WorldWideScience

Sample records for wear resistant alloys

  1. Wear resistant steels and casting alloys containing niobium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, W.; Siebert, S.; Huth, S. [Lehrstuhl Werkstofftechnik, Ruhr-Univ. Bochum (Germany)

    2007-12-15

    Niobium, like titanium and vanadium, forms superhard MC carbides that remain relatively pure in technical alloys on account of their low solubility for other metallic alloying elements. However, because they have a greater hardness than the precipitated chromium carbides commonly used in wear-resistant alloys, they are suitable as alternative hard phases. This contribution deals with new wear-resistant steels and casting alloys containing niobium carbide. These include a secondary hardening hardfacing alloy, a composite casting alloy for wear applications at elevated temperatures, a white cast iron as well as two variants of a corrosion-resistant cold-work tool steel produced by melt metallurgy and by powder metallurgy. A heat-resistant casting alloy is also discussed. Based on equilibrium calculations the microstructures developing during production of the alloys are analysed, and the results are discussed with respect to important properties such as abrasive wear and corrosion resistance. (orig.)

  2. Structural transformations in wear resistance of iron- and cobalt-based amorphous alloys during abrasive wear

    Science.gov (United States)

    Korshunov, L. G.; Shabashov, V. A.; Chernenko, N. L.

    2010-04-01

    The wear resistance and structural changes in a number of amorphous alloys based on iron and cobalt and in high-carbon tool steels are studied during wear by a fixed abrasive (crondum, Carborundum) at room temperature and -196°C. The abrasive wear resistance of the amorphous alloys is shown to be 1.6-3.1 lower than that of the high-carbon tool steels having a similar hardness. The relatively low level of the abrasive wear resistance of the amorphous alloys is assumed to be caused by strain softening of their surface during wear. A nanocrystalline structure is found to form in local microvolumes in a thin deformed surface layer of the alloys.

  3. Wear resistance of experimental titanium alloys for dental applications.

    Science.gov (United States)

    Faria, Adriana Cláudia Lapria; Rodrigues, Renata Cristina Silveira; Claro, Ana Paula Rosifini Alves; da Gloria Chiarello de Mattos, Maria; Ribeiro, Ricardo Faria

    2011-11-01

    The present study evaluated microstructure, microhardness and wear resistance of experimental titanium alloys containing zirconium and tantalum. Alloys were melted in arc melting furnace according to the following compositions: Ti-5Zr, Ti-5Ta and Ti-5Ta-5Zr (%wt). Hemispheres and disks were obtained from wax patterns that were invested and cast by plasma. Microstructures were evaluated using optical microscopy and X-ray diffraction (XRD) analysis and also Vickers microhardness was measured. Hemispherical samples and disks were used for 2-body wear tests, performed by repeated grinding of the samples. Wear resistance was assessed as height loss after 40,000 cycles. The data were compared using ANOVA and post-hoc Tukey test. Ti-5Zr presented a Widmanstätten structure and the identified phases were α and α' while Ti-5Ta and Ti-5Ta-5Zr presented α, β, α' and α" phases, but the former presented a lamellar structure, and the other, acicular. The microhardness of Ti-5Zr was significantly greater than other materials and cp Ti presented wear resistance significantly lower than experimental alloys. It was concluded that wear resistance was improved when adding Ta and Zr to titanium and Zr increased microhardness of Ti-5Zr alloy.

  4. Titanium aluminide intermetallic alloys with improved wear resistance

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  5. Wear resistance of alloy вт-22 with non-ferrous alloys at reverse

    Directory of Open Access Journals (Sweden)

    А.М. Хімко

    2010-01-01

    Full Text Available  The article presents the results of tests of non hardened titanium alloy ВТ-22 with aviation non-ferrous alloys in reverse sliding friction. The main objective of the work is the selection of the optimum combination of materials depending on changes in loading conditions. Study of alloy ВТ-22 wear resistance was carried out in pairs with БрОФ-10-1, БрБ2, БрАЖ-9-4, ВТ-22, МЛ5, Д16Т, 7Х21ГАН5Ш and 95Х18Ш. The dependencies of the materials wear at pressures 10, 20 and 30 Mpa we determined. The linear nature of titanium alloy wear curves indicates that the change in the wear mechanism occurs gradually. The histograms of non-ferrous materials wear and the total wear of the friction pair are presented. It is established that the bronze БрАЖ-9-4 is the most preferable material for contact with non hardened titanium alloy ВТ-22, the least wear among the tested materials. The established coefficients of the titanium alloy ВТ-22 friction in pair with aviation structural non-ferrous alloys are presented. The results of research will be relevant for the engineering industry, where non hardened titanium alloy ВТ-22 in pair with non-ferrous alloys is applied.

  6. Effects of WC particle size on the wear resistance of laser surface alloyed medium carbon steel

    Science.gov (United States)

    Tong, Xin; Li, Fu-hai; Kuang, Min; Ma, Wen-you; Chen, Xing-chi; Liu, Min

    2012-01-01

    The CO2 laser surface alloying technique was used to form wear resistance layers on medium carbon steel with a kind of spherical WC powder. The effects of WC particle size on the abrasive wear resistance were thoroughly investigated. The results indicate that the laser alloyed layer is characterized by dendritic primary phase and ledeburite microstructure, consisting of austenite, martensite and carbides of Fe3W3C, W2C and WC. The laser surface alloying with WC powder could improve the abrasive wear resistance of the medium carbon steel by over 63%. The factors such as the hardness, the amount and the distribution of WC particle determined the laser alloyed samples' wear resistance, and the laser alloyed sample with WC powder of 88-100 μm diameter presented the best wear resistance in this study. Furthermore, the wear resistance mechanisms of the laser alloyed layers were also explored.

  7. Microstructural effects on the sliding wear resistance of a cobalt-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frenk, A. (Dept. of Materials, Swiss Federal Inst. of Technology, Lausanne (Switzerland)); Kurz, W. (Dept. of Materials, Swiss Federal Inst. of Technology, Lausanne (Switzerland))

    1994-05-01

    The influence of the microstructure on the dry sliding wear resistance of a hypo-eutectic Stellite 6 alloy was investigated under conditions leading to severe metallic wear of the hardfacing alloy. Conventional chill casting as well as laser surface cladding were used to produce a wide range of solidification microstructures. The hardness of the alloy was strongly dependent on the microstructure and in particular on the size of the dendrites. Under the sliding conditions investigated, severe delamination wear of the Stellite occurred. High coefficients of friction were measured and the structure in the subsurface was completely destroyed by the resulting stress cycles. During the stationary wear regime, no dependence of the wear rate on the as-solidified microstructure could therefore be determined. However, a strong influence on the wear resistance of alloying elements which affect the matrix properties was observed. Suggestions are made for the improvement of the wear resistance of such alloys under similar sliding conditions. (orig.)

  8. Wear resistant zirconium base alloy article for water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, J.E.; Shockling, L.A.; Sherwood, D.G.

    1988-03-01

    In a water reactor operating environment, the combination having improved fretting wear resistance is described comprising: an elongated tubular water displacer rod; having a low neutron absorption cross section guide support plates distributed along the length of the water displacer rod; the water displacer rod intersecting the guide support plates through apertures in the guide support plates; the water displacer rod having a plurality of spaced apart annular electrospark deposited coatings, each coating facing the wall of a respective aperture, the electrospark deposited coatings comprising Cr/sub 2/C/sub 3/; wherein the water displacer rod has a tube wall composed of a zirconium base alloy; and wherein the guide support plates are composed of a stainless steel alloy.

  9. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-Wai, E-mail: c.w.chan@qub.ac.uk [School of Mechanical and Aerospace Engineering, Queen' s University Belfast, BT9 5AH (United Kingdom); Lee, Seunghwan [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Smith, Graham [Department of Natural Sciences, University of Chester, Thornton Science Park, Chester CH2 4NU (United Kingdom); Sarri, Gianluca [School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Ng, Chi-Ho [School of Mechanical and Aerospace Engineering, Queen' s University Belfast, BT9 5AH (United Kingdom); Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Parkgate Road, Chester CH1 4BJ (United Kingdom); Sharba, Ahmed [School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Man, Hau-Chung [Department of Industrial and Systems Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong (China)

    2016-03-30

    Graphical abstract: - Highlights: • Laser technology is a fast, clean and flexible method for surface hardening of TNZT. • Laser can form a protective hard layer on TNZT surface without altering surface roughness. • The laser-formed layer is metallurgically bonded to the substrate. • Laser-treated TNZT is highly resistant to corrosion and wear in Hank's solution. - Abstract: The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti–Nb–Zr–Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti–35.3Nb–7.3Zr–5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence X-ray diffraction (GI-XRD) and X-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks’ solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

  10. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    DEFF Research Database (Denmark)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham

    2016-01-01

    , the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must...... be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing...... findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT....

  11. Recent developments in wear- and corrosion-resistant alloys for the oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Raghu, D. [Deloro Stellite Inc., Goshen, IN (United States). Stellite Coatings Div.; Wu, J.B.C. [Stoody Deloro Stellite, Inc., St. Louis, MO (United States)

    1997-11-01

    Oil production and refining pose very severe wear and corrosion environments. Material designers are challenged with the need to design and develop materials that combine high corrosion resistance with good wear resistance. Coupled with that is the need for these materials to meet requirements such as fracture toughness and resistance to sulfide and chloride stress corrosion cracking. Often, increasing wear resistance compromises the corrosion and welding characteristics. This article covers a variety of material developments that address the problems of wear and corrosion, including alloy design fundamentals and pertinent wear properties and general corrosion resistance compared to traditional wear-resistant materials. Proven applications, with particular reference to petroleum and petrochemical areas, are discussed. Potential applications are also cited.

  12. Study on the Correlation between Microstructure Corrosion and Wear Resistance of Ag-Cu-Ge Alloys

    Directory of Open Access Journals (Sweden)

    Antonio Cusma

    2015-03-01

    Full Text Available In this work, a morphological and structural characterization of a ternary Ag-Cu-Ge alloy of known composition was performed with the aim of evaluating how the passivation parameters (time and temperature influence the morphological features of the material surface. A nanomechanical characterization was performed in order to correlate the morphology and microstructure of the alloy with its tarnish, wear, and scratch resistance. It was found that the addition of germanium to the alloy not only provides the material with tarnish and fire-stain resistance, but it also improves the scratch and wear resistance owing to the formation of a dense and stable thin oxide layer.

  13. Studies on Wear and Corrosion Resistances of Carbon Nitride Thin Films on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    LiJin-chai; GuoHuai-xi; LuXlan-feng; ZhangZhi-hong; YeMing-sheng

    2003-01-01

    CNx/SiCN composite films were prepared on titanium ( Ti ) alloy substrates by Radio Frequency Plasma Enhanced Chemical Vapor Deposition ( RF-PECVD ). As a buffer layer, SiCN ensured the adhesion of the CNx thin films on Ti substrates. X-ray diffraction (XRD) measurement revealed that the composite films possessed α-C3N4 structure.The microhardness of the films was 48 to 50 GPa. In or der totest the characteristics of wear and corrosion resistances, we prepared Ti alloy samples with and without CNx/SiCN composite films. Also for strengthening the effect of wear and corrosion, the wear tests were carried out under high load (12 MPa) and in 0. 9% NaCl solution. Results of the wear tests and the corrosive electrochemical measurements showed that the samples coated with CNx films had excellent charac-teristics of wear and corrosion resistances compared with Ti alloy substrate samples.

  14. Studies on Wear and Corrosion Resistances of Carbon Nitride Thin Films on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    Li Jin-chai; Guo Huai-xi; Lu Xian-feng; Zhang Zhi-hong; Ye Ming-sheng

    2003-01-01

    CNx/SiCN composite films were prepared on titanium ( Ti ) alloy substrates by Radio Frequency Plasma Enhanced Chemical Vapor Deposition ( RF-PECVD ). As a buffer layer, SiCN ensured the adhesion of the CNx thin films on Ti substrates. X-ray diffraction (XRD) measurement revealed that the composite films possessed α-C3N4 structure.The microhardness of the films was 48 to 50 GPa. In order to test the characteristics of wear and corrosion resistances, we prepared Ti alloy samples with and without CNx/SiCN composite films. Also for strengthening the effect of wear and corrosion, the wear tests were carried out under high load (12 MPa) and in 0. 9% NaCl solution. Results of the wear tests and the corrosive electrochemical measurements showed that the samples coated with CNx films had excellent characteristics of wear and corrosion resistances compared with Ti alloy substrate samples.

  15. Wear-Resistance Performance of ZA-27 Alloys Reinforced by Rare Earth Compounds

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The morphology of ZA-27 alloy reinforced by RE compounds and its wear-resistance were studied. It is found that some nodular second phases appear due to the addition of Si and RE, which can disperse in grain boundaries or between dendrite crystals so that the alloy has been refined. Energy spectrum analysis of scanning electron microscope shows that the second phases are complex compounds containing RE, Al, Zn and Si. The micro-hardness test indicates that micro-hardness values of the compounds are higher than those of the matrix. The wear-resistance of ZA-27 alloy reinforced by RE compounds is 4 times as high as that of ZA-27 alloy and also higher than that of ZA-27 alloy containing Si phase. The impact toughness of the alloy containing RE and Si is higher than that of the alloy containing Si.

  16. Wear resistance of a pressable low-fusing ceramic opposed by dental alloys.

    Science.gov (United States)

    Faria, Adriana Cláudia Lapria; de Oliveira, André Almeida; Alves Gomes, Erica; Silveira Rodrigues, Renata Cristina; Faria Ribeiro, Ricardo

    2014-04-01

    Dental alloys have increasingly replaced by dental ceramics in dentistry because of aesthetics. As both dental alloys and ceramics can be present in the oral cavity, the evaluation of the wear resistance of ceramics opposed by dental alloys is important. The aim of the present study was to evaluate wear resistance of a pressable low-fusing ceramic opposed by dental alloys as well as the microhardness of the alloys and the possible correlation of wear and antagonist microhardness. Fifteen stylus tips samples of pressable low-fusing ceramic were obtained, polished and glazed. Samples were divided into three groups according to the disk of alloy/metal to be used as antagonist: Nickel-Chromium (Ni-Cr), Cobalt-Chromium (Co-Cr) and commercially pure titanium (cp Ti). Vickers microhardness of antagonist disks was evaluated before wear tests. Then, antagonist disks were sandblasted until surface roughness was adjusted to 0.75μm. Wear tests were performed at a speed of 60 cycles/min and distance of 10mm, in a total of 300,000 cycles. Before and after wear tests, samples were weighted and had their profile designed in an optical comparator to evaluate weight and height loss, respectively. Ni-Cr and cp Ti caused greater wear than Co-Cr, presenting greater weight (p=.009) and height (p=.002) loss. Cp Ti microhardness was lower than Ni-Cr and Co-Cr (p<.05). There is a positive correlation between weight and height loss (p<.05), but weight (p=.204) and height (p=.05) loss are not correlated to microhardness. The results suggest that pressable low-fusing ceramic presents different wear according to the dental alloy used as antagonist and the wear is not affected by antagonist microhardness.

  17. Development of Stellite alloy composites with sintering/HIPing technique for wear-resistant applications

    Energy Technology Data Exchange (ETDEWEB)

    Opris, C.D. [Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Liu, R. [Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada)]. E-mail: rliu@mae.carleton.ca; Yao, M.X. [Deloro Stellite Inc., Belleville, Ont., K8N 5C4 (Canada); Wu, X.J. [Institute for Aerospace Research, National Research Council of Canada, Ottawa, Ont., K1A 0R6 (Canada)

    2007-07-01

    Cobalt-based superalloys, Stellite 694 and Stellite 712, composites were developed with the reinforcement of titanium-carbide particles for wear-resistant applications. The specimens were fabricated using the powder metallurgy technique, combined with hot isostatic pressing. Calorimetric effects of the alloy powders were investigated using the differential scanning calorimetry technique, which provided the theoretical basis of designing the sintering cycles. The phases formed in the microstructures were analyzed using the scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS) techniques. The wear test was conducted on a ball-on-disc tribometer. It was demonstrated that the wear resistance of the alloys had been increased significantly by the titanium-carbide reinforcement and the hot isostatic pressing process had enhanced the wear resistance of the materials.

  18. Structural transformations and wear resistance of abrasive-affected amorphous Fe- and Co-based alloys

    Science.gov (United States)

    Korshunov, L. G.; Chernenko, N. L.

    2008-12-01

    The abrasive wear resistance of the Fe64Co30Si3B3, Fe82.6Nb5Cu3Si8B1.4, Co86.5Cr4Si7B2.5, and Fe81Si4B13C2 amorphous alloys (ribbon 30 μm thick) has been investigated upon sliding over fixed abrasives (corundum and silicon carbide). The character of fracture of the surface and structural transformations initiated in these materials by the abrasive action have been studied by the metallographic, X-ray diffraction, and electron-microscopic methods. It has been shown that the abrasive wear resistance of the amorphous alloys is smaller by a factor of 1.6-2.9 than that of the Kh12M and U8 tool steels possessing approximately the same level of hardness. A pronounced softening of the surface layer of the amorphous alloys in the process of wear, which is characterized by a decrease in their microhardness reaching 12.5%, has been found. It has been shown that in the surface layer of these amorphous alloys upon wear there arises a small amount (on the order of several volume percent) of the nanocrystalline structure, which does not exert a marked effect on the microhardness and wear resistance of the alloys. In the alloys under study, the main factor that is responsible for their comparatively low abrasive wear resistance is their local softening in the process of wear caused by specific features of deformation processes occurring heterogeneously under the action of high shear contact stresses.

  19. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    In this paper, a new high strength and wear resistant aluminum cast alloy invented by NASA-MSFC for high temperature applications will be presented. Developed to meet U.S. automotive legislation requiring low-exhaust emission, the novel NASA 398 aluminum-silicon alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (500 F-800 F), enabling new pistons to utilize less material, which can lead to reducing part weight and cost as well as improving performance. NASA 398 alloy also offers greater wear resistance, surface hardness, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys for several commercial and automotive applications. The new alloy can be produced economically using permanent steel molds from conventional gravity casting or sand casting. The technology was developed to stimulate the development of commercial aluminum casting products from NASA-developed technology by offering companies the opportunity to license this technology.

  20. Laser cladding of Zr-based coating on AZ91D magnesium alloy for improvement of wear and corrosion resistance

    Indian Academy of Sciences (India)

    Kaijin Huang; Xin Lin; Changsheng Xie; T M Yue

    2013-02-01

    To improve the wear and corrosion resistance of AZ91D magnesium alloy, Zr-based coating made of Zr powder was fabricated on AZ91D magnesium alloy by laser cladding. The microstructure of the coating was characterized by XRD, SEM and TEM techniques. The wear resistance of the coating was evaluated under dry sliding wear test condition at room temperature. The corrosion resistance of the coating was tested in simulated body fluid. The results show that the coating mainly consists of Zr, zirconium oxides and Zr aluminides. The coating exhibits excellent wear resistance due to the high microhardness of the coating. The main wear mechanism of the coating and the AZ91D sample are different, the former is abrasive wear and the latter is adhesive wear. The coating compared to AZ91D magnesium alloy exhibits good corrosion resistance because of the good corrosion resistance of Zr, zirconium oxides and Zr aluminides in the coating.

  1. Wear resistance of ceramic coating on AZ91 magnesium alloy by micro-arc oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui; LIU Zheng; CHEN Li-jia; CHEN Ji; HAN Zhong

    2006-01-01

    The ceramic coating formed on AZ91 magnesium alloy by micro-arc oxidation (MAO) was characterized. The results show that the ceramic coating(3.4-23 μm in thickness)on the surface of AZ91 alloy was attained under different micro-arc oxidation treatment conditions, which consist mainly of MgO, Mg2SiO4 and MgSiO3 phases. Nano-hardness in a cross-sectional specimen was determined by nano-indentation experiment. The MAO coatings exhibit higher hardness than the substrate. Dry sliding wear tests for the MAO coatings and AZ91 alloy were also carried out using an oscillating friction and wear tester in a ball-on-disc contact configuration. The wear resistance of the MAO coatings is improved respectively under different treatment time as a result of different structures of ceramic coatings formed on AZ91 alloy.

  2. Wear-Resistant Alloy for Protection of Contact Surfaces of Working Aircraft Engine Blades from Oxidation at High Temperatures

    Directory of Open Access Journals (Sweden)

    Cherepova, T.S.

    2014-07-01

    Full Text Available Wear-resistant and heat-resistant cast cobalt-based alloy for hardening of the contact surfaces of working blades of aircraft gas turbine engines instead of commercial alloys ХТН-61 and ВЖЛ-2 was developed. High levels of heat resistance were achieved by complex doping (modification of the alloy. Based on studies of heat resistance, wear resistance, the structure and melting point of the alloys, the optimum chemical and phase composition of the developed alloy was defined.

  3. Effect of Plasma Nitriding Parameters on the Wear Resistance of Alloy Inconel 718

    Science.gov (United States)

    Kovací, Halim; Ghahramanzadeh ASL, Hojjat; Albayrak, Çigdem; Alsaran, Akgün; Çelik, Ayhan

    2016-11-01

    The effect of the temperature and duration of plasma nitriding on the microstructure and friction and wear parameters of Inconel 718 nickel alloy is investigated. The process of plasma nitriding is conducted in a nitrogen-hydrogen gaseous mixture at a temperature of 400, 500 and 600°C for 1 and 4 h. The modulus of elasticity of the nitrided layer, the micro- and nanohardness, the surface roughness, the friction factor and the wear resistance of the alloy are determined prior to and after the nitriding. The optimum nitriding regime providing the best tribological characteristics is determined.

  4. Variations in Wear Resistance of a Novel Triboalloy-Pseudoelastic TiNi Alloy - with Respect to its Pseudoelasticity and Hardness

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It has recently been found that TiNi shape memory alloy has another attractive property: high resistance to wear. The wear resistance of this alloy benefits from its pseudoelasticity (PE). It has, however, been noticed that other mechanical properties also affect the wear resistance, especially the hardness. Research was conducted to investigate the correlation between the wear resistance and both the PE and hardness. It has been demonstrated that when the PE is high, lower hardness leads to higher wear resistance.

  5. Wear resistance and hot corrosion behaviour of laser cladding Co-based alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    2Cr13 stainless steel was surface cladded with Co-based alloy using a high power carbon dioxide laser. The microstructure, wear resistance and corrosion properties of the clad layer were investigated. It is found that the high temperature corrosion behavior and wearing resistant property of the clad layer are 3 and 2.5 times higher than those of the parent metal. Under the high temperature molten lead sulphate salt corrosion condition, the clad layer fails by spalling which is caused by intergrannular corrosion within the clad layer. The fine dendritic structure and the oxide help to retard the penetration of the sulphur ion that induces the intergrannular corrosion.

  6. Microstructures and Mechanical Properties of a Wear-Resistant Alloyed Ductile Iron Austempered at Various Temperatures

    Science.gov (United States)

    Cui, Junjun; Chen, Liqing

    2015-08-01

    To further improve the mechanical performance of a new type of alloyed bainitic wear-resistant ductile iron, the effects of the various austempering temperatures have been investigated on microstructure and mechanical behaviors of alloyed ductile iron Fe-3.50C-1.95Si-3.58Ni-0.71Cu-0.92Mo-0.65Cr-0.36Mn (in weight percent). This alloyed ductile iron were firstly austenitized at 1123 K (850 °C) for 1 hour and then austempered in a salt bath at 548 K, 573 K, and 598 K (275 °C, 300 °C, and 325 °C) for 2 hours according to time-temperature-transformation diagram calculated by JMatPro software. The microstructures of austempered wear-resistant ductile irons consist of matrix of dark needle-like ferrite plus bright etching austenite and some amount of martensite and some dispersed graphite nodules. With increasing the austempering temperature, the amount of ferrite decreases in austempered ductile iron, while the amount of austenite and carbon content of austenite increases. There is a gradual decrease in hardness and increase in compressive strength with increasing austempering temperature. The increased austenite content and coarsened austenite and ferrite can lead to a hardness decrease as austempering temperature is increased. The increased compressive strength can be attributed to a decreased amount of martensitic transformation. The alloyed ductile iron behaves rather well wear resistance when the austempering is carried out at 598 K (325 °C) for 2 hours. Under the condition of wear test by dry sand/rubber wheel, the wear mechanisms of austempered ductile irons are both micro-cutting and plastic deformation.

  7. Development of wear-resistant coatings for cobalt-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.

    1999-03-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified.

  8. Improve Wear Resistance on Al 332 Alloy Matrix- Micro -Nano Al2O3 Particles Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Rawnaq Ahmed Mohamed

    2014-03-01

    Full Text Available The wear behavior of alumina particulate reinforced A332 aluminium alloy composites produced by a stir casting process technique were investigated. A pin-on-disc type apparatus was employed for determining the sliding wear rate in composite samples at different grain size (1 µm, 12µm, 50 nm and different weight percentage (0.05-0.1-0.5-1 wt% of alumina respectively. Mechanical properties characterization which strongly depends on microstructure properties of reinforcement revealed that the presence of ( nano , micro alumina particulates lead to simultaneous increase in hardness, ultimate tensile stress (UTS, wear resistances. The results revealed that UTS, Hardness, Wear resistances increases with the increase in the percentage of reinforcement of Al2O3 when compared to the base alloy A332. The wear rates of the composites were considerably less than that of the aluminum alloy at all applied loads with increasing percentage of reinforcement when compared to the base alloy A332.

  9. Low friction and wear resistant coating systems on Ti6Al4V alloy

    Directory of Open Access Journals (Sweden)

    B.G. Wendler

    2008-02-01

    Full Text Available Purpose: Development of an original multiplex hybrid treatment of Ti6Al4V alloy: diffusion hardening+intermediate hard gradient TiCxNy layer with use of continuous CAE+top low friction and wear resistant hard amorphous a-C layer with use of pulsed CAE method.Design/methodology/approach: Ti6Al4V substrates were diffusion hardened with interstitial O or N atoms with use of glow discharge plasma in the atmosphere Ar+O2 or Ar+N2. Next they were deposited with a hard gradient TiCxNy layer and with a hard amorphous a-C coating as the top one. The morphology, microstructure, chemical and phase composition, chemical bonds, microhardness and tribological properties during dry friction of the alloy after multiplex treatment have been investigated with use of SEM, EDS, XRD, XPS, Vickers diamond indenter and ball-on-plate test.Findings: An important increase of hardness of the near surface zone of the Ti6Al4V alloy has been achieved (from ~350VHN to ~1000 VHN, good adhesion between the gradient TiCxNy coating and the Ti6Al4V substrate as well as an important decrease of dry friction coefficient (down to ~0.15 and a substantial increase of the resistance to wear (up to two orders of magnitude in comparison with non treated Ti alloy.Research limitations/implications: The research will be continued on greater number of specimens and against other counterbodies.Practical implications: It looks like that the Ti alloys can be used as mobile parts of machines due to high resistance to wear and low friction.Originality/value: A novel original multiplex hybrid treatment of Ti alloys has been developed at the Lodz University of Technology.

  10. Plasma Electrolytic Oxidation (PEO) Coatings on an A356 Alloy for Improved Corrosion and Wear Resistance

    Science.gov (United States)

    Peng, Zhijing

    Plasma electrolytic oxidizing (PEO) is an advanced technique that has been used to deposit thick and hard ceramic coatings on aluminium (Al) alloys. This work was however to use the PEO process to produce thin ceramic oxide coatings on an A356 Al alloy for improving corrosion and wear resistance of the alloy. Effects of current density and treatment time on surface morphologies and thickness of the PEO coatings were investigated. The improvement of galvanic corrosion properties of the coated A356 alloy vs. steel and carbon fibre were evaluated in E85 fuel or NaCl environments. Tribological properties of the coatings were studied with comparison to the uncoated A356 substrate and other commercially-used engine bore materials. The research results indicated that the PEO coatings could have excellent tribological and corrosion properties for aluminium engine applications.

  11. Improving the wear resistance of titanium alloys under high contact loads

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M.; Markovskii, P.E.; Mikulyak, O.V. [Inst. of Metal Physics, Kiev (Ukraine)] [and others

    1992-01-01

    One of the basic shortcomings of titanium alloys is their poor antifriction properties. The wear resistance of titanium alloys can be improved by applying special coatings to their surface by various methods. However, the formation of surface layers whose properties differ greatly from the properties of the metallic substrate is accompanied, as a rule, by considerable impairment of the ductile and fatigue characteristics of the alloy. Besides, the material of the coating or the technology of its application are not always able to ensure the required resistance under large contact loads, both of the coating itself and of the adjacent zones of the material of the substrate (which are often weakened by thermal or thermochemical effects). 8 refs., 1 fig.

  12. Wear resistance analysis of the aluminum 7075 alloy and the nanostructured aluminum 7075 - silver nanoparticles composites

    Directory of Open Access Journals (Sweden)

    Estrada-Ruiz R.H.

    2016-01-01

    Full Text Available Nanostructured composites of the aluminum 7075 alloy and carbon-coated silver nanoparticles were synthetized by the mechanical milling technique using a high-energy mill SPEX 8000M; the powders generated were compacted, sintered and hot-extruded to produce 1 cm-diameter bars. The composites were then subjected to a wear test using a pin-on-disc device to validate the hypothesis that second phase-ductile nanometric particles homogenously distributed throughout the metalmatrix improve the wear resistance of the material. It was found that silver nanoparticles prevent the wear of the material by acting as an obstacle to dislocations movement during the plastic deformation of the contact surface, as well as a solid lubricant when these are separated from the metal-matrix.

  13. Nano-hardness, wear resistance and pseudoelasticity of hafnium implanted NiTi shape memory alloy.

    Science.gov (United States)

    Zhao, Tingting; Li, Yan; Liu, Yong; Zhao, Xinqing

    2012-09-01

    NiTi shape memory alloy was modified by Hf ion implantation to improve its wear resistance and surface integrity against deformation. The Auger electron spectroscopy and x-ray photoelectron spectroscopy results indicated that the oxide thickness of NiTi alloy was increased by the formation of TiO₂/HfO₂ nanofilm on the surface. The nano-hardness measured by nano-indentation was decreased even at the depth larger than the maximum reach of the implanted Hf ion. The lower coefficient of friction with much longer fretting time indicated the remarkable improvement of wear resistance of Hf implanted NiTi, especially for the sample with a moderate incident dose. The formation of TiO₂/HfO₂ nanofilm with larger thickness and decrease of the nano-hardness played important roles in the improvement of wear resistance. Moreover, Hf implanted NiTi exhibited larger pseudoelastic recovery strain and retained better surface integrity even after being strained to 10% as demonstrated by in situ scanning electron microscope observation. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.; Chen, Po Shou

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent thermal growth stability, surface hardness and wear resistant properties.

  15. Effect of Contact Temperature Rise During Sliding on the Wear Resistance of TiNi Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    S.K. Roy Chowdhury

    2013-03-01

    Full Text Available The high wear resistance of TiNi shape memory alloys has generally been attributed to its pseudoelastic nature. In the present work the hardening effect due to its phase transformation from martensite to austenite due to frictional heating during sliding has been considered. Based on existing constitutive models that represent the experimental results of TiNi shape memory alloys a theoretical model of the dependence of wear-resistance on the contact temperature rise has been developed. The analysis was further extended to include the operating and surface roughness parameters. The model essentially indicates that for these alloys wear decreases with the rise in contact temperature over a wide range of load, speed and surface roughness combination during sliding. This means that the wear resistance of these alloys results from the very cause that is normally responsible for the increased wear and seizure of common engineering materials. Preliminary wear tests were carried out with TiNi alloys at varying ambient temperature and varying load-speed combinations and the results agree well with the theoretical predictions.

  16. Effects of heat treatment on properties of multi-element low alloy wear-resistant steel

    Directory of Open Access Journals (Sweden)

    SONG Xu-ding

    2007-02-01

    Full Text Available The paper has studied the mechanical properties and heat treatment effects on multi-element low alloy wear-resistant steel (MLAWS used as a material for the liner of rolling mill torii. The results show that when quenched at 900-920℃ and tempered at 350-370℃, the MLAWS has achieved hardness above 60 HRC, tensile strength greater than 1 600 MPa, impact toughness higher than 18J/cm2 and fracture toughness greater than 37 MPa

  17. Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy.

    Science.gov (United States)

    Vinothkumar, Thilla Sekar; Kandaswamy, Deivanayagam; Prabhakaran, Gopalakrishnan; Rajadurai, Arunachalam

    2015-01-01

    The aim of this study is to investigate the role of dry cryogenic treatment (CT) temperature and time on the Vickers hardness and wear resistance of new martensitic shape memory (SM) nickel-titanium (NiTi) alloy. The null hypothesis tested was that there is no difference in Vickers hardness and wear resistance between SM NiTi alloys following CT under two soaking temperatures and times. The composition and the phase transformation behavior of the alloy were examined by X-ray energy dispersive spectroscopy and differential scanning calorimetry, respectively. Fifteen cylindrical specimens and 50 sheet specimens were subjected to different CT conditions: Deep cryogenic treatment (DCT) 24 group: -185°C, 24 h; DCT six group: -185°C, 6 h; shallow cryogenic treatment (SCT) 24 group: -80°C, 24 h; SCT six group: -80°C, 6 h; and control group. Wear resistance was assessed from weight loss before and after reciprocatory wet sliding wear. The as-received SM NiTi alloy contained 50.8 wt% nickel and possessed austenite finish temperature (Af) of 45.76°C. Reduction in Vickers hardness of specimens in DCT 24 group was highly significant (P < 0.01; Tukey's honest significant difference [HSD]). The weight loss was significantly higher in DCT 24 group (P < 0.05; Tukey's HSD). Deep dry CT with 24 h soaking period significantly reduces the hardness and wear resistance of SM NiTi alloy.

  18. Influence Of Lubricants On Wear Resistance Of Aluminum Alloy Strips Series 2XXX

    Directory of Open Access Journals (Sweden)

    Żaba K.

    2015-09-01

    Full Text Available The article presents a properly planned and designed tests of the abrasive wear resistance 2024 aluminum alloy strips under friction conditions involving various lubricants. Test were focused on the selection of the best lubricant for use in industrial environment, especially for sheet metal forming. Three lubricants of the Orlen Oil Company and one used in the sheet metal forming industry, were selected for tests. Tests without the use of lubricant were performed for a comparison. The tester T-05 was used for testing resistance to wear. As the counter samples were used tool steel - NC6 and steel for hot working - WCL, which are typical materials used for tools for pressing. The results are presented in the form of the force friction, abrasion depth, weight loss and coefficient of friction depending on the lubricant used and the type of counter samples. The results allowed for predicting set lubricant-material for tools which can be applied to sheet metal made of aluminum alloy 2024.

  19. Microstructure and Wear Resistance of Laser Clad Cobalt-Based Alloy/SiCp Composite Coating

    Institute of Scientific and Technical Information of China (English)

    LI Ming-xi; SI Song-hua; HE Yi-zhu; SUN Guo-xiong

    2004-01-01

    The SiCp (20 %) reinforced cobalt-based alloy composite coatings deposited by laser cladding on IF steel were introduced. The microstructure across the whole section of such coatings was examined using optical microscope, scanning electron microscope (SEM) and X-ray diffractometer (XRD), and the wear resistance of the coatings was measured by MM-200 type wear testing machine. The results show that the SiCp is completely dissolved during laser cladding and the primary phase in the coatings is γ-Co. The other phases, such as Si2W, CoWSi, Cr3Si and CoSi2, are formed by carbon, silicon reacting with other elements existing in the melting pool. There are various crystallization morphologies in different zones, such as planar crystallization at the interface, followed by cellular and dendrite crystallization from interface to the surface. The direction of solidification changes from one direction perpendicular to interface to multi-directions at the central and upper regions of the clad. The wear resistance of the clad is improved by adding SiCp.

  20. Influence of processing parameters on microstructure and wear resistance of Ti+TiC laser clad layer on titanium alloy

    Institute of Scientific and Technical Information of China (English)

    WU Wan-liang; SUN Jian-feng; DONG Sheng-min; LIU Rongx-iang

    2006-01-01

    Laser cladding experiments were carried out on Ti-6Al-4V alloy with Ti+33%TiC(volume fraction) powders. Laser processing parameters were studied systematically to investigate the influences on the surface quality. Microstructure, microhardness and wear resistance of the clad layer were evaluated. The results show that the laser parameter has considerable influence on microstructure and wear resistance of laser clad layer. With the optimized technical parameters, a clad layer with good surface quality and uniform microstructure was obtained. The microhardness of the clad layer HV0.2 is 1 080, and the wear rate is reduced by 57 times.

  1. Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing

    Institute of Scientific and Technical Information of China (English)

    I. SUDHAKAR; V. MADHU; G. MADHUSUDHAN REDDY; K. SRINIVASA RAO

    2015-01-01

    Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys, 7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant MoS2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.

  2. Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Sudhakar

    2015-03-01

    Full Text Available Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys, 7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant MoS2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.

  3. Development of wear-resistant coatings for cobalt-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.

    1999-10-22

    The level of nuclear plant radiation exposure due to activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. Laboratory pin-on-disc and rolling contact wear tests were used to evaluate the wear performance of several coatings. Based on the results of these tests, multilayer Cr-nitride coatings and ion nitriding are the most promising approaches.

  4. Effect of Fe2B boride orientation on abrasion wear resistance of Fe-B cast alloy

    Directory of Open Access Journals (Sweden)

    Da-wei Yi

    2017-07-01

    Full Text Available The microstructures and abrasion wear resistance of directional solidification Fe-B alloy have been investigated using optical microscopy, X-ray diffraction, scanning electron microscopy and laser scanning microscopy. The results show that the microstructure of as-cast Fe-B alloy consists of ferrite, pearlite and eutectic boride. After heat treatment, the microstructure is composed of boride and martensite. The plane which is perpendicular to the boride growth direction possesses the highest hardness. In two-body abrasive wear tests, the silicon carbide abrasive can cut the boride and martensite matrix synchronously, and the wear mechanism is micro cutting mechanism. The worn surface roughness and the wear weight loss both increase with the increasing contact load. Moreover, when the boride growth direction is perpendicular to the worn surface, the highest hardness plane of the boride can effectively oppose abrasion, and the martensite matrix can surround and support borides perfectly.

  5. Effect of microstructure on the wear resistance of borided Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dybkov, Vasyl I. [Institute of Problems of Materials Science, Kyiv (Ukraine)

    2013-07-15

    Two boride layers were found to form at the interface between reacting phases in the course of boriding of Fe-Cr alloys (10, 15, 25 and 30% Cr) and chromium steels (13 and 25% Cr) in the temperature range of 850-950 C and reaction times 3600-43200 s (1-12h). In the case of Fe-10%Cr and Fe-15%Cr alloys and 13% Cr steel, the outer boride layer bordering the boriding agent consists of the (Fe,Cr)B phase, whereas the inner boride layer adjacent to the solid substrate consists of the (Fe,Cr)2B phase. Each layer is thus a homogeneous phase (type I microstructure). In contrast, on the surface of Fe-25%Cr and Fe-30%Cr alloys and 25% Cr steel each of the two boride layers consists of two phases and has a peculiar network-platelet morphology. The outer boride layer comprises the (Fe,Cr)B and (Cr,Fe)B phases, while the inner consists of the (Fe,Cr){sub 2}B and (Cr,Fe){sub 2}B phases (type II microstructure). It is such boride layers that exhibit the highest wear resistance. (orig.)

  6. Wear resistant Fe-base alloys with niobium carbide; Verschleissbestaendige Fe-Basislegierungen mit Niobkarbid

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, W. [Lehrstuhl Werkstofftechnik, Institut fuer Werkstoffe, Fakultaet fuer Maschinenbau, Ruhr-Universitaet Bochum (Germany)

    2004-06-01

    Martensitic Fe-base alloys from the system Fe-Cr-C are widely used as chilled cast irons and tool steels. Because of the low hardness of their FeCr-carbides this paper reports about new alloys with primarily solidified harder niobium carbides. It focuses on a secondary hardenable welding alloy, a coating material for composite castings, a chilled casting and a corrosion resistant cold work tool steel, which are investigated with respect to their process related microstructure and abrasive wear behaviour. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Martensitische Fe-Basislegierungen des Systems Fe-Cr-C finden heute als Hartguss und Werkzeugstahl vielfaeltige Anwendung. Da ihre FeCr-Karbide ueber eine relativ geringe Haerte verfuegen, wird in diesem Beitrag ueber neue Legierungen mit primaer ausgeschiedenen haerteren Niobkarbiden berichtet. Im Mittelpunkt stehen eine sekundaer haertende, rissfrei aufschweissbare Hartlegierung, eine warmfester Schichtwerkstoff fuer Verbundguss, ein weisses Gusseisen und ein korrosionsbestaendiger Kaltarbeitsstahl, die hinsichtlich ihrer herstellungsbedingten Gefuege analysiert und bezueglich Furchungsverschleiss untersucht wurden. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  7. Improvement of Wear Resistance of Magnesium Alloy AZ91HP by High Current Pulsed Electron Beam Treatment

    Institute of Scientific and Technical Information of China (English)

    GAO Bo; HAO Sheng-zhi; ZOU Jian-xin; JIANG Li-min; ZHOU Ji-yang; DONG Chuang

    2004-01-01

    Surface modification of magnesium alloy AZ91HP (9wt%Al, 0.5wt%Zn, 0.5wt%Mn, Mg remaining percentage) by high current pulsed electron beam (HCPEB) treatment was studied in this paper. The secondary phase Mg17Al12 is nearly completely dissolved and as a result, a super-saturated solid solution forms on the re-melted surface.The microhardness is increased both in and far beyond the heat-affected zone (HAZ), reaching about 250μm.Measurements on sliding wear have shown that the wear resistance of the treated samples was improved by a factor of about 2.4 as compared to the as-received sample. It is also found that the sliding wear resistance can be further improved by surface alloying with TiN.

  8. Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy

    Science.gov (United States)

    Vinothkumar, Thilla Sekar; Kandaswamy, Deivanayagam; Prabhakaran, Gopalakrishnan; Rajadurai, Arunachalam

    2015-01-01

    Objectives: The aim of this study is to investigate the role of dry cryogenic treatment (CT) temperature and time on the Vickers hardness and wear resistance of new martensitic shape memory (SM) nickel-titanium (NiTi) alloy. The null hypothesis tested was that there is no difference in Vickers hardness and wear resistance between SM NiTi alloys following CT under two soaking temperatures and times. Materials and Methods: The composition and the phase transformation behavior of the alloy were examined by X-ray energy dispersive spectroscopy and differential scanning calorimetry, respectively. Fifteen cylindrical specimens and 50 sheet specimens were subjected to different CT conditions: Deep cryogenic treatment (DCT) 24 group: −185°C, 24 h; DCT six group: −185°C, 6 h; shallow cryogenic treatment (SCT) 24 group: −80°C, 24 h; SCT six group: −80°C, 6 h; and control group. Wear resistance was assessed from weight loss before and after reciprocatory wet sliding wear. Results: The as-received SM NiTi alloy contained 50.8 wt% nickel and possessed austenite finish temperature (Af) of 45.76°C. Reduction in Vickers hardness of specimens in DCT 24 group was highly significant (P < 0.01; Tukey's honest significant difference [HSD]). The weight loss was significantly higher in DCT 24 group (P < 0.05; Tukey's HSD). Conclusion: Deep dry CT with 24 h soaking period significantly reduces the hardness and wear resistance of SM NiTi alloy. PMID:26929689

  9. Microstructure and wear resistance of CP titanium alloyed with a mixture of N2 and CO gases

    Science.gov (United States)

    Grenier, M.; Dube, D.; Adnot, A.; Fiset, M.

    1998-05-01

    Laser surface processing is a promising technique for alloying and synthesis of wear resistant coatings. To this end, commercially pure titanium was laser gas-alloyed with a mixture of nitrogen and carbon monoxide, and the influence of processing parameters was studied. The surface treatments were performed using a 400 W Nd:YAG pulsed laser. The composition of the gas mixture was set at either 100% N2, 67% N2 + 33% CO, 50% N2 + 50% CO, 33% N2 + 67% CO or 100% CO. The microstructure of the reacted layer of specimen was studied by optical and scanning electron microscopy. Their thickness was characterized and surface hardness profiles were determined. X-ray diffraction, Auger electron spectroscopy and X-ray photoelectron spectroscopy were used for determination of crystalline structure and chemical composition of phases. The study of processing parameters such as incident power density, pulse length and pulse rate showed that the optimum conditions for wear resistance were influenced by the composition of the gas mixture. Abrasive and erosive wear tests on laser-treated surfaces showed a substantial improvement in wear resistance over untreated titanium. This reduction in wear rate is attributed to the formation of the hard compounds TiN, TiCO and TiCNO in the resolidified layer.

  10. EFECT OF PLASMA IMMERSION ION IMPLANTATION TREATEMENT IN THE WEAR RESISTANCE OF Ti-6Al-4V ALLOY

    Directory of Open Access Journals (Sweden)

    Zepka, Susana

    2015-07-01

    Full Text Available The objective of this work was the evaluation of wear resistance of Ti-6Al-4V alloy after plasma immersion ion implantation (PIII in different immersion times. The goal of this process was the modification of surface properties of the alloy to obtain better tribology properties. In this process, atoms can be injected on the material´s surface changing the mechanical properties in the region near the surface independently of thermodynamics variables, as solubility and difusivity. The samples were submitted to 120 e 180 minutes of implantation at 250°C in the three samples for each condition. The wear analyses were made by pin-on-disk process, where the lost volumes and wear coefficients were compared in the samples. It was observed the decreasing of attrite coefficient and the lost volume of the material during wear test. The implanted sample by 180 minutes has showed the wear coefficient 35.12% lower in comparison of the sample without treatment, and 11.09% lower in comparison of implanted sample by 120 minutes. It can be observed that the sample implanted by 180 minutes showed lower wear coefficient.

  11. Study of the surface wear resistance and biological properties of the Ti-Zr-Nb-Sn alloy for dental restoration.

    Science.gov (United States)

    Hu, Xin; Wei, Qiang; Li, Chang-Yi; Deng, Jia-Yin; Liu, Shuang; Zhang, Lian-Yun

    2010-10-01

    A new titanium alloy (Ti-12.5Zr-3Nb-2.5Sn) was developed to meet the needs of clinical requirements for medical titanium alloys and improve the properties of existing titanium alloys. The as-prepared alloy was solution treated at 500 °C for 3 h in vacuum followed by water quenching. Tensile, wear and hardness tests were carried out to examine the mechanical properties of the Ti-Zr-Nb-Sn alloy. Oral mucous membrane irritation test was performed to evaluate the surface biological properties of the Ti-Zr-Nb-Sn alloy. The results suggested that the surface hardness and wear-resistant properties of the Ti-12.5Zr-3Nb-2.5Sn alloy were superior to commercially pure Ti. The oral mucous irritation test showed that all samples had no mucous membrane irritation. It indicates that Ti-12.5Zr-3Nb-2.5Sn has large potential to be used as dental restoration material.

  12. Study of the surface wear resistance and biological properties of the Ti-Zr-Nb-Sn alloy for dental restoration

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xin; Li Changyi; Deng Jiayin; Liu Shuang; Zhang Lianyun [School of Dentistry, Tianjin Medical University, Tianjin 300070 (China); Wei Qiang [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2010-10-01

    A new titanium alloy (Ti-12.5Zr-3Nb-2.5Sn) was developed to meet the needs of clinical requirements for medical titanium alloys and improve the properties of existing titanium alloys. The as-prepared alloy was solution treated at 500 {sup 0}C for 3 h in vacuum followed by water quenching. Tensile, wear and hardness tests were carried out to examine the mechanical properties of the Ti-Zr-Nb-Sn alloy. Oral mucous membrane irritation test was performed to evaluate the surface biological properties of the Ti-Zr-Nb-Sn alloy. The results suggested that the surface hardness and wear-resistant properties of the Ti-12.5Zr-3Nb-2.5Sn alloy were superior to commercially pure Ti. The oral mucous irritation test showed that all samples had no mucous membrane irritation. It indicates that Ti-12.5Zr-3Nb-2.5Sn has large potential to be used as dental restoration material.

  13. Improving the corrosion wear resistance of AISI 316L stainless steel by particulate reinforced Ni matrix composite alloying layer

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiang; Zhuo Chengzhi; Tao Jie; Liu Linlin [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Jiang Shuyun [Department of Mechanical Engineering, Southeast University, 2 Sipailou, Nanjing 210096 (China)], E-mail: xujiang73@nuaa.edu.cn

    2009-01-07

    In order to overcome the problem of corrosion wear of AISI 316L stainless steel (SS), two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO{sub 2} predeposited by brush plating, respectively, and subsequent surface alloying with Ni-Cr-Mo-Cu by a double glow process. The microstructure of the two kinds of nanoparticle reinforced Ni-based composite alloying layers was investigated by means of SEM and TEM. The electrochemical corrosion behaviour of composite alloying layers compared with the Ni-based alloying layer and 316L SS under different conditions was characterized by potentiodynamic polarization test and electrochemical impedance spectroscopy. Results showed that under alloying temperature (1000 deg. C) conditions, amorphous nano-SiO{sub 2} particles still retained the amorphous structure, whereas nano-SiC particles were decomposed and Ni, Cr reacted with SiC to form Cr{sub 6.5}Ni{sub 2.5}Si and Cr{sub 23}C{sub 6}. In static acidic solution, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO{sub 2} particles interlayer is lower than that of the Ni-based alloying layer. However, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO{sub 2} particles interlayer is prominently superior to that of the Ni-based alloying layer under acidic flow medium condition and acidic slurry flow condition. The corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiC particles interlayer is evidently lower than that of the Ni-based alloying layer, but higher than that of 316L SS under all test conditions. The results show that the highly dispersive nano-SiO{sub 2} particles are helpful in improving the corrosion wear resistance of the Ni-based alloying layer, whereas carbides and silicide phase are deleterious to that of the Ni-based alloying layer due to the fact that the preferential removal of the matrix

  14. Wear resistance of TiN(Ti2N)/Ti composite layer formed on C17200 alloy by plasma surface Ti-alloying and nitriding

    Science.gov (United States)

    Liu, L.; Shen, H. H.; Liu, X. Z.; Guo, Q.; Meng, T. X.; Wang, Z. X.; Yang, H. J.; Liu, X. P.

    2016-12-01

    The duplex treatment of plasma Ti-alloying and plasma nitriding was applied on the surface of C17200 alloy to improve its wear resistance. C17200 substrate was alloyed with Ti using double glow plasma alloying to form a Ti-alloyed layer in its surface, and then treated by plasma nitriding to make a TiN(Ti2N) alloying layer based on the Ti-alloyed surface. The microstructure and formation mechanism were studied by using GDOES, XRD and SEM. The hardness, tribological property and electrical conductivity of C17200 alloy after plasma alloying and nitriding were investigated by mean of micro-hardness tester, friction and wear testers as well as impedance analyzers. Modulus of elasticity and the adhesive strength of TiN(Ti2N)/Ti composite layer were evaluated by nano-indenter and scratch tester. The result shows that a TiN(Ti2N)-Ti-Be-Cu composite layer with a thickness of 27 μm is formed in the C17200 surface and is mainly composed of TiN, Ti2N, Cu(Ti) solid solution, etc. The composite alloying surface consists of the hard TiN(Ti2N)-rich layer on the top surface and Ti-Cu-Be diffusion layer, showing a strong adhesive strength with the C17200 substrate and a little decrease in the modulus of elasticity. A certain amount of Cu and Be together with TiN/Ti2N exists in the outmost, resulting in a better combination of wear resistance and conductive performance.

  15. Effects of TIG Surface Melting and Chromium Surface Alloying on Microstructure,Hardness and Wear Resistance of ADI

    Institute of Scientific and Technical Information of China (English)

    A Amirsadeghi; M Heydarzadeh Sohi; S F Kashani Bozorg

    2008-01-01

    Microhardness and wear resistance of different mierostruetures formed by TIG (tungsten inert gas) surface melting and chromium surface alloying (using ferrochromium) of ADI (austempered ductile iron) were studied.Surface melting resulted in the formation of a ledeburitic structure in the melted zone,and this structure has a hardness up to 896 HV as compared to 360 HV in that of ADI.Moreover,chromium surface alloying resulted in the formation of different structures including:(1) a hypereuteetic structure consisting of primary (Fe,Cr)7C3 carbides and a eutectie matrix of transformed austenite (into martensite and retained austenite),as also (Fe,Cr)7C3 carbides,with a hardness of 1 078 HV;(2) a hypoeutectic structure consisting of the same eutectic along with transformed primary austenite,with a hardness of 755 HV;and (3) a ledeburitic structure with an acieular morphology and a hardness of 896 HV.The results also indicated that surface melting reduced the wear rate of the ADI by approximately 37%.Also,chromium surface alloying yielded a superior wear behavior and reduced the wear rate of the treated specimens by about 38% and 70%,depending on the structures formed.

  16. Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Simulations

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Martukanitz and S. Babu

    2007-05-03

    Laser surfacing in the form of cladding, alloying, and modifications are gaining widespread use because of its ability to provide high deposition rates, low thermal distortion, and refined microstructure due to high solidification rates. Because of these advantages, laser surface alloying is considered a prime candidate for producing ultra-hard coatings through the establishment or in situ formation of composite structures. Therefore, a program was conducted by the Applied Research Laboratory, Pennsylvania State University and Oak Ridge National Laboratory to develop the scientific and engineering basis for performing laser-based surface modifications involving the addition of hard particles, such as carbides, borides, and nitrides, within a metallic matrix for improved wear, fatigue, creep, and corrosion resistance. This has involved the development of advanced laser processing and simulation techniques, along with the refinement and application of these techniques for predicting and selecting materials and processing parameters for the creation of new surfaces having improved properties over current coating technologies. This program has also resulted in the formulation of process and material simulation tools capable of examining the potential for the formation and retention of composite coatings and deposits produced using laser processing techniques, as well as positive laboratory demonstrations in producing these coatings. In conjunction with the process simulation techniques, the application of computational thermodynamic and kinetic models to design laser surface alloying materials was demonstrated and resulted in a vast improvement in the formulation of materials used for producing composite coatings. The methodology was used to identify materials and to selectively modify microstructures for increasing hardness of deposits produced by the laser surface alloying process. Computational thermodynamic calculations indicated that it was possible to induce the

  17. Improving wear resistance of magnesium alloy AZ91D by TiN-CrN multilayer coating

    Institute of Scientific and Technical Information of China (English)

    MIAO Qiang; CUI Cai-e; PAN Jun-de; ZHANG Ping-ze

    2006-01-01

    Applying a novel method of arc-glow plasma depositing, a 2 μm-thick coating with 12 sub-layers of TiN and CrN was deposited alternately on the surface of magnesium alloy AZ91D to improve its wear resistance. The wear behavior was investigated by test of ball on disc sliding. The composition and microstructure of the coating were also analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the morphology of TiN-CrN film was surveyed through scanning electronic microscopy (SEM) and atom force microscopy (AFM).The adhesion strength between film and matrix was evaluated by ways of stick-peeling test. The surface micro-hardness of the coating is above HK0.011 433, and the specific wear ratio of specimens coated with TiN-CrN films tested decreases greatly compared to that of the bare metal.

  18. Wear resistance properties of austempered ductile iron

    Science.gov (United States)

    Lerner, Y. S.; Kingsbury, G. R.

    1998-02-01

    A detailed review of wear resistance properties of austempered ductile iron (ADI) was undertaken to examine the potential applications of this material for wear parts, as an alternative to steels, alloyed and white irons, bronzes, and other competitive materials. Two modes of wear were studied: adhesive (frictional) dry sliding and abrasive wear. In the rotating dry sliding tests, wear behavior of the base material (a stationary block) was considered in relationship to countersurface (steel shaft) wear. In this wear mode, the wear rate of ADI was only one-fourth that of pearlitic ductile iron (DI) grade 100-70-03; the wear rates of aluminum bronze and leaded-tin bronze, respectively, were 3.7 and 3.3 times greater than that of ADI. Only quenched DI with a fully martensitic matrix slightly outperformed ADI. No significant difference was observed in the wear of steel shafts running against ADI and quenched DI. The excellent wear performance of ADI and its countersurface, combined with their relatively low friction coefficient, indicate potential for dry sliding wear applications. In the abrasive wear mode, the wear rate of ADI was comparable to that of alloyed hardened AISI 4340 steel, and approximately one-half that of hardened medium-carbon AISI 1050 steel and of white and alloyed cast irons. The excellent wear resistance of ADI may be attributed to the strain-affected transformation of high-carbon austenite to martensite that takes place in the surface layer during the wear tests.

  19. The hardness, adhesion, and wear resistance of coatings developed for cobalt-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.; Wilson, W.L.

    2000-05-01

    One potential approach for reducing the level of nuclear plant radiation exposure that results from activated cobalt wear debris is the use of a wear resistant coating. However, large differences in stiffness between a coating/substrate can result in high interfacial stresses that produce coating de-adhesion when a coated substrate is subjected to high stress wear contact. Scratch adhesion and indentation tests have been used to identify four promising coating processes [1,2]: (1) the use of a thin Cr-nitride coating with a hard and less-stiff interlayer, (2) the use of a thick, multilayered Cr-nitride coating with graded layers, (3) use of the duplex approach, or nitriding to harden the material subsurface followed by application of a multilayered Cr-nitride coating, and (4) application of nitriding alone. The processing, characterization, and adhesion of these coating systems are discussed. The wear resistance and performance has been evaluated using laboratory pin-on-disc, 4-ball, and high stress rolling contact tests. Based on the results of these tests, the best coating candidate from the high-stress rolling contact wear test was the thin duplex coating, which consists of ion nitriding followed deposition of a thin Cr-nitride coating, while the thin Cr-nitride coating exhibited the best results in the 4-ball wear test.

  20. Electrodeposition of diamond-like carbon films on titanium alloy using organic liquids: Corrosion and wear resistance

    Energy Technology Data Exchange (ETDEWEB)

    Falcade, Tiago, E-mail: tiago.falcade@ufrgs.br [Federal University of Rio Grande do Sul, 9500 Bento Goncalves Ave. Sector 4, Building 75, 2nd floor, Porto Alegre, RS (Brazil); Shmitzhaus, Tobias Eduardo, E-mail: tobiasschmitzhaus@gmail.com [Federal University of Rio Grande do Sul, Porto Alegre, RS (Brazil); Gomes dos Reis, Otavio, E-mail: otavio_gomes214@hotmail.com [Federal University of Rio Grande do Sul, Porto Alegre, RS (Brazil); Vargas, Andre Luis Marin; Huebler, Roberto [Pontificia Universidade Catolica do Rio Grande do Sul (Brazil); Mueller, Iduvirges Lourdes, E-mail: ilmuller@ufrgs.br [Federal University of Rio Grande do Sul, Porto Alegre, RS (Brazil); Fraga Malfatti, Celia de, E-mail: celia.malfatti@ufrgs.br [Federal University of Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The electrodeposition may be conducted at room temperature. Black-Right-Pointing-Pointer The DLC films have good resistance to corrosion in saline environments. Black-Right-Pointing-Pointer The films have lower coefficient of friction than the uncoated substrate. Black-Right-Pointing-Pointer The abrasive wear protection is evident in coated systems. - Abstract: Diamond-like carbon (DLC) films have been studied as coatings for corrosion protection and wear resistance because they have excellent chemical inertness in traditional corrosive environments, besides presenting a significant reduction in coefficient of friction. Diamond-like carbon (DLC) films obtained by electrochemical deposition techniques have attracted a lot of interest, regarding their potential in relation to the vapor phase deposition techniques. The electrochemical deposition techniques are carried out at room temperature and do not need vacuum system, making easier this way the technological transfer. At high electric fields, the organic molecules polarize and react on the electrode surface, forming carbon films. The aim of this work was to obtain DLC films onto Ti6Al4V substrate using as electrolyte: acetonitrile (ACN) and N,N-dimethylformamide (DMF). The films were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman spectroscopy, potentiodynamic polarization and wear tests. The results show that these films can improve, significantly, the corrosion resistance of titanium and its alloys and their wear resistance.

  1. 高硼低碳耐磨合金磨料磨损性能研究%Study on Abrasive Wear Performance of High Boron Low Carbon Wear-resistant Alloy

    Institute of Scientific and Technical Information of China (English)

    麻健梅; 王顺波; 苏广才; 汤宏群

    2013-01-01

    借助光学显微镜和SEM电镜观察,运用磨损试验手段及对比研究法,研究了高硼低碳耐磨合金的磨料磨损性能.结果表明,在中、低冲击工况下,高硼低碳耐磨合金的磨损质量损失、相对磨损率均小于高铬铸铁和高锰钢,且磨面磨损形成的沟槽少,压坑小,这显示出了良好的耐磨料磨损性.%The high boron low carbon wear-resistant alloy abrasive wear performance was researched by OM, SEM observation, wear test methods and comparision approach. The results show that in the medium or low impact conditions, the wear mass loss and relative wear rate of high boron low carbon wear-resistant alloy are less than that of high chromium cast iron and high manganese steel. The number of the wear grooves and the pits on the wear surface morphology is smaller, which shows the good characteristics in abrasive wear performance of high boron low carbon wear-resistant alloy.

