatment by making it an illustrative example to explore whether wear simulator testing can anticipate clinical wear problems. It is concluded that hip wear simulator testing did provide data in the academic literature that indicated some risk of clinical wear problems prior to market release of the ASR implant systems. This supports the idea that physical joint simulators have an important role in the pre-market testing of new joint replacement implants.

  16. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  17. Effect of post-welding heat treatment on wear resistance of cast-steel die with surfacing layer

    Directory of Open Access Journals (Sweden)

    Xu Wujiao

    2015-01-01

    Full Text Available The wear resistance capability of die surfacing layer under different Post-Welding Heat Treatments (PWHT was analysed by Finite Element (FE simulation and experiments. Taking hot forging process of a crankshaft as an example, a wear model of the hot forging die coated with surfacing layer was established using FE software DEFORM-3D. The simulation results indicated that the wear resistance capability of the die surfacing layer is optimal when tempering temperature and holding time are 550 °C and 4 h respectively. To verify the wear computational results, 16 groups of PWHT orthogonal wear tests were performed at a temperature of 400 °C, which is a similar temperature to that occurs in an actual hot forging die. The wear-test result showed a good agreement with the FE simulation. SEM observation of the wear debris on 16 specimens showed that oxidative wear is dominant when the temperature was in 400 °C. Furthermore, when tempering temperature and holding time were 550 °C and 4 h respectively, the carbide alloy dispersively distributes in the metallographic structure, which helps to improve the wear resistance of the surfacing layer.

  18. Methodological and Theoretical Issues in the Adaptation of Sign Language Tests: An Example from the Adaptation of a Test to German Sign Language

    Science.gov (United States)

    Haug, Tobias

    2012-01-01

    Despite the current need for reliable and valid test instruments in different countries in order to monitor the sign language acquisition of deaf children, very few tests are commercially available that offer strong evidence for their psychometric properties. This mirrors the current state of affairs for many sign languages, where very little…

  19. Dynamic analysis of a spur gear system with tooth-wear faults based on dynamic backlash%基于动态侧隙的齿轮系统齿面磨损故障动力学分析

    Institute of Scientific and Technical Information of China (English)

    高洪波; 李允公; 刘杰

    2014-01-01

    An analysis method based on dynamic backlash for a spur gear system with tooth-wear fault was proposed according to the characteristic of a time-varying backlash caused by tooth-wear,eccentricity and bearing vibration in a gear system.Moreover,a meshing coupled dynamic model with 6-DOF for a single-stage spur gear system was built considering time-dependent meshing stiffness,dynamic backlash,friction and eccentricity.The simulation methods were presented to analyze the dynamic behaviors of the gear system with uniform tooth-wear fault and eccentric tooth-wear fault.At last,the wear fault tests with increase in backlash were performed on a gear system experimental bench,the tests verified the theoretical analysis results.Study results showed that the gear system transmission error,shock status and vibration intensity vary with different forms and levels of wear fault,they provide a theoretical basis for monitoring and diagnosing tooth-wear faults of a gear system.%根据齿面磨损、偏心和轴承的振动等会引起齿轮系统齿侧间隙时变这一特性,提出了基于动态侧隙的齿轮系统齿面磨损故障分析方法。综合考虑动态啮合刚度、动态齿侧间隙、摩擦、偏心等因素建立了单级齿轮传动系统六自由度啮合耦合型动力学模型,给出了全齿均匀磨损和偏心磨损故障的仿真方法,并对含故障齿轮系统动力学行为进行了分析。最后,利用齿轮实验台对齿侧间隙增大的磨损故障进行了模拟,验证了理论分析结果。研究表明,齿轮系统传递误差、振动冲击状态和振动剧烈程度等会随齿面磨损形式和程度不同而变化,为齿面磨损故障的监测与诊断提供了理论依据。

  20. On the friction and sliding wear of rubber/layered silicate nanocomposites

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The dry sliding and friction behaviors of organoclay modified hydrogenated nitrile (HNBR and ethylene/propylene/diene (EPDM rubbers were studied using a pin (steel-on-plate(rubber sheet test configuration. It was found that the organoclay modification may improve or deteriorate the resistance to wear of rubbers. The resistance to wear was adversely affected by pronounced intercalation/exfoliation and two-dimensional alignment of the clay layers (i.e. normal to the moving pin. This result is in analogy with the directional dependence of the wear performance of fiber-reinforced composite laminates.