WorldWideScience

Sample records for wear particles macrophages

  1. Wear particles generated from studded tires and pavement induces inflammatory reactions in mouse macrophage cells.

    Science.gov (United States)

    Lindbom, John; Gustafsson, Mats; Blomqvist, Göran; Dahl, Andreas; Gudmundsson, Anders; Swietlicki, Erik; Ljungman, Anders G

    2007-06-01

    Health risks associated with exposure to airborne particulate matter (PM) have been shown epidemiologically as well as experimentally, pointing to both respiratory and cardiovascular effects. These health risks are of increasing concern in society, and to protect public health, a clarification of the toxic properties of particles from different sources is of importance. Lately, wear particles generated from traffic have been recognized as a major contributing source to the overall particle load, especially in the Nordic countries where studded tires are used. The aim of this study was to further investigate and compare the ability to induce inflammatory mediators of different traffic-related wear particles collected from an urban street, a subway station, and studded tire-pavement wear. Inflammatory effects were measured as induction of nitric oxide (NO), IL-6, TNF-alpha, arachidonic acid (AA), and lipid peroxidation after exposure of the murine macrophage like cell line RAW 264.7. In addition, the redox potential of the particles was measured in a cell-free system. The results show that all particles tested induce IL-6, TNF-alpha, and NO, and those from the urban street were the most potent ones. In contrast, particles collected from a subway station were most potent to induce lipid peroxidation, AA release, and formation of ROS. Particles from studded tire-pavement wear, generated using a road simulator, were able to induce inflammatory cytokines, NO, lipid peroxidation, and ROS formation. Interestingly, particles generated from pavement containing granite as the main stone material were more potent than those generated from pavement containing quartzite as the main stone material.

  2. Exposure to wear particles generated from studded tires and pavement induces inflammatory cytokine release from human macrophages.

    Science.gov (United States)

    Lindbom, John; Gustafsson, Mats; Blomqvist, Göran; Dahl, Andreas; Gudmundsson, Anders; Swietlicki, Erik; Ljungman, Anders G

    2006-04-01

    Health risks associated with exposure to airborne particulate matter (PM) have been shown epidemiologically as well as experimentally, pointing to both respiratory and cardiovascular effects. Lately, wear particles generated from traffic have been recognized to be a major contributing source to the overall particle load, especially in the Nordic countries were studded tires are used. In this work, we investigated the inflammatory effect of PM10 generated from the wear of studded tires on two different types of pavement. As comparison, we also investigated PM10 from a traffic-intensive street, a subway station, and diesel exhaust particles (DEP). Human monocyte-derived macrophages, nasal epithelial cells (RPMI 2650), and bronchial epithelial cells (BEAS-2B) were exposed to the different types of particles, and the secretion of IL-6, IL-8, IL-10, and TNF-alpha into the culture medium was measured. The results show a significant release of cytokines from macrophages after exposure for all types of particles. When particles generated from asphalt/granite pavement were compared to asphalt/quartzite pavement, the granite pavement had a significantly higher capacity to induce the release of cytokines. The granite pavement particles induced cytokine release at the same magnitude as the street particles did, which was higher than what particles from both a subway station and DEP did. Exposure of epithelial cells to PM10 resulted in a significant increase of TNF-alpha secreted from BEAS-2B cells for all types of particles used (DEP was not tested), and the highest levels were induced by subway particles. None of the particle types were able to evoke detectable cytokine release from RPMI 2650 cells. The results indicate that PM10 generated by the wear of studded tires on the street surface is a large contributor to the cytokine-releasing ability of particles in traffic-intensive areas and that the type of pavement used is important for the level of this contribution

  3. Wear particles from studded tires and granite pavement induce pro-inflammatory alterations in human monocyte-derived macrophages: a proteomic study.

    Science.gov (United States)

    Karlsson, Helen; Lindbom, John; Ghafouri, Bijar; Lindahl, Mats; Tagesson, Christer; Gustafsson, Mats; Ljungman, Anders G

    2011-01-14

    Airborne particulate matter is considered to be one of the environmental contributors to the mortality in cancer, respiratory, and cardiovascular diseases. For future preventive actions, it is of major concern to investigate the toxicity of defined groups of airborne particles and to clarify their pathways in biological tissues. To expand the knowledge beyond general inflammatory markers, this study examined the toxicoproteomic effects on human monocyte derived macrophages after exposure to wear particles generated from the interface of studded tires and a granite-containing pavement. As comparison, the effect of endotoxin was also investigated. The macrophage proteome was separated using two-dimensional gel electrophoresis. Detected proteins were quantified, and selected proteins were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Among analyzed proteins, seven were significantly decreased and three were increased by exposure to wear particles as compared to unexposed control cells. Endotoxin exposure resulted in significant changes in the expression of six proteins: four decreased and two increased. For example, macrophage capping protein was significantly increased after wear particle exposure only, whereas calgizzarin and galectin-3 were increased by both wear particle and endotoxin exposure. Overall, proteins associated with inflammatory response were increased and proteins involved in cellular functions such as redox balance, anti-inflammatory response, and glycolysis were decreased. Investigating the effects of characterized wear particles on human macrophages with a toxicoproteomic approach has shown to be useful in the search for more detailed information about specific pathways and possible biological markers.

  4. Dendritic cells enhance UHMWPE wear particle-induced osteoclast differentiation of macrophages.

    Science.gov (United States)

    Cang, Dingwei; Guo, Kaijin; Zhao, Fengchao

    2015-10-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been widely used in large joint replacement. Osteolysis induced by the UHMWPE wear particles is one of the main causes of replacement failure. This study aims to elucidate whether dendritic cells play a role in UHMWPE particle-induced osteolysis. An in vitro Raw 264.7 and DC 2.4 coculture system was employed to examine the effects of dendritic cells on the inflammatory and osteoclastogenic responses of Raw 264.7 toward UHMWPE particles. The expression of cytokines, NF-κB, and osteoclast marker genes was analyzed by ELISA, western blot, or quantitative PCR. The osteoclast differentiation was measured by TRAP staining and flow cytometry. UHMWPE particles induced Raw 264.7 cells to differentiate into osteoclasts, which was enhanced by coculturing with DC 2.4 cells. DC 2.4 cells augmented UHMWPE particle-elicited activation of NF-κB signaling, higher levels of TNF-α and MCP-1, and an increased expression of MMP-9, Calcr, and Ctsk, though DC 2.4 coculture alone did not significantly cause the aforementioned changes. These results suggest that dendritic cells, among other immune cells recruited by UHMWPE particle induced inflammation, could further exacerbate inflammation and osteolysis.

  5. Wear of hard materials by hard particles

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2003-10-01

    Hard materials, such as WC-Co, boron carbide, titanium diboride and composite carbide made up of Mo2C and WC, have been tested in abrasion and erosion conditions. These hard materials showed negligible wear in abrasion against SiC particles and erosion using Al2O3 particles. The WC-Co materials have the highest wear rate of these hard materials and a very different material removal mechanism. Wear mechanisms for these materials were different for each material with the overall wear rate controlled by binder composition and content and material grain size.

  6. The fractal characterization of wear particles in relation to the wear status

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The topography and distribution of wear particles produced in the wear process containmuch information about the wear status. Fractal geometry is applied in this paper to describe thewear particle accumulation in order to characterize the wear status change. The sliding wear test isperformed on a pin-on-disc apparatus using steel disc and brass pin. The investigation resultsshow that wear particle accumulation presents a strong bi-fractal behavior. Also, the fractal dimen-sion varies in correspondence to the wear status change. A new fractal index characterizing thewear particle accumulation is put forward. The wear tests of brass pin demonstrate that the fractalindex is effective in describing the wear status change.

  7. New synthesizing feature parameter of wear particles image

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper outlines the application of wavelet analysis method to computering wear par-ticles image processing and introduces the concept of grain parameter for wear particle imagebased on statistical feature parameters. The feature of wear particles image can be obtained fromthe wavelet decomposition and the statistics analysis. Test results showed that grain parametercan be used as a synthesizing feature parameter for wear particle image.

  8. Inhibiting wear particles-induced osteolysis with doxycycline

    Institute of Scientific and Technical Information of China (English)

    Chao ZHANG; Ting-ting TANG; Wei-ping REN; Xiao-ling ZHANG; Ke-rong DAI

    2007-01-01

    Aim: To study the effect of doxycycline (DOX) on osteoclastogenesis, mature osteoclast fate and function, wear particles-induced osteoeolysis, and to provide some foundation for treating aseptic loosening and osteolysis after joint arthroplasty. Methods: Osteoclasts were generated from mouse bone marrow monocytes with the receptor activator of NF-κB ligand and the macrophage colony stimulating factor. DOX at a concentration of 5, 10, 15, and 20 μg/mL was respectively added to the medium. Seven days later, the osteoclasts were determined through tartrate-resistant acid phosphatase (TRAP) staining. Mature osteoclasts were isolated from newborn rabbits and cultured for 3 d in 24-well plates or on bone slices. DOX at a concentration of 5, 10, 15, and 20 μg/mL was respectively added to the medium. After TRAP staining, the osteoclasts were counted, resorption on bone slices was quantified, and the area was calculated after to luidine blue and Mayer-hematoxylin staining. Polymethyl methacrylate (PMMA) or ultra-high molecular weight polyethylene (UHMWPE) particles were implanted on the calvariae of C57BL/J6 mice. DOX, at a dose of 2 and 10 mg-kg-1.d-1, was respectively given in traperitoneally for 7 d. Seven days later, the calvariae were removed and processed for pathological analysis. Results: DOX treatment effectively inhibited in vitro osteoclastogenesis, affected the fate of mature osteoclasts, and inhibited mature osteoclasts, causing bone resorption. In vivo data indicated that DOX strongly inhibited PMMA or UHMWPE-induced osteolysis and osteoclastogenesis. Conclusion: DOX can effectively inhibit osteoclastogenesis and affect mature osteoclast fate and suppress wear particles induced by osteoly-sis and osteoclastogenesis. DOX might be useful in the treatment or prevention of wear particles-induced osteolysis and aseptic loosening for its effect on osteoclast generation and mature osteoclast fate and function.

  9. Characterization of polyethylene wear particle: The impact of methodology.

    Science.gov (United States)

    Schröder, Christian; Reinders, Jörn; Zietz, Carmen; Utzschneider, Sandra; Bader, Rainer; Kretzer, J Philippe

    2013-12-01

    Due to the prevalence of problems caused by wear particles, the reduced durability of total joint replacements is well documented. The characterization of wear debris enables the size and morphology of these wear particles to be measured and provides an assessment of the biological response in vivo. However, the impact of different methodologies of particle analysis is not yet clear. Hence, the aim of this investigation was to analyze the influence of different particle characterization methods performed by three research centers within the scope of a "round robin test". To obtain knowledge about possible pitfalls, single steps of the particle characterization process (storage, pore size of the filter, coating durations by gold sputtering and scanning electron microscopy (SEM) magnification) were analyzed. The round robin test showed significant differences between the research groups, especially for the morphology of the particles. The SEM magnification was identified as having the greatest influence on the size and shape of the particles, followed by the storage conditions of the wear particle containing lubricant. Gold sputter coating and filter pore size also exhibit significant effects. However, even though they are statistically significant, it should be emphasized that the differences are small. In conclusion, particle characterization is a complex analytical method with a multiplicity of influencing factors. It becomes apparent that a comparison of wear particle results between different research groups is challenging.

  10. Study on critical-sized ultra-high molecular weight polyethylene wear particles loaded with alendronate sodium: in vitro release and cell response.

    Science.gov (United States)

    Liu, Yumei; Shi, Feng; Gong, Kemeng; Liu, Yang; Zhi, Wei; Weng, Jie; Qu, Shuxin

    2017-04-01

    The aim of this study was to investigate the in vitro release and the effect of RAW 264.7 macrophages of critical-sized wear particles of ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN), one of the most effective drugs to treat osteoporosis in clinic. The critical-sized UHMWPE-ALN 0.5 wt.% wear particles were prepared by vacuum gradient filtration combined with Pluronic F-68. In vitro release of ALN from critical-sized UHMWPE-ALN wear particles was investigated in phosphate buffered saline (PBS) at 37 °C with a shaker. Cell morphology, proliferation, lactate dehydrogenase (LDH) leakage and secretions of cytokines were evaluated after co-cultured with critical-sized UHMWPE-ALN wear particles in vitro. Results showed that ALN released from critical-sized UHMWPE-ALN wear particles included burst release and slow release in vitro. Macrophages would be chemotaxis and aggregated around the critical-sized UHMWPE-ALN or UHMWPE wear particle, which was phagocytosed with time. The proliferation of macrophages co-cultured with critical-sized UHMWPE-ALN wear particles was significantly decreased compared with that of critical-sized UHMWPE group. Meanwhile, the critical-sized UHMWPE-ALN wear particles significantly induced the LDH leakage of macrophages, which indicated the cell death. The death of macrophages induced by ALN was one of pathways to inhibit their proliferation. The secretions of cytokines (interleukin-6 and tumor necrosis factor-alpha) in critical-sized UHMWPE-ALN group were significantly lower than those in critical-sized UHMWPE group due to the released ALN. The present results suggested that UHMWPE-ALN had the potential application in clinic to treat osteolysis induced by wear particles.

  11. Distribution Characteristics of Wear Particles from Material of Machine Elements in Lubricant condition

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yon Sang; Jun, Sung Jae; Kim, Young Hee; Park, Heung Sik [Donga Univ., Busan (Korea, Republic of)

    2007-07-01

    It necessarily follows that wear particles are generated through a friction and wear in a mechanical moving system. The wear particles are relative to the failure and the life of machine elements directly. To analyze the wear particle, its shape characteristics were calculated quantitative values such as diameter, roundness and fractal parameters by digital image processing. In this study, the histograms of shape parameters of wear particles were used for the purpose of analyzing the distribution of wear particles in various conditions. We consider that the histogram of shape parameter can be effectively represented to study a wear mechanism.

  12. Effect of UHMWPE particle size, dose, and endotoxin on in vitro macrophage response.

    Science.gov (United States)

    Alley, Carie; Haggard, Warren; Smith, Richard

    2014-01-01

    Ultra-high molecular weight polyethylene wear debris generated by a prosthetic hip or knee has been linked to osteolysis and the limited lifespan of the implant. However, research results are conflicting with regard to which characteristics of the polyethylene wear debris are most inflammatory. The goal of this study was to determine whether particle size, number, and the presence of endotoxin significantly contribute to increased secretion of pro-inflammatory mediators by macrophages in vitro in response to polyethylene wear debris generated by a hip simulator. The results show that the prevailing inflammatory factor is endotoxin. The macrophages released only minimal levels of TNF-α and IL-6 in response to cleaned polyethylene particles, but these cytokines were released in significantly higher amounts in response to particles spiked with lipopolysaccharide (LPS). The number (up to 500 particles per cell) and size of the particles tested in this study had no significant influence on any of the measured outputs (macrophage viability, TNF-α, IL-6, or PGE₂) unless associated with LPS.

  13. Characterization of Wear Particles Generated from CoCrMo Alloy under Sliding Wear Conditions.

    Science.gov (United States)

    Pourzal, R; Catelas, I; Theissmann, R; Kaddick, C; Fischer, A

    2011-07-29

    Biological effects of wear products (particles and metal ions) generated by metal-on-metal (MoM) hip replacements made of CoCrMo alloy remain a major cause of concern. Periprosthetic osteolysis, potential hypersensitivity response and pseudotumour formation are possible reactions that can lead to early revisions. To accurately analyse the biological response to wear particles from MoM implants, the exact nature of these particles needs to be characterized. Most previous studies used energy-dispersive X-ray spectroscopy (EDS) analysis for characterization. The present study used energy filtered transmission electron microscopy (TEM) and electron diffraction pattern analysis to allow for a more precise determination of the chemical composition and to gain knowledge of the crystalline structure of the wear particles.Particles were retrieved from two different test rigs: a reciprocating sliding wear tribometer (CoCrMo cylinder vs. bar) and a hip simulator according to ISO 14242-1 (CoCrMo head vs. CoCrMo cup). All tests were conducted in bovine serum. Particles were retrieved from the test medium using a previously published enzymatic digestion protocol.Particles isolated from tribometer samples had a size of 100 - 500 nm. Diffraction pattern analysis clearly revealed the lattice structure of strain induced hcp ε-martensite. Hip simulator samples revealed numerous particles of 15 - 30 nm and 30 - 80 nm size. Most of the larger particles appeared to be only partially oxidized and exhibited cobalt locally. The smallest particles were Cr(2)O(3) with no trace of cobalt. It optically appeared that these Cr(2)O(3) particles were flaking off the surface of larger particles that depicted a very high intensity of oxygen, as well as chromium, and only background noise of cobalt. The particle size difference between the two test rigs is likely related to the conditions of the two tribosystems, in particular the difference in the sample geometry and in the type of sliding

  14. Macrophage Polarization and Activation in Response to Implant Debris: Influence by “Particle Disease” and “Ion Disease”

    OpenAIRE

    Konttinen, Yrjö T.; Pajarinen, Jukka; Takakubo, Yuja; Gallo, Jiri; Nich, Christophe; TAKAGI, Michiaki; Goodman, Stuart B.

    2014-01-01

    Macrophages derive from human embryonic and fetal stem cells and from human bone marrow-derived blood monocytes. They play a major homeostatic role in tissue remodeling and maintenance facilitated by apoptotic “eat me” opsonins like CRP, serum amyloid P, C1q, C3b, IgM, ficolin, and surfactant proteins. Three subsets of monocytes, classic, intermediate, and nonclassic, are mobilized and transmigrate to tissues. Implant-derived wear particles opsonized by danger signals regulate macrophage prim...

  15. Influence of quartz particles on wear in vertical roller mills

    DEFF Research Database (Denmark)

    Jensen, Lucas R.D.; Friis, Henrik; Fundal, Erling;

    2010-01-01

    statistical planning, a total of 10 tests were arried out with two different limestones and one type of quartz sand. The size distributions were kept constant and only the mixing ratios were varied. It appears from the investigation that mixtures consisting of minerals with different grindabilities result...... in an increased concentration of abrasive particles in the grinding bed ðR2 > 0:99Þ. The present study shows that the quartz concentration in the grinding bed is determining the wear rate....

  16. Curcumin Attenuates Titanium Particle-Induced Inflammation by Regulating Macrophage Polarization In Vitro and In Vivo

    Science.gov (United States)

    Li, Bin; Hu, Yan; Zhao, Yaochao; Cheng, Mengqi; Qin, Hui; Cheng, Tao; Wang, Qiaojie; Peng, Xiaochun; Zhang, Xianlong

    2017-01-01

    Periprosthetic inflammatory osteolysis and subsequent aseptic loosening are commonly observed in total joint arthroplasty. Other than revision surgery, few approved treatments are available for this complication. Wear particle-induced inflammation and macrophage polarization state play critical roles in periprosthetic osteolysis. We investigated the effects of curcumin, a polyphenol extracted from Curcuma longa, on titanium (Ti) particle-induced inflammation and macrophage polarization in vitro using the murine cell line RAW 264.7 and in vivo using a murine air pouch model. The expression of specific macrophage markers was qualitatively analyzed by immunofluorescence (inducible nitric oxide synthase and CD206) and quantitatively analyzed by flow cytometry (CCR7 and CD206), representing M1 and M2 macrophages, respectively. Our results show that curcumin induced a higher percentage of M2 macrophages together with a higher concentration of anti-inflammatory cytokine IL-10, and a lower percentage of M1 macrophages with a lower concentration of pro-inflammatory cytokines (TNF-α and IL-6). The genes encoding CD86 (M1) and CD163 (M2), two additional markers, were shifted by curcumin toward an M2 phenotype. C57BL/J6 mice were injected with air and Ti particles to establish an air pouch model. Curcumin reduced cell infiltration in the pouch membrane and decreased membrane thickness. The analysis of exudates obtained from pouches demonstrated that the effects of curcumin on macrophage polarization and cytokine production were similar to those observed in vitro. These results prove that curcumin suppresses Ti particle-induced inflammation by regulating macrophage polarization. Thus, curcumin could be developed as a new therapeutic candidate for the prevention and treatment of inflammatory osteolysis and aseptic loosening. PMID:28197150

  17. Effect of Surface Modification and Macrophage Phenotype on Particle Internalization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daniel [Iowa State University; Phan, Ngoc [Iowa State University; Isely, Christopher [Iowa State University; Bruene, Lucas [Iowa State University; Bratlie, Kaitlin M [Ames Laboratory

    2014-11-10

    Material properties play a key role in the cellular internalization of polymeric particles. In the present study, we have investigated the effects of material characteristics such as water contact angle, zeta potential, melting temperature, and alternative activation of complement on particle internalization for pro-inflammatory, pro-angiogenic, and naïve macrophages by using biopolymers (~600 nm), functionalized with 13 different molecules. Understanding how material parameters influence particle internalization for different macrophage phenotypes is important for targeted delivery to specific cell populations. Here, we demonstrate that material parameters affect the alternative pathway of complement activation as well as particle internalization for different macrophage phenotypes. Here, we show that the quantitative structure–activity relationship method (QSAR) previously used to predict physiochemical properties of materials can be applied to targeting different macrophage phenotypes. These findings demonstrated that targeted drug delivery to macrophages could be achieved by exploiting material parameters.

  18. Wear particles: Influence on local stress and dynamical instabilities

    Science.gov (United States)

    Nhu, Viet-Hung; Renouf, Mathieu; Massi, Francesco; Saulot, Aurélien

    2013-06-01

    When two continuous bodies are in contact and subjected to relative motion, both particle detachment and dynamic instabilities naturally occur. To properly model such interacting phenomena, it is required to take account for the discontinuity of the interfacial layer (usually modeled with Discrete Element Model) as well as the continuity of the bodies in contact (usually modeled with Finite Element Model). For that, the present paper aims at validating experimentally the coupled FEM-DEM method. The experimental set-up aims at modeling the frictional behavior between a holed disk, tied on its exterior side and made of transparent polymer with birefringence property, and an inner rotating cylinder, made of steel. This last is statically enlarged to reach the wanted contact pressure and then animated with constant angular velocity. The birefringence property of the disk is used to dynamically visualize the evolution of stresses in the disk at both contact scale and body scale. Based on the same principle with the same boundary conditions, the numerical model coupled the modeling of a deformable disk, a pseudo-rigid cylinder and wear particles by a combination of a finite element method and a discrete element method. Parametrical study has been numerically made to study the influence of particle morphology on stress evolution in the disk. A good agreement is showed between the numerical results obtained with particles artificially introduced in the contact and the experimental results obtained with wear particles naturally produced in the contact.

  19. PMMA Third-Body Wear after Unicondylar Knee Arthroplasty Decuples the UHMWPE Wear Particle Generation In Vitro

    Directory of Open Access Journals (Sweden)

    Alexander Christoph Paulus

    2015-01-01

    Full Text Available Introduction. Overlooked polymethylmethacrylate after unicondylar knee arthroplasty can be a potential problem, since this might influence the generated wear particle size and morphology. The aim of this study was the analysis of polyethylene wear in a knee wear simulator for changes in size, morphology, and particle number after the addition of third-bodies. Material and Methods. Fixed bearing unicondylar knee prostheses (UKA were tested in a knee simulator for 5.0 million cycles. Following bone particles were added for 1.5 million cycles, followed by 1.5 million cycles with PMMA particles. A particle analysis by scanning electron microscopy of the lubricant after the cycles was performed. Size and morphology of the generated wear were characterized. Further, the number of particles per 1 million cycles was calculated for each group. Results. The particles of all groups were similar in size and shape. The number of particles in the PMMA group showed 10-fold higher values than in the bone and control group (PMMA: 10.251×1012; bone: 1.145×1012; control: 1.804 × 1012. Conclusion. The addition of bone or PMMA particles in terms of a third-body wear results in no change of particle size and morphology. PMMA third-bodies generated tenfold elevated particle numbers. This could favor an early aseptic loosening.

  20. Optimization of image capturing method of wear particles for condition diagnosis of machine parts

    Institute of Scientific and Technical Information of China (English)

    Yon-Sang CHO; Heung-Sik PARK

    2009-01-01

    Wear particles are inevitably occurred from moving parts, such as a piston-cylinder made from steel or hybrid materials. And a durability of these parts must be evaluated. The wear particle analysis has been known as a very effective method to foreknow and decide a moving situation and a damage of machine parts by using the digital computer image processing. But it is not laid down to calculate shape parameters of wear particle and wear volume. In order to apply image processing method in a durability evaluation of machine parts, it needs to verify the reliability of the calculated data by the image processing and to lay down the number of images and the amount of wear particles in one image. In this work, the lubricated friction experiment was carried out in order to establish the optimum image capture with the 1045 specimen under experiment condition. The wear particle data were calculated differently according to the number of image and the amount of wear particle in one image. The results show that capturing conditions need to he more than 140 wear particles in one image and over 40 images for the reliable data. Thus, the capturing method of wear particles images was optimized for condition diagnosis of machine moving parts.

  1. Evaluation of sliding wear behavior of graphite particle-containing magnesium alloy composites

    Institute of Scientific and Technical Information of China (English)

    QI Qing-ju

    2006-01-01

    The influence of graphite particle content on the friction and wear characteristics of AZ91 magnesium alloy matrix composite was studied. The results show that the wear resistances of graphite-containing composite are much better than those of the matrix under the test conditions. The anti-wear ability of magnesium alloy composite is improved substantially with the increase of the graphite content from 5% to 20%, and both wear mass loss and coefficient of friction are decreased to low level. Different wear mechanisms operate at different sliding stages. A continuous black lubricating film forms progressively on the worn surface along sliding, which effectively limits the direct interaction between the composite tribosurface and the counterpart, and also remarkably delays the transition from mild wear to severe wear for magnesium alloy composite.

  2. Effects of WC particle size on the wear resistance of laser surface alloyed medium carbon steel

    Science.gov (United States)

    Tong, Xin; Li, Fu-hai; Kuang, Min; Ma, Wen-you; Chen, Xing-chi; Liu, Min

    2012-01-01

    The CO2 laser surface alloying technique was used to form wear resistance layers on medium carbon steel with a kind of spherical WC powder. The effects of WC particle size on the abrasive wear resistance were thoroughly investigated. The results indicate that the laser alloyed layer is characterized by dendritic primary phase and ledeburite microstructure, consisting of austenite, martensite and carbides of Fe3W3C, W2C and WC. The laser surface alloying with WC powder could improve the abrasive wear resistance of the medium carbon steel by over 63%. The factors such as the hardness, the amount and the distribution of WC particle determined the laser alloyed samples' wear resistance, and the laser alloyed sample with WC powder of 88-100 μm diameter presented the best wear resistance in this study. Furthermore, the wear resistance mechanisms of the laser alloyed layers were also explored.

  3. Effect of periwinkles shell particle size on the wear behavior of asbestos free brake pad

    Science.gov (United States)

    Amaren, S. G.; Yawas, D. S.; Aku, S. Y.

    The effect of periwinkle shell particle size on the wear behavior of asbestos free brake pad has been investigated. The asbestos free brake pad produced by varying the periwinkle shell particles was from +125 to +710 μm with phenolic resin as the binder. The wear test was performed using pin on disk machine by varying the sliding speed, applied load, temperatures and periwinkle shell particle size. Full factorial design of four factor-two levels and analysis of variance were used in the study of the wear test. The results shown that wear rate increases with increasing the sliding speed, load, temperatures and periwinkle particle size. The co-efficient of friction obtained is within the recommended standard for automobile brake pad. The +125 μm particles of periwinkles gave the best wear resistance. Factorial design of the experiment can be successfully employed to describe the wear behavior of the samples and developed linear equation for predicting wear rate within selected experimental conditions. The results of this research indicate that periwinkle shell particles can be effectively used as a replacement for asbestos in brake pad manufacture.

  4. Influence on the wear resistance of the particle size used in coatings of Alumina

    Science.gov (United States)

    Santos, A.; Guzmán, R.; Ramirez, Z. Y.

    2017-01-01

    In the literature, it is common to find that the size of the particles used in coatings through thermal spraying processes influences the hardness and wear resistance thereof; this project aimed to quantify the importance of this parameter in the adhesive and abrasive wear resistance when aluminium oxide is deposited on a substrate of AISI 1020 steel, through a thermal spraying by flame process. The methodology consisted of: a) morphological characterization of the powder used in the coatings by scanning electron microscopy, b) deposition of coatings, c) testing of adhesive and abrasive wear (ASTM G99-05 Standard test method for wear testing with a pin-on-disk apparatus and ASTM G65–04 Standard test method for measuring abrasion using dry sand/rubber wheel apparatus), and d) statistical analysis to determine the influence of particle size on wear resistance. The average size of the powder used for coatings was 92, 1690, 8990 and 76790nm. The obtained results allow to identify an inversely proportional behaviour between particle size and wear resistance, in both types of wear (adhesive and abrasive) is shown a logarithmic trend indicating an increase in loss mass during the test as the particle size is also increased and therefore a decrease in wear resistance of the coating.

  5. Effect of microseparation and third-body particles on dual-mobility crosslinked hip liner wear.

    Science.gov (United States)

    Netter, Jonathan D; Hermida, Juan C; Chen, Peter C; Nevelos, James E; D'Lima, Darryl D

    2014-09-01

    Large heads have been recommended to reduce the risk of dislocation after total hip arthroplasty. One of the issues with larger heads is the risk of increased wear and damage in thin polyethylene liners. Dual-mobility liners have been proposed as an alternative to large heads. We tested the wear performance of highly crosslinked dual-mobility liners under adverse conditions simulating microseparation and third-body wear. No measurable increase in polyethylene wear rate was found in the presence of third-body particles. Microseparation induced a small increase in wear rate (2.9mm(3)/million cycles). A finite element model simulating microseparation in dual-mobility liners was validated using these experimental results. The results of our study indicate that highly crosslinked dual-mobility liners have high tolerance for third-body particles and microseparation.

  6. Investigations of the effects of particle properties on the wear resistance of the particle reinforced composites using a novel wear model

    Science.gov (United States)

    Prabhu, T. Ram

    2016-08-01

    A wear model is developed based on the discrete lattice spring-mass approach to study the effects of particle volume fraction, size, and stiffness on the wear resistance of particle reinforced composites. To study these effects, we have considered three volume fractions (10%, 20% and 30%), two sizes (10 × 10 and 4 × 4 sites), and two different stiffness of particles embedded in the matrix in a regular pattern. In this model, we have discretized the composite system (400 × 100 sites) into the lumped masses connected with interaction spring elements in two dimensions. The interaction elements are assumed as linear elastic and ideal plastic under applied forces. Each mass is connected to its first and second nearest neighbors by springs. The matrix and particles sites are differentiated by choosing the different stiffness values. The counter surface is simulated as a rigid body that moves on the composite material at a constant sliding speed along the horizontal direction. The governing equations are formed by equating the spring force between the pair of sites given by Hooke’s law plus external contact forces and the force due to the motion of the site given by the equation of motion. The equations are solved for the plastic strain accumulated in the springs using an explicit time stepping procedure based on a finite difference form of the above equations. If the total strain accumulated in the spring elements connected to a lump mass site exceeds the failure strain, the springs are considered to be broken, and the mass site is removed or worn away from the lattice and accounts as a wear loss. The model predicts that (i) increasing volume fraction, reducing particle size and increasing particle stiffness enhance the wear resistance of the particle reinforced composites, (ii) the particle stiffness is the most significant factor affecting the wear resistance of the composites, and (iii) the wear resistance reduced above the critical volume fraction (Vc), and Vc

  7. Wear Performance of A356 Matrix Composites Reinforced with Different Types of Reinforcing Particles

    Science.gov (United States)

    Akbari, Mostafa; Shojaeefard, Mohammad Hasan; Asadi, Parviz; Khalkhali, Abolfazl

    2017-09-01

    To improve the wear resistance of Al-Si alloys, different types of reinforcing particles such as SiC, TiC, ZrO2, and B4C were used to produce matrix composites by friction stir processing (FSP). First, microstructural properties of different locations of stir zone (SZ) in the FSPed specimens such as advancing side, retreating side, shoulder-affected area, and pin-affected area were investigated. The results demonstrate that Si particles size is not the same in different SZ subdomains. SEM investigation was performed in order to investigate the particles distribution in different areas of the SZ as well as bonding quality between particles and metal matrix. Hardness and wear tests were carried out to determine mechanical and wear properties of the composites. The pin-on-disk wear tests were performed at room temperature, with the normal applied loads of 5, 10, and 20 N and sliding speed of 1 and 2 m/s. All fabricated composites show higher resistance in wear than A356 alloy. Wear test results show, by increasing the normal load and sliding velocity, the wear loss weight of all composites increased gradually.