  2. Effect of cryogenic treatment on wear resistance of Ti-6Al-4V alloy for biomedical applications.

    Science.gov (United States)

    Gu, Kaixuan; Wang, Junjie; Zhou, Yuan

    2014-02-01

    The effect of cryogenic treatment on wear resistance of Ti-6Al-4V alloy for biomedical applications was experimentally investigated in this paper. Cryogenic treatments with the same soaking time of 24h at different temperatures of -80°C, -140°C and -196°C were conducted and the treatments at the same temperature of -196°C were then further given different soaking time of 3h, 48h and 72h to be investigated. After cryogenic treatment, the Vickers hardness of specimens was measured. Wear resistance of Ti-6Al-4V alloy was measured by pin-on-disk wear test under dry sliding condition. The results demonstrated that the Vickers hardness increased slightly with the reduction of temperature while it increased obviously with the elongation of soaking time at -196°C. The friction coefficients of specimens cryo-treated at -196°C were lower than those of untreated and of cryo-treated at -80°C and -140°C. And the longer the soaking time is during the cryogenic treatment, the higher the friction coefficient reduction can be achieved. The obvious reduction of mass loss can be obtained at -196°C with 72h soaking. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to detect the microstructure and worn surface of specimens. By cryogenic treatment, the plowing in the worn surface was smoothed and shallowed, and the degree of plastic deformation in the subsurface was decreased. There was no obvious phase transformation which can be detected in the microstructure after cryogenic treatment. However, the tendency of refinement in grain size can be detected by XRD which improved the wear resistance of Ti-6Al-4V alloy. © 2013 Published by Elsevier Ltd.

  3. Increasing Wear Resistance of Titanium Alloys by Anode Plasma Electrolytic Saturation with Interstitial Elements

    Science.gov (United States)

    Belkin, P. N.; Kusmanov, S. A.; Dyakov, I. G.; Silkin, S. A.; Smirnov, A. A.

    2017-05-01

    In our previous studies, we have shown that anode plasma electrolytic saturation of titanium alloys with nitrogen and carbon can improve their tribological properties. Obtained structure containing oxide layer and solid solution of diffused element in titanium promotes the enhancement of running-in ability and the decrease in the wear rate in some special cases. In this paper, further investigations are reported regarding the tribological properties of alpha- and beta-titanium alloys in wear test against hardened steel (50 HRC) disk using pin-on-disk geometry and balls of Al2O3 (6.25 mm in diameter) or bearing steel (9.6 mm in diameter) with ball-on-plate one and normal load from 5 to 209 N. Reproducible results were obtained under testing samples treated by means of the plasma electrolytic nitriding (PEN) with the mechanical removal of the oxide layer. Friction coefficient of nitrided samples is 0.5-0.9 which is somewhat higher than that for untreated one (0.48-0.75) during dry sliding against Al2O3 ball. An increase in the sliding speed results in the polishing of nitrided samples and reduction of their wear rate by 60 times. This result is obtained for 5 min at 850 °C using PEN in electrolyte containing 5 wt.% ammonia and 10 wt.% ammonium chloride followed by quenching in solution. Optical microscope was employed to assist in the evaluation of the wear behavior. Sizes of wear tracks were measured by profilometer TR200.

  4. Characterization and wear resistance of macro-arc oxidation coating on magnesium alloy AZ91 in simulated bedy fluids

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The mechanical characteristics ofthe macro-arc oxidation(MAO) coating on Mg alloy AZ91 were examined by means of nano scratch tester.The corrosion and erosion corrosion behavior of AZ91 with and without MAO coating were investigated by using potentiodynamic electrochemical technique and micro-abrasion tribometer in simulated body fluids,respectively.The influence of HCO3-ions on the erosion corrosion was discussed.The results show that the coating and its substrate are in a pronounced bond.The MAO coating inereases1-2 orders of magnitude of the corrosion resistance of AZ91 alloy.HCO3-ions enhance the corrosion rates of the AZ91 alloys more significantly than the alloys with MAO coating.However,there exists an obvious passivation process of AZ91 without coating in the HCO3-solutions.Moreover,an MgCO3 film formed in HCO3-containing solutions leads to an enhancement in micro-wear resistance.MAO coating deteriorates the erosion corrosion resistance of AZ91 alloy due to the formation of oxidation debris resulted from the broken MAO coating.

  5. Enhancement of the Wear Resistance and Microhardness of Aluminum Alloy by Nd:YaG Laser Treatment

    Directory of Open Access Journals (Sweden)

    Haitham T. Hussein

    2014-01-01

    Full Text Available Influence of laser treatment on mechanical properties, wear resistance, and Vickers hardness of aluminum alloy was studied. The specimens were treated by using Nd:YaG laser of energy 780 mj, wavelength 512 nm, and duration time 8 ns. The wear behavior of the specimens was studied for all specimens before and after treatment by Nd:YaG laser and the dry wear experiments were carried out by sing pinon-disc technique. The specimens were machined as a disk with diameter of 25 mm and circular groove in depth of 3 mm. All specimens were conducted by scanning electron microscopy (SEM, energy-dispersive X-ray florescence analysis (EDS, optical microscopy, and Vickers hardness. The results showed that the dry wear rate was decreased after laser hardening and increased Vickers hardness values by ratio of 2.4 : 1. The results showed that the values of wear rate for samples having circular grooves are less than samples without grooves after laser treatment.

  6. Enhancement of the wear resistance and microhardness of aluminum alloy by Nd:YaG laser treatment.

    Science.gov (United States)

    Hussein, Haitham T; Kadhim, Abdulhadi; Al-Amiery, Ahmed A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar

    2014-01-01

    Influence of laser treatment on mechanical properties, wear resistance, and Vickers hardness of aluminum alloy was studied. The specimens were treated by using Nd:YaG laser of energy 780 mj, wavelength 512 nm, and duration time 8 ns. The wear behavior of the specimens was studied for all specimens before and after treatment by Nd:YaG laser and the dry wear experiments were carried out by sing pinon-disc technique. The specimens were machined as a disk with diameter of 25 mm and circular groove in depth of 3 mm. All specimens were conducted by scanning electron microscopy (SEM), energy-dispersive X-ray fluorescence analysis (EDS), optical microscopy, and Vickers hardness. The results showed that the dry wear rate was decreased after laser hardening and increased Vickers hardness values by ratio of 2.4:1. The results showed that the values of wear rate for samples having circular grooves are less than samples without grooves after laser treatment.

  7. Effects of cathodic voltages on structure and wear resistance of plasma electrolytic oxidation coatings formed on aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingbiao [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Science, Lanzhou University of Technology, Lanzhou 730050 (China); Liang, Jun, E-mail: jliang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, Baixing; Peng, Zhenjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Qing [School of Science, Lanzhou University of Technology, Lanzhou 730050 (China)

    2014-04-01

    Highlights: • The PEO coating growth rate increased with the cathodic voltage increasing. • Higher cathodic voltage resulted in more compact coating structure. • The compact structure led to low surface roughness and high wear resistance. - Abstract: Plasma electrolytic oxidation (PEO) coatings were prepared on aluminium alloy using pulsed bipolar power supply at constant anodic voltage and different cathodic voltages. The samples were prepared to attain the same coating thickness by adjusting the processing time. The scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and tribometer were employed to investigate the microstructure, element content, phase composition and wear resistance of the coatings respectively. It was found that the coating growth rate enhanced obviously and the coatings exhibited a more compact structure with thicker inner layer and lower surface roughness when the cathodic voltage increased. The coatings were mainly composed of crystalline γ-Al{sub 2}O{sub 3} and amorphous silicate oxides and their relative content changed with the cathodic voltage. The wear resistance of the coatings improved significantly with the increase of cathodic voltage.

  8. Effects of increase extent of voltage on wear and corrosion resistance of micro-arc oxidation coatings on AZ91D alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effects of increase extent of voltage on the wear resistance and corrosion resistance of micro-arc oxidation(MAO)coatings on AZ91D magnesium alloy were investigated in silicate electrolyte.The results show that with increasing extent of voltage,both of the thickness and bonding force of MAO coatings first increase,and then decrease.These parameters are all up to their maximum values when the increase extent of voltage is 20 V.The roughness of the coatings always increases.The coating has the best corrosion resistance when the increase extent of voltage is not below 25 V,and the coating has the best wear resistance when the increase extent of voltage is 10 V.The wear mechanisms for the micro-arc oxidation are abrasive wear and micromachining wear.These are related to their microstructures.

  9. High performance corrosion and wear resistant composite titanium nitride layers produced on the AZ91D magnesium alloy by a hybrid method

    Directory of Open Access Journals (Sweden)

    Michał Tacikowski

    2014-09-01

    Full Text Available Composite, diffusive titanium nitride layers formed on a titanium and aluminum sub-layer were produced on the AZ91D magnesium alloy. The layers were obtained using a hybrid method which combined the PVD processes with the final sealing by a hydrothermal treatment. The microstructure, resistance to corrosion, mechanical damage, and frictional wear of the layers were examined. The properties of the AZ91D alloy covered with these layers were compared with those of the untreated alloy and of some engineering materials such as 316L stainless steel, 100Cr6 bearing steel, and the AZ91D alloy subjected to commercial anodizing. It has been found that the composite diffusive nitride layer produced on the AZ91D alloy and then sealed by the hydrothermal treatment ensures the corrosion resistance comparable with that of 316L stainless steel. The layers are characterized by higher electrochemical durability which is due to the surface being overbuilt with the titanium oxides formed, as shown by the XPS examinations, from titanium nitride during the hydrothermal treatment. The composite titanium nitride layers exhibit high resistance to mechanical damage and wear, including frictional wear which is comparable with that of 100Cr6 bearing steel. The performance properties of the AZ91D magnesium alloy covered with the composite titanium nitride coating are substantially superior to those of the alloy subjected to commercial anodizing which is the dominant technique employed in industrial practice.

  10. Thickness effects on corrosion and wear resistance properties of micro-arc discharge oxide coatings on AZ91D magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei-jiu; LIU Ming; LI Zhao-feng; ZENG Rong-chang

    2006-01-01

    The microarc oxidation coatings with difference thickness were synthesized on AZ91D magnesium alloy. The microstructure and phase structure of the coatings were analyzed using SEM and XRD, the tribological properties and corrosion resistance behaviour of the coatings were also investigated. The results show that the coating contains two layers, a porous outer layer and relatively dense inner layer. The microhardness of the MAO coatings is four to six times higher than that of the magnesium alloy substrate. The MAO coatings have much better wear-resistance and corrosion resistance abilities than those of magnesium alloy substrate, but possess higher friction coefficient. The results further indicate that there is an optimization thickness for corrosion and wear resistance.

  11. DIFFUSIVELY ALLOYED COMPOUNDS MADE OF METAL DISCARD WITH A REDUCED MELTING TEMPERATURE FOR OBTAINING WEAR RESISTANT COATINGS USING INDUCTION HARD-FACING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    V. G. Shcherbakou

    2016-01-01

    Full Text Available The technology of obtaining diffusion doped alloys made from metal scrap is reviewed in the article. The influence of short term preprocessing at high temperature on structure formation by concentrated energy sources within the further induction deposit is reviewed. A mechanism of a contact eutectic melting in diffusion doped alloys at short term high temperature treatment is described and suggested in this work. It was shown that such kind of processing of diffusion doped alloys is a perspective way of treatment when using induction hard-facing technologies for obtaining wear resistant coatings. A resource and energy saving technology was developed for obtaining wear resistant coatings based on diffusion doped alloys from metal scrap treated using induction hard-facing process.

  12. Effects of rare earths on friction and wear characteristics of magnesium alloy AZ91D

    Institute of Scientific and Technical Information of China (English)

    祁庆琚; 刘勇兵; 杨晓红

    2003-01-01

    The influence of various rare-earth contents on the friction and wear characteristics of magnesium alloyAZ91D was studied. The results show that the wear resistance properties of rare-earth magnesium alloys are betterthan those of the matrix alloy under the testing conditions. Magnesium alloys undergo transition from mild wear tosevere wear. The addition of rare earths refines the structure of alloys, improves the comprehensive behaviors of themagnesium alloys, increases the stability of oxidation films on worn surfaces, enhances the loading ability of rare-earth magnesium alloys, and delays the transition from mild wear to severe wear effectively.

  13. Microstructure modification by La2O3 and its effect on wear resistance properties of as-cast ZL107 alloy

    Institute of Scientific and Technical Information of China (English)

    WAN Diqing

    2010-01-01

    Modification of ZL107 aluminum alloy has been successfully achieved by using La2O3. The different casting parameters, including casting temperature as well as holding time and modifier content, were carried out to investigate the modification effects. The results show that the best modifier content is 1.0 wt.%, and the casting temperature has little effect. In addition, the wear behavior of modified and unmodified ZL107 has been compared. The wear resistance of as-cast ZL107 aluminum alloy can be significantly improved after modification.

  14. Wear-resistance of Aluminum Matrix Microcomposite Materials

    Directory of Open Access Journals (Sweden)

    M. Kandeva

    2011-03-01

    Full Text Available A procedure is developed for the study of wear of aluminum alloys AlSi7 obtained by casting, reinforced by TiC microparticles, before and after heat treatment. Tribological study is realized under conditions of friction on counterbody with fixed abrasive. Experimental results were obtained for mass wear, wear rate, wear intensity and wear-resistance of the alloys with different wt% of microparticles.

  15. Analysis Of The Austenite Grain Growth In Low-Alloy Boron Steel With High Resistance To Abrasive Wear

    Directory of Open Access Journals (Sweden)

    Białobrzeska B.

    2015-09-01

    Full Text Available Today low-alloy steels with boron achieve high resistance to abrasive wear and high strength. These features are obtained by using advanced technology of manufacturing. This makes boron steels increasingly popular and their application more diverse. Application of these steels can extend the lifetime of very expensive machine construction in many industries such as mining, the automotive, and agriculture industries. An interesting subgroup of these materials is steel with boron intended for heat treatment. These steels are supplied by the manufacturer after cold or hot rolling so that it is possible for them to be heat treated in a suitable manner by the purchaser for its specific application. Very important factor that determines the mechanical properties of final product is austenite grain growth occurring during hot working process such us quenching or hot rolling. Investigation of the effect of heating temperature and holding time on the austenite grain size is necessary to understand the growth behavior under different conditions. This article presents the result of investigation of austenite grain growth in selected low-allow boron steel with high resistance to abrasive wear and attempts to describe the influence of chemical composition on this process.

  16. Effect of deep cryogenic treatment and tempering on microstructure and mechanical behaviors of a wear-resistant austempered alloyed bainitic ductile iron

    Directory of Open Access Journals (Sweden)

    Chen Liqing

    2015-01-01

    Full Text Available In this paper, the effect of deep cryogenic treatment in combination with conven- tional heat treatment process was investigated on microstructure and mechanical behaviors of alloyed bainitic ductile iron. Three processing schedules were employed to treat this alloyed ductile iron including direct tempering treatment, tempering.+deep cryogenic treatment and deep cryogenic treatment.+tempering treatments. The microstructure and mechanical behavior, especially the wear resistance, have been evaluated after treated by these three schedules. The results show that martensite microstructure can be obviously refined and the precipitation of dispersed carbides is promoted by deep cryogenic treatment at .−196 ∘C for 3 h after tempered at 450 ∘C for 2 h. In this case, the alloyed bainitic ductile iron possesses rather high hardness and wear-resistance than those processed by other two schedules. The main wear mechanism of the austempered alloyed ductile iron with deep cryogenic treatment and tempering is micro-cutting wear in association with plastic deformation wear.

  17. Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications

    Energy Technology Data Exchange (ETDEWEB)

    Seals, Roland D.

    2015-08-18

    The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB.sub.2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.

  18. [Corrosion resistance and wear resistance of Ni-Cr alloy after coating titanium nitride (TiN) in oral containing fluorine environment].

    Science.gov (United States)

    Weng, Wei-Min; Yu, Wei-Qiang; Shan, Wei-Lan; Zhang, Fu-Qiang

    2010-12-01

    The aim of this study was to evaluate the corrosion resistance and wear resistance of Ni-Cr alloy after coating titanium nitride (TiN) in oral containing fluorine environment. Physical vapor deposition was established to coat titanium nitride (TiN) on the surface of dental cast Ni-Cr alloy to form TiN/Ni-Cr compound. Both Ni-Cr alloy and TiN/Ni-Cr compound were exposed to 37 degrees centigrade, artificial saliva containing 0.24% NaF. The polarization curves of the specimens were measured by PARSTAT 2273 electrochemical station to investigate its corrosion resistance. Vicker's hardness was measured by HXD-1000TMC/LCD micro-hardness tester to investigate its wear resistance. Statistical analysis was performed by SAS 8.2 software package for Student's t methods. The corrosion potential of Ni-Cr alloy was -362.407 mV, the corrosion current density was 1.568μAcm(-2),the blunt-breaking potential was 426 mV bofor TiN coating. The corrosion potential of TiN/Ni-Cr compound was -268.638 mV, the corrosion current density was 0.114μAcm(-2),the blunt-breaking potential was 1142 mV after TiN coating. Polarization curves showed TiN/Ni-Cr compound improved the corrosion potential and blunt-breaking potential, decreased the corrosion current density. The Vicker's hardness of Ni-Cr alloy was 519.75±27.27 before TiN coating, the Vicker's hardness of TiN/Ni-Cr compound was 803.24±24.64, the D-value between them was 283.49±39.34. The difference of Vicker's harnesses between Ni-Cr alloy and TiN/Ni-Cr compound had significant (Pcoating can improve the corrosion resistant to F-and the surface hardness of Ni-Cr alloy. Supported by Research Fund of Science and Technology Commission of Shanghai Municipality (Grant No.08DZ2271100), Shanghai Leading Academic Discipline Project (Grant No.S30206 ) and Research Fund of Health Bureau of Shanghai Municipality (Grant No.2009074).

  19. Wear resistant alloys for coal handling equipment. Progress report, October 1, 1977-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, M.S.; Zackay, V.F.; Parker, E.R.; Finnie, I.

    1979-01-01

    The objective is to utilize advances in low alloy steels with high strength, hardness, and toughness to develop wrought and cast steels for improved coal transportation and fragmentation equipment. The program consists of three tasks: alloy performance criteria, alloy design, and component evaluation. Good progress was made in the first two tasks. (DLC)

  20. Abrasive wear property of laser melting/deposited Ti2Ni/TiNi intermetallic alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A wear resistant intermetallic alloy consisting of TiNi primary dendrites and Ti2Ni matrix was fabricated by the laser melting deposition manufacturing process. Wear resistance of Ti2Ni/TiNi alloy was evaluated on an abrasive wear tester at room temperature under the different loads. The results show that the intermetallic alloy suffers more abrasive wear attack under low wear test load of 7, 13 and 25 N than high-chromium cast-iron. However, the intermetallic alloy exhibits better wear resistance under wear test load of 49 N. Abrasive wear of the laser melting deposition Ti2Ni/TiNi alloy is governed by micro-cutting and plowing.Pseudoelasticity of TiNi plays an active role in contributing to abrasive wear resistance.

  1. Corrosion wear fracture of new {beta} biomedical titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Niinomi, M.; Fukunaga, K.-I. [Toyohashi Univ. of Technol. (Japan). Dept. of Production Syst. Eng.; Kuroda, D.; Morinaga, M.; Kato, Y.; Yashiro, T.; Suzuki, A.

    1999-05-15

    Metallic materials such as stainless steel, Co-Cr alloy, pure titanium and titanium alloys have been used for surgical implant materials. The {alpha} + {beta} type titanium alloy such as Ti-6Al-4V ELI has been most widely used as an implant material for artificial hip joint and dental implant because of its high strength and excellent corrosion resistance. Toxicity of alloying elements in conventional biomedical titanium alloys like Al and V, and the high modulus of elasticity of these alloy as compared to that of bone have been, however, pointed out [1,2]. New {beta} type titanium alloys composed of non-toxic elements like Nb, Ta, Zr, Mo and Sn with lower moduli of elasticity, greater strength and greater corrosion resistance were, therefore, designed in this study. The friction wear properties of titanium alloys are, however, low as compared to those of other conventional metallic implant materials such as stainless steels and Co-Cr alloy. Tensile tests and friction wear tests in Ringer`s solution were conducted in order to investigate the mechanical properties of designed alloys. The friction wear characteristics of designed alloys and typical conventional biomedical titanium alloys were evaluated using a pin-on-disk type friction wear testing system and measuring the weight loss and width of groove of the specimen. (orig.) 8 refs.

  2. Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing

    OpenAIRE

    I. Sudhakar; V. Madhu; G. Madhusudhan Reddy; K. Srinivasa Rao

    2015-01-01

    Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys, 7075 aluminium alloy exhibits high strength which can be compared to tha...

  3. Effects of Y2O3 on the microstructure and wear resistance of cobalt-based alloy coatings deposited by plasma transferred arc process

    Institute of Scientific and Technical Information of China (English)

    HOU Qingyu; HUANG Zhenyi; GAO Jiasheng

    2007-01-01

    Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of the cobalt-based alloys were investigated using an optical microscope, a scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that a cobalt-based solid solution with a face-centered cubic crystal structure was presented accompanied by the secondary phase M7C3 with a hexagonal crystal structure in the Y2O3-free cobalt-based alloy coating. Several stacking faults exist in the cobalt-based solid solution. The addition of Y2O3leads to the existence of the Y2O3 phase in the Y2O3-modified coatings. Though stacking fault exists in the Y2O3-modified coatings, its density increases. The addition of Y2O3 can refine the microstructure and can increase the wear resistance properties when its contents are less than or equal to 0.8 wt.%. However, further increase of its contents will lead to the agglomeration of undissolved Y2O3 particles at the γ-Co grain boundary, and will lead to a coarse microstructure and lower wear resistance properties.

  4. Effect of pressing temperature on the wear resistance of a Co-based Cr-Mo powder alloy produced by hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Somunkiran, Ilyas [Firat Univ., Elazig (Turkey). Metallurgical and Materials Engineering Dept.; Balin, Ahmet [Siirt Univ. (Turkey). Dept. of Vocational High School

    2016-02-01

    In this study, Co-based Cr-Mo powder alloy was produced at different pressing temperatures by using hot pressing technique and abrasive wear behaviors of the produced specimens were examined. Produced specimens were exposed to abrasive wear experiment using block on disc wear test device by applying a load of 50 N with 100-mesh SiC abrasive paper. Each specimen was investigated at 25, 50, 75 and 100 m. At the end of the experiment, abrasive wear results of the specimens were determined by calculating their mass losses. Microstructural properties of the specimens which were produced at different pressing temperatures were investigated by optical and SEM examinations and their wear resistances were examined by abrasive wear experiments. Consequently, it was observed that in Co-based Cr-Mo powder alloy produced by hot pressing technique; as sintering temperature increased, size of neck formations between the powder grains increased, porosity decreased and abrasive wear resistance increased. [German] In diesem Beitrag zugrunde liegenden Studie wurde eine Co-basierte Cr-Mo-Legierung mittels Heisspressens hergestellt und der Abrasivverschleisswiderstand dieser Proben untersucht. Die hergestellten Proben wurden dem Abrasivverschleissversuch durch einen Block-Scheibe-Versuchsaufbau unterzogen, wobei eine Kraft von 50 N mit einem SiC-Papier (100 mesh) verwendet wurde. Jede Probe wurde ueber eine Distanz von 25, 50, 75 und 100 m untersucht. Am Ende der jeweiligen Experimente wurden die Abrasivverschleissergebnisse ermittelt, indem die Massenverluste berechnet wurden. Die mikrostrukturellen Eigenschaften der Proben, die bei verschiedenen Presstemperaturen hergestellt wurden, wurden mittels optischer und Rasterelektronenmikroskopie bestimmt und ihr Verschleisswiderstand anhand der Verschleissversuche ermittelt. Schliesslich wurde beobachtet, dass bei steigender Sintertemperatur der heissgespressten Co-basierten Cr-Mo-Pulverlegierung die Groesse der Einschnuerungen zwischen den

  5. Friction and Wear Characteristics of Mg-Al Alloy Containing Rare Earths

    Institute of Scientific and Technical Information of China (English)

    祁庆琚; 刘勇兵; 杨晓红

    2003-01-01

    The influence of rare earth on the friction and wear characteristics of magnesium alloy AZ91 and AM60 were studied. The results show that the wear resistance properties of rare earth magnesium alloys are better than those of matrix alloy under the testing conditions. The anti-wear behaviour of AZ91 alloy is much better than that of AM60 alloy. In dry sliding process,magnesium alloys undergo a transition from mild wear to severe wear. The addition of rare earths refine the structure of alloys, improve the comprehensive behaviors of magnesium alloys, increase the stability of oxidation films on worn surfaces, enhance the loading ability of rare earth magnesium alloys, and delay the transition from mild wear to severe wear effectively.

  6. Laser surface alloying of aluminium with WC+Co+NiCr for improved wear resistance

    CSIR Research Space (South Africa)

    Nath, S

    2012-03-01

    Full Text Available In the present study, laser surface alloying of aluminium with WC + Co + NiCr (in the ratio of 70:15:15) has been conducted using a 5 kW continuous wave (CW) Nd:YAG laser (at a beam diameter of 0.003 m), with the output power ranging from 3 to 3.5 k...

  7. Effects of Alloying Elements on Microstructure, Hardness, Wear Resistance, and Surface Roughness of Centrifugally Cast High-Speed Steel Rolls

    Science.gov (United States)

    Ha, Dae Jin; Sung, Hyo Kyung; Park, Joon Wook; Lee, Sunghak

    2009-11-01

    A study was made of the effects of carbon, tungsten, molybdenum, and vanadium on the wear resistance and surface roughness of five high-speed steel (HSS) rolls manufactured by the centrifugal casting method. High-temperature wear tests were conducted on these rolls to experimentally simulate the wear process during hot rolling. The HSS rolls contained a large amount (up to 25 vol pct) of carbides, such as MC, M2C, and M7C3 carbides formed in the tempered martensite matrix. The matrix consisted mainly of tempered lath martensite when the carbon content in the matrix was small, and contained a considerable amount of tempered plate martensite when the carbon content increased. The high-temperature wear test results indicated that the wear resistance and surface roughness of the rolls were enhanced when the amount of hard MC carbides formed inside solidification cells increased and their distribution was homogeneous. The best wear resistance and surface roughness were obtained from a roll in which a large amount of MC carbides were homogeneously distributed in the tempered lath martensite matrix. The appropriate contents of the carbon equivalent, tungsten equivalent, and vanadium were 2.0 to 2.3, 9 to 10, and 5 to 6 pct, respectively.

  8. The wear resistance of cobalt free hard surfaced alloys in nuclear power plant conditions. Test results; Kobolttivapaiden pinnoitteiden kulumiskestaevyys ydinvoimalaitosolosuhteissa. Koetulokset

    Energy Technology Data Exchange (ETDEWEB)

    Kosonen, A.M. [VTT Manufacturing Technology, Espoo (Finland)

    1996-09-01

    Use of cobalt containing materials is restricted in primary circuits of nuclear power plants since the cobalt is activated in the reactor core. The resulting isotope leads to increase of activity in the primary circuit. This report presents the results of the wear resistance tests of four hard facing alloys. The test method was a pin on plate test. The pins were coated with hard-facing alloys and the plates were manufactured from stainless steel. The tested materials were nickel based Stellite 6, wolfram carbide (WC), METCO 442 and cobalt based Stellite 6. Tests were carried out in simulated BWR-environment. According to the results of these tests it is not possible to get any differences between any hard facing alloys if the hardness of the plate material is much lower than that of the hard facing alloys examined. (orig.) (4 refs.).

  9. THE MECHANISM OF STRUCTURE FORMATION IN SPARINGLY ALLOYED WEAR RESISTANT IRONS

    OpenAIRE

    A. I. Garost

    2012-01-01

    The results of researches of macro - and microstructure, the structure, formed at primary crystallization of abrasion-resistant irons, and peculiarities of their change in process of thermal processing are given. 

  10. Modeling wear of cast Ti alloys.

    Science.gov (United States)

    Chan, Kwai S; Koike, Marie; Okabe, Toru

    2007-05-01

    The wear behavior of Ti-based alloys was analyzed by considering the elastic-plastic fracture of individual alloys in response to the relevant contact stress field. Using the contact stresses as the process driving force, wear was computed as the wear rate or volume loss as a function of hardness and tensile ductility for Ti-based cast alloys containing an alpha, alpha+beta or beta microstructure with or without the intermetallic precipitates. Model predictions indicated that wear of Ti alloys increases with increasing hardness but with decreasing fracture toughness or tensile ductility. The theoretical results are compared with experimental data to elucidate the roles of microstructure in wear and contrasted against those in grindability.

  11. Laser alloying of Al with Ti and Ni based powders to improve wear resistance and hardness

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2008-10-01

    Full Text Available composed of multiple passes • The abrasive used was silica sand • Test specimens were 20mm x 20mm x 5mm in size • The load used was 10kg force © CSIR 2008 www.csir.co.za • A homogeneous microstructure was obtained at 0.010m....csir.co.za 10wt% Ti and 90wt% Ni at 0.010m/s Figure 2: SEM micrograph of the surface alloyed with 10wt% Ti and 90wt% Ni at 0.010m/s © CSIR 2008 www.csir.co.za XRD Pattern 10wt% Ti + 90wt% Ni (0.010m/s) 0 500 1000 1500 2000 2500...

  12. THE WEAR RESISTANCE INCREASE OF CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. M. Ilyushenko

    2016-01-01

    Full Text Available The article presents the results of the tests on the wear resistance of chromium cast irons of different compositions obtained in sand forms. It has been shown that increase of the wear resistance and mechanical properties of the cast iron is possible to obtain using the casting in metal molds. A further increase in wear resistance of parts produced in metal molds is possible by changing the technological parameters of casting and alloying by titanium.

  13. Effect of residual stresses on the strength, adhesion and wear resistance of SiC coatings obtained by plasma-enhanced chemical vapor deposition on low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Kattamis, T.Z. (Department of Metallurgy, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States)); Chen, M. (Department of Metallurgy, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States)); Skolianos, S. (Aristoteles University, Thessaloniki (Greece)); Chambers, B.V. (Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States))

    1994-11-01

    Amorphous hydrogenated silicon carbide thin coatings were deposited on AISI 4340 low alloy steel wafers and thicker steel specimens by plasma-enhanced chemical vapor deposition. The cohesion of the coating, its adhesion to the substrate and its friction coefficient were evaluated by automatic scratch testing, and its wear resistance by pin-on-disk tribometry. During annealing, the residual stress attributed to hydrogen entrapment during deposition gradually changed from compressive to tensile and its rate of increase decreased with increasing annealing time. The cohesion and adhesion failure loads and the abrasive wear resistance decreased with decreasing residual compressive stress and increasing residual tensile stress. The friction coefficient between the coating surface and a diamond stylus decreased with increasing annealing time. ((orig.))

  14. Effects of Duplex Nitriding and TiN Coating Treatment on Wear Resistance, Corrosion Resistance and Biocompatibility of Ti6Al4V Alloy

    Science.gov (United States)

    Kao, W. H.; Su, Y. L.; Hsieh, Y. T.

    2017-08-01

    Ti6Al4V alloy substrates were nitrided at 900 °C. TiN coatings were then deposited on the nitrided substrates using a closed-field unbalanced magnetron sputtering system. The microstructure, hardness and adhesion properties of the TiN-N-Ti6Al4V substrates were evaluated and compared with those of an untreated Ti6Al4V sample, a nitrided Ti6Al4V sample and a TiN-coated Ti6Al4V sample, respectively. The tribological properties of the various samples were investigated by means of reciprocating sliding wear tests performed in 0.9 wt.% NaCl solution against 316L, Si3N4 and Ti6Al4V balls, respectively. In addition, the corrosion resistance was evaluated using potentiodynamic polarization tests. Finally, the biocompatibility of the samples was investigated by observing the attachment and growth of purified mouse leukemic monocyte/macrophage cells (Raw 264.7) on the sample surface after culturing periods of 24, 72 and 120 h, respectively. Overall, the results showed that the duplex nitriding/TiN coating treatment significantly improved the tribological, anti-corrosion and biocompatibility properties of the original Ti6Al4V alloy.

  15. Effect of multipath laser shock processing on microhardness, surface roughness, and wear resistance of 2024-T3 Al alloy.

    Science.gov (United States)

    Kadhim, Abdulhadi; Salim, Evan T; Fayadh, Saeed M; Al-Amiery, Ahmed A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar

    2014-01-01

    Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm(2); t surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated.

  16. Microstructure and wear resistance of Ti-Cu-N composite coating prepared via laser cladding/laser nitriding technology on Ti-6Al-4V alloy

    Science.gov (United States)

    Yang, Yuling; Cao, Shiyin; Zhang, Shuai; Xu, Chuan; Qin, Gaowu

    2017-07-01

    Ti-Cu-N coatings with three different Cu contents on Ti-6Al-4V alloy (TC4) were obtained via laser cladding together with laser nitriding (LC/LN) technology. Phase constituents, microstructure, microhardness, and wear resistance of the coatings were investigated. The evolution of the coefficients of friction for the three coatings was measured under dry sliding conditions as a function of the revolutions until the coating failure. The results show that the coatings are mainly composed of TiN, CuTi3 and some TiO6 phases dispersed in the matrix. A good metallurgical bonding between the coating and substrate has been successfully obtained. The prepared Ti-Cu-N composite coatings almost doubly enhance the microhardness of the TC4 alloy and reduce the friction down to 1/4-1/2 of the TC4 alloy, and thus significantly improve the wear resistance. The coefficient of friction depends on the Cu content in the coating.

  17. The Study of Wear Resistance of WC Carbide-Reinforced Composite Coating Prepared by Laser Surface Alloying%激光合金化制备WC颗粒增强复合层耐磨性研究

    Institute of Scientific and Technical Information of China (English)

    王洪金; 于赟; 李小平; 孙顺平

    2012-01-01

    In order to improve the surface friction and wear properties of steel 45, prepared by laser alloying with WC particles as reinforcement of the Ni-based alloy layer to study the laser alloying technique for surface modification of materials, analysis of the microstructure of the alloy layer, hardness and wear resistance. The results showed that: laser surface alloying to obtain a uniform layer of WC particle-reinforced composites, an increase of 45 steel surface hardness and wear resistance. We can see from the morphology of wear surfaces, laser alloying layer at room temperature dry friction process, both in different degrees of abrasive wear and adhesive wear, the strengthening mechanism is mainly to strengthen the second-phase particles. The wear capacity of WC + Ni45 alloy coating was the lowest and with the best wear resistance.%通过铸造WC和Co包WC与Ni45粉末的复合添加,运用激光合金化技术在中碳钢表面制备以WC颗粒为增强相的Ni基复合层,对复合层的微观组织、硬度及耐磨性进行了测试与分析.结果表明:激光合金化技术可在中碳钢表面制备均匀的WC颗粒增强合金化层,合金层的硬度及耐磨性得到显著提高.从表面磨损形貌可知,合金层在室温干摩擦过程中,均发生不同程度的磨料磨损和粘着磨损,强化机理主要为第二相强化,WC+ Ni45制备的合金层耐磨性最佳.

  18. Effect of Multipath Laser Shock Processing on Microhardness, Surface Roughness, and Wear Resistance of 2024-T3 Al Alloy

    Directory of Open Access Journals (Sweden)

    Abdulhadi Kadhim

    2014-01-01

    Full Text Available Laser shock processing (LSP is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I>1 GW/cm2;  t<50 ns at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated.

  19. The Microstructure and Wear Resistance of Fe-Cr-C-Ti Handfacing Alloy%Fe-Cr-C-Ti堆焊合金组织及耐磨性能

    Institute of Scientific and Technical Information of China (English)

    王智慧; 冯萌; 贺定勇; 陈勇; 边汉民

    2013-01-01

    采用药芯焊丝气体保护堆焊方法,在Q235钢表面制备不同Ti含量的Fe-Cr-C-Ti系堆焊层金属,利用扫描电镜(SEM)及XRD对堆焊层的组织进行了观察分析.在MLS-225型湿式橡胶轮磨粒磨损试验机上进行磨粒磨损试验,通过对磨损试样表面扫描电子显微镜观察分析并结合能谱成分分析探讨了磨损机理.结果表明,在Fe-Cr-C-Ti耐磨堆焊合金中,随着wTi的增加,合金组织中TiC硬质相增多;当w(Ti)=7.5%时,部分TiC聚集呈雪花状形貌;w(Ti)=5.5%时,合金表现出优良的抗磨损性能.%Fe-Cr-C-Ti hardfacing alloys with different Ti contents were prepared by gas-shielded flux cored arc welding on Q235 steel. The microstructures were investigated by SEM, XRD and EPMA. The abrasive wear resistance performance of the welded surfacing layers was evaluated on the MLS-225 grain-abrasion testing machine. The abrasive wear mechanics was studied on the observation of surface topography by the micro examination and energy spectrum analysis. It is indicated that with the increasing of Ti content, the content of TiC increases. The carbides distribute more symmetrical, but significantly decrease when Ti content is up to 7. 5% . The results show that the alloy with 5. 5 % Ti has better wear resistance.

  20. Towards low-friction and wear-resistant plasma sintering dies via plasma surface co-alloying CM247 nickel alloy with V/Ag and N

    OpenAIRE

    Zhang Zhenxue; Li Xiaoying; Dong Hanshan; Sánchez Eluxka Almandoz; Fuentes Gonzalo García; Qin Yi

    2015-01-01

    Nickel based superalloys have good oxidation and creep resistance and hence they can function under high mechanical stress and high temperatures. However, their undesirable tribological behaviour is the major technical barrier to the challenging high-temperature, lubricant-free plasma sintering tool application. In this study, nickel based CM247 superalloy surfaces were co-alloyed using innovative active screen plasma technology with both interstitial element (e.g. N) and substitutional alloy...

  1. Communication research between working capacity of hard- alloy cutting tools and fractal dimension of their wear

    Science.gov (United States)

    Arefiev, K.; Nesterenko, V.; Daneykina, N.

    2016-06-01

    The results of communication research between the wear resistance of the K applicability hard-alloy cutting tools and the fractal dimension of the wear surface, which is formed on a back side of the cutting edge when processing the materials showing high adhesive activity are presented in the paper. It has been established that the wear resistance of tested cutting tools samples increases according to a fractal dimension increase of their wear surface.

  2. Microstructure and wear resistance of the hypereutectic Fe-Cr-C alloy hardfacing metals with different La2O3 additives

    Science.gov (United States)

    Yang, Jian; Tian, Jianjun; Hao, Feifei; Dan, Ting; Ren, Xuejun; Yang, Yulin; Yang, Qingxiang

    2014-01-01

    Hardfacing (harden-surface-welding) metal of the hypereutectic Fe-Cr-C alloy with different La2O3 additives was developed. The microstructure of the hardfacing metal was observed by optical microscopy. The phase structure was determined by X-ray diffraction. The hardness and wear resistance of the hardfacing metal were measured by hardness tester and dry sand rubber wheel abrasive tester, respectively. The worn surface morphology was observed by field emission scanning electron microscope equipped with energy dispersive X-ray spectrometry. The solidification curve of the hardfacing metal and the relationship between the content of each phase and the temperature were calculated by thermodynamics software Thermo-Calc and Jmatpro, respectively. The results indicate that, with the increase of the La2O3 additives, the dimension of the primary M7C3 carbide in the hypereutectic Fe-Cr-C alloy hardfacing metal decreases gradually. When the La2O3 additive is 0.78 wt.%, it reaches minimum, which is 11.37 μm. The amount of M7C3 carbide (including the primary carbide and the eutectic carbide) decreases firstly then increases. The hardness of the hardfacing metal increases smally, while the wear resistance of it increases firstly then decreases and reaches the most excellent when the La2O3 additive is 0.78 wt.%. The formation temperature of M7C3 carbide is higher than that of austenite in the hypereutectic Fe-Cr-C alloy hardfacing metal. Austenite precipitated in the liquid phase can improve the precipitation rate of M7C3 carbide in a certain extent. As the temperature of the molten pool drops from 870 °C to 840 °C, γ-Fe transforms into α-Fe completely, so a large number of C atoms precipitate, which promotes the growth of the M7C3 carbide in short period.

  3. Effects of Graphite Additions on Microstructures and Wear Resistance of Fe-Cr-C-Nb Hardfacing Alloys

    Directory of Open Access Journals (Sweden)

    Fei HUANG

    2017-08-01

    Full Text Available Hardfacing alloys with varying amounts of graphite content were prepared on a surface of 45 steel using flux-cored wire open-arc overlaying. Testing was conducted using SEM, TEM, XRD, a Rockwell hardness apparatus and an abrasion tester to study the effect of variation of graphite content on the microstructure, hardness and abrasive resistance of the hardfacing alloy. The results show that the microstructure of the hardfacing layer consisted of martensite, austenite and NbC. As graphite content increased, martensite content increased, austenite content decreased, and the size of in situ-generated NbC particles increased. Additionally, the abrasive resistance of the hardfacing alloy, which could exceed 4 times that of the 45 steel base material, was related to the microstructure and the size of NbC particles, and generally shared the same variation trend as the hardness changes in the hardfacing layer.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16678

  4. Investigation into the high temperature wear properties of alloys contacting against different counterfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wood, P.D.; Datta, P.K.; Burnell-Gray, J.S. [Northumbria Univ., Newcastle (United Kingdom). Surface Eng. Res. Group; Wood, N.

    1997-12-31

    Wear tests have been conducted on a reciprocating high temperature rig at 750 C and a load of 7N using a stellite 6 and incoloy 800 counterface. The ODS alloys (MA956, PM2000 and PM2000SD) all showed poor wear resistance and the absence of glaze formation when worn against Incoloy 800. Glaze formation occurred when the ODS alloys were tested againststellite 6 providing very good wear protection. Nimonic 80A tested under similar conditions exhibited good wear resistance against Incoloy 800 (presence of glazes) and poor wear resistance against stellite 6 (absence of glazes). Titanium aluminide showed very good wear resistance when tested against incoloy 800 and stellite 6. In both cases, the glaze and underlying oxide particles were entirely formed from the counterface material. These results show the strong influence of the counterface materials on the formation of wear resistant glazes. (orig.) 5 refs.

  5. Engine oil wear resistance

    Directory of Open Access Journals (Sweden)

    A.N. Farhanah

    2015-03-01

    Full Text Available Lubricants play a vital role in an internal combustion engine to lubricate parts and help to protect and prolong the engine life. Lubricant also will help to reduce wear by creating lubricating film between the moving parts hence reduce metal-to-metal contacts. Engine oil from three different manufacturers with the same SAE viscosity grade available in market does not mean it will have the same lubricity for an engine. In this study, commercial mineral lubrication oil (SAE 10W-30 from three manufacturers was investigated to compare the lubrication performance at three different temperatures (40˚C, 70˚C and 100˚C in 60 minutes time duration by using four ball wear tester. The speed will be varied from 1000 rpm to 2500 rpm. Results show that all three lubricants have different lubricity performance; the smaller the wear scar, the better the lubricant since the lubricant can protect the moving surfaces from direct metal-to-metal contact occur.

  6. Cavitation wear resistance of engine bearing materials

    Science.gov (United States)

    Rac, Aleksandar

    1994-04-01

    The resistance to cavitation erosion of aluminum alloy, and cast and sinte-red lead-bronze, materials which are most frequently used for engine bearings, has been evaluated. The tests were carried out in motor oil at a temperature of 80 C, using a magnetostrictive vibratory tester (20 kHz). The results showed that the cavitation erosion resistance was the greatest in cast lead-bronze. On the contrary, sintered lead-bronze, though of the same chemical composition, had the greatest erosion rate. Additionally, the investigation of the overlay plated bearings showed the overlay was nonresistive to this type of wear.

  7. Effect of Alloying Elements on Thermal Wear of Cast Hot-Forging Die Steels

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-qi; CHEN Kang-min; CUI Xiang-hong; JIANG Qi-chuan; HONG Bian

    2006-01-01

    The effect of main alloying elements on thermal wear of cast hot-forging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wear of cast hot-forging die steels. The wear rates decrease with an increase in chromium content from 3% to 4% and molybdenum content from 2% to 3%, respectively. With further increase of chromium and molybdenum contents, chromium slightly reduces the wear resistance and molybdenum severely deteriorates the wear resistance with high wear rate. Lower vanadium/carbon ratio (1.5-2.5) leads to a lower wear resistance with higher wear rate. With an increase in vanadium/carbon ratio, the wear resistance of the cast steel substantially increases. When vanadium/carbon ratio is 3, the wear rate reaches the lowest value. The predominant mechanism of thermal wear of cast hot-forging die steels are oxidation wear and fatigue delamination. The Fe2O3 and Fe3O4 or lumps of brittle wear debris are formed on the wear surface.

  8. Towards low-friction and wear-resistant plasma sintering dies via plasma surface co-alloying CM247 nickel alloy with V/Ag and N

    Directory of Open Access Journals (Sweden)

    Zhang Zhenxue

    2015-01-01

    Full Text Available Nickel based superalloys have good oxidation and creep resistance and hence they can function under high mechanical stress and high temperatures. However, their undesirable tribological behaviour is the major technical barrier to the challenging high-temperature, lubricant-free plasma sintering tool application. In this study, nickel based CM247 superalloy surfaces were co-alloyed using innovative active screen plasma technology with both interstitial element (e.g. N and substitutional alloying elements (e.g. V and Ag to provide a synergy effect to enhance its tribological properties. The tribological behaviour of the plasma co-alloyed CM247 superalloy surfaces were fully evaluated using reciprocal and pin-on-disc tribometers at temperatures from room temperature to 600 ∘C. The experimental results demonstrate that the co-alloyed surface with N, Ag and V can effectively lower the friction coefficient, which is expected to help demoulding during lubricant-free plasma sintering.

  9. Friction and wear behavior of electrodeposited amorphous Fe-Co-W alloy deposits

    Institute of Scientific and Technical Information of China (English)

    何凤姣; 雷惊天; 陆欣; 黄宇宁

    2004-01-01

    The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome deposit under the same testing condition was also made. The experimental results show that the hardness and wear resistance of amorphous Fe-Co-W alloy deposits are improved with the increasing of heat treatment temperature, and reach the maximum value at 800 ℃, then decrease above 800 ℃. Under 40 N load, the wear resistance properties of the alloy deposits heat treated at 800 ℃ are superior to those of hard chrome deposit. The main wear mechanisms of amorphous Fe-Co-W alloy deposits heat treated below 600 ℃ are peeling, plastic and flowing deformation; when the deposits are heat treated above 700 ℃, they are plastic and flowing deformation. While the main wear mechanisms of hard chrome are abrasive wear, fatigue and peeling.

  10. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yan [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Guo, Xingwu [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhou, Zhifeng [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Dong, Jie [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, Yixiong [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China)

    2015-02-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating.

  11. Low friction wear resistant graphene films

    Science.gov (United States)

    Sumant, Anirudha V.; Berman, Diana; Erdemir, Ali

    2017-02-07

    A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.

  12. Sliding wear and friction behavior of zirconium alloy with heat-treated Inconel718

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H., E-mail: kimjhoon@cnu.ac.kr [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.M. [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.K.; Jeon, K.L. [Nuclear Fuel Technology Department, Korea Nuclear Fuel, 1047 Daedukdae-ro, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-04-01

    In water-cooled nuclear reactors, the sliding of fuel rod can lead to severe wear and it is an important issue to sustain the structural integrity of nuclear reactor. In the present study, sliding wear behavior of zirconium alloy in dry and water environment using Pin-On-Disk sliding wear tester was investigated. Wear resistance of zirconium alloy against heat-treated Inconel718 pin was examined at room temperature. Sliding wear tests were carried out at different sliding distance, axial load and sliding speed based on ASTM (G99-05). The results of these experiments were verified with specific wear rate and coefficient of friction. The micro-mechanisms responsible for wear in zirconium alloy were identified to be microcutting and microcracking in dry environment. Moreover, micropitting and delamination were observed in water environment.

  13. Evaluation of sliding wear behavior of graphite particle-containing magnesium alloy composites

    Institute of Scientific and Technical Information of China (English)

    QI Qing-ju

    2006-01-01

    The influence of graphite particle content on the friction and wear characteristics of AZ91 magnesium alloy matrix composite was studied. The results show that the wear resistances of graphite-containing composite are much better than those of the matrix under the test conditions. The anti-wear ability of magnesium alloy composite is improved substantially with the increase of the graphite content from 5% to 20%, and both wear mass loss and coefficient of friction are decreased to low level. Different wear mechanisms operate at different sliding stages. A continuous black lubricating film forms progressively on the worn surface along sliding, which effectively limits the direct interaction between the composite tribosurface and the counterpart, and also remarkably delays the transition from mild wear to severe wear for magnesium alloy composite.

  14. CASTING OF DETAILS OF WEAR-RESISTANT CHROME CAST IRONS FOR CHROMIC MILLS IN COMBINED MOLDS AND CHILLS

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Relative wear resistance of chrome cast irons of eutectic composition is determined in laboratory and industry conditions. Complex alloyed eutectic cast iron with increased wear resistance and mechanical characteristics is developed.

  15. Current Statues of the Wear Resistance of Electroless Ni-P Based Alloy Plating%化学镀镍磷基合金镀层耐磨性的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘宏; 卞建胜; 李莎; 张彪

    2012-01-01

    化学镀镍磷基合金镀层因硬度高、厚度均匀及耐磨性优异,在工业中得到了广泛应用.简述了化学镀镍磷基合金从二元、三元到复合镀层的发展历程,概述了化学镀镍磷基合金镀层耐磨性的影响因素——合金镀层的化学成分、镀层与基体间的结合力及镀层硬度,并从这三方面论述了改善耐磨性的方法,最后提出了在改善合金镀层耐磨性研究中存在的问题和未来的发展方向.%Electroless Ni-P based alloy platings have found extensive application in industry because of its high hardness, uniform thickness and excellent wear resistance. The development of the electroless Ni-P based alloy platings, from binary and tenary alloy coatings to composite coatings, was summarized, and the influence factors of the wear resistance were presented from the chemical composition of alloy coating, the combining power between coating and matrix and the hardness of coating, as well as current status of improving the wear resistance of electroless plated Ni-P based alloys. At last, the problem exiting in the research of improving the wear resistance of alloy coating and the future research orientation were raised.

  16. Engineering wear-resistant surfaces in automotive aluminum

    Science.gov (United States)

    Kavorkijan, V.

    2003-02-01

    Inadequate wear resistance and low seizure loads prevent the direct use of aluminum alloys in automotive parts subject to intensive friction combined with high thermal and mechanical loading, such as brake discs, pistons, and cylinder liners. To enable the use of aluminum alloys in the production of automotive brake discs and other wear-resistant products, the insertion of a monolithic friction cladding rather than surface coating has been considered in this work. Three experimental approaches, two based on the pressure-less infiltration of porous ceramic preforms and one based on the subsequent hot rolling of aluminum and metal-matrix composite strips, are currently under investigation.

  17. Improvements of harrows wear resistance

    Directory of Open Access Journals (Sweden)

    Warouma Arifa

    2015-12-01

    Full Text Available Wear is the main reason for the loss of performance of the parts for agricultural machinery. It leads to the degradation of the soil working quality. This work aims to highlight the wear resistance of the harrows discs manufactured, consolidated and sharpened differently. The tests were conducted in the laboratory and the field of the Faculty of Exploitation and Repair of Agricultural Machinery of the State Technical University of Kirovograd (Ukraine in 2015. The technical equipment consists of devices for consolidation by electric discharge and for measurement the linear wear of discs, a harrow, a sand test bed, a tractor and discs made of different materials and technologies. Some parameterized were collected during the laboratory test each 5 ha and up to 20 ha of operation and in the fields each 30 ha until the time limit of exploitation. The Laboratory tests have shown that after twenty (20 ha of operation, the wear resistance of the experimental discs made of steel 65G and consolidated by electric discharge with simultaneous grinding (sharpening angle of 30° is 2.95 times higher than the discs in series made of steel 28MnB5. The field experiment gave the following results: According to agro technical requirements, the plowing depth limit of serial discs made of steel 28MnB5 was reached after an operating duration of 120 ha while for experimental discs made of steel 65G and consolidated by electric discharge with simultaneous grinding (sharpening angle of 30 degrees this duration is of 156 ha. The diameter wear limit of experimental discs was reached after an operating duration of 179 ha against 154 ha for the serial ones. Therefore, the new technology can be applied during the manufacture and / or the repair of the discs.

  18. Microstructures and Hardness/Wear Performance of High-Carbon Stellite Alloys Containing Molybdenum

    Science.gov (United States)

    Liu, Rong; Yao, J. H.; Zhang, Q. L.; Yao, M. X.; Collier, Rachel

    2015-12-01

    Conventional high-carbon Stellite alloys contain a certain amount of tungsten which mainly serves to provide strengthening to the solid solution matrix. These alloys are designed for combating severe wear. High-carbon molybdenum-containing Stellite alloys are newly developed 700 series of Stellite family, with molybdenum replacing tungsten, which are particularly employed in severe wear condition with corrosion also involved. Three high-carbon Stellite alloys, designated as Stellite 706, Stellite 712, and Stellite 720, with different carbon and molybdenum contents, are studied experimentally in this research, focusing on microstructure and phases, hardness, and wear resistance, using SEM/EDX/XRD techniques, a Rockwell hardness tester, and a pin-on-disk tribometer. It is found that both carbon and molybdenum contents influence the microstructures of these alloys significantly. The former determines the volume fraction of carbides in the alloys, and the latter governs the amount of molybdenum-rich carbides precipitated in the alloys. The hardness and wear resistance of these alloys are increased with the carbide volume fraction. However, with the same or similar carbon content, high-carbon CoCrMo Stellite alloys exhibit worse wear resistance than high-carbon CoCrW Stellite alloys.

  19. The wear resistance of cobalt free hard surfaced alloys in nuclear power conditions. Literary survey; Kobolttivapaiden pinnoitteiden kulumiskestaevyys ydinvoimalaitosolosuhteissa. Kirjallisuusselvitys

    Energy Technology Data Exchange (ETDEWEB)

    Kosonen, A.M. [VTT Manufacturing Technology, Espoo (Finland)

    1996-07-01

    Cobalt based alloys are widely used in nuclear power plants despite of the resulting increase of the activity level in primary circuit. The other remarkable source of cobalt is construction materials, in which cobalt is as an impurity element. This report presents the research results from work done in England, USA, Canada, Japan, Sweden and France during the last few years. For example EPRI has funded the research of iron based NOREM surfacing alloys. In Japan iron based CORELOY and Cobaless surfacing alloys as well as ceramic coatings have been investigated. There are plenty of promising results from new cobalt free surfacing alloys in comparison with Stellite 6. The final approvement can be done only when these surfacing alloys have been used in real size valves. When evaluating the behaviour of cobalt free alloys in real circumstances one has to take into account especially the type, size and design of a valve and the welding method. (orig.) (25 refs.).

  20. Corrosion and wear resistant metallic layers produced by electrochemical methods

    DEFF Research Database (Denmark)

    Christoffersen, Lasse; Maahn, Ernst Emanuel

    1999-01-01

    Corrosion and wear-corrosion properties of novel nickel alloy coatings with promising production characteristics have been compared with conventional bulk materials and hard platings. Corrosion properties in neutral and acidic environments have been investigated with electrochemical methods....... Determination of polarisation resistance during 100 hours followed by stepwise anodic polarisation seems to be a promising technique to obtain steady state data on slowly corroding coatings with transient kinetics. A slurry test enables determination of simultaneous corrosion and abrasive wear. Comparison...

  1. 多元低合金耐磨锤头制造工艺%Manufacturing Process for Complex Low-alloyed Wear-resisting Hammers

    Institute of Scientific and Technical Information of China (English)

    李正伟; 李永堂; 曹建新; 贾璐

    2013-01-01

    锤头的耐磨性和工作寿命直接影响着破碎机的工作效率和生产成本,因此锤头要求有良好的力学性能、冲击韧性和耐磨性。在分析了锤头工况和失效机理的基础上,设计了多元低合金耐磨锤头材料的化学成分,提出了铸造工艺和热处理工艺,进行了工业试验,并对试件进行了检测分析,获得了满意的结果。%The operation efficiency and production cost of crusher were directly affected by the performance and service life of hammers .Therefore ,hammers were requested to have good mechanical properties ,impact toughness and abrasive resistance .Based on the analysis of working condition of the hammers and the failure mechanism ,the chemical composition of multi-element low-alloy wear-resistant material for hammers was designed ,the program of casting process and heat treatment process were proposed ,the industrial test was carried out ,and the satisfactory results were obtained .

  2. Wear properties of potassium titanate whiskers-reinforced Al-12Si alloy composites

    Directory of Open Access Journals (Sweden)

    Wu Shenqing

    2010-02-01

    Full Text Available Potassium titanate (K2O·6TiO2 whiskers-reinforced Al-12Si alloy composites were prepared by the squeeze casting technique. Wear properties of the composites were investigated by pin-on-disc tests under dry conditions. The experimental results showed that K2O·6TiO2 whiskers can effectively reinforce the matrix alloy and improve the wear resistance of the composite when the volume fraction of whiskers is low at 10 vol%. However, the composites with a high volume fraction of whiskers showed lower wear resistance than the Al-12Si alloy. The main wear mechanism of the composites is clarified as de-lamination and abrasive wear.

  3. Gears castings from ductile iron of improved abrasion wear resistance

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2011-10-01

    Full Text Available The aim of this study was to develop an industrial technological process for the manufacturing of castings from alloyed ductile iron characterized by improved resistance to abrasion wear. The outcome of the study was the implementation of developed technology under the industrial conditions of ASPAMET Foundry Plant and start up of production of a wide range of cast gears.

  4. Structural transformations and tribological properties of amorphous alloys upon wear at room and cryogenic temperatures

    Science.gov (United States)

    Korshunov, L. G.; Chernenko, N. L.; Goikhenberg, Yu. N.

    2009-09-01

    The abrasive wear resistance of the Fe64Co30Si3B3, Co86.5Cr4Si7B2.5, Fe73.5Nb3Cu1Si13.5B9, and Fe82.6Nb5Cu3Si8B1.4 commercial amorphous alloys (ribbon 0.03 mm thick and 12 mm wide) has been investigated under the conditions of abrasive and adhesive wear upon sliding friction. The character of fracture of the surface and structural transformations that occur in these materials upon wear have been studied by the metallographic and electron-microscopic methods. It has been shown that at room and cryogenic (-196°C) temperatures of tests the abrasive wear resistance of the amorphous alloys is two-three times lower than that of tool steels Kh12M and U8. A comparatively small abrasive wear resistance of the amorphous alloys is explained by local softening of these materials in the process of wear. Under the conditions of adhesive wear of like friction pairs at room temperature in air and argon, the amorphous alloys are characterized by the rate of wear that is smaller approximately by an order of magnitude than in steels 12Kh13 and 12Kh18N9. It has been established that upon wear the deformed surface layer of the alloys under study retains a predominantly amorphous state but in local sections of this layer nanocrystalline structures that consist of crystals of bcc and fcc phases and borides are formed. The possible effects of this partial crystallization on the microhardness, friction coefficient, and wear resistance of these alloys have been considered.

  5. Wear Resistance and Wear Mechanism of a Hot Dip Aluminized Steel in Sliding Wear Test

    Science.gov (United States)

    Xue, Zhiyong; Hao, Xiaoyang; Huang, Yao; Gu, Lingyun; Ren, Yu; Zheng, Ruipeng

    2016-12-01

    Sliding wear experiments were conducted on a hot dip aluminized steel to investigate its wear resistance and wear mechanism. The wear tests were also carried out on a hot dip galvanized steel and the base material (steel Q345) as a comparison. Results show that the wear resistance and hardness of the hot dip aluminized steel are significantly higher than that of the hot dip galvanized steel and the steel Q345 at room temperature. The better wear resistance of the hot dip aluminized steel attributes mainly to the formation of a transition layer containing abundant Fe-Al intermetallic compounds and the transformation of wear-resisting oxides during the friction process. The main phase in the transition layer is Fe2Al5. The thickness of the transition layer is about 90-120 μm. When the wear load increases from 3 N to 19 N, the wear type of the aluminized layer transform from adhesive wear (3 N) into abrasive wear (7 N) and finally into slight wear mixed with oxidation (higher than 11 N).

  6. Adhesion wear mechanisms under dry friction of titanium alloys in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lebedeva, I.L.; Presnyakova, G.N. (Physico-Technical Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukrainian SSR))

    1991-08-15

    Physicochemical processes taking place in the surface layers of titanium alloys were studied. For vacuum conditions, a range of external parameters was proved to exist where the alloys have high wear resistance and a low coefficient of friction. The transition from seizure, with tearing of the material at a large depth, to fatigue wear is related to surface hardening due to {alpha} {r reversible} {beta} transitions under friction. Thermodynamic parameters were calculated and the criteria of protective secondary structure formation defined. (orig.).

  7. 钛合金叶片减振凸台耐磨合金钎焊修复工艺研究%Brazing repairing process of wear resistant alloy on damping convexity of titanium alloy blade

    Institute of Scientific and Technical Information of China (English)

    张磊先; 杜静; 金莹; 倪建成; 毕文田

    2013-01-01

    The repairing process of wear resistant alloy on damping convexity of titanium alloy blade in one aero - engine fan - rotor is one of technological problems. The high - frequency induction brazing process was proposed to repair the worn titanium alloy damping convexity of blade damping. The brazing repairing process can meet the technique condition to repair the blade. At the same tinie, the repairing process saves the cost to purchase new parts and shorten the repairing cycle of blade.%某机风扇转子钛合金叶片减振凸台耐磨合金的磨损掉块修复工艺一直是发动机大修中的一项技术难题.针对钛合金叶片减振凸台耐磨层掉块问题开展了钎焊修复工艺研究工作,采用高频感应钎焊对钛合金叶片减振凸台耐磨合金层进行重新钎焊修复,所确定的感应钎焊修复工艺程序可以满足叶片耐磨层修理的技术条件,同时也节省了购买新件的费用,缩短了叶片的修理周期.

  8. Influence of loading on wear resistance properties of Ti-Zr-Nb-Sn alloy for dental restoration%加载载荷对钛锆铌锡合金摩擦磨损性能的影响

    Institute of Scientific and Technical Information of China (English)

    胡欣; 李长义; 刘亚林; 李宏捷; 韩华; 张连云

    2011-01-01

    Objective:To study the influence of load on wear resistance properties of Ti-Zr-Nb-Sn alloy for dental restoration Methods: A loading wear test was performed under an artificial saliva environment at 37 ℃ by MMV-1 Vertical universal friction and wear testing machine. Ti-Zr-Nb-Sn alloy was two-body wear tested in vitro using steatite as the grinding material. Test loads were set as 20, SO and 100 N. Quality wear loss was measured by electronic balance and wear surface morphology was observed with electron microscope. Results: As loads increased, the wear loss of the Ti-Zr-Nb-Sn alloy increased. Under 20, SO and 100 N loads, the dominant wear form was abrasive wear, adhesion wear accompanied with abrasive wear, and adhesion wear respectively. Conclusions: Increasing loads could enlarge the wear loss of Ti-Zr-Nb-Sn alloy and change its dominant wear form. Serious adhesion wear occurs under high loading conditions and the lifetime of Ti-Zr-Nb-Sn alloy would therefore be shortened.%目的:探讨载荷变化对钛锆铌锡合金与滑石瓷对磨时摩擦磨损性能的影响.方法:使用MMV-1立式万能摩擦磨损试验机,以滑石瓷为对磨物,载荷设置为20、50、100 N,在37℃人工唾液润滑的试验工况下,对口腔修复用钛锆铌锡合金进行二体摩擦磨损试验.采用扫描电镜观察表面磨损形貌,电子天平得出磨损量.结果:钛锆铌锡合金与对磨物滑石瓷的磨损量随载荷的增加而增大.载荷20N,钛锆铌锡合金的磨损机制主要为磨粒磨损; 50N时,磨损机制是粘着磨损伴发磨粒磨损;100N时,钛锆铌锡合金磨损机制以粘着磨损为主.结论:载荷增加可增大钛锆铌锡合金的磨损量,导致磨损机制改变,在高载荷条件下可发生严重粘着磨损,缩短修复体的使用寿命.

  9. The Influence of Chemical Alloying on the High Temperature Wear Resistance of H-Free DLC Coatings

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; Hosson, J.T.M. De; Cavaleiro, A.; Chandra, T; Tsuzaki, K; Militzer, M; Ravindran, C

    2007-01-01

    A commercial RF-sputtering deposition rig was employed to deposit H-free diamond-like carbon (DLC) coatings. The influence of alloying elements such as Ti and Si on the structure, mechanical and tribological properties of the coatings was investigated. The coating was observed in cross section and i

  10. Room-temperature sliding wear properties of laser melt deposited Cr13Ni5Si2/γalloy

    Institute of Scientific and Technical Information of China (English)

    FANG Yanli; WANG Huaming

    2007-01-01

    A wear-resistant alloy consisting of Cr13Ni5Si2 ternary silicide dendrites and the interdendritic nickel-base solid solution (γ) was designed and fabricated by the laser melting/continuous deposition (LMCD) process.The wear resistance of Cr13Ni5Si2/γalloy was evaluated on an MM-200 block-on-wheel dry sliding wear tester at room temperature. Results indicate that the Cr13Ni5Si2/γ alloy has excellent wear resistance and extremely low load-sensitivity of wear under dry sliding wear test conditions due to the high toughness and the high strength,as well as the transferred cover-layer on the worn surface of the alloy.

  11. Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti-6Al-4V alloy

    Science.gov (United States)

    Li, G.; Qu, S. G.; Pan, Y. X.; Li, X. Q.

    2016-12-01

    The main purpose of this paper was to investigate the effects of the different frequencies and loads of multi-pass ultrasonic surface rolling (MUSR) on surface layer mechanical properties, microstructure and fretting friction and wear characteristics of HIP (hot isostatic pressing) Ti-6Al-4 V alloy. Some microscopic analysis methods (SEM, TEM and EDS) were used to characterize the modified surface layer of material after MUSR treatment. The results indicated that the material in sample surface layer experienced a certain extent plastic deformation, and accompanied by some dense dislocations and twins generation. Moreover surface microhardness and residual stress of samples treated by MUSR were also greatly improved compared with the untreated. The fretting friction and wear properties of samples treated by MUSR in different conditions are tested at 10 and 15 N in dry friction conditions. It could be found that friction coefficient and wear volume loss were significantly declined in the optimal result. The main wear mechanism of MUSR-treated samples included abrasive wear, adhesion and spalling.

  12. Sliding wear resistance of iron aluminides

    Indian Academy of Sciences (India)

    Garima Sharma; M Sundararaman; N Prabhu; G L Goswami

    2003-04-01

    Room temperature dry sliding wear behaviour of iron aluminides containing 28% aluminium and various amounts of chromium has been investigated using pin on disk wear tester. The aluminides were heat treated to have ordered 3 structure. It was found that wear rate of the aluminides increased with the increase of applied normal load and sliding speed. Wear resistance of the aluminides increased with increase in chromium content. SEM observation of the worn surface showed that the microcutting and microploughing were the dominant sliding wear mechanisms.

  13. INCREASING OF WEAR RESISTANCE OF THE GRAPHITIZED STEEL

    Directory of Open Access Journals (Sweden)

    I. V. Akimov

    2013-11-01

    Full Text Available Purpose. Graphitized steels are alloys, in which carbon is partly in form of graphite inclusions. Due to this such steels possess good antifriction properties, wear resistance, heat conductivity and a variety of other mechanical properties, which decently distinguish them from cast irons. However, such steels are not studied enough and practically are not used in mechanical engineering. Purpose of the work is the research of the possibility of wear resistance increase for graphitized steels in the conditions of metal-to-metal dry friction sliding to use them in the railway systems. Methodology. Graphitized hypoeutectoid, eutectoid and hypereutectoid steels have been used as a research material. Experimental alloys have been studied in the condition after thermal hardening. Hardness of alloys has been determined by the Vickers method. Wear resistance of steels has been studied in the conditions of metal-to-metal dry friction sliding with the use of МI-1 friction machine (disk to disk. Findings. Data, which allow assessing the wear resistance of experimental graphitized steels depending on carbon, silicon and copper content have been obtained in this work. The regression dependence obtained as a result of statistical processing of the experimental data allowed determining an optimal chemical content of the steel, which is characterized by high wear resistance. Originality. A dependence describing carbon, silicon and copper content on the specimen's weight loss during metal-to-metal dry friction tests has been obtained in the work. Practical value. The optimized content of the graphitized steel can be used for production of products working in the conditions of wear such as brake blocks of rolling stock, separators of high-speed bearings, dies and others.

  14. Influence of heat treatment on microstructure and wear resistance of a medium-carbon-low-alloy wear-resistant steel%热处理对中碳低合金耐磨钢组织与耐磨性的影响

    Institute of Scientific and Technical Information of China (English)

    温浩宇; 马瑜; 王联波; 唐正华

    2011-01-01

    Effect of cooling modes of water,wind and air on microstructure and wear-resistant properties of a medium-carbon-low-alloy steel under same temper conditions was studied.The influence of temper temperatures on wearing properties of the steel was also investigated.The results show that the microstructure of the studied steel consist of martensite(M) or martensite plus bainite(M/B) depending on heat treatment process.The steel with M/B microstructure exhibits better temper resistance and toughness than that of the single matensite.The M/B microstructure is beneficial to improving wear-resistance of the steel.SEM analysis reveals that the main wear mechanism of the studied steel is abrasive wear with some furrows and micro-cutting on the worn surface.%研究了水冷、风冷、空冷3种冷却方式和200、250、300、350、400℃5种回火温度对中碳低合金耐磨钢的组织和耐磨粒磨损性能的影响。结果表明,经不同的冷却方式,可依次得到单相马氏体和马氏体加贝氏体的复相组织。含有贝氏体的复相组织在低温回火后有较好的抗回火软化能力和韧性,有助于耐磨性的提高。用SEM观察磨损表面,结果表明:在磨粒磨损情况下,实验用钢的磨损机理主要为塑性变形犁机制和显微切削机制。

  15. Sliding wear and friction behavior of ZA-27 alloy reinforced by Mn-containing intermetallic compounds

    Institute of Scientific and Technical Information of China (English)

    龙雁; 李元元; 张大童; 邱诚; 陈维平

    2002-01-01

    A ZA-27 alloy reinforced with M n-containing intermeta llic compounds was prepared and its tribological behaviors were investigated. By adding Mn, RE, Ti and B into ZA-27 alloy, the test alloy (ZMJ) was fabricated by sand casting. Microstructural analysis shows that considerable amount of Mn-containing intermetallic compounds such as Al5MnZn, Al9(MnZn)2 and Al65 Mn(RE)6Ti4Zn36 are formed. Compared to ZA-27, ZMJ shows better wear resistance, lower friction coefficient and lower temperature rise of worn surface under lubricated sliding condition. ZMJ also shows the lowest steady friction coefficient under dry friction condition. The wear resistance improvement of ZMJ is mainly attributed to the high hardness and good dispersion of these Mn-containing intermetallic compounds. It is indicated that the intermetallic compounds play a dominant role in reducing the sever adhesive and abrasive wear of the ZA-27 alloy.

  16. Microstructure and wear resistance of TiC carbide-reinforced composite coating prepared by laser surface alloying%激光表面合金化制备TiC颗粒增强复合材料微观结构及磨擦学性能研究

    Institute of Scientific and Technical Information of China (English)

    许长庆; 李贵江

    2008-01-01

    To strengthen the wear resistance of AISI321 stainless steel, the TiC carbide-reinforced compos-ite coating was produced by laser surface alloying. The microstructure, microhardness, and wear resistance of the composite coatings were investigated using optical microscopy, X-ray diffraction (XRD) meter, scan-ning electron microscopy (SEM), microhardness tester, and sliding wear tester. The results show that the composite coating is metallurgically bonded to the substrate and the microstructure is fine and uniform. The hardness of the composite coating is up to 400 HV, which is 2.5 times that of the substrate. Under room temperature and oil lubrication condition, the sliding wear tests indicate the friction coefficient and weight loss of the composite coating are smaller than those of substrate. The worn surface of the composite coatings is much smoother than that of the substrate, without grooves and crater. The wear resistance of the material has been greatly improved by laser surface alloying.

  17. A new production technique for wear resistant ring-hammers

    Directory of Open Access Journals (Sweden)

    Li Shifeng

    2011-11-01

    Full Text Available Based on a great number of laboratory experiments, a new technique has been developed for producing wear resistant ring-hammers. In this technology, lost foam casting with iron sand was combined to make mold; a special alloy was used to inoculate the molten steel, and proper heat treatment was used to further improve mechanical properties of wear resistant ring-hammers. The influence of this new production technology on the microstructure and mechanical properties of wear resistant ring-hammers was studied. Results show that iron sand molding, having the inherent characteristic of sand molding, changes the type of metallic compounds, refines crystal grains and increases the fineness of microstructure. Practical experience verified that the properties of the ring-hammers produced with this new technique are as follows: tensile strength (Rm 720 MPa, impact toughness (ak > 210 J•cm-2 and hardness > 200 HB. After water quenching from 1,080℃ (holding for 4 h and tempering at 320℃ for 3 h, the best wear resistance is obtained, and the wear resistance is 1.6 times higher than that of common high manganese ring-hammers.

  18. Wear Characteristics of Ni-Based Hardfacing Alloy Deposited on Stainless Steel Substrate by Laser Cladding

    Science.gov (United States)

    Awasthi, Reena; Limaye, P. K.; Kumar, Santosh; Kushwaha, Ram P.; Viswanadham, C. S.; Srivastava, Dinesh; Soni, N. L.; Patel, R. J.; Dey, G. K.

    2015-03-01

    In this study, dry sliding wear characteristics of the Ni-based hardfacing alloy (Ni-Mo-Cr-Si) deposited on stainless steel SS316L substrate by laser cladding have been presented. Dry sliding wear behavior of the laser clad layer was evaluated against two different counter bodies, AISI 52100 chromium steel (~850 VHN) and tungsten carbide ball (~2200 VHN) to study both adhesive and abrasive wear characteristics, in comparison with the substrate SS316L using ball on plate reciprocating wear tester. The wear resistance was evaluated as a function of load and sliding speed for a constant sliding amplitude and sliding distance. The wear mechanisms were studied on the basis of wear surface morphology and microchemical analysis of the wear track using SEM-EDS. Laser clad layer of Ni-Mo-Cr-Si on SS316L exhibited much higher hardness (~700 VHN) than that of substrate SS316L (~200 VHN). The laser clad layer exhibited higher wear resistance as compared to SS316L substrate while sliding against both the counterparts. However, the improvement in the wear resistance of the clad layer as compared to the substrate was much higher while sliding against AISI 52100 chromium steel than that while sliding against WC, at the same contact stress intensity.

  19. Fretting wear behavior of AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN An-hua; HUANG Wei-jiu; LI Zhao-feng

    2006-01-01

    The fretting behaviour of the AZ91D magnesium alloy was investigated. The influence of the number of cycles, normal load (contact pressure) and the amplitude of slip on the fretting behavior of the material were focused. Fretting tests were performed under various running conditions with regard to normal load levels and slip amplitudes. The friction coefficient between the surfaces at the fretting junction was continuously recorded. The fretting damage on the magnesium specimens was studied by SEM. The results show that the wear volume increases with the increase of slip amplitude, and linearly increases with the increase of normal load in the mixed and gross slip regime, but the normal load has no obvious effect on the wear volume in the partial slip regime. The predominant fretting wear mechanism of magnesium alloy in the slip regime is the oxidation wear, delaminated wear and abrasive wear.

  20. Tool wear mechanism in turning of novel wear-resisting aluminum bronze

    Institute of Scientific and Technical Information of China (English)

    倪东惠; 夏伟; 张大童; 郭国文; 邵明

    2003-01-01

    Tool wear and wear mechanism during the turning of a wear-resisting aluminum bronze have been stud-ied. Tool wear samples were prepared by using M2 high-speed steel and YW1 cemented carbide tools to turn a novelhigh strength, wear resisting aluminum bronze without coolant and lubricant. Adhesion of workpiece materials wasfound on tool's surface. Under the turning condition used in this study major wear mechanisms for turning aluminumbronze using M2 high-speed steel tool are diffusion wear, adhesive wear and plastic deformation and shear on thecrater. Partial melting of high-speed steel on the rake plays a role in the tool wear also. Major wear mechanisms forturning aluminum bronze using YW1 cemented carbide tool are diffusion wear, attrition wear and sliding wear. Tocontrol the machining temperature is essential to reduce tool wear.

  1. Wear and isothermal oxidation kinetics of nitrided TiAl based alloys

    Institute of Scientific and Technical Information of China (English)

    赵斌; 吴建生; 孙坚

    2002-01-01

    Gas nitridation of TiAl based alloys in an ammonia atmosphere was c arried out. The evaluation of the surface wear resistance was performed to compare with those of the non-nitrided alloys. It is concluded that high temperature nitridation raised wear resistance of TiAl based alloys markedly. The tribol ogical behaviors of the nitrided alloys were also discussed. The oxidation kinetics of the nitrided TiAl based alloys were investigated at 800~1000 ℃ in hot air. It is concluded that nitridation is detrimental to the oxidation resistance of TiAl based alloys under the present conditions. The nitrided alloys exhibit increased oxidizing rate with the prolongation of nitridation time at 800 ℃. However, alloys nitrided at 940 ℃ for 50 hdisplay a sign of better oxidat ion resistance than the other nitrided alloys at more severe oxidizing conditions. The parabolic rate law is considered as the basis of the data processing and interpretation of the mass gainvs time data. As a comparison with it, attempts were made to fit the data with the power law. The oxidation kinetic parameter kn, kp and n were measured and the trends were discussed.

  2. Preparation of Wear Resistant Materials by Melting and Diffusion Process

    Institute of Scientific and Technical Information of China (English)

    YU Shihao; WEI Xueping; ZENG Hui

    2012-01-01

    A wear-resistant material reinforced with VCp was manufactured by the in-mold melting process,in which the high-vanadium alloy-rods were melted by high temperature liquid steel and elements diffused into the liquid.Microstructure of the material was examined by OM,SEM,and XRD,and alloy elements in the diffusion layer were studied by EDS,and the hardness of the material was tested by HRS.The experimental results show that the material gradually changes hardness,which is due to the uniformly existents of carbide particles on martensite matrix and the gradient distribution of vanadium and carbide.

  3. Microstructure and wear resistance of spray-formed supermartensitic stainless steel

    Directory of Open Access Journals (Sweden)

    Guilherme Zepon

    2013-06-01

    Full Text Available Since the early 90's the oil industry has been encouraging the development of corrosion and wear resistant alloys for onshore and offshore pipeline applications. In this context supermartensitic stainless steel was introduced to replace the more expensive duplex stainless steel for tubing applications. Despite the outstanding corrosion resistance of stainless steels, their wear resistance is of concern. Some authors reported obtaining material processed by spray forming, such as ferritic stainless steel, superduplex stainless steel modified with boron, and iron-based amorphous alloys, which presented high wear resistance while maintaining the corrosion performance1,2. The addition of boron to iron-based alloys promotes the formation of hard boride particles (M2B type which improve their wear resistances3-9. This work aimed to study the microstructure and wear resistance of supermartensitic stainless steel modified with 0.3 wt. (% and 0.7 wt. (% processed by spray forming (SF-SMSS 0.3%B and SF-SMSS 0.7%B, respectively. These boron contents were selected in order to improve the wear resistance of supermartensitic stainless steel through the formation of uniformly distributed borides maintaining the characteristics of the corrosion resistant matrix. SF-SMSS 0.7%B presents an abrasive wear resistance considerably higher than spray-formed supermartensitic stainless steel without boron addition (SF-SMSS.

  4. Corrosion-wear behavior of nanocrystalline Fe88Si12 alloy in acid and alkaline solutions

    Science.gov (United States)

    Fu, Li-cai; Qin, Wen; Yang, Jun; Liu, Wei-min; Zhou, Ling-ping

    2017-01-01

    The corrosion-wear behavior of a nanocrystalline Fe88Si12 alloy disc coupled with a Si3N4 ball was investigated in acid (pH 3) and alkaline (pH 9) aqueous solutions. The dry wear was also measured for reference. The average friction coefficient of Fe88Si12 alloy in the pH 9 solution was approximately 0.2, which was lower than those observed for Fe88Si12 alloy in the pH 3 solution and in the case of dry wear. The fluctuation of the friction coefficient of samples subjected to the pH 9 solution also showed similar characteristics. The wear rate in the pH 9 solution slightly increased with increasing applied load. The wear rate was approximately one order of magnitude less than that in the pH 3 solution and was far lower than that in the case of dry wear, especially at high applied load. The wear traces of Fe88Si12 alloy under different wear conditions were examined and analyzed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The results indicated that the tribo-chemical reactions that involve oxidation of the worn surface and hydrolysis of the Si3N4 ball in the acid solution were restricted in the pH 9 aqueous solution. Thus, water lubrication can effectively improve the wear resistance of nanocrystalline Fe88Si12 alloy in the pH 9 aqueous solution.

  5. Effects of some material and experimental variables on the slurry wear characteristics of zinc-aluminum alloys

    Science.gov (United States)

    Prasad, B. K.; Modi, O. P.; Jha, A. K.; Patwardhan, A. K.

    2001-02-01

    In this study, the slurry wear behavior of a zinc-based alloy has been examined by the sample rotation method over a range of traversal speeds and distances. The influence of adding silicon to the alloy system on its wear characteristics has also been examined. The wear rate of the samples increased with increasing traversal distance initially, attained a peak, and then tended to decrease at longer distances. The initial increase in wear rate with distance was attributed to the indenting effect of the slurry constituents ( i.e., liquid droplets and the erodant particles) associated with the corrosive action of the liquid in slurry. On the contrary, factors such as entrapment of the erodant mass as well as the corrosion products in the cavities formed on the specimen surfaces could lead to the decrease in wear rate at longer traversal distances. The existence of silicon particles in the alloy microstructure led to improved wear resistance of the alloy system. This was due to the resistance offered by the hard silicon particles against the impinging action of the slurry constituents. Attainment of the wear rate peak at longer traversal distances in the case of the silicon-containing alloy over the one without the element further substantiated the superior wear resistance offered by the silicon particles. Traversal speed led to higher wear rates irrespective of the test conditions and material composition due to the more severe attack of the medium on the specimen surface. However, the presence of silicon particles in the alloy microstructure offered improved wear resistance (inverse of wear rate).

  6. Combined Corrosion and Wear of Aluminium Alloy 7075-T6

    NARCIS (Netherlands)

    Liu, Y.; Mol, J.M.C.; Janssen, G.C.A.M.

    2016-01-01

    The aluminium alloy 7075-T6 is widely used in engineering. In some applications, like slurry transport, corrosion and abrasion occur simultaneously, resulting in early material failure. In the present work, we investigated the combined effect of corrosion and wear on the aluminium alloy 7075-T6. We

  7. Combined Corrosion and Wear of Aluminium Alloy 7075-T6

    NARCIS (Netherlands)

    Liu, Y.; Mol, J.M.C.; Janssen, G.C.A.M.

    2016-01-01

    The aluminium alloy 7075-T6 is widely used in engineering. In some applications, like slurry transport, corrosion and abrasion occur simultaneously, resulting in early material failure. In the present work, we investigated the combined effect of corrosion and wear on the aluminium alloy 7075-T6. We

  8. Effect of Alloying Elements on Nano-ordered Wear Property of Magnesium Alloys

    Science.gov (United States)

    Yagi, Takahiro; Hirayama, Tomoko; Matsuoka, Takashi; Somekawa, Hidetoshi

    2017-03-01

    The effect of alloying elements on nano-ordered wear properties was investigated using fine-grained pure magnesium and several types of 0.3 at. pct X (X = Ag, Al, Ca, Li, Mn, Y, and Zn) binary alloys. They had an average grain size of 3 to 5 μm and a basal texture due to their production by the extrusion process. The specific wear rate was influenced by the alloying element; the Mg-Ca and Mg-Mn alloys showed the best and worst wear property, respectively, among the present alloying elements, which was the same trend as that for indentation hardness. Deformed microstructural observations revealed no formation of deformation twins, because of the high activation of grain boundary-induced plasticity. On the contrary, according to scratched surface observations, when grain boundary sliding partially contributed to deformation, these alloys had large specific wear rates. These results revealed that the wear property of magnesium alloys was closely related to the plastic deformation mechanism. The prevention of grain boundary sliding is important to improve the wear property, which is the same as that of a large-scale wearing configuration. One of the influential factors is the change in the lattice parameter with the chemical composition, i.e., ∂( c/ a)/∂ C. An alloying element that has a large value of ∂( c/ a)/∂ C effectively enhances the wear property.

  9. Fabrication, microstructural characterization and wear characteristics of A380 alloy-alumina composites

    KAUST Repository

    Nurani, Sheikh Jaber

    2016-03-10

    To obtain better mechanical and tribological properties than aluminium alloys aluminium is reinforced with alumina particles making aluminium metal matrix composites. In this work scrap piston A380 alloy was used as the matrix alloy. Alumina particles were added by 5%, 10% and 15% into matrix alloy respectively to form desired composites by stir casting technique. Pin on disc wear testing machine with counter surface as steel disc of hardness HRC 32 and surface roughness of 0.62 μm was used to conduct the wear test. In result composites showed superior wear resistance property over A380 alloy. The effect of load, sliding speed and sliding distance on wear behaviour were also examined in this study. Wear mechanism was identified from the worn surface. Both optical and scanning electron microscope (SEM) of the composites was performed to determine the microstructures. Optical micrograph shows grain size decreases with addition of alumina particles. EDS analysis was performed to confirm the presence of α-Al matrix, primary Si particles and intermetallic. As a general method, phase compositions were analyzed by using a scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS). Optical microstructures were consistent with the SEM micrographs. © 2015 IEEE.

  10. Wear and friction properties of experimental Ti-Si-Zr alloys for biomedical applications.

    Science.gov (United States)

    Tkachenko, Serhii; Datskevich, Oleg; Kulak, Leonid; Jacobson, Staffan; Engqvist, Håkan; Persson, Cecilia

    2014-11-01

    Titanium alloys are widely used in biomedical applications due to their higher biocompatibility in comparison to other metallic biomaterials. However, they commonly contain aluminum and vanadium, whose ions may be detrimental to the nervous system. Furthermore, they suffer from poor wear resistance, which limits their applications. The aim of this study was to evaluate the tribological performance of experimental Ti-1.25Si-5Zr, Ti-2.5Si-5Zr, Ti-6Si-5Zr and Ti-2.5Si-5Zr-0.2Pd alloys as compared to that of control Ti-6Al-4V, CoCr F75 and CoCr F799 alloys. Friction and wear tests were performed using a standard ball-on-disc rig in serum solution at ambient temperature with Si3N4-balls as counterparts. The alloys microstructure and hardness were investigated using optical microscopy, XRD, scanning electron microscopy (SEM) and Vickers indentation. The coefficients of friction of the experimental Ti-Si-Zr alloys were generally lower than the commercial ones with Ti-6Si-5Zr presenting the lowest value (approx. 0.1). Their wear rates were found to be 2-7 times lower than that of the commercial Ti-6Al-4V alloy, but still higher than those of the CoCr alloys. SEM analysis of worn surfaces showed that abrasion was the predominant wear mechanism for all studied materials. Wear and friction were influenced by the formation and stability of transfer layers, and while commercial Ti-6Al-4V as well as the experimental Ti-Si-Zr alloys demonstrated extensive material transfer to the ceramic counterparts, the CoCr alloys did not show such material transfer.

  11. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...

  12. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  13. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  14. Effect of molybdenum on the microstructure and wear resistance of Fe-based hardfacing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.H. [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)], E-mail: xinhongwang@sdu.edu.cn; Han, F. [Department of Mechanical and Electrical Engineering, College of Weifang, Weifang 261021 (China); Liu, X.M.; Qu, S.Y.; Zou, Z.D. [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2008-08-20

    Fe-based hardfacing alloys containing molybdenum compound have been deposited on AISI 1020 steel substrates by shield manual arc welding (SMAW) process. The effect of Mo on the microstructure and wear resistance of the Fe-based hardfacing alloys were investigated by means of X-ray diffraction, optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis, as well as wear test. The results indicated that cuboidal and rod-type complex carbides were synthesized in the lath martensite matrix. The fraction of carbides in hardfacing layer increased with an increasing of Mo content. The hardfacing layer with good cracking resistance and wear resistance could be obtained when the amounts of Fe-Mo was controlled within a range of 3-4 wt.%. The improvement of hardness and wear resistance of the hardfacing layers attributed to the formation of Mo{sub 2}C carbide and the solution strengthening of Mo.

  15. Microstructure and wear resistance of Fe -based hardfacing alloys reinforced by borides%硼化物强化铁基堆焊合金显微组织与耐磨性

    Institute of Scientific and Technical Information of China (English)

    宗琳; 宁建荣

    2012-01-01

    为了提高在严峻工况条件下工作的机械零件的耐磨性,采用等离子弧堆焊技术,制备硼化物强化铁基堆焊合金.借助OM,SEM和XRD等分析手段对合金组织和硼化物相形貌进行分析,并与未加入硼的Fe-Cr-C的堆焊合金进行对比.结果表明:堆焊合金中加入w(B)45%可改变基体的组织组成及硼化物的数量和分布形态,从而改善耐磨性.硼化物由大量菊花状M23(C,B)6和少量块状M7(C,B)3相组成,BC4与Cr2B的数量较少.耐磨粒磨损试验结果表明:堆焊合金的耐磨性随着硼含量的增加而先增大后下降,加入w(B)4.5%的堆焊层中形成的大量高硬度硼化物分布在具有较高强韧性的马氏体和奥氏体基体上,使其具有最佳的耐磨性,其磨损量仅为未加入硼时的1/6.%In order to improve the wear resistance of parts of machines in enviroments where they undergo severe conditions, Fe-based hardfacing alloy reinforced with borides were prepared under plasma transferred arc weld-surfacing process (PTA). The microstructure and borides morphology were investigated by means of OM, SEM and XRD, which was compared to the Fe-Cr-C hardfacing alloy. The results showed that the microstructure of the matrix and contents and distribution were changed as a result of the addition of 4.5% B in hardfacing alloys, which led to the improvement of wear resistance significantly. The borides consisted of high volume fraction of rosette M23(C,B)6 and little volume fraction of blocky M7(C B)3, the content of BC4 and Cr2B was very little. The abrasion experimental results showed that the wear resistance firstly increased and afterwards decreased as the B content increased, the microstructure characteristic with a high volume fraction of borides with high microhardness were distributed in the martensite and austenite matrix with high strength and toughness as the addition of 4.5%B in Fe-Cr-C hardfacing alloy, which suggested that the hardfacing layers had a

  16. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  17. Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys

    Science.gov (United States)

    Yan, Lina; Liu, Yong

    2016-06-01

    Owing to good biocompatibility, good fatigue resistance, and excellent superelasticity, various types of bio-medical devices based on NiTi shape memory alloy (SMA) have been developed. Due to the complexity in deformation mode in service, for example NiTi implants, accurate assessment/prediction of the surface wear process is difficult. This study aims at providing a further insight into the effect of deformation mode on the wear behavior of NiTi SMA. In the present study, two types of wear testing modes were used, namely sliding wear mode and reciprocating wear mode, to investigate the effect of deformation mode on the wear behavior of NiTi SMA in both martensitic and austenitic states. It was found that, when in martensitic state and under high applied loads, sliding wear mode resulted in more surface damage as compared to that under reciprocating wear mode. When in austenitic state, although similar trends in the coefficient of friction were observed, the coefficient of friction and surface damage in general is less under reciprocating mode than under sliding mode. These observations were further discussed in terms of different deformation mechanisms involved in the wear tests, in particular, the reversibility of martensite variant reorientation and stress-induced phase transformation, respectively.

  18. Microstructure, Impact Fatigue Resistance and Impact Wear Resistance of Wear Resistant Low Cr-Si Cast Iron

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A great amount of iron and steel has been consumed in impact wear resistance parts such as grinding balls and lining plates in tube mills. Under this working conditions, the failure of wear resistant white irons is generally caused by fatigue spalling. The martensitic high chromium cast iron (WCr=15 %) has good wear resistance, but its cost is higher. The impact wear resistance of low chromium cast iron sometimes is not good. In the present paper ,a new wear resistant material-low Cr-Si cast iron was introduced. The influence of microstructure of cast iron on impact fatigue resistance and impact wear resistance was discussed. The ball-on-ball impact fatigue test, the high stress impact wear test and the field test of the grinding balls have been carried out. The results showed that the impact fatigue resistance (IFR) and impact wear resistance (IWR) of low Cr-Si cast iron are superior to typical low chromium cast irons and close to the martensitic high chromium cast iron. The main reasons are: ① The as-cast matrix of the low Cr-Si cast iron with stress released is pearlite with better plasticity and toughness; ② The high Si content improves the morphology of eutectic carbide, and has no secondary carbide resulting in less crack sources. All these factors are beneficial to the improvement of impact fatigue spalling resistance and impact wear resistance.

  19. Corrosion and wear properties of electroless Ni-P plating layer on AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    LI Zhong-hou; CHEN Zhi-yong; LIU Sha-sha; ZHENG Feng; DAI A-gan

    2008-01-01

    A direct electroless Ni-P plating treatment was applied to AZ91D magnesium alloy for improving its corrosion resistance and wear resistance. Corrosion resistance of the Ni-P coatings was evaluated by potentiodynamic polarization and immersing experiments in 3.5% NaCl solution. The wear resistance of the coatings was investigated by the wear track and the mass change after ball-on-disk experiment. The results show that corrosion resistance and wear resistance of the AZ91D alloy are greatly improved after direct electroless Ni-P plating. No discoloration is noticed until 4 d of immersion in 3.5% NaCl solution. Potentiodynamic polarization experiments show that the free corrosion potential of magnesium alloy is shifted from -1 500 mV to -250 mV and passivation occurs at 1 350 mV after direct electroless plating. The friction coefficients and wear rates of Ni-P coating and Ni-P coating after tempering are 0.10-0.351, 9.038×10-3 mm3/m and 0.13-0.177, 3.056×10-4 mm3/m, respectively, at a load of 1.5 N with dry sliding. Although minor hurt on corrosion resistance was caused, significant improvement of wear resistance was obtained after tempering treatment of the coating.

  20. Dry sliding wear behavior of an extruded Mg–Dy–Zn alloy with long period stacking ordered phase

    Directory of Open Access Journals (Sweden)

    Guangli Bi

    2015-03-01

    Full Text Available The dry sliding wear behavior of extruded Mg-2Dy-0.5Zn alloy (at.% was investigated using a pin-on-disk configuration. The friction coefficient and wear rate were measured within a load range 20–760 N at a sliding velocity of 0.785 m/s. Microstructure and wear surface of alloy were examined using scanning electron microscopy. The mechanical properties of alloy were tested at room and elevated temperatures. Five wear mechanisms, namely abrasion, oxidation, delamination, thermal softening and melting dominated the whole wear behavior with increasing applied load. The extruded Mg-2Dy-0.5Zn alloy exhibited the better wear resistance as compared with as-cast Mg97Zn1Y2 alloy under the given conditions through contact surface temperature analysis. The improved wear resistance was mainly related to fine grain size, good thermal stability of long period stacking order (LPSO phase and excellent higher-temperature mechanical properties.

  1. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance; Desenvolvimento de uma liga de ferro fundido branco alto cromo com niobio, tratada termicamente, para resistencia ao desgaste abrasivo

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Alessandro Fraga

    1997-07-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  2. The effect of boron on the wear behavior of iron-based hardfacing alloys for nuclear power plants valves

    Science.gov (United States)

    Yoo, Jeong Wan; Lee, Seong Hun; Yoon, Chong S.; Kim, Seon Jin

    2006-06-01

    The effect of boron of Fe-Cr-C-Si alloys, replacing Stellite 6 traditionally used in nuclear power industry, on the high temperature wear resistance was characterized. Sliding wear tests of Fe-Cr-C-Si-xB (x = 0.3, 0.6, 1.0 and 2.0 wt%) alloys were performed in air at temperatures ranging from 300 to 725 K under a contact stress of 103 MPa. Low-boron alloys containing less than 0.6 wt% boron showed the excellent wear resistance than any other tested alloys in an elevated temperature. The improvement was associated with the matrix hardening by promotion of the γ → α‧ strain-induced martensitic transformation occurred during wear. In addition, protective oxide layers formed on the contacting surface reduced the wear loss by minimizing the direct metal-to-metal contact. However, high-boron alloys containing more than 1 wt% boron showed somewhat larger amount of wear loss than low-boron alloys due to the absence of the strain-induced martensitic transformation and the presence of the brittle FeB particles connected with easy crack initiation.

  3. Effect of high current pulsed electron beam treatment on wear resistance of WC-Co hard alloys%强流脉冲电子束处理对WC-Co硬质合金耐磨性的影响

    Institute of Scientific and Technical Information of China (English)

    任鑫; 曹丹凤; 徐洋; 郝胜智

    2015-01-01

    作为一种新型高效的表面改性技术,强流脉冲电子束( HCPEB)由于可以在极短时间内诱发的温度-应力耦合作用,改性层内组织细化并生成纳米新相WC1-x、Co3 W3 C、Co3 W9 C4和石墨,从而改善合金的理化性质以及力学性能等,达到表面强化的目的。本文研究了HCPEB表面改性处理后YG8、YG6X和YG6硬质合金耐磨性的变化情况。结果表明,23.4 kV、25次辐照处理后的YG8硬质合金耐磨性提高3倍;27 kV、20次辐照处理后YG6X的耐磨性提高6.4倍;27 kV、20次辐照处理后YG6硬质合金耐磨性提高4.4倍。 HCPEB处理后的WC-Co硬质合金的耐磨性均有明显提高。%High current pulsed electron beam has been proved to be an effective method for surface modification of materials in recent years. Along with the extremely high energy density deposition on the surface of material, the thermal and mechanical processes can make the rise of the non-equilibrium structure surface modification effect accompanied by the formation of a mixture of nano-grained WC1-x , Co3 W3 C, Co3 W9 C4 and graphite, and then the physical, chemical and mechanical properties were improved. The effect of high current pulsed electron beam treatment on wear resistance of WC-Co hard alloys coating such as YG8, YG6 and YG6X alloy was investigated. The results show that the YG8 hard alloy is used to modifying by 20 pulses high current pulsed electron beam under the condition of the accelerating voltage of 23. 4 kV, the wear resistance increases by a factor of 3 times compared with the original sample. After 20 pulses treatment by high current pulsed electron beam under the condition of the accelerating voltage of 27 kV, the wear resistance of the YG6 hard alloy raises by a factor of 6. 4 times, and the YG6X hard alloy’s wear resistance is increased by a factor of 4. 4 times.

  4. Effect of Microstructure on Impact Fatigue Resistance and Impact Wear Resistance of Medium Cr-Si Cast Iron

    Institute of Scientific and Technical Information of China (English)

    LI Wei

    2007-01-01

    A great amount of iron grinding balls in tube mills have been consumed. Under this impact abrasive wear working condition, the failure of wear resistant alloying white irons grinding balls is mainly caused by fatigue spalling. The impact wear resistance of martensitic high chromium cast iron (Cr of 15 %) is not high sometimes, but its cost is not low. Thus, medium Cr-Si wear resistant cast iron is recommended. The influence of the iron on impact fatigue resistance and impact wear resistance is pronounced. Ball-on-ball impact fatigue test and high stress impact wear test of the grinding balls have been carried out. The results show that the impact fatigue resistance (IFR) and impact wear resistance (IWR) of medium Cr-Si cast iron are superior to those of martensitic high chromium cast iron (Cr of 15%). The main reasons are that (1) the stress in medium Cr-Si cast iron is released in the as-cast state; (2)the matrix is fine pearlite with better toughness and plasticity; (3) the pearlite is more stable compared with a retained austenite under repeated impact load and less phase transformation can take place; (4) high silicon content improves the morphology of eutectic carbide; (5) there is no secondary carbide which results in less crack sources. All these factors are beneficial to improvement of impact fatigue spalling resistance. The eutectic carbide M7C3 is the main constituent to resist wear.

  5. Effect of carbonitride precipitates on the abrasive wear behaviour of hardfacing alloy

    Science.gov (United States)

    Yang, Ke; Yu, Shengfu; Li, Yingbin; Li, Chenglin

    2008-06-01

    Hardfacing alloy of martensitic stainless steel expect higher abradability to be achieved through the addition of nitrogen being provided by the fine scale precipitation of complex carbonitride particles. Niobium and titanium as the most effective carbonitride alloying elements were added in the Fe-Cr13-Mn-N hardfacing alloy to get carbonitride precipitates. Carbonitride was systematically studied by optical microscopy, scanning electronic microscopy and energy spectrum analysis. Abrasive wear resistance of hardfacing alloy in as-welded and heat-treated conditions was tested by using the belt abrasion test apparatus where the samples slide against the abrasive belt. It is found that carbonitride particles in the hardfacing alloy are complex of Cr, Ti and Nb distributing on the grain boundary or matrix of the hardfacing alloy with different number and size in as-welded and heat-treated conditions. A large number of carbonitrides can be precipitated with very fine size (nanoscale) after heat treatment. As a result, the homogeneous distribution of very fine carbonitride particles can significantly improve the grain-abrasion wear-resisting property of the hardfacing alloy, and the mass loss is plastic deformation with minimum depth of grooving by abrasive particles and fine delamination.

  6. Microstructure and wear resistance of high chromium cast iron containing niobium

    Directory of Open Access Journals (Sweden)

    Zhang Zhiguo

    2014-05-01

    Full Text Available In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the alloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.

  7. Brush seal shaft wear resistant coatings

    Science.gov (United States)

    Howe, Harold

    1995-03-01

    Brush seals suffer from high wear, which reduces their effectiveness. This work sought to reduce brush seal wear by identifying and testing several industry standard coatings. One of the coatings was developed for this work. It was a co-sprayed PSZ with boron-nitride added for a high temperature dry lubricant. Other coatings tested were a PSZ, chrome carbide and a bare rotor. Testing of these coatings included thermal shocking, tensile testing and wear/coefficient of friction testing. Wear testing consisted of applying a coating to a rotor and then running a sample tuft of SiC ceramic fiber against the coating. Surface speeds at point of contact were slightly over 1000 ft/sec. Rotor wear was noted, as well as coefficient of friction data. Results from the testing indicates that the oxide ceramic coatings cannot withstand the given set of conditions. Carbide coatings will not work because of the need for a metallic binder, which oxidizes in the high heat produced by friction. All work indicated a need for a coating that has a lubricant contained within itself and the coating must be resistant to an oxidizing environment.

  8. Corrosive wear behavior of 2014 and 6061 aluminum alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    Varma, S.K.; Andrews, S.; Vasquez, G. [Univ. of Texas, El Paso, TX (United States). Dept. of Metallurgical and Materials Engineering

    1999-02-01

    Alloys of 2014 and 6061 aluminum reinforced with 0.1 volume fraction of alumina particles (VFAP) were subjected to impact scratching during a corrosive wear process. The transient currents generated due to the impact were measured in the two composites as well as in their respective monoliths. The effect of solutionizing time on the transient currents was correlated to the near surface microstructures, scratch morphology, concentration of quenched-in vacancies, and changes in grain sizes. It was observed that the transient current values increase with an increase in solutionizing time, indicating that the corrosive wear behavior is not strongly affected by the grain boundaries. However, a combination of pitting and the galvanic corrosion may account for the typical corrosive wear behavior exhibited by the alloys and the composites of this study.

  9. THE USE OF THE METHOD OF SIMULATION MODELING TO ESTIMATE THE EFFECT OF STRUCTURE PARAMETERS ON THE WEAR RESISTANCE OF THE BEARINGS OF THE MOTORS OF ELECTRIC LOCOMOTIVES

    Directory of Open Access Journals (Sweden)

    Т. M. Meshcheriakova

    2008-03-01

    Full Text Available A method of structure simulation was used to investigate the influence of the hard phase quantity on parameters of the wear resistance of antifriction alloy B16. A method of optimization of linear intensity of wear depending on the quantitative correlation between the structural components is developed; the calculation data obtained correlate with the results of the wear resistance tests.

  10. Microstructure evolution and lubricant wear performance of laser alloyed layers on automobile engine chains

    Science.gov (United States)

    Sun, G. F.; Zhou, R.; Zhang, Y. K.; Yuan, G. D.; Wang, K.; Ren, X. D.; Wen, D. P.

    2014-10-01

    Wear resistant layers on nodular cast iron chains with C-B-W-Cr powders were fabricated by laser surface alloying (LSA). Microstructure, phases and lattice parameters, were investigated by means of optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. Micro-, nano-hardness and elastic modulus were measured with a Vickers microhardness tester and a nano-indendation tester. Lubricant sliding wear performance was performed on a ball-on-disk apparatus in ambient air using the straight line reciprocating wear form. Results indicate that microstructure of the alloyed layers changes from hyper-eutectic to hypo-eutectic, varing with laser specific energy. Nano-grain size and micro-hardness decrease while martensite lattice parameters increase with laser specific energy. Existence of graphite in the substrate increases the carbon content in the retained austenite to 1.59 wt%. Nano-hardness and elastic modulus of the alloyed layers are close. Friction and wear properties of the layers are improved by LSA compared with the substrate. Wear mechanism of them is illustrated.

  11. Polyurethanes from the crystalline prepolymers resistant to abrasive wear

    Directory of Open Access Journals (Sweden)

    Domańska Agata

    2014-12-01

    Full Text Available The research aimed at the selection of polyurethanes synthesized from poly(tetramethylene ether glycol (PTMEG, as well as from two different isocyanates 4,4′-methylenebis(cyclohexylisocyanate (HMDI and 4.4′-methylenebis(phenyl isocyanate (MDI in order to obtain polyurethane with increased resistance to abrasive wear and degradation for bio-medical application. Polyurethanes were fabricated from crystalline prepolymers extended by water. The paper presents preliminary results on polyurethane surface wettability, friction coefficient for different couples of the co-working materials such as polyurethane-polyurethane, polyurethane-titanium alloy, polyurethane-alumina, in comparison to commonly used polyethylene-titanium alloy. Shear strength of polyurethane-alumina joint, as well as viscosity of prepolymers were also measured. The values of friction coefficient were compared to literature data on commercially available polyurethane with the trade name Pellethane. Polyurethanes obtained are characterized by low abrasive wear and low friction coefficient in couple with the titanium alloy, what makes them attractive as possible components of ceramic-polymer endoprosthesis joints.

  12. Wear Resistant Rubber Tank Track Pads

    Science.gov (United States)

    1975-10-01

    stereospecific SBR (Stereon 750), SBR/polybutadiene blends (Fhilprene 1609/Cis-4 1350 (or Cis-4 1351), Ameripoi 1834/Ameripol CB 1352) and alfin ...polybutadiene blends has confirmed this improvement in tread wear. The uncertainty regarding the future commercial availibility of the alfin catalyzed...polybutadiene blend) (S212-2), and HYTRANS 1227-2S9-1 ( alfin catalyzed copolymer of butadiene/ styrene) (S223-4) to determine their effect on the resistance to

  13. Wear and Friction Characteristics of AlN/Diamond-Like Carbon Hybrid Coatings on Aluminum Alloy

    Science.gov (United States)

    Nakamura, Masashi; Kubota, Sadayuki; Suzuki, Hideto; Haraguchi, Tadao

    2015-10-01

    The use of diamond-like carbon (DLC) coatings has the potential to greatly improve the wear resistance and friction of aluminum alloys, but practical application has so far been limited by poor adhesion due to large difference in hardness and elasticity between the two materials. This study investigates the deposition of DLC onto an Al-alloy using an intermediate AlN layer with a graded hardness to create a hybrid coating. By controlling the hardness of the AlN film, it was found that the wear life of the DLC film could be improved 80-fold compared to a DLC film deposited directly onto Al-alloy. Furthermore, it was demonstrated through finite element simulation that creating a hardness gradient in the AlN intermediate layer reduces the distribution of stress in the DLC film, while also increasing the force of adhesion between the DLC and AlN layers. Given that both the DLC and AlN films were deposited using the same unbalanced magnetron sputtering method, this process is considered to represent a simple and effective means of improving the wear resistance of Al-alloy components commonly used within the aerospace and automotive industries.

  14. Research on Manufacturing Process for Complex Low-alloyed Wear-resisting Crusher Liner%多元低合金耐磨钢破碎机衬板制造工艺研究

    Institute of Scientific and Technical Information of China (English)

    李永堂; 付建华; 雷步芳; 贾璐; 匡利华; 程忠阳

    2013-01-01

    Crasher is widely used in electricity,building materials,metallurgy and mining industry.Crusher liner is the key component of crusher for bearing load.The operations efficiency and production cost of crusher are directly affected by the performance and service life of crusher liner.Therefore,crusher liner is required to have good mechanical properties,impact toughness and abrasive resistance.Aiming at the low wear resistance and short service life of commonly used crusher liner,a new type complex low-alloyed wear-resisting crusher liner is researched.According to the production process of crusher and the performance requirement of crusher liner,the chemical composition is devised.The casting process and heat treatment process are researched.Field trial manufacture and corresponding performance experimental investigation are performed.It is shown from the result of experiment that the Rockwell hardness of this complex low-alloyed wear-resisting steel is above 50 HRC and the impact toughness is above 18 J/cm2.So the liners have better mechanical performance and wear resistance.Production and industrial test shows that the service life of this new liner is much longer and the economic and social benefit is significant.%破碎机在电力、建材、冶金和矿山工业中应用非常广泛.衬板是破碎机上承受载荷的关键零部件,其性能和使用寿命直接影响着破碎机工作效率和生产成本,因此要求衬板具有良好的力学性能、良好的冲击韧度和耐磨性.针对目前国内破碎机衬板耐磨性差和寿命低的状况,研制一种新型多元低合金耐磨钢破碎机衬板.根据破碎机生产工艺和破碎板的性能要求,设计衬板材料的化学成分、制定铸造工艺和热处理工艺,进行现场试制和试验研究.试验结果表明,这种低合金耐磨钢的洛氏硬度达到50 HRC以上,冲击韧度达到18J/cm2以上,具有良好的力学性能和耐磨性.装机和工业试验证明,新型破碎机

  15. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse

    1996-01-01

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion...

  16. Investigation of the Wear and Hardness Behaviour of Aluminium Alloy Coated Using the Powder Flame Spraying Method

    Directory of Open Access Journals (Sweden)

    Nurullah KIRATLI

    2009-03-01

    Full Text Available In this study, the wear behavior of aluminum alloy AL 5754 ( Etial 53 coated with powders of 10Al-Cu alloy (RotoTec® 19850 and 15Cr7Fe-Ni alloy (RotoTec® 19985 using powder flame spraying method has been investigated. To avoid thermal expansions between substrate and coating materials, Ni-Al RotoTec® 51000 was used as binding material. The wear test was performed on a pin-on-disc test apparatus. As an abrasive material, a SiC, 800 sandpaper was used. The wear tests of coated materials were carried out at room temperature and at 1.0m/s sliding speed with 0.35 and 0.70MPa pressures. To characterize coated specimens, they have been examined with optical microscope. As a result, it is found that the both coating materials have improved wear resistance.

  17. 牙科钴铬合金表面镀氮化锆层后的耐磨性研究%Study on wear resistance of zirconium nitride coating on dental Co-Cr alloy

    Institute of Scientific and Technical Information of China (English)

    桑卓; 付玉; 毛艳; 古育娣; 蹇航

    2016-01-01

    ObjectiveTo provide a reference basics for the substrate surface treatment according to oral clinic requirements, the wear resistance of zirconium nitride coating on dental Co-Cr alloy was evaluated in this study.Methods Using the magnetron sputtering deposition technology, under a constant heating temperature (200℃),①constant sputtering power (100 w) with different nitrogen partial pressure (25%, 35%, 45%), and② constant nitrogen partial pressure (35%) with different supttering power (50w, 100w, 200w), the zirconium nitride coat-ing was deposited on the surface of dental Co-Cr ally. The wear resistances of two dental Co-Cr alloys with and without zirconium nitride coating were assessed and compared by wear resistance tests.Results The weight loss of test specimens with zirconium nitride coating was significantly less than the uncoated specimens (P<0.05). Under deposition conditions of constant sputtering power and substrate temperature, the weight loss reached the minimum when the nitrogen partial pressure was 35%. Under deposition conditions of constant nitrogen partial pressure and substrate temperature, the weight loss of dental Co-Cr alloy with coatings reached the lowest value when the power was 50w.Conclusion Under the suitable technological conditions, zirconium nitride coatings with excellent properties can be prepared on dental casting Co-Cr alloy by magnetron sputtering coating technology.%目的:评价钴铬(Co-Cr)合金表面经镀氮化锆膜后的耐磨损性,为口腔临床要求的基底表面处理方式提供参考依据。方法运用磁控溅射镀膜技术,设定基体加热温度200℃恒定,分别在①功率为100w、氮气分压选择为25%、35%、45%以及②氮气分压35%,功率为50w、100w、200w的条件下,在Co-Cr合金表面沉积氮化锆涂层,采用磨损试验机测试并比较氮化锆涂层和未镀膜之间的耐磨性能。结果镀氮化锆试件的失重量显著小于未镀膜试件(P<0.05).其中

  18. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    Science.gov (United States)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  19. Wear and Corrosion Properties of 316L-SiC Composite Coating Deposited by Cold Spray on Magnesium Alloy

    Science.gov (United States)

    Chen, Jie; Ma, Bing; Liu, Guang; Song, Hui; Wu, Jinming; Cui, Lang; Zheng, Ziyun

    2017-08-01

    In order to improve the wear and corrosion resistance of commonly used magnesium alloys, 316L stainless steel coating and 316L-SiC composite coating have been deposited directly on commercial AZ80 magnesium alloy using cold spraying technology (CS). The microstructure, hardness and bonding strength of as-sprayed coatings were studied. Their tribological properties sliding against Si3N4 and GCr15 steel under unlubricated conditions were evaluated by a ball-on-disk tribometer. Corrosion behaviors of coated samples were also evaluated and compared to that of uncoated magnesium alloy substrate in 3.5 wt.% NaCl solution by electrochemical measurements. Scanning electron microscopy was used to characterize the corresponding wear tracks and corroded surfaces to determine wear and corrosion mechanisms. The results showed that the as-sprayed coatings possessed higher microhardness and more excellent wear resistance than magnesium alloy substrate. Meanwhile, 316L and 316L-SiC coating also reduced the corrosion current density of magnesium alloy and the galvanic corrosion of the substrates was not observed after 200-h neutral salt spray exposure, which demonstrated that corrosion resistance of a magnesium alloy substrate could be greatly improved by cold-sprayed stainless steel-based coatings.

  20. Characterization of Al-12Si alloy and its composites in dry sliding friction and wear at elevated temperature

    Institute of Scientific and Technical Information of China (English)

    杜军; 刘耀辉; 于思荣; 王威

    2003-01-01

    Al-12Si alloy matrix composites reinforced with Al2O3 and carbon fibers respectively as well as with the two fibres were fabricated by squeeze-infiltration. The elevated temperature (about 400 ℃) friction and wear behaviors of Al-12Si alloy and its composites were investigated.The results show that the hybrid composites reinforced with Al2O3 and carbon fibres are of superior high temperature wear resistance.The critical transition temperature from mild wear to severe wear of the composites reinforced only with Al2O3 fiber is improved markedly compared with monolithic Al-12Si alloy, from 200 ℃ to 300 ℃.However, the critical transition temperature of the hybrid composites reinforced with Al2O3 and carbon fibers is improved further to 400 ℃.The reinforcing fibers have no significant effect on wear mechanisms of Al-12Si alloy.The dominant mechanisms are ploughing grooves and delamination as well as slight adhesion during mild wear regime.The subsurface consists of three regions:non-peeling delamination layer, microcrack formation and propagation zone, and unaffected zone.Whereas the dominant mechanism is shifted to severe wear when test temperature exceeds the critical transition temperature.

  1. High-temperature corrosion and wear properties of HVOF coatings of cobalt-based (CoCr) surfacing alloys

    Energy Technology Data Exchange (ETDEWEB)

    Raghu, D.; Lee, D.A.; Singh, P.M.

    1999-07-01

    High Velocity Oxy-Fuel (HVOF) thermal spraying is extensively used in industry to produce high-density, low porosity functional coatings to resist severe wear and corrosion. Increasingly there is a need to provide high-quality coatings that resist both wear and corrosion at high temperatures at the same time. Very few engineering data exist on such coatings. In this paper, a study of HVOF coatings of Co-Cr-Mo alloys, that relies on Laves phases or on carbides for wear and corrosion resistance is reported. The paper covers the basic metallurgy of the alloys, their design and microstructure. The oxidation and sulfidation resistances of the coatings are evaluated at 600 C. The high-temperature hardness and the room-temperature abrasion resistance, hardness and bond strengths are compared to assess their utility in high-temperature corrosion and wear-resistant applications. The test results indicate that these alloys are strong candidate materials for providing protection in the form of HVOF coatings, in high-temperature wear and corrosion environments.

  2. The Influence of Zn Content on the Corrosion and Wear Performance of Mg-Zn-Ca Alloy in Simulated Body Fluid

    Science.gov (United States)

    Li, Hua; Liu, Debao; Zhao, Yue; Jin, Feng; Chen, Minfang

    2016-09-01

    Mg-Zn-Ca alloy has been attracting increasing attention as a potential biodegradable implant material. In this paper, Mg-3Zn-0.2Ca and Mg-4Zn-0.2Ca alloys were prepared by means of vacuum melting and subsequent hot extrusion process. The influences of Zn content on the microstructure, mechanical properties, and corrosion and wear behavior of Mg-Zn-Ca alloys in simulated body fluid (SBF) were studied. The results show that with increased Zn content, the grain size and corrosion resistance were decreased, while the mechanical strength and wear resistance were increased, under both dry sliding and SBF-lubricated conditions. For the same Mg-Zn-Ca alloy, the wear loss rate under SBF lubrication was higher than dry sliding condition, indicating a strong corrosion-assisted wear effect of SBF to the Mg-Zn-Ca alloy.

  3. Abrasive Wear of Alloyed Cast Steels Applied for Heavy Machinery

    Directory of Open Access Journals (Sweden)

    Studnicki A.

    2015-03-01

    Full Text Available In the paper the results and analysis of abrasive wear studies were shown for two grades of cast steels: low-alloyed cast steel applied for heavy machinery parts such as housing, covers etc. and chromium cast steels applied for kinetic nodes of pin-sleeve type. Studies were performed using the modified in Department of Foundry pin-on-disc method.

  4. The Effect of Aluminum Content on the Microstructure and Cavitation Wear of Feal Intermetallic Alloys

    Directory of Open Access Journals (Sweden)

    Jasionowski Robert

    2014-03-01

    Full Text Available Intermetallic-based alloys (so called intermetallics of the Fe-Al binary system are modern construction materials, which in recent decades have found application in many branches of the power, chemical and automotive industries. High resistance of FeAl based alloys to cavitational erosion results first of all from their high hardness in the as-cast state, large compressive stresses in the material, as well as homogeneous structure. In the present paper, the effect of aluminum content on the microstructure, texture and strain implemented upon cavitation wear of FeAl intermetallic alloys, have been analyzed by field emission gun scanning electron microscopy (FEG SEM and electron backscatter diffraction (EBSD analysis. Obtained results of structural characterization indicates that with increasing aluminium content effects of orientation randomization (weakening of //ND casting texture, grain refinement and rising of mechanical strenght (and so cavitational resistance take place.

  5. Wear and Corrosion Properties of Mo Surface-modiifed Layer in TiNi Alloy Prepared by Plasma Surface Alloying

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongqian; WANG Zhenxia; YANG Hongyu; SHAN Xiaolin; LIU Xiaoping; YU Shengwang; HE Zhiyong

    2016-01-01

    In order to improve the wear resistance and restrain nickel release of TiNi alloys, the Mo modified layers on TiNi substrates were obtained using the double glow plasma surface alloying technique. Scanning electron microscopy (SEM), glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD) were employed to investigate the morphology, composition and structure. Microhardness test and scratch test were performed to analyze the microhardness and coating/substrate adhesion. Tribological and electrochemical behaviors of the Mo modified layers on TiNi were tested by the reciprocating wear instrument and electrochemical measurement system. The Ni concentrations in Hanks’ solution where surface electrochemical tests took place were measured by mass spectrometry. The surface-modiifed layer contained a Mo deposition layer and a Mo diffusion layer. The X-ray diffraction analysis revealed that the modiifed layers were composed of Mo, MoTi, MoNi, and Ti2Ni. The microhardnesses of the Mo modiifed layers treated at 900℃and 950℃ were 832.8 HV and 762.4 HV, respectively, which was about 3 times the microhardness of the TiNi substrate. Scratch tests indicated that the modified layers possessed good adhesion with the substrate. Compared with as-received TiNi alloy, the modiifed alloys exhibited signiifcant improvement of wear resistance against Si3N4 with low normal loads during the sliding tests. Mass spectrometry displayed that the Mo alloy layers had successfully inhibited the Ni release into the body.

  6. Correlation between Wear Resistance and Lifetime of Electrical Contacts

    Directory of Open Access Journals (Sweden)

    Jian Song

    2012-01-01

    Full Text Available Electrical contacts are usually plated in order to prevent corrosion. Platings of detachable electrical contacts experience wear because of the motion between contacts. Once the protecting platings have been worn out, electrical contacts will fail rapidly due to corrosion or fretting corrosion. Therefore the wear resistance of the platings is a very important parameter for the long lifetime of electrical contacts. Many measures which improve the wear resistance can diminish the conductivity of the platings. Due to the fact that platings of electrical contacts must have both a high wear resistance and a high electrical conductivity, the manufacturing of high performance platings of electrical contacts poses a great challenge. Our study shows firstly the correlation between the wear resistance of platings and lifetime of electrical contacts and then the measures, which improve the wear resistance without impairing the electrical performance of the contacts.

  7. Wear and impact resistance of HVOF sprayedceramic matrix composites coating

    Science.gov (United States)

    Prawara, B.; Martides, E.; Priyono, B.; Ardy, H.; Rikardo, N.

    2016-02-01

    Ceramic coating has the mechanical properties of high hardness and it is well known for application on wear resistance, but on the other hand the resistance to impact load is low. Therefore its use is limited to applications that have no impact loading. The aim of this research was to obtain ceramic-metallic composite coating which has improved impact resistance compared to conventional ceramic coating. The high impact resistance of ceramic-metallic composite coating is obtained from dispersed metallic alloy phase in ceramic matrix. Ceramic Matrix Composites (CMC) powder with chrome carbide (Cr3C2) base and ceramic-metal NiAl-Al2O3 with various particle sizes as reinforced particle was deposited on mild steel substrate with High Velocity Oxygen Fuel (HVOF) thermal spray coating. Repeated impact test showed that reinforced metallic phase size influenced impact resistance of CMC coating. The ability of CMC coating to absorb impact energy has improved eight times and ten times compared with original Cr3C2 and hard chrome plating respectively. On the other hand the high temperature corrosion resistance of CMC coating showed up to 31 cycles of heating at 800°C and water quenching cooling.