  8. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes.

    Science.gov (United States)

    Kukutschová, Jana; Moravec, Pavel; Tomášek, Vladimír; Matějka, Vlastimil; Smolík, Jiří; Schwarz, Jaroslav; Seidlerová, Jana; Safářová, Klára; Filip, Peter

    2011-04-01

    The paper addresses the wear particles released from commercially available "low-metallic" automotive brake pads subjected to brake dynamometer tests. Particle size distribution was measured in situ and the generated particles were collected. The collected fractions and the original bulk material were analyzed using several chemical and microscopic techniques. The experiments demonstrated that airborne wear particles with sizes between 10 nm and 20 μm were released into the air. The numbers of nanoparticles (release of nanoparticles was measured when the average temperature of the rotor reached 300°C, the combustion initiation temperature of organics present in brakes. In contrast to particle size distribution data, the microscopic analysis revealed the presence of nanoparticles, mostly in the form of agglomerates, in all captured fractions. The majority of elements present in the bulk material were also detected in the ultra-fine fraction of the wear particles.

  9. The influence of molecular weight, crosslinking and counterface roughness on TNF-alpha production by macrophages in response to ultra high molecular weight polyethylene particles.

    Science.gov (United States)

    Ingram, Joanne Helen; Stone, Martin; Fisher, John; Ingham, Eileen

    2004-08-01

    The response of murine macrophages to clinically relevant polyethylene wear particles generated from different polyethylenes at various time points and volumetric doses in vitro was evaluated. Clinically relevant ultra high molecular weight polyethylene (UHMWPE) wear debris was generated in vitro in a lubricant of RPMI 1640 supplemented with 25% (v/v) foetal calf serum using a multi-directional pin-on-plate wear rig under sterile conditions. Wear debris was cultured with C3H murine peritoneal macrophages at various particle volume (microm(3)): cell number ratios. The secretion of TNF-alpha was determined by ELISA. Initially the effect of molecular weight of UHMWPE was considered. Higher molecular weight GUR415HP was shown to have a lower wear rate than the lower molecular weight GUR1120, however a greater volume of the wear debris produced by the high molecular weight GUR415HP was in the 0.1-1.0 microm size range. Wear debris from GUR415HP produced significant levels of TNF-alpha at a concentration of 1 microm(3)/cell while at least 10 microm(3)/cell of GUR1120 wear debris per cell was needed to produce significant levels of TNF-alpha. Secondly the effects of crosslinking GUR1050 was examined when worn against a scratched counterface. The wear rate of the material was shown to decrease as the level of crosslinking increased. However the materials crosslinked with 5 and 10 Mrad of gamma irradiation produced higher percentages of 0.1-1.0 microm size wear particles than the non-crosslinked material. While the crosslinked material was able to stimulate cells to produce significantly elevated TNF-alpha levels at a particle concentration of just 0.1 microm(3)/cell only concentrations of 10 microm(3)/cell and above of the non-crosslinked wear debris were stimulatory. When the counterface was changed from scratched to smooth the wear rate for all three GUR1050 materials was further reduced. For the first time nanometre size wear particles were observed from polyethylene

  10. Influence of stability and mechanical properties of a spinal fixation device on production of wear debris particles in vivo.

    Science.gov (United States)

    Mochida, Y; Bauer, T W; Nitto, H; Kambic, H E; Muschler, G F

    2000-01-01

    A prospective and quantitative animal study was performed to evaluate the production of wear particles from a spinal fixation device, and to test the hypothesis that the concentration of wear debris particles adjacent to spinal fixation hardware is correlated with the stiffness of the spinal fusion construct and local bone formation at the fusion site. An established canine segmental spinal fusion model with three interfacet fusions was used in this study. Several bone substitute materials were grafted to the area of the interfacet fusion. Internal fixation was performed on both sides of the spinous processes at each site using a stainless steel plate system in 19 dogs. After 12 weeks, spinal segments were excised, then 3-dimensional computerized tomography was used to measure bone volume and bone area of the individual fusion sites. The stiffness of each segment was tested using a servohydraulic materials testing machine. Biopsies were obtained from the soft tissues immediately around the plate system, and wear particles were collected and characterized using an electrical resistance particle analyzer, light and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX). Biopsies from para-spinal tissue from adjacent, unoperated spinal levels served as negative controls. Histologically, 24 of 57 specimens (42.1%) showed only fibrous tissue with no recognizable macrophages, inflammation, or debris. Fourteen of 57 specimens (24.6%), however, contained many particles that were composed of Fe, Cr, and Ni, corresponding to elements found in the fixation hardware. Another 19 specimens showed only occasional particles. The mean concentration of particles from the tissue around the plate system was 2.8 x 10(9) per gram dry tissue weight, compared to 0.5 x 10(9) particles per gram for controls (p < 0.05). Statistical analyses showed significant inverse correlation between the log particle number and stiffness (r = -0.41, p < 0.01), bone volume (r

  11. WEAR OF THE FRICTION SURFACES PARTS IN THE PRESENSE OF SOLID PARTICLES CONTACTING ZONE

    Directory of Open Access Journals (Sweden)

    B. M. Musaibov

    2015-01-01

    Full Text Available The problems of intensity of wear of details of the cars working in the oil polluted by abrasive particles, depending on mechanical properties of material of details and abrasive particles, their sizes, a form and concentration, loading, temperature of a surface of friction, speed of sliding, quality of lubricant are considered. 

  12. Extraction of Geometric Features of Wear Particles in Color Ferrograph Images Based on RGB Color Space

    Institute of Scientific and Technical Information of China (English)

    CHEN Gui-ming; WANG Han-gong; ZHANG Bao-jun; PAN Wei

    2003-01-01

    This paper analyzes the potential color formats of ferrograph images, and presents the algorithms of converting the formats to RGB(Red, Green, Blue) color space. Through statistical analysis of wear par-ticles' geometric features of color ferrograph images in the RGB color space, we give the differences of ferro-graph wear panicles' geometric features among RGB color spaces and gray scale space, and calculate their respective distributions.

  13. Toxic effects of brake wear particles on epithelial lung cells in vitro

    Directory of Open Access Journals (Sweden)

    Perrenoud Alain

    2009-11-01

    Full Text Available Abstract Background Fine particulate matter originating from traffic correlates with increased morbidity and mortality. An important source of traffic particles is brake wear of cars which contributes up to 20% of the total traffic emissions. The aim of this study was to evaluate potential toxicological effects of human epithelial lung cells exposed to freshly generated brake wear particles. Results An exposure box was mounted around a car's braking system. Lung cells cultured at the air-liquid interface were then exposed to particles emitted from two typical braking behaviours („full stop“ and „normal deceleration“. The particle size distribution as well as the brake emission components like metals and carbons was measured on-line, and the particles deposited on grids for transmission electron microscopy were counted. The tight junction arrangement was observed by laser scanning microscopy. Cellular responses were assessed by measurement of lactate dehydrogenase (cytotoxicity, by investigating the production of reactive oxidative species and the release of the pro-inflammatory mediator interleukin-8. The tight junction protein occludin density decreased significantly (p Conclusion These findings suggest that the metals on brake wear particles damage tight junctions with a mechanism involving oxidative stress. Brake wear particles also increase pro-inflammatory responses. However, this might be due to another mechanism than via oxidative stress.

  14. Macrophages detoxify the genotoxic and cytotoxic effects of surgical cobalt chrome alloy particles but not quartz particles on human cells in vitro.

    Science.gov (United States)

    Papageorgiou, I; Shadrick, V; Davis, S; Hails, L; Schins, R; Newson, R; Fisher, J; Ingham, E; Case, C P

    2008-08-25

    Particles of surgical cobalt chrome alloy are cytotoxic and genotoxic to human fibroblasts in vitro. In vivo orthopaedic patients are exposed to cobalt chrome particles as a result of wear of a joint replacement. Many of the wear debris particles that are produced are phagocytosed by macrophages that accumulate at the site of the worn implant and are disseminated to local and distant lymph nodes the liver and the spleen. In this study we have tested whether this process of phagocytosis could have altered the cytotoxic and genotoxic properties of the cobalt chrome particles. Quartz particles have been investigated as a control. Micron-sized particles of cobalt chrome alloy were internalised by either white cells of peripheral blood or by THP-1 monocytes for 1 week and 1 day, respectively. The particles were then extracted and presented at different doses to fibroblasts for 1 day. There was a reduction of the cytotoxicity and genotoxicity of the cobalt chrome particles after phagocytosis by white cells or THP-1 cells. Cobalt chrome particles that were internalised by fibroblasts also showed a reduction of their cytotoxicity but not their genotoxicity. In contrast the cytotoxicity and genotoxicity of quartz particles was increased after internalisation by THP-1 cells. The surface morphology of the cobalt chrome particles but not the quartz particles was changed after phagocytosis by THP-1 cells. This study suggests that the genotoxic and cytotoxic properties of particles that fall within the size range for phagocytosis may be highly complex in vivo and depend on the combination of material type and previous phagocytosis. These results may have relevance for particle exposure from orthopaedic implants and from environmental or industrial pollution.

  15. Study on dry friction and wear resistance of a WC-Co particle reinforced iron matrix composite material

    OpenAIRE

    Zhang Peng; Zeng Shaolian; Zhang Zhiguo

    2013-01-01

    In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co) particle reinforced chromium cast iron composite material were studied. In particular, the wear resistance was discussed in detail. The results showed that the composite material demonstrates 25 times the wear resistance of high Cr cast iron, and 9 times the wear resistance of heat resistant steel. However, the average frict...

  16. WEAR PARTICLE CLASSIFICATION BASED ON BP NEUPAL NETWORK WITH FUZZY—FACTOR

    Institute of Scientific and Technical Information of China (English)

    LiYanjun

    2002-01-01

    The program of auto-identification of wear particles is given using aritficial neural network(ANN)technique,based on a set of debris morphology descriptor that de-scribes the shape characters of wear particles.The train-ing speed of the network with thw fuzzy-factor is muchfaster than that of the traditional methods.For esamale,the speed of training the network in this paper is increased five times in Exclusive OR problem(XORproblem)than other ways,and the debris chassification accuracy is more than 90% by this method,and the idemtification speed is very fast.

  17. Sliding wear behaviors of electrodeposited Ni composite coatings containing micrometer and nanometer Cr particles

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-gang; ZHOU Yue-bo; ZHANG Hai-jun

    2009-01-01

    Micrometer and nanometer Cr particles were co-deposited with Ni by electroplating from a nickel sulfate bath containing a certain content of Cr particles. Cr microparticles are in a size range of 1-5 (m and Cr nanoparticles have an average size of 40 nm. The friction and the wear performance of the co-deposited Ni-Cr composite coatings were comparatively evaluated by sliding against Si3N4 ceramic balls under non-lubricated conditions. It is found that the incorporation of Cr particles enhances the microhardness and wear resistance of Ni coatings. The wear resistance of Ni composite coating containing Cr nanoparticles is higher than that of the Ni composite coating containing Cr microparticles with a comparable Cr particle content. The co-deposition of smaller nanometer Cr particles with Ni effectively reduces the size of Ni crystals and significantly increases the hardness of the composite coatings due to grain-refinement strengthening and dispersion-strengthening, resulting in a significant improvement of wear resistance of the Ni-Cr nanocomposite coatings.

  18. Wear particles and osteolysis in patients with total wrist arthroplasty

    DEFF Research Database (Denmark)

    Boeckstyns, Michel E H; Toxværd, Anders; Bansal, Manjula

    2014-01-01

    tissue, the level of chrome and cobalt ions in the blood, and the possible role of infectious or rheumatoid activity in the development of PPO. METHODS: Biopsies were taken from the implant-bone interphase in 13 consecutive patients with total wrist arthroplasty and with at least 3 years' follow...... of the radiolucent zone. The blood levels of chrome and cobalt ions were normal. There was no evidence of infectious or rheumatoid activity. CONCLUSIONS: Polyethylene wear has been accepted as a major cause of osteolysis in total hip arthroplasty, and metallic debris has also been cited to be an underlying cause....... However, our hypothesis that polyethylene debris correlated with the degree of PPO could not be confirmed. Also, metallic debris and infectious or rheumatoid activity did not correlate with PPO. TYPE OF STUDY/LEVEL OF EVIDENCE: Prognostic I....

  19. Improved Wear Resistance of Low Carbon Steel with Plasma Melt Injection of WC Particles

    Science.gov (United States)

    Liu, Aiguo; Guo, Mianhuan; Hu, Hailong

    2010-08-01

    Surface of a low carbon steel Q235 substrate was melted by a plasma torch, and tungsten carbide (WC) particles were injected into the melt pool. WC reinforced surface metal matrix composite (MMC) was synthesized. Dry sliding wear behavior of the surface MMC was studied and compared with the substrate. The results show that dry sliding wear resistance of low carbon steel can be greatly improved by plasma melt injection of WC particles. Hardness of the surface MMC is much higher than that of the substrate. The high hardness lowers the adhesion and abrasion of the surface MMC, and also the friction coefficient of it. The oxides formed in the sliding process also help to lower the friction coefficient. In this way, the dry sliding wear resistance of the surface MMC is greatly improved.

  20. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    Science.gov (United States)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  1. Wear Resistances of CO2 Corrosion Product Films in the Presence of Sand Particles

    Institute of Scientific and Technical Information of China (English)

    LI Jinling; ZHU Shidong; LIU Luzhen; QU Chengtun; YAN Yongli; YANG Bo

    2015-01-01

    Wear resistances of CO2 corrosion product iflms formed on P110 carbon steel at different CO2 partial pressures were investigated in water sand two-phase lfow by weight loss method, and the microstructures and compositions of corrosion product iflms were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The results showed that the wear rate of CO2 corrosion product iflms increased until a maximum and then decreased with the increasing of the film-forming pressure, and the maximum occurred at 2 MPa. However, the maximal corrosion rate and the loose and porous CO2 corrosion product iflms were obtained at 4 MPa. And the wear rate decreased and then went to be lfat with increasing test time. Furthermore, the microstructures and compositions of corrosion product iflms and the impact and wear of sand particles played an important role on wear resistances. In addition, the wear rate and corrosion rate were iftted by cubic polynomial, respectively, which were well in accordance with the measured results.

  2. Glucan Particles for Macrophage Targeted Delivery of Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ernesto R. Soto

    2012-01-01

    Full Text Available Glucan particles (GPs are hollow, porous 2–4 μm microspheres derived from the cell walls of Baker's yeast (Saccharomyces cerevisiae. The 1,3-β-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing β-glucan receptors. GPs have been used for macrophage-targeted delivery of soluble payloads (DNA, siRNA, protein, and small molecules encapsulated inside the hollow GPs via core polyplex and layer-by-layer (LbL synthetic strategies. In this communication, we report the incorporation of nanoparticles as cores inside GPs (GP-NP or electrostatically bound to the surface of chemically derivatized GPs (NP-GP. GP nanoparticle formulations benefit from the drug encapsulation properties of NPs and the macrophage-targeting properties of GPs. GP nanoparticle formulations were synthesized using fluorescent anionic polystyrene nanoparticles allowing visualization and quantitation of NP binding and encapsulation. Mesoporous silica nanoparticles (MSNs containing the chemotherapeutic doxorubicin (Dox were bound to cationic GPs. Dox-MSN-GPs efficiently delivered Dox into GP phagocytic cells resulting in enhanced Dox-mediated growth arrest.

  3. Fractionation and characterization of particles simulating wear of total joint replacement (TJR) following ASTM standards.

    Science.gov (United States)

    Saha, Subrata; Musib, Mrinal

    2011-01-01

    Reactions of bone cells to orthopedic wear debris produced by the articulating motion of total joint replacements (TJRs) are largely responsible for the long-term failure of such replacements. Metal and polyethylene (PE) wear particles isolated from fluids from total joint simulators, as well as particles that are fabricated by other methods, are widely used to study such in vitro cellular response. Prior investigations have revealed that cellular response to wear debris depends on the size, shape, and dose of the particles. Hence, to have a better understanding of the wear-mediated osteolytic process it is important that these particles are well characterized and clinically relevant, both qualitatively, and quantitatively. In this study we have fractionated both ultra-high molecular weight polyethylene (UHMWPE) and Ti particles, into micron (1.0-10.0 μm), submicron (0.2-1.0 μm), and nanoparticle (0.01-0.2 μm) fractions, and characterized them based on the following size-shape descriptors as put forth in ASTM F1877: i) equivalent circle diameter (ECD), ii) aspect ratio (AR), iii) elongation (E), iv) roundness (R), and v) form factor (FF). The mean (± SD) ECDs (in μm) for micron, submicron, and nanoparticles of UHMWPE were 1.652 ± 0.553, 0.270 ± 0.180, and 0.061 ± 0.035, respectively, and for Ti were 1.894 ± 0.667, 0.278 ± 0.180, and 0.055 ± 0.029, respectively. The values for other descriptors were similar (no statistically significant difference). The nanofraction particles were found to be more sphere-like (higher R and FF values, and lower E and AR values) as compared to larger particles. Future experiments will involve use of these well characterized particles for in vitro studies.

  4. Microstructure and wear properties of the electroslag remelting layer reinforced by TiC particles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The electroslag remelting (ESR) layer reinforced by TiC particles was obtained by electroslag remelting.The microstructure and wear properties of the ESR layer were studied by means of scanning electron microscopy (SEM),X-ray diffraction (XRD),and wear test.The results indicate that TiC particles are synthesized by self-propagating high-temperature synthesis (SHS) reaction during the electroslag remelting process.The size of TiC particles is in the range of 1-10 μm,and the distribution of TiC particles is uniform,from outside to inside of the ESR layer,and the volume fraction and the size of TiC particles decrease gradually.Molten iron and slag flow into porosity due to the SHS process leading to rapid densification and the elimination of porosity in the ESR layer during the ESR process.TiC particles enhance the wear resistance of the ESR layer,whereas CaF2 can improve the high temperature lubricating property of the ESR layer.

  5. Macrophage reactivity to different polymers demonstrates particle size- and material-specific reactivity: PEEK-OPTIMA(®) particles versus UHMWPE particles in the submicron, micron, and 10 micron size ranges.

    Science.gov (United States)

    Hallab, Nadim James; McAllister, Kyron; Brady, Mark; Jarman-Smith, Marcus

    2012-02-01

    Biologic reactivity to orthopedic implant debris is generally the main determinant of long-term clinical performance where released polymeric particles of Ultra-high molecular weight polyethylene (UHMWPE) remain the most prevalent debris generated from metal-on-polymer bearing total joint arthroplasties. Polymeric alternatives to UHMWPE such as polyetherether-ketone (PEEK) may have increased wear resistance but the bioreactivity of PEEK-OPTIMA particles on peri-implant inflammation remains largely uncharacterized. We evaluated human monocyte/macrophage responses (THP-1s and primary human) when challenged by PEEK-OPTIMA, UHMWPE, and X-UHMWPE particles of three particle sizes (0.7 um, 2 um, and 10 um) at a dose of 20 particles-per-cell at 24- and 48-h time points. Macrophage responses were measured using cytotoxicity assays, viability assays, proliferation assays and cytokine analysis (IL-1b, IL-6, IL-8, MCP-1, and TNF-α). In general, there were no significant differences between PEEK-OPTIMA, UHMWPE, and X-UHMWPE particles on macrophage viability or proliferation. However, macrophages demonstrated greater cytotoxicity responses to UHMWPE and X-UHMWPE than to PEEK-OPTIMA at 24 and 48 h, where 0.7 μm-UHMWPE particles produced the highest amount of cytotoxicity. Particles of X-UHMWPE more than PEEK-OPTIMA and UHMWPE induced IL-1β, IL-6, MCP-1, and TNF-α at 24 h, p UHMWPE particles, in that they induced less inflammatory cytokine responses and thus, in part, demonstrates that PEEK-OPTIMA implant debris does not represent an increased inflammatory risk over that of UHMWPE.

  6. Evidence for particle transport between alveolar macrophages in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Nikula, K.J.; Guilmette, R.A.

    1995-12-01

    Recent studies at this Institute have focused on determining the role of alveolar macrophages (AMs) in the transport of particles within and form the lung. For those studies, AMs previously labeled using the nuclear stain Hoechst 33342 and polychromatic Fluoresbrite microspheres (1 {mu}m diameter, Polysciences, Inc., Warrington, PA) were instilled into lungs of recipient F344 rats. The fate of the donor particles and the doubly labeled AMs within recipient lungs was followed for 32 d. Within 2-4 d after instillation, the polychromatic microspheres were found in both donor and resident AMs, suggesting that particle transfer occurred between the donor and resident AMs. However, this may also have been an artifact resulting from phagocytosis of the microspheres form dead donor cells or from the fading or degradation of Hoechst 33342 within the donor cells leading to their misidentification as resident AMs. The results support the earlier findings that microspheres in donor AMs can be transferred to resident AMs within 2 d after instillation.

  7. A quasi-stationary approach to particle concentration and distribution in gear oil for wear mode estimation

    DEFF Research Database (Denmark)

    Henneberg, Morten; Eriksen, René Lynge; Jørgensen, Bent

    2015-01-01

    Suspension of wear particles in gear oil with respect to the diversity of particle size combined with filter mechanisms has been analyzed. Coupling of wear modes from tribology is combined with particle size bins to show how a mathematical model can be expanded to include information gained from...... sensors that can segment particles into size bins. In order to establish boundary conditions for the model based on real data, a filtration test is included. Finally, the model is fitted to data from a gear in operation and differences between real data and the model are discussed. The findings show...... that particles less than 14 μm dominate the wear. Hence, it is concluded that abrasion dominate the wear, for the gear in operation, and it is concluded to be in quasi-stationary mode. The distribution of the particles is observed in conjunction with the particle quantity to determine a basis for normal...

  8. Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method

    Science.gov (United States)

    Carbonell, Josep Maria; Oñate, Eugenio; Suárez, Benjamín

    2013-09-01

    Underground construction involves all sort of challenges in analysis, design, project and execution phases. The dimension of tunnels and their structural requirements are growing, and so safety and security demands do. New engineering tools are needed to perform a safer planning and design. This work presents the advances in the particle finite element method (PFEM) for the modelling and the analysis of tunneling processes including the wear of the cutting tools. The PFEM has its foundation on the Lagrangian description of the motion of a continuum built from a set of particles with known physical properties. The method uses a remeshing process combined with the alpha-shape technique to detect the contacting surfaces and a finite element method for the mechanical computations. A contact procedure has been developed for the PFEM which is combined with a constitutive model for predicting the excavation front and the wear of cutting tools. The material parameters govern the coupling of frictional contact and wear between the interacting domains at the excavation front. The PFEM allows predicting several parameters which are relevant for estimating the performance of a tunnelling boring machine such as wear in the cutting tools, the pressure distribution on the face of the boring machine and the vibrations produced in the machinery and the adjacent soil/rock. The final aim is to help in the design of the excavating tools and in the planning of the tunnelling operations. The applications presented show that the PFEM is a promising technique for the analysis of tunnelling problems.

  9. Recoil-Implantation Of Multiple Radioisotopes Towards Wear Rate Measurements And Particle Tracing In Prosthetic Joints

    Science.gov (United States)

    Warner, Jacob A.; Smith, Paul N.; Scarvell, Jennifer M.; Gladkis, Laura; Timmers, Heiko

    2011-06-01

    This study demonstrates a new method of radioisotope labeling of ultra-high molecular weight polyethylene inserts in prosthetic joints for wear studies. The radioisotopes 97Ru, 100Pd, 100Rh, and 101mRh are produced in fusion evaporation reactions induced by 12C ions in a 92Zr target foil. The fusion products recoil-implant into ultra-high molecular weight polyethylene plugs, machined to fit into the surface of the inserts. During laboratory simulations of the joint motion, a wear rate of the labeled polyethylene may be measured and the pathways of wear debris particles can be traced by detecting characteristic gamma-rays. The concentration profiles of the radioisotopes extend effectively uniformly from the polyethylene surface to a depth of about 4 μm. The multiplicity of labeling and the use of several gamma-ray lines aids with avoiding systematic measurement uncertainties. Two polyethylene plugs were labeled and one was fitted into the surface of the tibial insert of a knee prosthesis, which had been worn in. Actuation over close to 100,000 cycles with a 900 N axial load and a 24° flexion angle removed (14±1)% of the gamma-ray activity from the plug. Most of this activity dispersed into the serum lubricant identifying this as the important debris pathway. Less than 1% activity was transferred to the femoral component of the prosthesis and the measured activity on the tibial tray was insignificant. Assuming uniform wear across the superior surface of the insert, a wear rate of (12±3) mm3/Megacycle was determined. This is consistent with wear rate measurements under similar conditions using other techniques.

  10. Histopathological Analysis of PEEK Wear Particle Effects on the Synovial Tissue of Patients

    Directory of Open Access Journals (Sweden)

    A. C. Paulus

    2016-01-01

    Full Text Available Introduction. Increasing interest developed in the use of carbon-fiber-reinforced-poly-ether-ether-ketones (CFR-PEEK as an alternative bearing material in knee arthroplasty. The effects of CFR-PEEK wear in in vitro and animal studies are controversially discussed, as there are no data available concerning human tissue. The aim of this study was to analyze human tissue containing CFR-PEEK as well as UHMWPE wear debris. The authors hypothesized no difference between the used biomaterials. Methods and Materials. In 10 patients during knee revision surgery of a rotating-hinge-knee-implant-design, synovial tissue samples were achieved (tibial inserts: UHMWPE; bushings and flanges: CFR-PEEK. One additional patient received revision surgery without any PEEK components as a control. The tissue was paraffin-embedded, sliced into 2 μm thick sections, and stained with hematoxylin and eosin in a standard process. A modified panoptical staining was also done. Results. A “wear-type” reaction was seen in the testing and the control group. In all samples, the UHMWPE particles were scattered in the tissue or incorporated in giant cells. CFR-PEEK particles were seen as conglomerates and only could be found next to vessels. CFR-PEEK particles showed no giant-cell reactions. In conclusion, the hypothesis has to be rejected. UHMWPE and PEEK showed a different scatter-behavior in human synovial tissue.

  11. Modelling and measurement of wear particle flow in a dual oil filter system for condition monitoring

    DEFF Research Database (Denmark)

    Henneberg, Morten; Eriksen, René Lynge; Fich, Jens

    2016-01-01

    Wear debris is an indicator of the health of machinery, and the availability of accurate methods for characterising debris is important. In this work, a dual filter model for a gear oil system is used in conjunction with operational data to indicate three different system operating states. The qu...... particle generation is made possible by model parameter estimation and identification of an unintended lack of filter change. The model may also be used to optimise system and filtration performance, and to enable continuous condition monitoring.......Wear debris is an indicator of the health of machinery, and the availability of accurate methods for characterising debris is important. In this work, a dual filter model for a gear oil system is used in conjunction with operational data to indicate three different system operating states....... The quantity of wear particles in gear oil is analysed with respect to system running conditions. It is shown that the model fits the data in terms of startup “particle burst” phenomenon, quasi-stationary conditions during operation, and clean-up filtration when placed out of operation. In order to establish...

  12. Histopathological Analysis of PEEK Wear Particle Effects on the Synovial Tissue of Patients

    Science.gov (United States)

    Jansson, V.; Giurea, A.

    2016-01-01

    Introduction. Increasing interest developed in the use of carbon-fiber-reinforced-poly-ether-ether-ketones (CFR-PEEK) as an alternative bearing material in knee arthroplasty. The effects of CFR-PEEK wear in in vitro and animal studies are controversially discussed, as there are no data available concerning human tissue. The aim of this study was to analyze human tissue containing CFR-PEEK as well as UHMWPE wear debris. The authors hypothesized no difference between the used biomaterials. Methods and Materials. In 10 patients during knee revision surgery of a rotating-hinge-knee-implant-design, synovial tissue samples were achieved (tibial inserts: UHMWPE; bushings and flanges: CFR-PEEK). One additional patient received revision surgery without any PEEK components as a control. The tissue was paraffin-embedded, sliced into 2 μm thick sections, and stained with hematoxylin and eosin in a standard process. A modified panoptical staining was also done. Results. A “wear-type” reaction was seen in the testing and the control group. In all samples, the UHMWPE particles were scattered in the tissue or incorporated in giant cells. CFR-PEEK particles were seen as conglomerates and only could be found next to vessels. CFR-PEEK particles showed no giant-cell reactions. In conclusion, the hypothesis has to be rejected. UHMWPE and PEEK showed a different scatter-behavior in human synovial tissue. PMID:27766256

  13. Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro

    DEFF Research Database (Denmark)

    Cao, Yi; Jantzen, Kim; Gouveia, Ana Cecilia Damiao

    2015-01-01

    Exposure to diesel exhaust particles (DEP) has been associated with adverse cardiopulmonary health effects, which may be related to dysregulation of lipid metabolism and formation of macrophage foam cells. In this study, THP-1 derived macrophages were exposed to an automobile generated DEP (A...

  14. Grafting of poly(2-methacryloyloxyethyl phosphorylcholine) on polyethylene liner in artificial hip joints reduces production of wear particles.

    Science.gov (United States)

    Moro, Toru; Kyomoto, Masayuki; Ishihara, Kazuhiko; Saiga, Kenichi; Hashimoto, Masami; Tanaka, Sakae; Ito, Hideya; Tanaka, Takeyuki; Oshima, Hirofumi; Kawaguchi, Hiroshi; Takatori, Yoshio

    2014-03-01

    Despite improvements in the techniques, materials, and fixation of total hip arthroplasty, periprosthetic osteolysis, a complication that arises from this clinical procedure and causes aseptic loosening, is considered to be a major clinical problem associated with total hip arthroplasty. With the objective of reducing the production of wear particles and eliminating periprosthetic osteolysis, we prepared a novel hip polyethylene (PE) liner whose surface graft was made of a biocompatible phospholipid polymer-poly(2-methacryloyloxyethyl phosphorylcholine (MPC)). This study investigated the wear resistance of the poly(MPC)-grafted cross-linked PE (CLPE; MPC-CLPE) liner during 15×10(6) cycles of loading in a hip joint simulator. The gravimetric analysis showed that the wear of the acetabular liner was dramatically suppressed in the MPC-CLPE liner, as compared to that in the non-treated CLPE liner. Analyses of the MPC-CLPE liner surface revealed that it suffered from no or very little wear even after the simulator test, whereas the CLPE liners suffered from substantial wears. The scanning electron microscope (SEM) analysis of the wear particles isolated from the lubricants showed that poly(MPC) grafting dramatically decreased the total number, area, and volume of the wear particles. However, there was no significant difference in the particle size distributions, and, in particular, from the SEM image, it was observed that particles with diameters less than 0.50μm were present in the range of the highest frequency. In addition, there were no significant differences in the particle size descriptors and particle shape descriptors. The results obtained in this study show that poly(MPC) grafting markedly reduces the production of wear particles from CLPE liners, without affecting the size of the particles. These results suggest that poly(MPC) grafting is a promising technique for increasing the longevity of artificial hip joints. Copyright © 2013 Elsevier Ltd. All rights

  15. IgM promotes the clearance of small particles and apoptotic microparticles by macrophages.

    Directory of Open Access Journals (Sweden)

    Michael L Litvack

    Full Text Available BACKGROUND: Antibodies are often involved in enhancing particle clearance by macrophages. Although the mechanisms of antibody-dependent phagocytosis have been studied for IgG in greater detail, very little is known about IgM-mediated clearance. It has been generally considered that IgM does not support phagocytosis. Recent studies indicate that natural IgM is important to clear microbes and other bioparticles, and that shape is critical to particle uptake by macrophages; however, the relevance of IgM and particle size in their clearance remains unclear. Here we show that IgM has a size-dependent effect on clearance. METHODOLOGY/PRINCIPAL FINDINGS: We used antibody-opsonized sheep red blood cells, different size beads and apoptotic cells to determine the effect of human and mouse IgM on phagocytosis by mouse alveolar macrophages. Our microscopy (light, epifluorescence, confocal and flow cytometry data show that IgM greatly enhances the clearance of small particles (about 1-2 micron by these macrophages. There is an inverse relationship between IgM-mediated clearance by macrophages and the particle size; however, macrophages bind and internalize many different size particles coated with IgG. We also show that IgM avidly binds to small size late apoptotic cells or bodies (2-5 micron and apoptotic microparticles (<2 µm released from dying cells. IgM also promotes the binding and uptake of microparticle-coated beads. CONCLUSIONS/SIGNIFICANCE: Therefore, while the shape of the particles is important for non-opsonized particle uptake, the particle size matters for antibody-mediated clearance by macrophages. IgM particularly promotes the clearance of small size particles. This finding may have wider implications in IgM-mediated clearing of antigens, microbial pathogens and dying cells by the host.