  8. Wear Performance of Cu-Alloyed Austempered Ductile Iron

    Science.gov (United States)

    Batra, Uma; Batra, Nimish; Sharma, J. D.

    2013-04-01

    An investigation was carried out to examine the influence of structural and mechanical properties on wear behavior of austempered ductile iron (ADI). Ductile iron (DI) samples were austenitized at 900 °C for 60 min and subsequently austempered for 60 min at three temperatures: 270, 330, and 380 °C. Microstructures of the as-cast DI and ADIs were characterized using optical and scanning microscopy, respectively. The structural parameters, volume fraction of austenite, carbon content of austenite, and ferrite particle size were determined using x-ray diffraction technique. Mechanical properties including Vicker's hardness, 0.2% proof strength, ultimate tensile strength, ductility, and strain hardening coefficient were determined. Wear tests were carried out under dry sliding conditions using pin-on-disk machine with a linear speed of 2.4 m/s. Normal load and sliding distance were 45 N and 1.7 × 104 m, respectively. ADI developed at higher austempering temperature has large amounts of austenite, which contribute toward improvement in the wear resistance through stress-induced martensitic transformation, and strain hardening of austenite. Wear rate was found to depend on 0.2% proof strength, ductility, austenite content, and its carbon content. Study of worn surfaces and nature of wear debris revealed that the fine ausferrite structure in ADIs undergoes oxidational wear, but the coarse ausferrite structure undergoes adhesion, delamination, and mild abrasion too.

  9. Microstructures and wear properties of surface treated Ti–36Nb–2Ta–3Zr–0.35O alloy by electron beam melting (EBM)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zijin [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Yong, E-mail: yonliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Wu, Hong, E-mail: wuhong927@126.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Zhang, Weidong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Guo, Wei [Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf 40237 (Germany); Tang, Huiping; Liu, Nan [State Key Laboratory of Porous Metals Materials, Northwest Institute for Non-Ferrous Metal Research, Xi’an 710016 (China)

    2015-12-01

    Highlights: • Gum metal was firstly modified via electron beam melting method. • The surface hardness and the wear resistance of TNTZO alloys are significantly increased through EBM process. • The phase constitutions and microstructural features of EBM treated TNTZO alloys are sensitive to the processing parameters. • The relationship between the wear property and the surface microstructure of TNTZO alloy is discussed. - Abstract: Ti–36Nb–2Ta–3Zr–0.35O (wt.%) (TNTZO, also called gum metal) alloy was surface treated by electron beam melting (EBM), in order to improve wear properties. The microstructures and phase constitutions of the treated surface were characterized by optical microscopy (OM), scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GIXD) and electron backscattered diffraction (EBSD). The results showed that the martensitic phase and dendrites were formed from the β phase alloy after the EBM treatment, and microstructures in the surface changed with the processing parameters. Compared with the untreated TNTZO alloy, the surface modified TNTZO alloys exhibited higher nano-hardness, 8.0 GPa, and the wear loss was also decreased apparently. The samples treated at a scanning speed of 0.5 m/s exhibited the highest wear resistance due to the fast cooling rate and the precipitation of acicular α″ phase. The relationship between the wear property and the surface microstructure of TNTZO alloy was discussed.

  10. Mechanical and Wear Properties of SiC/Graphite Reinforced Al359 Alloy-based Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    Shubhranshu Bansal

    2015-07-01

    Full Text Available Al359 alloy was reinforced with Silicon Carbide and Silicon Carbide/Graphite particles using stir casting process. Thereafter their mechanical and wear properties were investigated. It was found that the hardness of the Al359-Silicon Carbide composite is better than Al359-Silicon Carbide-Graphite composite. The Silicon Carbide/Graphite reinforced composite exhibits a superior ultimate tensile strength against Silicon Carbide reinforced composite. The wear test was conducted at different loading, sliding velocities and sliding distances conditions. Results showed that the wear resistance of Al359 alloy increased with the reinforcement of Silicon Carbide/Graphite material for higher loading, sliding velocities and sliding distance conditions. SEM images of the worn surface of the pin were examined to study their wear mechanism.Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 330-338, DOI: http://dx.doi.org/10.14429/dsj.65.8676

  11. Influence of rotational speed during centrifugal casting on sliding wear behaviour of the Al-2Si alloy

    Institute of Scientific and Technical Information of China (English)

    P. G. MUKUNDA; A. SHAILESH RAO; Shrikantha S. RAO

    2009-01-01

    The microstructures and dry sliding wearbehaviour of an Al-2Si alloy cast centrifugally are studied. Results indicate that at optimum speed the cast has a microstructure consisting of uniformly distributed α-Al grains and fine eutectic silicon grains. The cast exhibited better wear resistance compared to the same cast prepared at different rpms. This paper attempts to investigate the influence of the microstructural changes in the Al-2Si alloy by varying the rotational speed of the mould and its combined action on the dry sliding wear behaviour.

  12. Microstructural features controlling the dry sliding wear response of some bearing alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, B.K.; Yegneswaran, A.H. [Regional Res. Lab. (CSIR), Habibganj Naka (India); Patwardhan, A.K. [Roorkee Univ. (India). Dept. of Metallurgical Engineering

    1997-10-01

    This investigation examines the influence of microstructural features on the dry sliding wear characteristics of some plain bearing alloys. Three different alloys were selected for the study: a leaded-tin bronze, an Al bronze and a Zn-based alloy processed under identical conditions. The wear characteristics of the alloys are explained in terms of the load bearing capability, microcracking tendency, thermal stability and lubricating properties of their microconstituents and the sliding conditions. Wear surfaces, subsurface regions and debris are examined to understand the material removal mechanisms during the process of wear. (orig.) 37 refs.

  13. Comparative Study of Wear Resistance of Sewing Needles

    Institute of Scientific and Technical Information of China (English)

    FEI Dong-ye; ZHU Shi-gen

    2002-01-01

    Poor wearability is the most serious problem of domestic sewing needle, which is the main reason for their short service lives. The influences of needle materials,microstructures and manufacturing technologies on the wear resistance are analyzed in comparison with foreign sewing needles. A series of suitable measures are proposed to improve the wear resistance.

  14. Dry sliding wear of Ni alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    E. Akbarzadeh Chiniforush

    2016-09-01

    Full Text Available Measurements of dry sliding wear are presented for ductile irons with composition Fe-3.56C-2.67Si-0.25Mo-0.5Cu and Ni contents of 0.8 and 1.5 in wt.% with applied loads of 50, 100 and 150 N for austempering temperatures of 270, 320, and 370 °C after austenitizing at 870 °C for 120 min. The mechanical property measurements show that the grades of the ASTM 897M: 1990 Standard can be satisfied for the selected austempering conditions. The results show that wear resistance is independent of austempering temperature with an applied load of 50 N, but there is a strong dependence at higher austempering temperatures with applied loads of 100 and 150 N. Observations indicate that wear is due to subsurface fatigue with cracks nucleated at deformed graphite nodules.

  15. Microstructure and wear resistance of in situ porous TiO/Cu composites

    Science.gov (United States)

    Qin, Qingdong; Huang, Bowei; Li, Wei

    2016-07-01

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti2CO and Cu powder. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. Dry sliding un-lubricated wear tests show that the wear resistance of the composite is higher than that of the Cu-Al alloy ingot. The coefficient of friction test shows that, as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear rate variation trend of the oil-lubricated wear test results is similar to that of the un-lubricated wear test results. The coefficient of friction for oil lubrication is similar for different volume fractions of the reinforced phase. The wear resistance of the composite at a sliding velocity of 200 rpm is slightly larger than that at 50 rpm. The porosity of the composites enhances the high-velocity oil-lubricated sliding wear resistance.

  16. Wear mechanism of electrodeposited amorphous Ni-Fe-P alloys

    Institute of Scientific and Technical Information of China (English)

    高诚辉; 赵源

    2004-01-01

    The wear mechanism of amorphous Ni-Fe-P coating was discussed. The wear resistance of the amor phous Ni-Fe-P coatings was tested on a Timken wear apparatus, and the wear track of the amorphous Ni-Fe-P coat ings as-deposited and heated at various temperatures was observed by SEM. The results show that the wear resistthe coating will change with the heating temperature increasing from pitting+plowing at 200 ℃ to pitting at 400 ℃,and to plowing at 600 ℃. The pits on the worn surface of the amorphous Ni-Fe-P coating result from the tribo-fatigue fracture. The cracks of spalling initiate at pits and propagate at certain angle with the sliding direction on sur face, and then extend into sub-surface along the poor P layers or the interface between layers. Finally under repeated action of the stress in the rubbing process the cracks meet and the debris forms. The generation of the pits and spal-ling is related with the internal stress, brittleness and layer structure of the amorphous Ni-Fe-P coating.

  17. Structure and tensile/wear properties of microarc oxidation ceramic coatings on aluminium alloy

    Institute of Scientific and Technical Information of China (English)

    魏同波; 阎逢元; 刘维民; 田军

    2004-01-01

    Thick and hard ceramic coatings were prepared on the Al-Cu-Mg alloy by microarc oxidation in alkali-silicate electrolytic solution. The thickness and microhardness of the oxide coatings were measured. The influence of current density on the growth rate of the coating was examined. The microstructure and phase composition of the coatings were investigated by means of scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Moreover, the tensile strength of the Al alloy before and after microarc oxidation treatment were tested,and the fractography and morphology of the oxide coatings were observed using scanning electron microscope. It is found that the current density considerably influences the growth rate of the microarc oxidation coatings. The oxide coating is mainly composed of α-Al2 O3 and γ-Al2 O3, while high content of Si is observed in the superficial layer of the coating. The cross-section microhardness of 120 μm thick coating reaches the maximum at distance of 35 μm from the substrate/coating interface. The tensile strength and elongation of the coated Al alloy significantly decrease with increasing coating thickness. The microarc oxidation coatings greatly improve the wear resistance of Al alloy,but have high friction coefficient which changes in the range of 0.7 - 0.8. Under grease lubricating, friction coefficient is only 0.15 and wear loss is less than 1/10 of the loss under dry friction.

  18. Study on Wear Resistance of WC Particulate Reinforced Steel Matrix Composite Prepared by Mechanical Alloying and Spark-plasma Sintering%MA-SPS法制备WC颗粒增强钢基复合材料的耐磨性研究

    Institute of Scientific and Technical Information of China (English)

    谢金乐; 刘允中; 吴汇江; 肖文华

    2011-01-01

    采用机械合金化和放电等离子体法(MA-SPS)制备了WC颗粒增强钢基复合材料,对复合材料的组织形貌、耐磨性及耐磨机理进行研究.结果表明:该方法改善了复合材料的组织形貌,晶粒比较细小且均匀;同时显著提高了材料的硬度和耐磨性,随WC含量的增加,复合材料的致密度、硬度和耐磨性增加,最高硬度达70 HRC,相比基体材料的耐磨性提高了8倍;该材料的主要磨损机制为粘着磨损和磨粒磨损.%WC participate reinforced steel matrix composite was prepared by MA-SPS (mechanical alloying and spark plasma sintering). The morphology, wear resistance and wear mechanism of the composite were studied. The results indicate that the method significantly improves the morphology. The size and distribution of the grain is very small and uniform, respectively. With the increase of WC content, the relative density, hardness and wear resistance of the composite increase. The maximum hardness is up to 70 HRC and the highest wear resistance of the composite is 8 times higher than that of the steel matrix. The main wear mechanism is adhesive wear and abrasive wear.

  19. Effect of high-intensity ultrasonic treatment on microstructure, hardness and wear behaviour of the hypereutectic Mg-5Si alloy

    Science.gov (United States)

    Moussa, M. E.; Waly, M. A.; El-Sheikh, A. M.

    2016-07-01

    The effect of high-intensity ultrasonic treatment (HIUST) on microstructure, hardness and wear behavior in Mg-5wt.%Si hypereutectic alloy has been investigated. The results showed clearly that without HIUST, most of primary Mg2Si appeared as coarse dendritic morphology with average size of about 200 µm. With HIUST, the average size of primary Mg2Si decreased significantly to about 33 µm and their morphologies changed to polyhedral shape. The modification mechanism is mainly attributed conjugation of two mechanisms: cavitation-enhanced heterogeneous nucleation and cavitation-induced dendrite fragmentation. The alloy treated with HIUST has higher hardness and wear resistance than that untreated with HIUST. The wear mechanism of investigated alloys at low applied load (10 N) and low sliding speed (0.3 m/s) is a mild abrasive oxidative wear with little adhesion. However, the wear mechanism due to the applied high loads (30, 50 N) at low sliding speed (0.3 m/s) and/or to the applied high sliding speeds (0.6, 0.9 m/s) under low load (10 N), could be described as delamination mechanism. The microstructures of the specimens were analyzed by optical microscope (OM) (model OPTIKA M-790, Italy). Energy dispersion spectrum (EDS) affiliated to field emission scanning electron microscopy (FESEM) (model Quanta FEG, The Netherlands) were performed to reveal the concentration of alloying elements in selected areas of the microstructure.

  20. Fretting Wear Behavior of Tin Plated Contacts:. Influence on Contact Resistance

    Science.gov (United States)

    Park, Young Woo; Sankara Narayanan, T. S. N.; Lee, Kang Yong

    The fretting wear behavior of tin plated copper alloy contacts and its influence on the contact resistance are addressed in this paper. Based on the change in the area of contact zone as well as the wear depth as a function of fretting cycles, a model was proposed to explain the observed low and stable contact resistance. The extent of wear of tin coating and the formation of wear debris as a function of fretting cycles were assessed by scanning electron microscopy (SEM). Energy dispersive X-ray line scanning (EDX), X-ray mapping, and EDX spot analysis were employed to characterize the nature of changes that occur at the contact zone. The study reveals that the fretted area increases linearly up to 8000 cycles due to the continuous removal of the tin coating and attains saturation when the fretting path length reaches a maximum. The observed low and stable contact resistance observed up to 8000 cycles is due to the common area of contact which provides an electrically conducting area. Surface analysis by SEM, EDX, and X-ray elemental mapping elucidate the nature of changes that occurred at the contact zone. Based on the change in contact resistance as a function of fretting cycles, the fretting wear and fretting corrosion dominant regimes are proposed. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behavior of tin plated contacts.

  1. 医用钛合金热氧化处理工艺及其耐磨损、耐腐蚀性能和生物活性的研究进展%Research progress on thermal oxidation process and wear, corrosion resistance and bioactivity of biomedical grade titanium alloy

    Institute of Scientific and Technical Information of China (English)

    王松; 廖振华; 刘伟强

    2014-01-01

    热氧化处理可改善医用钛合金耐磨损、耐腐蚀及生物活性等性能,为研发新一代人工关节耐磨涂层提供了希望。结合笔者研究结果探索了热氧化钛合金的薄膜生长机理及工艺参数优化,综述了热氧化处理对医用钛合金耐磨损、耐腐蚀及生物活性改进的研究进展,最后对氧化膜失效机理及发展趋势进行了总结和展望。%The thermal oxidation treatment can improve the wear resistance, corrosion resistance and biological activity of medical titanium alloy and provides new hope for the development of the long lifetime artificial joints. The coating growth mechanism and process parameters optimization of thermally oxidized titanium alloy were studied based on our research results. Then, the research progress on the improvement of wear resistance, corrosion resistance and biological activity of thermally oxidized biomedical titanium alloy was reviewed. Finally, the failure mechanism and development trend were summarized and prospected.

  2. Wear Resistance of H13 and a New Hot-Work Die Steel at High temperature

    Science.gov (United States)

    Li, Shuang; Wu, Xiaochun; Chen, Shihao; Li, Junwan

    2016-07-01

    The friction and wear behaviors of a new hot-work die steel, SDCM-SS, were studied at high temperature under dry air conditions. The wear mechanism and microstructural characteristics of the SDCM-SS steel were also investigated. The results showed that the SDCM-SS steel had greater wear resistance compared with H13 steel; this was owed to its high oxidizability and temper stability. These features facilitate the generation, growth, and maintenance of a tribo-oxide layer at high temperature under relatively stable conditions. The high oxidizability and thermal stability of the SDCM-SS steel originate from its particular alloy design. No chromium is added to the steel; this ensures that the material has high oxidizability, and facilitates the generation of tribo-oxides during the sliding process. Molybdenum, tungsten, and vanadium additions promote the high temper resistance and stability of the steel. Many fine Mo2C and VC carbides precipitate during the tempering of SDCM-SS steel. During sliding, these carbides can delay the recovery process and postpone martensitic softening. The high temper stability postpones the transition from mild to severe wear and ensures that conditions of mild oxidative wear are maintained. Mild oxidative wear is the dominant wear mechanism for SDCM-SS steel between 400 and 700 °C.

  3. Mechanical Properties and Friction/Wear Behavior of Copper Alloyed Powder Composites

    Institute of Scientific and Technical Information of China (English)

    DENG Chen-hong; CHEN Guang-zhi; GE Qi-lu

    2005-01-01

    Copper alloyed powder composites containing nanoparticles were developed by hot pressing. Effects of nanoscale activated sintering aid and fine ceramic particles Al2O3 on hardness, working quality, and behaviors of friction and wear of the composites have been studied, compared with the composites including microscale activated sintering aid and microscale ceramic particles. The microstructures of the samples were analyzed by SEM. The results show that the materials with nanoscale sintering aid and fine ceramic particles have better mechanical properties and abrasive resistance than the materials with microscale activated sintering aid and microceramic particles. Moreover, element mutual transfer occurs between samples (strip) and abrasive wheel (ring).

  4. Microstructure-Wear Resistance Correlation and Wear Mechanisms of Spark Plasma Sintered Cu-Pb Nanocomposites

    Science.gov (United States)

    Sharma, Amit Siddharth; Biswas, Krishanu; Basu, Bikramjit

    2014-01-01

    The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (~1.5 × 10-6 mm3/Nm) and a modest COF (~0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (~2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall-Petch-like relationship with grain size of nanocrystalline Cu.

  5. Characteristics of high wear resistant Ni-base materials strengthened by precipitation hardening of wolfram silicide

    Energy Technology Data Exchange (ETDEWEB)

    Kiuchi, Kiyoshi; Ide, Hisayuki; Ishiyama, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-12-31

    The practical application of Co-base Stellite and Ni base Inconel for reactor core components with high allowable stress levels is considered to be limited by the formation of radioactive cruds and the susceptibility to IASCC respectively. For this view-point, W-silicide strengthened Cr-W-Si Ni-base high wear resistant alloy so-called HWI alloy was newly developed as an alternative material. The chemical composition and the alloy making process were optimized by applying the electron beam purification process and the thermo-mechanical treatment. The mechanical strength higher than it of above commercial alloys was easily obtained by both solid solution hardening and precipitation hardening, because this alloy has the excellent cold and hot workabilities. The irradiation resistance and the corrosion resistance superior than these of above commercial alloys were verified by several laboratory tests of HWI heats. To maintain austenite phase stability at the practical temperature and to enrich oxide former alloying elements were clarified to be the most important means for this alloy development. (author)

  6. Effect of PostNitride Annealing on Wear and Corrosion Behavior of Titanium Alloy Ti-6Al-4V

    Science.gov (United States)

    Anandan, C.; Mohan, L.

    2016-10-01

    Titanium alloy, Ti-6Al-4V, was plasma nitrided using RF plasma with 100% N at 800 °C and annealed at 850 °C in vacuum. XRD and XPS studies show the formation of titanium nitrides after nitriding and redistribution of nitrogen after annealing. Potentiodynamic polarization and electrochemical impedance spectroscopy studies in Hank's solution show that nitriding decreases the corrosion resistance of the substrate and postnitride annealing improves the corrosion resistance of the nitrided samples. After nitriding, wear rate has decreased by an order of magnitude in reciprocating wear experiments and decreased further in annealed samples in comparison with that of substrate. Thus, postnitride annealing improves both corrosion and wear resistance of the nitrided sample. These improvements are attributed to redistribution of nitrogen and formation of a thin oxide layer on the sample due to annealing.

  7. Wear Behavior of Mechanically Alloyed Ti-Based Bulk Metallic Glass Composites Containing Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    2016-11-01

    Full Text Available The present paper reports the preparation and wear behavior of mechanically alloyed Ti-based bulk metallic glass composites containing carbon nanotube (CNT particles. The differential scanning calorimeter results show that the thermal stability of the amorphous matrix is affected by the presence of CNT particles. Changes in glass transition temperature (Tg and crystallization temperature (Tx suggest that deviations in the chemical composition of the amorphous matrix occurred because of a partial dissolution of the CNT species into the amorphous phase. Although the hardness of CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composites is increased with the addition of CNT particles, the wear resistance of such composites is not directly proportional to their hardness, and does not follow the standard wear law. A worn surface under a high applied load shows that the 12 vol. % CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composite suffers severe wear compared with monolithic Ti50Cu28Ni15Sn7 bulk metallic glass.

  8. Microstructure and abrasion wear behavior of Ni-based laser cladding alloy layer at high temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; LIU Su-qin; WANG Shun-xing

    2005-01-01

    Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high temperature by changing compositions and temperatures were investigated by means of optical microscope and scanning electron microscope. Among the three compositions of cladding layer, i.e. Ni21+20%WC+0.5%CeO2, Ni25+20%WC+0.5%CeO2 and Ni60+20%WC+0.5%CeO2, the experimental results show that Ni21+20%WC+0.5%CeO2 cladding layer is made up of finer grains, and presents the best abrasion wear behavior at high temperature. The wear pattern of laser cladding layer is mainly grain abrasion at lower temperature, and it would be changed to adhesive abrasion and oxide abrasion at higher temperature.

  9. Surface Roughness and Tool Wear on Cryogenic Treated CBN Insert on Titanium and Inconel 718 Alloy Steel

    Science.gov (United States)

    Thamizhmanii, S.; Mohideen, R.; Zaidi, A. M. A.; Hasan, S.

    2015-12-01

    Machining of materials by super hard tools like cubic boron nitride (cbn) and poly cubic boron nitride (pcbn) is to reduce tool wear to obtain dimensional accuracy, smooth surface and more number of parts per cutting edge. wear of tools is inevitable due to rubbing action between work material and tool edge. however, the tool wear can be minimized by using super hard tools by enhancing the strength of the cutting inserts. one such process is cryogenic process. this process is used in all materials and cutting inserts which requires wear resistance. the cryogenic process is executed under subzero temperature -186° celsius for longer period of time in a closed chamber which contains liquid nitrogen. in this research, cbn inserts with cryogenically treated was used to turn difficult to cut metals like titanium, inconel 718 etc. the turning parameters used is different cutting speeds, feed rates and depth of cut. in this research, titanium and inconel 718 material were used. the results obtained are surface roughness, flank wear and crater wear. the surface roughness obtained on titanium was lower at high cutting speed compared with inconel 718. the flank wear was low while turning titanium than inconel 718. crater wear is less on inconel 718 than titanium alloy. all the two materials produced saw tooth chips.

  10. RESEARCH AND APPLICATION OF AS-CAST WEAR RESISTANCE HIGH CHROMIUM CAST IRON

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The influence of alloy elements, such as boron and silicon, on the microstructure and properties of as-cast high chromium cast iron is studied. The results show that boron and silicon have a great effect on the mechanical properties and the wear resistance. Through proper addition of boron and silicon, the properties of as-cast high chromium cast iron can be improved effectively. Through analyzing the distribution of elements by scanning electron microscope, it has been shown that the addition of boron and silicon lowers the mass fraction of chromium saturated in as-cast austenite, and makes it unstable and liable to be transformed into martensite. The as-cast high chromium cast iron with proper content of boron and silicon is suitable for the manufacture of lining for asphalt concrete mixer and its wear resistance is 14 times that of lining made of low alloy white cast iron.

  11. Wear resistance of laser cladding and plasma spray welding layer on stainless steel surface

    Institute of Scientific and Technical Information of China (English)

    Xinlin Wang(王新林); Shihong Shi(石世宏); Qiguang Zheng(郑启光)

    2004-01-01

    The effect of coatings, which are formed with laser cladding and plasma spray welding on 1Cr18Ni9Ti base metal, on wear resistance is studied, A 5-kW transverse flowing CO2 laser is used for cladding Co base alloy powder pre-placed on the substrate. Comparing with the plasma spray coatings, the spoiled rate of products with laser clad layers was lower and the rate of finished products was higher. Their microstructure is extremely fine. They have close texture and small size grain. Their dilution resulting from the compositions of the base metal and thermal effect on base metal are less. The hardness, toughness,and strength of the laser cladding layers are higher. Wear tests show that the laser layers have higher properties of anti-friction, anti-scour and high-temperature sliding strike. The wear resistance of laser clad layers are about one time higher than that of plasma spray welding layer.

  12. Predominant factor determining wear properties of β-type and (α+β)-type titanium alloys in metal-to-metal contact for biomedical applications.

    Science.gov (United States)

    Lee, Yoon-Seok; Niinomi, Mitsuo; Nakai, Masaaki; Narita, Kengo; Cho, Ken

    2015-01-01

    The predominant factor determining the wear properties of a new titanium alloy, Ti-29Nb-13Ta-4.6Zr (TNTZ) and a conventional titanium alloy, Ti-6Al-4V extra-low interstitial (Ti64) was investigated for TNTZ and Ti64 combinations in metal-to-metal contacting bio-implant applications. The worn surfaces, wear debris, and subsurface damages were analyzed using a scanning electron microscopy combined with energy-dispersive spectroscopy and electron-back scattered diffraction analysis. The volume loss of TNTZ is found to be larger than that of Ti64, regardless of the mating material. The wear track of TNTZ exhibits the galled regions and severe plastic deformation with large flake-like debris, indicative of delamination wear, which strongly suggests the occurrence of adhesive wear. Whereas, the wear track of Ti64 have a large number of regular grooves and microcuttings with cutting chip-like wear debris and microfragmentation of fine oxide debris, indicative of abrasive wear combined with oxidative wear. This difference in the wear type is caused by severe and mild subsurface deformations of TNTZ and Ti64, respectively. The lower resistance to plastic shearing for TNTZ compared to that of Ti64 induces delamination, resulting in a higher wear rate.

  13. WEAR-RESISTANCE OF CHROMIC CAST IRONS OF EUTECTIC COMPOSITION

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Casting of wear-resistant chrome cast irons in combined molds and iron chills is studied. Application of these ways of casting results in blending of carbides and increasing of hardness of castings.

  14. Heat-Resistance of the Powder Cobalt Alloys Reinforced by Niobium or Titanium Carbide

    Directory of Open Access Journals (Sweden)

    Cherepova, T.S.

    2016-01-01

    Full Text Available The characteristics of heat-resistance of powder cobalt alloys at 1100 °C were investigated. These alloys were developed for the protection of workers banding shelves GTE blades from wear. The alloys were prepared by hot pressing powders of cobalt, chromium, aluminum, iron and niobium or titanium carbides. The values of heat resistance alloys containing carbides between 30 and 70% (vol. depend on the type made of carbide alloys: alloys with titanium carbide superior in heat-resistant alloy of niobium carbide. The most significant factor affecting on the heat-resistant alloys, is porosity: with its increase the parameters decline regardless of the type and content of carbide. The optimum composition of powder heat resisting alloys of titanium carbide with a melting point above 1300 °C were determined for use in the aircraft engine.

  15. Temperature rise and wear of sliding contact of alloy steels

    Science.gov (United States)

    Goswami, Arindam Roy; Sardar, Santanu; Karmakar, Santanu Kumar

    2016-07-01

    The tribo-failure of machine elements under relative sliding velocities is greatly affected by frictional heating and resultant contact temperature rise. Nevertheless, the tribo-failure of automotive components is a combined effect of mechanical, thermal and chemical phenomena. Over the decades, there have been developed a number of different mathematical models for predicting surface temperature rise at sliding contact under different geometries of asperity contacts and operating conditions. The experimental investigation is still relevant today to find out the surface temperature rise at sliding contact along with the outcomes of friction and wear under various operating conditions for real time applications. The present work aims at finding average surface temperature rise at different sliding velocities, normal loads with different surface roughness experimentally. It also involves to prepare two different rough surfaces of alloy steels and to study their influences in the process of generating contact temperature rise under a given operating conditions.

  16. Dry sliding wear behavior of Ti-6Al-4V alloy in air

    Institute of Scientific and Technical Information of China (English)

    刘勇; 杨德庄; 武万良; 杨士勤

    2002-01-01

    The dry sliding wear properties of Ti-6Al-4V alloy sliding against GCr15 steel under different velocities(between 0.2 and 1.2 m/s)and applied loads(from 30 to 90 N)were tested using a pin-on-disk tester in air. The wear occurred on both surfaces of the tested couplings. The wear rate of the Ti-6Al-4V alloy ranged from 23.0 to 123.8 mg/km. The wear of Ti-6Al-4V samples was in severe wear. The wear rate of Ti-6Al-4V samples increased with the increasing of load and shows a minimum on the curves of wear rate versus sliding velocity. SEM morphologies of worn surfaces and debris were observed. Phases in the debris were analyzed by means of XRD spectra.

  17. Wear resistance of nodular cast iron with carbides

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2011-07-01

    Full Text Available In this paper results of abrasive and adhesive wear resistance of selected grades of nodular cast iron with carbides are presented. It was demonstrated, that the maximum wear resistance has got nodular cast iron with the microstructure of upper bainite, lower bainite and carbides. This cast iron with hardened steel and sulfonitrided steel is the most advantageous friction pair during adhesive wear testing. It was found, that the least advantageous friction pair is pearlitic nodular cast iron with carbides and normalized steel.

  18. Microstructure and Wear Behavior Of as Cast Al-25mg2si-2cu-2ni Alloy

    Directory of Open Access Journals (Sweden)

    1Geetanjali.S.Guggari ,

    2015-09-01

    Full Text Available The remarkable feature of the Aluminium is its low density and ability to withstand corrosion effect due to phenomenon of passivation. Structural components made from Aluminium and its alloys are vital to the aerospace industry and are important in other areas of transportation and structural materials. The oxides and sulphate are useful compounds of Aluminium based on its weight. In this work, an attempt has been made to utilize the combined effect of high cooling rate solidification, unique micro structural evolution mechanism of T6 heat treatment the advantages of hypereutectic Al-Si system alloyed with other elements such as Cu, Fe and Mg. In the present investigation, the binary alloys in the hypereutectic range viz. Al25Mg2Si has been selected as heat resistant Al-Si alloys. A systematic approach has been carried out to explore the micro structural features, mechanical and wear properties of as cast alloys.

  19. Wear and Corrosion of Cast Al Alloy Piston with and without Brake Oil

    OpenAIRE

    Olawale Olarewaju Ajibola; Daniel Toyin Oloruntoba

    2015-01-01

    The effects of wear and corrosion of cast AA6061 aluminium alloy were studied with and without brake fluid using a wear jig while the corrosion rate was determined in brake fluid for 70 days under two experimental set-ups. The tests, yielded 0.00000123 g/mm2/min highest wear rate at 147000 wear cycles and 0.0334 mg/mm2/yr as the highest corrosion rate within the early 39th day of immersion in oil, the values being considered comparatively lower than those obtained for Al alloy in most common ...

  20. CO2 laser cladding heterogeneous ceramic-metal wear-resistant coatings

    Science.gov (United States)

    Fomin, V. M.; Malikov, A. G.; Orishich, A. M.

    2016-10-01

    The microstructure, hardness property and wear resistance of WC, Ni-Cr and Fe powders deposited by laser cladding at varying processing parameters were investigated. The results of the present study revealed the prospects of multilayer cladding of R6M5 high-speed tool steel (analog of M2 steel (USA) and HS6-5-2 steel (EU)) onto low-alloy steel with the use of a laser beam. Controlling thermal cycles of laser cladding, it is possible to obtain a clad coating made of high-speed steel having the structure of high-alloy austenite-martensite mixture with disperse inclusions of carbides up to 10 mm thick, i.e., it is actually possible to create bimetal structures. The wear resistance of the laser-clad self-fluxing PG-10N-01 (Ni-Cr-B-Si-C) alloy increases by a factor of 5 due to addi-tional hardening by cast tungsten carbide (WC) with spherical particles. As a result, it becomes higher than the wear resistance of high-speed steel by more than a factor of 3.

  1. Development of (fe–b–c-based filler for wear-resistant composite coatings

    Directory of Open Access Journals (Sweden)

    О. V. Sukhovа

    2014-12-01

    Full Text Available Purpose. Development of multi-alloyed filler for abrasive wear-resistant composites. Methodology. The methods of microstructural, X-ray and energy-dispersive X-ray analyses were used to achieve research purpose. Micro-mechanical properties of structural constituents and abrasive wear-resistance of composites were determined. Findings. The complete dissolution of chromium and vanadium in the borides of Fe2В and FeВ that are initial structural constituents of Fe–В–С peritectic alloys has been established. These elements primarily dissolve in iron monoboride. Dissolution of molybdenum and niobium is not practically observed. As a result the phases of Мо2В, Мо2(В,С or NbВ2 can be seen in the structure. Alloying with chromium and vanadium increases compression strength and crack resistance coefficient, but that with molybdenum and niobium enhances total microhardness and hardness of the alloys. Structure formation of the interfaces between the filler and the binder of the composites based on МNМts 20-20 binder is governed by dissolution and diffusion processes when multi-alloyed (Fe–В–С alloy is applied as filler of the composites. The phase and the structural composition of contact interaction zones can be explained by re-crystallization of the filler surface layers after dissolution caused by contact with the molten binder. Consequently the macroheterogeneous structure of the composites is free of defects and strong adhesion between the filler and the binder is assured. Contact interaction intensity can be controlled by the choice of temperature- and-time infiltration regimes. Originality. The peculiarities in the formation of structure and properties of Fe2В- and FeВ-based solid solutions observed in the structure of the Fe–В–С peritectic alloys were investigated that allowed us to recommend composition of multicomponent alloy to be applied as filler of (Cu–Ni–Mn-matrix macroheterogeneous composites. Practical

  2. Effects of Isothermal Aging on Microstructure Evolution, Hardness and Wear Properties of Wrought Co-Cr-Mo Alloy

    Science.gov (United States)

    Khaimanee, P.; Choungthong, P.; Uthaisangsuk, V.

    2017-02-01

    In this work, effects of isothermal aging on phase transformation, microstructure evolution, hardness and wear resistance of the wrought Co-Cr-Mo alloy with low carbon content were investigated. Initially, temperature range of FCC to HCP phase transformation of the alloy was determined by a dilatometer test. Then, aging at the temperature of 850 °C for different holding times with subsequent water quenching was carried out. Metallography examination, x-ray diffraction analysis, microhardness test and wear test were performed for Co-Cr-Mo alloy specimens after the isothermal aging. It was found that the FCC to HCP phase transformation occurred in the temperature range between 700 and 970 °C. During the aging treatment, phase fraction of the HCP martensite increased with longer aging time. The FCC to HCP phase transformation was completed after 12 h, because very fine lamellae in different orientations thoroughly dispersed within FCC grains were observed. These lamella structures could be well correlated with formation of the HCP martensite. Small amounts of carbides were found at grain boundaries and grain intersections in the samples aged for 6 and 12 h. In addition, by longer aging time, the average grain size of the aged alloy became a little bit larger, while the hardness noticeably increased. For the examined Co-Cr-Mo alloy, higher amount of the emerged HCP martensitic phase led to the increased hardness value, but reduced friction coefficient and wear rate.

  3. Effect of post-welding heat treatment on wear resistance of cast-steel die with surfacing layer

    Directory of Open Access Journals (Sweden)

    Xu Wujiao

    2015-01-01

    Full Text Available The wear resistance capability of die surfacing layer under different Post-Welding Heat Treatments (PWHT was analysed by Finite Element (FE simulation and experiments. Taking hot forging process of a crankshaft as an example, a wear model of the hot forging die coated with surfacing layer was established using FE software DEFORM-3D. The simulation results indicated that the wear resistance capability of the die surfacing layer is optimal when tempering temperature and holding time are 550 °C and 4 h respectively. To verify the wear computational results, 16 groups of PWHT orthogonal wear tests were performed at a temperature of 400 °C, which is a similar temperature to that occurs in an actual hot forging die. The wear-test result showed a good agreement with the FE simulation. SEM observation of the wear debris on 16 specimens showed that oxidative wear is dominant when the temperature was in 400 °C. Furthermore, when tempering temperature and holding time were 550 °C and 4 h respectively, the carbide alloy dispersively distributes in the metallographic structure, which helps to improve the wear resistance of the surfacing layer.

  4. Fabrication and Wear Behavior Analysis on AlCrFeNi High Entropy Alloy Coating Under Dry Sliding and Oil Lubrication Test Conditions

    Science.gov (United States)

    Tang, Yipin; Wang, Shouren; Sun, Bin; Wang, Yan; Qiao, Yang

    2016-03-01

    In this paper, AlCrFeNi high entropy alloy coating was fabricated on the surface of Q235 steel using hot pressing sintering process. The coating has the controlled thickness size and excellent mechanical properties. Scanning electron microscopy (SEM), XRD and hardness testing method were used to study the morphology, phase structure and hardness of high entropy alloys coating. The lattice distortion plays a significant role in increasing the hardness. Coating formation mechanism caused by the element diffusion under the hot pressing effect is also discussed in the paper. Simultaneously, the dry sliding and oil lubrication wear tests, wear morphology observation and wear mechanism discussion were completed. As the result shows, AlCrFeNi high entropy alloys coating exhibits superior wear resistance either at dry sliding or oil lubrication tests owing to its hard high entropy solid solution structure.

  5. Effect of nano-size nickel particles on wear resistance and high temperature oxidation resistance of ultrafine ceramic coating

    Institute of Scientific and Technical Information of China (English)

    古一; 夏长清; 李佳; 吴安如

    2004-01-01

    In order to improve the wear resistance and high temperature oxidation resistance of titanium and titanium alloy, the high temperature ultra fine ceramic coating containing nano-size nickel particles was prepared by flow coat method on the surface of industrially pure titanium TB1-0. The effects of nano-size nickel particles on the wear resistance and high temperature oxidation resistance of coating substrate system were investigated through oxidation kinetics experiment and wear resistance test. The morphologies of the specimens were examined by means of optical microscopy, scanning electron microscopy and X-ray diffraction. The results show that the high temperature ultra fine ceramic coating has notable protection effect on industrially pure titanium TB1-0 from oxidation. The oxidation and wear resistance properties of the coating can be effectively improved by adding nano-size nickel particles. The decreases from 1. 1 to 0. 6 by adding nano-size nickel particles, and the coating containing 10% (mass fraction) nano-size nickel shows the optimum properties.

  6. Preparation and wear resistance of Ti-Zr-Ni quasicrystal and polyamide composite materials

    Science.gov (United States)

    Wang, Xinlu; Li, Xuesong; Zhang, Zhenjiang; Zhang, Shanshan; Liu, Wanqiang; Wang, Limin

    2011-07-01

    Ti-Zr-Ni icosahedral quasicrystal powders (Ti-QC), prepared by mechanical alloying and then annealing in a vacuum furnace, were used as a novel filler material in polyamide 12 (PA12). The melt processability of the composite was studied using a Haake torque rheometer. This indicates that PA12/Ti-QC composites can be melt-processed into a wear-resistant material. Further, these composites, fabricated by compression molding, were tested in sliding wear against a polished bearing steel counterface. The results from wear testing show that the addition of Ti-QC filler to PA12 enhances wear resistance and reduces volume loss by half compared with neat PA12. Furthermore, it is found that the hardness of the composite increases with increasing content of Ti-QC filler. In addition, PA12/Ti-QC composites exhibit a slightly higher crystallization temperature and better thermal stability than PA12. These combined results demonstrate that Ti-QC filler may be a desirable alternative when attempting to increase the wear resistance of PA12.

  7. Nanocrystallization of aluminized surface of carbon steel for enhanced resistances to corrosion and corrosive wear

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. [Dept. of Materials Physical and Chemical, University of Science and Technology Beijing, Beijing 100083 (China); Dept. of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Li, D.Y., E-mail: dongyang.li@ualberta.c [Dept. of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Shang, C.J. [Dept. of Materials Physical and Chemical, University of Science and Technology Beijing, Beijing 100083 (China)

    2009-12-15

    Aluminizing is often used to improve steel's resistances to corrosion, oxidation and wear. This article reports our recent attempts to further improve aluminized carbon steel through surface nanocrystallization for higher resistances to corrosion and corrosive wear. The surface nanocrystallization was achieved using a process combining sandblasting and recovery heat treatment. The entire surface modification process includes dipping carbon steel specimens into a molten Al pool to form an Al coat, subsequent diffusion treatment at elevated temperature to form an aluminized layer, sandblasting to generate dislocation network or cells, and recovery treatment to turn the dislocation cells into nano-sized grains. The grain size of the nanocrystallized aluminized surface layer was in the range of 20-100 nm. Electrochemical properties, electron work function (EWF), and corrosive wear of the nanocrystalline alloyed surfaces were investigated. It was demonstrated that the nanocrystalline aluminized surface of carbon steel exhibited improved resistances to corrosion, wear and corrosive wear. The passive film developed on the nanocrystallized aluminized surface was also evaluated in terms of its mechanical properties and adherence to the substrate.

  8. Wear Behaviour of A356/TiAl3 in Situ Composites Produced by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Seda Çam

    2016-02-01

    Full Text Available In this study, the effects of in situ TiAl3 particles on dry sliding wear behavior of A356 aluminum alloy (added Ti composites were investigated. The wear samples were prepared by adding different amounts of Ti (4%, 6%, and 8% into A356 powder alloy by mechanical alloying. The mechanically alloyed powders were cold pressed at 600 MPa and sintered 530 °C for 1 h in argon atmosphere and cooled in the furnace. After the sintering process, the samples were characterized. The results show that AlTi and TiAl3 intermetallic phases were formed and their amount increased depending on the amount of Ti added into A356 powder alloy. Out of the samples sintered with different titanium amounts (1 h at 530 °C, the highest hardness value and, accordingly, the lowest wear amount, were observed in the alloy containing 8% Ti.

  9. 40Cr钢激光表面加Ni60B合金化及其磨蚀性能研究%LASER SURFACE ALLOYING OF 40Cr STEEL WITH Ni60B POWDER AND ITS RESISTANCE TO WEAR AND CORROSION

    Institute of Scientific and Technical Information of China (English)

    李刚; 邱玲; 邱星武

    2009-01-01

    对40Cr钢进行了表面加Ni60B粉末激光合金化处理.金相、扫描电镜、X射线衍射分析,硬度测试和磨损与盐雾腐蚀实验的结果表明:合金化层的结构为熔化区、过渡区及热影响区;熔化区显微组织为胞状-树枝状晶,热影响区为极细的隐晶马氏体;激光合金化处理后的试样产生了新相Cr_(23)C_6和Cr_3C_2,显微硬度Hk可达到8.6 GPa,比基体提高了近3倍;耐磨性与耐蚀性都比基体有明显提高.%The 40Cr steel has been laser surface alloyed with Ni60B powder.The alloyed layer is then char-acterized by SEM observation,XRD analysis and microhardeness tester.While its resistance to wear and cor-rosion is also examined.The results show that the alloyed layer consisted of a melted zone,a transition zone and a heat affected zone.The microstructure of melted zone is cellular-dendtrite crystallites.the heat affect-ed zone extremely small hidden martensite.Phases Cr_(23)C_6 and Cr_3C_2 are observaed.the microhardness of the alloyed layer can reach up to Hv 8.6 Gpa,which iS three times higher than that of the substrate.The wear and corrosion resistance of the alloyed layer is higher than that of the substrate as wall.

  10. Nano Structured Plasma Spray Coating for Wear and High Temperature Corrosion Resistance Applications

    Science.gov (United States)

    Ghosh, D.; Shukla, A. K.; Roy, H.

    2014-04-01

    The nano structured coating is a major challenge today to improve the different mechanical properties, wear and high temperature corrosion resistance behaviour of different industrial alloys. This paper is a review on synthesis of nano powder, plasma spraying methods, techniques of nano structured coating by plasma spray method, mechanical properties, tribological properties and high temperature corrosion behaviour of nano structured coating. Nano structured coatings of ceramic powders/composites are being developed for wide variety of applications like boiler, turbine and aerospace industries, which requires the resistance against wear, corrosion, erosion etc. The nano sized powders are subjected to agglomeration by spray drying, after which nano structured coating can be successfully applied over the substrate. Nano structured coating shows improved mechanical wear resistance and high temperature corrosion resistance. The significant improvement of wear and corrosion resistance is mainly attributed to formation of semi molten nano zones in case of nano structured coatings. The future scope of application of nano structured coating has also been highlighted in this paper.

  11. Analysis of the elements of secondary adhesion wear in dry turning of aluminum alloys

    Science.gov (United States)

    Batista, M.; Salguero, Jorge; Gómez, A.; Alvarez, M.; Marcos, Mariano

    2012-04-01

    Minimizing downtime in machine tools is one of the factors that determine the performance increase of the production processes involved, from different points of view considered: economic, energy and environmental. One of the possible causes that originate of machine is stops due to the need to change the tool by loss of their initial properties due to the wear process that suffer during machining. One of the wear processes which occurs in a wider range of temperatures in the machining of metal alloys is the adhesion wear. In the case of light alloys, secondary adhesion wear occurs a higher often in the form adhered layer (BUL) and ingrowth edge (BUE). This paper analyzes the influence of technological parameters on the formation of the effects of secondary adhesion wear in dry turning UNS A92024 alloy (Al-Cu).

  12. Dry sliding wear of Ti-6Al-4V alloy in air and vacuum

    Institute of Scientific and Technical Information of China (English)

    刘勇; 杨德庄; 何世禹; 武万良

    2003-01-01

    Differences in wear rate, morphology of the worn surface and debris, and the microstructure in subsurface of the Ti-6Al-4V alloy after wear in air and vacuum were compared. The wear rate of Ti-6Al-4V alloy in air is higher than that in vacuum in all the ranges of sliding velocities and applied loads. The wear of Ti-6Al-4V alloy in air is controlled by a combination of abrasion, oxidation and delamination with micro-cracks remaining in subsurface. Under the vacuum condition, the surface layer of Ti-6Al-4V alloy experiences a severe plastic deformation on a great scale, which results in an ultra-fine microstructure.

  13. Corrosive wear. Evaluation of wear and corrosive resistant materials; Noetningskorrosion. Utvaerdering av noetnings- och korrosionsbestaendiga material

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H.; Hjertsen, D.; Waara, P.; Prakash, B.; Hardell, J.

    2007-12-15

    With a new purchase of a waste conveyer screw at hand, for the 'A-warehouse' at the combined power and heating plant at E.ON Norrkoeping, the request for improved construction materials was raised. The previous screw required maintenance with very short intervals due to the difficult operation conditions. With the new screw the expectation is to manage 6 months of operation without interruption. The environment for the screw has two main components that sets the demand on the materials, on one hand the corrosive products that comes along and which forms at digestion of the waste and on the other hand the abrasive content in the waste. The term of the mechanism is wear-corrosion and can give considerably higher material loss than the two mechanisms wear and corrosion separately. Combination of a strong corrosive environment together with extensive wear is something that we today have limited knowledge about. The overall objective of the project has been to establish better wear and corrosive resistant construction materials for a waste conveyer screw that will lead to reduced operational disturbance costs. The evaluation has been performed in both controlled laboratory environments and in field tests, which has given us a better understanding of what materials are more suitable in this tough environment and has given us a tool for future predictions of the wear rate of the different material. The new conveyer screw, installed in February 2007 and with which the field test have been performed, has considerably reduced the wear of the construction and the target of 6 month maintenance-free operation is met with this screw for all the evaluated materials. The wear along the screw varies very much and with a clear trend for all the materials to increase towards the feeding direction of the screw. As an example, the wear plate SS2377 (stainless duplex steel) has a useful life at the most affected areas that is calculated to be 1077 days of operation with the

  14. Characterization of Wear Particles Generated from CoCrMo Alloy under Sliding Wear Conditions.

    Science.gov (United States)

    Pourzal, R; Catelas, I; Theissmann, R; Kaddick, C; Fischer, A

    2011-07-29

    Biological effects of wear products (particles and metal ions) generated by metal-on-metal (MoM) hip replacements made of CoCrMo alloy remain a major cause of concern. Periprosthetic osteolysis, potential hypersensitivity response and pseudotumour formation are possible reactions that can lead to early revisions. To accurately analyse the biological response to wear particles from MoM implants, the exact nature of these particles needs to be characterized. Most previous studies used energy-dispersive X-ray spectroscopy (EDS) analysis for characterization. The present study used energy filtered transmission electron microscopy (TEM) and electron diffraction pattern analysis to allow for a more precise determination of the chemical composition and to gain knowledge of the crystalline structure of the wear particles.Particles were retrieved from two different test rigs: a reciprocating sliding wear tribometer (CoCrMo cylinder vs. bar) and a hip simulator according to ISO 14242-1 (CoCrMo head vs. CoCrMo cup). All tests were conducted in bovine serum. Particles were retrieved from the test medium using a previously published enzymatic digestion protocol.Particles isolated from tribometer samples had a size of 100 - 500 nm. Diffraction pattern analysis clearly revealed the lattice structure of strain induced hcp ε-martensite. Hip simulator samples revealed numerous particles of 15 - 30 nm and 30 - 80 nm size. Most of the larger particles appeared to be only partially oxidized and exhibited cobalt locally. The smallest particles were Cr(2)O(3) with no trace of cobalt. It optically appeared that these Cr(2)O(3) particles were flaking off the surface of larger particles that depicted a very high intensity of oxygen, as well as chromium, and only background noise of cobalt. The particle size difference between the two test rigs is likely related to the conditions of the two tribosystems, in particular the difference in the sample geometry and in the type of sliding

  15. Microstructure and Wear Behavior of CoCrFeMnNbNi High-Entropy Alloy Coating by TIG Cladding

    Directory of Open Access Journals (Sweden)

    Wen-yi Huo

    2015-01-01

    Full Text Available Alloy cladding coatings are widely prepared on the surface of tools and machines. High-entropy alloys are potential replacements of nickel-, iron-, and cobalt-base alloys in machining due to their excellent strength and toughness. In this work, CoCrFeMnNbNi HEA coating was produced on AISI 304 steel by tungsten inert gas cladding. The microstructure and wear behavior of the cladding coating were studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, microhardness tester, pin-on-ring wear tester, and 3D confocal laser scanning microscope. The microstructure showed up as a nanoscale lamellar structure matrix which is a face-centered-cubic solid solution and niobium-rich Laves phase. The microhardness of the cladding coating is greater than the structure. The cladding coating has excellent wear resistance under the condition of dry sliding wear, and the microploughing in the worn cladding coating is shallower and finer than the worn structure, which is related to composition changes caused by forming the nanoscale lamellar structure of Laves phase.

  16. Microstructure and Wear Behavior of Ti-6Al-4V Treated by Plasma Zr-alloying and Plasma Nitriding

    Institute of Scientific and Technical Information of China (English)

    CHEN Kai; LIU Xiaoping; LIU Xiaozhen; MENG Tianxu; GUO Qi; WANG Zhenxia; LIN Naimin

    2016-01-01

    A duplex treatment of plasma Zr-alloying and plasma nitriding was used to improve the tribological properties of Ti-6Al-4V. The microstructure of the Zr-N composite (alloyed) layer formed on Ti-6Al-4V and its hardness, friction and wear properties were investigated by using OM, SEM, GDOES, EDS, microhardness tester as well as ball-on-disk tribometer. The results of microstructural analysis show that the alloyed layer is compact and uniform and is mainly composed of ZrN, TiN0.3 and AlN. A very tiny adhesive and slight oxidation wear is the primary wear mechanism for the modiifed Ti-6Al-4V. The tribological property is improved signiifcantly after the duplex treatment. The good combination of antifriction and wear resistance for modiifed Ti-6Al-4V is mainly attributed to the higher surface hardness of metal nitrides formed on the surface and enhanced supporting of the Zr-diffusing layer.

  17. Effect of Lubrication on Sliding Wear of Red Mud Particulate Reinforced Aluminium Alloy 6061

    Directory of Open Access Journals (Sweden)

    N. Panwar

    2017-09-01

    Full Text Available In present study, Red mud, an industrial waste, has been utilized as a reinforcement material to fabricate Aluminium 6061 matrix based metal matrix composite. Taguchi L18 orthogonal array has been employed for fabrication of composite castings and for conducting the tribological experimentation. ANOVA analysis has been applied to examine the effect of individual parameters such as sliding condition: dry and wet, reinforcement weight fraction, load, speed, and sliding distance on specific wear rate obtained experimentally. It has been found that tensile strength and impact energy increases while elongation decreases, with increasing weight fraction and decrease in particle size of red mud. The percentage contribution of the effect of factors on SWR is Sliding condition (73.17, speed (7.84, percentage reinforcement (7.35, load (5.75, sliding distance (2.24, and particle size (1.25. It has also been observed that specific wear rate is very low in wet condition. However, it decreases with increase in weight fraction of reinforcement, decrease in load and sliding speed. Al6061/red mud metal matrix composites have shown reasonable strength and wear resistance. The use of red mud in Aluminium composite provides the solution for disposal of red mud and can possibly become an economic replacement of Aluminium and its alloys.

  18. Investigation of Wear and Corrosion of a High-Carbon Stellite Alloy for Hip Implants

    Science.gov (United States)

    Hu, P. S.; Liu, R.; Liu, J.; McRae, G.

    2014-04-01

    Low-carbon Stellite 21 has been used as hip implant material for a number of decades; however, its limited metal-on-metal bearing has resulted in loosening between the femoral head and the acetabular cup of hip implants. In order to improve the metal-on-metal bearing, it is proposed that a high-carbon alloy, Stellite 720, surface coating be applied on Stellite 21 hip implants to improve mechanical and tribological performance. For this coating to be practical, it must also meet the requirements of corrosion resistance for orthopedic implant materials. In this research, Stellite 720 is investigated with pin-on-disk wear tests, and electrochemical and immersion corrosion tests in simulated human body fluid (Hank's solution; pH 7.4 at temperature of 37°C). The experimental results demonstrate that Stellite 720 exhibits much better wear resistance than Stellite 21, and has the potential for better corrosion resistance as well. The applicability of coating Stellite 21 hip implants with Stellite 720 is discussed.

  19. Impact Fretting Wear Behavior of Alloy 690 Tubes in Dry and Deionized Water Conditions

    Science.gov (United States)

    Cai, Zhen-Bing; Peng, Jin-Fang; Qian, Hao; Tang, Li-Chen; Zhu, Min-Hao

    2017-07-01

    The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibration, and it will take potential hazards to the service of the equipment. However, the present study focuses on the tangential fretting wear of alloy 690 tubes. Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent. Therefore, impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated. Deionized water is used to simulate the flow environment of the equipment, and the dry environment is used for comparison. Varied analytical techniques are employed to characterize the wear and tribochemical behavior during impact fretting wear. Characterization results indicate that cracks occur at high impact load in both water and dry equipment; however, the water as a medium can significantly delay the cracking time. The crack propagation behavior shows a jagged shape in the water, but crack extended disorderly in dry equipment because the water changed the stress distribution and retarded the friction heat during the wear process. The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatigue wear and friction oxidation. The effect of medium(water) on fretting wear is revealed, which plays a potential and promising role in the service of nuclear power device and other flow equipments.

  20. Development of Centrifugal Cast High Speed Steel Roll with High Wear Resistance for Pre-Finishing Stands of a Hot Rod-Wire Mill

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-qiang; FENG Xi-lan; FU Han-guang; SHA Quan-you

    2004-01-01

    The present study aims at developing high speed steel ( HSS ) as roll materials to replace traditional roll materials such as the alloy cast iron and powder metallurgical (PM) hard alloy, because lowcost alley cast iron rolls have poor wear resistance and the cost of high-quality PM hard alloy rolls is too high to be accepted by some users. By means of a centrifugal casting method, HSS rolls with excellent wear resistance have been developed. Its hardness is 65 ~ 67HRC, and its variation is smaller than 2HRC ; its impact toughness excels 15J/cm2. Using pre-finishing stands of a high-speed hot wire-rod rolling mill, the wear raze of HSS rolls per one thousand ton of steel is 0. 25mm. However, the manufacturing burden of HSS rolls is obviously lower than that of PM hard alloy rolls; it is only 30% of that of PM hard alloy rolls.

  1. Fretting wear behavior of nitrogen implanted Zircaloy-4 alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Zircaloy-4 was implanted with nitrogen at 120keV with various ion doses between 1 × 1013 and 1 × 1014 ions/m2. Fretting wear tests were performed at various cycles and loads under water immersion condition by the fretting simulator, The implanted surfaces were analyzed by Auger electron spectroscopy (AES) and transmission electron microscope(TEM). Micro-hardnees tester measured surface hardness. It is shown that nitrogen imphantation produced Zirconium nitride oxide and high density dislocations in implanted ltyer, surface hardness was enhanced from HK280 for unimplantedspecimen to HK1800 for a total ion dose of 1 × 1014 ions/m2. The nitrogen ion implantation treatment provided significantimprovements in the resistance of fretting damage.

  2. Selected Plastics Wear Resistance to Bonded Abrasive Particles Compared to Some Ferrous Materials

    Directory of Open Access Journals (Sweden)

    Milan Brožek

    2015-01-01

    Full Text Available Plastics are macromolecular materials without we cannot imagine any branch of human activity with. Plastics have unique properties, often very different from metals. At the choice of the concrete plastic for the concrete application it is necessary to evaluate its mechanical, physical, chemical and technological properties. In last years producers offer also plastics for production of parts exposed to different types of wear. In the contribution the results of wear resistance studying of 10 types of plastics (PTFE, PVC, POM-C, PC, PETP, PEEK, PA66, PP, PA6E and PE-UHMW of one producer are published and compared with test results of four different Fe alloys (grey iron, structural steel, cast steel wear resistant and high-speed steel. The laboratory tests were carried out using the pin-on-disk machine with abrasive cloth (according to ČSN 01 5084, when the abrasive clothes of three different grits (240, 120 and 60 were used. It corresponds to the average abrasive grain sizes of 44.5 µm, 115.5 µm and 275 µm. During the test the test sample was pressed to the abrasive cloth by the pressure of 0.1 MPa. The wear intensity was assessed by the volume, weight and length losses of tested samples. The technical-economical evaluation was the part of the carried out tests. It was univocally proved that at the intensive abrasive wear using the abrasive cloth the best results shows the High-Speed Steel HSS Poldi Radeco 19 810 according to ČSN 41 9810, although its price is relatively high. Other tested Fe alloys, namely grey iron according to ČSN 42 2415, structural steel 11 373 according to ČSN 41 1373 and wear resistant cast steel VPH 6 showed also very favourable properties at the material low price. In comparison with Fe alloys the wear of all plastics was considerably higher and the plastics were considerably more expensive.

  3. Wear resistance of TiAlSiN thin coatings.

    Science.gov (United States)

    Silva, F J G; Martinho, R P; Alexandre, R J D; Baptista, A P M

    2012-12-01

    In the last decades TiAIN coatings deposited by PVD techniques have been extensively investigated but, nowadays, their potential development for tribological applications is relatively low. However, new coatings are emerging based on them, trying to improve wear behavior. TiAlSiN thin coatings are now investigated, analyzing if Si introduction increases the wear resistance of PVD films. Attending to the application, several wear test configurations has been recently used by some researchers. In this work, TiAISiN thin coatings were produced by PVD Unbalanced Magnetron Sputtering technique and they were conveniently characterized using Scanning Electron Microscopy (SEM) provided with Energy Dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), Electron Probe Micro-Analyzer (EPMA), Micro Hardness (MH) and Scratch Test Analysis. Properties as morphology, thickness, roughness, chemical composition and structure, hardness and film adhesion to the substrate were investigated. Concerning to wear characterization, two very different ways were chosen: micro-abrasion with ball-on-flat configuration and industrial non-standardized tests based on samples inserted in a feed channel of a selected plastic injection mould working with 30% (wt.) glass fiber reinforced polypropylene. TiAISiN coatings with a small amount of about 5% (wt.) Si showed a similar wear behavior when compared with TiAIN reported performances, denoting that Si addition does not improve the wear performance of the TiAIN coatings in these wear test conditions.

  4. Bearing alloys with hexagonal crystal structures provide improved friction and wear characteristics

    Science.gov (United States)

    Buckley, D. H.; Johnson, R. L.

    1966-01-01

    Bearings of titanium, cobalt, and other hexagonal crystal alloys are used in vacuum and high temperature environments. These temperature-stabilized alloys have reduced friction and wear characteristics and therefore have potential use in aircraft seals, hydraulic equipment, and artificial human joints.

  5. Effect of equal channel angular extrusion on wear and corrosion behavior of the orthopedic Ti-13Nb-13Zr alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, K.S. [Department of Materials. Engineering, Indian Institute of Science, Bangalore 560012 (India); Geetha, M., E-mail: geethamanivasagam@vit.ac.in [School of Mechanical and Building Sciences, VIT University, Vellore (India); Richard, C. [Laboratoire de Mecanique et de Rheologie EA 2640, Polytech' Tours, 37000 Tours (France); Landoulsi, J. [Laboratoire de Reactivite de Surface, UMR 7197 CNRS, Universite Pierre and Marie Curie - Paris VI, 4 Place Jussieu, Case 178, F-75252 Paris (France); Ramasawmy, H. [University of Mauritius, Faculty of Engineering, Reduit (Mauritius); Suwas, S. [Department of Materials. Engineering, Indian Institute of Science, Bangalore 560012 (India); Asokamani, R. [School of Mechanical and Building Sciences, VIT University, Vellore (India)

    2012-05-01

    We report investigations on the texture, corrosion and wear behavior of ultra-fine grained (UFG) Ti-13Nb-Zr alloy, processed by equal channel angular extrusion (ECAE) technique, for biomedical applications. The microstructure obtained was characterized by X-ray line profile analysis, scanning electron microscope (SEM) and electron back scattered diffraction (EBSD). We focus on the corrosion resistance and the fretting behavior, the main considerations for such biomaterials, in simulated body fluid. To this end, potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the UFG alloy in Hanks solution at 37 Degree-Sign C. The fretting wear behavior was carried out against bearing steel in the same conditions. The roughness of the samples was also measured to examine the effect of topography on the wear behavior of the samples. Our results showed that the ECAE process increases noticeably the performance of the alloy as orthopedic implant. Although no significant difference was observed in the fretting wear behavior, the corrosion resistance of the UFG alloy was found to be higher than the non-treated material. Highlights: Black-Right-Pointing-Pointer Relevancy of ECAE process applied to titanium alloy for biomedical applications. Black-Right-Pointing-Pointer Significant improvement of mechanical properties of the surface. Black-Right-Pointing-Pointer Noticeable increase of the corrosion resistance in simulated body fluid.

  6. Enhanced Corrosion Resistance of Iron-Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Day, S D; Lian, T; Aprigliano, L F; Hailey, P D; Farmer, J C

    2007-02-18

    Iron-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl{sub 2} solution at 105 C. Salt fog tests of 316L SS and Alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings.

  7. Wear Resistance of Deposited Layer Using Nickel-Based Composite Powders by Plasma-Arc Surfacing

    Institute of Scientific and Technical Information of China (English)

    DONG Li-hong; ZHU Sheng; XU Bin-shi; DU Ze-yu

    2004-01-01

    Nickel-based composite alloy powders were deposited on the surface of Q235 steel by plasma-arc surfacing in this work. Optimal proportions of elements intensifying the composite powders were ascertained by orthogonal design of three factors and three levels and orthogonal polynomial regression analysis , which Cr , Mn , W were 10% ,4% and 7 % respectively.Phase and structure of deposited materials were characterized by optical microscope and X- ray diffraction. Hardness tests and wear resistance tests were carried out to determine the performance of the deposited layers. The results show that the microstructure of deposited layers of composite powders mainly consist of γ-( Ni, Fe ) , γ- Ni, WC, W2 C, Mn31Si12, Cr23 C6,Cr7 C3, Cr, NiB, Ni2B etc. Wear resistance and hardness of the surface increased evidently.

  8. Fissure sealant materials: Wear resistance of flowable composite resins.

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  9. Fissure sealant materials: Wear resistance of flowable composite resins

    Directory of Open Access Journals (Sweden)

    Sohrab Asefi

    2016-08-01

    Full Text Available Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow, Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists. A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  10. Fissure sealant materials: Wear resistance of flowable composite resins

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics. PMID:27651887

  11. Development of New Wear-Resistant Surface Coating at Elevated Temperature

    Institute of Scientific and Technical Information of China (English)

    LI Shang-ping; FENG Di; LUO He-li; ZHANG Xi-e; CAO Xu

    2006-01-01

    Because of good oxidation resistance at high temperature and excellent mechanical properties of Ni3Al and high hot hardness, and good oxidation resistance of chromium carbide, chromium carbide particle reinforced Ni3Al matrix composite would possess excellent wear resistance at elevated temperature. Cr3C2-NiAl-Ni welding wire was produced by pressureless sintering process in vacuum. When the welding wire was welded on the surface of carbon steel, under the action of the physical heat of arc, NiAl reacted with nickel to form Ni3Al and carbide particle reinforced Ni3Al matrix composite was formed on the welding layers. Cr3C2 was dissolved during welding and dispersed Cr7C3 was formed, which strengthened the Ni3Al matrix significantly. The Cr7C3-Ni3Al interface was broadened, and a zone of interdiffusion and a new phase M23C6 were formed, indicating that a good bond has been formed. The hardness of Cr7C3/Ni3Al composite at room and elevated temperatures is much higher than that of stellite alloys. In addition, Cr7C3/Ni3Al composite possesses better high temperature oxidation resistance than stellite 12 alloy. So Cr7C3/ Ni3Al composite can become an attractive potential candidate for elevated temperature wear-resistant surface material.

  12. Friction and wear of titanium alloys and copper alloys sliding against titanium 6-percent-aluminum - 4-percent-vanadium alloy in air at 430 C

    Science.gov (United States)

    Wisander, D. W.

    1976-01-01

    Experiments were conducted to determine the friction and wear characteristics of aluminum bronzes and copper-tin, titanium-tin, and copper-silver alloys sliding against a titanium-6% aluminum-4% vanadium alloy (Ti-6Al-4V). Hemispherically tipped riders of aluminum bronze and the titanium and copper alloys were run against Ti-6Al-4V disks in air at 430 C. The sliding velocity was 13 cm/sec, and the load was 250 g. Results revealed that high tin content titanium and copper alloys underwent significantly less wear and galling than commonly used aluminum bronzes. Also friction force was less erratic than with the aluminum bronzes.

  13. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Rigali

    2001-10-01

    Published mechanical and thermal properties data on a variety of materials was gathered, with focus on materials that have potential with respect to developing wear resistant and damage tolerant composite for mining industry applications. Preliminary core materials of interest include but are not limited to: Diamond, Tungsten Carbide and Cemented Tungsten Carbides, Carbides of Boron, Silicon, Titanium and Aluminum, Diboride of Titanium and Aluminum, Nitrides of Aluminum, Silicon, Titanium, and Boron, Aluminum Oxide, Tungsten, Titanium, Iron, Cobalt and Metal Alloys. Preliminary boundary materials of interest include but are not limited to: W metal, WC-Co, W-Co, WFeNi, and Mo metal and alloys. Several FM test coupons were fabricated with various compositions using the above listed materials. These coupons were consolidated to varying degrees by uniaxial hot pressing, then cut and ground to expose the FM cell structure. One promising system, WC-Co core and WFeNi boundary, was consolidated to 97% of theoretical density, and demonstrates excellent hardness. Data on standard mechanical tests was gathered, and tests will begin on the consolidated test coupons during the upcoming reporting period. The program statements of work for ACR Inc. and its subcontractors, as well as the final contract negotiations, were finalized during the current reporting period. The program start date was February 22nd, 2001. In addition to the current subcontractors, Kennametal Inc., a major manufacturer of cutting tools and wear resistant tooling for the mining industry, expressed considerable interest in ACR's Fibrous Monolith composites for both machine and mining applications. At the request of Kennametal, ARC Inc fabricated and delivered several Fibrous Monolith coupons and components for testing and evaluation in the mining and machine tool applications. Additional samples of Diamond/Tungsten Carbide-6%Cobalt Fibrous Monolith were fabricated and delivered for testing Kennametal

  14. Microstructure and Wear Behaviour of Laser-Induced Thermite Reaction Al2O3 Ceramic Coatings on Pure Aluminum and AA7075 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    HUANG Kaijin; LIN Xin; XIE Changsheng; T M Yue

    2008-01-01

    Wear-resistant laser-induced thermite reaction Al2O3 ceramic coatings can be fabricated on pure Al and AA7075 aluminum alloy by laser cladding(one-step method)and laser cladding followed by laser re-melting(two-step method)using mixed powders CuO-Al-SiO2 in order to improve the wear properties of aluminum and aluminum alloy,respectively.The microstructure of the coatings was characterized by scanning electron microscopy(SEM)and X-ray diffraction(XRD).The wear resistance of the coatings was evaluated under dry sliding wear test condition at room temperature.Owing to the presence of hard a-Al2O3 and γ-Al2O,3phases,the coatings exhibited excellent wear resistance.In addition,the wear resistance of the coatings fabricated by two-step method is superior to that of the coatings fabricated by one-step method.

  15. Mechanical Properties and Corrosion-Abrasion Wear Behavior of Low-Alloy MnSiCrB Cast Steels Containing Cu

    Science.gov (United States)

    Luo, Kaishuang; Bai, Bingzhe

    2011-01-01

    Two medium carbon low-alloy MnSiCrB cast steels containing different Cu contents (0.01 wt pct and 0.62 wt pct) were designed, and the effect of Cu on the mechanical properties and corrosion-abrasion wear behavior of the cast steels was studied. The results showed that the low-alloy MnSiCrB cast steels obtained excellent hardenability by a cheap alloying scheme. The microstructure of the MnSiCrB cast steels after water quenching from 1123 K (850 °C) consists of lath martensite and retained austenite. After tempering at 503 K (230 °C), carbides precipitated, and the hardness of the cast steels reached 51 to 52 HRC. The addition of Cu was detrimental to the ductility and impact toughness but was beneficial to the wear resistance in a corrosion-abrasion wear test. The MnSiCrB cast steel with Cu by the simple alloying scheme and heat treatment has the advantages of being high performance, low cost, and environmentally friendly. It is a potential, advanced wear-resistant cast steel for corrosion-abrasion wear conditions.

  16. On the Durability and Wear Resistance of Transparent Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Ilker S. Bayer

    2017-01-01

    Full Text Available Transparent liquid repellent coatings with exceptional wear and abrasion resistance are very demanding to fabricate. The most important reason for this is the fact that majority of the transparent liquid repellent coatings have so far been fabricated by nanoparticle assembly on surfaces in the form of films. These films or coatings demonstrate relatively poor substrate adhesion and rubbing induced wear resistance compared to polymer-based transparent hydrophobic coatings. However, recent advances reported in the literature indicate that considerable progress has now been made towards formulating and applying transparent, hydrophobic and even oleophobic coatings onto various substrates which can withstand certain degree of mechanical abrasion. This is considered to be very promising for anti-graffiti coatings or treatments since they require resistance to wear abrasion. Therefore, this review intends to highlight the state-of-the-art on materials and techniques that are used to fabricate wear resistant liquid repellent transparent coatings so that researchers can assess various aptitudes and limitations related to translating some of these technologies to large scale stain repellent outdoor applications.

  17. Wear Resistance of In-situ Fe-Cr-V-C Hardfacing Alloys Fabricated by Plasma Transferred Arc Weld-surfacing Process%等离子原位合成Fe-Cr-V-C堆焊合金的耐磨性

    Institute of Scientific and Technical Information of China (English)

    宗琳; 刘政军; 李乐成

    2012-01-01

    采用等离子堆焊技术制备了不同Cr含量的Fe-Cr-V-C堆焊合金,借助扫描电镜和X射线衍射等分析手段研究了碳化物形貌及合金物相组成.同时研究了Cr含量对合金硬度和耐磨性的影响,并探讨了磨损机理.结果表明:堆焊合金组织由马氏体、铁素体、奥氏体、M7C3及VC组成.合金中随着Cr含量的提高,由于硬质相M7C3和VC的数量及形态变化不大,而具有高硬度的针状马氏体基体组织的减少使得合金的耐磨性先降低,当达到一定值后继续增加Cr含量,M7C3的数量逐渐增多,因而耐磨性随后增大;当Cr含量达到27.2%(质量分数)时,大量高硬度六边形M7C3复合物(约HV1200)结合一定量VC(约HV1600)颗粒构成坚实的耐磨骨架,使得合金具有最佳的耐磨性.%Fe-Cr-V-C hardfacing alloys with different Cr contents were prepared under plasma transferred arc (PTA). The phases constitution, carbide morphology were investigated by means of scanning electron microscopy(SEM) and X-ray diffraction (XRD). The effect of Cr contents on the wear resistance of hardfacing alloys was detected by using Rockwell hardometer and wear testing machine. In addition, the abrasion wear mechanism was discussed. The results show that the microstructure consists of martensite, ferrite and austenite, carbides such as primary M7C3, VC. As the Cr contents increase, the wear resistance first decreases because of the little changes of content and morphology for M7C3 and VC hard phases and the decrease of acicular martensite with high hardness, afterwards, the wear resistance increases when Cr content reaches a particular value as a result of the increase of M7C3 contents. When Cr mass fraction is 27. 2%, a high volume fraction of hexagonal (Fe,Cr,V)rC3 complex carbides and a small amount globular VC particles in the microstructure form a substantial wear resistant structure, which leads to an excellent wear resistance.

  18. Wear resistance and corrosion resistance of VCp particle reinforced stainless steel composites

    Institute of Scientific and Technical Information of China (English)

    YAO Xiu-rong; HAN Jie-cai; ZUO Hong-bo; LIU Zhao-jing; LI Feng-zhen; REN Shan-zhi

    2005-01-01

    The VCp reinforced stainless steel composite was produced by in-situ reaction casting. The composite was tested for its wear resistance under the wet abrasive condition and corrosion resistance, compared with the wear-resistant white iron and stainless steel. The results show that the wear resistance of the composite is slightly inferior to that of the white iron, but much better than that of the stainless steel under the wet grinding abrasive condition. The corrosion resistance of the composite is much better than that of the white iron in the acid medium,and a little worse than that of the stainless steel. Thus the composite exhibits superior properties of wear resistance and corrosion resistance.

  19. Wear and Corrosion of Cast Al Alloy Piston with and without Brake Oil

    Directory of Open Access Journals (Sweden)

    Olawale Olarewaju Ajibola

    2015-01-01

    Full Text Available The effects of wear and corrosion of cast AA6061 aluminium alloy were studied with and without brake fluid using a wear jig while the corrosion rate was determined in brake fluid for 70 days under two experimental set-ups. The tests, yielded 0.00000123 g/mm2/min highest wear rate at 147000 wear cycles and 0.0334 mg/mm2/yr as the highest corrosion rate within the early 39th day of immersion in oil, the values being considered comparatively lower than those obtained for Al alloy in most common wet abrasion test and corrosion in aqueous solutions as previously reported in literature. The material loss rates to wear and corrosion were determined from the equations relating to wear and corrosion based on the ASTM designations. The results show that the combined actions of wear and corrosion contribute to the total loss of piston material immersed in brake oil. This is greater than either of their effects individually on cast Al alloy in the brake oil.

  20. Microstructure and high-temperature wear properties of in situ TiC composite coatings by plasma transferred arc surface alloying on gray cast iron

    Institute of Scientific and Technical Information of China (English)

    Da-wen Zeng

    2015-01-01

    In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350–400μm thick-ness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) surface alloying of Ti–Fe alloy powder. Microhard-ness tests showed that the surface hardness increased approximately four-fold after the alloying treatment. The microstructure of the MMC coating was mainly composed of residual austenite, acicular martensite, and eutectic ledeburite. Scanning electron microscopy (SEM) and X-ray diffraction analyzes revealed that the in situ TiC particles, which were formed by direct reaction of Ti with carbon originally contained in the GCI, was uniformly distributed at the boundary of residual austenite in the alloying zone. Pin-on-disc high-temperature wear tests were performed on samples both with and without the MMC coating at room temperature and at elevated temperatures (473 K and 623 K), and the wear behavior and mechanism were investigated. The results showed that, after the PTA alloying treatment, the wear resistance of the sam-ples improved significantly. On the basis of our analysis of the composite coatings by optical microscopy, SEM with energy-dispersive X-ray spectroscopy, and microhardness measurements, we attributed this improvement of wear resistance to the transformation of the microstruc-ture and to the presence of TiC particles.

  1. Microstructure and high-temperature wear properties of in situ TiC composite coatings by plasma transferred arc surface alloying on gray cast iron

    Science.gov (United States)

    Zhao, Hang; Li, Jian-jun; Zheng, Zhi-zhen; Wang, Ai-hua; Huang, Qi-wen; Zeng, Da-wen

    2015-12-01

    In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400 µm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) surface alloying of Ti-Fe alloy powder. Microhardness tests showed that the surface hardness increased approximately four-fold after the alloying treatment. The microstructure of the MMC coating was mainly composed of residual austenite, acicular martensite, and eutectic ledeburite. Scanning electron microscopy (SEM) and X-ray diffraction analyzes revealed that the in situ TiC particles, which were formed by direct reaction of Ti with carbon originally contained in the GCI, was uniformly distributed at the boundary of residual austenite in the alloying zone. Pin-on-disc high-temperature wear tests were performed on samples both with and without the MMC coating at room temperature and at elevated temperatures (473 K and 623 K), and the wear behavior and mechanism were investigated. The results showed that, after the PTA alloying treatment, the wear resistance of the samples improved significantly. On the basis of our analysis of the composite coatings by optical microscopy, SEM with energy-dispersive X-ray spectroscopy, and microhardness measurements, we attributed this improvement of wear resistance to the transformation of the microstructure and to the presence of TiC particles.

  2. On The Enhancement of Wear Resistance of Hardened Carbon Tool Steel (AISI 1095) With Cryogenic Quenching

    Institute of Scientific and Technical Information of China (English)

    V.Soundararajan; N.Alagurmurthi; K.Palaniradja

    2004-01-01

    Many experimental investigations reveal that it is very difficult to have a completely martensitic structure by any hardening process. Some amount of austenite is generally present in the hardened steel. This austenite existing along with martensite is normally referred as the retained austenite. The presence of retained austenite greatly reduces the mechanical properties and such steels do not develop maximum hardness even after cooling at rates higher than the critical cooling rates.Strength can be improved in hardened steels containing retained austenite by a process known as cryogenic quenching.Untransformed austenite is converted into martensite by this treatment. This conversion of retained austenite into martensite results in increased hardness, wear resistance and dimensional stability of steel. Wear can be defined as the progressive loss of materials from the operating surface of a body occurring as a result of relative motion at the surface. Hardness, load,speed, surface roughness, temperature are the major factors which influences wear. Many studies on wear indicate that increasing hardness decreases the wear of a material. With this in mind, to study the surface wear on a surface modified(Cryogenic treated) steel material an attempt has been made in this paper. In this study as a Part -I Hardening was carried out on carbon tool steel (AISI 1095) of different L/D ratio with conventional quenchants like purified water, aqueous solution and Hot mineral oil. As a Part -Ⅱ hardening was followed by quenching was carried out as said in Part- I and the hardened specimen were quenched in liquid Nitrogen which is at sub zero condition. The specimens were tested for its microstructure, hardness and wear loss. The results were compared and analyzed. The alloying elements increases the content of retained austenite hence the material used was AISI1095 (Carbon 0.9%, Si 0.2%, Mn0.4% and the rest Iron)

  3. Evaluation Of Saltstone Mixer Paddle Configuration For Improved Wear Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M.; Fowley, M. D.; Pickenheim, B. R.

    2012-09-27

    A soft metal with low wear resistance (6000 series aluminum), was used to minimize run time while maximizing wear rate. Two paddle configurations were tested, with the first four paddles after the augers replaced by the wear paddles. The first configuration was all flat paddles, with the first paddle not aligned with the augers and is consistent with present SPF mixer. The second configuration had helical paddles for the first three stages after the augers and a flat paddle at the fourth stage. The first helical paddle was aligned with the auger flight for the second configuration. The all flat paddle configuration wear rate was approximately double the wear rate of the helical paddles for the first two sets of paddles after the augers. For both configurations, there was little or no wear on the third and fourth paddle sets based on mass change, indicating that the fully wetted premix materials are much less abrasive than the un-wetted or partially wetted premix. Additionally, inspection of the wear surface of the paddles at higher magnification showed the flat paddles were worn much more than the helical and is consistent with the wear rates. Aligning the auger discharge flight with the first set of helical paddles was effective in reducing the wear rate as compared to the flat paddle configuration. Changing the paddle configuration from flat to helical resulted in a slight increase in rheological properties. Although, both tests produced grout-like material that is within the processing rage of the SPF, it should be noted that cement is not included in the premix and water was used rather than salt solution, which does affect the rheology of the fresh grout. The higher rheological properties from the helical wear test are most likely due to the reduced number of shearing paddles in the mixer. In addition, there is variation in the rheological data for each wear test. This is most likely due to the way that the dry feeds enter the mixer from the dry feeder. The

  4. Microstructure and wear behavior of laser cladding Ni-based alloy composite coating reinforced by Ti(C,N) particulates

    Institute of Scientific and Technical Information of China (English)

    Qi Yongtian; Shi Hanchao; Zou Zengda; Hu Liping

    2008-01-01

    In this paper, Ni-based alloy composite coating reinforced by Ti (C,N) particles was fabricated on the mild steel through laser cladding technology. The microstructure of laser cladding layer was analyzed by means of optical microscopy (OM),X-ray diffraction (XRD) and scanning electron microscopy (SEM).The wear resistance test of the coating was evaluated using an M-2000 tester. The results showed that the Ni-based composite coating had an ability of rapid solidification to form dendritic crystals microstructure consisting of Ti (C,N) particulates uniformly distributed in the matrix. It was found that some Ti(C,N) particles are similar to be round in shape, and the others are irregular. Laser cladding layer reinforced by Ti(C,N) particulates was found to possess good wear resistance property.

  5. Microstructure and Wear Resistance of Laser Cladding TiC Coat on Titanium Alloy%钛合金表面激光熔覆TiC涂层显微结构和耐磨性

    Institute of Scientific and Technical Information of China (English)

    王慧萍; 李军; 李芳; 李曼萍; 奚文龙

    2012-01-01

    采用HL-5000型横流CO2激光加工机在TC4钛合金表面激光熔覆TiC+ Ti和TiC+Ti+ F102复合涂层.通过SEM、EDAX、XRD、HXD-1000TMC型显微硬度计,HT-600型高温摩擦磨损试验机,分析了熔覆层的显微组织、成分、物相,测试了激光熔覆层的显微硬度和滑动摩擦磨损性能.结果表明,激光熔覆制备的TiC复合涂层与基体呈冶金结合,在TiC+ Ti激光熔覆层中,熔覆层的组织是在Ti基体上分布着TiC树枝晶;在TiC +Ti+ F102激光熔覆层中,TiC颗粒发生了部分溶解,熔覆层的组织是在Ti基和γ-Ni基的基体上分布着细小的TiC颗粒和TiC树枝晶.TiC+ Ti激光熔覆层的硬度约为700 HV0.1,TiC+Ti+ F102激光熔覆层的硬度约为800 HV0.1,两种复合涂层耐磨性均比TC4钛合金显著提高.%The laser cladding TiC + Ti and TiC + Ti + F102 composite coaling on the surfact of TC4 alloy was obtained with 5.0 Kw continuous wave CO2 laser. The microstructure,composition and phase of the coating were investigated by means of SEM,EDAX,XRD,HXD-1000TMC Microhardness Tester, HT-600 wear machine Moreover, the microhardness and friction wear properties was measured. The results indicate that the laser cladding TiC composite coating is well bonded with the matrix alloy. The microstructures of TiC dendrites in Ti matrix in the clad layer of TiC + Ti laser clad coating. For TiC + Ti + F102 laser clad coating, parts of TiC particles are dissolved to form a microstructures of TiC particles and fine TiC dendrites in the matrix of Ti and y-Ni in the clad layer. The microhardness of TiC + Ti coating is 700 HV0.1. The microhardness of TiC + Ti + F102 coating is 800 HV0.1 , and the coating greatly enhances the wear resistantce of TC4 titanium alloy.

  6. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; HE Zhi-yong; ZHANG Gao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%.Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  7. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANGPing-ze; XUZhong; HEZhi-yong; ZHANGGao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%. Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  8. Wear and Corrosion Behavior of Zr-Doped DLC on Ti-13Zr-13Nb Biomedical Alloy

    Science.gov (United States)

    Kumar, Prateek; Babu, P. Dilli; Mohan, L.; Anandan, C.; Grips, V. K. William

    2013-01-01

    Zirconium (Zr)-doped DLC was deposited on biomedical titanium alloy Ti-13Nb-13Zr by a combination of plasma-enhanced chemical vapor deposition and magnetron sputtering. The concentration of Zr in the films was varied by changing the parameters of the bi-polar pulsed power supply and the Ar/CH4 gas composition. The coatings were characterized for composition, morphology, nanohardness, corrosion resistance in simulated body fluid (SBF) and tribological properties. X-ray photoelectron spectroscopy (XPS) studies on the samples were used to estimate the concentration of Zr in the films. XPS and micro-Raman studies were used to find the variation of I D/ I G ratio with Zr concentration. These studies show that the disorder in the film increased with increasing Zr concentration as deduced from the I D/ I G ratio. Nanohardness measurements showed no clear dependence of hardness and Young's modulus on Zr concentration. Reciprocating wear studies showed a low coefficient of friction (0.04) at 1 N load and it increased toward 0.4 at higher loads. The wear volume was lower at all loads on the coated samples. The wear mechanism changed from abrasive wear on the substrate to adhesive wear after coating. The corrosion current in SBF was unaffected by the coating and corrosion potential moved toward nobler (more positive) values.

  9. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    2012-12-01

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

  10. Influence of the layer architecture of DLC coatings on their wear and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Bobzin, Kirsten; Bagcivan, Nazlim; Theiss, Sebastian; Weiss, Raphael [RWTH Aachen (Germany). Inst. fuer Oberflaechentechnik; Depner, Udo; Trossmann, Torsten; Ellermeier, Joerg; Oechsner, Matthias [Technische Univ. Darmstadt (Germany). Inst. fuer Werkstoffkunde

    2012-06-15

    In this work, the influence of diamond-like carbon top layers deposited on two different types of layer architecture on wear and corrosion resistance is investigated. Physical vapour deposition coatings with a-C:H top layer of various thicknesses were deposited on plasma nitrided 42CrMo4 by reactive magnetron sputter ion plating. Beneath the top layer, an architecture with and without a-C interlayers was deposited. Investigations using potentiodynamic polarisation testing in artificial seawater as well as an impact tribometer show that it is possible to protect low-alloy heat treatable steel from both corrosion and wear by using pretreatment and an appropriate diamond-like carbon coating. Thicker a-C:H top layers as well as the addition of a-C interlayers resulted in an overall improvement in the coating behaviour. (orig.)

  11. 钛合金激光熔覆硬质颗粒增强金属间化合物复合涂层耐磨性%Wear Resistance of Laser Clad Hard Particles Reinforced Intermetallic Composite Coating on TA15 Alloy

    Institute of Scientific and Technical Information of China (English)

    冯淑容; 张述泉; 王华明

    2012-01-01

    A wear resistant hard particles reinforced intermetallic composite coating is fabricated on TA15 titanium alloy by the laser cladding process using 54. 51Ti-37. 68Ni-7. 81B4C powder blends as the precursor materials. Microstructure and worn surface morphologies of the coating are characterized by optical microscopy (OM), scan electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under abrasive wear condition. Results indicate the hard particles including additional B,C and in situ synthesized titanium boride and titanium carbide are uniformly distributed in the TiNi/Ti2Ni dual-phase intermetallic matrix. The coating has high hardness and exhibits excellent wear resistance. The mainly wear mechanism of laser clad coating is slight micro-cutting and plastic deformation.%以54.51Ti-37.68Ni-7.81B4C(元素前数字为质量分数值)粉末混合物为原料,利用激光熔覆技术在TA15钛合金基材表面制得了以外加未熔B4C颗粒及快速凝固“原位”生成硼化钛和碳化钛为增强相,以金属间化合物TiNi、Ti2Ni为基体的复合涂层.采用光学显微镜(OM)、X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)等手段分析了涂层显微组织,并测试了涂层的二体磨粒磨损性能.结果表明,激光熔覆硬质颗粒增强金属间化合物复合涂层硬度高、组织均匀并表现出优异的抗磨粒磨损性能.高硬度、高耐磨的B4C、硼化钛和碳化钛陶瓷增强相与高韧性TiNi/Ti2Ni金属间化合物基体的强韧结合是激光熔覆涂层优异耐磨性的主要原因,其磨损机理为轻微的显微切削和塑性变形.

  12. Microstructural effects on the wear behavior of a biomedical as-cast Co-27Cr-5Mo-0.25C alloy exposed to pulsed laser melting.

    Science.gov (United States)

    Acevedo-Dávila, J L; López, H F; Cepeda-Rodríguez, F; Rodriguez-Reyes, M; García-Vazquez, F; Hernández-Garcia, H M

    2014-06-01

    In this work, the effect of pulsed laser melting on the exhibited microstructure and properties of a cast Co-27Cr-5Mo-0.25C alloy was investigated. In particular, properties such as surface hardness and wear behavior of the laser modified microstructure were determined as a function of the implemented laser melting parameters. It was found that laser melting promotes significant grain refinement while preventing the precipitation of coarse carbide phases. Apparently, a refined dendritic grain structure develops which is surrounded by a fine carbide distribution in the interdendritic regions. Moreover, the high-temperature face centered cubic (FCC) phase remains untransformed at room temperature. Hardness measurements and wear testing using a Pin-On-Disk tribological machine indicate that the modified laser surfaces exhibit both, high wear resistance and high microhardness when compared with the untreated as-cast Co-27Cr-5Mo-0.25C alloy. In particular, it was found that the laser modified surfaces exhibit improved wear and friction properties comparable to the ones found in Co-Cr-Mo alloys with a predominantly hexagonal closest packed (HCP) matrix. However, surface defects associated with the laser process can be detrimental for the improved wear performance and they should be considered in identifying the proper laser parameters in alloy melting.

  13. Study on Friction and Wear Characteristics of Aluminum Alloy Hydraulic Valve Body and Its Antiwear Mechanism

    Directory of Open Access Journals (Sweden)

    Rong Li

    2017-03-01

    Full Text Available In order for the working status of the aluminum alloyed hydraulic valve body to be controlled in actual conditions, a new friction and wear design device was designed for the cast iron and aluminum alloyed valve bodies comparison under the same conditions. The results displayed that: (1 The oil leakage of the aluminum alloyed hydraulic valve body was higher than the corresponding oil leakage of the iron body during the initial running stage. Besides during a later running stage, the oil leakage of the aluminum alloyed body was lower than corresponding oil leakage of the iron body; (2 The actual oil leakage of different materials consisted of two parts: the foundation leakage that was the leakage of the valve without wear and wear leakage that was caused by the worn valve body; (3 The aluminum alloyed valve could rely on the dust filling furrow and melting mechanism that led the body surface to retain dynamic balance, resulting in the valve leakage preservation at a low level. The aluminum alloy modified valve body can meet the requirements of hydraulic leakage under pressure, possibly constituting this alloy suitable for hydraulic valve body manufacturing.

  14. An investigation of wear behaviors of different Monel alloys produced by powder metallurgy

    Science.gov (United States)

    Esgin, U.; Özyürek, D.; Kaya, H.

    2016-04-01

    In the present study, wear behaviors of Monel 400, Monel 404, Monel R-405 and Monel K-500 alloys produced by Powder Metallurgy (P/M) method were investigated. These compounds prepared from elemental powders were cold-pressed (600 MPa) and then, sintered at 1150°C for 2 hours and cooled down to the room temperature in furnace environment. Monel alloys produced by the P/M method were characterized through scanning electron microscope (SEM+EDS), X-ray diffraction (XRD), hardness and density measurements. In wear tests, standard pin-on-disk type device was used. Specimens produced within four different Monel Alloys were tested under 1ms-1 sliding speed, under three different loads (20N, 30N and 40N) and five different sliding distances (400-2000 m). The results show that Monel Alloys have γ matrix and that Al0,9Ni4,22 intermetallic phase was formed in the structure. Also, the highest hardness value was measured with the Monel K-500 alloy. In wear tests, the maximum weight loss according to the sliding distance, was observed in Monel 400 and Monel 404 alloys while the minimum weight loss was achieved by the Monel K-500 alloy.

  15. Wear behavior of tetragonal zirconia polycrystal versus titanium and titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kanbara, Tsunemichi; Yajima, Yasutomo [Department of Oral Implantology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502 (Japan); Yoshinari, Masao, E-mail: yosinari@tdc.ac.jp [Division of Oral Implant Research, Oral Health Science Center, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502 (Japan)

    2011-04-15

    The aim of this study was to clarify the influence of tetragonal zirconia polycrystal (TZP) on the two-body wear behavior of titanium (Ti). Two-body wear tests were performed using TZP, two grades of cp-Ti or Ti alloy in distilled water, and the cross-sectional area of worn surfaces was measured to evaluate the wear behavior. In addition, the surface hardness and coefficient of friction were determined and an electron probe microanalysis performed to investigate the underlying mechanism of wear. The hardness of TZP was much greater than that of Ti. The coefficient of friction between Ti and Ti showed a higher value than the Ti/TZP combination. Ti was more susceptible to wear by both TZP and Ti than TZP, indicating that the mechanism of wear between TZP and Ti was abrasive wear, whereas that between Ti and Ti was adhesive wear. No remarkable difference in the amount of wear in Ti was observed between TZP and Ti as the opposite material, despite the hardness value of Ti being much smaller than that of TZP. (communication)

  16. Development of wear resistant ceramic coatings for diesel engine components

    Energy Technology Data Exchange (ETDEWEB)

    Haselkorn, M.H. (Caterpillar, Inc., Peoria, IL (United States))

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  17. Influence of silicon and silicon alloy on properties and structure of wear-resistant reaction-bonded silicon carbide%硅及硅合金对反应烧结SiC耐磨材料性能与结构的影响

    Institute of Scientific and Technical Information of China (English)

    侯永改; 朱国朝; 李文凤; 邹文俊; 祝聿霏

    2011-01-01

    本文首先分析了熔渗材料硅及硅合金的润湿性、流动性、烧失率的变化.结果表明:熔渗材料硅在1 430℃,硅铁合金在1 470℃时润湿角小(分别为0°和6°)、流动性大(分别为267%和198%)、烧失率小(均小于15%).同时分析了反应烧结SiC耐磨材料性能,并采用扫描电子显微镜、X射线衍射仪、EDS分别对其显微结构、主晶相和成分进行了表征.结果表明:熔渗温度为1 470 ℃,保温3 h时,熔渗硅铁合金时,制得SiC耐磨材料体积密度大(2.94 g/cm3),硬度高(3 054.45 Hv)、耐磨性高;结构致密且有少量的晶须存在,有利于材料的增强增韧.%This research work studied the changes of wettability, fluidity, and burning loss rate of silicon and silicon alloy during infiltration sintering for siliscon carbide. The results showed that, silicon and ferro-silicon alloy has small wetting angle (0°and 6° ,respectively), high mobility (267% and 198% ,respectively), and low ignition loss( below 1 5 % in average) , when the infiltration sintering temperature of silicon attained 1 430 ℃, and that of ferro-silicon alloy was 1 470 ℃. Furthermore, the researchers analysed the performances of the reaction-bonded silicon carbide by means of scanning electronic microscope, X-ray diffraction and EDS to characterize its rnicrostructure, main phase and compositions. Research results showed that when the temperature for infiltration sintering was 1 470 ℃, and this temperature being hold for 3 h, the reactionbonded silicon carbide can get high density ( 2.94 g/cm3 ), high hardness (3 054.45 Hv), and high wear resistance (the wear is 0.015 g); also, the compact structure with a few whiskers is beneficial to enhance the wear resistance and toughness of silicon carbide.

  18. Mitigation of wear damage by laser surface alloying technique

    CSIR Research Space (South Africa)

    Adebiyi, ID

    2016-04-01

    Full Text Available replacement costs, and all downtime costs related to such replacement. Consequently, companies will increasingly need to look to wear reduction as a direct, immediate avenue for maintaining output quotas and for cutting production costs. Laser coating...

  19. Microstructures and wear properties of surface treated Ti-36Nb-2Ta-3Zr-0.35O alloy by electron beam melting (EBM)

    Science.gov (United States)

    Chen, Zijin; Liu, Yong; Wu, Hong; Zhang, Weidong; Guo, Wei; Tang, Huiping; Liu, Nan

    2015-12-01

    Ti-36Nb-2Ta-3Zr-0.35O (wt.%) (TNTZO, also called gum metal) alloy was surface treated by electron beam melting (EBM), in order to improve wear properties. The microstructures and phase constitutions of the treated surface were characterized by optical microscopy (OM), scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GIXD) and electron backscattered diffraction (EBSD). The results showed that the martensitic phase and dendrites were formed from the β phase alloy after the EBM treatment, and microstructures in the surface changed with the processing parameters. Compared with the untreated TNTZO alloy, the surface modified TNTZO alloys exhibited higher nano-hardness, 8.0 GPa, and the wear loss was also decreased apparently. The samples treated at a scanning speed of 0.5 m/s exhibited the highest wear resistance due to the fast cooling rate and the precipitation of acicular α″ phase. The relationship between the wear property and the surface microstructure of TNTZO alloy was discussed.

  20. Mechanics and mechanisms of surface damage in Al-Si alloys under ultra-mild wear conditions

    Science.gov (United States)

    Chen, Ming

    Al-Si alloys intended for use in engine components must operate under ultra-mild wear (UMW) conditions to fit an acceptable amount of wear during a typical vehicle life. This study simulated surface damage in a UMW regime on five chemically etched Al-Si alloy surfaces using a pin-on-disc tribometer at low loads (0.5-2.0 N) under boundary lubricated conditions. The five alloys contained 11 to 25 wt.% Si and differed in matrix hardness, silicon particle morphology, and size. The mechanisms leading to the UMW damage and the role that the matrix hardness and microstructure play on said mechanisms were studied. Quantitative measurement methods based on statistical analysis of particle height changes and material loss from elevated aluminum using a profilometer technique were developed and used to assess UMW. The Greenwood and Tripp's numerical model was adapted to analyze the contact that occurred between Al-Si alloys with silicon particles protruding above the aluminum and steel balls. The estimation of the real contact pressure applied to the silicon particles was used to rationalize the damage mechanisms. The UMW mechanisms consisted of (i) abrasive wear on the top of the silicon particle surfaces; (ii) sinking-in of the silicon particles; (iii) piling-up of the aluminium around sunken-in particles and (vi) wear of the aluminium by the counterface, which eventually led to the initiation of UMW-II. Increasing the size or areal density of silicon particles with small aspect ratios delayed the onset of UMW-II by providing resistance against the silicon particles sinking-in and the aluminum piling-up. The UMW wear rates, however, began to decrease after long sliding cycles once an oil residue layer supported by hardened ultra-fine subsurface grains formed on the deformed aluminium matrix. The layer formation depended on the microstructure and applied load. Overall experimental observations suggested that Al-11% Si with small silicon particles exhibited optimal long

  1. Study of Stainless Steel Resistance in Conditions of Tribocorrosion Wear

    Directory of Open Access Journals (Sweden)

    Goran Rozing

    2015-07-01

    Full Text Available Analyzed was the influence of tribocorrosion wear due to effects of fatty acids present in the processed medium. The analysis was conducted on samples made of two austenitic and two martensitic stainless steels. Austenitic steels were tested in their nitrided state and martensitic in their induction hardened state. Conducted were laboratory tests of corrosion resistance of samples, analysis of the microstructure and hardness. To see how the applied processes for modifying the surface of stainless steels behave in realistic conditions, it was conducted the examination of samples/parts of a sunflower cake chain conveyer. Based on the comparison of results obtained in the laboratory and in real conditions, it was estimated that steels AISI 420 and AISI 431 with induction hardened surfaces have a satisfactory resistance to abrasive-adhesive wear in the presence of fatty acids.

  2. Antifriction and wear resistance of tin diffusion coating on brass

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    After brass is coated with tin, heat treatment makes the coating metal Sn and the substrate metal lic elements Cu and Zn diffuse with each other. This causes the c oating composition to be changed and the interface to be strengthened. The diffusion coating with a multiphase structure formed by this process has excellent properties of antifriction and wear resistance. With the aid of scanning electron microscopy, electronic probe microanalysis and X-ray diffraction, the mechanism of the properties is discussed.

  3. Dry wear behaviors of wear resistant composite coatings produced by laser cladding

    Institute of Scientific and Technical Information of China (English)

    Jiang Xu; Wenjin Liu; Minlin Zhong

    2004-01-01

    Using different proportional mixtures of Ni-coated MoS2, TiC and pure Ni powders, new typical wear resistant and selflubricant coatings were formed on low carbon steel by laser cladding process. The microstructures and phase composition of the composite coatings were studied by SEM and XRD. The typical microstructure of the composite coating is composed of multisulfide phases including binary element sulfide and ternary element sulfide, γ-Ni, TiC and Mo2C. Wear tests were carried out using an FALEX-6 type pin-on-disc machine. The friction coefficient and mass loss of three kinds of MoS2/TiC/Ni laser clad coatings are lower than those of quenched 45 steel, and the worn surfaces of the laser cladding coatings are very smooth. Because of high hardness combined with low friction, the laser cladding composite coating with a mixture of 70% Ni-coated MoS2, 20%TiC and 10%pure Ni powder presents better wear behaviors than the composite coating with other powder blends. The composition analysis of the worn surface of GCr15 bearing steel shows that the transferred film from the laser cladding coating to the opposite surface of GCr15beating steel contains an amount of sulfide, which can change the micro-friction mechanism and lead to a reduced friction coefficient.

  4. Effect of ageing treatment on wear properties and electrical conductivity of Cu–Cr–Zr alloy

    Indian Academy of Sciences (India)

    Ibrahim Sağlam; Dursun Özyürek; Kerim Çetinkaya

    2011-12-01

    In this study, the effect of ageing processes on the wear behaviour and electrical conductivity was investigated. Prior to solid solution heat treatment at 920°C and ageing at 470°C, 500°C and 530°C for 1 h, 2 h and 3 h, respectively, the prepared samples were homogenized at 920°C for 1 h. After the ageing processes, all samples were characterized in terms of electrical conductivity, scanning electron microscope (with energy dispersive X-ray spectrum (EDS)) and hardness (HV5). In wear tests, pin-on-disc type standard wearing unit was used. As a result, starting from 1 h aged specimens, orderly increase of electrical conductivity was defined. From EDS analyses it was observed that Cr rate increases as precipitates grow. With increase of Cr rate there was also a defined rise of electrical conductivity. From the wear tests, it was observed that the least wear loss was in Cu–Cr–Zr alloy aged at 500°C for 2 h and the most wear loss was in specimens aged at 530°C for 2 h. Furthermore, it was observed that the friction coefficient values resulting from wear rate were overlapped with hardness results and there is a decrease tendency of friction coefficient as wear distance increases.

  5. Porosity and wear resistance of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermal-sprayed coatings offer practical and economical solutions for corrosion and wear protection of components or tools. To improve the coating properties, heat treatment such as preheat is applied. The selection of coating and substrate materials is a key factor in improving the quality of the coating morphology after the heat treatment. This paper presents the experimental results regarding the effect of preheat temperatures, i.e. 200°C, 300°C and 400°C, on porosity and wear resistance of tungsten carbide (WC) coating sprayed by flame thermal coating. The powders and coatings morphology were analyzed by a Field Emission Scanning Electron Microscope equipped with Energy Dispersive Spectrometry (FE-SEM/EDS), whereas the phase identification was performed by X-Ray diffraction technique (XRD). In order to evaluate the quality of the flame spray obtained coatings, the porosity, micro-hardness and wear rate of the specimens was determined. The results showed that WC coating gives a higher surface hardness from 1391 HVN up to 1541 HVN compared to that of the non-coating. Moreover, the wear rate increased from 0.072 mm3/min. to 0.082 mm3/min. when preheat temperature was increased. Preheat on H13 steel substrate can reduce the percentage of porosity level from 10.24 % to 3.94% on the thermal spray coatings.

  6. On the Physics of Machining Titanium Alloys: Interactions between Cutting Parameters, Microstructure and Tool Wear

    Directory of Open Access Journals (Sweden)

    Mohammed Nouari

    2014-07-01

    Full Text Available The current work deals with the analysis of mechanisms involved during the machining process of titanium alloys. Two different materials were chosen for the study: Ti-6Al-4V and Ti-55531. The objective was to understand the effect of all cutting parameters on the tool wear behavior and stability of the cutting process. The investigations were focused on the mechanisms of the chip formation process and their interaction with tool wear. At the microstructure scale, the analysis confirms the intense deformation of the machined surface and shows a texture modification. As the cutting speed increases, cutting forces and temperature show different progressions depending on the considered microstructure (Ti-6Al-4V or Ti-55531 alloy. Results show for both materials that the wear process is facilitated by the high cutting temperature and the generation of high stresses. The analysis at the chip-tool interface of friction and contact nature (sliding or sticking contact shows that machining Ti55531 often exhibits an abrasion wear process on the tool surface, while the adhesion and diffusion modes followed by the coating delamination process are the main wear modes when machining the usual Ti-6Al-4V alloy.

  7. Pelvic mass secondary to polyethylene and titanium alloy wear debris resulting in recurrent deep vein thrombosis.

    Science.gov (United States)

    Shilt, J S; Rozencwaig, R; Wilson, M R

    1997-12-01

    External venous compression can be a cause of deep vein thrombosis (DVT). This is an unusual case of acetabular component failure and resultant polyethylene and titanium alloy wear debris that presented as a pelvic mass and resulted in iliac vein compression and subsequent DVT.

  8. Zinc alloy enhances strength and creep resistance

    Energy Technology Data Exchange (ETDEWEB)

    Machler, M. [Fisher Gauge Ltd., Peterborough, Ontario (Canada). Fishercast Div.

    1996-10-01

    A family of high-performance ternary zinc-copper-aluminum alloys has been developed that provides higher strength, hardness, and creep resistance than the traditional zinc-aluminum alloys Zamak 3, Zamak 5, and ZA-8. Designated ACuZinc, mechanical properties comparable to those of more expensive materials make it suitable for high-load applications and those at elevated temperatures. This article describes the alloy`s composition, properties, and historical development.

  9. Wear transition of solid-solution-strengthened Ti-29Nb-13Ta-4.6Zr alloys by interstitial oxygen for biomedical applications.

    Science.gov (United States)

    Lee, Yoon-Seok; Niinomi, Mitsuo; Nakai, Masaaki; Narita, Kengo; Cho, Ken; Liu, Huihong

    2015-11-01

    In previous studies, it has been concluded that volume losses (V loss) of the Ti-29Nb-13Ta-4.6Zr (TNTZ) discs and balls are larger than those of the respective Ti-6Al-4V extra-low interstitial (Ti64) discs and balls, both in air and Ringer's solution. These results are related to severe subsurface deformation of TNTZ, which is caused by the lower resistance to plastic shearing of TNTZ than that of Ti64. Therefore, it is necessary to further increase the wear resistance of TNTZ to satisfy the requirements as a biomedical implant. From this viewpoint, interstitial oxygen was added to TNTZ to improve the plastic shear resistance via solid-solution strengthening. Thus, the wear behaviors of combinations comprised of a new titanium alloy, TNTZ with high oxygen content of 0.89 mass% (89O) and a conventional titanium alloy, Ti64 were investigated in air and Ringer's solution for biomedical implant applications. The worn surfaces, wear debris, and subsurface damage were analyzed using a scanning electron microscopy and an electron probe microanalysis. V loss of the 89O discs and balls are smaller than those of the respective TNTZ discs and balls in both air and Ringer's solution. It can be concluded that the solid-solution strengthening by oxygen effectively improves the wear resistance for TNTZ materials. However, the 89O disc/ball combination still exhibits higher V loss than the Ti64 disc/ball combination in both air and Ringer's solution. Moreover, V loss of the disc for the 89O disc/Ti64 ball combination significantly decreases in Ringer's solution compared to that in air. This decrease for the 89O disc/Ti64 ball combination in Ringer's solution can be explained by the transition in the wear mechanism from severe delamination wear to abrasive wear.

  10. Influence of loading and rotation speed on Friction and Wear properties of CuAlBi Alloy

    Institute of Scientific and Technical Information of China (English)

    Liu Rongchang; Dong Litao; Li Xingyuan; Chen Xiuhong

    2007-01-01

    The variation of the friction coefficient of the CuAlBi alloy at different connecting loading and friction speed were investigated by using MMU-5G sliding friction-wear tester, besides, the wear mass loss of the CuAlBi alloy was measured, and the influence of loading and rotation speed on friction and wear properties of CuAlBi alloy was also discussed. The results show that the friction coefficient increase then decrease with increase of connecting loading as well as decreases with increase of friction speed, and the wear loss mass increases with increase of connecting loading and friction speed. As a result, the wear failure form of CuAlBi alloy is mainly ploughing.

  11. Study on mild and severe wear of 7075 aluminum alloys by high-speed wire electrical discharge machining

    Science.gov (United States)

    Xu, Jinkai; Qiu, Rongxian; Xia, Kui; Wang, Zhichao; Xu, Lining; Yu, Huadong

    2017-01-01

    The recast and the carbon layers were fabricated on 7075Al alloys surface by the high-speed wire electrical discharge machining (HS-WEDM) technologyunder various working parameters. The mechanical properties and friction behaviors of the layers were investigated by UMT. 7075 Al alloys were used to do dry sliding wear tests on a pin-ondisk wear tester at room temperature under various contact pressures. 7075 Al alloys had almost the same wear regularity as a function of sliding velocity and rated frequency. The hardness of recast layer was improved. And this method can enhance durability of 7075 Al alloy effectively.The transition to severe wear occurred at a higher load (12N) for asmachined samples, compared with 7075 matrix (9N), the as-machined samples exhibited lower wear rates within the tested loading range.

  12. Resistance of weldclads made by flux-cored arc welding technology against erosive wear

    Directory of Open Access Journals (Sweden)

    I. Pernis

    2013-07-01

    Full Text Available The paper deals with the tribological properties of investigated types of hardfacing materials at erosive wear process. Influence of impact angle of abrasive grains on wear resistance and microhardness changes of hardfacing layer were investigated too. From quantitative aspect weldclads wear resistance were evaluated on the base of weight loss. Results achieved showed that impact angle is one of determining factors of material’s wear measure.

  13. Wear behaviour of cobalt-chromium-molybdenum alloys used in metal-on-metal hip implants

    Science.gov (United States)

    Varano, Rocco

    The influence of carbon (C) content, microstructure, crystallography and mechanical properties on the wear behaviour of metal-on-metal (MM) hip implants made from commercially available cobalt-chromium-molybdenum (CoCrMo) alloys designated as American Society of Testing and Materials (ASTM) grade F1537, F75 and as-cast were studied in this work. The as-received bars of wrought CoCrMo alloys (ASTM F1537 of either about 0.05% or 0.26% C) were each subjected to various heat treatments to develop different microstructures. Pin and plate specimens were fabricated from each bar and were tested against each other using a linear reciprocating pin-on-plate apparatus in 25% by volume bovine serum solution. The applied normal load was 9.81 N and the reciprocating plate had a sinusoidal velocity with an average speed of 26 mm/s. The wear was measured gravimetrically and it was found to be most strongly affected by alloy C content, irrespective of grain size or carbide morphology. More precisely, the wear behaviour was directly correlated to the dissolved C content of the alloys. Increased C in solid-solution coincided with lower volumetric wear since C helps to stabilize the face-centred cubic (FCC) crystal structure thus limiting the amount of strain induced transformation (SIT) to the hexagonal close-packed crystal structure (HCP). Based on the observed surface twinning in and around the contact zone and the potentially detrimental effect of the HCP phase, it was postulated that the MM wear behaviour of CoCrMo alloys in the present study was controlled by a deformation mechanism, rather than corrosion or tribochemical reactions.

  14. Tribological property and wear mechanism of undercooled Ni-Pb monotectic alloys

    Institute of Scientific and Technical Information of China (English)

    谢辉; 杨根仓; 郝维新; 喇培清; 刘维民; 许丽君

    2004-01-01

    The tribological properties of Ni-31.440% Pb monotectic alloys were measured by using a SRV reciprocating tribo-tester. The effects of load, sliding speed and melt undercooling on wear rate of the sample were investigated. The worn surface of Ni-31.44%Pb was examined using scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS). The results show that the wear properties of the samples undercooled by 80 K and 310 K are obviously superior, which is attributed to more efficient transfer of Pb from the bulk material to the worn surface. The lubricating film is identified as a mixture of Ni2 O3 and PbO by XPS analysis. At the same load and sliding speed, the predominant wear mechanisms can be identified as oxidative wear for the lower and larger undercooling,and plastic deformation and fracture for the medium undercooling.

  15. Evaluation of Microstructure and Wear Properties of Ti-6Al-4V Alloy Plasma Carbonized at Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; WEI Qiulan; XING Yazhe; JIANG Chaoping; LI Xinghang; ZHAO Zhiyu

    2015-01-01

    Ti-6Al-4V (TC4) alloys were plasma carbonized at different temperatures (900, 950, and 1 000ć) for duration of 3 h. Graphite rod was employed as carbon supplier to avoid the hydrogen brittleness which is ubiquitous in traditional gas carbonizing process. Two distinguished structures including a thin compound layer (carbides layer) and a thick layer with the mixed microstructure of TiC and theα-Ti in carburing layer were formed during carburizing. Furthermore, it was found that the microstructure and the properties of TC4 alloy were signifi cantly related to the carbonizing temperature. The specimen plasma carbonized at 950ć obtained maximum value both in the hardness and wear resistance.

  16. Evaluation of Two Total Hip Bearing Materials for Resistance to Wear Using a Hip Simulator

    Directory of Open Access Journals (Sweden)

    Kenneth R. St. John

    2015-06-01

    Full Text Available Electron beam crosslinked ultra high molecular weight polyethylene (UHMWPE 32 mm cups with cobalt alloy femoral heads were compared with gamma-irradiation sterilized 26 mm cups and zirconia ceramic heads in a hip wear simulator. The testing was performed for a total of ten million cycles with frequent stops for cleaning and measurement of mass losses due to wear. The results showed that the ceramic on UHMWPE bearing design exhibited higher early wear than the metal on highly crosslinked samples. Once a steady state wear rate was reached, the wear rates of the two types of hip bearing systems were similar with the ceramic on UHMPWE samples continuing to show a slightly higher rate of wear than the highly crosslinked samples. The wear rates of each of the tested systems appear to be consistent with the expectations for low rates of wear in improved hip replacement systems.

  17. Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and Composites

    Science.gov (United States)

    Hoffman, Douglas C.; Potter, Benjamin

    2013-01-01

    Quality knives are typically fabricated from high-strength steel alloys. Depending on the application, there are different requirements for mechanical and physical properties that cause problems for steel alloys. For example, diver's knives are generally used in salt water, which causes rust in steel knives. Titanium diver's knives are a popular alternative due to their salt water corrosion resistance, but are too soft to maintain a sharp cutting edge. Steel knives are also magnetic, which is undesirable for military applications where the knives are used as a tactical tool for diffusing magnetic mines. Steel is also significantly denser than titanium (8 g/cu cm vs. 4.5 g/cu cm), which results in heavier knives for the same size. Steel is hard and wear-resistant, compared with titanium, and can keep a sharp edge during service. A major drawback of both steel and titanium knives is that they must be ground or machined into the final knife shape from a billet. Since most knives have a mirrored surface and a complex shape, manufacturing them is complex. It would be more desirable if the knife could be cast into a net or near-net shape in a single step. The solution to the deficiencies of titanium, steel, and ceramic knives is to fabricate them using bulk metallic glasses (or composites). These alloys can be cast into net or near-net shaped knives with a combination of properties that exceed both titanium and steel. A commercially viable BMG (bulk metallic glass) or composite knife is one that exhibits one or all of the following properties: It is based on titanium, has a self-sharpening edge, can retain an edge during service, is hard, is non-magnetic, is corrosion-resistant against a variety of corrosive environments, is tough (to allow for prying), can be cast into a net-shape with a mirror finish and a complex shape, has excellent wear resistance, and is low-density. These properties can be achieved in BMG and composites through alloy chemistry and processing. For

  18. Wear Resistance of 3Cr2W8V Rough Surfaces

    Institute of Scientific and Technical Information of China (English)

    Zhou Hong; Wang Wei; Ren Lu-quan; Li Yue; Li Chen

    2005-01-01

    Three types of rough surface were processed by laser irradiation on the 3Cr2W8V material hot-work die steel surface.The wear experiments with smooth surface and rough surface samples were repeated on the pin-tray wear machine. According to the wear results, we studied the regularity of wear resistance of different rough surface samples. The results indicated that bionic rough surface can improve the wear resistance of the material and the wear resistance can be increased 1 -2times, compared with the smooth surface. Also, the wear resistance of the rough surface was affected by laser current and duration of impulse. The bigger the laser current or the impulse duration, the better is the wear resistance. When the distance between the same kind of units which are distributed on the surfaces is changed, the wear resistance changes. The wear resistance of a bionic rough surface on which the grid units were distributed at spacing of 1 mm was the best. And we designed the wear models.

  19. ANN-based wear performance prediction for plasma nitrided Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, Fatih; Karadeniz, Sueleyman; Durmus, Izmir; Durmus, Huelya

    2012-07-01

    Surface modification of a Ti6Al4V titanium alloy was made by the plasma nitriding process. Plasma nitriding was performed in a constant gas mixture of 20% H{sub 2} -80% N{sub 2} at temperatures between 700 and 1000 C and process times between 2 and 15 h. Samples nitrided at different treatment times and temperatures were subjected to the dry sliding wear test using the pin-on-disc set up under 80N normal load with rotational speed of counter face disc of 0.8 m/s at room conditions. An artificial neural network (ANN) model of was developed for prediction of wear performance of the plasma nitrided Ti6Al4V alloy. The inputs of the ANN model were processing times and temperatures, diffusion layer thickness, Ti{sub 2}N thickness, TiN thickness and hardness. The output of the ANN model was wear loss. The model is based on the multilayer backpropagation neural technique. The ANN was trained with a comprehensive dataset collected from experimental conditions and results of authors. The model can be used for the prediction of wear properties of Ti6Al4V alloys nitrided at different parameters. The ANN model demonstrated the best statistical performance with the experimental results.

  20. High Density Infrared (HDI) Transient Liquid Coatings for Improved Wear and Corrosion Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ronald W. Smith

    2007-07-05

    This report documents a collaborative effort between Oak Ridge National Laboratory (ORNL), Materials Resources International and an industry team of participants to develop, evaluate and understand how high density infrared heating technology could be used to improve infiltrated carbide wear coatings and/or to densify sprayed coatings. The research included HDI fusion evaluations of infiltrated carbide suspensions such (BrazeCoat® S), composite suspensions with tool steel powders, thermally sprayed Ni-Cr- B-Si (self fluxing alloy) and nickel powder layers. The applied work developed practical HDI / transient liquid coating (TLC) procedures on test plates that demonstrated the ability to fuse carbide coatings for industrial applications such as agricultural blades, construction and mining vehicles. Fundamental studies helped create process models that led to improved process understanding and control. The coating of agricultural blades was demonstrated and showed the HDI process to have the ability to fuse industrial scale components. Sliding and brasive wear tests showed that high degree of wear resistance could be achieved with the addition of tool steel powders to carbide particulate composites.

  1. High Density Infrared (HDI) Transient Liquid Coatings for Improved Wear and Corrosion Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ronald W. Smith

    2007-07-05

    This report documents a collaborative effort between Oak Ridge National Laboratory (ORNL), Materials Resources International and an industry team of participants to develop, evaluate and understand how high density infrared heating technology could be used to improve infiltrated carbide wear coatings and/or to densify sprayed coatings. The research included HDI fusion evaluations of infiltrated carbide suspensions such (BrazeCoat® S), composite suspensions with tool steel powders, thermally sprayed Ni-Cr- B-Si (self fluxing alloy) and nickel powder layers. The applied work developed practical HDI / transient liquid coating (TLC) procedures on test plates that demonstrated the ability to fuse carbide coatings for industrial applications such as agricultural blades, construction and mining vehicles. Fundamental studies helped create process models that led to improved process understanding and control. The coating of agricultural blades was demonstrated and showed the HDI process to have the ability to fuse industrial scale components. Sliding and brasive wear tests showed that high degree of wear resistance could be achieved with the addition of tool steel powders to carbide particulate composites.

  2. Influences of the microstructure on the wear resistance of cobalt-based ahoy coatings obtained by plasma transferred arc process

    Institute of Scientific and Technical Information of China (English)

    HOU Qingyu; GAO Jiasheng

    2005-01-01

    The microstructure, substructure, and wear characteristic of cobalt-based alloy coatings obtained by plasma transferred arc (PTA) process were investigated using optical metallurgical microscope, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and dry sand abrasion tester (DSAT). The aging effect on the structure and wear resistance of the cobalt-based PTA coating was also studied. The results show that the as-welded coating consists of cobalt-based solid solution with face-centered cubic structure and hexagonal (Cr, Fe)7C3. There are a lot of stacking faults existing in the cobalt-based solid solution. After aging at 600℃ for 60 h, the microstructure becomes coarse, and another carbide (Cr, Fe)23C6 precipitates. As a result, the wear mass loss of the aged sample is higher than that of the as-welded sample.

  3. Standard Test Method for Abrasive Wear Resistance of Cemented

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the determination of abrasive wear resistance of cemented carbides. 1.2 The values stated in inch-pound units are to be regarded as the standard. The SI equivalents of inch-pound units are in parentheses and may be approximate. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  4. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Mike L. Fulcher; Kenneth L. Knittel

    2004-06-08

    The work performed on this program was to develop wear resistant, tough FM composite materials with efforts focused on WC-Co based FM systems. The materials were developed for use in mining industry wear applications. Components of interest were drill bit inserts for drilling blast holes. Other component applications investigated included wear plates for a variety of equipment such as pit shovels, wear surfaces for conveyors, milling media for ball milling operations, hydrocyclone cones, grader blades and dozer teeth. Cross-cutting technologies investigated included hot metal extrusion dies, drill bits for circuit board fabrication, cutting tools for cast iron and aluminum machining. An important part of the work was identification of the standard materials used in drilling applications. A materials trade study to determine those metals and ceramics used for mining applications provided guidance for the most important materials to be investigated. WC-Co and diamond combinations were shown to have the most desirable properties. Other considerations such as fabrication technique and the ability to consolidate shifted the focus away from diamond materials and toward WC-Co. Cooperating partners such as Kennametal and Kyocera assisted with supplies, evaluations of material systems, fabricated parts and suggestions for cross-cutting technology applications for FM architectures. Kennametal provided the raw materials (WC-Co and Al-TiCN powders) for the extent of the material evaluations. Kyocera shared their research into various FM systems and provided laboratory testing of fabricated materials. Field testing provided by partners Superior Rock Bit and Brady Mining and Construction provided insight into the performance of the fabricated materials under actual operational conditions. Additional field testing of cross-cutting technology, the extrusion of hot metals, at Extruded Metals showed the potential for additional market development.