  16. Effect of the powder particle size on the wear behavior of boronized AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Guenen, Ali [Mustafa Kemal Univ., Hatay (Turkey). Dept. of Metallurgy and Material Engineering; Kuecuek, Yilmaz; Oege, Mecit; Goek, M. Sabri [Bartin Univ. (Turkey). Dept. of Mechanical Engineering; Er, Yusuf [Firat Univ., Elazig (Turkey); Cay, V. Veli [Dicle Univ., Diyarbakir (Turkey). Civil Aviation Higher School

    2015-06-01

    In this study, the AISI 304 steel specimens were boronized with nanoboron of the size of 10 50 nm and commercial Ekabor 3 powders (<1400 μm) at 950 C to 1000 C for 2 h and 4 h. Boronized steel specimens were characterized via SEM, microhardness and XRD analyses. Abrasive wear behavior of the specimens, boronized at different temperatures and treatment durations, were examined. The fixed ball micro-abrasion tests were carried out using the abrasive slurry, prepared with different SiC powder particle sizes on the boronized specimens at different rotational speeds. The specimens boronized with nanoboron powders exhibited a higher hardness and abrasive wear resistance than the samples boronized with the Ekabor 3 powders.

  17. Articular cartilage wear characterization with a particle sizing and counting analyzer.

    Science.gov (United States)

    Oungoulian, Sevan R; Chang, Stephany; Bortz, Orian; Hehir, Kristin E; Zhu, Kaicen; Willis, Callen E; Hung, Clark T; Ateshian, Gerard A

    2013-02-01

    Quantitative measurements of cartilage wear have been challenging, with no method having yet emerged as a standard. This study tested the hypothesis that latest-generation particle analyzers are capable of detecting cartilage wear debris generated during in vitro loading experiments that last 24 h or less, by producing measurable content significantly above background noise levels otherwise undetectable through standard biochemical assays. Immature bovine cartilage disks (4 mm diameter, 1.3 mm thick) were tested against glass using reciprocal sliding under unconfined compression creep for 24 h. Control groups were used to assess various sources of contamination. Results demonstrated that cartilage samples subjected to frictional loading produced particulate volume significantly higher than background noise and contamination levels at all tested time points (1, 2, 6, and 24 h, p analyzers are capable of detecting very low wear levels in cartilage experiments conducted over a period no greater than 24 h.

  18. Wear particles derived from metal hip implants induce the generation of multinucleated giant cells in a 3-dimensional peripheral tissue-equivalent model.

    Directory of Open Access Journals (Sweden)

    Debargh K Dutta

    Full Text Available Multinucleate giant cells (MGCs are formed by the fusion of 5 to 15 monocytes or macrophages. MGCs can be generated by hip implants at the site where the metal surface of the device is in close contact with tissue. MGCs play a critical role in the inflammatory processes associated with adverse events such as aseptic loosening of the prosthetic joints and bone degeneration process called osteolysis. Upon interaction with metal wear particles, endothelial cells upregulate pro-inflammatory cytokines and other factors that enhance a localized immune response. However, the role of endothelial cells in the generation of MGCs has not been completely investigated. We developed a three-dimensional peripheral tissue-equivalent model (PTE consisting of collagen gel, supporting a monolayer of endothelial cells and human peripheral blood mononuclear cells (PBMCs on top, which mimics peripheral tissue under normal physiological conditions. The cultures were incubated for 14 days with Cobalt chromium alloy (CoCr ASTM F75, 1-5 micron wear particles. PBMC were allowed to transit the endothelium and harvested cells were analyzed for MGC generation via flow cytometry. An increase in forward scatter (cell size and in the propidium iodide (PI uptake (DNA intercalating dye was used to identify MGCs. Our results show that endothelial cells induce the generation of MGCs to a level 4 fold higher in 3-dimentional PTE system as compared to traditional 2-dimensional culture plates. Further characterization of MGCs showed upregulated expression of tartrate resistant alkaline phosphatase (TRAP and dendritic cell specific transmembrane protein, (DC-STAMP, which are markers of bone degrading cells called osteoclasts. In sum, we have established a robust and relevant model to examine MGC and osteoclast formation in a tissue like environment using flow cytometry and RT-PCR. With endothelial cells help, we observed a consistent generation of metal wear particle- induced MGCs

  19. Wear particle-mediated expressions of pro-inflammatory cytokines,NF-κB and RANK were impacted by lanthanum chloride in RAW264.7 cells

    Institute of Scientific and Technical Information of China (English)

    DAI Min; JIANG Chuan; LIU Xiang; LI Zhe; CHENG Xigao; ZOU Yang; NIE Tao

    2013-01-01

    To explore the impact of different concentrations of lanthanum chloride (LaCl3) on critical components of wear particle-mediated signaling pathways in inflammation and osteoclastogenesis,RAW264.7 cells were naturally divided into eight groups and analyzed by CCK-8 assay,flow cytometry,ELISA,RT-PCR and western blot after treatments.The results showed that three concentrations of LaCl3 had no influence on viability of RAW264.7 cells and down-regulated receptor activator of nuclear factor κB (RANK) instead of macrophage colony-stimulating factor receptor (M-CSFR).Additionally,2.5 and 10 μmol/L LaCl3 could signifi-cantly inhibit gene and protein levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-lβ,i.e.,TNF-α and IL-1β) and NF-κB/p65,but 100 μrnol/L LaCl3 did not exert an obvious inflammation-inhibiting effect,and even induced inflammation.In conclusion,these findings demonstrated that LaC13 was able to suppress wear particle-induced inflammation and activation of NF-κB in a certain range of concentrations in vitro and mainly decrease the expression of RANK,but not M-CSFR,all of which were generally recognized to play a pivotal role in osteoclastogenesis.

  20. Elevated cytokine expression of different PEEK wear particles compared to UHMWPE in vivo.

    Science.gov (United States)

    Lorber, V; Paulus, A C; Buschmann, A; Schmitt, B; Grupp, T M; Jansson, V; Utzschneider, Sandra

    2014-01-01

    Due to their mechanical properties, there has been growing interest in poly-ether-ether-ketone (PEEK) and its composites as bearing material in total and unicompartmental knee arthroplasty. The aim of this study was to analyze the biological activity of wear particles of two different (pitch and PAN) carbon-fiber-reinforced- (CFR-) PEEK varieties in comparison to ultra-high-molecular-weight-polyethylene (UHMWPE) in vivo. The authors hypothesized no difference between the used biomaterials. Wear particle suspensions of the particulate biomaterials were injected into knee joints of Balb/c mice, which were sacrificed after seven days. The cytokine expression (IL-1β, IL-6, TNF-α) was analyzed immunohistochemically in the synovial layer, the adjacent bone marrow and the articular cartilage. Especially in the bone marrow of the two CFR-PEEK varieties there were increased cytokine expressions compared to the control and UHMWPE group. Furthermore, in the articular cartilage the CFR-PEEK pitch group showed an enhanced cytokine expression, which could be a negative predictor for the use in unicondylar knee systems. As these data suggest an increased proinflammatory potential of CFR-PEEK and its composites in vivo, the initial hypothesis had to be refuted. Summarizing these results, CFR-PEEK seems not to be an attractive alternative to UHMWPE as a bearing material, especially in unicompartmental knee arthroplasty.

  1. αEnv-decorated phosphatidylserine liposomes trigger phagocytosis of HIV-virus-like particles in macrophages.

    Science.gov (United States)

    Gramatica, Andrea; Petazzi, Roberto A; Lehmann, Maik J; Ziomkowska, Joanna; Herrmann, Andreas; Chiantia, Salvatore

    2014-07-01

    Macrophages represent an important cellular target of HIV-1. Interestingly, they are also believed to play a potential role counteracting its infection. However, HIV-1 is known to impair macrophage immune functions such as antibody-mediated phagocytosis. Here, we present immunoliposomes that can bind HIV-1 virus-like particles (HIV-VLPs) while being specifically phagocytosed by macrophages, thus allowing the co-internalization of HIV-VLPs. These liposomes are decorated with anti-Env antibodies and contain phosphatidylserine (PS). PS mediates liposome internalization by macrophages via a mechanism not affected by HIV-1. Hence, PS-liposomes mimic apoptotic cells and are internalized into the macrophages due to specific recognition, carrying the previously bound HIV-VLPs. With a combination of flow cytometry, confocal live-cell imaging and electron microscopy we demonstrate that the PS-immunoliposomes presented here are able to elicit efficient HIV-VLPs phagocytosis by macrophages and might represent a new nanotechnological approach to enhance HIV-1 antigen presentation and reduce the ongoing inflammation processes. This team of authors demonstrate that specific phosphatidylserin immunoliposomes are able to elicit efficient phagocytosis of HIV-virus-like particle by macrophages and might represent a new nanomedicine approach to enhance HIV-1 antigen presentation and reduce ongoing inflammation processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Acute aquatic toxicity of tire and road wear particles to alga, daphnid, and fish.

    Science.gov (United States)

    Marwood, Christopher; McAtee, Britt; Kreider, Marisa; Ogle, R Scott; Finley, Brent; Sweet, Len; Panko, Julie

    2011-11-01

    Previous studies have indicated that tire tread particles are toxic to aquatic species, but few studies have evaluated the toxicity of such particles using sediment, the likely reservoir of tire wear particles in the environment. In this study, the acute toxicity of tire and road wear particles (TRWP) was assessed in Pseudokirchneriella subcapita, Daphnia magna, and Pimephales promelas using a sediment elutriate (100, 500, 1000 or 10000 mg/l TRWP). Under standard test temperature conditions, no concentration response was observed and EC/LC(50) values were greater than 10,000 mg/l. Additional tests using D. magna were performed both with and without sediment in elutriates collected under heated conditions designed to promote the release of chemicals from the rubber matrix to understand what environmental factors may influence the toxicity of TRWP. Toxicity was only observed for elutriates generated from TRWP leached under high-temperature conditions and the lowest EC/LC(50) value was 5,000 mg/l. In an effort to identify potential toxic chemical constituent(s) in the heated leachates, toxicity identification evaluation (TIE) studies and chemical analysis of the leachate were conducted. The TIE coupled with chemical analysis (liquid chromatography/mass spectrometry/mass spectrometry [LC/MS/MS] and inductively coupled plasma/mass spectrometry [ICP/MS]) of the leachate identified zinc and aniline as candidate toxicants. However, based on the high EC/LC(50) values and the limited conditions under which toxicity was observed, TRWP should be considered a low risk to aquatic ecosystems under acute exposure scenarios.

  3. Quantification of BaSO{sub 4} and polyacetal wear particles in the periprosthetic tissue around loosened isoelastic hip stems by nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Strazar, K. [Department of Orthopaedic Surgery, University Medical Center Ljubljana, Zaloska 9, 1000 Ljubljana (Slovenia); Kavcic, M. [Jozef Stefan Institute, Jamova 39, P.O.B. 3000, 1001 Ljubljana (Slovenia); Simcic, J. [Jozef Stefan Institute, Jamova 39, P.O.B. 3000, 1001 Ljubljana (Slovenia); Pelicon, P. [Jozef Stefan Institute, Jamova 39, P.O.B. 3000, 1001 Ljubljana (Slovenia)]. E-mail: primoz.pelicon@ijs.si; Smit, Z. [Jozef Stefan Institute, Jamova 39, P.O.B. 3000, 1001 Ljubljana (Slovenia); University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, SI-1000 Ljubljana (Slovenia); Kump, P. [Jozef Stefan Institute, Jamova 39, P.O.B. 3000, 1001 Ljubljana (Slovenia); Jacimovic, R. [Jozef Stefan Institute, Jamova 39, P.O.B. 3000, 1001 Ljubljana (Slovenia); Antolic, V. [Department of Orthopaedic Surgery, University Medical Center Ljubljana, Zaloska 9, 1000 Ljubljana (Slovenia); Coer, A. [Institute for Histology and Embryology, Medical Faculty Ljubljana, Korytkova 2, 1000 Ljubljana (Slovenia)

    2006-08-15

    The aim of this study was to quantify the amount of the biologically active wear particles in the periprosthetic tissue around loosened polyacetal isoelastic stems to find the pattern of their distribution in the periprosthetic tissue and determine their origin. Proton microbeam measurements of thin tissue sections enabled us identification and quantified elemental analysis of individual wear particles in the tissue. The Ba concentration measured on the wear particles matches the Ba concentration measured with in-air PIXE on the polyacetal stem directly proving the origin of the wear particles which suppose to play a decisive biological role in the process of premature aseptic loosening of polyacetal stems.

  4. Sliding Wear Properties of Hybrid Aluminium Composite Reinforced by Particles of Palm Shell Activated Carbon and Slag

    Directory of Open Access Journals (Sweden)

    Zamri Yusoff

    2011-09-01

    Full Text Available In present work, dry sliding wear tests were conducted on hybrid composite reinforced with natural carbon based particles such as palm shell activated carbon (PSAC and slag. Hybrid composites containing 5 -20 wt.% of both reinforcements with average particles sizes about 125μm were prepared by conventional powder metallurgy technique, which involves the steps of mixing, compacting and sintering. Dry sliding experiments were conducted in air at room temperature using a pin-on-disc self-built attach to polisher machine. The disc which acted as the mating surface material was made of mild steel (120 HV cut from commercial mild steel sheet (2 mm thickness into 100mm diameter. The influence of the applied load was investigated under a constant sliding velocity of 0.1m/s with the applied loads at 3N, 11N and 51N. The contribution of the reinforcement content and the applied load as well as the sliding distance on the wear process and the wear rate have been investigated. The contribution of synergic factors such as applied load, sliding distance and reinforcement content (wt.% have been studied using analysis of variance (ANOVA. All synergic factors contribute to the wear process of all tested composites. Among synergic factors, the applied load is the highest contribution to wear process on both composites (Al/PSAC and Al/Slag and hybrid composite. The degree of improvement of wear resistance of hybrid composite is strongly dependent on the reinforcement content.

  5. Study on dry friction and wear resistance of a WC-Co particle reinforced iron matrix composite material

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-05-01

    Full Text Available In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co particle reinforced chromium cast iron composite material were studied. In particular, the wear resistance was discussed in detail. The results showed that the composite material demonstrates 25 times the wear resistance of high Cr cast iron, and 9 times the wear resistance of heat resistant steel. However, the average friction factor in the stable friction stage showed a relationship of μComposites/45 # steel > μHigh chromium cast iron/45 # steel > μHeat resistant steel/45 # steel. The wear resistance mechanism of the composite material was associated with the reinforcing particles, which protruded from the worn surface to bear the friction load when the matrix material surface was worn, thereby reducing the abrasive and adhesive wear. In addition, the matrix material possessed suitable hardness and toughness, providing a support to the reinforcements.

  6. Effect factors of wear particles deposition in the ferrogram based on grey relative analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, a lot of ferrographic experiments have been made by means of rotary fer-rograph and ferroscope. The oil sample of the experiments has been collected from slip diesel en-gines. The data of the experiments has been analyzed based on grey relative analysis and relativeorder. The result of grey relative analysis shows that the effect of the dilution ratio of the oil sampleis the most key factor, in which the volume and the dilution ratio of the oil sample, and the effect ofthe rotation speed of the magnetic disc on the deposition state of wear particles are investigated.This conclusion is in accordance with the orthogonal experiment based on the same oil sample. Itprovides a new practical method for ferrographic experimental analysis.

  7. Friction and wear behavior of TiC particle reinforced ZA43 matrix composites

    Institute of Scientific and Technical Information of China (English)

    谢贤清; 张荻; 刘金水; 吴人洁

    2001-01-01

    TiC/ZA43 composites were fabricated by XDTM and stirring-casting techniques. The tribology properties of the unreinforced ZA43 alloy and the composites were studied by using a block-on-ring apparatus. Experimental results show that the incorporation of TiC particles improves the microstructure of ZA43 matrix alloy. The coefficient of friction μ and the width of worn groove decrease with the increase of TiC volume fraction φ(TiC). The width of worn groove and μ of the composite during wear testing increase with increasing the applied load. Metallographic examinations reveal that unreinforced ZA43 alloy has deep ploughing grooves with obvious adhesion phenomenon, whereas TiC/ZA43 composites have smooth worn surface. Delamination formation is related to the fatigue cracks and the shear cracks on the surface.

  8. Schisantherin A suppresses osteoclast formation and wear particle-induced osteolysis via modulating RANKL signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi; Zhang, Qing; Shen, Yi; Chen, Xia; Zhou, Feng; Peng, Dan, E-mail: xyeypd@163.com

    2014-07-04

    Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts has been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.

  9. Wear Characteristics of Hybrid Composites Based on Za27 Alloy Reinforced With Silicon Carbide and Graphite Particles

    Directory of Open Access Journals (Sweden)

    S. Mitrović

    2014-06-01

    Full Text Available The paper presents the wear characteristics of a hybrid composite based on zinc-aluminium ZA27 alloy, reinforced with silicon-carbide and graphite particles. The tested sample contains 5 vol.% of SiC and 3 vol.% Gr particles. Compocasting technique has been used to prepare the samples. The experiments were performed on a “block-on-disc” tribometer under conditions of dry sliding. The wear volumes of the alloy and the composite were determined by varying the normal loads and sliding speeds. The paper contains the procedure for preparation of sample composites and microstructure of the composite material and the base ZA27 alloy. The wear surface of the composite material was examined using the scanning electronic microscope (SEM and energy dispersive spectrometry (EDS. Conclusions were obtained based on the observed impact of the sliding speed, normal load and sliding distance on tribological behaviour of the observed composite.

  10. How antibodies alter the cell entry pathway of dengue virus particles in macrophages

    NARCIS (Netherlands)

    Ayala-Nunez, Nilda V.; Hoornweg, Tabitha E.; van de Pol, Denise P. I.; Sjollema, Klaas A.; Flipse, Jacky; van der Schaar, Hilde M.; Smit, Jolanda M.

    2016-01-01

    Antibody-dependent enhancement of dengue virus (DENV) infection plays an important role in the exacerbation of DENV-induced disease. To understand how antibodies influence the fate of DENV particles, we explored the cell entry pathway of DENV in the absence and presence of antibodies in macrophage-l

  11. Effect of nano-size nickel particles on wear resistance and high temperature oxidation resistance of ultrafine ceramic coating

    Institute of Scientific and Technical Information of China (English)

    古一; 夏长清; 李佳; 吴安如

    2004-01-01

    In order to improve the wear resistance and high temperature oxidation resistance of titanium and titanium alloy, the high temperature ultra fine ceramic coating containing nano-size nickel particles was prepared by flow coat method on the surface of industrially pure titanium TB1-0. The effects of nano-size nickel particles on the wear resistance and high temperature oxidation resistance of coating substrate system were investigated through oxidation kinetics experiment and wear resistance test. The morphologies of the specimens were examined by means of optical microscopy, scanning electron microscopy and X-ray diffraction. The results show that the high temperature ultra fine ceramic coating has notable protection effect on industrially pure titanium TB1-0 from oxidation. The oxidation and wear resistance properties of the coating can be effectively improved by adding nano-size nickel particles. The decreases from 1. 1 to 0. 6 by adding nano-size nickel particles, and the coating containing 10% (mass fraction) nano-size nickel shows the optimum properties.

  12. Identification of inorganic dust particles in bronchoalveolar lavage macrophages by energy dispersive x-ray microanalysis.

    Science.gov (United States)

    Johnson, N F; Haslam, P L; Dewar, A; Newman-Taylor, A J; Turner-Warwick, M

    1986-01-01

    This study shows that energy dispersive x-ray microprobe analysis to identify and quantify intracellular particles in macrophages obtained by the minimally invasive method of bronchoalveolar lavage (BAL) can detect inorganic dust exposures of many different kinds. Bronchoalveolar lavage macrophages from 22 patients have been examined. Twelve patients had occupational exposure to asbestos, talc, silica, hard metal or printing ink, while 10 had no known history of dust exposure. X-ray microprobe analysis identified particles which related to the known exposures, superimposed on a background of other particles related to smoking (kaolinite and mica) or to the general environment (silicon, titanium, and iron). The particle identification provided useful objective confirmation of the known exposures, except for silica, which could not be distinguished from the general background levels. X-ray microanalysis using BAL macrophages can be helpful for clarification of mixed dust exposures, to identify particles when light microscopy indicates retained dust in patients with no known history of exposure, and to monitor retained particles after removal from exposure.

  13. Macrophage solubilization and cytotoxicity of indium-containing particles in vitro.

    Science.gov (United States)

    Gwinn, William M; Qu, Wei; Shines, Cassandra J; Bousquet, Ronald W; Taylor, Genie J; Waalkes, Michael P; Morgan, Daniel L

    2013-10-01

    Indium-containing particles (ICPs) are used extensively in the microelectronics industry. Pulmonary toxicity is observed after inhalation exposure to ICPs; however, the mechanism(s) of pathogenesis is unclear. ICPs are insoluble at physiological pH and are initially engulfed by alveolar macrophages (and likely airway epithelial cells). We hypothesized that uptake of ICPs by macrophages followed by phagolysosomal acidification results in the solubilization of ICPs into cytotoxic indium ions. To address this, we characterized the in vitro cytotoxicity of indium phosphide (InP) or indium tin oxide (ITO) particles with macrophages (RAW cells) and lung-derived epithelial (LA-4) cells at 24h using metabolic (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and membrane integrity (lactate dehydrogenase) assays. InP and ITO were readily phagocytosed by RAW and LA-4 cells; however, the particles were much more cytotoxic to RAW cells and cytotoxicity was dose dependent. Treatment of RAW cells with cytochalasin D (CytoD) blocked particle phagocytosis and reduced cytotoxicity. Treatment of RAW cells with bafilomycin A1, a specific inhibitor of phagolysosomal acidification, also reduced cytotoxicity but did not block particle uptake. Based on direct indium measurements, the concentration of ionic indium was increased in culture medium from RAW but not LA-4 cells following 24-h treatment with particles. Ionic indium derived from RAW cells was significantly reduced by treatment with CytoD. These data implicate macrophage uptake and solubilization of InP and ITO via phagolysosomal acidification as requisite for particle-induced cytotoxicity and the release of indium ions. This may apply to other ICPs and strongly supports the notion that ICPs require solubilization in order to be toxic.

  14. Effects of digestion protocols on the isolation and characterization of metal-metal wear particles. I. Analysis of particle size and shape.

    Science.gov (United States)

    Catelas, I; Bobyn, J D; Medley, J B; Krygier, J J; Zukor, D J; Petit, A; Huk, O L

    2001-06-01

    Isolation of metal wear particles from hip simulator lubricants or tissues surrounding implants is a challenging problem because of small particle size, their tendency to agglomerate, and their potential for chemical degradation by digestion reagents. To provide realistic measurements of size, shape, and composition of metal wear particles, it is important to optimize particle isolation and minimize particle changes due to the effects of the reagents. In this study (Part I of II), transmission electron microscopy (TEM) was used to examine and compare the effects of different isolation protocols, using enzymes or alkaline solutions, on the size and shape of three different types of cobalt-based alloy particles produced from metal-metal bearings. The effect on particle composition was examined in a subsequent study (Part II). Large particles (particles (water or a 95% bovine serum solution. The reagents changed particle size and to a lesser extent particle shape. For both large particles and small particles generated in water, the changes in size were more extensive after alkaline than after enzymatic protocols and increased with alkaline concentration and time in solution, up to twofold at 2 h and threefold at 48 h. However, when isolating particles from 95% serum, an initial protective effect of serum proteins and/or lipids was observed. Because of this protective effect, there was no significant difference in particle size and shape for both oval and needle-shaped particles after 2 h in 2N KOH and after enzymatic treatments. However, round particles were significantly smaller after 2 h in 2N KOH than after enzymatic treatments. Particle composition may also have been affected by the 2N KOH treatment, as suggested by a difference in particle contrast under TEM, an issue examined in detail in Part II.

  15. Geraniin suppresses RANKL-induced osteoclastogenesis in vitro and ameliorates wear particle-induced osteolysis in mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Fei; Zhai, Zanjing; Jiang, Chuan; Liu, Xuqiang; Li, Haowei; Qu, Xinhua [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Ouyang, Zhengxiao [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Department of Orthopaedics, Hunan Provincial Tumor Hospital and Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 (China); Fan, Qiming; Tang, Tingting [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Qin, An, E-mail: dr.qinan@gmail.com [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Gu, Dongyun, E-mail: dongyungu@gmail.com [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education of PR China (China); School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

    2015-01-01

    Wear particle-induced osteolysis and subsequent aseptic loosening remains the most common complication that limits the longevity of prostheses. Wear particle-induced osteoclastogenesis is known to be responsible for extensive bone erosion that leads to prosthesis failure. Thus, inhibition of osteoclastic bone resorption may serve as a therapeutic strategy for the treatment of wear particle induced osteolysis. In this study, we demonstrated for the first time that geraniin, an active natural compound derived from Geranium thunbergii, ameliorated particle-induced osteolysis in a Ti particle-induced mouse calvaria model in vivo. We also investigated the mechanism by which geraniin exerts inhibitory effects on osteoclasts. Geraniin inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, evidenced by reduced osteoclast formation and suppressed osteoclast specific gene expression. Specially, geraniin inhibited actin ring formation and bone resorption in vitro. Further molecular investigation demonstrated geraniin impaired osteoclast differentiation via the inhibition of the RANKL-induced NF-κB and ERK signaling pathways, as well as suppressed the expression of key osteoclast transcriptional factors NFATc1 and c-Fos. Collectively, our data suggested that geraniin exerts inhibitory effects on osteoclast differentiation in vitro and suppresses Ti particle-induced osteolysis in vivo. Geraniin is therefore a potential natural compound for the treatment of wear particle induced osteolysis in prostheses failure. - Highlights: • Geraniin suppresses osteoclasts formation and function in vitro. • Geraniin impairs RANKL-induced nuclear factor-κB and ERK signaling pathway. • Geraniin suppresses osteolysis in vivo. • Geraniin may be used for treating osteoclast related diseases.

  16. Effect of reinforcing submicron SiC particles on the wear of electrolytic NiP coatings Part 1. Uni-directional sliding

    OpenAIRE

    Aslanyan, I. R.; Bonino, Jean-Pierre; Celis, J.-P.

    2006-01-01

    As-plated and annealed NiP coatings and composite NiP-SiC coatings were investigated in uni-directional ball-on-disc sliding tests. Abrasive wear was noticed in the case of composite NiP coatings containing submicron SiC particles, whereas in NiP coatings oxidational wear was active. The addition of submicron SiC particles not only increases the hardness of these electrolytic coatings but also hinders the formation of an oxide film in the sliding wear track. As a consequence, the wear loss on...

  17. ELECTROSTATIC CHARGE ON NANO-PARTICLES ACTIVATES CNS MACROPHAGES (MICROGLIA).

    Science.gov (United States)

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  18. Pyrroloquinoline quinine inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos in mouse bone marrow cells and inhibits wear particle-induced osteolysis in mice.

    Directory of Open Access Journals (Sweden)

    Lingbo Kong

    Full Text Available The effects of pyrroloquinoline quinine (PQQ on RANKL-induced osteoclast differentiation and on wear particle-induced osteolysis were examined in this study. PQQ inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages (BMMs in a dose-dependent manner without any evidence of cytotoxicity. The mRNA expression of c-Fos, NFATc1, and TRAP in RANKL-treated BMMs was inhibited by PQQ treatment. Moreover, RANKL-induced c-Fos and NFATc1 protein expression was suppressed by PQQ. PQQ additionally inhibited the bone resorptive activity of differentiated osteoclasts. Further a UHMWPE-induced murine calvaria erosion model study was performed to assess the effects of PQQ on wear particle-induced osteolysis in vivo. Mice treated with PQQ demonstrated marked attenuation of bone erosion based on Micro-CT and histologic analysis of calvaria. These results collectively suggested that PQQ demonstrated inhibitory effects on osteoclast differentiation in vitro and may suppress wear particle-induced osteolysis in vivo, indicating that PQQ may therefore serve as a useful drug in the prevention of bone loss.

  19. Sialic acid mediates the initial binding of positively charged inorganic particles to alveolar macrophage membranes.

    Science.gov (United States)

    Gallagher, J E; George, G; Brody, A R

    1987-06-01

    Pulmonary macrophages phagocytize inhaled particles and are postulated to play a role in the development of pulmonary interstitial fibrogenesis. The basic biologic mechanisms through which inhaled particles bind to macrophage membranes and subsequently are phagocytized remain unclear. We hypothesize that positively charged particles bind to negatively charged sialic acid (SA) residues on macrophage membranes. Alveolar Macrophages (AM) were collected by saline lavage from normal rat lungs. The cells adhered to plastic coverslips in serum-free phosphate buffered saline at 37 degrees C for 45 min and then were maintained at 4 degrees C for the binding experiments. Even distribution of SA groups on AM surfaces was demonstrated by scanning electron microscopy of wheat germ agglutinin (WGA) conjugated to 50 nm gold spheres. The WGA is a lectin that binds specifically to sialic acid, and pretreatment of AM with this lectin prevented the binding of positively charged carbonyl iron (C-Fe) spheres, aluminum (Al) spheres, and chrysotile asbestos fibers to AM surfaces. Limulus protein, another lectin with binding specificity for SA, similarly blocked the binding of positively charged spheres and chrysotile asbestos fibers but not negatively charged glass spheres or crocidolite asbestos fibers. Con A and ricin, lectins that bind to mannose and galactose residues, respectively, did not block particle binding. When both positively charged iron spheres and negatively charged glass spheres were prebound to AM membranes, subsequent treatment with WGA displaced only the positively charged spheres from macrophage surfaces. Con A and ricin had no effect on prebound positively charged C-Fe and Al spheres.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro.

    Science.gov (United States)

    Cao, Yi; Jantzen, Kim; Gouveia, Ana Cecilia Damiao; Skovmand, Astrid; Roursgaard, Martin; Loft, Steffen; Møller, Peter

    2015-07-01

    Exposure to diesel exhaust particles (DEP) has been associated with adverse cardiopulmonary health effects, which may be related to dysregulation of lipid metabolism and formation of macrophage foam cells. In this study, THP-1 derived macrophages were exposed to an automobile generated DEP (A-DEP) for 24h to study lipid droplet formation and possible mechanisms. The results show that A-DEP did not induce cytotoxicity. The production of reactive oxygen species was only significantly increased after exposure for 3h, but not 24h. Intracellular level of reduced glutathione was increased after 24h exposure. These results combined indicate an adaptive response to oxidative stress. Exposure to A-DEP was associated with significantly increased formation of lipid droplets, as well as changes in lysosomal function, assessed as reduced LysoTracker staining. In conclusion, these results indicated that exposure to A-DEP may induce formation of lipid droplets in macrophages in vitro possibly via lysosomal dysfunction.

  1. Macrophage Responses to Silica Nanoparticles are Highly Conserved Across Particle Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Masiello, Lisa M.; Zangar, Richard C.; Tarasevich, Barbara J.; Karin, Norman J.; Quesenberry, Ryan D.; Bandyopadhyay, Somnath; Teeguarden, Justin G.; Pounds, Joel G.; Thrall, Brian D.