  5. ANN & ANFIS Models for Prediction of Abrasive Wear of 3105 Aluminium Alloy with Polyurethane Coating

    Directory of Open Access Journals (Sweden)

    H. Alimam

    2016-06-01

    Full Text Available The quest for safety and reliability has increased significantly after Industrial revolution, so is the case for coating industries. In this paper 3105 Aluminium alloy sheet is coated with organic polyurethane coating. After the implementation of coating, various processes are undergone to check its reliability under elevated conditions. ANN & ANFIS model were developed and trained with an objective to find abrasive wear during the process. ANN & ANFIS model were compared with the experimental results. It is observed that the abrasive wear of a coated specimen can be predicted accurately and precisely using ANN and ANFIS models.

  6. Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy.

    Science.gov (United States)

    Balla, Vamsi Krishna; Soderlind, Julie; Bose, Susmita; Bandyopadhyay, Amit

    2014-04-01

    Laser surface melting (LSM) of Ti6Al4V alloy was carried out with an aim to improve properties such as microstructure and wear for implant applications. The alloy substrate was melted at 250W and 400W at a scan velocity of 5mm/s, with input energy of 42J/mm(2) and 68J/mm(2), respectively. The results showed that equiaxed α+β microstructure of the substrate changes to mixture of acicular α in β matrix after LSM due to high cooling rates in the range of 2.25×10(-3)K/s and 1.41×10(-3)K/s during LSM. Increasing the energy input increased the thickness of remelted region from 779 to 802µm and 1173 to 1199µm. Similarly, as a result of slow cooling rates under present experimental conditions, the grain size of the alloy increased from 4.8μm to 154-199μm. However, the hardness of the Ti6Al4V alloy increased due to LSM melting and resulted in lowest in vitro wear rate of 3.38×10(-4)mm(3)/Nm compared to untreated substrate with a wear rate of 6.82×10(-4)mm(3)/Nm.

  7. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Jingang Tang

    2016-03-01

    Full Text Available A metallurgical zirconium nitride (ZrN layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW and fretting fatigue (FF behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr–Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK0.1. A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.

  8. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy.

    Science.gov (United States)

    Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming

    2016-03-23

    A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr-Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK0.1. A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.

  9. Wear behavior and corrosion resistance of NiCrAl/TiC composite coating on aluminum alloy by laser cladding%铝合金表面激光熔覆NiCrAl/TiC复合涂层的磨损行为和耐蚀性能

    Institute of Scientific and Technical Information of China (English)

    李琦; 刘洪喜; 张晓伟; 姚爽; 张旭

    2014-01-01

    为提高铝合金的摩擦磨损和耐蚀性能,在A390铝合金基体上通过激光熔覆制备NiCrAl/TiC复合涂层。采用XRD和EDS分析了涂层的物相组成,结合SEM观察了涂层的微观组织,运用摩擦磨损试验机和电化学工作站测试了涂层的摩擦磨损和耐腐蚀性能。结果表明:复合涂层主要物相为AlNi、Al 3 Ni 2、TiC ,同时含有少量的Cr 13 Ni 5 Si 2、Cu 9 Al 4和α(Al)。涂层自下至上分别为短棒状树枝晶、胞状晶、柱状树枝晶和等轴晶。相同磨损条件下,A390基体发生了严重的磨粒磨损和剥层磨损,而激光熔覆涂层只产生了轻微的磨粒磨损,熔覆层的相对耐磨性为3.16。在3.5%NaCl溶液中的极化曲线和电化学阻抗谱(EIS)显示:熔覆层自腐蚀电位较A390基体的正移,腐蚀电流密度减小;熔覆层呈单容抗特性,而A390基体在高频区表现为容抗特性,在中低频区则为感抗特性。在Bote图中,低频区熔覆层对应的相位角和中低频段熔覆层的阻抗模值均大于A390基体的,表明熔覆层的耐蚀性远高于A390基体的。熔覆层的腐蚀形貌为局部点蚀,A390基体的腐蚀形貌为晶间腐蚀和剥蚀。%In order to improve the frictional wear behavior and corrosion resistance of aluminum alloy, NiCrAl/TiC composite coating was fabricated on A390 aluminum alloy by laser cladding. The phase constitution, microstructure, frictional wear behavior and corrosion resistance of the composite coating were analyzed using X-ray diffraction (XRD), energy dispersive spectrum (EDS), scanning electron microscope (SEM), friction and wear testing machine and electrochemical workstation. The results show that the coating is mainly composed of AlNi, Al 3 Ni 2 and TiC phases, and a small amount of Cr13Ni5Si2, Cu9Al4 and α(Al) phases. The microstructures of the coating from the bottom to top are dendrite crystal, cellular crystal, columnar dendrite crystal and equiaxed

  10. Wear Resistance of Friction Pair of Metal Composite/Copper under Electric Current

    Science.gov (United States)

    Aleutdinova, M. I.; Fadin, V. V.; Rubtsov, V. Ye; Aleutdinov, K. A.

    2016-11-01

    Sliding of metal composites against copper counterbody under severe conditions (i.e. at the contact current density higher 50 A/cm2 and at high roughness of counterbody) is carried out. It is shown that the composite of composition of Cu-30% of graphite shows low wear resistance in these conditions. Higher wear resistance is inherent in the composites containing lead and bearing steel. Impregnation of these composites by industrial oil hasn't led to noticeable increase in wear resistance.

  11. Dry sliding friction and wear characteristics of Fe-C-Cu alloy containing molybdenum di sulphide

    Energy Technology Data Exchange (ETDEWEB)

    Dhanasekaran, S. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Gnanamoorthy, R. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India)]. E-mail: gmoorthy@iitm.ac.in

    2007-07-01

    Sintered steels find increasing application as bearings and gears due to economical and technical reasons. Materials used for making these machine elements need to have high strength, good wear resistance and low coefficient of friction. An attempt is made to develop molybdenum di sulphide added iron-copper-carbon sintered steels using simple single stage compaction and sintering elemental powders. Friction and wear characteristics of the developed materials were evaluated using cylindrical specimens in a pin-on-disc sliding apparatus. Addition of molybdenum di sulphide increases the compressibility and increases the part density. Strength and hardness of the molybdenum di sulphide added compositions are better than the base composition. Addition of the 3% molybdenum di sulphide is found to be beneficial in improving friction and wear characteristics. Higher amount of brittle phases in the 5% molybdenum di sulphide added sample contributes to the reduction in the wear resistance.

  12. Plasma immersion ion implantation on 15-5PH stainless steel: influence on fatigue strength and wear resistance

    Science.gov (United States)

    Bonora, R.; Cioffi, M. O. H.; Voorwald, H. J. C.

    2017-05-01

    Surface improvement in steels is of great interest for applications in industry. The aim of this investigation is to study the effect of nitrogen ion implantation on the axial fatigue strength and wear resistance of 15-5 PH stainless steel. It is well know that electroplated coatings, which are used to improve abrasive wear and corrosion properties, affects negatively the fatigue strength. It is also important to consider requirements to reduce the use of coated materials with electroplated chromium and cadmium, that produce waste, which is harmful to health and environment. The HVOF (High velocity oxygen fuel) process provides hardness, wear strength and higher fatigue resistance in comparison to electroplated chromium. Plasma immersion ion implantation has been used to enhance the hardness, wear, fatigue and corrosion properties of metals and alloys. In the present research the fatigue life increased twice for 15-5 PH three hours PIII treated in comparison to base material. From the abrasive wear tests a lower pin mass reduction was observed, associated to the superficial treatments. The improvement of fatigue and mechanical performance is attributed to a combination of nitrides phase structure and compressive residual stresses during the PIII treatment.

  13. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni-Mo-Si System.

    Science.gov (United States)

    Huang, Boyuan; Song, Chunyan; Liu, Yang; Gui, Yongliang

    2017-02-04

    Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni-Mo-Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni-40Mo-15Si (at %), selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS), and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo₂Ni₃Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo₂Ni₃Si.

  14. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni–Mo–Si System

    Directory of Open Access Journals (Sweden)

    Boyuan Huang

    2017-02-01

    Full Text Available Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni–Mo–Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni–40Mo–15Si (at %, selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM, scanning electron microscopy (SEM, X-ray diffraction (XRD, and energy dispersive spectroscopy (EDS, and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo2Ni3Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo2Ni3Si.

  15. STUDY OF MICROSTRUCTURE, HARDNESS AND WEAR PROPERTIES OF SAND CAST Cu-4Ni-6Sn BRONZE ALLOY

    Directory of Open Access Journals (Sweden)

    S. ILANGOVAN

    2015-04-01

    Full Text Available An alloy of Cu-4Ni-6Sn was cast in the sand moulds. The cast rods were homogenized, solution heat treated and aged for different periods of time. The specimens were prepared from the rods to study the microstructure, microhardness and wear properties. It was found that the aging process increases the hardness of the alloy significantly. It was due to the change in the microstructure of the alloy. Further, spinodal decomposition and the ordering reaction take place during the aging treatment. Specific wear rate was found to decrease with the hardness of the alloy. Coefficient of friction remains constant and is not affected by the aging process.

  16. Influence of surface coating on Ti811 alloy resistance to fretting fatigue at elevated temperature

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaohua; LIU Daoxin

    2009-01-01

    An extensive study of the composition distribution, bonding strength, hardness, and wear resistance of a 0Cr18Ni9 film deposited on a Ti811 titanium alloy surface by ion beam enhanced deposition (IBED) is presented. Shot peening was introduced to post-treat the modified surface to synergistically improve the fretting fatigue resistance of the Ti811 alloy at 350~C. The results indicate that the 0Cr18Ni9 film with high density, small grain size, low void radio, and high bonding strength can be prepared using IBED. As a result, the hardness, wear resistance, and fretting fatigue resistance of the Ti811 alloy are increased to a remarkable extent. Compared with shot peening treatment or IBED 0Cr18Ni9 film alone, the Ti811 titanium alloy with an IBED 0Cr18Ni9 film combined with shot peening shows a higher fretting fatigue resistance at 350℃. This is due to the synergistic effect of the high wear resistance of the film surface and the residual compressive stress induced by shot peening.

  17. Effects of Surface Alloying and Laser Beam Treatment on the Microstructure and Wear Behaviour of Surfaces Modified Using Submerged Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Regita BENDIKIENE

    2016-05-01

    Full Text Available In this study, the effects of surface alloying of cheap plain carbon steel using submerged metal arc technique and subsequent laser beam treatment on the microstructure and wear behaviour of surfaced layers were studied. This method is the cheapest one to obtain high alloyed coatings, because there is no need to apply complex technologies of powder making (metal powder is spread on the surface of base metal or inserted into the flux, it is enough to grind, granulate and blend additional materials. On the other hand, strengthening of superficial layers of alloys by thermal laser radiation is one of the applications of laser. Surface is strengthened by concentrated laser beam focused into teeny area (from section of mm till some mm. Teeny area of metal heat up rapidly and when heat is drain to the inner metal layers giving strengthening effect. Steel surface during this treatment exceeds critical temperatures, if there is a need to strengthen deeper portions of the base metal it is possible even to fuse superficial layer. The results presented in this paper are based on micro-structural and micro-chemical analyses of the surfaced and laser beam treated surfaces and are supported by analyses of the hardness, the wear resistance and resultant microstructures. Due to the usage of waste raw materials a significant improvement (~ 30 % in wear resistance was achieved. The maximum achieved hardness of surfaced layer was 62 HRC, it can be compared with high alloyed conventional steel grade. Wear properties of overlays with additional laser beam treatment showed that weight loss of these layers was ~10 % lower compared with overlays after welding; consequently it is possible to replace high alloyed conventional steel grades forming new surfaces or restoring worn machine elements and tools.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7621

  18. Effects of Surface Alloying and Laser Beam Treatment on the Microstructure and Wear Behaviour of Surfaces Modified Using Submerged Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Regita BENDIKIENE

    2016-05-01

    Full Text Available In this study, the effects of surface alloying of cheap plain carbon steel using submerged metal arc technique and subsequent laser beam treatment on the microstructure and wear behaviour of surfaced layers were studied. This method is the cheapest one to obtain high alloyed coatings, because there is no need to apply complex technologies of powder making (metal powder is spread on the surface of base metal or inserted into the flux, it is enough to grind, granulate and blend additional materials. On the other hand, strengthening of superficial layers of alloys by thermal laser radiation is one of the applications of laser. Surface is strengthened by concentrated laser beam focused into teeny area (from section of mm till some mm. Teeny area of metal heat up rapidly and when heat is drain to the inner metal layers giving strengthening effect. Steel surface during this treatment exceeds critical temperatures, if there is a need to strengthen deeper portions of the base metal it is possible even to fuse superficial layer. The results presented in this paper are based on micro-structural and micro-chemical analyses of the surfaced and laser beam treated surfaces and are supported by analyses of the hardness, the wear resistance and resultant microstructures. Due to the usage of waste raw materials a significant improvement (~ 30 % in wear resistance was achieved. The maximum achieved hardness of surfaced layer was 62 HRC, it can be compared with high alloyed conventional steel grade. Wear properties of overlays with additional laser beam treatment showed that weight loss of these layers was ~10 % lower compared with overlays after welding; consequently it is possible to replace high alloyed conventional steel grades forming new surfaces or restoring worn machine elements and tools.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7621

  19. The Effect of Nodular Cast Iron Metal Matrix on the Wear Resistance

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2012-04-01

    Full Text Available The paper presents results of studies on the effect of the nodular cast iron metal matrix composition on the abrasive and adhesive wear resistance. Nodular cast iron with different metal matrix obtained in the rough state and ADI were tested. To research of abrasive and adhesive wear the pearlitic and bainitic cast iron with carbides and without this component were chosen. The influence of the carbides amount for cast iron wear resistance was examined. It was found, that the highest abrasive and adhesive wear resistance under conditions of dry friction has a nodular cast iron with carbides with upper and lower bainite. Carbides in bainitic and pearlitic cast iron significantly increase the wear resistance in these conditions. In terms of fluid friction the largest wear resistance had cast iron group with the highest hardness.

  20. Effect of Age-Hardening Treatment on Microstructure and Sliding Wear-Resistance Performance of WC/Cu-Ni-Mn Composite Coatings

    Science.gov (United States)

    Liu, Jun; Yang, Shuai; Liu, Kai; Gui, Chibin; Xia, Weisheng

    2017-06-01

    The Cu-Ni-Mn alloy-based hardfacing coatings reinforced by WC particles (WC/Cu-Ni-Mn) were deposited on a steel substrate by a manual oxy-acetylene weld hardfacing method. A sound interfacial junction was formed between the WC particles and the Cu-Ni-Mn alloy metal matrix binder even after the age-hardening treatment. The friction and wear behavior of the hardfacing coatings was investigated. With the introduction of WC particles, the sliding wear resistance of the WC/Cu-Ni-Mn hardfacing coatings was sharply improved: more than 200 times better than that of the age-hardening-treated Cu-Ni-Mn alloy coating. The sliding wear resistances of the as-deposited and the age-hardening-treated WC/Cu-Ni-Mn hardfacing coatings were 1.83 and 2.26 times higher than that of the commercial Fe-Cr-C hardfacing coating, which is mainly ascribed to the higher volume fraction of carbide reinforcement. Owing to the precipitation of the NiMn secondary phase in the Cu-Ni-Mn metal matrix, the age-hardening-treated coating had better wear resistance than that of the as-deposited coating. The main sliding wear mechanisms of the age-hardening-treated coatings are adhesion and abrasion.

  1. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.

    1999-11-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods.

  2. Effect of bionic coupling units' forms on wear resistance of gray cast iron under dry linear reciprocating sliding condition

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Xie, Guofeng; Cong, Dalong; Meng, Chao; Ren, Luquan

    2015-07-01

    In order to get close to the wear form of guide rails, the homemade linear reciprocating wear testing machine was used for the wear test. In order to improve the wear-resistance of gray cast iron guide rail, bionic coupling units of different forms were manufactured by a laser. Wear behavior of gray-cast-iron with bionic-coupling units has been studied under dry sliding condition at room temperature using the wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that bionic coupling unit could improve the wear resistance of gray cast iron. The wear resistance of gray cast iron with reticulation bionic coupling unit is the best. When the load and speed changed, reticulation bionic coupling unit still has excellent performance in improving the wear resistance of gray cast iron.

  3. Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting

    Science.gov (United States)

    Kang, Nan; Coddet, Pierre; Liao, Hanlin; Baur, Tiphaine; Coddet, Christian

    2016-08-01

    This work investigates the microstructure and wear behavior of hypereutectic Al-Si alloys, in-situ fabricated using selective laser melting of a mixture of eutectic Al-12Si (wt.%) and pure Si powders. The first observation was that the size and morphology of the Si phase are strongly influenced by the laser power. In addition, it was also observed that a high laser power causes serious evaporation of aluminum during the remelting process. Dry sliding wear test and Vickers microhardness measurements were employed to characterize the mechanical properties of the material. The lowest wear rate of about 7.0 × 10-4 mm3 N-1 m-1 was observed for samples having the highest value of relative density (96%) and microhardness (105 Hv0.3).

  4. Microstructure and erosive wear behaviors of Ti6Al4V alloy treated by plasma Ni alloying

    Science.gov (United States)

    Wang, Z. X.; Wu, H. R.; Shan, X. L.; Lin, N. M.; He, Z. Y.; Liu, X. P.

    2016-12-01

    The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition were investigated by thermal field emission scanning electron microscopy (SEM), and glow discharge optical emission spectroscopy (GDOES), X-ray diffraction (XRD), respectively. The cross-section nano-scale hardness of the Ni modified layer was measured by nanoindenter. The results showed that the Ni modified layers exhibited triple-layer structure and continuous gradient distribution of the concentration. From the surface to the matrix, they were 2 μm Ni deposition layer, 8 μm Ni-rich alloying layer including the phases of Ni3Ti, NiTi, Ti2Ni, AlNi3 and 24 μm Ni-poor alloying layer forming the solid solution of nickel. With increasing of the thickness of the Ni modified layer, the microhardness increased first, reached the climax, then gradient decreased. The erosion tests were performed on the surfaces of the untreated and treated Ti6Al4V samples using MSE (Micro-slurry-jet Erosion) method. The experiment results showed that the wear rate of every layer showed different values, and the Ni-rich alloying layer was the lowest. The strengthening mechanism of the Ni modified layer showed micro-cutting wearing.

  5. Microstructure and Abrasive Wear Resistance of 18Cr-4Ni-2.5Mo Cast Steel

    Directory of Open Access Journals (Sweden)

    B. Kalandyk

    2012-12-01

    Full Text Available An influence of a decreased Cr content on the microstructure of the highly alloyed Cr-Ni cast steel, duplex type, melted under laboratoryconditions, was characterized in the paper. The microstructure investigations were performed in the initial state and after the heat treatment (solution annealing at 1060C as well as the phase transformation kinetics at continuous cooling was measured. The wear resistance of the investigated cast steel was tested and compared with the 24%Cr-5%Ni-2.5%Mo cast steel.The Cr content decrease, in ferritic-austenitic cast steels (duplex, from 24-26%Cr to 18% leads to the changes of the castingsmicrostructure and eliminating of a brittle  phase. In dependence of the casting cooling rate, apart from ferrite and austenite, also fine martensite precipitates occur in the casting structure. It was shown that the investigated cast steel is characterised by a slightly lower wear resistance than the typical cast steel duplex grades.

  6. Effects of tool geometry and welding rates on the tool wear behavior and shape optimization in friction stir welding of aluminum alloy 6061 + 20% aluminum oxide MMC

    Science.gov (United States)

    Prado, Rafael Arcangel

    mm/s to 11 mm/s, tool wear and tool wear rate decline. The most significant part of this work was the emergence of a self-optimized tool shape after a considerable traverse distance. When these shapes are developed, tool wear becomes negligible and final shape influences the residual weld properties by variations in the residual through-weld hardness profiles at the start of welding process in contrast to the end of welding experiments. A weld-related flow phenomenon in connection with the specific tool geometry during the FSW of MMC samples was observed using various right-hand threaded pin tools and self-optimized tool shape pins. It may be concluded from this study that using a pin with self-optimized shape and no threads can be used successfully to join Al2O 3 reinforced aluminum alloys. As a result, the self-optimizing wear phenomena may provide a basis for designing optimized tools for other FSW systems, especially those involving appreciable tool wear or any other applications for which wear resistance is important. (Abstract shortened by UMI.)

  7. Analysis of wear properties of aluminium based journal bearing alloys with and without lubrication.

    Science.gov (United States)

    Mathavan, J. Joy; Patnaik, Amar

    2016-09-01

    Apart from classical bearing materials, Aluminium alloys are used as bearing materials these days because of their superior quality. In this analysis, new Aluminium based bearing materials, with filler metals Si, Ni, and Cr are prepared by metal mould casting in burnout furnace machine, and tribological properties of these alloys with and without lubrication were tested. The experiments for wear with lubrication are conducted on multiple specimen tester and experiments without lubrication is conducted on Pin on disk tribometer. The disc material used was SAE 1050 steel. Wear tests were conducted at a sliding speed of 0.785 m/s and at a normal load of 20 N. Coefficient of friction values, temperature changes and wear of the specimens were plotted on graph according to the above mentioned working conditions. Hardness and weight losses of the specimens were calculated. The obtained results demonstrate how the friction and wear properties of these samples have changed with the % addition of Silicon, Chromium and Nickel to the base metal aluminium.

  8. Wear-resisting oxide films for 900{degree}C. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M.B. [Wear Sciences Corp., Arnold, MD (United States); Li, S.Z. [Inst. of Metal Research, Shenyang (China); Murray, S.F. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-03-01

    For the past 50 years, temperatures in advanced heat engines have been increasing. New-generating engines will require lubricants for 1,000 C and higher. One of the most critical applications is the regenerator seals on the automotive gas turbine. In this seal, a metal plate slides against a porous ceramic surface for several thousand hours at speeds on the order of 10 cm/sec. For long-term usage above 900 C it will probably be necessary to use oxide lubricants. If effective ones can be found, then a simple solution would be available for an application like the regenerator seal: fabricate it with an alloy which forms a lubricating oxide. The objective of this study was to explore this concept for the regenerator seal. A study was conducted to develop low-friction, wear-resistant surfaces on high-temperature alloys for the temperature range 26 C to 900 C. The approach investigated consisted of modifying the naturally occurring oxide film in order to improve its tribological properties. Improvement was needed at low temperatures where the oxide film, previously formed at high-temperature, spalls due to stresses induced by sliding. Experiments with titanium, tungsten, and tantalum additions showed a beneficial effect when added to nickel and nickel alloys. Low friction was maintained down to 100 C from 900 C. For unalloyed nickel friction and surface damage increased at 400 C to 500 C. Other approaches proved less successful and require further study.

  9. 含B量对激光熔覆FeCoCrNiBx(x=0.5,0.75,1.0,1.25)高熵合金涂层组织结构与耐磨性的影响%Effect of Boron Addition on the Microstructure and Wear Resistance of FeCoCrNiBx (x=0.5, 0.75, 1.0, 1.25) High-Entropy alloy Coating Prepared by Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    陈国进; 张冲; 唐群华; 戴品强

    2015-01-01

    采用激光熔覆技术制备FeCoCrNiBx高熵合金涂层,用X射线衍射(XRD)、扫描电镜(SEM)、硬度和耐磨测试等方法,研究了B含量对激光熔覆FeCoCrNiBx高熵合金涂层的组织结构、硬度和耐磨性能的影响.结果表明,随B含量的增加,合金相结构逐渐由fcc固溶体结构转变为fcc固溶体和M3B相共存,M3B相主要为Cr、Fe硼化物.随B含量的增加,枝晶组织中析出颗粒状和短棒状的M3B相,且M3B相逐渐长大成长条状.B的增加显著提高合金涂层的硬度,由4470 MPa增加到8480 MPa,且磨损量随着B的增加而减少.%The FeCoCrNiBx high-entropy alloy coatings were prepared by laser cladding.The effect of boron addition on microstructure,hardness and wear resistance of FeCoCrNiBx high-entropy alloy coating were investigated by X-ray diffraction (XRD),scanning electron microscopy (SEM),hardness and wear testers.The results show that with the boron addition increasing,the structure of alloys change from fcc structure to fcc structure with M3B phase precipitation,and M3B phase are mainly borides of Cr and Fe.Meanwhile,the granular and short rod-like M3B phase is precipitated in the coatings.And a blocky M3B phase forms with boron addition.Microhardness and wear resistance are significantly enhanced by the formation M3B phase.The microhardness increases from 4470 to 8480 MPa,and the wear-loss of FeCoCrNiBx high-entropy alloy coating decrease with boron addition.

  10. Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo

    2014-01-01

    The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.

  11. Abrasive resistance of arc sprayed carbonitride alloying self-shielded coatings

    Science.gov (United States)

    Deng, Yu; Yu, Shengfu; Xing, Shule; Huang, Linbing; Lu, Yan

    2011-10-01

    Wear-resistant coatings were prepared on the surface of the Q235 low-carbon steel plate by HVAS with the carbonitride alloying self-shielded flux-cored wire. Detection and analysis on the microstructure and properties of the coatings were carried out by using scanning electron microscope, microhardness tester and wear tester. The forming, the wear resistance and its mechanism of the coatings were studied. The results show that the coatings have good forming, homogeneous microstructure and compact structure. The coatings have good hardness, the average microhardness value reaches 520 HV 0.1, and the highest value is up to about 560 HV 0.1. As a result, the coatings have good abrasive wear performance and adhesion strength.

  12. Mechanical And Microstructural Evaluation Of A Wear Resistant Steel; Avaliacao mecanica e microestrutural de um aco resistente ao desgaste

    Energy Technology Data Exchange (ETDEWEB)

    Santos, F.L.F. dos; Vieira, A.G.; Correa, E.C.S.; Pinheiro, I.P., E-mail: falletti@hotmail.co [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET/MG), Belo Horizonte, MG (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    In the present work, the analysis of the mechanical properties and the microstructural features of a high strength low alloy steel, containing chromium, molybdenum and boron, subjected to different heat treatments, was conducted. After austenitizing at 910 deg C for 10 minutes, three operations were carried out: oil quenching, oil quenching followed by tempering at 200 deg C for 120 minutes and austempering at 400 deg C for 5 minutes followed by water cooling. The analysis was performed through tensile and hardness tests, optical microscopy and X-ray diffraction. The bainitic structure led to high strength and toughness, both essential mechanical properties for wear resistant steels. The occurrence of allotriomorphic ferrite and retained austenite in the samples also increased the wear resistance. This phenomenon is related to the fact that both structures are able to be deformed and, in the case of the retained austenite, the transformation induced plasticity TRIP effect may take place as the material is used. (author)

  13. Effects of cutting parameters on tool insert wear in end milling of titanium alloy Ti6Al4V

    Science.gov (United States)

    Luo, Ming; Wang, Jing; Wu, Baohai; Zhang, Dinghua

    2016-06-01

    Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6Al4V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6Al4V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6Al4V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production.

  14. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  15. Rupture pressure of wear degraded alloy 600 steam generator tubings

    Science.gov (United States)

    Hwang, Seong Sik; Namgung, Chan; Jung, Man Kyo; Kim, Hong Pyo; Kim, Joung Soo

    2008-02-01

    Fretting/wear degradation at the tube support in the U-bend region of a steam generator (SG) of a pressurized water reactor (PWR) has been reported. Simulated fretted flaws were machined on SG tubes of 195 mm in length. A pressure test was carried out with the tubes at room temperature by using a high pressure test facility which consisted of a water pressurizing pump, a test specimen section and a control unit. Water leak rates just after a ligament rupture or a burst were measured. Tubes degraded by up to 70% of the tube wall thickness (TW) showed a high safety margin in terms of the burst pressure during normal operating conditions. Tubes degraded by up to 50% of the TW did not show burst. Burst pressure depended on the defect depths rather than on the wrap angles. The tube with a wrap angle of 0° showed a fish mouth fracture, whereas the tube with a 45° wrap angle showed a three way fracture.

  16. Influence of Cycle Temperature on the Wear Resistance of Vermicular Iron Derivatized with Bionic Surfaces

    Science.gov (United States)

    Sui, Qi; Zhang, Peng; Zhou, Hong; Liu, Yan; Ren, Luquan

    2016-11-01

    Depending on their applications, such as in brake discs, camshafts, etc., the wear behavior of vermicular iron is influenced by the thermal cycling regime. The failure of a working part during its service life is a consequence of both thermal fatigue and wear. Previously, the wear and thermal fatigue resistance properties of vermicular iron were separately investigated by researchers, rather than a study combining these two factors. In the present work, the effect of cycle temperature on the wear resistance of specimens with bionic units processed by laser has been investigated experimentally. The wear behavior pre- and post-thermal cycling has also been investigated, and the influence of different cycle temperatures on the wear resistance is discussed. The results indicate that the thermal cycling regime brought about negative influences with varying degrees, on the material properties, such as the microstructures, micro-hardness, cracks, and oxidation resistance properties. All these factors synergistically reduced the wear resistance of vermicular iron. In particular, the negative influence apparently increased with an increase in cycle temperature. Nevertheless, the post-thermal-cycle wear resistance of the specimens with bionic units was superior to those without bionic units. Hence, the laser bionic process is an effective way to improve the performance of vermicular iron in combined thermal cycling and wear service conditions.

  17. Study on dry friction and wear resistance of a WC-Co particle reinforced iron matrix composite material

    OpenAIRE

    Zhang Peng; Zeng Shaolian; Zhang Zhiguo

    2013-01-01

    In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co) particle reinforced chromium cast iron composite material were studied. In particular, the wear resistance was discussed in detail. The results showed that the composite material demonstrates 25 times the wear resistance of high Cr cast iron, and 9 times the wear resistance of heat resistant steel. However, the average frict...

  18. Corrosion and wear behaviour of Al–Mg–Si alloy matrix hybrid composites reinforced with rice husk ash and silicon carbide

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2014-01-01

    Full Text Available The corrosion and wear behaviour of Al–Mg–Si alloy matrix hybrid composites developed with the use of rice husk ash (RHA and silicon carbide (SiC particulates as reinforcements were investigated. RHA and SiC mixed in weight ratios 0:1, 1:3, 1:1, 3:1, and 1:0 were utilized to prepare 5, 7.5 and 10 wt% of the reinforcing phase with Al Mg Si alloy as matrix using double stir casting process. Open circuit corrosion potential (OCP and potentiodynamic polarization measurements were used to study the corrosion behaviour while coefficient of friction was used to assess the wear behaviour of the composites. The corrosion and wear mechanisms were established with the aid of scanning electron microscopy. The results show that the effect of RHA/SiC weight ratio on the corrosion behaviour of the composites in 3.5% NaCl solution was not consistent for the different weight percent of reinforcement (5, 7.5, and 10 wt% used in developing the Al–Mg–Si based composites. It was evident that for most cases the use of hybrid reinforcement of RHA and SiC resulted in improved corrosion resistance of the composites in 3.5% NaCl solution. Preferential dissolution of the more anodic Al–Mg–Si alloy matrix around the Al–Mg–Si matrix/RHA/SiC particle interfaces was identified as the primary corrosion mechanism. The coefficient of friction and consequently the wear resistance of the hybrid composites were comparable to that of the Al–Mg–Si alloy matrix reinforced with only SiC.

  19. Effect of scandium addition on the microstructure, mechanical and wear properties of the spray formed hypereutectic aluminum–silicon alloys

    Energy Technology Data Exchange (ETDEWEB)

    Raghukiran, Nadimpalli; Kumar, Ravi, E-mail: nvrk@iitm.ac.in

    2015-08-12

    Hypereutectic Al–x%Si–0.8Sc alloys (x=13, 16, 19 and 22 wt%) were produced by spray forming. The microstructures of all the alloys exhibited very fine silicon phase with average size of about 5–10 µm irrespective of the silicon content of the alloy. Transmission electron microscopy revealed the presence of a nano-scale scandium rich phase, identified as AlSi{sub 2}Sc{sub 2} (V-phase) uniformly distributed in the alloy. The presence of V-phase resulted in higher matrix hardness (1.34 GPa) in contrast to 1.04 GPa observed in the case of binary Al–Si alloys by nanoindentation. Isothermal heat treatment at 375 °C revealed insignificant coarsening of silicon phase in both binary and ternary alloys. The Al–x%Si–0.8Sc alloys exhibited higher flow stress and tensile strength in contrast to their binary alloy counterparts which was attributed to the bi-modal size distribution of the strengthening phases in the form of nano-scale V-phase and sub-micron to 10 µm size silicon particles. The pin-on-disk wear tests exhibited appreciable improvement in the wear performance of the relatively low-silicon content ternary alloys over their binary counterparts while the high-silicon content binary and ternary alloys exhibited no much difference in the wear performance.

  20. Influence of aluminium content on the physical, mechanical and sliding wear properties of zinc-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, B.K. [CSIR, Bhopal (India). Regional Res. Lab.; Patwardhan, A.K. [Roorkee Univ. (India). Dept. of Metallurgical Engineering; Yegneswaran, A.H. [CSIR, Bhopal (India). Regional Res. Lab.

    1997-04-01

    Attention has been focussed on the influence of Al content on the physical, mechanical and sliding wear properties of Zn-based alloys. Aspects studied include microstructure, density, electrical conductivity, hardness, tensile strength and elongation as well as sliding wear response of the alloys. Microstructural features of the alloys showed the presence of primary {alpha}, eutectic/eutectoid {alpha} + {eta} (depending on whether the alloy was hypereutectic/hypereutectoid with regard to the concentration of Al) along with the meta stable {epsilon} phase. The study suggests that it is possible to design and develop Zn-based alloys with a wide range of concentration of Al. The alloys in turn attain different combinations of physical, mechanical and wear properties which could suit a variety of engineering applications. Increasing the Al content in the alloy system proves beneficial within limits. In other words, there exists an optimum quantity of Al which could reap its advantage to the maximum extent. This of course varies with reference to a specific property of the alloy(s). The changing response of the alloys has been explained in terms of their microstructural features and the effects produced as a result of the test conditions maintained while characterizing the specimens. (orig.)

  1. Wear Evaluation of AISI 4140 Alloy Steel with WC/C Lamellar Coatings Sliding Against EN 8 Using Taguchi Method

    Science.gov (United States)

    Kadam, Nikhil Rajendra; Karthikeyan, Ganesarethinam

    2016-10-01

    The purpose of the experiments in this paper is to use the Taguchi methods to investigate the wear of WC/C coated nitrided AISI 4140 alloy steel. A study of lamellar WC/C coating which were deposited by a physical vapor deposition on nitrided AISI 4140 alloy steel. The investigation includes wear evaluation using Pin-on-disk configuration. When WC/C coated AISI 4140 alloy steel slides against EN 8 steel, it was found that carbon-rich coatings show much lower wear of the countersurface than nitrogen-rich coatings. The results were correlated with the properties determined from tribological and mechanical characterization, therefore by probably selecting the proper processing parameters the deposition of WC/C coating results in decreasing the wear rate of the substrate which shows a potential for tribological application.

  2. Characterization of the wear resistant aluminum oxide - 40% titaniumdioxide coating

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2014-02-01

    Full Text Available Plasma spray coatings play an important role in the design of surface properties of engineering components in order to increase their durability and performance under different operating conditions. Coatings are the most often used for wear resistance. This paper presents the microstructure and mechanical properties Al2O3_­40wt.%TiO2 coating resistant to dry friction slide, grain abrasion and erosion of particles at operating temperatures up to 540°C. In order to obtain the optimal characteristics of coating was performed  optimization  of deposition parameters. The powder Al2O3­40wt.%TiO2 is deposited atmospheric plasma spraying (APS process with a plasma current of 700, 800 and 900A. Evaluate the quality of the coating Al2O3­40wt.%TiO2 were made on the basis of their hardness, tensile bond strength and microstructure. The best performance showed the deposited layers with 900A. The morphology of the powder particles Al2O3­40wt.%TiO2 was examined with SEM (Scanning Electron Microscope. Microstructure of the coatings was examined by light microscopy. Analysis of the deposited layers was performed in accordance with standard Pratt & Whitney. Evaluation of mechanical properties of the layers was done by examining HV0.3 microhardness and tensile strength of the tensile testing. Studies have shown that plasma currents significantly affects the mechanical properties and microstructure of coatings which are of crucial importance for the protection for components subjected to wear       

  3. 低能量密度气体激光熔凝AZ31B镁合金的微观组织与磨损性能%Microstructure and Wear Resistance of Low Energy Density Gas Laser Surface Melting on AZ31B Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    葛亚琼; 郭谡; 王鑫; 王文先; 李想

    2012-01-01

    In order to improve the wear resistance of AZ31B magnesium alloy, laser melted layer which had no crack and hole on AZ31B magnesium substrate was created by a 5 kW continuous wave CO2 laser with low density energy. The macrostructure, microstructure and phases were analyzed by means of optical microscope and X-ray Diffraction, the microhardness and abrasion performance were also tested with microhardness tester and abrasion testing instrument. The results showed that, the melted layers were mainly consisted of α-Mg and β-Mgl7A112, and the grains of melted layer were smaller than that of base metal. With the technique of lower energy density laser which was P=2 kW, v= 15 mm/s, £=26 J/mm2, the strengthening effect of fine-grain and β-Mgl7A112 was the best, the microhardness of laser melted layer was 50 HV0.05~79 HV0.05 which was improved by 13.64% ~ 64.58% and wear resistance was improved by 60% as compared to as-received AZ31B, the wear mass loss was 40% of as-received AZ31B. These showed that, the best laser melted layer with the best microhardness and wear resistance could be obtained by the technique of low density laser energy with high laser power and fast velocity.%为提高镁合金表面的耐磨性,利用5 kW横流连续C02激光器在AZ31B镁合金表面采用低能量密度激光能量制备了无裂纹、气孔等缺陷的熔凝层.通过光学显微镜、X射线衍射仪观察分析熔覆层的宏观形貌、微观组织和物相,并利用显微硬度仪、磨损试验机测试熔覆层的显微硬度和耐磨性.研究结果表明:熔覆层由α-Mg和β-Mgl7Al12组成,晶粒明显细化.采用低能量密度工艺即激光功率P=2 kW、扫描速度v=15 mm/s、激光能量密度E=26 J/mm2时,晶粒细化程度和β-Mg17Al12强化相综合强化效果最好,即显微硬度最高,为50 HV0.05~79 HV0.05比基体提高了13.64%~64.58%;耐磨性改善程度最好,磨损量是原始镁合金的40%,耐磨性提高60%.说明采用低能量

  4. A Study on the Wear Resistance of Nano-Material/E51

    Institute of Scientific and Technical Information of China (English)

    Yan GAO; Zhenjia WANG; Quanyou MA; Ge TANG; Ji LIANG

    2004-01-01

    Epoxy resin modified by nanometric γ-alumina or multi-walled carbon nanotubes (MCNTs) was prepared with solution mixing method, and the wear resistance of the composite was studied. The results show that when an optimum amount of nanometric alumina or MCNTs is filled in epikote51 (E51), the wear resistance of the composite will increase. When 8 wt pct nanometric γ-alumina is filled in E51, the wear resistance of the composite increases to 230%. When 10% MCNTs is filled in E51, the wear resistance of the composite increases to 226%. When nanometric alumina is filled in, the wear resistance of modified epikote51 will increase as the cure temperature is heightened.

  5. Influence of thermal oxidation duration on the microstructure and fretting wear behavior of Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Liu, Yuhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2015-06-01

    Thermal oxidation under water oxidizing atmosphere was performed on Ti6Al4V alloy under different durations from 2 h to 8 h. Surface characterizations were performed using X-ray diffractometery (XRD), scanning electron microscopy (SEM), Raman spectroscopy, nanoindentation and nano scratch testing. Fretting wear behaviors of untreated and oxidized samples were also examined. The formed oxide coating mainly included rutile TiO{sub 2} as well as a little alumina. The weight gain with respect to the oxidation duration obeyed the linear oxidation kinetics law. The growth of oxide grains was in inadequate growth state of incomplete scale coverage from 2nd to 4th hour duration, in normal growth state from 4th to 6th hour duration while in excessive growth state of oxide particle agglomeration and surface roughening from 6th to 8th (or more than 8th) hour duration. The coating thickness increased from 5 μm to 12 μm as oxidation duration increased from 2 h to 8 h. The increase in duration also increased surface roughness and nano hardness as well as adhesion strength of the film/substrate for oxidized samples. The nano hardness value was 10.06 ± 2.15 GPa and the critical load of failure during nano scratch testing was 554.3 ± 6.44 mN for 4 h treated sample. The untreated and oxidized samples showed a same fretting running status and fretting regime with a displacement amplitude of 200 μm while revealing different fretting failure mechanisms. It was mainly abrasive and adhesive wear under ploughing force for untreated sample, while a mix of 3-body abrasion by rolling oxide particles and severe plastic deformation under high contact stress between two ceramic materials for the oxidized samples. The oxide coating was not worn out and improved the fretting wear resistance of titanium alloy. - Highlights: • A thickness of 5–12 μm rutile TiO{sub 2} coating formed under different oxidation durations. • Weight gain with respect to oxidation duration obeyed linear

  6. Standard test method for ranking resistance of plastics to sliding wear using block-on-ring wear test—cumulative wear method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of plastics to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank plastics according to their sliding wear characteristics against metals or other solids. 1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. In addition, the test can be run with different gaseous atmospheres and elevated temperatures, as desired, to simulate service conditions. 1.3 Wear test results are reported as the volume loss in cubic millimetres for the block and ring. Materials of higher wear resistance will have lower volume loss. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with it...

  7. 新型耐磨锡青铜合金包套挤压工艺及组织性能%Microstructure and properties of wear-resisting Cu-Sn-Pb-Ni alloy prepared by canning extrusion process

    Institute of Scientific and Technical Information of China (English)

    赵培峰; 周延军; 宋克兴; 张彦敏

    2012-01-01

    Directing to the difficulties in the densification of Cu-Sn-Pb-Ni alloy containing 8%~12% tin by conventional plastic forming,the plastic deformation of Cu-Sn-Pb-Ni alloy was carried out by the canning extrusion process.The microstructure and properties of as-cast alloy and as-extruded alloy were analyzed.The as-extruded alloy with the density of 8.98g/cm3 and strength of 345MPa was obtained.The results reveal that the properties of the Cu-Sn-Pb-Ni alloy can be improved via the canning extrusion process.%针对锡含量为8%~12%的锡青铜合金脆性大,难以通过塑性变形实现较高致密度的问题,采用包套挤压工艺制备新型耐磨Cu-Sn-Pb-Ni合金,分析其铸态及包套挤压态的微观组织及性能.包套挤压的密度和硬度分别达到8.98g/cm3和HB135.7;挤压后合金抗拉强度和伸长率分别为345.366MPa和11.4%.结果表明,合金在外加包套作用下塑性有所提高.

  8. Effect of Austenite Transformation on Abrasive Wear and Corrosion Resistance of Spheroidal Ni-Mn-Cu Cast Iron

    Directory of Open Access Journals (Sweden)

    Medyński D.

    2016-09-01

    Full Text Available Within the presented work, the effect of austenite transformation on abrasive wear as well as on rate and nature of corrosive destruction of spheroidal Ni-Mn-Cu cast iron was determined. Cast iron contained: 3.1÷3.4 %C, 2.1÷2.3 %Si, 2.3÷3.3 %Mn, 2.3÷2.5 %Cu and 4.8÷9.3 %Ni. At a higher degree of austenite transformation in the alloys with nickel equivalent below 16.0%, abrasive wear resistance was significantly higher. Examinations of the corrosion resistance were carried out with the use of gravimetric and potentiodynamic method. It was shown that higher degree of austenite transformation results in significantly higher abrasive wear resistance and slightly higher corrosion rate, as determined by the gravimetric method. However, results of potentiodynamic examinations showed creation of a smaller number of deep pinholes, which is a favourable phenomenon from the viewpoint of corrosion resistance.

  9. Comparison of Friction Wear Properties between TC4 Titanium Alloy and P110 Tubing Steel%TC4合金和P110油管钢摩擦磨损性能的比较

    Institute of Scientific and Technical Information of China (English)

    姚小飞; 谢发勤; 韩勇; 赵国仙; 吴向清

    2012-01-01

    对TC4合金和P110油管钢在不同温度下的摩擦磨损性能进行对比研究,分析其摩擦系数、磨损率和磨痕形貌随温度的变化规律,探讨磨损机制.结果表明:P110油管钢的耐磨性明显优于TC4合金,TC4合金的耐磨性随温度的升高无显著变化,磨痕呈犁沟形貌,在较低温度时的磨损机制为剥层磨损、黏着磨损和疲劳磨损,在较高温度时为剥层磨损、黏着磨损和氧化磨损;P110油管钢耐磨性随温度的升高而降低,在较低温度时磨痕呈磨坑形貌,磨损机制为剥层磨损和磨粒磨损,在较高温度时磨痕形貌呈犁沟形貌,主要为剥层磨损、黏着磨损和氧化磨损.%The friction wear properties of TC4 alloy and P110 tubing steel were comparatively studied at different temperatures. The changing rules of the wear rate, frication coefficient and topography of wear mark with the temperature were analyzed and the wear mechanism was also discussed. The results show that the wear resistance of P110 tubing steel excels obviously that of TC4 alloy. The wear resistance of TC4 changes a little with temperature rising and the wear mark is furrow morphology. The wear mechanism of TC4 alloy is delamination abrasion, adhesive abrasion and fatigue abrasion at lower temperature and delamination abrasion, adhesive abrasion and oxidation abrasion at higher temperature. The wear resistance of P110 tubing steel is decreased with temperature rising. The wear mark of P110 tubing steel is wear pit morphology and the wear mechanism is delamination abrasion and abrasive grain abrasion at lower temperature, while the wear mark is furrow morphology and the wear mechanism is delamination abrasion, adhesive abrasion and oxidation abrasion at higher temperature.

  10. Corrosion resistance improvement of titanium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Mihai V.; Vasilescu, Ecaterina; Drob, Paula; Vasilescu, Cora; Drob, Silviu I., E-mail: ec_vasilescu@yahoo.co [Institute of Physical Chemistry ' Ilie Murgulescu' , Bucharest (Romania); Mareci, Daniel [Technical University ' Gh. Asachi' , Iasi (Romania); Rosca, Julia C. Mirza [Las Palmas de Gran Canaria University, Tafira (Spain). Mechanical Engineering Dept.

    2010-07-01

    The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy. (author)

  11. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  12. Fretting wear behavior of laser-nitrided Ti-5Al-5Mo-5V-1Cr-1Fe alloy fabricated by laser melting deposition

    Science.gov (United States)

    Liu, L.; Shangguan, Y. J.; Tang, H. B.; Wang, H. M.

    2014-09-01

    Fretting wear behavior of laser-nitrided titanium alloy (Ti-5Al-5Mo-5V-1Cr-1Fe) fabricated by laser melting deposition (LMD) has been investigated to explore surface engineering for protection against wear damage of laser melting deposited titanium alloy. The morphology and volume of the wear scars of unmodified and laser-nitrided LMD Ti-5Al-5Mo-5V-1Cr-1Fe tested at different frequencies, 10 and 50 Hz, were studied using non-contact three-dimensional surface profilometer and scanning electron microscope. Friction coefficients measured at different frequencies or loading forces were compared for unmodified and laser-nitrided LMD specimens. Experimental results show that laser-nitrided LMD specimens have shown fretting resistance superior to unmodified LMD specimens due to the presence of hard TiN dendrites in the laser-nitrided layer. W-shaped wear scar caused by local rotation of fretting ball at the two ends of the scar was observed. Given a constant loading force of 50 N, unmodified and laser-nitrided LMD specimens exhibited similar friction coefficients and their friction coefficients increased with test frequency. The friction coefficients of both specimens increased with the reduction of normal load, which corresponds to the trend in Hertzian contact model.

  13. Wear resistance of a Cr3C2-NiCr detonation spray coating

    Science.gov (United States)

    Wang, Jun; Wang, Jun; Sun, Baode; Guo, Qixin; Nishio, Mitsuhiro; Ogawa, Hiroshi

    2002-06-01

    Coatings can be applied to surfaces to improve the surface characteristics over those of the bulk properties and are widely used in tribological applications either to reduce wear and/or to modify friction during contact. One of the foremost coating methods for combating wear is thermal spraying. To prolong the life of steel slab continuous casting rolls, Cr3C2-NiCr detonation spray coating was processed on the roll surface in a steelmaking plant in China. This article studies the mechanical properties and wear resistance of this coating. The abrasive and dry frictional wear testing were performed using a pin-on-disk tester. Experimental results show that the wear resistance of the coated samples, i.e., coating reduces the risk of seizure compared to uncoated samples, is much better than those of the uncoated steel at room and elevated temperatures with any load and sliding velocity. The coating wear mechanisms under different test conditions are discussed.

  14. Comprehensive study of the abrasive wear and slurry erosion behavior of an expanded system of high chromium cast iron and microstructural modification for enhanced wear resistance

    Science.gov (United States)

    Chung, Reinaldo Javier

    High chromium cast irons (HCCIs) have been demonstrated to be an effective material for a wide range of applications in aggressive environments, where resistances to abrasion, erosion and erosion-corrosion are required. For instance, machinery and facilities used in mining and extraction in Alberta's oil sands suffer from erosion and erosion-corrosion caused by silica-containing slurries, which create challenges for the reliability and maintenance of slurry pumping systems as well as other processing and handling equipment. Considerable efforts have been made to determine and understand the relationship between microstructural features of the HCCIs and their wear performance, in order to guide the material selection and development for specific service conditions with optimal performance. The focus was previously put on a narrow group of compositions dictated by ASTM A532. However, with recent advances in casting technology, the HCCI compositional range can be significantly expanded, which potentially brings new alloys that can be superior to those which are currently employed. This work consists of three main aspects of study. The first one is the investigation of an expanded system of white irons with their composition ranging from 1 to 6 wt.% C and 5 to 45 wt.% Cr, covering 53 alloys. This work has generated wear and corrosion maps and established correlation between the performance and microstructural features for the alloys. The work was conducted in collaboration with the Materials Development Center of Weir Minerals in Australia, and the results have been collected in a database that is used by the company to guide materials selection for slurry pump components in Alberta oil sands and in other mining operations throughout the world. The second part consists of three case studies on effects of high chromium and high carbon, respectively, on the performance of the HCCIs. The third aspect is the development of an approach to enhance the wear resistance of

  15. The effect of microstructure on the wear of cobalt-based alloys used in metal-on-metal hip implants.

    Science.gov (United States)

    Varano, R; Bobyn, J D; Medley, J B; Yue, S

    2006-02-01

    The influence of microstructure on the wear of cobalt-based alloys used in metal-on-metal hip implants was investigated in a boundary lubrication regime designed to represent the conditions that occurred some of the time in vivo. These cobalt-chromium-molybdenum alloys were either wrought, with a total carbon content of 0.05 or 0.23 wt %, cast with a solution-annealing procedure or simply as-cast but not solution annealed. Bars of these different alloy grades were subjected to various heat treatments to develop different microstructures. The wear was evaluated in a linear-tracking reciprocating pin-on-plate apparatus with a 25 per cent bovine serum lubricant. The wear was found to be strongly affected by the dissolved carbon content of the alloys and mostly independent of grain size or the carbide characteristics. The increased carbon in solid solution caused reductions in volumetric wear because carbon helped to stabilize a face-centred cubic crystal structure, thus limiting the amount of strain-induced transformation to a hexagonal close-packed crystal structure. Based on the observed surface twining in and around the contact zone and the potentially detrimental effect of the hexagonal close-packed phase, it was postulated that the wear of cobalt-based alloys in the present study was controlled by a deformation mechanism.

  16. Wear behaviour of wear-resistant adaptive nano-multilayered Ti-Al-Mo-N coatings

    Science.gov (United States)

    Sergevnin, V. S.; Blinkov, I. V.; Volkhonskii, A. O.; Belov, D. S.; Kuznetsov, D. V.; Gorshenkov, M. V.; Skryleva, E. A.

    2016-12-01

    Coating samples in the Ti-Al-Mo-N system were obtained by arc-PVD method at variable bias voltage Ub applied to the substrate, and the partial pressure of nitrogen P(N2) used as a reaction gas. The deposited coatings were characterized by a nanocrystalline structure with an average grain size of 30-40 nm and multilayered architecture with alternating layers of (Ti,Al)N nitride and Mo-containing phases with a thickness comparable to the grain size. Coatings of (Ti,Al)N-Mo-Mo2N and (Ti,Al)N-Mo2N compositions were obtained by changing deposition parameters. The obtained coatings had hardness of 40 GPa and the relative plastic deformation under microindentation up to 60%. (Ti,Al)N-Mo2N coatings demonstrated better physicomechanical characteristics, showing high resistance to crack formation and destruction through the plastic deformation mechanism without brittle fracturing, unlike (Ti,Al)N-Mo-Mo2N. The friction coefficient of the study coatings (against Al2O3 balls under dry condition using a pin-on-disc method) reached the values of 0.35 and 0.5 at 20 °C and 500 °C respectively, without noticeable wear within this temperature range. These tribological properties were achieved by forming MoO3 acting as a solid lubricant. At higher temperatures the deterioration in the tribological properties is due to the high rate of MoO3 sublimation from friction surfaces.

  17. The microstructural dependence of wear resistance in austenite containing plate steels

    Science.gov (United States)

    Wolfram, Preston Charles

    The purpose of this project was to examine the microstructural dependence of wear resistance of various plate steels, with interests in exploring the influence of retained austenite (RA). Materials resistant to abrasive wear are desirable in the industrial areas of agriculture, earth moving, excavation, mining, mineral processing, and transportation. Abrasive wear contributes to significant financial cost associated with wear to the industry. The motivation for the current study was to determine whether it would be beneficial from a wear resistance perspective to produce plate steels with increased amounts of retained austenite. This thesis investigates this motivation through a material matrix containing AR400F, Abrasive (0.21 wt pct C, 1.26 wt pct Mn, 0.21 wt pct Si, 0.15 wt pct Ni, 0.18 wt pct Mo), Armor (0.46 wt pct C, 0.54 wt pct Mn, 0.36 wt pct Si, 1.74 wt pct Ni, 0.31 wt pct Mo), 9260, 301SS, Hadfield, and SAE 4325 steels. The Abrasive, Armor and 9260 steels were heat treated using different methods such as quench and temper, isothermal bainitic hold, and quench and partitioning (Q&P). These heat treatments yielded various microstructures and the test matrix allowed for investigation of steels with similar hardness and varying levels of RA. The wear test methods used consisted of dry sand rubber wheel (DSRW), impeller-tumbler impact-abrasion (impeller), and Bond abrasion wear testing. DSRW and impeller wear resistance was found to increase with hardness and retained austenite levels at certain hardness levels. Some Q&P samples exhibited similar or less wear than the Hadfield steels in DSRW and impeller tests. Scanning electron microscopy investigation of wear surfaces revealed different wear mechanisms for the different wear test methods ranging from micro-plowing, to micro-cutting and to fragmentation.

  18. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    Energy Technology Data Exchange (ETDEWEB)

    Panin, S. V., E-mail: svp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Kornienko, L. A.; Poltaranin, M. A.; Ivanova, L. R. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Suan, T. Nguen [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  19. Influence on the wear resistance of the particle size used in coatings of Alumina

    Science.gov (United States)

    Santos, A.; Guzmán, R.; Ramirez, Z. Y.

    2017-01-01

    In the literature, it is common to find that the size of the particles used in coatings through thermal spraying processes influences the hardness and wear resistance thereof; this project aimed to quantify the importance of this parameter in the adhesive and abrasive wear resistance when aluminium oxide is deposited on a substrate of AISI 1020 steel, through a thermal spraying by flame process. The methodology consisted of: a) morphological characterization of the powder used in the coatings by scanning electron microscopy, b) deposition of coatings, c) testing of adhesive and abrasive wear (ASTM G99-05 Standard test method for wear testing with a pin-on-disk apparatus and ASTM G65–04 Standard test method for measuring abrasion using dry sand/rubber wheel apparatus), and d) statistical analysis to determine the influence of particle size on wear resistance. The average size of the powder used for coatings was 92, 1690, 8990 and 76790nm. The obtained results allow to identify an inversely proportional behaviour between particle size and wear resistance, in both types of wear (adhesive and abrasive) is shown a logarithmic trend indicating an increase in loss mass during the test as the particle size is also increased and therefore a decrease in wear resistance of the coating.

  20. Effect of porosity on wear resistance of SiCp/Cu composites prepared by pressureless infiltration

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin; QU Xuan-hui; DUAN Bo-hua; HE Xin-bo; QIN Ming-li

    2008-01-01

    The influence of porosity on the wear behavior of high volume fraction (61%) SiCp/Cu composite produced by pressureless infiltration was studied using a sliding, reciprocating and vibrating(SRV) machine. SiCp/Cu composites slid against hardened GCr15 bearing steel ball in the load range of 40-200 N. The results show that the wear rate increases with increasing porosity. The composite containing low porosity shows excellent wear resistance, which is attributed to the presence of mechanically mixed layer on the worn surface. In this case, the dominant wear mechanism is oxidative wear. Comparatively, the composite containing high porosity exhibits inferior wear resistance. Fracture and spalling of the particles are considered as the main causes of severe wear. Third body abrasion is the controlling wear mechanism. In addition, porosity has more important influence on wear rate at high load than at low load. This is associated with the fact that the fracture and spalling of particles is a process of crack initiation and propagation. At lower load, the pores beneath the worn surface can not propagate significantly, while the pores become unstable and easily propagate under high load, which results in a higher wear rate.

  1. Comparative study of the wear resistance of Al{sub 2}O{sub 3}-coated MA956 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Canahua Loza, H.; Escudero rincon, M. L.; Ruiz Fernandez, J. [Centro Nacional de Investigaciones Metalurgicas CENIM. Madrid (Spain)

    2000-07-01

    Preoxidation of the MA956 superalloy, proposed as prosthetic biomaterial, generates a compact and inert {alpha}-alumina surface layer. The aim of this study is to assess the wear resistance provided by this alumina layer on the MA956 alloy in comparison with the same coated alloy and versus high density polyethylene. Comparative wear tests were carried out in both dry and wet conditions using the couples MA956/MA956, MA956/UHMWPE (ultra high molecular weight polyethylene) and 316LVM/UHMWPE. The results corresponding to the couples MA956/MA956, with and without alumina layer, show that the load has more significant effect than the rotation speed on the weight loss and on the roughness. On the other hand the alumina surface layer provides a clear wear protection. The weight losses of the MA956 specimen in this couple are ten times lower when testing under wet conditions than under dry conditions. The MA956/UHMWPE couple behaves much better than the 316LVM/UHMWPE, as it presents the lowest values of friction coefficient and weight losses of the MA956 specimen. These are only detectable after 70,000 cycles under a 70 MPa contact pressure. This couple offers the best guarantee of a prolonged service life for articulated parts in a prosthesis. (Author) 18 refs.

  2. EFFECT OF TOOL WEAR ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND ACOUSTIC EMISSION OF FRICTION STIR WELDED 6061 Al ALLOY

    Institute of Scientific and Technical Information of China (English)

    W.M. Zeng; H.L. Wu; J. Zhang

    2006-01-01

    Tool condition is one of the main concerns in friction stir welding (FSW), because the geometrical condition of the tool pin including size and shape is strongly connected to the microstructure and mechanical performance of the weld. Tool wear occurs during FSW, especially for welding metal matrix composites with large amounts of abrasive particles, and high melting point materials, which significantly expedite tool wear and deteriorate the mechanical performance of welds.Tools with different pin-wear levels are used to weld 6061 Al alloy, while acoustic emission (AE) sensing, metallographic sectioning, and tensile testing are employed to evaluate the weld quality in various tool wear conditions. Structural characterization shows that the tool wear interferes with the weld quality and accounts for the formation of voids in the nugget zone. Tensile test analysis of samples verifies that both the ultimate tensile strength and the yield strength are adversely affected by the formation of voids in the nugget due to the tool wear. The failure location during tensile test clearly depends on the state of the tool wear, which led to the analysis of the relationships between the structure of the nugget and tool wear. AE signatures recorded during welding reveal that the AE hits concentrate on the higher amplitudes with increasing tool wear. The results show that the AE sensing provides a potentially effective method for the on-line monitoring of tool wear.

  3. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth L. Knittel

    2005-05-09

    The work performed on this program was to develop wear resistant, tough FM composite materials with efforts focused on WC-Co based FM systems. The materials were developed for use in mining industry wear applications. Components of interest were drill bit inserts for drilling blast holes. Other component applications investigated included wear plates for a variety of equipment such as pit shovels, wear surfaces for conveyors, milling media for ball milling operations, hydrocyclone cones, grader blades and dozer teeth. Cross-cutting technologies investigated included hot metal extrusion dies, drill bits for circuit board fabrication, cutting tools for cast iron and aluminum machining. An important part of the work was identification of the standard materials used in drilling applications. A materials trade study to determine those metals and ceramics used for mining applications provided guidance for the most important materials to be investigated. WC-Co and diamond combinations were shown to have the most desirable properties. Other considerations such as fabrication technique and the ability to consolidate shifted the focus away from diamond materials and toward WC-Co. Cooperating partners such as Kennametal and Kyocera assisted with supplies, evaluations of material systems, fabricated parts and suggestions for cross-cutting technology applications for FM architectures. Kennametal provided the raw materials (WC-Co and Al-TiCN powders) for the extent of the material evaluations. Kyocera shared their research into various FM systems and provided laboratory testing of fabricated materials. Kyocera also continued research of the FM systems with the intention of developing commercial markets for a variety of applications. The continued development of FM technology by Kyocera is seen as a direct result of the cooperation established under this funding. Kyocera has a specific interest in the commercial development of the FM technology and have licensed it and have paid

  4. Improvement in Abrasion Wear Resistance and Microstructural Changes with Deep Cryogenic Treatment of Austempered Ductile Cast Iron (ADI)

    Science.gov (United States)

    Šolić, Sanja; Godec, Matjaž; Schauperl, Zdravko; Donik, Črtomir

    2016-10-01

    The application of a deep cryogenic treatment during the heat-treatment processes for different types of steels has demonstrated a significant influence on their mechanical and tribological properties. A great deal of research was conducted on steels, as well as on other kinds of materials, such as hard metal, gray cast iron, aluminum, aluminum alloys, etc., but not on austempered ductile iron (ADI). In this research the influence of a deep cryogenic treatment on the microstructure and abrasive wear resistance of austempered ductile iron was investigated. The ductile cast iron was austempered at the upper ausferritic temperature, deep cryogenically treated, and afterwards tempered at two different temperatures. The abrasion wear resistance was tested using the standard ASTM G65 method. The microstructure was characterized using optical microscopy, field-emission scanning electron microscopy, electron back-scattered diffraction, and X-ray diffraction in order to define the microstructural changes that influenced the properties of the ADI. The obtained results show that the deep cryogenic treatment, in combination with different tempering temperatures, affects the matrix microstructure of the austempered ductile iron, which leads to an increase in both the abrasion wear resistance and the hardness.

  5. Effect of heat treatment on the wear resistance of high-carbon and high-nitrogen steels subjected to abrasive wear

    Science.gov (United States)

    Filippov, M. A.; Belozerova, T. A.; Blinov, V. M.; Kostina, M. A.; Val'kov, E. V.

    2006-03-01

    The effect of quenching and tempering on the capacity of steels based on chromium-carbon, chromium-nitrogen, and carbon-manganese austenite for strain-induced martensitic transformation, hardening, and wear resistance in the process of abrasive wear is studied. The steels contain 1-1.2% C or N and 18% Cr or Mn. The wear resistance of the studied steels having a structure of metastable austenite is compared to that of steel 110G13.

  6. Comparative Study of Wear Resistance of the Composite with Microhybrid Structure and Nanocomposite

    Directory of Open Access Journals (Sweden)

    Pieniak Daniel

    2016-12-01

    Full Text Available The aim of the study was to compare microhardness and wear resistance of ceramic-polymer composites with micro and nano-hybrid structure. For the studies commercial composites were used, containing filler particles of the same type but different sizes, nano-sized (Filtek Ultimate and micro-sized (Filtek Z250 composites. Tribological testing was conducted using ball-on-disc micro-tribometer. Vickers testing method was applied for microhardness studies with the use of Futertech FM 700 device. It has been demonstrated that the wear of Filtek Ultimate is almost twice lower in comparison to wear of Filtek Z250 composite. It has been concluded that the use of filler nanoparticles significantly increased wear resistance of the material. Additionally, lack of correlation between material microhardness and wear resistance has been demonstrated.

  7. Effect of the Carbides and Matrix on the Wear Resistance of Nodular Cast Iron

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2013-07-01

    Full Text Available This paper presents the results of the abrasive wear resistance of selected types of nodular cast iron, including ADI, cooperating with quartz sand and 100 grit abrasive paper. It has been shown that carbides in nodular cast iron cause an increase in wear resistance of 6 to 12% depending on the surface fraction of the carbides and type of the matrix. For the same unit pressure the mass loss of the cast iron cooperating with quartz sand is many times larger than the cast iron cooperating with abrasive paper. For both abrasives the highest wear resistance showed nodular cast iron with upper and lower bainite and carbides.

  8. Effect of the Carbides and Matrix on the Wear Resistance of Nodular Cast Iron

    Directory of Open Access Journals (Sweden)

    Gumienny G.

    2013-09-01

    Full Text Available This paper presents the results of the abrasive wear resistance of selected types of nodular cast iron, including ADI, cooperating with quartz sand and 100 grit abrasive paper. It has been shown that carbides in nodular cast iron cause an increase in wear resistance of 6 to 12% depending on the surface fraction of the carbides and type of the matrix. For the same unit pressure the mass loss of the cast iron cooperating with quartz sand is many times larger than the cast iron cooperating with abrasive paper. For both abrasives the highest wear resistance showed nodular cast iron with upper and lower bainite and carbides.

  9. Wear and corrosion resistance of laser remelted and plasma sprayed Ni and Cr coatings on copper

    Institute of Scientific and Technical Information of China (English)

    梁工英; 黄俊达; 安耿

    2004-01-01

    Nickel and chromium coatings were produced on the copper sheet using plasma spraying and laser remelting. The sliding wear test was achieved on a block-on-ring tester and the corrosion test was carried out in an acidic atmosphere. The corrosive behaviors of both coatings and original copper samples were investigated by using an impedance comparison method. The experimental results show that the nickel and chromium coatings display better wear resistance and corrosion resistance relative to the original pure copper sample. The wear resistance of the coatings is 8 - 12 times as large as original samples, and the wear resistance of laser remelted samples is better than that of plasma sprayed ones. The corrosion resistance of laser remelted nickel and chromium samples is better than that of plasma sprayed samples respectively. The corrosion rate of chromium coatings is less than that of nickel coatings, and the laser remelted Cr coating exhibits the least corrosion rate.

  10. Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment

    Science.gov (United States)

    Bensely, A.; Prabhakaran, A.; Mohan Lal, D.; Nagarajan, G.

    2005-12-01

    All mechanical components that undergo sliding or rolling contact are subject to some degree of wear. So wear is an important tribological phenomenon while studying the failure of components. The observed frequent failure of crown and pinion due to wear and fatigue lead to this study on effect of cryogenic treatment on the wear resistance of case carburized steel (En 353). This paper deals with the pin on disk wear test without lubrication as per ASTM standard, designation: G 99-95A. The test was carried out for three different load conditions and seven sliding speeds for the samples, which has undergone three different treatment conditions namely conventional heat treatment (CHT), shallow cryogenic treatment (SCT) and deep cryogenic treatment (DCT). It has been found that the wear resistance has been considerably increased due to shallow cryogenic treatment and deep cryogenic treatment includes much more improvement in wear resistance when compared to conventional heat treatment. Also it is concluded that for better wear resistance, it is advisable to go for deep cryogenic treatment. The results are consistent with the previous studies reported in the literature on cryogenic treatments for other materials.

  11. Wear Characteristics of Hybrid Composites Based on Za27 Alloy Reinforced With Silicon Carbide and Graphite Particles

    Directory of Open Access Journals (Sweden)

    S. Mitrović

    2014-06-01

    Full Text Available The paper presents the wear characteristics of a hybrid composite based on zinc-aluminium ZA27 alloy, reinforced with silicon-carbide and graphite particles. The tested sample contains 5 vol.% of SiC and 3 vol.% Gr particles. Compocasting technique has been used to prepare the samples. The experiments were performed on a “block-on-disc” tribometer under conditions of dry sliding. The wear volumes of the alloy and the composite were determined by varying the normal loads and sliding speeds. The paper contains the procedure for preparation of sample composites and microstructure of the composite material and the base ZA27 alloy. The wear surface of the composite material was examined using the scanning electronic microscope (SEM and energy dispersive spectrometry (EDS. Conclusions were obtained based on the observed impact of the sliding speed, normal load and sliding distance on tribological behaviour of the observed composite.

  12. Effect of the microhardness difference between base metal and bionic coupling unit on wear resistance of gray cast iron

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Chang, Fang; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-12-01

    In order to improve the wear resistance of gray cast iron guide rail, the samples with different microhardness difference between bionic coupling units and base metal were manufactured by laser surface remelting. Wear behavior of gray cast iron with bionic coupling units has been studied under dry sliding condition at room temperature using a homemade liner reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that when the microhardness difference is 561 HV0.2, the wear resistance of sample is the best.

  13. Effect of filler size on wear resistance of resin cement.

    Science.gov (United States)

    Shinkai, K; Suzuki, S; Katoh, Y

    2001-11-01

    The purpose of this study was to evaluate the effect of filler size on the wear of resin cements. Materials tested included four experimental dual-cure resin cements (Kuraray) consisting of different-sized filler particles. A rectangular box cavity was prepared on the flattened occlusal surface of extracted human molars. Ceramic inlays for the cavities were fabricated using the Cerec 2 system. The Cerec inlays were cemented with the respective cements and adhesive systems according to the manufacturer's directions. The restored surface was finished by wet-grinding with an 800-grit silicon carbide paper. Six specimens were prepared for each resin cement. Half of the specimens were subjected to a three-body wear test for 200,000 cycles, and the others were subjected to a toothbrush abrasion test for 30,000 cycles. The worn surface of each restoration was scanned by a profilometer (Surfcom 475 A) at eight different points for each restoration. The wear value was determined by measuring the vertical gap depth on the profilometric tracings. The data were statistically analyzed by one-way analysis of variance (ANOVA) and Scheffe's test. The results showed that, with increase of filler size, the wear value decreased in the toothbrush test and increased in the three-body wear test. The cement with 0.04-microm filler exhibited the lowest wear value among the materials in the three-body wear test, and the same wear value as the cement with 0.97-microm filler in the toothbrush test. Based upon the results of this study, it is concluded that the wear of resin cements was affected by the filler size as well as the mode of wear test.

  14. Characterization of the wear response of a modified zinc-based alloy vis-à-vis a conventional zinc-based alloy and a bearing bronze at a high sliding speed

    Science.gov (United States)

    Prasad, B. K.; Yegneswaran, A. H.; Patwardhan, A. K.

    1996-11-01

    In this investigation, an attempt has been made to examine the wear response of a modified zinc-based alloy at a high speed (4.60 m/s) of sliding over a range of applied pressures. A conventional zinc-based alloy and a bearing bronze have also been subjected to identical tests with a view to assess the working capability of the modified alloy with respect to the existing ones. The wear characteristics of the alloys have been correlated with their microstructural features, while operating wear mechanisms have been studied through analyses of wear surfaces, subsurfaces, and debris particles. The conventional zinc-based alloy attained most inferior wear behavior when compared with that of the modified (zinc-based) alloy and the bronze. Interestingly, the modified alloy exhibited its wear response to be much better than that of the conventional zinc-based alloy due to the presence of nickel/silicon containing (hard and thermally stable) microconstituents. Moreover, the modified alloy also seized at a pressure similar to that of the bronze, although its wear rate prior to seizure was more than that of the latter. The study clearly indicates that it is possible to develop modified versions of zinc-based alloys having much improved wear characteristics over the conventional variety; the information gains special attention in view of the high speed of sliding selected in this study.

  15. Influence of carbon content on wear resistance and wear mechanism of Mn13Cr2 and Mn18Cr2 cast steels

    Directory of Open Access Journals (Sweden)

    Ding-shan Lu

    2015-01-01

    Full Text Available By means of impact abrasion tests, micro-hardness tests, and worn surface morphology observation via SEM, a comparison research based upon different impact abrasive wear conditions was conducted in this research to study the influence of different carbon contents (1.25wt.%, 1.35wt.%, and 1.45 wt.% on the wear resistance and wear mechanism of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The research results show that the wear resistance of the Mn18Cr2 cast steel is superior to that of the Mn13Cr2 cast steel under the condition of the same carbon content and different impact abrasive wear conditions because the Mn18Cr2 cast steel possesses higher worn work hardening capacity as well as a more desirable combination of high hardness and impact toughness than that of the Mn13Cr2 cast steel. When a 4.5 J impact abrasive load is applied, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the former dominates. When the carbon content is increased, the worn work hardening effect becomes increasingly dramatic, while the wear resistance of both steels decreases, which implies that an increase in impact toughness is beneficial to improving the wear resistance under severe impact abrasive wear conditions. Under the condition of a 1.0 J impact abrasive load, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the latter plays a leading role. The worn work hardening effect and wear resistance intensify when the carbon content is increased, which implies that a higher hardness can be conducive to better wear resistance under low impact abrasive condition.

  16. Comparison of Wear Resistance of Hawley and Vacuum Formed Retainers: An in-vitro Study

    Directory of Open Access Journals (Sweden)

    Moshkelgosha V

    2016-06-01

    Full Text Available Statement of Problem: As a physical property, wear resistance of the materials used in the fabrication of orthodontic retainers play a significant role in the stability and long term use of the appliances. Objectives: To evaluate the wear resistance of two commonly used materials for orthodontic retainers: Acropars OP, i.e. a polymethyl methacrylate based material, and 3A-GS060, i.e. a polyethylene based material. Materials and Methods: For each material, 30 orthodontic retainers were made according to the manufacturers’ instructions and a 30×30×2 mm block was cut out from the mid- palatal area of each retainer. Each specimen underwent 1000 cycles of wear stimulation in a pin on disc machine. The depth of wear of each specimen was measured using a Nano Wizard II atomic force microscope in 3 random points of each specimen’s wear trough. The average of these three measurements was calculated and considered as mean value wear depth of each specimen (µm. Results: The mean wear depth was 6.10µm and 2.15µm for 3A-GS060 and Acropars OP groups respectively. Independent t-test showed a significant difference between the two groups (p < 0.001. The results show Polymethyl methacrylate base (Acropars is more wear resistance than the polyethylene based material (3A-GS060. Conclusions: As the higher wear resistance of the fabrication material can improve the retainers’ survival time and its cost-effectiveness, VFRs should be avoided in situations that the appliance needs high wear resistance such as bite blocks opposing occlusal forces.

  17. An Experiment to Explain Depth of Cut Notch Wear of Ceramic Tools in Ni- based Super-alloy Machining

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Inconel 718, a high temperature alloy, is extensive ly used in aircraft, gas engines and nuclear-power plants. It is generally known that the life of ceramic cutting tools in machining Inconel 718 is often restric ted by depth-of-cut (DOC) notch wear. In view of the number of various factors involved and the variety of tool materi als and cutting conditions available, the analysis of the DOC notch wear is very difficult. According to previous work concerning the DOC notch wear of ceramics tools, some A...

  18. EVALUATION AND RECOMMENDATION OF SALTSTONE MIXER AUGER/PADDLES MATERIALS OF CONSTRUCTION FOR IMPROVED WEAR RESISTANCE

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Torres, R.

    2012-08-15

    Wear and corrosion testing were conducted to evaluate alternate materials of construction for the Saltstone mixer auger and paddles. These components have been degraded by wear from the slurry processed in the mixer. Material test options included PVD coatings (TiN, TiCN, and ZrN), weld overlays (Stellite 12 and Ultimet) and higher hardness steels and carbides (D2 and tungsten carbide). The corrosion testing demonstrated that the slurry is not detrimental to the current materials of construction or the new candidates. The ASTM G75 Miller wear test showed that the high hardness materials and the Stellite 12 weld overlay provide superior wear relative to the Astralloy and CF8M stainless steel, which are the current materials of construction, as well as the PVD coatings and Ultimet. The following recommendations are made for selecting new material options and improving the overall wear resistance of the Saltstone mixer components: A Stellite 12 weld overlay or higher hardness steel (with toughness equivalent to Astralloy) be used to improve the wear resistance of the Saltstone mixer paddles; other manufacturing specifications for the mixer need to be considered in this selection. The current use of the Stellite 12 weld overlay be evaluated so that coverage of the 316 auger can be optimized for improved wear resistance of the auger. The wear surfaces of the Saltstone mixer auger and paddles be evaluated so that laboratory data can be better correlated to actual service. The 2-inch Saltstone mixer prototype be used to verify material performance.

  19. Effect of SiC Content on Microstructure and Wear Resistance of Laser Cladding SiC/Ni60A Composite Coating

    Directory of Open Access Journals (Sweden)

    ZHAO Long-zhi

    2017-03-01

    Full Text Available The SiC reinforced Ni60A alloy laser cladding coating on the 45 steel substrate was fabricated with the LDM2500-60 semiconductor laser equipment. The effect of SiC content on microstructure, dilution rate, wear resistance, friction coefficient and microhardness was investigated systematically.The results show that with the increase of SiC content, the microstructure of upper coating is refined obviously, the dilution rate, wear resistance, friction coefficient and microhardness increase firstly and then decrease;when the mass fraction of SiC is 20%, the wear resistance of the cladding coating is the best one, in which the wear loss of coating is only 0.0012g and is 1/36.3 of the matrix;the minimum friction coefficient is 0.464, the friction process is the most stable;the highest microhardness of the cladding coating is 1039.9HV0.2, which is 3.5 times of the substrate;but when the mass fraction of SiC is 25%, the microhardness and wear resistance of coating decrease.

  20. Wear and Corrosion Resistance of Fe Based Coatings by HVOF Sprayed on Gray Cast-Iron for Automotive Application

    Directory of Open Access Journals (Sweden)

    M.S. Priyan

    2014-12-01

    Full Text Available In this study, commercially available FeSiNiCr and FeBCr alloy powders were designed with suitable compositions, gas atomized and then coated on gray cast-iron substrate. The microstructures of the feed stock Fe based alloy powders and the coatings were investigated by means of optical microscopy (OM, X-Ray diffraction (XRD, Thermogravimetric analysis (TGA and Scanning Electron Microscopy (SEM. In the present study, both the coating materials experienced two-body wear mechanisms. The results showed that for loads of 0.05 N, 0.1 N and 0.2 N, the wear resistance of FeBCr coating was less than FeSiNiCr by 44 %, 40 % and 31 %, respectively. The results indicated that the coated substrates exhibited lower corrosion current densities and lower corrosion rates, when placed in 20 wt.% H2SO4 solutions. In addition, the use of optimal spraying parameters/conditions gave improvements to the corrosion resistance of the substrates that had been treated with the crystalline coating.

  1. Standard test method for ranking resistance of materials to sliding wear using block-on-ring wear test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of materials to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank pairs of materials according to their sliding wear characteristics under various conditions. 1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. However, the interlaboratory testing has been limited to metals. In addition, the test can be run with various lubricants, liquids, or gaseous atmospheres, as desired, to simulate service conditions. Rotational speed and load can also be varied to better correspond to service requirements. 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. Wear test results are reported as the volume loss in cubic millimetres for both the block and ring. Materials...

  2. IN VITRO WEAR RESISTANCE OF THREE TYPES OF POLYMETHYL METHACRYLATE DENTURE TEETH

    OpenAIRE

    Katia Rodrigues Reis; Gerson Bonfante; Luiz Fernando Pegoraro; Paulo Cesar Rodrigues Conti; Pedro Cesar Garcia de Oliveira; Osvaldo Bazzan Kaizer

    2008-01-01

    The wear resistance of denture teeth is important to the longevity of removable prostheses of edentulous patients. The ability of denture teeth to maintain a stable occlusal relationship over time may be influenced by this property. The purpose of this in vitro study was to evaluate the wear resistance of polymethyl methacrylate (PMMA) denture teeth based on their chemical composition when opposed by a ceramic antagonist. The maxillary canines (n=10) of 3 PMMA denture teeth (Trubyte Biotone, ...

  3. Die Casting Technology of Hypereutectic Al-Si Alloy Clutch Gear with High Strength and Wear Resistance%高强耐磨过共晶铝合金离合器齿轮的压铸技术

    Institute of Scientific and Technical Information of China (English)

    万里; 杨剑霞; 刘后尧; 吴湛方; 陈国强; 赖沛基

    2012-01-01

    Aiming at die casting thick-walled ADC automobile clutch gear, P-Cu modification on hypereu-tectic Al-Si alloy suitable for die casting was conducted. Die casting scheme for clutch gear was designed and simulated, meanwhile, vacuum die casting and local pressurization technology were developed. The results show that with 0. 1 % P addition, ADC14 exhibits good modification effects with 6 h modification time, where primary Si phase in the alloy reaches 20~40 μm with uniform distribution, and the depth of Si particle depletion zone on surface of the castings is in the range of 0. 18~0. 20 mm. At given injecting parameters, the mechanical vacuum valve is superior to zig-zag valve in vacuum effects, and the rejected rate with gas hole is decreased by 10%. Shrinkage porosity (hole) at thick-wall of the gear can be effectively eliminated by optimized local pressurization, the quality of the gear is improved, and qualification rate of mass-production is more than 95%.%针对压铸成形的ADCl4汽车离合器齿轮厚壁部件,研究了适于压铸的过共晶Al-Si合金的P-Cu变质处理工艺.设计并模拟了齿轮的压铸工艺方案,开发了真空压铸及局部加压技术.结果表明,当P的加入量为0.1%时,ADC14的变质效果好,变质时间可达6h.铸件中初生Si尺寸为20~40 μm,分布均匀;铸件表面的Si贫乏区深度在0.18~0.20 mm范围内.在相同压射参数下,采用机械式真空阀比搓衣板式排气阀的真空效果好,铸件的气孔缺陷废品率下降10%以上.优化后的局部加压技术消除了厚壁部位的缩松缺陷,提高了铸件内部质量.批量生产合格率达95%以上.

  4. Microstructure and wear resistance of electro-thermal explosion sprayed stellite coating used for remanufacturing

    Institute of Scientific and Technical Information of China (English)

    JIN Guo; XU Bin-shi; WANG Hai-dou; LI Qing-fen; WEI Shi-cheng

    2005-01-01

    Electro-thermal explosion directional spraying was used to prepare the stellite coating on substrate of the AISI 1045 steel. The morphologies of cross-section and worn scar, porosity, distribution of elements, microhardness and wear resistance of the coating were determined by means of SEM, EDAX, micro-hardness tester and sliding wear tester. Because of the compact construction, good bonding and high hardness, the coating is characterized by good wear resistance. The results show that the mainly failure mode of the stellite coating is microplowing.

  5. Effect Of Laser Hardening On Microstructure And Wear Resistance In Medium. Carbon/Chromium Steels

    Science.gov (United States)

    Kusinski, Jan; Thomas, Gareth

    1986-11-01

    Metallographical (optical, TEM, SEM), spectroscopic, abrasive wear resistance and microhardness investiga-tions of Fe/Cr/Mn/C steels heat-treated by a continuous CO2 laser are described. Laser hardening resulted in wear resistance of 1.4 - 1.6 times better than that of conventionally hardened steels. Laser melting followed by rapid solidification allows formation of a solidified layer with high wear resistance only when the scanning velocity and mass of the samples were sufficient to realize high cooling rates. The variations in the wear resistance and microhardness with distance from the heated surface were similar. The grain refinement caused by rapid laser-heating and high stresses induced during cooling create essentially fine, highly dislocated lath and internally twinned martensites with some amount of stable, interlath retained austenite. This structure has in turn beneficial effects on wear resistance, and toughness. Laser-heat treatment for deep melting of the surface layers of the steels shows only a small improvement in wear resistance. Such heat-treatment results in delta ferrite retention (10Cr steel) and chromium segregation to cell-boundaries.

  6. Sliding Wear and Friction Behavior of Fuel Rod Material in Water and Dry State

    Science.gov (United States)

    Park, Jin Moo; Kim, Jae Hoon; Jeon, Kyeong Lak; Park, Jun Kyu

    In water cooled reactors, the friction between spacer grid and fuel rod can lead to severe wear and it is an important topic to study. In the present study, sliding wear behavior of zirconium alloy was investigated in water and dry state using the pin-on-disc sliding wear tester. Sliding wear resistance of zirconium alloy against heat treated inconel alloy was examined at room temperature. The parameters in this study were sliding velocity, axial load and sliding distance. The wear characteristics of zirconium alloy was evaluated by friction coefficient, specific wear rate and wear volume. The micro-mechanisms responsible for wear in zirconium alloy were identified to be micro-cutting, micro-pitting, delamination and micro-cracking of deformed surface zone.

  7. IN VITRO WEAR RESISTANCE OF THREE TYPES OF POLYMETHYL METHACRYLATE DENTURE TEETH

    Science.gov (United States)

    Reis, Katia Rodrigues; Bonfante, Gerson; Pegoraro, Luiz Fernando; Conti, Paulo Cesar Rodrigues; de Oliveira, Pedro Cesar Garcia; Kaizer, Osvaldo Bazzan

    2008-01-01

    The wear resistance of denture teeth is important to the longevity of removable prostheses of edentulous patients. The ability of denture teeth to maintain a stable occlusal relationship over time may be influenced by this property. The purpose of this in vitro study was to evaluate the wear resistance of polymethyl methacrylate (PMMA) denture teeth based on their chemical composition when opposed by a ceramic antagonist. The maxillary canines (n=10) of 3 PMMA denture teeth (Trubyte Biotone, cross-linked PMMA; Trilux, highly cross-linked IPN (interpenetrating polymer network)-PMMA; and Vivodent, highly cross-linked PMMA) were secured in an in vitro 2-body wear-testing apparatus that produced sliding contact of the specimens (4.5 cycles/s, sliding distance of 20 mm, under 37°C running water) against glazed or airborne particle abraded ceramic. Wear resistance was measured as height loss (mm) under 300 g (sliding force) after 100,000 cycles, using a digital measuring microscope. Mean values were analyzed by 2-way ANOVA and Tukey's test (α=0.05). The wear of Trubyte Biotone (0.93 ± 0.14 mm) was significantly higher than that of both other types of teeth tested against abraded ceramic (p0.05) in wear among the 3 denture teeth evaluated against glazed ceramic. Trilux and Vivodent teeth tested against either glazed or airborne particle abraded ceramic did not differ significantly from each other (p<0.05). All teeth showed significantly more wear against airborne particle abraded ceramic than against glazed ceramic (p<0.05). In conclusion, the three types of PMMA denture teeth presented significantly different wear resistance against the abraded ceramic. The high-strength PMMA denture teeth were more wear-resistant than the conventional PMMA denture tooth. PMID:19089214

  8. In vitro wear resistance of three types of polymethyl methacrylate denture teeth

    Directory of Open Access Journals (Sweden)

    Katia Rodrigues Reis

    2008-06-01

    Full Text Available The wear resistance of denture teeth is important to the longevity of removable prostheses of edentulous patients. The ability of denture teeth to maintain a stable occlusal relationship over time may be influenced by this property. The purpose of this in vitro study was to evaluate the wear resistance of polymethyl methacrylate (PMMA denture teeth based on their chemical composition when opposed by a ceramic antagonist. The maxillary canines (n=10 of 3 PMMA denture teeth (Trubyte Biotone, cross-linked PMMA; Trilux, highly cross-linked IPN (interpenetrating polymer network-PMMA; and Vivodent, highly cross-linked PMMA were secured in an in vitro 2-body wear-testing apparatus that produced sliding contact of the specimens (4.5 cycles/s, sliding distance of 20 mm, under 37°C running water against glazed or airborne particle abraded ceramic. Wear resistance was measured as height loss (mm under 300 g (sliding force after 100,000 cycles, using a digital measuring microscope. Mean values were analyzed by 2-way ANOVA and Tukey's test (a=0.05. The wear of Trubyte Biotone (0.93 ± 0.14 mm was significantly higher than that of both other types of teeth tested against abraded ceramic (p0.05 in wear among the 3 denture teeth evaluated against glazed ceramic. Trilux and Vivodent teeth tested against either glazed or airborne particle abraded ceramic did not differ significantly from each other (p<0.05. All teeth showed significantly more wear against airborne particle abraded ceramic than against glazed ceramic (p<0.05. In conclusion, the three types of PMMA denture teeth presented significantly different wear resistance against the abraded ceramic. The high-strength PMMA denture teeth were more wear-resistant than the conventional PMMA denture tooth.

  9. Wear Resistance of CO2 Corrosion Product Scale Formed at High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIN Guan-fa; ZHENG Mao-sheng; BAI Zhen-quan; FENG Yao-rong

    2006-01-01

    To investigate the correlation between structure characteristics and wear resistance of CO2 corrosion product scales at high temperature and high pressure, an autoclave was used to prepare CO2 corrosion product scales on N80 steel in carbon dioxide corrosion environment. The correlation between wear resistance of the scales and many other factors, such as temperature, pressure, morphology, structure, velocity of fluid medium, sand grain size, and so on, was comparatively analyzed by a self-assembled wear device, and the scale morphologies before or after being worn were observed by scanning electron microscope (SEM). And then the surface grain size and thickness of scale were measured. The results showed that the cross-section of the corrosion scale was of a double-layer structure, the outer layer of which was composed of regular crystals, whereas the inner layer was a thin scale of fine grains. The outer grain size and thickness of scale varied with temperature, and the initial wear loss was consistent with the surface grain size; at the same time, the total wear loss corresponded to the thickness of scale. Compared to wear resistance in different depths of the scale, it was found that the structure of scale was a double-layer structure in cross-section, and the wear resistance of inner layer was better than that of the outer layer; the closer the scale to the matrix, the greater was the wear resistance of scale; and the larger the size or the higher the rotary speed of solid grain in multiphase flowing medium, the more was the wear loss of scale.

  10. Wear resistance of four types of vacuum-formed retainer materials: a laboratory study.

    Science.gov (United States)

    Raja, Taiyub A; Littlewood, Simon J; Munyombwe, Theresa; Bubb, Nigel L

    2014-07-01

    To investigate the resistance to wear of four different vacuum-formed retainer (VFR) materials: Essix C+, Essix ACE, Duran, and Tru-Tain. Essix C+ is a polypropylene polymer; the other materials are polyethylene co-polymers. The study was undertaken at the Leeds Dental Institute, Leeds, UK, with 26 samples in each group. The specimens were vacuum-formed according to the manufacturers' guidelines, and a custom-made wear-simulation machine was used to conduct the test. Each specimen was subjected to 1000 cycles of the wear simulation, with steatite balls as the antagonist material. The resistance to wear of the VFR materials was evaluated by measuring the maximum wear depth using noncontact, three-dimensional surface profilometry. The wear depth was given in micrometers. The median wear depth was 63.20 µm for the Essix C+ group, 7.88 µm for the Essix ACE group, 9.75 µm for the Duran group, and 12.08 µm for the Tru-Tain group. The Kruskal-Wallis test to compare the four VFR materials detected a statistically significant difference between the groups (P study, the three polyethylene co-polymer materials-Essix ACE, Duran, and Tru-Tain-exhibited significantly less wear than the polypropylene material, Essix C+.

  11. Microstructure and Impact Wear Resistance of TiN Reinforced High Manganese Steel Matrix

    Institute of Scientific and Technical Information of China (English)

    MA You-ping; LI Xiu-lan; WANG Cheng-hui; LU Lu

    2012-01-01

    A high-manganese austenitic steel matrix (Mn13) composite reinforced with TiN ceramic particles was synthesized by means of Vacuum-Evaporation Pattern Casting (V-EPC). The composite microstructure and interface bonding of TiN/matrix were analyzed utilizing optical microscope (OM) and X-ray diffraction (XRD). The effects of different volume fraction of TiN on impact wear resistance were evaluated by MLD-10 impact wear test. The results showed that TiN was evenly distributed in composite layer and had a good interface bonding with matrix when the volume fractions of TiN were 27% and 36% respectively. However, cast defects and TiN agglomeration occurred when the TiN volume fraction increased to 48~. Compared with high-manganese austenitic steel (Mnl3), the im- pact wear resistance of the TiN-reinforced composite is better. In small impact load conditions, composite layer can effectively resist abrasives wear and TiN particles played an important role in determining impact wear resistance of composite layer. In large impact load, the synergistic roles of spalling of TiN particles and the increase of work hardening of Mn13 based material are responsible for impact wear resistance.

  12. Wear resistance of machine tools' bionic linear rolling guides by laser cladding

    Science.gov (United States)

    Wang, Yiqiang; Liu, Botao; Guo, Zhengcai

    2017-06-01

    In order to improve the rolling wear resistance (RWR) of linear rolling guides (LRG) as well as prolong the life of machine tools, various shape samples with different units spaces ranged from 1 to 5 mm are designed through the observation of animals in the desert and manufactured by laser cladding. Wear resistance tests reproducing closely the real operational condition are conducted by using a homemade linear reciprocating wear test machine, and wear resistance is evaluated by means of weight loss measurement. Results indicate that the samples with bionic units have better RWR than the untreated one, of which the reticulate treated sample with unit space 3 mm present the best RWR. More specifically, among the punctuate treated samples, the mass loss increases with the increase of unit space; among the striate treated samples, the mass loss changes slightly with the increase of unit space, attaining a minimum at the unit space of 4 mm; among the reticulate treated samples, with the increase of unit space, the mass loss initially decreases, but turns to increase after reaching a minimum at the unit space of 3 mm. Additionally, the samples with striate shape perform better wear resistance than the other shape groups on the whole. From the ratio value of laser treated area to contacted area perspective, that the samples with ratio value between 0.15 and 0.3 possess better wear resistance is concluded.

  13. Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B{sub 4}C)

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Ali [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Abdollahi, Alireza, E-mail: alirezaabdollahi1366@gmail.com [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Biukani, Hootan [Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-25

    In the current research, aluminum based hybrid composite reinforced with boron carbide (B{sub 4}C) and carbon nanotubes (CNTs) was produced by powder metallurgy method. creep behavior, wear resistance, surface roughness, and hardness of the samples were investigated. To prepare the samples, Al 5083 powder was milled with boron carbide particles and carbon nanotubes using planetary ball mill under argon atmosphere with ball-to-powder weight ratio of 10:1 for 5 h. Afterwards, the milled powders were formed by hot press process at 380{sup °}C and then were sintered at 585{sup °}C under argon atmosphere for 2 h. There was shown to be an increase in hardness values of composite with an increase in B{sub 4}C content. The micrograph of worn surfaces indicate a delamination mechanism due to the presence of CNTs and abrasion mechanism in composite containing 10 vol.%B{sub 4}C. Moreover, it was shown that increasing B{sub 4}C content increases the wear resistance by 3 times under a load of 20 N and 10 times under a load of 10 N compared to CNTs-reinforced composite. surface roughness of the composite containing 5 vol.%CNT has shown to be more than other samples. The results of creep test showed that adding carbon nanotubes increases creep rate of Al 5083 alloy; however, adding B{sub 4}C decreases its creep rate. - Highlights: • Al 5083/(CNTs + B{sub 4}C) hybrid composite was produced by powder metallurgy method. • Creep behavior, wear resistance, surface roughness, and Hardness of samples were investigated. • Addition of CNTs to Al 5083 matrix reduces alloy hardness, wear resistance and creep strength. • By addition of B{sub 4}C and composite hybridization, creep strength and wear resistance increased. • Surface roughness of Al-5 vol.%CNT has shown to be more than other samples.

  14. Heat Treatment Effect on Microstructure, Hardness and Wear Resistance of Cr26 White Cast Iron

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shaoping; SHEN Yehui; ZHANG Hao; CHEN Dequan

    2015-01-01

    High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950℃ to 1050℃, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000℃, followed by a subsequent 2 h tempering at 400℃. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the “supporting” effect of the matrix and the“protective” effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.

  15. Heat treatment effect on microstructure, hardness and wear resistance of Cr26 white cast iron

    Science.gov (United States)

    Zhou, Shaoping; Shen, Yehui; Zhang, Hao; Chen, Dequan

    2015-01-01

    High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 °C to 1050 °C, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 °C, followed by a subsequent 2 h tempering at 400 °C. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.

  16. Abrasive Wear Resistance of the Iron- and WC-based Hardfaced Coatings Evaluated with Scratch Test Method

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2013-06-01

    Full Text Available Abrasive wear is one of the most common types of wear, which makesabrasive wear resistance very important in many industries. Thehard facing is considered as useful and economical way to improve theperformance of components submitted to severe abrasive wear conditions, with wide range of applicable filler materials. The abrasive wear resistance of the three different hardfaced coatings (two iron‐based and one WC‐based, which were intended to be used for reparation of the impact plates of the ventilation mill, was investigated and compared. Abrasive wear tests were carried‐out by using the scratch tester under the dry conditions. Three normal loads of 10, 50 and 100 N and the constant sliding speed of 4 mm/s were used. Scratch test was chosen as a relatively easy and quick test method. Wear mechanism analysis showed significant influence of the hardfaced coatings structure, which, along with hardness, has determined coatings abrasive wear resistance.

  17. High vitamin E content, impact resistant UHMWPE blend without loss of wear resistance.

    Science.gov (United States)

    Oral, Ebru; Neils, Andrew; Muratoglu, Orhun K

    2015-05-01

    Antioxidant stabilization of radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) has been introduced to improve the oxidative stability of total joint implant bearing surfaces. Blending of antioxidants (most commonly vitamin E) with UHMWPE resin powder followed by consolidation and uniform radiation cross-linking is currently available for use in both total hips and total knees. It was previously shown that the fatigue resistance of vitamin E-blended and irradiated UHMWPEs could be further improved by spatially manipulating the vitamin E concentration throughout the implant and limiting cross-linking to the surface of the implant where it is necessary for wear resistance. This was possible by designing a low concentration of vitamin E on the surface and higher concentration in the bulk of the implant because cross-linking is hindered in UHMWPE as a function of increasing vitamin E concentration. In this study, we hypothesized that such a surface cross-linked UHMWPE with low wear rate and high fatigue strength could be obtained by limiting the penetration of radiation into UHMWPE with uniform vitamin E concentration. Our hypothesis tested positive; we were able to obtain control of the surface cross-linked region by manipulating the energy of the irradiation, resulting in extremely low wear, and high impact strength. In addition, we discussed alternatives of improving the oxidation resistance of such a material by using additional vitamin E reservoirs. These results are significant because this material may allow increased use of antioxidant-stabilized, cross-linked UHMWPEs in high stress applications and in more active patients.

  18. Study on Friction and Wear Characteristics and Structure of Compound Layer from Combined Treatment of Ion Nitrocarburizing-Ion Sulphurizing of CrMoCu Alloy Cast Iron

    Institute of Scientific and Technical Information of China (English)

    MA Shi-ning; HU Chun-hua; LI Xin; QIU Ji

    2004-01-01

    The technics of combined treatment of ion nitrocarburizing-ion sulphurizing of CrMoCu alloy cast iron has been investigated and the compound layer with nitrocarbonide and sulphide has been made on the surface of CrMoCu alloy cast iron. The compound layer is composed of sulfide surface layer and the nitrocarbonide hypo-surface layer and its diffusing layer. The size of sulfide globular grains distributing equably on the surface is in nano-micron-scale, and the phase structure of the compound layer is composed of FeS、 FeS2、 Fe2C and Fe3N. Under dry sliding condition, the friction-reducing of sulphurized surface is good, but its function time can't last very long. The nitrocarbonided+sulphurized surface can greatly improve the wear-resistance and the friction-reducing of CrMoCu alloy cast iron, and its integrated friction and wear properties are better than plain and sulphurized surfaces'.

  19. Study on Friction and Wear Characteristics and Structure of Compound Layer from Combined Treatment of Ion Nitrocarburizing-Ion Sulphurizing of CrMoCu Alloy Cast Iron

    Institute of Scientific and Technical Information of China (English)

    MAShi-ning; HUChun-hua; LIXin; QIUJi

    2004-01-01

    The technics of combined treatment of ion nitrocarburizing-ion sulpburizing of CrMoCu alloy cast iron has been investigated and the compound layer with nitrocabonide and sulphide has been made on the surface of CrMoCu alloy cast iron. The compound layer is composed of sulfide surface layer and the nitrocarbonide hypo-surface layer and its diffusing laye. The size of sulfide globular grains distributing equably on the surface is in nano-micmn-scale, and the phase structure of the compound layer is composed of FeS, FeS2, Fe2C and FerN. Under dry sliding condition, the friction-reducing of sulphurized surface is good, but its function time can't last vet3. long, The nitrocarbonided+sulphurized surface can gready improve the wear-resistance and the friction-reducing of CrMoCu alloy cast iron, and its integrated friction and wear properties are better than plain and sulphurized surfaces.

  20. Slurry wear characteristics of zinc-based alloys: Effects of sand content of slurry, silicon addition to alloy system and traversal distance

    Institute of Scientific and Technical Information of China (English)

    B.K. PRASAD; O.P. MODI

    2009-01-01

    This investigation deals with the observations pertaining to the effects of specimen and slurry compositions as well as traversal distance on the slurry wear response of a zinc-based alloy. The composition of the alloy was altered by adding 4% silicon to it. The slurry composition was varied through changing the concentration of the sand particles in the range of 0-60% that were suspended in the (liquid) electrolyte. The electrolyte contained 4 g sodium chloride and 5 mL concentrated sulphuric acid dissolved in 10 L of water. The slurry wear tests were conducted at a speed of 7.02 m/s over the traversal distance range of 15-500 km. The wear rate increased initially with traversal distance, attained a maximum and decreased thereafter irrespective of the specimen and test environment. However, the wear rate peaks were less prominent in the liquid plus sand environments than the liquid-only medium. Further, the wear rate peak in the liquid-only medium appeared at a shorter traversal distance than the one in the sand containing slurries. Addition of sand particles to the electrolyte reduced the wear rate of the samples to 5%-15% depending on the sand concentration of the slurry. Moreover, intermediate (40%) sand content led to a maximum wear rate when compared with in the liquid plus sand media. However, this maximum was still less than in the liquid-only medium. The silicon containing alloy suffered from higher wear rates than the silicon free alloy samples when tested in the liquid-only medium. On the contrary, the trend reversed in liquid plus 20% and 40% sand environments whereas a mixed response was noted in the slurry containing 60% sand. In the latter case, the presence of silicon proved deleterious initially while an opposite trend was observed at longer traversal distances. The wear response of the samples was discussed in terms of specific features of their microconstituents like silicon and the predominant material removal mechanism in a given set of

  1. Wear resistance of a metal surface modified with minerals

    Science.gov (United States)

    Kislov, S. V.; Kislov, V. G.; Balasch, P. V.; Skazochkin, A. V.; Bondarenko, G. G.; Tikhonov, A. N.

    2016-02-01

    The article describes the advantages of the new technology of mineral coating of metal products for the friction pair of mechanical systems. It presents the research results of the wear rate of the samples made of 12X13 steel (X12Cr13) with mineral layers, in the experiments with a piston ring sliding inside a cylinder liner with grease. The wear rate of the samples with mineral layers is lower almost by two factors than that of the samples made of grey foundry iron and untreated samples. As the result of slip/rolling abrasion tests of parts with mineral layers under conditions of high contact pressure, a suggestion was made concerning probable mechanics of surface wear.

  2. Fe–0.4 wt.%C–6.5 wt.%Cr hardfacing coating: Microstructures and wear resistance with La{sub 2}O{sub 3} additive

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xiaoru [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhao, Bin [Jiangsu Xuzhou Construction Machinery Research Institute, Xuzhou 221004 (China); Yang, Jian; Xing, Xiaolei; Zhou, Yefei; Yang, Yulin [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Yang, Qingxiang, E-mail: qxyang@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-10-30

    Highlights: • Fe–0.4 wt.%C–6.5 wt.%Cr hardfacing coatings with different La{sub 2}O{sub 3} additives were developed. • The grain size of the hardfacing coating decreases with the increase of the La{sub 2}O{sub 3} additives. • The unidirectional wear resistance of the hardfacing coating is increased with the increase of the La{sub 2}O{sub 3} additives. • The friction coefficient is decreased and the reciprocating wear resistance is increased with the increase of the La{sub 2}O{sub 3} additives. - Abstract: Flux-cored wires with different La{sub 2}O{sub 3} additives were developed. The microstructures of the hardfacing coatings were observed by optical microscopy (OM) and field emission scanning electron microscope (FESEM). The phase structures were determined by X-ray diffraction (XRD). The hardness, wear resistance and friction coefficient of the hardfacing coatings were measured by Rockwell hardness tester, unilateral abrasive belt wear testing machine and CETR reciprocating wear testing machine, respectively. At last, the worn morphologies of the hardfacing coatings were observed by FESEM. The results indicate that, the microstructures of the hardfacing coatings consist of needle-like martensite, high alloy matensite and retained austenite. With the increase of La{sub 2}O{sub 3} additive, the high alloy matensite dissolves in the matrix gradually and the amount of retained austenite is not changed basically after it is increased firstly. When La{sub 2}O{sub 3} addition is 0.70 wt.%, the grain size of the hardfacing coating is the smallest, which is 18 μm and the average hardness is the highest. Unidirectional abrasive belt wear test shows that the high alloy martensite can be as wear-resistance phase during the wear process of the hardfacing coatings. When the La{sub 2}O{sub 3} addition is 0.35 wt.%, the unidirectional wear resistance of the hardfacing coating is the highest. Reciprocating wear test shows that with the increase of the La{sub 2}O

  3. The effect of heat treatment on the gouging abrasion resistance of alloy white cast irons

    Science.gov (United States)

    Are, I. R. S.; Arnold, B. K.

    1995-02-01

    A series of heat treatments was employed to vary the microstructure of four commercially important alloy white cast irons, the wear resistance of which was then assessed by the ASTM jaw-crusher gouging abrasion test. Compared with the as-cast condition, standard austenitizing treatments produced a substantial increase in hardness, a marked decrease in the retained aus-tenite content in the matrix, and, in general, a significant improvement in gouging abrasion resistance. The gouging abrasion resistance tended to decline with increasing austenitizing tem-perature, although the changes in hardness and retained austenite content varied, depending on alloy composition. Subcritical heat treatment at 500 ° following hardening reduced the retained austenite content to values less than 10 pct, and in three of the alloys it caused a significant fall in both hardness and gouging abrasion resistance. The net result of the heat treatments was the development of optimal gouging abrasion resistance at intermediate levels of retained aus-tenite. The differing responses of the alloys to both high-temperature austenitizing treatments and to subcritical heat treatments at 500 ° were related to the effects of the differing carbon and alloying-element concentrations on changes in the M s temperature and secondary carbide precipitation.

  4. Effect of La2O3 content on wear resistance of alumina ceramics

    Institute of Scientific and Technical Information of China (English)

    WU Tingting; ZHOU Jian; WU Bolin; LI Wenjie

    2016-01-01

    In order to improve the wear resistance, a kind of alumina ceramic with good wear resistance was created in an Al2O3-CaCO3-SiO2-MgO-La2O3 (ACSML) system. The effects of La2O3 content on sintering temperature, bulk density, and wear rate were investigated. The wear rate of sample was as low as 0.0393‰. The wear resistance of the sample containing La2O3 has im-proved 43% than that of the sample without La2O3. Appropriate La2O3 doping could inhibit grain growth, enhance density, and purify grain boundary. La2O3 could diffuse into Al2O3 to form a solid solution and react with Al2O3 to form high-aluminum low-lanthanum complex oxides. The combination among Al2O3, the solid solution layer, and the layer of high-aluminum low-lanthanum complex oxides combined closely, which could improve grain boundary cohesion. Besides, the homogeneous distributions of elements made uniform structure. Finally, the wear resistance of alumina ceramic was improved.

  5. Mechanism of Burn Resistance of Alloy Ti40

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Ti fire found in high performance engines promotes the development of burn resistant Ti alloys. The burn resistant mechanism of Ti40 alloy is investigated. Ti40 alloy reveals good burn resistance. Its interfacial products between burning products and the matrix are tenacious,which retard the diffusion of oxygen into the matrix. Two burn resistant mechanisms, that is, fast scatter dispersion of heat and suppression of oxygen diffusion, are proposed.

  6. Improvement of wear resistance of AZ31 and AZ91HP by high current pulsed electron beam treatment

    Institute of Scientific and Technical Information of China (English)

    GAO Bo; HAO Sheng-zhi; DONG Chuang; TU Gan-feng

    2005-01-01

    The surface modification of magnesium alloys (AZ31 and AZ91HP) was studied by a high current pulsed electron beam(HCPEB). The results show that the cross-sectional microhardness of treated samples increases not only in the heat affected zone(HAZ), but also beyond HAZ, reaching over 250 μm. This is due to the action of quasi-static thermal stress and the shock thermal stress wave with materials, which result in its fast deformation on the surface layer and so increases microhardness. For the AZ91HP alloy, a nearly complete dissolution of the intermetallic phase Mg17Al12 is observed, and a super-saturated solid solution forms on the re-melted surface, which is due to the solute trapping effect during the fast solidification process. Measurements on sliding wear show that wear resistance is improved by approximately 5.6 and 2.4 times for the AZ31 and AZ91HP respectively, as compared with as-received samples.

  7. Obtention, machining and wear of sintered alloys for automotive applications; Processamento, usinagem e desgaste de ligas sinterizadas para aplicacoes automotivas

    Energy Technology Data Exchange (ETDEWEB)

    Jesus Filho, Edson Souza de

    2006-07-01

    The aim of this work was the development of materials for automotive applications, in particular, valve seat inserts for gasoline combustion engines. The development involved the following activities: processing by powder metallurgy techniques, heat treatment, mechanical and microstructural characterization, machining and wear of materials. This work was undertaken aiming cost reduction of this component by the use of cheaper and less pollutant elements, eliminating the presence of Co and Pb due to their high cost and toxicological effects, respectively. The accomplishment of a thorough research into patents revealed that the materials studied here present particular compositions and were not yet produced. The results of hardness measurements and the transverse radial strength of the studied materials, after heat treatment, revealed superior properties than the commercial alloys applied at the moment. The machining tests of the material without heat treatment indicated a similar behaviour in comparison to the commercial alloy, suggesting that the new alloy chemistry composition was not deleterious in this sense. After heat treatment, the obtained alloys presented a cutting force increase in relation to the commercial alloy. Wear tests results of heat treated materials presented smaller friction coefficient and mass loss than the commercial alloy, in ali cases. This was especially achieved due to the advantages offered by heat treatment allied to the addition of NbC and Ti/W carbides. The materials obtained here showed to be potential candidates to substitute with advantages, valve seat inserts made of Fe-Co alloys for gasoline combustion engines. (author)

  8. 基于RBF神经网络模型的司太立合金磨损量预测%Analysis of Stellite Alloys Wearing Prediction Based on Radial Basis Function Neural Network

    Institute of Scientific and Technical Information of China (English)

    宋江腾; 曾攀; 赵加清; 李聪聪

    2011-01-01

    司太立(Stellite)合金是一种能耐各种类型磨损、腐蚀以及高温氧化的硬质合金.为研究其磨损性能,以Stellite6为例,在自行设计的摩擦磨损机上进行室温干摩擦和润滑条件下的磨损实验.以实验数据为基础,建立该合金磨损量的RBF神经网络预测模型.结果表明:RBF神经网络预测模型具有较好的收敛效果和预测精度,具有良好的应用前景.%The stellite alloys are hard alloys which can resist various wear,corrosion and oxidation at high temperature.In order to study the wearing behaviors of the stellite alloys, wear tests were carried out in the condition of dry friction and lubrication under room temperature by using a serf-designed tribometer. According to the experimental results, a RBF neural network model was proposed to predict the wear loss of stellite alloys. The results show that the RBF neural network has good application prospects for good convergence effect and prediction accuracy.

  9. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    Science.gov (United States)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  10. Nanocomposite TiSiBC Hard Coatings with High Resistance to Wear, Fracture and Scratching

    Science.gov (United States)

    Mahato, P.; Nyati, G.; Singh, R. J.; Mishra, S. K.

    2016-09-01

    The sliding wear under fretting condition, scratch adhesion, deformation behavior during micro- and nanoscratch studies have been studied for nanocomposite TiSiBC hard coating deposited on steel substrate by magnetron sputtering. The nanocomposite coatings having hardness and modulus around 30 and 300 GPa, respectively, showed a very significant decrease in fretting wear as compared to the uncoated steel. Pileup occurred along the sides of the scratch track due to plastic deformation of the substrate at the scratch load; however, cracks were not seen in films. The coefficient of friction remained scratch, higher wear resistance, higher toughness and low coefficient of friction.

  11. Effect of B4 C content on wear resistance of argon arc clad layer with in situ reactive alloy powder%B4C含量对原位反应型合金粉末氩弧熔覆层耐磨性的影响

    Institute of Scientific and Technical Information of China (English)

    马壮; 谭士海

    2014-01-01

    Argon arc cladding test was carried out on Q 235 steel with reduced iron powder , boron carbide powder and borax .Effects of boron carbide content (6%, 8%, 10%and 12%, mass fraction) on microstructure and wear resistance of the clad layers were investigated .The results show that when the boron carbide content is 12%, there is new phase Fe 2 B existing in the clad layer .With the increase of boron carbide content , the hardness , abrasive wear , adhesive wear and erosion wear resistance of the clad layer are gradually improved , when the boron carbide content reaches 12%, the hardness is 3.2 times of the matrix, and the relative abrasive wear , adhesive wear and erosion wear resistances are 5.4, 3.7 and 4.3 times of the matrix, respectively.%采用还原铁粉、碳化硼粉末、硼砂在基体金属材料Q235钢板上进行氩弧熔覆,并研究了6%、8%、10%、12%(质量分数)四种不同碳化硼含量对熔覆层组织和耐磨性的影响。结果表明,当碳化硼含量达到12%时熔覆层有新形成的Fe2 B,随碳化硼含量的增加熔覆层硬度、抗磨粒磨损性能、抗黏着磨损性能、抗冲蚀磨损性能逐渐提高,当碳化硼含量达到12%时,硬度是基体的3.2倍,相对耐磨粒磨损、黏着磨损、冲蚀磨损性能都大幅度提高,分别是基体的5.4、3.7、4.3倍。

  12. The comparative studies of ADI versus Hadfield cast steel wear resistance

    Directory of Open Access Journals (Sweden)

    Mieczysław Kaczorowski

    2011-04-01

    Full Text Available The results of comparative studies of wear resistance of ADI versus high manganese Hadfield cast steel are presented. For evaluation ofwear resistance three type of ADI were chosen. Two of them were of moderate strength ADI with 800 and 1000MPa tensile strength whilethe third was 1400MPa tensile strength ADI. The specimens were cut from ADI test YII type casting poured and heat treated in Institute ofFoundry in Krakow. The pin on disc method was used for wear resistance experiment. The specimens had a shape of 40mm long rod withdiameter 6mm. The load and speed were 100N and 0,54m/s respectively. It was concluded that the wear resistance of ADI is comparablewith high manganese cast steel and in case of low tensile grade ADI and is even better for high strength ADI than Hadfield steel.

  13. Lead-free, bronze-based surface layers for wear resistance in axial piston hydraulic pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vetterick, Gregory Alan [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Concerns regarding the safety of lead have provided sufficient motivation to develop substitute materials for the surface layer on a thrust bearing type component known as a valve plate in axial piston hydraulic pumps that consists of 10% tin, 10% lead, and remainder cooper (in wt. %). A recently developed replacement material, a Cu-10Sn-3Bi (wt.%) P/M bronze, was found to be unsuitable as valve plate surface layer, requiring the development of a new alloy. A comparison of the Cu-1-Sn-10Pb and Cu-10Sn-3Bi powder metal valve plates showed that the differences in wear behavior between the two alloys arose due to the soft phase bismuth in the alloy that is known to cause both solid and liquid metal embrittlement of copper alloys.

  14. Effect of high-manganese cast steel strain hardening on the abrasion wear resistance in a mixture of SiC and water

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2013-12-01

    Full Text Available The study attempts to determine the impact of the high-manganese cast steel strain hardening on its abrasion wear resistance in a mixture of SiC and water prepared in accordance with ASTM G75. For tests, the high-manganese cast steel containing 10.7, 17.9 and 20.02% Mn was selected. The results of microstructure examinations and abrasion wear resistance tests carried out on the material in non-hardened condition and after strain hardening with a force of 539.55kN were disclosed. Additionally, the surface of samples after a 16-hour cycle of abrasion tests was examined. Moreover, based on the obtained results, the effect of different contents of Mn in cast steel was studied, mainly in terms of its impact on the abrasion wear resistance. The results obtained on the tested materials were compared with the results obtained on the low-alloyed abrasion wear-resistant cast steel L35GSM.

  15. Alternate paddle configuration for improved wear resistance in the saltstone mixer

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-09-23

    The Saltstone Production Facility has a 10-inch Readco-Kurimoto continuous mixer that mixes the premix dry feeds and low-level waste salt solution to make fresh (uncured) saltstone. Inspection of the mixer in January 2013 showed significant wear on the third, fourth and fifth paddle pairs after the conveying augers. A 2-inch Readco-Kurimoto continuous mixer was used to test alternate paddle configurations for use in the 10-inch mixer to decrease the wear rate on the paddles. Two wear tests were conducted to investigate a method of reducing wear on the mixer paddles. The first test (wear test 2a) had a paddle configuration similar to the currently installed 10-inch mixer in the SPF. This test established baseline wear. The second test (wear test 2b) had a reconfigured paddle arrangement that replaced the flat paddles with helical paddles for paddle pairs 2 - 6 and aligned paddle pair 1 with the augers. The intent of the reconfiguration was to more effectively convey the partially wetted dry feeds through the transition region and into the liquid feed where paddle wear is reduced due to dry feeds and salt solution being mixed at the intended water to premix ratio. The design of the helical paddles provides conveyance through the transition region to the liquid feed inlet. The alignment with the auger is aimed to provide a smoother transition (minimizing the discontinuity between the auger and paddle pair 1) into the downstream paddles. A soft metal with low wear resistance (6000 series aluminum) was used for the wear testing paddles to determine wear patterns while minimizing run time and maximizing wear rate. For the two paddle configurations tested using the scaled 2-inch Readco-Kurimoto continuous mixer, with the first six paddles after the augers replaced by the wear paddles and the remaining paddles were stainless steel. Since the 10-inch SPF mixer is designed with the liquid inlet centered over paddle pairs 5 and 6, the scaled 2-inch mixer was configured the

  16. Study on quantitative relation between characteristics of striature bionic coupling unit and wear resistance of gray cast iron

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-03-01

    In order to improve the wear resistance of gray cast iron guide rail, striature bionic coupling units of different characteristics were manufactured by laser surface remelting. Wear behavior of gray cast iron with striature bionic coupling units has been studied under dry sliding condition at room temperature using a homemade linear reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that there is a relationship between weight loss and the area of striature bionic coupling units and α: Δm = Δm0 - 0.0212S × cos α - 0.0241S × sin α.

  17. Composites for Increased Wear Resistance: Current Achievements and Future Prospects

    Science.gov (United States)

    Lancaster, J. K.

    1984-01-01

    The various ways in which reductions in wear and/or friction can be achieved by the use of composite materials are reviewed. Reinforced plastics are emphasized and it is shown that fillers and fibers reduce wear via several mechanisms additional to their role of increasing overall mechanical strength, preferential transfer, counter face abrasion, preferential load support, or third-body formation on either the composite or its counterface. Examples are given from recent work on thin layer composites of the type widely used as dry bearings in aircraft flight control mechanisms. Developments in metal based composites and carbon-carbon composites for high energy brakes are discussed. The aspects which could benefit by increased fundamental understanding identified and the types of composites which appear to have greatest potential for further growth are indicated.

  18. The effect of plasma nitriding and post oxidation on fretting wear behaviour of a high strength alloy steel

    Science.gov (United States)

    Prakash, N. Arun; Bennett, C. J.

    2017-05-01

    The fretting wear performance of the non-nitrided, nitrided and nitrided-post oxidized high strength alloy steel, W460 were investigated in the gross slip regime at ambient condition. Fretting wear tests were performed with an applied normal load of 250 and 650 N at a displacement amplitude of 100 μm using a cylinder-on-flat configuration. X-ray analysis (XRD) revealed the formation of the iron-nitrided Fe3N and Fe4N during plasma nitriding and iron oxide phases of hematite (Fe2O3) and magnetite (Fe3O4) during post-oxidation of the cylindrical steel samples. The steady state tangential force coefficient decreases when the nitrided and post-oxidized samples were fretted against the non-nitrided steel material when compared to the non-nitrided steel contact pair. The steady state tangential force coefficient decreased with an increase in applied normal load across all of the fretting conditions. The total dissipated energy and the total wear volume increased with an increase in applied normal load with total wear volume of the non-nitrided vs nitrided and non-nitrided vs nitrided post-oxidized sample pairs, showing a reduction in the wear volume of approximately 50% compared to the non-nitrided vs non-nitrided combination under the fretting conditions examined. The worn surface morphology of the fretted samples examined using a scanning electron microscope showed the presence of loose wear debris in the wear track, fragmented wear debris, delamination cracks, delamination with large discontinuities, plate-like wear debris, oxide patches and formation of large cavities.

  19. NANOSCALE BOEHMITE FILLER FOR CORROSION AND WEAR RESISTANT POLYPHENYLENESULFIDE COATINGS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2003-06-26

    The authors evaluated the usefulness of nanoscale boehmite crystals as a filler for anti-wear and anti-corrosion polyphenylenesulfide (PPS) coatings exposed to a very harsh, 300 C corrosive geothermal environment. The boehmite fillers dispersed uniformly into the PPS coating, conferring two advanced properties: First, they reduced markedly the rate of blasting wear; second, they increased the PPS's glass transition temperature and thermal decomposition temperature. The wear rate of PPS surfaces was reduced three times when 5wt% boehmite was incorporated into the PPS. During exposure for 15 days at 300 C, the PPS underwent hydrothermal oxidation, leading to the substitution of sulfide linkages by the sulfite linkages. However, such molecular alteration did not significantly diminish the ability of the coating to protect carbon steel against corrosion. In fact, PPS coating filled with boehmite of {le} 5wt% adequately mitigated its corrosion in brine at 300 C. One concern in using this filler was that it absorbs brine. Thus, adding an excess amount of boehmite was detrimental to achieving the maximum protection afforded by the coatings.