    2009-02-03

    Concerns about the potential adverse health effects of engineered nanoparticles stems in part from the possibility that some materials display unique chemical and physical properties at nanoscales which could exacerbate their biological activity. However, studies that have assessed the effect of particle size across a comprehensive set of biological responses have not been reported. Using a macrophage cell model, we demonstrate that the ability of unopsonized amorphous silica particles to stimulate inflammatory protein secretion and induce macrophage cytotoxicity scales closely with the total administered particle surface area across a wide range of particle diameters (7-500 nm). Whole genome microarray analysis of the early gene expression changes induced by 10 nm and 500 nm particles showed that the magnitude of change for the majority of genes affected correlated more tightly with particle surface area than either particle mass or number. Gene expression changes that were particle size-specific were also identified. However, the overall biological processes represented by all gene expression changes were nearly identical, irrespective of particle diameter. Direct comparison of the cell processes represented in the 10 nm and 500 nm particle gene sets using gene set enrichment analysis revealed that among 1009 total biological processes, none were statistically enriched in one particle size group over the other. The key mechanisms involved in silica nanoparticle-mediated gene regulation and cytotoxicity have yet to be established. However, our results suggest that on an equivalent nominal surface area basis, common biological modes of action are expected for nano- and supranano-sized silica particles.

  2. Regulation of the arachidonic acid mobilization in macrophages by combustion-derived particles

    Directory of Open Access Journals (Sweden)

    Weiss Carsten

    2011-08-01

    Full Text Available Abstract Background Acute exposure to elevated levels of environmental particulate matter (PM is associated with increasing morbidity and mortality rates. These adverse health effects, e.g. culminating in respiratory and cardiovascular diseases, have been demonstrated by a multitude of epidemiological studies. However, the underlying mechanisms relevant for toxicity are not completely understood. Especially the role of particle-induced reactive oxygen species (ROS, oxidative stress and inflammatory responses is of particular interest. In this in vitro study we examined the influence of particle-generated ROS on signalling pathways leading to activation of the arachidonic acid (AA cascade. Incinerator fly ash particles (MAF02 were used as a model for real-life combustion-derived particulate matter. As macrophages, besides epithelial cells, are the major targets of particle actions in the lung murine RAW264.7 macrophages and primary human macrophages were investigated. Results The interaction of fly ash particles with macrophages induced both the generation of ROS and as part of the cellular inflammatory responses a dose- and time-dependent increase of free AA, prostaglandin E2/thromboxane B2 (PGE2/TXB2, and 8-isoprostane, a non-enzymatically formed oxidation product of AA. Additionally, increased phosphorylation of the mitogen-activated protein kinases (MAPK JNK1/2, p38 and ERK1/2 was observed, the latter of which was shown to be involved in MAF02-generated AA mobilization and phosphorylation of the cytosolic phospolipase A2. Using specific inhibitors for the different phospolipase A2 isoforms the MAF02-induced AA liberation was shown to be dependent on the cytosolic phospholipase A2, but not on the secretory and calcium-independent phospholipase A2. The initiation of the AA pathway due to MAF02 particle exposure was demonstrated to depend on the formation of ROS since the presence of the antioxidant N-acetyl-cysteine (NAC prevented the MAF02

  3. Tribological Properties and a Wear Model of Aluminium Matrix Composites - SiC Particles Designed for Metal Forming

    Directory of Open Access Journals (Sweden)

    Wieczorek J.

    2015-04-01

    Full Text Available Aluminium based metal matrix composites are well known for their good wear resistance, high specific strength, stiffness and hardness. They have been applied in the aerospace, military and, especially, in the automotive industries. This paper presents the results of tests with regard to the application of a mixture of particles in aluminium matrix (AlCu2SiMn composites where a mixture of SiC ceramic particles was used. The aim of the research was to determine the tribological properties as well as the phenomena and mechanisms which accompany the tribological wear of composites under dry friction conditions. The tribological investigations were conducted on a pin-on-block tester. The results of the tests show the composite obtained can be applied for sliding elements. Based on microscopic examinations and profilometry of the composites AlCu2SiMn+SiC surfaces at interaction the relationship between the size of reinforcing particles and the geometry of the surface layer of the composite was described. The study made it possible to develop a model of tribological wear of composites depending on the size of reinforcing particles.

  4. Al-MoSi2 Composite Materials: Analysis of Microstructure, Sliding Wear, Solid Particle Erosion, and Aqueous Corrosion

    Science.gov (United States)

    Gousia, V.; Tsioukis, A.; Lekatou, A.; Karantzalis, A. E.

    2016-08-01

    In this effort, AMCs reinforced with new intermetallic phases, were produced through casting and compared as far as their microstructure, sliding wear, solid particle erosion, and aqueous corrosion response. Casting was selected as a production method based on the concept: (a) ease-to-handle and low cost production route and (b) optimum homogeneity of the reinforcing phase distribution. The MoSi2 phase was produced through vacuum arc melting and the resulting drops were milled for 30 h to produce fine powder, the characteristics of which were ascertained through SEM-EDS and XRD analysis. MoSi2 was used as precursor source for the final reinforcing phase. The powder material was incorporated in molten Al1050 alloy to additions of 2, 5 and 10 vol.% respectively. Extensive reactivity between the molten Al and the MoSi2 particles was observed, leading to the formation of new reinforcing phases mainly of the Al-Mo system. In all cases, a uniform particle distribution was observed, mainly characterized by isolated intermetallic phases and few intermetallic phase clusters. Sliding wear showed a beneficial action of the reinforcing phase on the wear of the composites. Surface oxidation, plastic deformation, crack formation, and debris abrasive action were the main degradation features. The results of solid particle erosion showed that the mechanism is different as the impact angle and the vol.% change. Regarding the corrosion, the analysis revealed localized corrosion effects. The composite behavior was not altered significantly compared to that of the monolithic matrix.

  5. Hydroxyl radicals induced by quartz particles in lung alveolar macrophages: the role of surface iron

    Institute of Scientific and Technical Information of China (English)

    LI Yi; ZHU Tong; GUO Xinbiao; SHANG Yu

    2006-01-01

    Previous studies have shown that hydroxyl radical generation is a key step in the mechanism of pathogenic process caused by airborne particles to the lung. However, there is no direct evidence for dose-response relationship between airborne particles and hydroxyl radical generation. In this study, hydroxyl radicals generated in lung alveolar macrophages exposed to quartz particles were measured using a highly sensitive capillary electrophoresis-fluorescence detection method. The results demonstrated that quartz particles induced the generation of hydroxyl radical in a dose-dependent manner, and the amount of the hydroxyl radicals was 10-10 mol/106 cells.The viability of alveolar macrophages exposed to quartz particles decreased with the increase of quartz concentration, showing a clear doseresponse relationship. Hydroxyl radical scavenger mannitol could increase the viability of quartz-treated cells, suggesting that hydroxyl radical contributed directly to cell death. In this study this contribution accounted for about 5%-20% of cell death. The hydroxyl radical generating potential was found to be related to surface iron content of the quartz particles.

  6. Kinetics of chemotaxis, cytokine, and chemokine release of NR8383 macrophages after exposure to inflammatory and inert granular insoluble particles.

    Science.gov (United States)

    Schremmer, I; Brik, A; Weber, D G; Rosenkranz, N; Rostek, A; Loza, K; Brüning, T; Johnen, G; Epple, M; Bünger, J; Westphal, G A

    2016-11-30

    Accumulation of macrophages and neutrophil granulocytes in the lung are key events in the inflammatory response to inhaled particles. The present study aims at the time course of chemotaxis in vitro in response to the challenge of various biopersistent particles and its functional relation to the transcription of inflammatory mediators. NR8383 rat alveolar macrophages were challenged with particles of coarse quartz, barium sulfate, and nanosized silica for one, four, and 16h and with coarse and nanosized titanium dioxide particles (rutile and anatase) for 16h only. The cell supernatants were used to investigate the chemotaxis of unexposed NR8383 macrophages. The transcription of inflammatory mediators in cells exposed to quartz, silica, and barium sulfate was analyzed by quantitative real-time PCR. Challenge with quartz, silica, and rutile particles induced significant chemotaxis of unexposed NR8383 macrophages. Chemotaxis caused by quartz and silica was accompanied by an elevated transcription of CCL3, CCL4, CXCL1, CXCL3, and TNFα. Quartz exposure showed an earlier onset of both effects compared to the nanosized silica. The strength of this response roughly paralleled the cytotoxic effects. Barium sulfate and anatase did not induce chemotaxis and barium sulfate as well caused no elevated transcription. In conclusion, NR8383 macrophages respond to the challenge with inflammatory particles with the release of chemotactic compounds that act on unexposed macrophages. The kinetics of the response differs between the various particles. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Different particle determinants induce apoptosis and cytokine release in primary alveolar macrophage cultures

    Directory of Open Access Journals (Sweden)

    Schwarze Per E

    2006-06-01

    Full Text Available Abstract Background Particles are known to induce both cytokine release (MIP-2, TNF-α, a reduction in cell viability and an increased apoptosis in alveolar macrophages. To examine whether these responses are triggered by the same particle determinants, alveolar macrophages were exposed in vitro to mineral particles of different physical-chemical properties. Results The crystalline particles of the different stone types mylonite, gabbro, basalt, feldspar, quartz, hornfels and fine grain syenite porphyr (porphyr, with a relatively equal size distribution (≤ 10 μm, but different chemical/mineral composition, all induced low and relatively similar levels of apoptosis. In contrast, mylonite and gabbro induced a marked MIP-2 response compared to the other particles. For particles of smaller size, quartz (≤ 2 μm seemed to induce a somewhat stronger apoptotic response than even smaller quartz (≤ 0.5 μm and larger quartz (≤ 10 μm in relation to surface area, and was more potent than hornfels and porphyr (≤ 2 μm. The reduction in cell viability induced by quartz of the different sizes was roughly similar when adjusted to surface area. With respect to cytokines, the release was more marked after exposure to quartz ≤ 0.5 μm than to quartz ≤ 2 μm and ≤ 10 μm. Furthermore, hornfels (≤ 2 μm was more potent than the corresponding hornfels (≤ 10 μm and quartz (≤ 2 μm to induce cytokine responses. Pre-treatment of hornfels and quartz particles ≤ 2 μm with aluminium lactate, to diminish the surface reactivity, did significantly reduce the MIP-2 response to hornfels. In contrast, the apoptotic responses to the particles were not affected. Conclusion These results indicate that different determinants of mineral/stone particles are critical for inducing cytokine responses, reduction in cell viability and apoptosis in alveolar macrophages. The data suggest that the particle surface reactivity was critical for cytokine responses

  8. Acute effects of inhaled urban particles and ozone: lung morphology, macrophage activity, and plasma endothelin-1.

    Science.gov (United States)

    Bouthillier, L; Vincent, R; Goegan, P; Adamson, I Y; Bjarnason, S; Stewart, M; Guénette, J; Potvin, M; Kumarathasan, P

    1998-12-01

    We studied acute responses of rat lungs to inhalation of urban particulate matter and ozone. Exposure to particles (40 mg/m3 for 4 hours; mass median aerodynamic diameter, 4 to 5 microm; Ottawa urban dust, EHC-93), followed by 20 hours in clean air, did not result in acute lung injury. Nevertheless, inhalation of particles resulted in decreased production of nitric oxide (nitrite) and elevated secretion of macrophage inflammatory protein-2 from lung lavage cells. Inhalation of ozone (0.8 parts per million for 4 hours) resulted in increased neutrophils and protein in lung lavage fluid. Ozone alone also decreased phagocytosis and nitric oxide production and stimulated endothelin-1 secretion by lung lavage cells but did not modify secretion of macrophage inflammatory protein-2. Co-exposure to particles potentiated the ozone-induced septal cellularity in the central acinus but without measurable exacerbation of the ozone-related alveolar neutrophilia and permeability to protein detected by lung lavage. The enhanced septal thickening was associated with elevated production of both macrophage inflammatory protein-2 and endothelin-1 by lung lavage cells. Interestingly, inhalation of urban particulate matter increased the plasma levels of endothelin-1, but this response was not influenced by the synergistic effects of ozone and particles on centriacinar septal tissue changes. This suggests an impact of the distally distributed particulate dose on capillary endothelial production or filtration of the vasoconstrictor. Overall, equivalent patterns of effects were observed after a single exposure or three consecutive daily exposures to the pollutants. The experimental data are consistent with epidemiological evidence for acute pulmonary effects of ozone and respirable particulate matter and suggest a possible mechanism whereby cardiovascular effects may be induced by particle exposure. In a broad sense, acute biological effects of respirable particulate matter from ambient air

  9. Wear resistance and corrosion resistance of VCp particle reinforced stainless steel composites

    Institute of Scientific and Technical Information of China (English)

    YAO Xiu-rong; HAN Jie-cai; ZUO Hong-bo; LIU Zhao-jing; LI Feng-zhen; REN Shan-zhi

    2005-01-01

    The VCp reinforced stainless steel composite was produced by in-situ reaction casting. The composite was tested for its wear resistance under the wet abrasive condition and corrosion resistance, compared with the wear-resistant white iron and stainless steel. The results show that the wear resistance of the composite is slightly inferior to that of the white iron, but much better than that of the stainless steel under the wet grinding abrasive condition. The corrosion resistance of the composite is much better than that of the white iron in the acid medium,and a little worse than that of the stainless steel. Thus the composite exhibits superior properties of wear resistance and corrosion resistance.

  10. A novel alginate-encapsulated system to study biological response to critical-sized wear particles of UHMWPE loaded with alendronate sodium.

    Science.gov (United States)

    Liu, Yumei; Shi, Feng; Bo, Lin; Zhi, Wei; Weng, Jie; Qu, Shuxin

    2017-10-01

    The aim of this study was to develop a novel alginate-encapsulated system (Alg beads) to investigate the cell response to critical-sized wear particles of ultra-high molecular weight polyethylene loaded with alendronate sodium (UHMWPE-ALN), one of the most effective drugs to treat bone resorption in clinic. The extrusion method was used to prepare Alg beads encapsulating rat calvarial osteoblasts (RCOs) and critical-sized UHMWPE-ALN wear particles with spherical morphology and uniform size. The morphology, permeability and stability of Alg beads were characterized. The proliferation, ALP activity, cell apoptosis and distribution of live/dead RCOs co-cultured with wear particles in Alg beads were evaluated. RCOs and critical-sized UHMWPE-ALN wear particles distributed evenly and contacted efficiently in Alg beads. Alg beads were both permeable to trypsin and BSA, while the smaller the molecular was, the larger the diffuse was. The proliferation of RCOs in Alg beads increased with time, which indicated that Alg beads provided suitable conditions for cell culture. The long-term stability of Alg beads indicated the possibility for the longer time of co-cultured cells with wear particles. Critical-sized UHMWPE-ALN and UHMWPE wear particles both inhibited the proliferation and differentiation of RCOs, and induced the apoptosis of RCOs encapsulated in Alg beads. However, these effects could be significantly alleviated by the ALN released from the critical-sized UHMWPE-ALN wear particles. The present results suggested that this novel-developed co-culture system was feasible to evaluate the cell response to critical-sized UHMWPE-ALN wear particles for a longer time. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Nanoscale mechanochemical wear of phosphate laser glass against a CeO2 particle in humid air

    Science.gov (United States)

    Yu, Jiaxin; He, Hongtu; Zhang, Yafeng; Hu, Hailong

    2017-01-01

    Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO2 particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO2 pair in air was found to be 5-7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65-79%. The capillary water bridge further induced a serious material removal of glass and CeO2 particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Cesbnd Osbnd P bond, accelerating the reaction between water and the glass/CeO2 pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.

  12. Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification.

    Science.gov (United States)

    Chono, Sumio; Tanino, Tomoharu; Seki, Toshinobu; Morimoto, Kazuhiro

    2007-01-01

    The influence of particle size and surface mannose modification on the uptake of liposomes by alveolar macrophages (AMs) was investigated in-vitro and in-vivo. Non-modified liposomes of five different particle sizes (100, 200, 400, 1000 and 2000 nm) and mannosylated liposomes with 4-aminophenyl-alpha-D-mannopyranoside (particle size 1000 nm) were prepared, and the uptake characteristics by rat AMs in-vitro and in-vivo were examined. The uptake of non-modified liposomes by rat AMs in-vitro increased with an increase in particle size over the range of 100-1000 nm, and became constant at over 1000 nm. The uptake of non-modified liposomes by AMs after pulmonary administration to rats in-vivo increased with an increase in particle size in the range 100-2000 nm. The uptake of mannosylated liposomes (particle size 1000 nm) by rat AMs both in-vitro and in-vivo was significantly greater than that of non-modified liposomes (particle size 1000 nm). The results indicate that the uptake of liposomes by rat AMs is dependent on particle size and is increased by surface mannose modification.

  13. Abrasive Endoprosthetic Wear Particles Inhibit IFN-γ Secretion in Human Monocytes Via Upregulating TNF-α-Induced miR-29b.

    Science.gov (United States)

    Bu, Yan-Min; Zheng, De-Zhi; Wang, Lei; Liu, Jun

    2017-02-01

    The adverse biological responses to prostheses wear particles commonly led to the failure of total hip arthroplasty. Among the released cytokines, interferon-γ (IFN-γ) has been found to be a critical functional factor during osteoclast differentiation. However, the molecular mechanism underlying the regulation of IFN-γ in wear particles-induced cells still needs to be determined. Four kinds of abrasive endoprosthetic wear particle were used to treat THP-1 cells, including polymethylmethacrylate (PMMA), zirconiumoxide (ZrO2), commercially pure titanium (cpTi), and titanium alloy (Ti-6Al-7Nb), with a concentration of 0.01, 0.05, 0.1, or 0.2 mg/ml for 48 h. The expression of IFN-γ and miR-29b was detected by real-time RT-PCR or ELISA. Luciferase reporter assay was performed to determine the regulation of miR-29b on IFN-γ. The effect of miR-29b inhibitor on the expression of wear particle-induced IFN-γ was detected. The expression of miR-29b was examined in THP-1 cells treated with tumor necrosis factor-alpha (TNF-α). The expression of IFN-γ was downregulated and the level of miR-29b was increased in THP-1 cells pretreated with wear particles. IFN-γ was a target of miR-29b. Wear particles inhibited the expression of IFN-γ through miR-29b. The expression of miR-29b was significantly reduced in THP-1 cells treated with TNF-α neutralizing antibody and particles comparing to that in the cells treated with particles alone. Wear particles inhibit the IFN-γ secretion in human monocytes, which was associated with the upregulating TNF-α-induced miR-29b.

  14. Tire-wear particles as a source of zinc to the environment

    Science.gov (United States)

    Councell, T.B.; Duckenfield, K.U.; Landa, E.R.; Callender, E.

    2004-01-01

    Tire-tread material has a zinc (Zn) content of about 1 wt %. The quantity of tread material lost to road surfaces by abrasion has not been well characterized. Two approaches were used to assess the magnitude of this nonpoint source of Zn in the U.S. for the period 1936-1999. In the first approach, tread-wear rates from the automotive engineering literature were used in conjunction with vehicle distance-driven data from the U.S. Department of Transportation to determine Zn releases. A second approach calculated this source term from the volume of tread lost during lifetime tire wear. These analyses showed that the quantity of Zn released by tire wear in the mid-1990s was of the same magnitude as that released from waste incineration. For 1999, the quantity of Zn released by tire wear in the U.S. is estimated to be 10 000-11 000 metric tons. A specific case study focused on Zn sources and sinks in an urban-suburban watershed (Lake Anne) in the Washington, DC, metropolitan area for a time period of the late 1990s. The atmospheric flux of total Zn (wet deposition) to the watershed was 2 ??g/cm2/yr. The flux of Zn to the watershed estimated from tire wear was 42 ??g/cm2/yr. The measured accumulation rate of total Zn in age-dated sediment cores from Lake Anne was 27 ??g/cm2/yr. These data suggest that tire-wear Zn inputs to urban-suburban watersheds can be significantly greater than atmospheric inputs, although the watershed appears to retain appreciable quantities of vehicular Zn inputs.

  15. Cytotoxicity to alveolar macrophages of airborne particles and waste incinerator fly-ash fractions.

    Science.gov (United States)

    Gulyas, H; Gercken, G

    1988-01-01

    A waste incinerator fly ash was separated into different grain-size fractions by sieving and sedimentation in butanol. The element content of each fraction was determined by atomic absorption and emission spectrometry. The fly-ash fractions, an eluted fine fly-ash fraction and an eluted airborne dust were analysed microscopically for particle size and numbers, together with standard quartz DQ 12 and three element-analysed airborne dusts. Rabbit alveolar macrophages, isolated by lung lavage, were incubated for 24 h with the particulates, the two eluates and a mixed element compound solution corresponding to the element concentrations of one airborne dust. At the end of incubation, the activities of lactate dehydrogenase, N-acetyl-beta-glucosaminidase, beta-galactosidase and acid phosphatase were determined in medium and cell lysates. Cytotoxicity was expressed as ratio of extracellular to total LDH (lactate dehydrogenase) activity. Release of N-acetyl-beta-glucosaminidase and beta-galactosidase was correlated positively with LDH release, whereas the total activity of acid phosphatase decreased with increasing LDH release. Cytotoxicity of the dusts was correlated with particle numbers, and As, Sb and Pb contents. The contribution of As to particle toxicity is discussed. Eluates of dusts did not affect rabbit alveolar macrophage viability.

  16. Selected Plastics Wear Resistance to Bonded Abrasive Particles Compared to Some Ferrous Materials

    Directory of Open Access Journals (Sweden)

    Milan Brožek

    2015-01-01

    Full Text Available Plastics are macromolecular materials without we cannot imagine any branch of human activity with. Plastics have unique properties, often very different from metals. At the choice of the concrete plastic for the concrete application it is necessary to evaluate its mechanical, physical, chemical and technological properties. In last years producers offer also plastics for production of parts exposed to different types of wear. In the contribution the results of wear resistance studying of 10 types of plastics (PTFE, PVC, POM-C, PC, PETP, PEEK, PA66, PP, PA6E and PE-UHMW of one producer are published and compared with test results of four different Fe alloys (grey iron, structural steel, cast steel wear resistant and high-speed steel. The laboratory tests were carried out using the pin-on-disk machine with abrasive cloth (according to ČSN 01 5084, when the abrasive clothes of three different grits (240, 120 and 60 were used. It corresponds to the average abrasive grain sizes of 44.5 µm, 115.5 µm and 275 µm. During the test the test sample was pressed to the abrasive cloth by the pressure of 0.1 MPa. The wear intensity was assessed by the volume, weight and length losses of tested samples. The technical-economical evaluation was the part of the carried out tests. It was univocally proved that at the intensive abrasive wear using the abrasive cloth the best results shows the High-Speed Steel HSS Poldi Radeco 19 810 according to ČSN 41 9810, although its price is relatively high. Other tested Fe alloys, namely grey iron according to ČSN 42 2415, structural steel 11 373 according to ČSN 41 1373 and wear resistant cast steel VPH 6 showed also very favourable properties at the material low price. In comparison with Fe alloys the wear of all plastics was considerably higher and the plastics were considerably more expensive.

  17. Prevention of wear particle-induced osteolysis by a novel V-ATPase inhibitor saliphenylhalamide through inhibition of osteoclast bone resorption.

    Directory of Open Access Journals (Sweden)

    An Qin

    Full Text Available Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis.

  18. Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils

    Directory of Open Access Journals (Sweden)

    Jon Mabe

    2017-03-01

    Full Text Available The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring.

  19. Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils

    Science.gov (United States)

    Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko

    2017-01-01

    The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring. PMID:28335436

  20. Effects of Ti, PMMA, UHMWPE, and Co-Cr wear particles on differentiation and functions of bone marrow stromal cells.

    Science.gov (United States)

    Jiang, Yunpeng; Jia, Tanghong; Gong, Weiming; Wooley, Paul H; Yang, Shang-You

    2013-10-01

    This study investigates the roles of orthopedic biomaterial particles [Ti-alloy, poly(methyl methacrylate) (PMMA), ultrahigh-molecular-weight polyethylene (UHMWPE), Co-Cr alloy] on the differentiation and functions of bone marrow stromal cells (BMSCs). Cells were isolated from femurs of BALB/c mice and cultured in complete osteoblast-induction medium in presence of micron-sized biomaterial particles at various doses. 3-(4,5)-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and lactate dehydrogenase assay were performed for cell proliferation and cytotoxicity. Differentiation and function of osteoblasts were evaluated by alkaline phosphatase (ALP), osteocalcin, RANKL, OSX, and Runx2 expressions. Murine interleukin-1 (IL-1), IL-6, and tumor necrosis factor-α in culture media were determined by enzyme-linked immunosorbent assay. Challenge with low doses of Ti, UHMWPE, or Co-Cr particles markedly promoted the bone marrow cell proliferation while high dose of Co-Cr significantly inhibited cell growth (p UHMWPE particles (0.63 mg/mL) exhibited strong ALP activity, whereas Ti and Co-Cr groups showed minimal effects (p UHMWPE and Ti particles also promoted higher expression of proinflammatory cytokines. Real-time polymerase chain reaction data suggested that cells treated with low dose (0.5 mg/mL) particles resulted in distinctly diminished RANKL expression compared to those exposed to high concentrated (3 mg/mL) particles. In conclusion, various types of wear debris particles behaved differently in the differentiation, maturation, and functions of osteogenic cells; and the particulate debris-interacted BMSCs may play an important role in the pathogenesis and process of the debris-associated aseptic prosthetic loosening.

  1. The interaction of lipopolysaccharide-coated polystyrene particle with membrane receptor proteins on macrophage measured by optical tweezers

    Science.gov (United States)

    Wei, Ming-Tzo; Hua, Kuo-Feng; Hsu, Jowey; Karmenyan, Artashes; Hsu, Hsien-Yeh; Chiou, Arthur

    2006-08-01

    Lipopolysaccharide (LPS) is one of the cell wall components of Gram-positive bacteria recognized by and interacted with receptor proteins such as CD14 on macrophage cells. Such a process plays an important role in our innate immune system. In this paper, we report the application of optical tweezers (λ = 1064nm Gaussian beam focused by a water-immersed objective lens with N.A. = 1.0) to the study of the dynamics of the binding of a LPS-coated polystyrene particle (diameter = 1.5μm) onto the plasma membrane of a macrophage cell. We demonstrated that the binding rate increased significantly when the macrophage cell was pre-treated with the extract of Reishi polysaccharides (EORP) which has been shown to enhance the cell surface expression of CD14 (receptor of LPS) on macrophage cells.

  2. TI-VAMP/VAMP7 is required for optimal phagocytosis of opsonised particles in macrophages.

    Science.gov (United States)

    Braun, Virginie; Fraisier, Vincent; Raposo, Graça; Hurbain, Ilse; Sibarita, Jean-Baptiste; Chavrier, Philippe; Galli, Thierry; Niedergang, Florence

    2004-10-27

    Phagocytosis relies on extension of plasmalemmal pseudopods generated by focal actin polymerisation and delivery of membranes from intracellular pools. Here we show that compartments of the late endocytic pathway, bearing the tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP/VAMP7), are recruited upon particle binding and undergo exocytosis before phagosome sealing in macrophages during Fc receptor (FcR)-mediated phagocytosis. Expression of the dominant-negative amino-terminal domain of TI-VAMP or depletion of TI-VAMP with small interfering RNAs inhibited phagocytosis mediated by Fc or complement receptors. In addition, inhibition of TI-VAMP activity led to a reduced exocytosis of late endocytic vesicles and this resulted in an early blockade of pseudopod extension, as observed by scanning electron microscopy. Therefore, TI-VAMP defines a new pathway of membrane delivery required for optimal FcR-mediated phagocytosis.

  3. WEAR PARTICLE IMAGE SEGMENTATION BASED ON FRACTAL FEATURE%基于分形特征的磨粒图像分割

    Institute of Scientific and Technical Information of China (English)

    郭恒光; 瞿军; 汪兴海

    2014-01-01

    磨粒图像分割是磨粒图像分析的关键一步,分割结果的准确性将直接影响磨粒的最终识别和分类。分形理论在表征磨粒的轮廓特征和表面特征方面得到了广泛应用。结合磨粒图像的分形特征和自组织特征映射神经网络,提出基于分形特征的磨粒图像分割方法。首先,计算磨粒图像的分形维数,多重分形维数,结合图像的灰度信息,共得到图像的8个特征;然后,利用自组织特征映射神经网络的自组织、自学习特性,实现磨粒图像的分割。磨粒图像分割的结果表明,该算法是可行的、有效的。%Wear particle image segmentation is the key step of wear particle image analysis,and the accuracy of the segmentation result affects directly the final recognition and classification of wear particles.Fractal geometry has been used widely in characterising wear particle profile and surface features.We propose a fractal features-based wear particle image segmentation method by combining the fractal features of ware particle image with self-organising feature mapping (SOFM)neural network.First,we calculate the fractal dimensions and multi-fractal dimensions of the ware particle image,in combination with its grey information,we acquire total eight features of the image.Then,we use the characteristics of self-organising and self-learning of SOFM neural network to implement the wear particle image segmentation.Result of the wear particle image segmentation shows that this algorithm is feasible and effective.

  4. Size and composition of airborne particles from pavement wear, tires, and traction sanding.

    Science.gov (United States)

    Kupiainen, Kaarle J; Tervahattu, Heikki; Räisänen, Mika; Mäkelä, Timo; Aurela, Minna; Hillamo, Risto

    2005-02-01

    Mineral matter is an important component of airborne particles in urban areas. In northern cities of the world, mineral matter dominates PM10 during spring because of enhanced road abrasion caused by the use of antiskid methods, including studded tires and traction sanding. In this study, factors that affect formation of abrasion components of springtime road dust were assessed. Effects of traction sanding and tires on concentrations, mass size distribution, and composition of the particles were studied in a test facility. Lowest particle concentrations were observed in tests without traction sanding. The concentrations increased when traction sand was introduced and continued to increase as a function of the amount of aggregate dispersed. Emissions were additionally affected by type of tire, properties of traction sand aggregate, and driving speed. Aggregates with high fragmentation resistance and coarse grain size distribution had the lowest emissions. Over 90% of PM10 was mineral particles. Mineralogy of the dust and source apportionment showed that they originated from both traction sand and pavement aggregates. The remaining portion was mostly carbonaceous and originated from tires and road bitumen. Mass size distributions were dominated by coarse particles. Contribution of fine and submicron size ranges were approximately 15 and 10% in PM10, respectively.

  5. Effect of TiO2 Particles on Micro-Hardness Corrosion, Wear and Friction of Ni-P-TiO2 Composite Coatings at Different Annealing Temperatures

    Science.gov (United States)

    Gadhari, Prasanna; Sahoo, Prasanta

    2016-09-01

    The present study investigates the effect of titania particles on the micro-hardness, wear resistance, corrosion resistance and friction of electroless Ni-P-TiO2 composite coatings deposited on mild steel substrates at different annealing temperatures. The experimental results confirmed that the amount of TiO2 particles incorporated in the coatings increases with increase in the concentration of particles in the electroless bath. In presence of TiO2 particles, hardness, wear resistance and corrosion resistance of the coating improve significantly. At higher annealing temperature, wear resistance increases due to formation of hard Ni3P phase and incorporation of titania particles in the coated layer. Charge transfer resistance and corrosion current density of the coatings reduce with an increase in TiO2 particles, whereas corrosion potential increases. Microstructure changes and composition of the composite coating due to heat treatment are studied with the help of scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDXA) and X-ray diffraction (XRD) analysis.

  6. Antioxidant impregnated ultra-high molecular weight polyethylene wear debris particles display increased bone remodeling and a superior osteogenic:osteolytic profile vs. conventional UHMWPE particles in a murine calvaria model.