  20. On the Problem of Wear Resistant Coatings Separation From Tools and Machine Elements

    Science.gov (United States)

    Petrushin, S. I.; Gubaidulina, R. H.; Gruby, S. V.; Likholat, A. V.

    2015-09-01

    The article considers separation of wear resistant coatings of tool and engineering materials which arises both during coating fabrication and use of the product. The cause of this phenomenon is assumed to be related to thermal residual stresses generating on the coating- substrate border. These stresses have been analyzed and methods are provided to calculate it after produced composite material is cooled down from the temperature of coating synthesis to the ambient temperature. A no-fracture condition has been stated in relation to coating- substrate thicknesses, temperature differences and physical and mechanical properties of combined materials. The issue of intermediate layer incorporation with pre-set parameters has been discussed. A co-effect of thermal residual and functional stresses on the strength of the boundary layer has been considered when heating, tension and compression of a product with wear resistant coating. Conclusions have been made, as well as recommendations to improve fracture strength of products with thin wear resistant coatings.

  1. Receiving Wear-Resistance Coverings Additives of Nanoparticles of Refractory Metals at a Laser Cladding

    Science.gov (United States)

    Murzakov, M. A.; Petrovskiy, V. N.; Bykovskiy, D. P.; Andreev, A. O.; Birukov, V. P.; Markushov, Y. V.

    2016-02-01

    Laser cladding technology was used to conduct experiments on production of wear-resistant coatings with additive nanoparticles of refractory metals (WC, TaC). Mechanical testing of coating abrasion was made using Brinell-Howarth method. The obtained data was compared with wear- resistance of commercial powder containing WC. It was found that at a concentration 10-15% coating with nanopowder additives shows a dramatic increase in wear-resistance by 4-6 times as compared to carbon steel substrate. There were conducted metallurgical studies of coatings on inverse electron reflection. There was determined elemental composition of deposited coating and substrate, and microhardness measured. It was found that structure of deposited coating with nanoparticles is fine.

  2. Effect of ion nitriding on the abrasive wear resistance of ultrahigh-strength steels with different silicon contents

    Science.gov (United States)

    Riofano, R. M. Muñoz; Casteletti, L. C.; Nascente, P. A. P.

    2005-02-01

    This article studies the effect of silicon (Si) on ultrahigh-strength AISI 4340 steels in connection with the thermal treatment, as well as the influence of this element on nitriding and, consequently, abrasive wear. Four alloys with different Si contents were nitrided at 350 °C (4 and 8 h) and 500 and 550 °C (2 and 4 h) in a gas mixture of 80 vol.% H2 and 20 vol.% N2. The nitrided layers were characterized by microhardness and pin-on-disk tests, optical microscopy, scanning electron microscopy with energy-dispersive x-ray spectrometry, and x-ray diffraction (XRD). The increase in Si enhanced the tempering resistance of the steels and also improved considerably the hardness of the nitrided layers. The increase in Si produced thinner compound layers with better hardness quality and high abrasive wear resistance. XRD analysis detected a mixture of nitrides in the layers γ‧-Fe4N, ɛ-Fe2 3N, CrN, MoN, and Si3N4 with their proportions varying with the nitriding conditions.

  3. Effect of QPQ nitriding time on microstructure and wear resistance of SAF2906 duplex stainless steel

    Science.gov (United States)

    Liu, D.; Wu, G. X.; Shen, L. X.

    2017-01-01

    QPQ salt bath treatment of SAF2906 duplex stainless steel was conducted at 570 °C for 60 min, 90 min,120 min,150 min and 180 min, followed by post-oxidation process with heating temperature of 400°C and holding duration of 30 min. The effect of QPQ nitriding time on microstructure and wear resistance of SAF2906 duplex stainless steel was investigated by means of OM, SEM, XRD, microhardness test, adhesion strength test and wear resistance test. Microstructure observation showed outer layer was composed of Fe3O4. The main phase of the intermediate layer was CrN, αN and Fe2-3N. The main phase of the inner layer was CrN and S. The adhesion strength test of the surface layer-substrate showed the QPQ treated samples have favorable adhesion strength of HF-1 level. With the increase of nitriding time, the growth rate of the compound layer gradually slowed down and the surface hardness first increased and then decreased, and the maximum hardness was 1283 HV0.2 at 150 min. The dry siliding results showed that the wear resistance of the QPQ treated samples was at least 20 times than that of the substrate, and the optimum nitriding time to obtain the best wear resistance is 150 min. The worn surface morphology observation showed the main wear mechanism of the substrate was plough wear, while micro-cutting is the main wear mechanism that causes the damage of the QPQ treated samples.

  4. Wear Resistances of CO2 Corrosion Product Films in the Presence of Sand Particles

    Institute of Scientific and Technical Information of China (English)

    LI Jinling; ZHU Shidong; LIU Luzhen; QU Chengtun; YAN Yongli; YANG Bo

    2015-01-01

    Wear resistances of CO2 corrosion product iflms formed on P110 carbon steel at different CO2 partial pressures were investigated in water sand two-phase lfow by weight loss method, and the microstructures and compositions of corrosion product iflms were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The results showed that the wear rate of CO2 corrosion product iflms increased until a maximum and then decreased with the increasing of the film-forming pressure, and the maximum occurred at 2 MPa. However, the maximal corrosion rate and the loose and porous CO2 corrosion product iflms were obtained at 4 MPa. And the wear rate decreased and then went to be lfat with increasing test time. Furthermore, the microstructures and compositions of corrosion product iflms and the impact and wear of sand particles played an important role on wear resistances. In addition, the wear rate and corrosion rate were iftted by cubic polynomial, respectively, which were well in accordance with the measured results.

  5. Elements inter-diffusion in the turning of wear-resistance aluminum bronze

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Inter-diffusion of elements between the tool and the workpiece during the turning of aluminum bronze using high-speed steel and cemented carbide tools have been studied. The tool wear samples were prepared by using M2 high-speed steel and YW1 cemented carbide tools to turn a novel high strength, wear-resistance aluminum bronze without coolant and lubricant. Adhesion of workpiece materials was found on all tools' surface. The diffusion couples made of tool materials and aluminum bronze were prepared to simulate the inter-diffusion during the machining. The results obtained from tool wear samples were compared with those obtained from diffusion couples. Strong inter-diffusion between the tool materials and the aluminum bronze was observed in all samples. It is concluded that diffusion plays a significant role in the tool wear mechanism.

  6. Wear Characteristics of Metallic Biomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hussein

    2015-05-01

    Full Text Available Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  7. Laser surface modification of Ti6Al4V-Cu for improved microhardness and wear resistance properties

    CSIR Research Space (South Africa)

    Erinosho, MF

    2017-06-01

    Full Text Available action, particles of the titanium alloy are transferred and stuck to the tungsten carbide ball due to adhesion as a result of the heat generated. The magnitude of that adhesion depends on the load of 25N used, the speed of the rubbing ball..., Koike M, Okuno O, Oda Y. The grindability and wear of Ti-Cu alloys for dental applications. JOM. 2004;56(2):46-48. 28. Xiong D, Gao Z, Jin Z. Friction and wear properties of UHMWPE against ion implanted titanium alloy. Surface and Coatings Technology...

  8. Dry Sliding Wear Behavior of A356 Alloy/Mg2Sip Functionally Graded in-situ Composites: Effect of Processing Conditions

    Directory of Open Access Journals (Sweden)

    S.C. Ram

    2016-09-01

    Full Text Available In present study, the effect of dry sliding wear conditions of A356 alloy/Mg2Sip functionally graded in-situ composites developed by centrifugal casting method has been studied. A pure commercial A356 alloy (Al–7.5Si–0.3Mg was selected to be the matrix of the composites and primary Mg2Sip reinforcing particles were formed by in-situ chemical reaction with an average grain size of 40-47.8 µm. The Al–(Mg2Sip functionally graded metal matrix composites (FGMMC’s were synthesized by centrifugal casting technique with radial geometry, using two different mould rotating speeds ( 1200 and 1600 rpm. The X-ray diffraction (XRD characterization technique was carried out to confirm the in-situ formed Mg2Si particles in composites. Optical microscopy examination was carried out to reveals the grain refinement of Al-rich grains due to in-situ formed Mg2Si particles. Scanning electron microscope (SEM and Energy dispersive X-ray spectroscopy (EDS techniques were carried out to reveal the distribution of phases, morphological characteristics and confirmation of primary Mg2Si particles in the matrix. The sliding wear behavior was studied using a Pin-on-Disc set-up machine with sliding wear parameters: effect of loads (N, effect of sliding distances (m and effect of Mg on wear at room temperature with a high-carbon chromium steel disc (HRC-64 as counter surfaces. A good correlation was evidenced between the dry sliding behaviour of functionally graded in-situ composites and the distribution of Mg2Si reinforcing particles. Beside the above processing conditions, the dominant wear mechanisms of functionally graded in-situ composites have been correlated with the microstructures. The hardness and wear resistance properties of these composites increase with increasing volume percent of reinforced primary Si/Mg2Si particles toward inner zone of cast cylindrical shapes. The objective of this works was to study the tribological characteristics under dry sliding

  9. The microstructural aspects of abrasive wear resistance in composite electron beam clad coatings

    Science.gov (United States)

    Gnyusov, S. F.; Tarasov, S. Yu.

    2014-02-01

    The effect of microstructure and phase composition of composite coatings based on manganese-containing or nickel-containing austenitic steel and containing either 10 wt.% TiC or 15 wt.% WC on the abrasive wear resistance has been studied. Both post-deposition heat treatment and self-aging in the course of deposition served to improve the relative wear resistance coefficient by 38-42 and 5-12% for Fe-20%Mn-4%V-4%Mo + 15%WC and Fe-20%Ni-4%V-4%Mo + 15%WC coatings, respectively.

  10. Effect of nanocrystalline TiC powder addition on the hardness and wear resistance of cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mansour [Materials and Energy Research Center, P.O. Box 1455-4777, Tehran (Iran, Islamic Republic of)], E-mail: m-razavi@merc.ac.ir; Rahimipour, Mohammad Reza [Materials and Energy Research Center, P.O. Box 1455-4777, Tehran (Iran, Islamic Republic of); Rajabi-Zamani, Amir Hossein [Materials and Energy Research Center, P.O. Box 1455-4777, Tehran (Iran, Islamic Republic of)

    2007-04-25

    In this research, the feasibility of the addition of nanocrystalline TiC particles - synthesized via mechanical alloying - to iron matrix melt was investigated. For the preparation of TiC, impure titanium chips and carbon black were placed in a high-energy ball mill and sampled after different milling time. XRD studies showed that at milling times more than 15 h, TiC was synthesized. It was observed from the peak broadening of the diffraction patterns that the TiC crystallites were in the scale of nanometer. 0.96 wt.% TiC synthesized after 15 h was added to a 4 wt.% C cast iron melt. It was observed that this small amount of TiC was enough to improve the structure, hardness and wear resistance of the cast iron significantly.

  11. Relationship among wear-resistance of three-body abrasion,substructure and property in martensite steels

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of subsurface hardness on wear-resistance of martensitic steel 20Cr, 40CrSi, 60Mn, T8 and T10 in three-body abrasion under static load was investigated. It shows that the characteristic ofthe subsurface hardness distribution and the abrasive wear resistanceis related to the substructure near the worn surface. The substructure of the tested martensite steel has an apparent relationship with thecarbon content and steels with moderate carbon content and hardness exhibit good resistance to abrasive wear. The competition of the work-hardening effect and the temper softening effect, which resulted from deformation and friction heat generating during abrasive wear is considered to be a main reason for the relation among wear-resistance, hardness and substructure. At the test conditions, the wear-resistance of 40CrSi is the best.

  12. Analysis and Modelling of Electrode Wear in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Madsen, Anders; Pedersen, Kim; Friis, Kasper Storgaard

    2010-01-01

    A model describing electrode wear as a function of weld number, initial tip diameter, truncated cone angle, welding current and electrode force is proposed. Excellent agreement between the model and experimental results is achieved, showing that the model can describe the change in electrode tip ...... a central cavity is formed and one where smaller pits are formed randomly across the electrode face. The influence of these two types of surface pits on the nugget size are investigated using the FE code SORPAS, revealing ring welds and undersized weld nuggets....

  13. Analysis and Modelling of Electrode Wear in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Madsen, Anders; Pedersen, Kim; Friis, Kasper Storgaard

    2010-01-01

    diameter with increasing weld number at different weld settings. Furthermore a method for measuring the worn tip diameter in a fast and robust manner is developed. The method relies on a well-known technique for capturing the electrode tip area by the use of carbon imprints and a new developed image......-processing program written in MatLab. Very fine agreement between the present experimental results and previously published wear data is achieved. Finally the pitted areas on the electrode tip are analyzed using MatLab and an optical 3D surface measurement device. Two types of pitting are characterized. One where...

  14. Producing cobalt–graphene composite coating by pulse electrodeposition with excellent wear and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cansen; Su, Fenghua, E-mail: fhsu@scut.edu.cn; Liang, Jizhao

    2015-10-01

    Graphical abstract: - Highlights: • Graphene oxide/cobalt coatings are synthesized by pulse electrodeposition. • Incorporating GO refines the grain size and changes the microstructure of the coating. • Incorporating GO greatly improves the friction reduction and wear resistance of the coating. • The corrosion resistance is enhanced by the incorporation of GO. - Abstract: Cobalt (Co) and graphene oxide/cobalt (GO/Co) composite coatings were fabricated by pulse electrodeposition technique from an aqueous bath containing cobalt sulfate and GO, etc. Effect of the incorporations of GO on morphology, phase structure, average grain size and corrosion and wear resistance of the resulting composite coatings were evaluated in detail. Scanning electron microscope (SEM) and energy dispersed X-ray (EDX) show that the GO nanosheets disperse homogeneously in the composite coating and the incorporations of GO change the morphologies of the deposit from conical shaped structure to protruding structure. In addition, the co-deposition GO with Co ions favor the formation of hcp (1 0 0), (0 0 2) and (1 0 1) textures in the composite coating and have functions of grain refining and hardness enhancement. The wear tests show that the incorporations of GO in the coating improve the wear resistance and friction reduction of the deposit. The electrochemical corrosion tests using potentiodynamic polarization and electrochemical impedance spectroscopy show that the GO/Co composite coating possesses better corrosion resistance than the pure Co coating.

  15. Comparison of Wear Resistance Between Innovative Composites and Nano- and Microfilled Composite Resins

    Directory of Open Access Journals (Sweden)

    Asefi

    2016-02-01

    Full Text Available Background One of the most common causes of failure in class 2 posterior composite restorations is occlusal and proximal wear. Estelite composites used supra-nano monodispersing spherical fillers and a new photoinitiator, and the manufacturer claimed that the wear of these composites is less than 1 mm3 volumetric wear. Objectives Compare the wear resistance of new Estelite composites with that of other composites generations. Materials and Methods Thirty-five specimens were evaluated in five groups: three kinds of Estelite composites (Estelite Sigma Quick, Estelite Flow Quick, and Estelite Flow Quick High Flow, Filtek Z350, and Filtek Z250. All specimens were prepared in 25 mm disks and cured with laboratory light for 120 seconds (60 s for each side. Then, they were polished by 600 grit sand paper and stored for one week in distilled water at room temperature. We used a two-body abrasion test and the pin-on-disk method with distilled water as medium. All specimens were worn under 15 N load, 0.05 m/seconds speed, 100 m distance, and steatite ceramic balls antagonists. After wearing, we measured wear volume by calculating the wear track cross-section area with a profilometer and analyzed the data with the one-way analysis of variance (ANOVA test. Results The wear amounts of the composites are as follows in order: Estelite sigma quick (1886.9 ± 518.5 μm2, Estelite flow quick (2708.9 ± 578.1 μm2, Estelite high flow (3206 ± 2445.1 μm2, Filtek Z350 (3840 ± 1963.4 μm2, and Filtek Z250 (4667.2 ± 2351.1 μm2. No statistical difference was found among the groups (P value > 0.05. Conclusions Estelite sigma quick composite had wear resistance similar to that of nano- and microfilled composites. Estelite flowable composites demonstrated similar wear resistance to that of a posterior composite.

  16. DIFFUSION COUPLE BETWEEN HIGH STRENGTH WEAR-RESISTING ALUMINUM BRONZE AND MACHINING TOOLS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Diffusion couples of tool materials (prepared from commercially available high speed steel and YW1 carbide tools) and the wear-resisting aluminum bronze (KK) were prepared by casting to study the diffusion pattern and phase formation sequence in order to clarify the diffusion wear of the tools during the turning of the wear-resisting aluminum bronze. Optical micrographs show that good contact was obtained at the tool material-KK interface. After annealed at 900 ℃ for 6 h, strong inter-diffusion across the interface was observed. Microprobe analysis was used to study the elemental distribution across the interface and X-ray diffractometry was used to study the phases formed at the interface.

  17. Improved Wear Resistance of Low Carbon Steel with Plasma Melt Injection of WC Particles

    Science.gov (United States)

    Liu, Aiguo; Guo, Mianhuan; Hu, Hailong

    2010-08-01

    Surface of a low carbon steel Q235 substrate was melted by a plasma torch, and tungsten carbide (WC) particles were injected into the melt pool. WC reinforced surface metal matrix composite (MMC) was synthesized. Dry sliding wear behavior of the surface MMC was studied and compared with the substrate. The results show that dry sliding wear resistance of low carbon steel can be greatly improved by plasma melt injection of WC particles. Hardness of the surface MMC is much higher than that of the substrate. The high hardness lowers the adhesion and abrasion of the surface MMC, and also the friction coefficient of it. The oxides formed in the sliding process also help to lower the friction coefficient. In this way, the dry sliding wear resistance of the surface MMC is greatly improved.

  18. Effect of Heat Treatment on Wear Resistance of Nickel Aluminide Coatings Deposited by HVOF and PTA

    Science.gov (United States)

    Benegra, M.; Santana, A. L. B.; Maranho, O.; Pintaude, G.

    2015-08-01

    This study aims to compare the wear resistance of nickel aluminide coatings deposited using plasma transferred arc (PTA) and high-velocity oxygen fuel (HVOF) processes. Wear resistance was measured in rubber wheel abrasion tests. In both deposition processes, the same raw material (nickel aluminide powder) was atomized and deposited on a 316L steel plate substrate. After deposition, specimens were subjected to thermal cycling, aiming solubilization and precipitation. Coatings deposited using PTA developed different microstructures as a result of the incorporation of substrate elements. However, despite the presence of these microstructures, they performed better than coatings processed using HVOF before the heat treatment. After thermal cycling, the superficial hardness after the wear tests for both processes was similar, resulting in similar mass losses.

  19. Influence of aging solutions on wear resistance and hardness of selected resin-based dental composites.

    Science.gov (United States)

    Chladek, Grzegorz; Basa, Katarzyna; Żmudzki, Jarosław; Malara, Piotr; Nowak, Agnieszka J; Kasperski, Jacek

    2016-01-01

    The purpose of this study was to investigate the effect of different plasticizing aging solutions on wear resistance and hardness of selected universal resin-based dental composites. Three light cured (one nanofilled, two microhybride) and one hybride chemical cured composites were aged at 37 °C for 48 h in distillated water, ethyl alcohol solution or Listerine mouthwash. After aging the microhardness tests were carried out and then tribological tests were performed in the presence of aging solution at 37 °C. During wear testing coefficients of friction were determined. The maximal vertical loss in micrometers was determined with profilometer. Aging in all liquids resulted in a significant decrease in hardness of the test materials, with the largest values obtained successively in ethanol solution, mouthwash and water. The effect of the liquid was dependent on the particular material, but not the type of material (interpreted as the size of filler used). Introduction of mouthwash instead of water or ethanol solution resulted in a significant reduction in the coefficient of friction. The lowest wear resistance was registered after aging in ethanol and for the chemical cured hybrid composite, but the vertical loss was strongly material dependent. The effect of different aging solution, including commercial mouthrinse, on hardness and wear was material dependent, and cannot be deduced from their category or filler loading. There is no simple correlation between hardness of resin-based dental composites and their wear resistance, but softening of particular composites materials during aging leads to the reduction of its wear resistance.

  20. Clinical evaluation of a highly wear resistant composite.

    Science.gov (United States)

    Dickinson, G L; Gerbo, L R; Leinfelder, K F

    1993-04-01

    The purpose of this clinical study was to determine the long-term potential of a resin composite restorative material. A total of 62 restorations of a modified Herculite Incisal formulation were inserted into Class I and Class II preparations. A control group of the conventional Herculite formulation was also placed into Class I and Class II cavity preparations at an earlier date. The cavity preparations for both formulations were standardized to conform to that of conventional conservative amalgams. Deep portions of the preparations were lined with calcium hydroxide. The enamel margins were etched per manufacturers' directions followed by a dentin bonding agent. After application of the appropriate matrix, the restorations were placed incrementally. Each restoration was independently evaluated by two clinicians at baseline, 6-months, 1, 2 and 3 years in accordance with the USPHS criteria. In addition, all restorations were evaluated for wear using a series of optical standards (M-L). The color matching ability of the material never fell below 96%. The percent of restorations exhibiting a surface texture similar to enamel never fell below 90% Alfa. At the end of 3 years, the total average loss of material was only 28 microns. No clinical evidence of bulk fracture was detected with the modified Herculite formulation at 3 years. The wear rate of the modified formulation of Herculite was essentially one-half that of conventional Herculite XR. Marginal ditching, which is characteristic of most posterior resin composites in which the filler particle is 1 micron or less, was exhibited.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Wear behavior of 2-1/4 Cr-1 Mo tubing against alloy 718 tube-support material in sodium-cooled steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, W L

    1983-05-01

    A series of prototypic steam generator 2-{1/4} Cr-1 Mo tube/alloy 718 tube support plate wear tests were conducted in direct support of the Westinghouse Nuclear Components Division -- Breeder Reactor Components Project Large Scale steam Generator design. The initial objective was to verify the acceptable wear behavior of softer, over-aged'' alloy 718 support plate material. For all interfaces under all test conditions, resultant wear damage was adhesive in nature with varying amounts of 2-{1/4} Cr-1 Mo tube material being adhesively transferred to the alloy 718 tube supports. Maximum tube wear depths exceeded the initially established design allowable limit of 127 {mu}m (.005 in.) at 17 of the 18 interfaces tested. A decrease in contact stresses produced acceptable tube wear depths below a readjusted maximum design allowable value of 381 {mu}m (.015 in.). Additional conservatisms associated with the simulation of a 40-year lifetime of rubbing in a one-week laboratory test provided further confidence that the 381 {mu}m maximum tube wear allowance would not be exceeded in service. Softer, over-aged'' alloy 718 material was found to produce slightly less wear damage on 2-{1/4} Cr-1 Mo tubing than fully age hardened material. Also, air formed oxide films on the alloy 718 reduced initial tube wear and delayed the onset of adhesive surface damage. However, at high surface stress levels, these films were not sufficiently stable to provide adequate long term protection from adhesive wear. The results of the present work and those of previous test programs suggest that the successful in-sodium tribological performance of 2-{1/4} Cr-1 Mo/alloy 718 rubbing couples is dependent upon the presence of lubricative surface films, such as oxides and/or surface reaction or deposition products. 11 refs., 13 figs., 4 tabs.

  2. Wear analysis and cyclic fatigue resistance of electro discharge machined NiTi rotary instruments

    Directory of Open Access Journals (Sweden)

    F. Iacono

    2016-06-01

    Conclusions: The typical irregular surface of HyFlex EDM remained unaffected after multiple uses, confirming a high wear resistance. The new manufacturing process of electrical discharge machining had a substantial impact on fatigue lifetime of EDM files when compared with HyFlex CM. Within limitations of the present in vitro results, EDM files appeared suitable in shaping severely curved canals.

  3. Wear-resistant ball bearings for space applications. [coated with titanium carbide

    Science.gov (United States)

    Boving, H.; Hintermann, H. E.; Haenni, W.; Bondivenne, E.; Boeto, M.; Conde, M.

    1977-01-01

    Ball bearings for hostile environments were developed. They consist of normal ball bearing steel parts of which the rings are coated with hard, wear-resistant, chemical vapor deposited (C.V.D) TiC. Experiments in ultrahigh vacuum, using cages of various materials with self-lubricating properties, have shown that such bearings are suitable for space applications.

  4. A STEEL MATRIX WEAR RESISTANT COMPOSITE REINFORCED BY IN-SITU GRANULAR EUTECTICS

    Institute of Scientific and Technical Information of China (English)

    Z.M. Xu; T.X. Li; J.G. Li

    2001-01-01

    A new steel matrix wear resistant composite reinforced by in situ granular eutectics can be obtained by modifying with a Si-Ce-Ti compound in the steel melt. The result indicates that the in situ granular eutectic is a pseudo-eutectic of austenite and (Fe, Mn)3C, which is formed between austenite dendrites during solidification due to the segregation of C and Mn impelled by modifying elements. The quantity of in situ granular eutectic reaches up to 8% 12%, and its grain size is in the range from 10μm to 20μm. The austenite steel matrix wear resistant composite reinforced by in situ granular eutectic (abbreviated AGE composite) and austenite-bainite steel matrix wear resistant composite reinforced by in situ granular eutectic (abbreviated ABGE composite) are obtained in the as-cast state and by air hardening, respectively. The wear resistance of the AGE and ABGE composites can be more greatly increased than that of their matrix steels under low and medium impact working condition.

  5. Wear and corrosion behavior of oxygen implanted biomedical titanium alloy Ti-13Nb-13Zr

    Science.gov (United States)

    Mohan, L.; Anandan, C.

    2013-10-01

    Titanium alloy Ti-13Nb-13Zr was implanted with oxygen ions by plasma immersion ion implantation. The influence of oxygen ion implantation on the growth of apatite on the implanted sample was investigated by immersion in Hanks’ solution and also by potentiodynamic polarization studies in Hanks’ solution. XRD shows the formation of mainly anatase form of oxide. FESEM images of immersion tested samples show that growth of apatite is more with larger sized deposits on oxygen implanted surface as compared to that on the untreated substrate. XPS investigation of corrosion tested and 1 day immersed samples show higher amount of calcium, phosphorous and oxygen in hydroxide/phosphate form on the oxygen implanted sample. EDS results also confirm higher concentration of Ca and P on oxygen implanted sample. Polarization and electrochemical impedance spectroscopy studies show that the oxygen implanted layer behaves like a nearly ideal capacitor with better passivation characteristics. In sliding wear studies, the implanted layers displayed a lower friction coefficient as compared to the substrate one.

  6. The Influence of High Temperature Exposure on the Wear Performance of a Ni Based Alloy PTA Coating

    Institute of Scientific and Technical Information of China (English)

    Karin Graf; Ana Sofia C.M. d'Oliveira

    2004-01-01

    Degradation phenomena like wear and corrosion, may have their effects accelerated as components operate at high temperature. The aim of this work is to make an indirect evaluation of the influence of high temperature exposure on wear behavior of Ni coatings. A Ni-Cr-Mo-W alloy, was deposited with Plasma Transferred Arc (PTA) process. An indirect approach based on the Ahrrenius relationship was used to evaluated long time exposures at high temperatures. To simulate longer exposures at lower temperatures, coatings were exposed to higher temperatures for the same time interval. So coatings were soaked in an air furnace at 650℃, 1000℃ and 1200℃. Metal/metal wear behavior was evaluated by pin-on-disc tests. Pins were removed from the coatings by eletrodischarge machining and rubbed against a VC31 quenched and tempered tool steel. Two sets of wear tests were run at 2m/s, for different loads (0.5, 1.0, 2.0 and 3.0Kg) and for different sliding distances (120, 720, 1080, 1440 and 1800m).Coatings characterization was done by scanning electronic microscopy and Vickers microhardness. Results showed as temperature is increased, coatings wear performance is altered,and this is associated with microstructural changes.

  7. An Influence of Ageing on the Structure, Corrosion Resistance and Hardness of High Aluminum ZnAl40Cu3 Alloy

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2016-03-01

    Full Text Available Zn-Al-Cu alloys are used primarily because of their tribological properties as an alternative material for bronze, cast iron and aluminum alloy bearings and as a construction material. Particularly interesting are high aluminum zinc alloys. Monoeutectic zinc and aluminum alloys are characterized by the highest hardness, tensile strength and wear resistance of all of the zinc alloys. A significant problem with the use of the Zn-Al-Cu alloys is their insufficient resistance to electrochemical corrosion. Properties of Zn-Al-Cu alloys can be improved by heat treatment. The purpose of examination was to determine the effect of heat treatment (aging at various temperatures on the microstructure and corrosion resistance of the ZnAl40Cu3 alloy. The scope of the examination included: structural examinations, determination of hardness using Brinell’s method and corrosion resistance examinations. Ageing at higher temperatures causes a creation of areas where is an eutectoid mixture. The study showed that ageing causes a decrease in hardness of ZnAl40Cu3 alloy. This decrease is even greater, when the temperature of ageing is lower. The studies have shown a significant influence of ageing on the corrosion resistance of the alloy ZnAl40Cu3. Maximum corrosion resistance were characterized by the sample after ageing at higher temperatures.

  8. Influence of Processing and Heat Treatment on Corrosion Resistance and Properties of High Alloyed Steel Coatings

    Science.gov (United States)

    Hill, Horst; Weber, Sebastian; Raab, Ulrich; Theisen, Werner; Wagner, Lothar

    2012-09-01

    Corrosion and abrasive wear are two important aspects to be considered in numerous engineering applications. Looking at steels, high-chromium high-carbon tool steels are proper and cost-efficient materials. They can either be put into service as bulk materials or used as comparatively thin coatings to protect lower alloyed construction or heat treatable steels from wear and corrosion. In this study, two different corrosion resistant tool steels were used for the production of coatings and bulk material. They were processed by thermal spraying and super solidus liquid phase sintering as both processes can generally be applied to produce coatings on low alloyed substrates. Thermally sprayed (high velocity oxygen fuel) coatings were investigated in the as-processed state, which is the most commonly used condition for technical applications, and after a quenching and tempering treatment. In comparison, sintered steels were analyzed in the quenched and tempered condition only. Significant influence of alloy chemistry, processing route, and heat treatment on tribological properties was found. Experimental investigations were supported by computational thermodynamics aiming at an improvement of tribological and corrosive resistance.

  9. Mesenchymal stem cell interaction with ultra smooth nanostructured diamond for wear resistant orthopaedic implants

    OpenAIRE

    Clem, William C.; Chowdhury, Shafiul; Catledge, Shane A.; Weimer, Jeffrey J.; Shaikh, Faheem M; Hennessy, Kristin M; Konovalov, Valery V.; Hill, Michael R; Waterfeld, Alfred; Bellis, Susan L.; Vohra, Yogesh K.

    2008-01-01

    Ultra smooth nanostructured diamond (USND) can be applied to greatly increase the wear resistance of orthopaedic implants over conventional designs. Herein we describe surface modification techniques and cytocompatibility studies performed on this new material. We report that hydrogen (H) -terminated USND surfaces supported robust mesenchymal stem cell (MSC) adhesion and survival, while oxygen (O) and fluorine (F) -terminated surfaces resisted cell adhesion, indicating that USND can be modifi...

  10. Abrasive wear resistance optimization of three different carbide coatings by the Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Guer, Ali Kaya [Firat Univ., Elazig (Turkey). Dept. of Metallurgy and Materials; Kaya, Sinan [Firat Univ., Elazig (Turkey). Faculty of Technology

    2017-06-01

    In this study, FeCrC, SiC and B{sub 4}C powders were alloyed on the surface of AISI 430 ferritic stainless steel by plasma arc welding. The mass losses of the abrasive wear of the AISI 430 substrate were examined under the loads of 6, 10 and 16 N and in the distances of 10, 20 and 30 m by using Taguchi design method. The results of abrasive wear test were optimized by the minimum optimal control characteristics of the Taguchi procedure and the results were analyzed by using graphical methods. The Taguchi procedure is an important approach to achieve high quality without increasing the cost during the optimization of process parameters. The orthogonal planes of maximum effects of the controllable process parameters and minimum effects of uncontrollable process parameters were employed in the Taguchi method.

  11. Processing Parameters Influence on Wear Resistance Behaviour of Friction Stir Processed Al-TiC Composites

    Directory of Open Access Journals (Sweden)

    E. T. Akinlabi

    2014-01-01

    Full Text Available Friction stir processing (FSP being a novel process is employed for the improvement of the mechanical properties of a material and the production of surface layer composites. The vital role of the integrity of surface characteristics in the mechanical properties of materials has made the research studies into surface modification important in order to improve the performance in practical applications. This study investigates the effect of processing parameters on the wear resistance behavior of friction stir processed Al-TiC composites. This was achieved through microstructural characterization by using both the optical and scanning electron microscope (SEM, microhardness profiling, and tribological characterization by means of the wear. The microhardness profiling of the processed samples revealed an increased hardness value, which was a function of the TiC particles incorporated when compared to the parent material. The wear resistance property was also found to increase as a result of the TiC powder addition. The right combination of processing parameters was found to improve the wear resistance property of the composites produced.

  12. Deposition of wear-resistant steel surfaces by the plasma rotating electrode coating process

    Science.gov (United States)

    Kim, Michael Robert

    A high-deposition rate thermal spray method was investigated for the purpose of coating aluminum cylinder bores with a wear resistant surface. This method, the plasma rotating electrode coating system (PROTEC) utilized transferred-arc melting of a rapidly rotating consumable electrode to create a droplet stream via centrifugal atomization. A cylindrical substrate was placed around the rotating rod, in the flight path of the droplets, to deposit a coating onto the internal surface of the cylinder. Selected coatings of 1045 steel deposited by the PROTEC coating method exhibited lower wear loss in lubricated sliding than wire-arc sprayed carbon steel coatings and gray cast iron. Splat cohesion was shown to be a significant factor in the wear resistance of PROTEC coatings. The relationship between deposition enthalpy and cooling rate of the coating was found to have the greatest effect on coating microstructure, and the coating cohesion. The most rapidly solidified coatings showed inferior splat cohesion in comparison to coatings that cooled more slowly. The increase in splat cohesion with decreased cooling rate was accompanied by the formation of a directionally oriented coating microstructure, likely formed during cellular solidification of the coating. A model describing the thermal state of the deposition process was used to predict the deposition conditions that would result in a cellular structure, and the level of splat cohesion required to produce a wear resistant coating.

  13. Anodized porous titanium coated with Ni-CeO2 deposits for enhancing surface toughness and wear resistance

    Science.gov (United States)

    Zhou, Xiaowei; Ouyang, Chun

    2017-05-01

    In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO2 nanocomposite coatings. Regarding TiO2 barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO2 deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO2 nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO2 nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO2 coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO2 deposits, showing the existing Ce-rich worn products to be acted as a solid lubricant phase for making a self-healing effect on de-lamination failures. More important, this finding will be the guidelines for Ce-rich precipitations to be expected as the strengthening phase in anodized porous of Ti, Al and Mg alloys for intensifying their surface properties.

  14. Wear Behavior of Laser-Cladded Co-Cr-Mo Coating on γ-TiAl Substrate

    Science.gov (United States)

    Barekat, Masoud; Shoja Razavi, Reza; Ghasemi, Ali

    2017-07-01

    In this study, laser cladding of Co-Cr-Mo alloy on a γ-TiAl substrate was performed to investigate the wear behavior of coated and uncoated TiAl alloy at room temperature. Dry sliding wear tests were conducted for coated and uncoated counterfaces against three pins of alumina, Inconel 718 and Co-Cr-Mo. Overall, laser cladding of Co-Cr-Mo powder resulted in the formation of a thick coating with minimal imperfections, as well as increasing the wear resistance of TiAl alloy. The results of wear tests indicated that the relative wear resistance was about 1.97, 2.17, and 1.92 for sliding against alumina, Inconel 718, and Co-Cr-Mo pins, respectively. The investigation of worn surfaces also showed that the abrasive wear mechanism was dominant for all samples. In addition, severe abrasive wear was changed to mild abrasive wear by local formation of chromium-based oxides.

  15. Effect of Mn addition on Fe-rich intermetallics morphology and dry sliding wear investigation of hypereutectic Al-17.5%Si alloys

    Directory of Open Access Journals (Sweden)

    Cyrus Bidmeshki

    2016-07-01

    Full Text Available The effect of Manganese addition on the iron-rich intermetallics and wear behavior of Al-17.5%Si hypereutectic alloys has been studied. Dry sliding wear tests have been conducted using a pin-on-disk machine under different normal loads of 18, 51, 74 and 100 N and at a constant sliding speed of 0.3 m/s. The addition of 1.2 wt.% Fe to the base alloy increased the wear rate due to the formation of needle beta intermetallics. Introducing 0.6 wt.% Mn to the iron-rich alloy changed the beta intermetallics into the modified alpha phases, and therefore reduced the detrimental effect of iron. Mn addition up to 0.9 wt.% to the 1.8Fe alloy did not impede formation of needle-like intermetallic compounds and had no positive effect on the modification of microstructure.

  16. Electrophoretic deposition and reaction-bond sintering of Al2O3/Ti composite coating: evaluation of microstructure, phase and wear resistance

    Indian Academy of Sciences (India)

    M Mahmoudi; H Maleki-Ghaleh; M Kavanlouei

    2015-04-01

    In this study, Al2O3/Ti composite coating was deposited on TiAl6V4 substrate in various compositions using the electrophoretic deposition method. After the deposition, samples were dried at room temperature then the coated samples were sintered at 1050°C for 4 h. Scanning electron microscope and X-ray diffraction analysis were used to analyse the microstructure and morphology of coatings. The friction coefficient, wear (missing volume) and hardness of coatings have been studied in comparison with uncoated sample. The results demonstrate that the density of Al2O3/Ti composite coating increased considerably after heat treatment process. Moreover, wearing resistance of TiAl6V4 alloy escalated considerably, increasing its potential for application in orthopedic implants and artificial joints.

  17. The fabrication of flip-covered plasmonic nanostructure surfaces with enhanced wear resistance

    Science.gov (United States)

    Jung, Joo-Yun; Sung, Sang-Keun; Kim, Kwang-Seop; Cheon, So-Hui; Lee, Jihye; Choi, Jun-Hyuk; Lee, Eungsug

    2017-01-01

    Exposed nanostructure surfaces often suffer from external dynamic wear, particularly when used in human interaction, resulting in surface defects and the degradation of plasmonic resonance properties particularly in terms of transmittance extinction rate and peak-to-valley slope. In this work, a method for the fabrication of flip-covered silver nanostructure-arrayed surfaces is shown to enhance wear resistance. Selectively transferred silver dot and silver webbed-trench exposed reference samples were fabricated by metal nanoimprint, and flip-covered samples were created by flipping and bonding reference samples onto a PET film coated with an adhesive layer. The samples' spectral transmittance was measured before and after a dynamic wear test. Some spectral shift was observed due to the change in refractive index of the surrounding media, but this was not as significant as the effects of the other chosen geometry factors. It was found that dynamic wear had a greater effect on the plasmonic resonance behavior of the exposed samples than in those that had been flip-covered. This suggests that flip-covering may be an effective strategy for the protection of plasmonic resonators against dynamic wear. It is expected that the slight variations in spectral transmittance could be compensated through proper tuning of the sample geometry.

  18. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    Science.gov (United States)

    Dave, V.; Rao, G. P.; Tiwari, G. S.; Sanger, A.; Kumar, A.; Chandra, R.

    2016-04-01

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  19. Analysis of the relationship between the surface hardness and wear resistance of indirect composites used as veneer materials.

    Science.gov (United States)

    Faria, Adriana Cláudia Lapria; Benassi, Ubiratan Menezes; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria; Mattos, Maria da Gloria Chiarello de

    2007-01-01

    This study evaluated the surface hardness and wear resistance of indirect composites (Artglass and Solidex) and the existence of a correlation between these properties. Twenty-four specimens (12 per material) were fabricated using a polytetrafluoroethylene matrix (5.0 mm in diameter; 7.0 mm high) following an incremental technique. Polymerization was done with a xenon stroboscopic light curing unit. After polishing, the specimens were stored in water at 37 degrees C during either 1 day (n=6 per material) or 55 days (n=6 per material), after which Vickers surface hardness and wear resistance were assessed. Data were analyzed statistically by unpaired Student t-test, two-way ANOVA and Tukey's test. SURFACE HARDNESS: Artglass had higher surface hardness than Solidex after 1-day immersion period (p0.05). Comparing the materials at both periods, Artglass means differed significantly to each other (p0.05). WEAR RESISTANCE: Solidex had higher wear than Artglass after 1-day immersion period (p0.05). Comparing the materials at both periods, Artglass means differed significantly to each other (p0.05). These results suggest that Artglass was better than Solidex in terms of hardness and wear resistance after 1-day water immersion. However, it was more susceptible to degradation, showing greater wear after 55 days. In conclusion, there was an inverse correlation between surface hardness and wear resistance for both Artglass and Solidex indirect composites, that is the higher the hardness, the lower the wear.

  20. The relative effects of radiation crosslinking and type of counterface on the wear resistance of ultrahigh-molecular-weight polyethylene.

    Science.gov (United States)

    Bistolfi, Alessandro; Bellare, Anuj

    2011-09-01

    The lifetime of total joint replacement prostheses utilizing ultrahigh-molecular-weight polyethylene (UHMWPE) components has historically been determined by their wear resistance. It has been discovered that radiation crosslinking of UHMWPE can substantially increase its wear resistance. However, it is also well recognized that there is a radiation-dose-dependent decrease in several important mechanical properties of UHMWPE, such as fracture toughness and resistance to fatigue crack propagation. In this study, the effect of radiation crosslinking (followed by remelting) on the morphology, tensile properties and wear resistance of UHMWPE was investigated. Wear tests were conducted against both the commonly used cobalt-chromium counterface polished to implant grade smoothness as well as a smoother ceramic (alumina) counterface. The results showed that 50kGy dose radiation crosslinking increased the wear resistance of UHMWPE against the cobalt-chromium counterface 7-fold, but the coupling of remelted, crosslinked UHMWPE against the smoother alumina counterface led to a 20-fold increase in wear resistance. This study shows that the use of an alumina counterface would circumvent the need to use a high radiation dose in crosslinking UHMWPE, associated with poor mechanical properties, without compromising wear resistance.

  1. Effect of thermal fatigue on the wear resistance of graphite cast iron with bionic units processed by laser cladding WC

    Science.gov (United States)

    Jing, Zhengjun; Zhou, Hong; Zhang, Peng; Wang, Chuanwei; Meng, Chao; Cong, Dalong

    2013-04-01

    Thermal fatigue and wear exist simultaneously during the service life of brake discs. Previous researchers only studied thermal fatigue resistance or abrasion resistance of compact graphite cast iron (CGI), rather than combining them together. In this paper, wear resistance after thermal fatigue of CGI was investigated basing on the principle of bionics, which was close to actual service condition of the brake discs. In the meanwhile, the effect of thermal fatigue on wear resistance was also discussed. Non-smooth bionic units were fabricated by laser cladding WC powder with different proportions (50 wt.%, 60 wt.%, 70 wt.%). Microstructure and microhardness of the units were investigated, and wear mass losses of the samples were also compared. The results indicate that thermal fatigue has a negative effect on the wear resistance. After the same thermal fatigue cycles times, the wear resistance of laser cladding WC samples is superior to that of laser remelting ones and their wear resistance enhances with the increase of WC content.

  2. Corrosion and Wear Resistance Characterization of Environmentally Friendly Sol-gel Hybrid Nanocomposite Coating on AA5083

    Institute of Scientific and Technical Information of China (English)

    Hamed Rahimi; Reza Mozaffarinia; Akbar Hojjati Najafabadi

    2013-01-01

    Environmentally friendly organic-inorganic hybrid nanocomposite films have been developed by sol-gel method for corrosion protection of AA5083 alloy.The hybrid nanocomposite coatings have been synthesized from tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) precursors.The multilayer coatings were prepared by dip-coating technique.Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was carried out to show the formation of the Si-O-Si structural backbone of the hybrid coatings.Structure and surface morphology of the coatings were studied by optical microscopy (OM),scanning electron microscopy (SEM) and atomic force microscopy (AFM).Characterization of the coatings with respect to pencil scratch hardness,adhesive and abrasion resistance was performed.The corrosion protection performance of these coatings was examined by using cyclic potentiodynamic polarization technique in Persian Gulf water.The results revealed that crack-free films with smooth surface were obtained.With increasing the number of sol-gel coated layers,corrosion resistance increased from 81 to 419 kΩ cm2,while the abrasion wear resistance did not change significantly.However,the triple sol-gel coated layer offered excellent protection against corrosion.

  3. Study on the Thermal Fatigue Behavior of Hot Deformed Wear Resistance Cast Iron and Effect of Carbide

    Institute of Scientific and Technical Information of China (English)

    Dong Litao; Liu Rongchang; Li Xingyuan; Chen Xiuhong

    2007-01-01

    The thermal fatigue behavior of wear resistance cast iron with different quantity of deformation has been investigated. The results show that eutectic carbide is the main location and passage for initiation and extension of thermal fatigue cracks, approving that the more serious, the carbide breaks. The higher thermal fatigue resistance of wear resistance cast iron will be and thermal fatigue fracture belongs mainly to brittleness.

  4. Development of wear resistant ceramic coatings for diesel engine components. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haselkorn, M.H. [Caterpillar, Inc., Peoria, IL (United States)

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  5. Effects of tool flank wear on orthogonal cutting process of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    YUAN Ping; KE Ying-lin

    2006-01-01

    The tool flank begins to wear out as soon as cutting process proceeds. Cutting parameters such as cutting forces and cutting temperature will vary with increasing degree of flank wear. In order to reveal the relationship between them, the theoretical situations of cutting process were analyzed considering the tool flank wear effect. The variation rules of cutting force, residual stress and temperature distributions along with the tool flank wear were analyzed comparing with the sharp tool tip. Through FEM simulation method, affections of the tool flank wear value VB on cutting forces, residual stress and temperature distributions were analyzed. A special result in this simulation is that the thrust force is more sensitive to tool flank wear, which can be used as a recognition method of tool condition monitoring. The FEM simulation analysis result agrees well with the experimental measuring data in public literatures and some experiments made also by the authors.

  6. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  7. Industrial scale HP-HT synthesis of hard and wear resistant c-Zr3N4

    Science.gov (United States)

    Dzivenko, Dmytro; Riedel, Ralf; Taniguchi, Takashi; Chauveau, Thierry; Zerr, Andreas

    2013-06-01

    We present a large scale high-pressure high-temperature (HP-HT) synthesis of hard and wear resistant cubic zirconium nitride having Th3P4-type structure,c-Zr3N4. This material, also available as well-adhesive coatings with exceptional wear resistance, represents a compound competitive to diamond and c-BN with respect to machining of low-carbon steels and other ferrous alloys. We obtained c-Zr3N4 powder at pressures as low as 6.5 GPa and temperatures of 1400-1600 °C from nanocrystalline Zr3N4+x precursor using a belt-type apparatus - a static HP-HT device widely employed for the commercial production of diamond and c-BN. The HP products are characterized in details by means of powder X-ray diffraction, Raman spectroscopy, scanning electron microscopy and combustion elemental analysis. In addition to major polycrystalline c-Zr3N4, we unveil the formation of a quaternary compound c-(Zr1-xTax)3 (N1-yOy)4 which indicates the possibility of doping of c-Zr3N4, thus introducing it for practical application as a multifunctional material. Moreover, we consider ways of cementing the c-Zr3N4 powders (similar to cemented tungsten carbides) which would allow economic fabrication of large bodies based on this compound. Supported by the DFG (Bonn, Germany) within SPP 1236 and by the IFR ``Paris Nord Plaine de France''.

  8. Highly wear-resistant ultra-thin per-fluorinated organic monolayers on silicon(1 1 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, Sidharam P. [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen (Netherlands); Zuilhof, Han, E-mail: Han.Zuilhof@wur.nl [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen (Netherlands); Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)

    2013-12-15

    This study reports on fluorine-containing alkyne-derived monolayers onto Si(1 1 1) substrates to obtain densely packed, highly wear-resistant surfaces. The nano-wear properties were measured using atomic force microscopy (AFM). The presence of the fluorinated monolayers was found to enhance the wear properties of the silicon surfaces, with a decrease of the depth of wear scratches of up to 120 times as compared to the unmodified surface. Ultimately, the scratch depth was only 6 nm for a heptadecafluoro-alkyl based monolayer for scratching normal forces as high as 38 μN.

  9. Chemically robust carbon nanotube – PTFE superhydrophobic thin films with enhanced ability of wear resistance

    Directory of Open Access Journals (Sweden)

    Kewei Wang

    2017-06-01

    Full Text Available A chemically robust superhydrophobic nanocomposite thin film with enhanced wear resistance is prepared from a composite comprising polytetrafluoroethylene (PTFE and carbon nanotubes. The superhydrophobic thin films with hierarchical structure are fabricated by spraying an environmentally friendly aqueous dispersion containing carbon nanotubes and PTFE resin on silicon wafer. Thin films with a contact angle of 154.1°±2° and a sliding angle less than 2° remain superhydrophobic after abrading over 500 times under a pressure of 50 g/cm2. The thin film is also extremely stable even under much stress conditions. To further the understanding of the enhancement of wear resistance, we investigated the formation of microsized structure and their effects. The growth of microbumps is caused by attracting solution droplet to the hydrophilic islands on hydrophobic surface.

  10. Structure and abrasive wear resistance of R6M5 steel-tungsten carbide composite coatings

    Science.gov (United States)

    Gnyusov, S. F.

    2012-09-01

    Features of the structure formation, composition, and abrasive wear resistance of R6M5 steel-tungsten carbide (R6M5-WC) composite coatings have been studied as dependent on the WC content. The introduction of ˜20 wt % WC into the hardening composition leads to an increase in the fraction of M6C carbide (in the form of eutectic inclusions with average size ˜5.9 μm at grain boundaries and dispersed ˜0.25 μm particles in the volume of grains), while a large proportion of metastable austenite (˜88 vol %) is still retained. The R6M5-WC coatings exhibit high abrasive wear resistance, which is ensured by the γ → α' martensite transformation during friction and a muiltimodal size distribution of hardening particles.

  11. Nitriding of Hard Fe Electrodeposition and Its Effects on Wear Resistance

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nitriding is employed for the hard Fe electrodeposition toproduce a hard-facing and antiwear coating. It only takes 1 h for the hard Fe coating, which is much shorter than nitriding the Fe and steel. The results showed that the nitriding can increase the microhardness, wear resistance of the coating, as well as the bonding strength of the coating with the substrate. Additionally it can eliminate the brittleness, turn the internal stress of the coating from tension to compression.The wear resistance of the nitrided Fe coating is 4.6 times as high as that of Cr coating. It is simple and economic to combine hard Fe electroplating and nitriding, which is a good technology of the tribological surface modification.

  12. IMPROVEMENT OF WEAR-RESISTANCE AND SERVICE LIFE OF MULTI-DISK BRAKE MECHANISMS OF «BELARUS» TRACTOR BY LASER THERMAL HARDENING OF FAST WEARING PARTS

    Directory of Open Access Journals (Sweden)

    O. S. Kobjakov

    2008-01-01

    Full Text Available Problems concerning wear resistance improvement of «Belarus» tractor brake mechanism parts are considered in the paper. Properties of ВЧ-50-pig iron are investigated as a result of laser thermal hardening by various technological methods.

  13. Realizing of the process approach to quality management of wear resistant coatings

    OpenAIRE

    МЄДВЄДЄВА, Н. А.; Національний авіаційний університет

    2016-01-01

    A process-oriented model of technological process of wear-resistant coatings by electrocontactstrengthening of sprayed coatings (ECSSC) during the recovery machine parts is proposed. Itsstructural description has allowed to reproduce the process approach in conformity with internationalstandard ISO 9001:2015. Also, visual and more formalized presentation of interactionof the quality management system with technological process, working environment and thedynamics of its implementation was don...

  14. Controlled graphitization as a potential option for improving wear resistance of unalloyed white irons

    Science.gov (United States)

    Patwardhan, A. K.; Kumar, S.; Singh, Prakash

    1998-08-01

    Effect of heat treatment on the microstructure and resistance to abrasive wear has been studied in an unalloyed white iron used for manufacturing cylindrical pebbles used as grinding media by the cement and other industries. Heat treatment comprised holding at 800 °C, 850 °C, 900 °C, and 950 °C for 30, 60, 90, 120, and 180 minutes followed by oil quenching. Heat treatment in general improved the wear resistance over that in the as-cast (as-received) state. The extent of maximum improvement differed with temperature and in the decreasing order occurred at (1) 180 minutes, 800 °C, OQ; (2) 30 minutes, 950 °C, OQ; (3) 90 minutes, 900 °C, OQ; and (4) 180 minutes, 850 °C, OQ. From the point of view of commercial application, the heat treatment at (2) is most favored. Microstructural changes occurring during heat treating comprised (1) changes in matrix microstructure; (2) a reduction in volume fraction of massive carbides due to its part graphitization/destabilization; and (3) changes in graphite morphology, size, and distribution. Amongst the aforesaid changes, graphitization has emerged as the key parameter in improving wear resistance. Graphite morphology in a near-nodular form of optimum size and distribution was found to be most effective. Upon increasing the heat-treating temperature, the tendency of nodules to develop spikes increased. Similarly, interlinking of graphite flakes was also observed. These features and the possible formation of free ferrite adversely affected wear resistance. The role of other beneficial changes in the microstructure, e.g., globularization of carbides, possible retention of austenite, and formation of optimum volume fraction of martensite, have been duly considered while optimizing microstructure(s). The key feature of the present study is that, despite its fundamental significance, it has a well-focused application potential.

  15. Effect of solid lubricants on friction and wear behaviour of alloyed gray cast iron

    Indian Academy of Sciences (India)

    Aravind Vadiraj; M Kamaraj; V S Sreenivasan

    2012-10-01

    Friction and wear behaviour of MoS2, boric acid, graphite and TiO2 at four different sliding speeds (1.0, 1.5, 2.0, 2.5 m/s) has been compared with dry sliding condition. MoS2 and graphite show 30 to 50% reduction in mass loss compared to other lubricants at all sliding speeds. Friction coefficient reduces with increase in sliding speeds for all the conditions. Friction coefficient of dry as well as lubricant coated samples varies from 0.2 to 0.55 with MoS2 showing the lowest value (0.2). Boric acid and TiO2 coated samples show high friction coefficients at higher sliding speeds due to poor lubricity and adherence. This could also be due to sliding resistance offered by lubricant coated samples with predominant asperities interaction. MoS2 and graphite coated samples also generated lowest frictional temperature compared to other conditions.

  16. Plasma surface alloying of titanium alloy for enhancing burn-resistant property

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; ZHANG Gao-hui; HE Zhi-yong; YAO Zheng-jun

    2006-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, burn-resistant alloying layers were made on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si titanium alloys by using double glow plasma surface alloying technology (DG Technology). Two typical burn-resistant layers Ti-Cr and Ti-Mo were made by DG plasma chromizing and DG plasma molybdenizing, respectively. Burn-resistant properties were tested by layer ignition method using 2 kW laser machine. Ignition experiments result reveals that the ignition temperature of alloyed layer with Mo and Cr concentration above 10% is about 200℃ higher than ignition temperature of Ti-6Al-4V substrate.

  17. Comparison of Wear Resistance Mechanisms of Die Steel Implanted with C and mo Ions

    Science.gov (United States)

    Cheng, M. F.; Yang, J. H.; Luo, X. D.; Zhang, T. H.

    Mo and C ions extracted from a metal vapor vacuum arc ion source were implanted into the surface of die steel (H13) to compare the wear resistance mechanisms of the implanted samples, respectively. The concentration depth profiles of implanted ions were measured using Rutherford backscattering spectroscopy and calculated by a code called TRIDYN. The structures of the implanted steel were observed by X-ray photoelectron spectroscopy and grazing-angle X-ray diffraction, respectively. It was found that the conventional heat-treated H13 steel could not be further hardened by the subsequent implanted C ions, and the thickness of the implanted layer was not an important factor for the Mo and C ion implantation to improve the wear resistance of the H13 steel. Mo ion implantation could obviously improve the wear resistance of the steel at an extraction voltage of 48 kV and a dose of 5 × 1017cm-2 due to formation of a modification layer of little oxidation with Mo2C in the implanted surface.

  18. Preparation and Properties of Superamphiphobic Wear-resistance PPS-based Coating

    Directory of Open Access Journals (Sweden)

    WANG Huai-yuan

    2017-01-01

    Full Text Available Superamphiphobic wear-resistance PPS-based coatings were prepared by a simple spraying method with a pore-forming reagent of NH4HCO3 and nano-filler of carbon nanotubes (CNTs.The surface morphology and the hydrophobicity,oleophobicity of the coating were analyzed by scanning electron microscope (SEM and contact angle meter.The wear-resistance of the coating was verified by sanding method with given load.The results indicate that a rough surface is obtained after pore-forming,and the porous structures in combination with the CNTs construct the special micro/nano-scale network structures.When the mass fraction of NH4HCO3 is 5%,the contact angles of the coating for water,glycerine and ethylene glycol are 162°,158° and 152°,showing superamphiphobic property.After polished 10000 times by abrasive paper,the coating shows slight friction marks and remains high hydrophobicity,exhibiting excellent wear-resistance.

  19. Study on dry friction and wear resistance of a WC-Co particle reinforced iron matrix composite material

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-05-01

    Full Text Available In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co particle reinforced chromium cast iron composite material were studied. In particular, the wear resistance was discussed in detail. The results showed that the composite material demonstrates 25 times the wear resistance of high Cr cast iron, and 9 times the wear resistance of heat resistant steel. However, the average friction factor in the stable friction stage showed a relationship of μComposites/45 # steel > μHigh chromium cast iron/45 # steel > μHeat resistant steel/45 # steel. The wear resistance mechanism of the composite material was associated with the reinforcing particles, which protruded from the worn surface to bear the friction load when the matrix material surface was worn, thereby reducing the abrasive and adhesive wear. In addition, the matrix material possessed suitable hardness and toughness, providing a support to the reinforcements.

  20. Microstructures of worn surface and wear debris of as-cast Al-17Si-xLa alloys under unlubricated conditions

    Institute of Scientific and Technical Information of China (English)

    易宏坤; 张荻; 范同祥; 吕维洁

    2003-01-01

    The tribological characteristics of hypereutectic Al-17Si-xLa alloys against heat-treated GCr15 bearing steel under unlubricated conditions were investigated using a block-on-ring type wear testing apparatus in air at room temperature. Microstructures and chemical compositions of worn surface and wear debris were characterized by means of SEM with EDS and XRD patterns. XRD results show that wear behaviors of Al-17Si-xLa alloys are similar and the typical worn surface is characterized by smooth region and crater region. The mechanically mixed layer (MML) and the wear debris are very similar in microstructures and chemical compositions, both containing the fine equiaxed aggregates and large plates and blocks from the both sliding counterparts (α(Al) and α-Fe) and some reaction products (ternary oxides, I.e. Al-Fe-O and Fe-Si-O).

  1. Dry sliding wear of heat treated hybrid metal matrix composites

    Science.gov (United States)

    Naveed, Mohammed; Khan, A. R. Anwar

    2016-09-01

    In recent years, there has been an ever-increasing demand for enhancing mechanical properties of Aluminum Matrix Composites (AMCs), which are finding wide applications in the field of aerospace, automobile, defence etc,. Among all available aluminium alloys, Al6061 is extensively used owing to its excellent wear resistance and ease of processing. Newer techniques of improving the hardness and wear resistance of Al6061 by dispersing an appropriate mixture of hard ceramic powder and whiskers in the aluminium alloy are gaining popularity. The conventional aluminium based composites possess only one type of reinforcements. Addition of hard reinforcements such as silicon carbide, alumina, titanium carbide, improves hardness, strength and wear resistance of the composites. However, these composites possessing hard reinforcement do posses several problems during their machining operation. AMCs reinforced with particles of Gr have been reported to be possessing better wear characteristics owing to the reduced wear because of formation of a thin layer of Gr particles, which prevents metal to metal contact of the sliding surfaces. Further, heat treatment has a profound influence on mechanical properties of heat treatable aluminium alloys and its composites. For a solutionising temperature of 5500C, solutionising duration of 1hr, ageing temperature of 1750C, quenching media and ageing duration significantly alters mechanical properties of both aluminium alloy and its composites. In the light of the above, the present paper aims at developing aluminium based hybrid metal matrix composites containing both silicon carbide and graphite and characterize their mechanical properties by subjecting it to heat treatment. Results indicate that increase of graphite content increases wear resistance of hybrid composites reinforced with constant SiC reinforcement. Further heat treatment has a profound influence on the wear resistance of the matrix alloy as well as its hybrid composites

  2. Oxidation resistant coating for titanium alloys and titanium alloy matrix composites

    Science.gov (United States)

    Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)

    1992-01-01

    An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.

  3. The Use of Nitriding to Enhance Wear Resistance of Cast Irons and 4140 Steel

    Science.gov (United States)</