    Science.gov (United States)

    Chen, Yu; Hallab, Nadim J; Liao, Yen-Shuo; Narayan, Venkat; Schwarz, Edward M; Xie, Chao

    2016-05-01

    Periprosthetic osteolysis remains a major limitation of long-term successful total hip replacements with ultra-high molecular weight polyethylene (UHMWPE) bearings. As intra and extracellular reactive oxygen species are know to contribute to wear debris-induced osteoclastic bone resorption and decreased osteoblastic bone formation, antioxidant doped UHMWPE has emerged as an approach to reduce the osteolytic potential of wear debris and maintain coupled bone remodeling. To test this hypothesis in vivo, we evaluated the effects of crosslinked UHMWPE wear debris particles (AltrX(™) ), versus similar wear particles made from COVERNOX(™) containing UHMWPE (AOX(™) ), in an established murine calvaria model. Eight-week-old female C57B/6 mice (n = 10/Group) received a pre-op micro-CT scan prior to surgical implantation of the UHMWPE particles (2mg), or surgery without particles (sham). Dynamic labeling was performed by intraperitoneal injection of calcein on day 7 and alizarin on day 9, and the calvaria were harvested for micro-CT and histology on day 10. Surprisingly, we found that AOX particles induced significantly more bone resorption (1.72-fold) and osteoclast numbers (1.99-fold) vs. AltrX (p UHMWPE particles have decreased osteolytic potential due to their increased osteogenic properties that support coupled bone remodeling. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:845-851, 2016.

  7. 混合粒径固体颗粒对滑套球座冲蚀磨损的影响∗%Influence of Solid Particles with Mixed Particle Sizes to Erosion Wear of Sliding Sleeve Ball Seat

    Institute of Scientific and Technical Information of China (English)

    丁坤; 石善志; 李建民; 承宁; 王丽荣; 王泽稼

    2015-01-01

    As the construction displacement and sand amount of overlong horizontal well are increased continuously,the erosion wear of ball seat of pitching sliding sleeve is increasingly serious.There are many researches on the erosion wear of liquid⁃solid two⁃phase flow,but the influence of solid particles with mixed particle sizes to the erosion wear is not consid⁃ered at all.The erosion wear of ball seat by the prop⁃pant mixed with different particle sizes was studied.Based on the Euler two⁃fluid theory,the numerical simulation of the erosion wear of ball seat by mixed particle sizes was carried out with Flu⁃ent software.The results show that the erosion wear rule of ball seat is different caused by the solid particles with mixed particle sizes and the solid particles with single particle size.The erosion wear rate of ball seat by solid particles with single particle size is in inversely proportional to the particle size,while the erosion wear rate of ball seat by the solid particles with mixed particle sizes is related to the particle size and the volume ratio of the solid particles with different particle si⁃zes.With the increasing of the volume ratio of the solid particles with small particle sizes,the erosion wear rate of ball seat presents a trend of decreasing first, and then increasing. The simulated result provides a reference for the selection of staged fracturing material of horizontal well.%随着超长水平井施工排量和加砂量的不断增加,滑套球座冲蚀磨损日益严重。目前对液固两相流冲蚀磨损的研究较多,但均未考虑混合粒径固体颗粒对冲蚀磨损的影响。研究不同粒径混合的支撑剂对球座的冲蚀磨损,基于欧拉双流体理论,运用Fluent软件对混合粒径固体颗粒对滑套球座的冲蚀磨损进行数值模拟。结果表明:混合粒径固体颗粒与单一粒径固体颗粒对球座冲蚀磨损规律有所不同,单一粒径固体颗粒对球座冲蚀磨损

  8. Asian dust particles induce macrophage inflammatory responses via mitogen-activated protein kinase activation and reactive oxygen species production.

    Science.gov (United States)

    Higashisaka, Kazuma; Fujimura, Maho; Taira, Mayu; Yoshida, Tokuyuki; Tsunoda, Shin-ichi; Baba, Takashi; Yamaguchi, Nobuyasu; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Nasu, Masao; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2014-01-01

    Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor- α (TNF- α ) compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10  μ m in diameter provoked a greater inflammatory response than soil dust samples containing particles >10  μ m. In addition, Asian dust particles-induced TNF- α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor- κ B and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages.

  9. Asian Dust Particles Induce Macrophage Inflammatory Responses via Mitogen-Activated Protein Kinase Activation and Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    Kazuma Higashisaka

    2014-01-01

    Full Text Available Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor-α (TNF-α compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10 μm in diameter provoked a greater inflammatory response than soil dust samples containing particles >10 μm. In addition, Asian dust particles-induced TNF-α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor-κB and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages.

  10. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines.

    Science.gov (United States)

    Yan, Yan; Gause, Katelyn T; Kamphuis, Marloes M J; Ang, Ching-Seng; O'Brien-Simpson, Neil M; Lenzo, Jason C; Reynolds, Eric C; Nice, Edouard C; Caruso, Frank

    2013-12-23

    Many biomolecules, mainly proteins, adsorb onto polymer particles to form a dynamic protein corona in biological environments. The protein corona can significantly influence particle-cell interactions, including internalization and pathway activation. In this work, we demonstrate the differential roles of a given protein corona formed in cell culture media in particle uptake by monocytes and macrophages. By exposing disulfide-stabilized poly(methacrylic acid) nanoporous polymer particles (PMASH NPPs) to complete cell growth media containing 10% fetal bovine serum, a protein corona, with the most abundant component being bovine serum albumin, was characterized. Upon adsorption onto the PMASH NPPs, native bovine serum albumin (BSA) was found to undergo conformational changes. The denatured BSA led to a significant decrease in internalization efficiency in human monocytic cells, THP-1, compared with the bare particles, due to reduced cell membrane adhesion. In contrast, the unfolded BSA on the NPPs triggered class A scavenger receptor-mediated phagocytosis in differentiated macrophage-like cells (dTHP-1) without a significant impact on the overall internalization efficiency. Taken together, this work demonstrates the disparate effects of a given protein corona on particle-cell interactions, highlighting the correlation between protein corona conformation in situ and relevant biological characteristics for biological functionalities.

  11. Biotribology of a vitamin E-stabilized polyethylene for hip arthroplasty - Influence of artificial ageing and third-body particles on wear.

    Science.gov (United States)

    Grupp, Thomas M; Holderied, Melanie; Mulliez, Marie Anne; Streller, Rouven; Jäger, Marcus; Blömer, Wilhelm; Utzschneider, Sandra

    2014-07-01

    The objective of our study was to evaluate the influence of prolonged artificial ageing on oxidation resistance and the subsequent wear behaviour of vitamin E-stabilized, in comparison to standard and highly cross-linked remelted polyethylene (XLPE), and the degradation effect of third-body particles on highly cross-linked remelted polyethylene inlays in total hip arthroplasty. Hip wear simulation was performed with three different polyethylene inlay materials (standard: γ-irradiation 30 kGy, N2; highly cross-linked and remelted: γ-irradiation 75 kGy, EO; highly cross-linked and vitamin E (0.1%) blended: electron beam 80 kGy, EO) machined from GUR 1020 in articulation with ceramic and cobalt-chromium heads. All polyethylene inserts beneath the virgin references were subjected to prolonged artificial ageing (70°C, pure oxygen at 5 bar) with a duration of 2, 4, 5 or 6 weeks. In conclusion, after 2 weeks of artificial ageing, standard polyethylene shows substantially increased wear due to oxidative degradation, whereas highly cross-linked remelted polyethylene has a higher oxidation resistance. However, after enhanced artificial ageing for 5 weeks, remelted XLPE also starts oxidate, in correlation with increased wear. Vitamin E-stabilized polyethylene is effective in preventing oxidation after irradiation cross-linking even under prolonged artificial ageing for up to 6 weeks, resulting in a constant wear behaviour.

  12. Tooth wear

    Directory of Open Access Journals (Sweden)

    Tušek Ivan

    2014-01-01

    Full Text Available Tooth wear is the loss of dental hard tissue that was not caused by decay and represents a common clinical problem of modern man. In the etiology of dental hard tissue lesions there are three dominant mechanisms that may act synergistically or separately:friction (friction, which is caused by abrasion of exogenous, or attrition of endogenous origin, chemical dissolution of dental hard tissues caused by erosion, occlusal stress created by compression and flexion and tension that leads to tooth abfraction and microfracture. Wear of tooth surfaces due to the presence of microscopic imperfections of tooth surfaces is clinically manifested as sanding veneers. Tribology, as an interdisciplinary study of the mechanisms of friction, wear and lubrication at the ultrastructural level, has defined a universal model according to which the etiopathogenesis of tooth wear is caused by the following factors: health and diseases of the digestive tract, oral hygiene, eating habits, poor oral habits, bruxism, temporomandibular disorders and iatrogenic factors. Attrition and dental erosion are much more common in children with special needs (Down syndrome. Erosion of teeth usually results from diseases of the digestive tract that lead to gastroesophageal reflux (GER of gastric juice (HCl. There are two basic approaches to the assessment of the degree of wear and dental erosion. Depending on the type of wear (erosion, attrition, abfraction, the amount of calcium that was realised during the erosive attack could be determined qualitatively and quantitatively, or changes in optical properties and hardness of enamel could be recorded, too. Abrasion of teeth (abrasio dentium is the loss of dental hard tissue caused by friction between the teeth and exogenous foreign substance. It is most commonly provoked by prosthetic dentures and bad habits, while its effect depends on the size of abrasive particles and their amount, abrasive particle hardness and hardness of tooth

  13. Wear Resistance of Aluminum Matrix Composites Reinforced with Al2O3 Particles After Multiple Remelting

    Science.gov (United States)

    Klasik, Adam; Pietrzak, Krystyna; Makowska, Katarzyna; Sobczak, Jerzy; Rudnik, Dariusz; Wojciechowski, Andrzej

    2016-08-01

    Based on previous results, the commercial composites of A359 (AlSi9Mg) alloy reinforced with 22 vol.% Al2O3 particles were submitted to multiple remelting by means of gravity casting and squeeze-casting procedures. The studies were focused on tribological tests, x-ray phase analyses, and microstructural examinations. More promising results were obtained for squeeze-casting method mainly because of the reduction of the negative microstructural effects such as shrinkage porosity or other microstructural defects and discontinuities. The results showed that direct remelting may be treated as economically well-founded and alternative way compared to other recycling processes. It was underlined that the multiple remelting method must be analyzed for any material separately.

  14. Tribo-Mechanical Properties of HVOF Deposited Fe3Al Coatings Reinforced with TiB2 Particles for Wear-Resistant Applications

    Directory of Open Access Journals (Sweden)

    Mahdi Amiriyan

    2016-02-01

    Full Text Available This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load.

  15. Improve Wear Resistance on Al 332 Alloy Matrix- Micro -Nano Al2O3 Particles Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Rawnaq Ahmed Mohamed

    2014-03-01

    Full Text Available The wear behavior of alumina particulate reinforced A332 aluminium alloy composites produced by a stir casting process technique were investigated. A pin-on-disc type apparatus was employed for determining the sliding wear rate in composite samples at different grain size (1 µm, 12µm, 50 nm and different weight percentage (0.05-0.1-0.5-1 wt% of alumina respectively. Mechanical properties characterization which strongly depends on microstructure properties of reinforcement revealed that the presence of ( nano , micro alumina particulates lead to simultaneous increase in hardness, ultimate tensile stress (UTS, wear resistances. The results revealed that UTS, Hardness, Wear resistances increases with the increase in the percentage of reinforcement of Al2O3 when compared to the base alloy A332. The wear rates of the composites were considerably less than that of the aluminum alloy at all applied loads with increasing percentage of reinforcement when compared to the base alloy A332.

  16. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    Science.gov (United States)

    Feng, Jianghua; Zhao, Jing; Hao, Fuhua; Chen, Chang; Bhakoo, Kishore; Tang, Huiru

    2011-05-01

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  17. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianghua [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (China); Zhao Jing [China Institute of Atomic Energy (China); Hao Fuhua [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (China); Chen Chang [Institute of Biophysics, The Chinese Academy of Sciences, National Laboratory of Biomacromolecules (China); Bhakoo, Kishore [Singapore Bioimaging Consortium Agency for Science, Technology and Research (A-STAR) (Singapore); Tang, Huiru, E-mail: huiru.tang@wipm.ac.cn [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (China)

    2011-05-15

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  18. Feasibility of asymmetric flow field-flow fractionation coupled to ICP-MS for the characterization of wear metal particles and metalloproteins in biofluids from hip replacement patients.

    Science.gov (United States)

    Loeschner, Katrin; Harrington, Chris F; Kearney, Jacque-Lucca; Langton, David J; Larsen, Erik H

    2015-06-01

    Hip replacements are used to improve the quality of life of people with orthopaedic conditions, but the use of metal-on-metal (MoM) arthroplasty has led to poor outcomes for some patients. These problems are related to the generation of micro- to nanosized metal wear particles containing Cr, Co or other elements, but the current analytical methods used to investigate the processes involved do not provide sufficient information to understand the size or composition of the wear particles generated in vivo. In this qualitative feasibility study, asymmetric flow field-flow fractionation (AF(4)) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate metal protein binding and the size and composition of wear metal particles present in serum and hip aspirates from MoM hip replacement patients. A well-established HPLC anion exchange chromatography (AEC) separation system coupled to ICP-MS was used to confirm the metal-protein associations in the serum samples. Off-line single particle ICP-MS (spICP-MS) analysis was used to confirm the approximate size distribution indicated by AF(4) of the wear particles in hip aspirates. In the serum samples, AF(4) -ICP-MS suggested that Cr was associated with transferrin (Tf) and Co with albumin (Alb) and an unidentified species; AEC-ICP-MS confirmed these associations and also indicated an association of Cr with Alb. In the hip aspirate sample, AF(4)-ICP-MS suggested that Cr was associated with Alb and Tf and that Co was associated with Alb and two unidentified compounds; AEC analysis confirmed the Cr results and the association of Co with Alb and a second compound. Enzymatic digestion of the hip aspirate sample, followed by separation using AF(4) with detection by UV absorption (280 nm), multi-angle light scattering and ICP-MS, suggested that the sizes of the Cr-, Co- and Mo-containing wear particles in a hip aspirate sample were in the range 40-150 nm. Off-line spICP-MS was used to confirm these

  19. Wear performance of neat and vitamin E blended highly cross-linked PE under severe conditions: The combined effect of accelerated ageing and third body particles during wear test.

    Science.gov (United States)

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-12-01

    The objective of this study is to evaluate the effects of third-body particles on the in vitro wear behaviour of three different sets of polyethylene acetabular cups after prolonged testing in a hip simulator and accelerated ageing. Vitamin E-blended, cross-linked polyethylene (XLPE_VE), cross-linked polyethylene (XLPE) and conventional polyethylene (STD_PE) acetabular cups were simulator tested for two million cycles under severe conditions (i.e. by adding third-body particles to the bovine calf serum lubricant). Micro-Fourier Transform Infrared and micro-Raman spectroscopic analyses, differential scanning calorimetry, and crosslink density measurements were used to characterize the samples at a molecular level. The STD_PE cups had twice mass loss than the XLPE_VE components and four times than the XLPE samples; statistically significant differences were found between the mass losses of the three sets of cups. The observed wear trend was justified on the basis of the differences in cross-link density among the samples (XLPE>XLPE_VE>STD_PE). FTIR crystallinity profiles, bulk DSC crystallinity and surface micro-Raman crystallinity seemed to have a similar behaviour upon testing: all of them (as well as the all-trans and ortho-trans contents) revealed the most significant changes in XLPE and XLPE_VE samples. The more severe third-body wear testing conditions determined more noticeable changes in all spectroscopic markers with respect to previous tests. Unexpectedly, traces of bulk oxidation were found in both STD_PE (unirradiated) and XLPE (remelting-stabilized), which were expected to be stable to oxidation; on the contrary, XLPE_VE demonstrated a high oxidative stability in the present, highly demanding conditions.

  20. Nanoparticles of WC-Co, WC, Co and Cu of relevance for traffic wear particles - Particle stability and reactivity in synthetic surface water and influence of humic matter.

    Science.gov (United States)

    Hedberg, Yolanda S; Hedberg, Jonas F; Isaksson, Sara; Mei, Nanxuan; Blomberg, Eva; Wold, Susanna; Odnevall Wallinder, Inger

    2017-02-11

    Studded tyres made of tungsten carbide cobalt (WC-Co) are in the Northern countries commonly used during the winter time. Tungsten (W)-containing nano- and micron-sized particles have been detected close to busy roads in several European countries. Other typical traffic wear particles consist of copper (Cu). The aims of this study were to investigate particle stability and transformation/dissolution properties of nanoparticles (NPs) of WC-Co compared with NPs of tungsten carbide (WC), cobalt (Co), and Cu. Their physicochemical characteristics (primarily surface oxide and charge) are compared with their extent of sedimentation and metal release in synthetic surface water (SW) with and without two different model organic molecules, 2,3- and 3,4-dihydroxybenzoic acid (DHBA) mimicking certain sorption sites of humic substances, for time periods up to 22 days. The WC-Co NPs possessed a higher electrochemical and chemical reactivity in SW with and without DHBA molecules as compared with NPs of WC, Co, and Cu. Co was completely released from the WC-Co NPs within a few hours of exposure, although it remained adsorbed/bonded to the particle surface and enabled the adsorption of negatively charged DHBA molecules, in contrast with the WC NPs (no adsorption of DHBA). The DHBA molecules were found to rapidly adsorb on the Co and Cu NPs. The sedimentation of the WC and WC-Co NPs was not influenced by the presence of the 2,3- or 3,4-DHBA molecules. A slight influence (slower sedimentation) was observed for the Co NPs, and a strong influence (slower sedimentation) was observed for the Cu NPs in SW with 2,3-DHBA compared with SW alone. The extent of metal release increased in the order: WC < Cu < Co < WC-Co NPs. All NPs released more than 1 wt-% of their metal total mass. The release from the Cu NPs was most influenced by the presence of DHBA molecules.

  1. Feasibility of asymmetric flow field-flow fractionation coupled to ICP-MS for the characterization of wear metal particles and metalloproteins in biofluids from hip replacement patients

    DEFF Research Database (Denmark)

    Löschner, Katrin; Harrington, Chris F.; Kearney, Jacque-Lucca;

    2015-01-01

    or other elements, but the current analytical methods used to investigate the processes involved do not provide sufficient information to understand the size or composition of the wear particles generated in vivo. In this qualitative feasibility study, asymmetric flow field-flow fractionation (AF4) coupled...... and give an indication of particle size, providing useful pathological indices. As such, the methods indicate a new way forward for in vivo investigation of the processes which lead to tissue necrosis and hip loosening in patients with MoM hip replacements....

  2. Submicron sized ultra-high molecular weight polyethylene wear particle analysis from revised SB Charité III total disc replacements.

    Science.gov (United States)

    Punt, Ilona; Baxter, Ryan; van Ooij, André; Willems, Paul; van Rhijn, Lodewijk; Kurtz, Steven; Steinbeck, Marla

    2011-09-01

    Submicron sized particles are frequently observed in retrieved total hip and knee periprosthetic tissues and appear to be critical in the activation of the phagocytic inflammatory response. In this paper the concentration, size and shape of ultra-high molecular weight polyethylene (UHMWPE) wear particles between 0.05 and 2.00μm were determined after isolation from periprosthetic tissues from retrieved lumbar SB Charité III total disc replacements (TDR) using scanning electron microscopy (SEM). For comparison, UHMWPE wear particles were isolated from γ-radiation-air sterilized total hip arthroplasty (THA) revision tissues. The mean concentration of UHMWPE particles in TDR tissues was 1.6×10(9)g(-1)tissue (range 1.3-2.0), which was significantly lower than the concentration of 2.3×10(9)g(-1) THA revision tissue (range 1.8-3.2) (P=0.03). The mean particle size (equivalent circular diameter: TDR, 0.46μm; THA 0.53μm, P=0.60) and mean shape were comparable between TDR and THA (aspect ratio: TDR, 1.89; THA, 1.99, P=0.35; roundness: TDR, 0.58; THA, 0.56, P=0.35). However, the TDR particles tended to be smaller and more round. Although no correlations were found between visible damage to the UHMWPE core and the concentration or shape of the UHMWPE particles, a positive correlation was found between increasing particle size and increasing rim penetration of the TDR core (P=0.04). The presence of UHMWPE particles of similar size and shape in TDR tissue, albeit lower in concentration, might explain why, unlike THA, pain rather than osteolysis is the major reason for revision surgery. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States

    Science.gov (United States)

    Panko, Julie M.; Chu, Jennifer; Kreider, Marisa L.; Unice, Ken M.

    2013-06-01

    In addition to industrial facilities, fuel combustion, forest fires and dust erosion, exhaust and non-exhaust vehicle emissions are an important source of ambient air respirable particulate matter (PM10). Non-exhaust vehicle emissions are formed from wear particles of vehicle components such as brakes, clutches, chassis and tires. Although the non-exhaust particles are relatively minor contributors to the overall ambient air particulate load, reliable exposure estimates are few. In this study, a global sampling program was conducted to quantify tire and road wear particles (TRWP) in the ambient air in order to understand potential human exposures and the overall contribution of these particles to the PM10. The sampling was conducted in Europe, the United States and Japan and the sampling locations were selected to represent a variety of settings including both rural and urban core; and within each residential, commercial and recreational receptors. The air samples were analyzed using validated chemical markers for rubber polymer based on a pyrolysis technique. Results indicated that TRWP concentrations in the PM10 fraction were low with averages ranging from 0.05 to 0.70 μg m-3, representing an average PM10 contribution of 0.84%. The TRWP concentration in air was associated with traffic load and population density, but the trend was not statistically significant. Further, significant differences across days were not observed. This study provides a robust dataset to understand potential human exposures to airborne TRWP.

  4. The Delamination Theory of Wear

    Science.gov (United States)

    1974-09-01

    junctions, it is still based on the assumption that the deformation occurs at the asperities. Rabinowicz [14] advanced an adhesion theory of friction...shown that bronze particles were indeed bigger than steel particles. The compilation of wear particle sizes given by Rabinowicz [14] also indicates...Waterhouse [32] has shown that, in fact, fretting occurs by delamination. 6) Minimum Load for Loose Particle Formation Rabinowicz [14] found that no wear

  5. Effect of addition of Nano hydroxyapatite particles on wear of resin modified glass ionomer by tooth brushing simulation

    Science.gov (United States)

    Poorzandpoush, Kiana; Jafarnia, Shiva H.; Golkar, Parisa; Atai, Mohammad

    2017-01-01

    Background Recently, incorporation of nanohydroxyapatite (NHA) has been suggested to improve the mechanical properties of glass ionomers (GIs). This study aimed to assess the effect of addition of NHA on wear of resin modified glass ionomer (RMGI) by tooth brushing simulation. Material and Methods In this in vitro, experimental study, NHA in 1, 2, 5, 7 and 10wt% concentrations was added to Fuji II LC RMGI powder, and 48 samples (5×5mm) in five experimental and one control group (n=8) were fabricated. After polishing, cleaning and incubation at 37°C for three weeks, the samples were weighed and subjected to tooth brushing simulation in a toothpaste slurry according to ISO14569-1. Then, they were weighed again and the weight loss was calculated. The data were analyzed using one-way ANOVA and Tukey’s test. Results The highest and the lowest weight loss was found in the 0% NHA (-1.052±0.176) and 5% NHA (-0.370±0.143) groups, respectively. Wear was significantly higher in 0% NHA group (P<0.05). No difference was detected in wear between 2 and 5wt% NHA or among 1, 7 and 10wt% NHA groups. Significant differences were noted in wear between 2 and 5wt% NHA and 1, 7 and 10wt% NHA groups (P<0.001). Conclusions Incorporation of up to 10wt% of NHA increases the wear resistance of Fuji II LC RMGI. This increase was the highest when 2 and 5wt% NHA were added. Key words:Glass ionomer, hydroxyapatites, nanoparticles, dental restoration wear. PMID:28298977

  6. Friction and wear properties of ultra-high molecular mass polyethylene reinforced with Al2O3 nano-particle

    Institute of Scientific and Technical Information of China (English)

    FAN Dong-li; XIONG Dang-sheng

    2004-01-01

    The ultra-high molecular mass polyethylene (UHMMPE) as an artificial joint acetabular material was filled with nano-powder of Al2O3 of various mass fractions. The effect of Al2O3 mass fraction on the hardness, wetting property and tribological properties of the Al2O3-UHMMPE composites under dry friction sliding against both stainless steel and Ti-6Al-4V alloy was investigated. The morphologies of the worn surfaces of composites were observed with optical microscope. The results show that, wetting property and wear resistance of the composites are improved by filling Al2O3, while the friction coefficient is decreased largely under dry friction as compared with that of the unfilled UHMMPE. This is attributed to the reinforcing function of the nano-powder of Al2O3 in the composites. The wear of UHMMPE is dominated by plowing, plastic deformation and fatigue wear; while the Al2O3-UHMMPE composites are characterized by the mild fatigue wear.

  7. Sliding wear characteristics of Co-based overlay weld metal with dispersed boride particles; Hokabutsu ryushi bunsan kyoka Co ki nikumori kinzoku no suberi mamosei

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, M.; Araki, T.; Shigekawa, Y. [Ehime University, Ehime (Japan). Faculty of Engineering; Asano, I.; Hayashi, Y. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1998-05-05

    Requirements on wear resistant materials in recent years are applied not only to strength and hardness, but also to heat resistance and corrosion resistance. This paper describes fabrication of an overlay weld metal reinforced by dispersed particles, structured by a Co-based alloy (stellite No. 6) added with boride (MoB powder) using a plasma transferred arc welding process. The paper discusses the effect of MoB on wear characteristics at room temperature and elevated temperatures, as well as on seizability. When the MoB addition amount is increased to 3% by mass or more, the structure was found constituted by an eutectic structure with M2B and {beta} phases and an eutectic structure with M23C6 and {beta} phases, in addition to plate-shaped crystallized substance of CoMo2B2 which is a tetragonal system, and a matrix of {beta} Co. When S45C is used as a counterpart material, wear resistance was improved regardless of temperatures by making hardness of the overlay metal higher by HV 300 or more than that of the counterpart material. The overlay weld metal added with MoB showed high friction coefficient at room temperature, but even if the temperature is raised, it had less agglutination of S45C, and decreased at elevated temperatures. 13 refs., 16 figs., 1 tab.

  8. Cytotoxicity and immunomodulatory effects of sol-gel combustion based titanium dioxide (TiO2) particles of large surface area on RAW 264.7 macrophages.

    Science.gov (United States)

    Dinesh, Palani; Suresh Yadav, C; Kannadasan, Sathanandhan; Rasool, Mahaboobkhan

    2017-09-01

    The current study was designed to investigate the cytotoxicity and immunomodulatory effects of sol-gel combustion based TiO2 particles (glycine and l-alanine as reducing agents) of large surface area on RAW 264.7 macrophages. RAW 264.7 macrophages exposed to varying concentrations of TiO2 particles (0.001 to 1000μg/ml) were assessed after 24h and showed a reduced cell viability at 100 and 1000μg/ml and increased LDH release at 10μg/ml. Furthermore, TiO2 particles (0.1, 1 and 10μg/ml) were utilized to assess the immune responses and intracellular ROS levels on RAW 264.7 macrophages. TiO2 particles at 10μg/ml showed increased mRNA expression of inflammatory cytokines (TNFα, IL-1β and IL-6), inflammatory mediators (iNOS and COX-2) and transcription factor (NFκB) similar to that of LPS stimulated macrophages. However, the mRNA expression levels were found near normal levels at lower concentrations (0.1 and 1μg/ml). In addition, TiO2 particles at 10μg/ml also increased the production of inflammatory cytokines (TNFα, IL-1β and IL-6) and intracellular ROS levels in RAW 264.7 macrophages similar to that of LPS stimulated macrophages. Conclusively, TiO2 particles prepared through this method at a concentration≤0.1μg/ml can be used for various biological applications with minimal immunomodulatory effects. Copyright © 2017. Published by Elsevier Ltd.

  9. Influence of particle size on drug delivery to rat alveolar macrophages following pulmonary administration of ciprofloxacin incorporated into liposomes.

    Science.gov (United States)

    Chono, Sumio; Tanino, Tomoharu; Seki, Toshinobu; Morimoto, Kazuhiro

    2006-09-01

    In order to confirm the efficacy of ciprofloxacin (CPFX) incorporated into liposomes (CPFX-liposomes) for treatment of respiratory intracellular parasite infections, the influence of particle size on drug delivery to rat alveolar macrophages (AMs) following pulmonary administration of CPFX-liposomes was investigated. CPFX-liposomes were prepared with hydrogenated soybean phosphatidylcholine (HSPC), cholesterol (CH) and dicetylphosphate (DCP) in a lipid molar ratio of 7/2/1 by the hydration method and then adjusted to five different particle sizes (100, 200, 400, 1000 and 2000 nm). In the pharmacokinetic experiment, the delivery efficiency of CPFX to rat AMs following pulmonary administration of CPFX-liposomes increased with the increase in the particle size over the range 100-1000 nm and became constant at over 1000 nm. The concentrations of CPFX in rat AMs until 24 h after pulmonary administration of CPFX-liposomes with a particle size of 1000 nm were higher than the minimum inhibitory concentration of CPFX against various intracellular parasites. In a cytotoxic test, no release of lactate dehydrogenase (LDH) from rat lung tissues by pulmonary administration of CPFX-liposomes with a particle size of 1000 nm was observed. These findings indicate that efficient delivery of CPFX to AMs by CPFX-liposomes with a particle size of 1000 nm induces an excellent antibacterial effect without any cytotoxic effects on lung tissues. Therefore, CPFX-liposomes may be useful in the development of drug delivery systems for the treatment of respiratory infections caused by intracellular parasites, such as Mycobacterium tuberculosis, Chlamydia pneumoniae and Listeria monocytogenes.

  10. UHMWPE wear debris and tissue reactions are reduced for contemporary designs of lumbar total disc replacements.

    Science.gov (United States)

    Veruva, Sai Y; Lanman, Todd H; Isaza, Jorge E; MacDonald, Daniel W; Kurtz, Steven M; Steinbeck, Marla J

    2015-03-01

    Lumbar total disc replacement (L-TDR) is a procedure used to relieve back pain and maintain mobility. Contemporary metal-on-polyethylene (MoP) L-TDRs were developed to address wear performance concerns about historical designs, but wear debris generation and periprosthetic tissue reactions for these newer implants have not been determined. The purpose of this study was to determine (1) whether periprosthetic ultrahigh-molecular-weight polyethylene (UHMWPE) wear debris and biological responses were present in tissues from revised contemporary MoP L-TDRs that contain conventional cores fabricated from γ-inert-sterilized UHMWPE; (2) how fixed- versus mobile-bearing design affected UHMWPE wear particle number, shape, and size; and (3) how these wear particle characteristics compare with historical MoP L-TDRs that contain cores fabricated from γ-air-sterilized UHMWPE. We evaluated periprosthetic tissues from 11 patients who received eight fixed-bearing ProDisc-L and four mobile-bearing CHARITÉ contemporary L-TDRs with a mean implantation time of 4.1 and 2.7 years, respectively. Histologic analysis of tissues was performed to assess biological responses and polarized light microscopy was used to quantify number and size/shape characteristics of UHMWPE wear particles from the fixed- and mobile-bearing devices. Comparisons were made to previously reported particle data for historical L-TDRs. Five of seven (71%) fixed-bearing and one of four mobile-bearing L-TDR patient tissues contained at least 4 particles/mm(2) wear with associated macrophage infiltration. Tissues with wear debris were highly vascularized, whereas those without debris were more necrotic. Given the samples available, the tissue around mobile-bearing L-TDR was observed to contain 87% more, 11% rounder, and 11% less-elongated wear debris compared with tissues around fixed-bearing devices; however, there were no significant differences. Compared with historical L-TDRs, UHMWPE particle number and

  11. Ultrastructural cytochemical and ultrastructural morphological differences between human multinucleated giant cells elicited by wear particles from hip prostheses and artificial ligaments at the knee.

    Science.gov (United States)

    Anazawa, Ukei; Hanaoka, Hideya; Morioka, Hideo; Morii, Takeshi; Toyama, Yoshiaki

    2004-01-01

    The authors investigated the ultrastructural cytochemical features of multinucleated and mononuclear cells in periprosthetic tissues associated with bone resorption (osteolysis) and those in tissues adjoining failed artificial ligaments having no relation to bone resorption. Clinical specimens of granulation tissue of each type, respectively numbering 4 and 3, were stained for tartrate-resistant acid phosphatase (TRAP) reactions and examined by light and electron microscopy. Both periprosthetic granulation tissues and those adjoining artificial ligaments contained TRAP-positive multinucleated and mononuclear cells. Near joint prostheses, multinucleated cells, including some giant cells, showed TRAP activity and cytoplasmic features resembling osteoclasts, while others had features consistent with foreign-body giant cells, and still others showed degenerative changes. Near artificial ligaments, TRAP-positive multinucleated cells lacked osteoclastic features. At both sites, TRAP-positive multinucleated cells had phagocytised wear particles. TRAP-positive mononuclear cells at both sites also showed phagocytic cytoplasmic features, but not osteoclastic cytoplasmic features. Human mononuclear phagocytes and multinucleated giant cells induced by wear particles possess TRAP activity. Those multinucleated giant cells at sites of osteolysis developed osteoclastic cytoplasmic features and have a phagocytic function.

  12. Modulation of mouse macrophage polarization in vitro using IL-4 delivery by osmotic pumps.

    Science.gov (United States)

    Pajarinen, Jukka; Tamaki, Yasunobu; Antonios, Joseph K; Lin, Tzu-Hua; Sato, Taishi; Yao, Zhenyu; Takagi, Michiaki; Konttinen, Yrjö T; Goodman, Stuart B

    2015-04-01

    Modulation of macrophage polarization is emerging as promising means to mitigate wear particle-induced inflammation and periprosthetic osteolysis. As a model for continuous local drug delivery, we used miniature osmotic pumps to deliver IL-4 in order to modulate macrophage polarization in vitro from nonactivated M0 and inflammatory M1 phenotypes towards a tissue regenerative M2 phenotype. Pumps delivered IL-4 into vials containing mouse bone marrow macrophage (mBMM) media. This conditioned media (CM) was collected at seven day intervals up to four weeks (week 1 to week 4 samples). IL-4 concentration in the CM was determined by ELISA and its biological activity was assayed by exposing M0 and M1 mBMMs to week 1 or week 4 CM. The IL-4 concentration in the CM approximated the mathematically calculated amount, and its biological activity was well retained, as both M0 and M1 macrophages exposed to either the week 1 or week 4 CM assumed M2-like phenotype as determined by qRT-PCR, ELISA, and immunocytochemistry. The results show that IL-4 can be delivered using osmotic pumps and that IL-4 delivered can modulate macrophage phenotype. Results build a foundation for in vivo studies using our previously validated animal models and provide possible strategies to locally mitigate wear particle-induced macrophage activation and periprosthetic osteolysis.

  13. Production of arachidonic acid metabolites by macrophages exposed in vitro to asbestos, carbonyl iron particles, or calcium ionophore.

    Science.gov (United States)

    Kouzan, S; Brody, A R; Nettesheim, P; Eling, T

    1985-04-01

    Consequent to asbestos deposition, alveolar macrophages (AM) accumulate at alveolar duct bifurcations where they phagocytize fibers. Because phagocytosis can stimulate the release of arachidonic acid (AA) metabolites, the possibility that secretion of these powerful mediators of inflammation might be induced by chrysotile asbestos was investigated in vitro. Rat AM were treated in vitro with chrysotile asbestos, and the cyclooxygenase products--prostaglandins, thromboxane B2 (TXB2), 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT)--and lipoxygenase products--leukotrienes (LT), hydroxyeicosatetraenoic acids (HETE)--secreted in the medium were isolated by high-performance liquid chromatography. Composition of the AA metabolites released was compared with that from those stimulated by the calcium ionophore A 23187 (20 microM) and by another particulate phagocytic stimulus, i.e., carbonyl iron beads. Calcium ionophore stimulation induced a marked release of various AA metabolites in the medium from both the cyclooxygenase pathway (HHT, TXB2, and PGE2, in decreasing quantities, respectively) and the lipoxygenase pathway (LTB4, 5-HETE, 12-HETE, and LTC4). The major product was LTB4. Treatment of the macrophages with asbestos fibers induced the release of a similar array of AA metabolites, although there were smaller amounts of LTC4 and 12-HETE, but increased quantities of PGF2 alpha. A time course study showed a steady increase in metabolite production for 1 h, followed by a plateau. In addition, the amount of metabolites released was dependent on asbestos concentrations. Phagocytosis of iron beads induced the secretion of the same metabolites as asbestos stimulation, but in larger quantities, probably reflecting the lack of cytotoxicity of the particle.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Wear prediction in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, E.J. [USDOE Morgantown Energy Technology Center, WV (United States); Rogers, W.A. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

    1993-06-01

    A procedure to model the wear of surfaces exposed to a fluidized bed is formulated. A stochastic methodology adapting the kinetic theory of gases to granular flows is used to develop an impact wear model. This uses a single-particle wear model to account for impact wear from all possible-particle collisions. An adaptation of a single-particle abrasion model to describe the effects of many abrading particles is used to account for abrasive wear. Parameters describing granular flow within the fluidized bed, necessary for evaluation of the wear expressions, are determined by numerical solution of the fluidized bed hydrodynamic equations. Additional parameters, describing the contact between fluidized particles and the wearing surface, are determined by optimization based on wear measurements. The modeling procedure was used to analyze several bubbling and turbulent fluidized bed experiments with single-tube and tube bundle configurations. Quantitative agreement between the measured and predicted wear rates was found, with some exceptions for local wear predictions. This work demonstrates a methodology for wear predictions in fluidized beds.

  15. Eye Wear

    Science.gov (United States)

    Eye wear protects or corrects your vision. Examples are Sunglasses Safety goggles Glasses (also called eyeglasses) Contact ... jobs and some sports carry a risk of eye injury. Thousands of children and adults get eye ...

  16. Anti-oxidation treatment of ultra high molecular weight polyethylene components to decrease periprosthetic osteolysis: evaluation of osteolytic and osteogenic properties of wear debris particles in a murine calvaria model.

    Science.gov (United States)

    Green, Justin M; Hallab, Nadim J; Liao, Yen-Shuo; Narayan, Venkat; Schwarz, Edward M; Xie, Chao

    2013-05-01

    Wear debris-induced osteolysis remains the greatest limitation of long-term success for total joint replacements with ultra-high molecular weight polyethylene (UHMWPE) bearings. To address oxidative degradation post-gamma irradiation, manufacturers are investigating the incorporation of antioxidants into PE resins. Similarly, larger molecular weight monomers have been developed to increase crosslinking and decrease wear debris, and ultimately osteolysis. However, the effects of modifying monomer size, crosslink density, and antioxidant incorporation on UHMWPE particle-induced osteoclastic bone resorption and coupled osteoblastic bone formation have never been tested. Here, we review the field of antioxidant-containing UHMWPE, and present an illustrative pilot study evaluating the osteolytic and osteogenic potential of wear debris generated from three chemically distinct particles (MARATHON®, XLK, and AOX™) as determined by a novel 3D micro-CT algorithm designed for the murine calvaria model. The results demonstrate an approach by which the potential osteoprotective effects of antioxidants in UHMWPE can be evaluated.

  17. DRILL WEAR DURING THE BORING OF PARTICLE BOARD: A MULTI-FACTOR ANALYSIS INCLUDING EFFECTS OF MINERAL CONTAMINANTS

    Directory of Open Access Journals (Sweden)

    Boleslaw Porankiewicz

    2008-05-01

    Full Text Available This paper evaluates and discusses multifactor non-linear, statistical dependencies of drill side-edges recession VBK and drill diameter recession DW on the cutting path length LC, the content of hard mineral contaminants CMC, the size of contaminant particles SMC, and the Mohs hardness MH. Significant influence of the cutting path LC, the content CMC of hard mineral contaminants (HMC, and the size of contaminant particles SMC was found, whereas the Mohs hardness MH of the contamination particles was less important.

  18. 人工关节磨损颗粒对骨髓间充质干细胞影响的研究现状%Research status of the effects of prosthesis wear particles on bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    王荣; 周胜虎; 李旭升

    2016-01-01

    To review the research status of the effects of joint prosthesis wear particles on bone marrow mesenchymal stem cells ( BMSCs ). Joint prosthetic replacement is an effective way to treat osteoarthrosis of advanced stage, which can get rid of arthral pain, eliminate the joint deformities and rebuild the function of activity to boost life quality. Aseptic loosening is the main reason of the failure of arthroplasty. Wear particle induced biological reaction in tissues surrounding the prosthesis is an important factor of osteolysis and aseptic loosening after the arthroplasty. Wear particles move into the bone marrow cavity through the implant-bone interface membrane pathways, and interact with BMSCs. Wear particles affect the bone regeneration and reconstruction around the prosthesis by influencing adhesion and migration, proliferation and osteogenic differentiation and expression of osteoprotegerin ( OPG ) and receptor activator for nuclear factor-κB ligand ( RANKL ) of BMSCs. Decoy oligodeoxynucleotides for NF-κB could enhance the activity and OPG expression of BMSCs. Diphosphate could inhibit the release of inlfammatory cytokines and promote the proliferation and osteogenic differentiation, playing a positive role in the prevention and treatment of aseptic loosening.

  19. An On-line Ferrograph for Monitoring Machine Wear

    Institute of Scientific and Technical Information of China (English)

    L(U) Xiao-jun; JING Min-qing; XIE You-bai

    2005-01-01

    In order to improve an on-line ferrograph, this paper simulates a three dimensional magnetic field distribution of an electromagnet, builds a sinking motion model of a wear particle, and investigates the motion law of wear particles under two different conditions. Both numeric results and experimental results show that the on-line ferrograph is capable of monitoring machine wear conditions by measuring the concentration and size distribution of wear particles in lubricating oil.

  20. Wear Fault Diagnosis of Machinery Based on Neural Networks and Gray Relationships

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the regular characteristic of wear particles related to fault type of machines based on condition monitoring of reciprocal machinery is discussed. The typi-cal wear particles spectrum is established according to the equipment structure, friction and wear rule and the characteristic of wear particles; The identification technology of wear particles is proposed based on neural networks and a gray relationship; an intelligent wear particles identification system is designed. The diagnosis example shows that this system can promote the accuracy and the speed of wear particles identification.

  1. Bevacizumab 抑制骨溶解的实验研究%Beyacizumab inhibits wear particle-induced osteolysis in a mouse model

    Institute of Scientific and Technical Information of China (English)

    赖笑雨; 钟艳春; 高辉

    2014-01-01

    Objectiye:To observe the effect of local injection of different concentrations of VEGF inhibitor bevacizumab on the wear particle-induced osteolysis. Motheds:An mouse Bone implant in air pouch model for wear particle-induced oste-olysis were established. 0. 2 mL bevacizumzb were injected into the air pouches in low-dose bevacizumzb group(25 μg· mL - 1 )and high-dose Bevacizumab group(250 μg·mL - 1 ),In blank control group and positive control group,saline was used. 2 weeks later,observe the inflammatory reaction and bone resorption of the pouch membranes. Results:The redness, swelling,and neovascularization in air pouches of positive control group were more obvious than blank control group and the two different concentrations of bevacizumzb group were slighter than positive control group. Hematoxylin-eosin staining indicated that the thickness and the cell density of the pouch membrane in two different concentrations of bevacizumab group were significantly lower than those in positive control group. As bevacizumab concentration increased,the index de-creased accordingly. Real-time fluorescent quantitative PCR and ELISA analyses showed that The expression of inflamma-tory cytokines in two different concentrations of bevacizumzb group were Far lower than positive control group. Conclu-sion:Local injection of bevacizumab can effectively inhibit wear particle-induced inflammatory responses and osteolysis.%目的:观察局部注射不同浓度的血管内皮生长因子抑制剂 bevacizumab 对磨损颗粒诱导骨溶解的抑制作用。方法:建立磨损颗粒诱导骨溶解的植骨气囊动物模型,分别在 bevacizumab 低剂量组(C 组)和 bevacizumab 高剂量组(D 组)小鼠气囊内隔天注入0.2 mL 25μg·mL -1和250μg·mL -1 Bevacizumab 溶液,空白对照组(A 组)和阳性对照组(B 组)则以等量生理盐水取代,2周后观察囊壁炎症反应及骨溶解情况。结果:阳性对照组囊壁红肿及血管增生

  2. 润滑油中磨粒的X-荧光能谱测试方法研究与应用%Research and Application of Wear Particles Test Method in Lubricant Based on EDXRF Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    刘东风; 石新发; 周志才

    2015-01-01

    Seven standar d oil samples with different concentration levels of wear particles were applied to research the method of test wear particles in lubricant based on EDXRF spectroscopy.By selecting appropriate characteristic elements, test parameters and test combinations of elements program,the method of test wear particles in lubricant based on EDXRF spectroscopy was established in subsection according to two kinds of mass fraction range of wear particles at 0~1 × 10-4 and 1×10-4~5×10-4,which includes the establishment of standard curves and analysis flows.The established testing method was used to monitor a diesel lubricant,and the monitoring and tracking ability of the method was verified.The oil samples from twenty six of same type equipments were selected to carry out a comparative analysis of the established EDXRF spec⁃troscopy method,and the atomic emission spectroscopy method and the PQ ferromagnetic particle analysis method.The re⁃sults show the established EDXRF spectroscopy method can effective monitor wear particles in lubricating oil,and has a special advantage to large wear particles.%采用7种不同磨粒含量标准油样,通过选择合理的特征元素、测试参数和元素测试组合方案,按照0~1×10-4、1×10-4~5×10-4两种磨粒质量分数范围,分段建立包含标准曲线、分析流程的润滑油中磨粒的EDXRF光谱测试方法。应用建立的测试方法,对某柴油机润滑油进行跟踪监测,验证该方法的跟踪监测能力;以26个同型设备油样为对象,对该方法与原子发射光谱、 PQ铁磁性颗粒分析仪分析结果进行比较。结果表明,建立的润滑油EDXRF光谱测试方法能够有效地监测润滑油中的磨损颗粒,特别是针对大的磨损颗粒有着特殊的优势。

  3. Wear behaviour of A356 aluminium alloy reinforced with micron and nano size SiC particles

    CSIR Research Space (South Africa)

    Camagu, ST

    2013-07-01

    Full Text Available in fabrication of MMNCs has been the difficulty to obtain uniform dispersion of nano-sized ceramic particles in liquid metals due to high viscosity, poor wettability in the metal matrix and the increase of specific surface area caused by the reduction... surfaces of the pins were viewed under a Stereo and Scanning Electron Microscopes. 3. Results and discussion 3.1.Mass loss Mass losses recorded on A356 in the F condition as well as 15 % MMHC in the F and T6 conditions are shown in figure 1. Inspection...

  4. Suppression of phagocytic and bactericidal functions of rat alveolar macrophages by the organic component of diesel exhaust particles.

    Science.gov (United States)

    Yin, Xuejun J; Dong, Caroline C; Ma, Jane Y C; Roberts, Jenny R; Antonini, James M; Ma, Joseph K H

    2007-05-15

    Exposure to diesel exhaust particles (DEP) was shown to increase the susceptibility of the lung to bacterial infection in rats. In this study, the effects of DEP on alveolar macrophage (AM) phagocytic and bactericidal functions and cytokine secretion by AM and lymphocytes in response to Listeria monocytogenes infection were investigated in vitro and the roles of different DEP components in these processes were compared. Exposure to DEP or the organic extracts of DEP (eDEP) significantly decreased the phagocytosis and killing of L. monocytogenes by AM obtained from normal rats. Washed DEP (wDEP) also decreased AM phagocytosis and bacterial killing to a lesser extent, whereas carbon black (CB) reduced AM phagocytosis but had no significant effect on AM bactericidal activity. DEP or eDEP concentration-dependently suppressed L. monocytogenes-induced secretion of tumor necrosis factor-alpha, interleukin (IL)-1beta, and IL-12 by AM and of IL-2 and interferon-gamma by lymphocytes obtained from L. monocytogenes-infected rats, but augmented the AM secretion of IL-10. wDEP or CB, however, exerted little or no effect on these L. monocytogenes-induced cytokines. These results provide direct evidence that DEP, through the actions of organic components, suppresses AM phagocytic and bactericidal functions in vitro. Inhibition of AM phagocytic function and alterations of AM and lymphocyte cytokine secretion by DEP and DEP organic compounds may be implicated in the diminished AM bactericidal activity and the lymphatic arm of the host immune system, thus resulting in an suppressed pulmonary clearance of L. monocytogenes and an increased susceptibility of the lung to bacterial infection.

  5. Impact of the chemical composition of poly-substituted hydroxyapatite particles on the in vitro pro-inflammatory response of macrophages.

    Science.gov (United States)

    Douard, Nathalie; Leclerc, Lara; Sarry, Gwendoline; Bin, Valérie; Marchat, David; Forest, Valérie; Pourchez, Jérémie

    2016-04-01

    To improve the biological properties of calcium phosphate (CaP) bone substitute, new chemical compositions are under development. In vivo such materials are subject to degradation that could lead to particles release and inflammatory reactions detrimental to the bone healing process. This study aimed at investigating the interactions between a murine macrophage cell line (RAW 264.7) and substituted hydroxyapatite particles presenting promising biological properties. Micron size particles of stoichiometric and substituted hydroxyapatites (CO3 substitution for PO4 and OH; SiO4 substitution for PO4; CO3 and SiO4 co-substitution) were obtained by aqueous precipitation followed by spray drying. Cells, incubated with four doses of particles ranging from 15 to 120 μg/mL, revealed no significant LDH release or ROS production, indicating no apparent cytotoxicity and no oxidative stress. TNF-α production was independent of the chemistry of the particles; however the particles elicited a significant dose-dependent pro-inflammatory response. As micron size particles of these hydroxyapatites could be at the origin of inflammation, attention must be paid to the degradation behavior of substituted hydroxyapatite bone substitute in order to limit, in vivo, the generation of particulate debris.

  6. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 3, Traditional approaches to wear prevention

    Energy Technology Data Exchange (ETDEWEB)

    Schwalb, J.A.

    1991-06-01

    Contamination of the lube-oil with hard abrasive particles leads to a three-body abrasive wear mechanism that highly accelerates piston ring/cylinder liner wear in coal-fueled diesel engines. One approach to reducing that wear is to modify the size and orientation of surface asperities on the cylinder to enhance the formation of a hydrodynamic film, and to provide avenues of escape for particles that would otherwise be trapped in the wear zone. Another approach is to introduce additives into the contaminated lube-oil that further enhance hydrodynamic film formation, form chemical films on the wearing surfaces, or form films on the contaminant particles. This work focuses on defining the effects of cylinder liner surface finish, various configurations of slots in the cylinder liner surface, and various additives in the contaminated lube-oil on the wear process. Wear tests were initiated in a bench apparatus using coal-ash contaminated lube-oil to test the various wear configurations. The results of these tests indicate that the formation of a hydrodynamic film between the ring and cylinder specimens is enhanced by increasing surface roughness, and by orienting the surface asperities normal to the direction of ring travel but modifications to the cylinder liner surface did not greatly reduce the wear rate. Additives to the lubricant seemed to have a much more significant effect on wear, with a dispersant additive highly accelerating the wear, while a detergent additive was able to reduce the wear almost to the rate achieved where there was no contaminant.

  7. Fabrication and Investigation of Thermal and Wear Properties of Zinc Novel Coatings Reinforced with Nano-Al2O3 and Cr2O3 Particles

    OpenAIRE

    Popoola A.P.I.; Malatji N.; Fayomi O.S.I

    2016-01-01

    The study of the thermal, wear and corrosion properties of developed nanocomposite coatings of Zn-Al2O3 and Zn-Cr2O3 was carried out. The coatings were produced by electrodeposition technique from chloride acidic bath. Laboratory tube furnace was used for the thermal analysis. The wear test was performed using CETR tribo-tester dry reciprocating tester. The hardness properties were investigated using diamond base Dura microhardness tester. Scanning electron microscope (SEM) affixed with energ...

  8. Alveolar macrophage-epithelial cell interaction following exposure to atmospheric particles induces the release of mediators involved in monocyte mobilization and recruitment

    Directory of Open Access Journals (Sweden)

    Mukae Hiroshi

    2005-08-01

    Full Text Available Abstract Background Studies from our laboratory have shown that human alveolar macrophages (AM and bronchial epithelial cells (HBEC exposed to ambient particles (PM10 in vitro increase their production of inflammatory mediators and that supernatants from PM10-exposed cells shorten the transit time of monocytes through the bone marrow and promote their release into the circulation. Methods The present study concerns co-culture of AM and HBEC exposed to PM10 (EHC-93 and the production of mediators involved in monocyte kinetics measured at both the mRNA and protein levels. The experiments were also designed to determine the role of the adhesive interaction between these cells via the intercellular adhesion molecule (ICAM-1 in the production of these mediators. Results AM/HBEC co-cultures exposed to 100 μg/ml of PM10 for 2 or 24 h increased their levels of granulocyte-macrophage colony-stimulating factor (GM-CSF, M-CSF, macrophage inflammatory protein (MIP-1β, monocyte chemotactic protein (MCP-1, interleukin (IL-6 and ICAM-1 mRNA, compared to exposed AM or HBEC mono-cultures, or control non-exposed co-cultures. The levels of GM-CSF, M-CSF, MIP-1β and IL-6 increased in co-cultured supernatants collected after 24 h exposure compared to control cells (p 10-induced increase in co-culture mRNA expression. Conclusion We conclude that an ICAM-1 independent interaction between AM and HBEC, lung cells that process inhaled particles, increases the production and release of mediators that enhance bone marrow turnover of monocytes and their recruitment into tissues. We speculate that this interaction amplifies PM10-induced lung inflammation and contributes to both the pulmonary and systemic morbidity associated with exposure to air pollution.

  9. Dimensional Description of On-line Wear Debris Images for Wear Characterization

    Institute of Scientific and Technical Information of China (English)

    WU Tonghai; PENG Yeping; DU Ying; WANG Junqun

    2014-01-01

    As one of the most wear monitoring indicator, dimensional feature of individual particles has been studied mostly focusing on off-line analytical ferrograph. Recent development in on-line wear monitoring with wear debris images shows that merely wear debris concentration has been extracted from on-line ferrograph images. It remains a bottleneck of obtaining the dimension of on-line particles due to the low resolution, high contamination and particle’s chain pattern of an on-line image sample. In this work, statistical dimension of wear debris in on-line ferrograph images is investigated. A two-step procedure is proposed as follows. First, an on-line ferrograph image is decomposed into four component images with different frequencies. By doing this, the size of each component image is reduced by one fourth, which will increase the efficiency of subsequent processing. The low-frequency image is used for extracting the area of wear debris, and the high-frequency image is adopted for extracting contour. Second, a statistical equivalent circle dimension is constructed by equaling the overall wear debris in the image into equivalent circles referring to the extracted total area and premeter of overall wear debris. The equivalent circle dimension, reflecting the statistical dimension of larger wear debris in an on-line image, is verified by manual measurement. Consequently, two preliminary applications are carried out in gasoline engine bench tests of durability and running-in. Evidently, the equivalent circle dimension, together with the previously developed concentration index, index of particle coverage area (IPCA), show good performances in characterizing engine wear conditions. The proposed dimensional indicator provides a new statistical feature of on-line wear particles for on-line wear monitoring. The new dimensional feature conveys profound information about wear severity.

  10. The role of p105 protein in NFkappaB activation in ANA-1 murine macrophages following stimulation with titanium particles.

    Science.gov (United States)

    Soloviev, Alexander; Schwarz, Edward M; Kuprash, Dmitry V; Nedospasov, Sergei A; Puzas, J Edward; Rosier, Randy N; O'Keefe, Regis J

    2002-07-01

    Macrophage activation by particulate debris from orthopaedic implants triggers an inflammatory response that ultimately leads to periprosthetic bone resorption and implant failure. TNFalpha has been identified as a critical cytokine involved in the response to debris particles but the mechanisms involved in activation of TNFalpha synthesis are unclear. The current study demonstrates rapid induction or TNFalpha following stimulation with titanium particles in the murine macrophage cell line. ANA-1. Electrophoretic mobility shift assays demonstrated NFkappaB DNA binding activity within 15 min of exposure to titanium particles, and experiments with an NFkappaB luciferase promoter confirmed the induction of NFkappaB mediated transcription by titanium particles. Furthermore, titanium particles induced a 2-fold induction in TNFalpha promoter activity, and mutation of the kappaB2a site, one of the four NFkappaB-binding sites in the TNFalpha promoter, resulted in decreased activation. Since NFtB is a critical regulator of inflammation and is involved in activation of the TNFalpha promoter, additional experiments were performed to determine the mechanism of NFkappaB activation by particles. NFKB activation was found to be dependent upon proteasome activity, since administration of MG 132, a proteasome inhibitor, blocked NFkappaB activation. However, IkappaBalpha is only slightly decreased following Ti treatment, in contrast to marked degradation following stimulation with LPS. Recently, another proteasome-dependent pathway of NFkappaB activation has been described involving degradation of p105. a precursor of p50 that binds to p65. p105 degradation occurred following titanium stimulation. suggesting that this recently described mechanism for NFKB activation is operant in ANA-1 cells following exposure to titanium particles. These findings demonstrate that activation of the NFkappaB signaling pathway is rapidly induced by titanium particles in ANA-1 cells and is associated

  11. The Abrasive Wear Properties of Aluminum Alloy 6061 Reinforced with Nano-SiC Particles%纳米SiC颗粒强化AA6061的磨粒磨损行为

    Institute of Scientific and Technical Information of China (English)

    李晓丹; 翟玉春; 马军平

    2011-01-01

    Aluminium alloy 6061(AA6061) matrix composites reinforced with nano-SiC particles were produced.The microstructure,Vickers microhardness and characteristic wear properties of the composites were investigated.The results showed that the wear rate and the friction coefficient values of the composites are lower than the matrix alloy at 20 N load,the wear rate of 0.6%SiC/AA6061 decreases 50% than the matrix.This is attributed to the strong bonding between the matrix and the particles in the composites.So the presence of SiC particles in the composites improves the wear resistance because these particles remain intact and retain their load-bearing capacity,they promote the formation of iron-rich transfer layer.The dominant wear mechanisms are found to be abrasion for the AA6061 alloy and its composites at 20 N load.%实验制备了纳米SiC颗粒强化AA6061基材料,并考察了其微观组织、硬度及磨损性能.结果表明:在20 N载荷下,强化试样的磨损率及摩擦系数均低于AA6061基体,其中0.6%SiC/AA6061复合材料的磨损率较基体降低50%.这主要是由于SiC颗粒自身良好的载荷承载能力,加之增强颗粒/基体间界面良好的结合,使SiC颗粒的添加提高了复合材料的磨损抗力.同时,促进了富铁机械转移层的形成,降低了摩擦系数和磨损率.AA6061基体和强化材料在20 N载荷下的磨损机制均为磨粒磨损.

  12. Wear behaviour of Al 261

    Directory of Open Access Journals (Sweden)

    N. Mathan Kumar

    2016-03-01

    Full Text Available Al 2618 matrix material was mixed with the Silicon Nitride (Si3N4, Aluminium Nitride (AlN and Zirconium Boride (ZrB2 reinforced particles. AMC was synthesized successfully by the stir casting method with the various X-wt.% of reinforcements (X = 0,2,4,6,8. Tribological behaviour was studied in this composite with various temperature conditions. The working conditions were Temperature (°C, Load (N, Velocity (m/s and Sliding Distances (m. Before wear testing the mechanical behaviour has been analysed. EDAX was confirmed by the matrix material composition. The Al 2618 alloy and the reinforcement mixers were confirmed by the X-ray Diffraction analysis. Wear rate (mm3/m, Wear resistance (m/mm3, Specific Wear rate (m/Nm and Co-efficient of friction (μ were analysed with various conditions. The worn surfaces were analysed before and after wear testing by Scanning Electron Microscope (SEM. Influence of process parameters and Percentage of contribution were analysed by Taguchi and Analysis of Variance (ANOVA methods. Genetic Algorithm (GA was adopted for optimizing the best and mean of the wear rate and to identify the exact influence of input parameters.

  13. Macrophages and dendritic cells express tight junction proteins and exchange particles in an in vitro model of the human airway wall.

    Science.gov (United States)

    Blank, Fabian; Wehrli, Marc; Lehmann, Andrea; Baum, Oliver; Gehr, Peter; von Garnier, Christophe; Rothen-Rutishauser, Barbara M

    2011-01-01

    The human airway epithelium serves as structural and functional barrier against inhaled particulate antigen. Previously, we demonstrated in an in vitro epithelial barrier model that monocyte derived dendritic cells (MDDC) and monocyte derived macrophages (MDM) take up particulate antigen by building a trans-epithelial interacting network. Although the epithelial tight junction (TJ) belt was penetrated by processes of MDDC and MDM, the integrity of the epithelium was not affected. These results brought up two main questions: (1) Do MDM and MDDC exchange particles? (2) Are those cells expressing TJ proteins, which are believed to interact with the TJ belt of the epithelium to preserve the epithelial integrity? The expression of TJ and adherens junction (AJ) mRNA and proteins in MDM and MDDC monocultures was determined by RT-PCR, and immunofluorescence, respectively. Particle uptake and exchange was quantified by flow cytometry and laser scanning microscopy in co-cultures of MDM and MDDC exposed to polystyrene particles (1 μm in diameter). MDM and MDDC constantly expressed TJ and AJ mRNA and proteins. Flow cytometry analysis of MDM and MDDC co-cultures showed increased particle uptake in MDDC while MDM lost particles over time. Quantitative analysis revealed significantly higher particle uptake by MDDC in co-cultures of epithelial cells with MDM and MDDC present, compared to co-cultures containing only epithelial cells and MDDC. We conclude from these findings that MDM and MDDC express TJ and AJ proteins which could help to preserve the epithelial integrity during particle uptake and exchange across the lung epithelium.

  14. A View on Wear Mechanism of Metallic Card Clothing

    Institute of Scientific and Technical Information of China (English)

    WU Liang; WANG Wen-qiang; NI Huai-sheng

    2008-01-01

    The wear mechanism of metallic card clothing,used in textile industry, was analyzed. A fast wear test for metallic card clothing racks was developed, which was used as collecting the wear metal particles. The failure type of card clothing was analyzed by the mean of scanning electron microscopy (SEM) and ferro-spectrum technology. The results show that the main wear mechanism of metallic card clothing is low load and high repetition interval fatigue wear caused by friction force between fiber and metal wire teeth.The appropriate quenching microstmcture, which improves the wear resistance of the metallic card clothing rack is also discussed.

  15. Comparison of cytotoxic and inflammatory responses of photoluminescent silicon nanoparticles with silicon micron-sized particles in RAW 264.7 macrophages.

    Science.gov (United States)

    Choi, Jonghoon; Zhang, Qin; Reipa, Vytas; Wang, Nam Sun; Stratmeyer, Melvin E; Hitchins, Victoria M; Goering, Peter L

    2009-01-01

    Photoluminescent silicon nanoparticles have a bright and stable fluorescence and are promising candidates for bio-imaging, cell staining and drug delivery. With increasing development of nanotechnology applications for biomedicine, an understanding of the potential toxicity of nanoparticles is needed to assess safety concerns for clinical applications. The objective of this study was to compare biological responses of silicon nanoparticles (SNs, 3 nm diameter) with silicon microparticles (SMs, approximately 100-3000 nm diameter) in cultured murine macrophages (RAW 264.7) using standard protocols for assessing cytotoxicity/cell viability and inflammatory responses developed for micron-sized particles. SNs and SMs were exposed to macrophages with and without addition of endotoxin lipopolysaccharide (LPS), a positive inducer of tumor necrosis factor-alpha (TNF-alpha), interleukin 6 (IL-6), and nitric oxide (NO). Cytotoxicity was assayed using the dye exclusion and MTT assays. Cell supernatants were assayed for production TNF-alpha, IL-6 and NO. SNs at concentrations 20 and 200 microg ml(-1), respectively, increased cytotoxicity compared with controls. SMs induced concentration-related increases in TNF-alpha and IL-6 production; in contrast, the production of these cytokines was shown to decrease with increasing concentrations of SNs. NO production was not induced by SNs or SMs alone. Fluorescence microscopy demonstrated that SNs were associated with the macrophages, either internalized or attached to cell membranes. In conclusion, evaluating differences in biological responses for nanoparticles compared with microparticles of the same material may help improve tests to assess biological responses of nanoparticles that may be used in biomedical applications.

  16. Effects of ultrafine petrol exhaust particles on cytotoxicity, oxidative stress generation, DNA damage and inflammation in human A549 lung cells and murine RAW 264.7 macrophages.

    Science.gov (United States)

    Durga, Mohan; Nathiya, Soundararajan; Rajasekar, Abbu; Devasena, Thiyagarajan

    2014-09-01

    Air pollution has persistently been the major cause of respiratory-related illness and death. Environmental pollutants such as diesel and petrol exhaust particles (PEPs) are the major contributors to urban air pollution. The aim of the present study was to characterize and investigate the in vitro cytotoxicity, oxidative stress, DNA damage and inflammation induced by PEPs. Cultured type II epithelium cells (human A549 lung cells) and alveolar macrophages (murine RAW 264.7 cells) were exposed to control, vehicle control and to different concentrations of PEPs for up to 24h. Each treatment was evaluated by cell viability, cytotoxicity, oxidative stress, DNA damage and inflammatory parameters. Overall in vitro studies demonstrated that both cell lines showed similar patterns in response to the above studies induced by petrol exhaust nanoparticles (PENPs). Vehicle control showed no changes compared with the control. In both cell lines, significant changes at the dose of 20 and 50μg/mL (A549 cell lines) and 10and 20μg/mL (macrophages) for PENPs were found. The reactive oxygen species production in both cell lines shot up in minutes, reached the maximum within an hour and came down after 4h. Hence, exposure to PENPs resulted in dose-dependent toxicity in cultured A549 cells and RAW 264.7 cells and was closely correlated to increased oxidative stress, DNA damage and inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. CoCr wear particles generated from CoCr alloy metal-on-metal hip replacements, and cobalt ions stimulate apoptosis and expression of general toxicology-related genes in monocyte-like U937 cells

    Energy Technology Data Exchange (ETDEWEB)

    Posada, Olga M., E-mail: O.M.PosadaEstefan@leeds.ac.uk [Biomedical Engineering Department, University of Strathclyde, Wolfson Centre, Glasgow G4 0NW (United Kingdom); Gilmour, Denise [Pure and Applied Chemistry Department, University of Strathclyde, Thomas Graham Building, Glasgow G1 1XL (United Kingdom); Tate, Rothwelle J., E-mail: r.j.tate@strath.ac.uk [Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE (United Kingdom); Grant, M. Helen [Biomedical Engineering Department, University of Strathclyde, Wolfson Centre, Glasgow G4 0NW (United Kingdom)

    2014-11-15

    Cobalt-chromium (CoCr) particles in the nanometre size range and their concomitant release of Co and Cr ions into the patients' circulation are produced by wear at the articulating surfaces of metal-on-metal (MoM) implants. This process is associated with inflammation, bone loss and implant loosening and led to the withdrawal from the market of the DePuy ASR™ MoM hip replacements in 2010. Ions released from CoCr particles derived from a resurfacing implant in vitro and their subsequent cellular up-take were measured by ICP-MS. Moreover, the ability of such metal debris and Co ions to induce both apoptosis was evaluated with both FACS and immunoblotting. qRT-PCR was used to assess the effects on the expression of lymphotoxin alpha (LTA), BCL2-associated athanogene (BAG1), nitric oxide synthase 2 inducible (NOS2), FBJ murine osteosarcoma viral oncogene homolog (FOS), growth arrest and DNA-damage-inducible alpha (GADD45A). ICP-MS showed that the wear debris released significant (p < 0.05) amounts of Co and Cr ions into the culture medium, and significant (p < 0.05) cellular uptake of both ions. There was also an increase (p < 0.05) in apoptosis after a 48 h exposure to wear debris. Analysis of qRT-PCR results found significant up-regulation (p < 0.05) particularly of NOS2 and BAG1 in Co pre-treated cells which were subsequently exposed to Co ions + debris. Metal debris was more effective as an inducer of apoptosis and gene expression when cells had been pre-treated with Co ions. This suggests that if a patient receives sequential bilateral CoCr implants, the second implant may be more likely to produce adverse effects than the first one. - Highlights: • Effects of CoCr nanoparticles and Co ions on U937 cells were investigated. • Ions released from wear debris play an important role in cellular response, • Toxicity of Co ions could be related to NO metabolic processes and apoptosis. • CoCr particles were a more effective inducer of apoptosis after cell

  18. Study on Wear Properties of Ti(C,N) Particle Reinforced Fe-based Composites%Ti(C,N)颗粒增强铁基复合材料磨损性能的研究

    Institute of Scientific and Technical Information of China (English)

    苏广才; 张修海; 林定富; 韦书建; 黄思娟; 陈锡广

    2013-01-01

    以45钢、钛铁、生铁等为主要原料,在大气环境下、利用中频感应电炉、通过添加含氮附加物、采用原位反应铸造法制备了Ti(C,N)颗粒增强铁基复合材料.研究了所制备复合材料的油润滑摩擦磨损性能、干摩擦磨损性能以及冲击磨料磨损性能.结果表明,在有润滑和无润滑条件下的干摩擦,复合材料的耐磨性能都远大于正火45钢;在中、低冲击工况下,复合材料磨料磨损性能优于高锰钢和高铬铸铁.%Taking 45 steel, titanium iron, pig iron as main raw material, in the atmospheric environment, Ti (C,N) particles reinforced Fe-based composite was prepared by in-situ reaction casting. And the friction and wear properties in the conditions of oil lubrication and dry friction, and the impact abrasive wear resistance of the composite were studied. The results show that the friction and wear properties of the composites are much larger than normalizing 45 steel under lubricated and non-lubricated conditions; the abrasive wear resistance of the composite is better than the high manganese steel and high chromium cast iron in the middle and low-impact conditions.

  19. Wear and microstructure in fine ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vijande-Diaz, R.; Belzunce, J.; Fernandez, E. (ETS de Ingenieros Industriales, Area de Ingeneria Mecanica, Gijon (Spain)); Rincon, A.; Perez, M.C. (Inst. de Fisica-Quimica ' Roco Solano' , CSIC, Madrid (Spain))

    1991-08-15

    This paper presents a study of the wear resistance of two ceramic, plasma sprayed coatings of Al{sub 2}O{sub 3} and Cr{sub 2}O{sub 3}. Tests were carried out using an LWF-1 standard machine, with lineal contact, under dry friction, abrasion and lubricant conditions. The purpose of the tests were to study how load and speed affect material wear. Results show the lower wear rate of the ceramic coating compared with the steel one, as well as how remarkably load affects wear. On the other hand, however, considering the speed ranges used, wear resistance does not depend significantly on speed. The paper proves that the wear process follows Czichos' law. At the same time, reformulation of Archard's equation allows us to quantify wear using easily measurable factors such as pressure, speed, hardness, and those factors typically featuring this type of coatings, e.g. porosity. Also, a micrographic study of the coatings carried out by means of a scanning electron microscope has evidenced three stages in the wear mechanism: (a) plastic deformation of particles; (b) crack nucleation and propagation; and (c) loosening of ceramic particles. (orig.).

  20. Wear mechanism and wear prevention in coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Schwalb, J.A.

    1991-06-01

    Contamination of the lube-oil with hard abrasive particles leads to a three-body abrasive wear mechanism that highly accelerates piston ring/cylinder liner wear in coal-fueled diesel engines. One approach to reducing that wear is to modify the size and orientation of surface asperities on the cylinder to enhance the formation of a hydrodynamic film, and to provide avenues of escape for particles that would otherwise be trapped in the wear zone. Another approach is to introduce additives into the contaminated lube-oil that further enhance hydrodynamic film formation, form chemical films on the wearing surfaces, or form films on the contaminant particles. This work focuses on defining the effects of cylinder liner surface finish, various configurations of slots in the cylinder liner surface, and various additives in the contaminated lube-oil on the wear process. Wear tests were initiated in a bench apparatus using coal-ash contaminated lube-oil to test the various wear configurations. The results of these tests indicate that the formation of a hydrodynamic film between the ring and cylinder specimens is enhanced by increasing surface roughness, and by orienting the surface asperities normal to the direction of ring travel but modifications to the cylinder liner surface did not greatly reduce the wear rate. Additives to the lubricant seemed to have a much more significant effect on wear, with a dispersant additive highly accelerating the wear, while a detergent additive was able to reduce the wear almost to the rate achieved where there was no contaminant.

  1. Wear mechanism and wear prevention in coal-fueled diesel engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  2. Wear mechanism and wear prevention in coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  3. Residual stress and wear resistance of WC particle reinforced Ni-based coating%W C颗粒增强 Ni基涂层的残余应力及耐磨性能

    Institute of Scientific and Technical Information of China (English)

    郭华锋; 李菊丽; 孙涛; 杨海峰

    2014-01-01

    Microstructure of WC particle reinforced Ni-based plasma-sprayed coating was observed by scanning electron microscope (SEM). Surface residual stress of the coating with different WC content and the bonding layer were tested by X -ray diffraction ( XRD) method. Microhardness and wear mechanism of the coating were studied by friction and wear test machine and confocal laser scanning microscope .The results show that the surface residual stress of the coatings are compressive stress and decreased with the increase of WC content .However, residual stress increase with the increase of thickness of coatings and when thickness is 1000 μm, the coating appears delamination failure . The thermal stress is the largest contributive factor to residual stress of the bonding layer .A certain amplitude of compressive stress is beneficial to improve abrasion resistance of the coating .The wear loss of the coating is only about 0.135 times of that of the substrate under the same loading .The wear mechanism of the coating is mainly abrasive wear .%用扫描电子显微镜( SEM)观察了等离子喷涂WC颗粒增强Ni涂层的显微结构,用X射线衍射法( XRD)测试了不同WC含量下涂层及粘结层表面残余应力,利用摩擦磨损试验机和共聚焦激光扫描显微镜研究了涂层的磨损机制。结果表明:涂层表面残余应力为压应力,且随着WC含量的增加先增大后减小,随着涂层厚度的增加而增大,厚度为1000μm时出现分层失效,热应力对粘结层残余应力的贡献最大。一定幅值的压应力有利于涂层耐磨性的提高,同载荷下磨损量仅为基体的0.135倍,涂层磨损机制主要为磨粒磨损。

  4. Experimental methodology for assessing the environmental fate of organic chemicals in polymer matrices using column leaching studies and OECD 308 water/sediment systems: Application to tire and road wear particles

    Energy Technology Data Exchange (ETDEWEB)

    Unice, Kenneth M., E-mail: ken.unice@cardno.com; Bare, Jennifer L.; Kreider, Marisa L.; Panko, Julie M.

    2015-11-15

    Automobile tires require functional rubber additives including curing agents and antioxidants, which are potentially environmentally available from tire and road wear particles (TRWP) deposited in soil and sediment. A novel methodology was employed to evaluate the environmental fate of three commonly-used tire chemicals (N-cyclohexylbenzothiazole-2-sulfenamide (CBS), N-(1,3-dimethylbutyl)-N′-phenyl-1,4-phenylenediamine (6-PPD) and 1,3-diphenylguanidine (DPG)), using a road simulator, an artificial weathering chamber, column leaching tests, and OECD 308 sediment/water incubator studies. Environmental release factors were quantified for curing (f{sub C}), tire wear (f{sub W}), terrestrial weathering (f{sub S}), leaching from TRWP (f{sub L}), and environmental availability from TRWP (f{sub A}) by liquid chromatography–tandem mass spectroscopy (LC/MS/MS) analyses. Cumulative fractions representing total environmental availability (F{sub T}) and release to water (F{sub R}) were calculated for the tire chemicals and 13 transformation products. F{sub T} for CBS, DPG and 6-PPD inclusive of transformation products for an accelerated terrestrial aging time in soil of 0.1 years was 0.08, 0.1, and 0.06, respectively (equivalent to 6 to 10% of formulated mass). In contrast, a wider range of 5.5 × 10{sup −4} (6-PPD) to 0.06 (CBS) was observed for F{sub R} at an accelerated age of 0.1 years, reflecting the importance of hydrophobicity and solubility for determining the release to the water phase. Significant differences (p < 0.05) in the weathering factor, f{sub S}, were observed when chemicals were categorized by boiling point or hydrolysis rate constant. A significant difference in the leaching factor, f{sub L}, and environmental availability factor, f{sub A,} was also observed when chemicals were categorized by log K{sub ow}. Our methodology should be useful for lifecycle analysis of other functional polymer chemicals. - Highlights: • Studied two vulcanization

  5. Wearing gloves in the hospital

    Science.gov (United States)

    ... gloves; PPE - wearing gloves; Nosocomial infection - wearing gloves; Hospital acquired infection - wearing gloves ... Wearing gloves in the hospital helps prevent the spread of germs. This helps protect both patients and health care workers from infection.

  6. Comparative wear mapping techniques

    DEFF Research Database (Denmark)

    Alcock, J.; Sørensen, Ole Toft; Jensen, S.

    1996-01-01

    Pin-on-disc tests of tungsten carbide pins against silicon carbide discs were performed and wear rate, mechanism and friction maps constructed. Correlations were observed between the wear mode and the friction of the pin-disc interface, and between the qualitative incidence of disruptive wear...

  7. Wear Debris Analysis:Fundamental Principle of Wear-Graphy

    Institute of Scientific and Technical Information of China (English)

    陈铭; 王伟华; 殷勇辉; 王成焘

    2004-01-01

    A new wear-graphy technology was developed, which can simultaneously identify the shape and composition of wear debris, for both metals and non-metals.The fundamental principles of the wear-graphy system and its wear-gram system are discussed here.A method was developed to distribute wear debris on a slide uniformly to reduce overlapping of wear debris while smearing.The composition identification analyzes the wear debris using the scanning electron microscope (SEM) energy spectrum, infrared-thermal imaging and X-ray imaging technology.A wear debris analysis system based on database techniques is demonstrated, and a visible digitized wear-gram is acquired based on the information of wear debris with image collection and processing of the wear debris.The method gives the morphological characteristics of the wear debris, material composition identification of the wear debris, intelligent recognition of the wear debris, and storage and management of wear debris information.

  8. Synthesis and Anti-wear Property of the MoO3 Nano-particles%纳米三氧化钼的制备及其抗磨性能研究

    Institute of Scientific and Technical Information of China (English)

    谢凤; 刘书君; 葛世荣; 郝敬团

    2011-01-01

    The MoO3 nano-particle was synthesized using ammonium molybdates and acetic acid. A four-ball machine was used to evaluate the anti-wear property of MoO3 in lubricating oils and Lithium-soap greases. The results indicate that MoO3 has good anti-wear synergisms with oleic acid and a zinc dialkyldithiophosphate ( ZnDDP) ,and has good anti-wear properties in a lithium-soap grease, especially under the high concentrations and loads. As solid lubricating additive, MoO3 can improve the tribological performance of lubricating oils and Lithium-soap greases.%以钼酸铵和醋酸为原料合成纳米MoO3,并采用四球机考察纳米MoO3在润滑油、润滑脂中的抗磨性能.结果表明,纳米MoO3与油酸、二烷基二硫代磷酸锌在润滑油中具有良好的抗磨协同效应,在锂基润滑脂中具有良好的抗磨性能,尤其在高添加量和高负荷下作用更为明显.这表明纳米MoO3作为固体润滑剂,能够提高润滑油、润滑脂的摩擦学性能.

  9. Ultra-High Molecular Weight Polyethylene Reinforced with Multiwall Carbon Nanotubes: In Vitro Biocompatibility Study Using Macrophage-Like Cells

    Directory of Open Access Journals (Sweden)

    Nayeli Camacho

    2015-07-01

    Full Text Available Carbon nanotubes are highly versatile materials; new applications using them are continuously being developed. Special attention is being dedicated to the possible use of multiwall carbon nanotubes in biomaterials contacting with bone. This study describes the response of murine macrophage-like Raw 264.7 cells after two and six days of culture in contact with artificially generated particles from both, ultra-high molecular weight polyethylene polymer and the composite (multiwall carbon nanotubes and ultra-high molecular weight polyethylene. This novel composite has superior wear behavior, having thus the potential to reduce the number of revision knee arthroplasty surgeries required by wear failure of tibial articulating component and diminish particle-induced osteolysis. The results of an in vitro study of viability, and interleukin-6 and tumor necrosis factor-alpha production suggest good cytocompatibility, similar to that of conventional ultra-high molecular weight polyethylene.

  10. Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Min; Xia Zhidao; Glyn-Jones, Sion; Beard, David; Gill, Harinderjit S; Murray, David W, E-mail: young-min.kwon@ndos.ox.ac.u [Nuffield Department of Orthopaedic Surgery, University of Oxford, Oxford OX3 7LD (United Kingdom)

    2009-04-15

    Despite the satisfactory short-term implant survivorship of metal-on-metal hip resurfacing arthroplasty, periprosthetic soft-tissue masses such as pseudotumours are being increasingly reported. Cytotoxic effects of cobalt or chromium have been suggested to play a role in its aetiology. The aim of this study was to investigate the effects of clinically relevant metal nanoparticles and ions on the viability of macrophages in vitro. A RAW 264.7 murine macrophage cell line was cultured in the presence of either: (1) cobalt, chromium and titanium nanoparticles sized 30-35 nm; or (2) cobalt sulphate and chromium chloride. Two methods were used to quantify cell viability: Alamar Blue assay and Live/Dead assay. The cytotoxicity was observed only with cobalt. Cobalt nanoparticles and ions demonstrated dose-dependent cytotoxic effects on macrophages in vitro: the cytotoxic concentrations of nanoparticles and ions were 1 x 10{sup 12} particles ml{sup -1} and 1000 {mu}M, respectively. The high concentration of cobalt nanoparticles required for cytotoxicity of macrophages in vitro suggests that increased production of cobalt nanoparticles in vivo, due to excessive MoM implant wear, may lead to local adverse biological effects. Therefore, cytotoxicity of high concentrations of metal nanoparticles phagocytosed by macrophages located in the periprosthetic tissues may be an important factor in pathogenesis of pseudotumours.

  11. Adhesive Wear of Rollers in Vacuum

    Science.gov (United States)

    Shaeef, Iqbal; Krantz, Timothy L.

    2012-01-01

    This work was done to support NASA's James Webb Space Telescope that is equipped with a Near Infrared Camera and Spectrograph and Micro Shutter Assembly (MSA). A MSA mechanism's qualification test in cryogenic vacuum at 30deg K for 96K cycles resulted in roller wear and formation of some debris. Lab tests in vacuum were conducted at NASA Glenn Research Center (GRC) to understand the wear of Ti6Al4V mated with 440F steel rollers. Misalignment angle was found to have the most significant effect on debris formation. At misalignment angle of 1.4deg, significant amount of wear debris were formed within 50,000 cycles. Very few wear particles were found for a zero misalignment angle, and the total wear was small even after 367,000 cycles. The mode of wear in all the tests was attributed to adhesion, which was clearly evident from video records as well as the plate-like amalgamated debris material from both rollers. The adhesive wear rate was found to be approximately proportional to the misalignment angle. The wear is a two-way phenomenon, and the mixing of both roller materials in wear debris was confirmed by x-ray fluorescence (XRF) and EDX spectra. While there was a net loss of mass from the steel rollers, XRF and energy dispersive x-ray (EDX) spectra showed peaks of Ti on steel rollers, and peaks of Fe on Ti rollers. These results are useful for designers in terms of maintaining appropriate tolerances to avoid misalignment of rolling elements and the resulting severe wear

  12. Fault Wear and Friction Evolution: Experimental Analysis

    Science.gov (United States)

    Boneh, Y.; Chang, J. C.; Lockner, D. A.; Reches, Z.

    2011-12-01

    Wear is an inevitable product of frictional sliding of brittle rocks as evidenced by the ubiquitous occurrence of fault gouge and slickenside striations. We present here experimental observations designed to demonstrate the relationship between wear and friction and their governing mechanisms. The experiments were conducted with a rotary shear apparatus on solid, ring-shaped rock samples that slipped for displacements up to tens of meters. Stresses, wear and temperature were continuously monitored. We analyzed 86 experiments of Kasota dolomite, Sierra White granite, Pennsylvania quartzite, Karoo gabbro, and Tennessee sandstone at slip velocities ranging from 0.002 to 0.97 m/s, and normal stress from 0.25 to 6.9 MPa. We conducted two types of runs: short slip experiments (slip distance mechanisms; and long slip experiments (slip distance > 3 m) designed to achieve mature wear conditions and to observe the evolution of wear and friction as the fault surfaces evolved. The experiments reveal three wear stages: initial, running-in, and steady-state. The initial stage is characterized by (1) discrete damage striations, the length of which is comparable to total slip , and local pits or plow features; (2) timing and magnitude of fault-normal dilation corresponds to transient changes of normal and shear stresses; and (3) surface roughness increasing with the applied normal stress. We interpret these observations as wear mechanisms of (a) plowing into the fresh rock surfaces; (b) asperity breakage; and (c) asperity climb. The running-in stage is characterized by (1) intense wear-rate over a critical wear distance of Rd = 0.3-2 m; (2) drop of friction coefficient over a weakening distance of Dc = 0.2-4 m; (3) Rd and Dc display positive, quasi-linear relation with each other. We interpret these observations as indicating the organizing of newly-created wear particles into a 'three-body' structure that acts to lubricate the fault (Reches & Lockner, 2010). The steady

  13. Periprosthetic UHMWPE Wear Debris Induces Inflammation, Vascularization, and Innervation After Total Disc Replacement in the Lumbar Spine.

    Science.gov (United States)

    Veruva, Sai Y; Lanman, Todd H; Isaza, Jorge E; Freeman, Theresa A; Kurtz, Steven M; Steinbeck, Marla J

    2017-05-01

    The pathophysiology and mechanisms driving the generation of unintended pain after total disc replacement (TDR) remain unexplored. Ultrahigh-molecular-weight polyethylene (UHMWPE) wear debris from TDRs is known to induce inflammation, which may result in pain. The purpose of this study was to determine whether (1) periprosthetic UHMWPE wear debris induces immune responses that lead to the production of tumor necrosis factor-α (TNFα) and interleukin (IL)-1ß, the vascularization factors, vascular endothelial growth factor (VEGF) and platelet-derived growth factor-bb (PDGFbb), and the innervation/pain factors, nerve growth factor (NGF) and substance P; (2) the number of macrophages is associated with the production of the aforementioned factors; (3) the wear debris-induced inflammatory pathogenesis involves an increase in vascularization and associated innervation. Periprosthetic tissues from our collection of 11 patients with contemporary TDRs were evaluated using polarized light microscopy to quantify UHMWPE wear particles. The major reason for revision (mean implantation time of 3 years [range, 1-6 years]) was pain. For control subjects, biopsy samples from four patients with degenerative disc disease with severe pain and autopsy samples from three normal patients with no history of back pain were also investigated. Immunohistochemistry and histology were used to identify secretory factors, macrophages, and blood vessels. Immunostained serial sections were imaged at ×200 magnification and using MATLAB and NIH ImageJ, a threshold was determined for each factor and used to quantify positive staining normalized to tissue sectional area. The Mann-Whitney U test was used to compare results from different patient groups, whereas the Spearman Rho test was used to determine correlations. Significance was based on p < 0.05. The mean percent area of all six inflammatory, vascularization, and innervation factors was higher in TDR tissues when compared with normal disc

  14. A physically-based abrasive wear model for composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gun Y.; Dharan, C.K.H.; Ritchie, Robert O.

    2001-05-01

    A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of the reinforcement is estimated by modeling the three primary wear mechanisms, specifically plowing, interfacial cracking and particle removal. Critical variables describing the role of the reinforcement, such as its relative size and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy matrix composite material.

  15. Experimental Research on the Determination of the Coefficient of Sliding Wear under Iron Ore Handling Conditions

    Directory of Open Access Journals (Sweden)

    G. Chen

    2017-09-01

    Full Text Available The handling of iron ore bulk solids maintains an increasing trend due to economic development. Because iron ore particles have hard composites and irregular shapes, the bulk solids handling equipment surface can suffer from severe sliding wear. Prediction of equipment surface wear volume is beneficial to the efficient maintenance of worn areas. Archard’s equation provides a theoretical solution to predict wear volume. To use Archard’s equation, the coefficient of sliding wear must be determined. To our best knowledge, the coefficient of sliding wear for iron ore handling conditions has not yet been determined. In this research, using a pin-on-disk tribometer, the coefficients of sliding wear for both Sishen particles and mild steel are determined with regard to iron ore handling conditions. Both naturally irregular and spherical shapes of particles are used to estimate average values of wear rate. Moreover, the hardness and inner structures of Sishen particles are examined, which adds the evidence of the interpretation of wear results. It is concluded that the coefficients of sliding wear can vary largely for both Sishen particle and mild steel. The wear rate decreases from transient- to steady-state. The average coefficient of sliding wear is capable of predicting wear with respect to long distances at the steady-state. Two types of sliding friction are distinguished. In addition, it is found that the temperature rise of the friction pairs has negligible influence on wear rate.

  16. The biological response to nanometre-sized polymer particles

    Science.gov (United States)

    Liu, Aiqin; Richards, Laura; Bladen, Catherine L.; Ingham, Eileen; Fisher, John; Tipper, Joanne L.

    2015-01-01

    Recently, nanometre-sized UHMWPE particles generated from hip and knee replacements have been identified in vitro and in vivo. UHMWPE particles in the 0.1–1.0 μm size range have been shown to be more biologically active than larger particles, provoking an inflammatory response implicated in late aseptic loosening of total joint replacements. The biological activity of nanometre-sized particles has not previously been studied. The biological response to clinically-relevant UHMWPE wear particles including nanometre-sized and micrometre-sized, along with polystyrene particles (FluoSpheres 20 nm, 60 nm, 200 nm and 1.0 μm), and nanometre-sized model polyethylene particles (Ceridust 3615®), was determined in terms of osteolytic cytokine release from primary human peripheral blood mononuclear cells (PBMNCs). Nanometre-sized UHMWPE wear particles, nanometre-sized Ceridust 3615® and 20 nm FluoSpheres had no significant effect on TNF-α, IL-1β, IL-6 and IL-8 release from PBMNCs at a concentration of 100 μm3 particles per cell after 12 and 24 h. The micrometre-size UHMWPE wear particles (0.1–1.0 μm) and 60 nm, 200 nm and 1.0 μm FluoSpheres caused significantly elevated osteolytic cytokine release from PBMNCs. These results indicated that particles below circa 50 nm fail to activate PBMNCs and that particle size, composition and morphology played a crucial role in cytokine release by particle stimulated macrophages. PMID:26004221

  17. Gradient Index in Wear Debris Image Collection

    Institute of Scientific and Technical Information of China (English)

    LVZhi-yong; GAOHui-liang; YANXin-ping

    2004-01-01

    In order to solve a problem of oil on-line monitoring, this instrument adopts a prinripium of self-focus lens of Gradieat index fiber( GRIN Len) to design optics system and magnetic circuit. For the magnetic circuit, the monitor can catch particle wear debris in oil. And for the optics circuit. GRIN Len can transfer image of debris to apparatus of gather image, e . g, CCD and camera. And the image of debris is transferred to computer for analyzing seize and physiognomy of debris. The character of the monitor is of micro weight, micro volume andcurve imaging And it is directly pluged into oil to catch image of wear particles.

  18. Polymer wear evaluation

    DEFF Research Database (Denmark)

    Lagerbon, Mikkel; Sivebæk, Ion Marius

    2012-01-01

    the safety of the patients. Prediction of the wear of polymers is complicated by the low thermal conductivity of this kind of material. It implies that any acceleration of testing conditions by increased contact pressure and/or sliding velocity will make the polymer fail due to exaggerated heat buildup......Polymer wear plays an increasing role in manufacturing of machine parts for e.g. medical devices. Some of these have an expected lifetime of five to eight years during which very little wear of the components is acceptable. Too much wear compromises the dosage accuracy of the device and thereby....... This is not the kind of wear observed in medical devices. In the present work a method was developed capable of evaluating the wear progression in polymer-polymer contacts. The configuration of the setup is injection moulded specimens consisting of an upper part having a toroid shape and a lower flat part. The sliding...

  19. Polymer wear evaluation

    DEFF Research Database (Denmark)

    Lagerbon, Mikkel; Sivebæk, Ion Marius

    2012-01-01

    Polymer wear plays an increasing role in manufacturing of machine parts for e.g. medical devices. Some of these have an expected lifetime of five to eight years during which very little wear of the components is acceptable. Too much wear compromises the dosage accuracy of the device and thereby...... the safety of the patients. Prediction of the wear of polymers is complicated by the low thermal conductivity of this kind of material. It implies that any acceleration of testing conditions by increased contact pressure and/or sliding velocity will make the polymer fail due to exaggerated heat buildup....... This is not the kind of wear observed in medical devices. In the present work a method was developed capable of evaluating the wear progression in polymer-polymer contacts. The configuration of the setup is injection moulded specimens consisting of an upper part having a toroid shape and a lower flat part. The sliding...

  20. An Investigation into the Behavior of Disc Blake Wear

    Directory of Open Access Journals (Sweden)

    Muneer A. H.Jassim

    2007-01-01

    Full Text Available A real method of predication brake pad wear ,could lead to substantiol economies of time and money. This paper describes how such a procedure has been used and gives the results to establish is reliability by comparing the predicted wear with that which actually occurs in an existing service. The experimental work was carried out on three different commercial samples ,tested under different operation conditions (speed,load,time...etcusing a test ring especially modified for this purpose. Abrasive wear is mainly studied , since it is the type of wear that takes place in such arrangements. Samples wear tested in presences of sand or mud between the mating surfaces under different operational conditions of speed, load and braking time .Mechanical properties of the pad material samples (hardness, young,s modulus and collapse load under pure bending condition wear established . The thermal conductivity and surface roughness of the pad material wear also found in order to enable comparison between the surface condition before and after testing. Sliding velocity had a small effect on the wear rate but it had great effect on friction coefficient. Wear rate was affected mainly by the surface temperature which causing a reduction friction coefficient and increasing the wear rate. Surface roughness had almost no effect on the wear rate since it was proved experimentally ,that the surface becomes softer during operation .mechanical properties of the pad material had fluctuating effect on wear rate. The existence of solid particles between pad and disc increasing wear rate and friction coefficient while the mud caused a reduction in wear rate of the pad surface since it acts as a lubricant absorbing the surface heat generated during sliding the area of contact between pad and disc. wear rate obtained experimentally agreed fairly well that found from empirically obtained equations.

  1. Microstructure-Wear Resistance Correlation and Wear Mechanisms of Spark Plasma Sintered Cu-Pb Nanocomposites

    Science.gov (United States)

    Sharma, Amit Siddharth; Biswas, Krishanu; Basu, Bikramjit

    2014-01-01

    The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (~1.5 × 10-6 mm3/Nm) and a modest COF (~0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (~2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall-Petch-like relationship with grain size of nanocrystalline Cu.

  2. Wear Behavior of an Unstable Knee: Stabilization via Implant Design?

    Directory of Open Access Journals (Sweden)

    Jörn Reinders

    2014-01-01

    Full Text Available Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anterior cruciate ligament was simulated. In the second, a ligamentous-unstable knee with additionally insufficient posterior cruciate ligament and medial collateral ligament was simulated. Wear was determined gravimetrically and wear particles were analyzed. Implant kinematics was recorded during simulation. Results. Significantly higher wear rates (P≤0.001 were observed for the unstable knee (14.58±0.56 mg/106 cycles compared to the stable knee (7.97 ± 0.87 mg/106 cycles. A higher number of wear particles with only small differences in wear particle characteristics were observed. Under unstable knee conditions, kinematics increased significantly for translations and rotations (P≤0.01. This increase was mainly attributed to higher tibial posterior translation and internal rotations. Conclusion. Higher kinematics under unstable test conditions is a result of insufficient stabilization via implant design. Due to the higher kinematics, increased wear was observed in this study.

  3. A Finite Element Approach to Modeling Abrasive Wear Modes

    NARCIS (Netherlands)

    Woldman, M.; Heide, van der E.; Tinga, T.; Masen, M.A.

    2016-01-01

    Machine components operating in sandy environments will wear because of the abrasive interaction with sand particles. In this work, a method is derived to predict the amount of wear caused by such abrasive action, in order to improve the maintenance concept of the components. A finite element model

  4. Experimental methodology for assessing the environmental fate of organic chemicals in polymer matrices using column leaching studies and OECD 308 water/sediment systems: Application to tire and road wear particles.

    Science.gov (United States)

    Unice, Kenneth M; Bare, Jennifer L; Kreider, Marisa L; Panko, Julie M

    2015-11-15

    Automobile tires require functional rubber additives including curing agents and antioxidants, which are potentially environmentally available from tire and road wear particles (TRWP) deposited in soil and sediment. A novel methodology was employed to evaluate the environmental fate of three commonly-used tire chemicals (N-cyclohexylbenzothiazole-2-sulfenamide (CBS), N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (6-PPD) and 1,3-diphenylguanidine (DPG)), using a road simulator, an artificial weathering chamber, column leaching tests, and OECD 308 sediment/water incubator studies. Environmental release factors were quantified for curing (f(C)), tire wear (f(W)), terrestrial weathering (f(S)), leaching from TRWP (f(L)), and environmental availability from TRWP (f(A)) by liquid chromatography-tandem mass spectroscopy (LC/MS/MS) analyses. Cumulative fractions representing total environmental availability (F(T)) and release to water (FR) were calculated for the tire chemicals and 13 transformation products. F(T) for CBS, DPG and 6-PPD inclusive of transformation products for an accelerated terrestrial aging time in soil of 0.1 years was 0.08, 0.1, and 0.06, respectively (equivalent to 6 to 10% of formulated mass). In contrast, a wider range of 5.5×10(-4) (6-PPD) to 0.06 (CBS) was observed for F(R) at an accelerated age of 0.1 years, reflecting the importance of hydrophobicity and solubility for determining the release to the water phase. Significant differences (p<0.05) in the weathering factor, f(S), were observed when chemicals were categorized by boiling point or hydrolysis rate constant. A significant difference in the leaching factor, f(L), and environmental availability factor, f(A), was also observed when chemicals were categorized by log K(ow). Our methodology should be useful for lifecycle analysis of other functional polymer chemicals. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Roles of reactive oxygen species and heme oxygenase-1 in modulation of alveolar macrophage-mediated pulmonary immune responses to Listeria monocytogenes by diesel exhaust particles.

    Science.gov (United States)

    Yin, Xuejun J; Ma, Jane Y C; Antonini, James M; Castranova, Vincent; Ma, Joseph K H

    2004-11-01

    Diesel exhaust particles (DEP) have been shown to suppress alveolar macrophage (AM)-mediated pulmonary immune responses to Listeria monocytogenes in vivo. In this study, effects of DEP-derived reactive oxygen species (ROS) and heme oxygenase (HO)-1 on AM-mediated immune responses to L. monocytogenes were investigated. Brown Norway rats were intratracheally inoculated with 100,000 L. monocytogenes, and AM were isolated at 7 days post-infection. Exposure to DEP or their organic extract (eDEP), but not the washed DEP (wDEP) or carbon black, increased intracellular ROS and HO-1 expression in AM. Induction of ROS and HO-1 by eDEP was partially reversed by alpha-naphthoflavone, a cytochrome P450 1A1 inhibitor, and totally blocked by N-acetylcysteine. In addition, exposure to eDEP, but not wDEP, inhibited lipopolysacchride-stimulated secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin-12 (IL-12), but augmented production of IL-10 by AM. Kinetic studies showed that modulation of cytokines by eDEP was preceded by ROS and HO-1 induction. Furthermore, pretreatment of AM with superoxide dismutase (SOD) or zinc protoporphrin IX (Znpp), which attenuated eDEP-induced HO-1 expression/activity, substantially inhibited eDEP effect on IL-10. Finally, direct stimulation with pyrogallol (PYR), a superoxide donor, upregulated HO-1 and IL-10 but decreased secretion of IL-12 in L. monocytogenes-infected AM. These results show that DEP, through eDEP-mediated ROS, induce HO-1 expression and IL-10 production and at the same time inhibit AM production of TNF-alpha and IL-12 to dampen the host immune responses. The results also suggest that HO-1 may play an important role in regulating production of IL-10 by DEP-exposed and L. monocytogenes-infected AM.

  6. Wear Debris Identification Using Feature Extraction and Neural Network

    Institute of Scientific and Technical Information of China (English)

    王伟华; 马艳艳; 殷勇辉; 王成焘

    2004-01-01

    A method and results of identification of wear debris using their morphological features are presented. The color images of wear debris were used as initial data. Each particle was characterized by a set of numerical parameters combined by its shape, color and surface texture features through a computer vision system. Those features were used as input vector of artificial neural network for wear debris identification. A radius basis function (RBF) network based model suitable for wear debris recognition was established,and its algorithm was presented in detail. Compared with traditional recognition methods, the RBF network model is faster in convergence, and higher in accuracy.

  7. Powdered Hexagonal Boron Nitride Reducing Nanoscale Wear

    Science.gov (United States)

    Chkhartishvili, L.; Matcharashvili, T.; Esiava, R.; Tsagareishvili, O.; Gabunia, D.; Margiev, B.; Gachechiladze, A.

    2013-05-01

    A morphology model is suggested for nano-powdered hexagonal boron nitride that can serve as an effective solid additive to liquid lubricants. It allows to estimate the specific surface, that is a hard-to-measure parameter, based on average size of powder particles. The model can be used also to control nanoscale wear processes.

  8. Autophagy mediated TiAl₆V₄ particle-induced peri-implant osteolysis by promoting expression of TNF-α.

    Science.gov (United States)

    Liu, Naicheng; Meng, Jia; Wang, Zhenheng; Zhou, Gang; Shi, Tongguo; Zhao, Jianning

    2016-04-22

    Peri-prosthetic osteolysis and the consequent aseptic loosening constitute the most common reason for total joint arthroplasty failure and surgical revision. Although numerous studies suggest that pro-inflammatory cytokines induced by wear particles is involved in the pathological process of aseptic loosening, the underlying mechanism linking wear particles to pro-inflammatory cytokines remains to be illustrated. In the present study, we investigated the effect of autophagy on TNF-α secretion induced by TiAl6V4 particles (TiPs) in macrophages and in a calvarial resorption animal model. Our study demonstrated that TiPs activated autophage in macrophages and particle-induced osteolysis animal models as well as periprosthetic membranes of patients with aseptic loosening. The autophagy inhibitor 3-MA (3-methyladenine) could dramatically reduce TiPs-induced TNF-α expression both in macrophages and in membranes from animal models. Furthermore, inhibition of autophagy with 3-MA ameliorated the severity of osteolysis in PIO animal models. Collectively, these results suggest that autophagy plays a key role in TiPs-induced osteolysis by promoting TNF-α expression and that blocking autophagy may represent a potential therapeutic approach for treating particle-induced peri-implant osteolysis.

  9. Wear testing of moderate activities of daily living using in vivo measured knee joint loading.

    Directory of Open Access Journals (Sweden)

    Jörn Reinders

    Full Text Available Resumption of daily living activities is a basic expectation for patients provided with total knee replacements. However, there is a lack of knowledge regarding the impact of different activities on the wear performance. In this study the wear performance under application of different daily activities has been analyzed. In vivo load data for walking, walking downstairs/upstairs, sitting down/standing up, and cycling (50 W & 120 W has been standardized for wear testing. Wear testing of each activity was carried out on a knee wear simulator. Additionally, ISO walking was tested for reasons of comparison. Wear was assessed gravimetrically and wear particles were analyzed. In vivo walking produced the highest overall wear rates, which were determined to be three times higher than ISO walking. Moderate wear rates were determined for walking upstairs and downstairs. Low wear rates were determined for standing up/sitting down and cycling at power levels of 50 W and 120 W. The largest wear particles were observed for cycling. Walking based on in vivo data has been shown to be the most wear-relevant activity. Highly demanding activities (stair climbing produced considerably less wear. Taking into account the expected number of loads, low-impact activities like cycling may have a greater impact on articular wear than highly demanding activities.

  10. Asphalt wear and pollution transport

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Asa [Division of Traffic Engineering, Lulea University of Technology Lulea (Sweden)

    1996-09-06

    Studded tires cause extensive wear of road surfaces during winter producing small particles. Besides transporting different adsorbed pollutants these particles also discharge metal ions by their own natural content. The major part (95%) of the asphalt is composed of stone fractions. The rest consists mainly of bitumen, which contains trace quantities of metals. Laboratory studies in this study have demonstrated different adsorbing properties of metal ions, as well as differences in adsorption when comparing stone materials. Two stone materials, a gabbro and a porphyry, have been tested for their adsorption properties concerning Pb, Cu, Zn and Cd. The gabbro showed better adsorption capacity than the porphyry. Gabbro has coarser grains, it is softer, and also has a higher content of most metals compared to the porphyry. In all tests lead and copper are more adsorbed than zinc and cadmium. All metal ions are released at about the same pH ({approx}4)

  11. VEGF抗体抑制磨损颗粒诱导骨溶解的实验研究%INHIBITORY EFFECTS OF VASCULAR ENDOTHELIAL GROWTH FACTOR ANTIBODY ON WEAR PARTICLE INDUCED OSTEOLYSIS

    Institute of Scientific and Technical Information of China (English)

    戴闽; 钟艳春; 宗凌; 杨小刚; 程明; 杨康骅

    2012-01-01

    目的 通过观察局部注射VEGF及VEGF抗体对小鼠植骨气囊模型中磨损颗粒诱导骨溶解的影响,探讨VEGF在人工关节无菌性松动中的作用. 方法 取人工髋关节翻修术取出的金属关节假体柄,参照真空球磨法体外制备磨损颗粒,PBS配制成浓度为10 mg/mL颗粒悬液.取8~10周龄雌性昆明小鼠50只,体重约25 g.10只作为气囊植骨模型颅骨供体.剩余40只小鼠随机分为4组(n=10),分别为空白对照组(A组)、颗粒组(B组)、VEGF刺激组(C组)和VEGF抑制组(D组);小鼠背部皮下注射无菌空气制备气囊,第8天切开气囊植入颅骨骨片,制备植骨气囊模型.于植骨后第1天B、C、D组气囊内注入0.5 mL颗粒悬液,A组注入0.5 mL PBS.气囊制备期间第6、7天及植骨后隔天,C、D组气囊内分别注射0.2 mL重组人VEGF和Bevacizumab溶液,A、B组注射0.2 mL生理盐水.植骨2周后取囊壁连同骨片行HE染色、实时荧光定量PCR及ELISA检测. 结果 各组小鼠均存活至实验完成.大体观察见A组气囊红肿程度轻,新生血管少;B、C、D组气囊明显红肿,可见较多渗出及新生血管,其中C组最重,B组次之,D组介于A、B组间.组织学及分子生物学检测发现,B组囊壁明显炎性反应及骨溶解,囊壁厚度、细胞密度及TNF-α、IL-1β、VEGF表达均较A组明显增加(P< 0.05);C组囊壁炎性反应及骨溶解最显著,以上观察指标均高于B组(P< 0.05);D组囊壁亦可见炎性反应及骨溶解,但以上指标均低于B组(P<0.05),高于A组(P<0.05). 结论 VEGF在人工关节无菌性松动中具有促进炎性反应及骨溶解作用,局部给予VEGF抗体可抑制磨损颗粒诱导的骨溶解.%Objective To observe the effect of local injection of vascular endothelial growth factor (VEGF) and VEGF antibody on the wear particle-induced osteolysis in the mouse air pouch model and to investigate the role of VEGF in the process of aseptic loosening of prosthesis. Methods The

  12. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  13. Wear mechanism of heavy load friction contact pairs in tracked vehicle by combined ferrography and surface analysis

    Institute of Scientific and Technical Information of China (English)

    LI Li; ZHU You-li; HUANG Yuan-lin; XU Bin-shi; LI Xiao-yan

    2004-01-01

    Ferrography is deemed as one of the most effective methods for wear particle analysis and failure diagnosis. By analyzing the configuration, content and composition of wear particles in the lubricanting grease and the surface state of the worn surface with combined ferrography and surface analysis techniques, the wear mechanism of the ball groove of the master clutch's release device of a heavy load tracked vehicle was determined. Results show that the controlling wear mechanism is combined of abrasion, adhesion, contact fatigue and corrosion wear, which demonstrates the effectiveness of using combined ferrography and worn surface analysis for the study of wear mechanism of contact surface with friction.

  14. Prediction of Cone Crusher Performance Considering Liner Wear

    Directory of Open Access Journals (Sweden)

    Yanjun Ma

    2016-12-01

    Full Text Available Cone crushers are used in the aggregates and mining industries to crush rock material. The pressure on cone crusher liners is the key factor that influences the hydraulic pressure, power draw and liner wear. In order to dynamically analyze and calculate cone crusher performance along with liner wear, a series of experiments are performed to obtain the crushed rock material samples from a crushing plant at different time intervals. In this study, piston die tests are carried out and a model relating compression coefficient, compression ratio and particle size distribution to a corresponding pressure is presented. On this basis, a new wear prediction model is proposed combining the empirical model for predicting liner wear with time parameter. A simple and practical model, based on the wear model and interparticle breakage, is presented for calculating compression ratio of each crushing zone along with liner wear. Furthermore, the size distribution of the product is calculated based on existing size reduction process model. A method of analysis of product size distribution and shape in the crushing process considering liner wear is proposed. Finally, the validity of the wear model is verified via testing. The result shows that there is a significant improvement of the prediction of cone crusher performance considering liner wear as compared to the previous model.

  15. 泥浆中磨粒对Al2O3增强Y-TZP复合陶瓷材料耐磨性的影响%Effect of Abrasive Particles in Slurry on the Wear Resistance of Alumina-reinforced Y-TZP Composites

    Institute of Scientific and Technical Information of China (English)

    梁小平; 葛志平; 靳正国; 杨正方; 袁启明

    2004-01-01

    在不同磨粒的5%NaOH泥浆中,采用销-盘式摩擦磨损试验机考察了磨粒对氧化铝增强四方氧化锆多晶陶瓷材料(ADZ)耐磨性的影响进行了研究.结果表明:尖锐SiO2磨粒对ADZ复合陶瓷材料磨损的影响要比球形SiO2磨粒严重得多,磨料硬度是影响陶瓷材料磨损率的重要因素,磨损率随磨粒硬度的提高而增大.在不同形状的SiO2磨粒的泥浆中,ADZ陶瓷材料的主要磨损机理为塑性变形和微犁削.在高硬度Al2O3磨料的泥浆中,ADZ陶瓷材料磨损表面以断裂机制占主导地位.%The effect of the properties of abrasive particles in slurry, including the morphology and hardness, on the wear resistance of alumina-reinforced yttria-stabilized zirconia polycrystals (3Y-TZP/10wt%Al2O3, 10ADZ) was investigated in 5%NaOH slurry containing different abrasive particles using a pin-on-plate tribometer. The results showed that the wear resistance of ADZ ceramic depends on the properties of the abrasive particles. As expected, the wear resistance is increased with hardness of abrasive particles decreasing, but it is also influenced by the other, more subtle differences in the morphology, that is, the sharper the abrasive particle the higher wear rate. The main wear mechanism of ADZ in SiO2 particle slurry is plastic deformation and microploughing, but the removal of material is controlled by brittle fracture in the Al2O3 slurry.

  16. Al2O3颗粒对丁腈橡胶/316L不锈钢配副摩擦磨损行为的影响%Influence of Al2O3 particles on the friction and wear behaviors of nitrile rubber against 316L stainless steel

    Institute of Scientific and Technical Information of China (English)

    Ming-xue SHEN; Jin-peng ZHENG; Xiang-kai MENG; Xiao LI; Xu-dong PENG

    2015-01-01

    目的:研究弹性体/金属配副在硬质颗粒环境下的摩擦磨损行为,分析有无颗粒及颗粒尺寸大小对摩擦学特性的影响,为橡塑密封设计提供参考。创新点:基于橡胶O型圈常见失效机制,模拟橡胶密封圈在颗粒介入时的摩擦磨损行为,探讨硬质颗粒及其颗粒尺寸对橡胶/金属摩擦配副的影响。方法:1.采用球/平面接触方式,开展丁腈橡胶/金属(316L)配副在Al2O3颗粒环境下的摩擦磨损行为,通过考察摩擦系数时变曲线、摩擦副磨损形貌及其损伤机制等特性,揭示 Al2O3颗粒对丁腈橡胶/316L不锈钢配副摩擦磨损行为的影响。结论:1. Al2O3颗粒进入橡胶/金属摩擦配副明显降低摩擦系数、硬质颗粒的犁削作用,加剧金属偶件的磨损;2.大尺寸的Al2O3颗粒能嵌入橡胶基体并加速橡胶的磨损,对金属有微切屑作用;然而随着颗粒尺寸的减小,颗粒反而减缓橡胶的磨损;3.在有无颗粒和不同颗粒尺寸的情况下,橡胶和金属均表现出不同的损伤机制。%The friction and wear properties of nitrile rubber (NBR) against 316L stainless steel pairs were investigated by using a sphere-on-disc test device. The influence of Al2O3 particle sizes and the normal load on the tribological behaviors of the pairs were primarily evaluated. The damage behaviors of worn surfaces were analyzed using a scanning electric microscopy (SEM) and a surface profilometer. The results show that the friction coefficient decreased because of particles coming into contact pairs, while particles also play an important role in increasing the wear loss of stainless steel with many furrows on the steel ball surface due to the ploughing effect of hard particles. Large-sized particles could accelerate the wear of rubber, and the micro-cutting scratches of the stainless steel induced by the Al2O3 particles embedded in the rubber matrix. However, as the particle

  17. Wear measurement by surface layer activation

    Energy Technology Data Exchange (ETDEWEB)

    Blatchley, C.

    1987-05-01

    The purpose of these projects was to demonstrate the capability for precisely but remotely measuring small increments of wear, erosion or corrosion in utility components using detectors mounted outside the system to monitor the presence of radionuclide surface markers. These gamma ray emitting markers are produced by surface layer activation (SLA) using a high energy particle beam from a Van de Graaff or cyclotron particle accelerator. The work was divided into three major projects: (1) determination of the feasibility of applying SLA based surface monitoring techniques to key power plant systems; (2) a field demonstration of SLA monitoring in steam turbine components subject to severe solid particle erosion; and (3) a field demonstration of SLA wear or corrosion monitoring of components in boiler auxiliaries. In the field tests, surface material removal was successfully measured from both selected systems, demonstrating the feasibility of the technique for long term diagnostic condition monitoring. Three bearing components in a boiler circulation pump were monitored almost continuously for a period of over 5 months until the pump was stopped due to electrical problems unrelated to the wear measurements. Solid particle erosion from two stop valve bypass valves was measured during a series of nine startup cycles. Both test demonstrations confirmed the earlier feasibility estimates and showed how SLA markers can be used to provide valuable diagnostic information to plant operators. 22 refs., 63 figs., 29 tabs.

  18. Optical wear monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kidane, Getnet S; Desilva, Upul P.; He, Chengli; Ulerich, Nancy H.

    2016-07-26

    A gas turbine includes first and second parts having outer surfaces located adjacent to each other to create an interface where wear occurs. A wear probe is provided for monitoring wear of the outer surface of the first part, and includes an optical guide having first and second ends, wherein the first end is configured to be located flush with the outer surface of the first part. A fiber bundle includes first and second ends, the first end being located proximate to the second end of the optical guide. The fiber bundle includes a transmit fiber bundle comprising a first plurality of optical fibers coupled to a light source, and a receive fiber bundle coupled to a light detector and configured to detect reflected light. A processor is configured to determine a length of the optical guide based on the detected reflected light.

  19. 超高分子量聚乙烯/Al2O3人工关节副磨合期磨损颗粒的形态特征%Morphological characteristics of prosthetic wear particles generated in Al2O3-ultrahigh molecular weight polyethylene during running-in period

    Institute of Scientific and Technical Information of China (English)

    黄传辉; 杨根喜

    2008-01-01

    BACKGROUND: Wear particles factually serve as a medium carrying extensive information on the wear process involved in hip implants. Moreover, it has been demonstrated that wear particles contribute to the failure of Charnley total hip replacement.OBJECTIVE: To investigate the morphological characteristics of wear particles generated by couples of ultrahigh molecular weight polyethylene (UHMWPE) cups and Al2O3 femoral heads, mounted in a simulator in the presence of distilled water and explore the wear mechanism of UHMWPE cup.DESIGN: Wear tests were performed on a ball-in-socket hip simulator.SETTING: Department of Mechanical Engineering, Xuzhou Institute of Technology.MATERIALS: The molecular weight of UHMWPE selected as cup was 3 000 000. Its density was 0.935 g/cm3, hardness 30 HB, fracture strength 35 MPa, and water absorption 450 MPa, and tenacity 7 MPaM1/2.METHODS: The experiment was performed in the laboratory of tribology, China University of Mining and Technology from December 2003 to July 2005. Hip simulator was used to assess the tribological performance of Al2O3-UHMWPE at room temperature, 100 r/min, 784 N load for 1.5×106 cycles. Distilled water was used as the lubricant. Wear of UHMWPE acetabulum was measured every 3×105 cycles by taking out the acetabulum from simulator, cleaning in distilled water for 3 minutes in an ultrasonic bath, putting in an oven for 40 minutes at 80 ℃, and cooling off in a desiccator. A BT211D electronic balance (reciprocal sensibility, 0.01 mg) was used to measure the weight loss of UHMWPE acetabula according to the reference sample method to calculate the wear. A sample (20 mL) of distilled water lubricant used in test was obtained when the simulator was stopped for gravimetric analysis. Morphology of wear particles in samples and surface of worn UHMWPE acetabula were observed by using scanning electron microscope (SEM). The components of wear particles were determined by X-ray. Detailed measurements of the wear

  20. An Influence of Parameters of Micro-Electrical Discharge Machining On Wear of Tool Electrode

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    a novel modeling and analysis approachof the tool wear in micro-EDM using a systematic statistical method exemplifying theinfluences of capacitance, feed rate and voltage on the tool wear ratio. The associationbetween tool wear ratio and the input factors is comprehended by using main effectplots......, interaction effects and regression analysis. A maximum variation of four-fold inthe tool wear ratio have been observed which indicated that the tool wear ratio variessignificantly over the trials. As the capacitance increases from 1 to 10 nF, the increasein tool wear ratio is by 33%. An increase in voltage...... as well as capacitance would leadto an increase in the number of charged particles, the number of collisions amongthem, which further enhances the transfer of the proportion of heat energy to the toolsurface. Furthermore, to model the tool wear phenomenon, a regression relationshipbetween tool wear ratio...

  1. Comparative wear mapping techniques

    DEFF Research Database (Denmark)

    Alcock, J.; Sørensen, Ole Toft; Jensen, S.

    1996-01-01

    Pin surfaces were analysed by laser profilometry. Two roughness parameters, R(a) and the fractal dimension, were investigated as a first step towards methods of quantitative wear mechanism mapping. Both parameters were analysed for their relationship to the severity and prevalence of a mechanism....

  2. Nanomedicine engulfed by macrophages for targeted tumor therapy

    Science.gov (United States)

    Li, Siwen; Feng, Song; Ding, Li; Liu, Yuxi; Zhu, Qiuyun; Qian, Zhiyu; Gu, Yueqing

    2016-01-01

    Macrophages, exhibiting high intrinsic accumulation and infiltration into tumor tissues, are a novel drug vehicle for directional drug delivery. However, the low drug-loading (DL) capacity and the drug cytotoxicity to the cell vehicle have limited the application of macrophages in tumor therapy. In this study, different drugs involving small molecular and nanoparticle drugs were loaded into intrinsic macrophages to find a better way to overcome these limitations. Their DL capacity and cytotoxicity to the macrophages were first compared. Furthermore, their phagocytic ratio, dynamic distributions, and tumoricidal effects were also investigated. Results indicated that more lipid-soluble molecules and DL particles can be phagocytized by macrophages than hydrophilic ones. In addition, the N-succinyl-N′-octyl chitosan (SOC) DL particles showed low cytotoxicity to the macrophage itself, while the dynamic biodistribution of macrophages engulfed with different particles/small molecules showed similar profiles, mainly excreted from liver to intestine pathway. Furthermore, macrophages loaded with SOC–paclitaxel (PTX) particles exhibited greater therapeutic efficacies than those of macrophages directly carrying small molecular drugs such as doxorubicin and PTX. Interestingly, macrophages displayed stronger targeting ability to the tumor site hypersecreting chemokine in immunocompetent mice in comparison to the tumor site secreting low levels of chemokine in immunodeficiency mice. Finally, results demonstrated that macrophages carrying SOC–PTX are a promising pharmaceutical preparation for tumor-targeted therapy. PMID:27601898

  3. Study of Wear of Pitched Blade Impellers

    Directory of Open Access Journals (Sweden)

    I. Fořt

    2000-01-01

    Full Text Available A study was made of the erosion of blades of pitched blade impellers in a suspension of solid particles in a liquid under a turbulent regime of flow of an agitated charge. The wear of the impeller is described by an analytical approximation in exponential form, and the influence of the pitch angle on the impeller blade wear was studied experimentally. It follows from the results of the experiments made that the wear rate of the pitched blade impellers increases linearly with the decreasing pitch angle within the interval a Î á15°; 45° ń. The proposed form of radial profile of the leading edge of the impeller blade enables us to calculate the surface of the worn blade. This quantity significantly decreases with the length of the period when the blades are affected by the solid particles, and its values calculated according to the suggested profile of the worn blade fit fairly well with the experimentally determined values. The results of the experiments performed are valid for homogeneous distribution of solid particles in an agitated suspension.

  4. Assessment of wear facets produced by the ACTA wear machine

    DEFF Research Database (Denmark)

    Benetti, Ana R; Larsen, Liselotte; Dowling, Adam H

    2016-01-01

    OBJECTIVE: To investigate the use of a three-dimensional (3D) digital scanning method in determining the accuracy of the wear performance parameters of resin-based composites (RBCs) determined using a two-dimensional (2D) analogue methodology following in-vitro testing in an Academisch Centrum...... an assessment of the potential of the experimental RBC formulations for clinical usage. CONCLUSION: The 3D technique allowed for the assessment of mean maximum wear depth and mean total volumetric wear which enables tribological analyses of the wear facet and therefore the wear mechanisms operative. Employing...... profilers is useful when screening potential new RBC formulations for the restoration of posterior dentition....

  5. Wear rate evaluation of a novel polycarbonate-urethane cushion form bearing for artificial hip joints.

    Science.gov (United States)

    Elsner, Jonathan J; Mezape, Yoav; Hakshur, Keren; Shemesh, Maoz; Linder-Ganz, Eran; Shterling, Avi; Eliaz, Noam

    2010-12-01

    There is growing interest in the use of compliant materials as an alternative to hard bearing materials such as polyethylene, metal and ceramics in artificial joints. Cushion form bearings based on polycarbonate-urethane (PCU) mimic the natural synovial joint more closely by promoting fluid-film lubrication. In the current study, we used a physiological simulator to evaluate the wear characteristics of a compliant PCU acetabular buffer, coupled against a cobalt-chrome femoral head. The wear rate was evaluated over 8 million cycles gravimetrically, as well as by wear particle isolation using filtration and bio-ferrography (BF). The gravimetric and BF methods showed a wear rate of 9.9-12.5mg per million cycles, whereas filtration resulted in a lower wear rate of 5.8mg per million cycles. Bio-ferrography was proven to be an effective method for the determination of wear characteristics of the PCU acetabular buffer. Specifically, it was found to be more sensitive towards the detection of wear particles compared to the conventional filtration method, and less prone to environmental fluctuations than the gravimetric method. PCU demonstrated a low particle generation rate (1-5×10⁶ particles per million cycles), with the majority (96.6%) of wear particle mass lying above the biologically active range, 0.2-10μm. Thus, PCU offers a substantial advantage over traditional bearing materials, not only in its low wear rate, but also in its osteolytic potential.

  6. Isolation and Characterization of Wear Debris Generated in Patients Wearing Polyethylene Hylamer Inserts, Gamma Irradiated in Air

    OpenAIRE

    2005-01-01

    Abstract Hylamer polyethylene was used in the early 1990s to make hip-joint components. Clinical experience has shown that these components, if sterilized by gamma rays in the presence of oxygen, are easily affected by wear, which then leads to osteolysis. The authors analyzed polyethylene wear particles in seven patients who had received Hylamer polyethylene implants sterilized by gamma rays in air and had...

  7. Isolation and Characterization of Wear Debris Generated in Patients Wearing Polyethylene Hylamer Inserts, Gamma Irradiated in Air

    OpenAIRE

    Visentin, M; Stea, S.; Squarzoni, S.; Reggiani, M.; Fagnano, C.; Antonietti, B.; Toni, A.

    2005-01-01

    International audience; Hylamer polyethylene was used in the early 1990s to make hip-joint components. Clinical experience has shown that these components, if sterilized by gamma rays in the presence of oxygen, are easily affected by wear, which then leads to osteolysis. The authors analyzed polyethylene wear particles in seven patients who had received Hylamer polyethylene implants sterilized by gamma rays in air and had suffered prosthetic loosening. The results were compared to those of si...

  8. Wear Resistance and Wear Mechanism of a Hot Dip Aluminized Steel in Sliding Wear Test

    Science.gov (United States)

    Xue, Zhiyong; Hao, Xiaoyang; Huang, Yao; Gu, Lingyun; Ren, Yu; Zheng, Ruipeng

    2016-12-01

    Sliding wear experiments were conducted on a hot dip aluminized steel to investigate its wear resistance and wear mechanism. The wear tests were also carried out on a hot dip galvanized steel and the base material (steel Q345) as a comparison. Results show that the wear resistance and hardness of the hot dip aluminized steel are significantly higher than that of the hot dip galvanized steel and the steel Q345 at room temperature. The better wear resistance of the hot dip aluminized steel attributes mainly to the formation of a transition layer containing abundant Fe-Al intermetallic compounds and the transformation of wear-resisting oxides during the friction process. The main phase in the transition layer is Fe2Al5. The thickness of the transition layer is about 90-120 μm. When the wear load increases from 3 N to 19 N, the wear type of the aluminized layer transform from adhesive wear (3 N) into abrasive wear (7 N) and finally into slight wear mixed with oxidation (higher than 11 N).

  9. TIRE WEAR MODELING

    Directory of Open Access Journals (Sweden)

    Rosen IVANOV

    2016-09-01

    Full Text Available On the basis of a known relationship, an enhanced model for specific tire wear per kilometer has been developed. It is appropriate for practical use - for evaluation of the influence of different factors. Two types of experiments have been carried out with a testing device - one without sideslip, but with a known longitudinal slip, and the other one with the same longitudinal slip but also with a known sideslip. As a result, the coefficients of the proportion of the developed model have been evaluated. After the model validation, an analytical investigation concerning the influence of tire pressure, sideslip and longitudinal slip on the tire wear has been carried out. The results are presented graphically.

  10. Friction and Wear Properties of Cold Gas Dynamic Sprayed α-Al2O3-Al Composite Coatings

    Directory of Open Access Journals (Sweden)

    Jie Wu

    2013-01-01

    Full Text Available Different proportions of α-Al2O3 and pure Al powders were coated onto AZ91D magnesium alloy substrates by cold gas dynamic spray. The microstructure and morphologies of the coatings were observed by scanning electron microscope. The friction and wear properties were tested by a ball-on-disk wear tester. It was found that the interfaces between grains and substrates formed close boundaries. It is revealed that the composite coatings could increase the friction or wear properties of the coatings. It was observed that the wear of coatings was converted from adhesive wear into abrasive wear with α-Al2O3 particles increasing and that the adhesive wear accompanied with abrasive wear would increase the wear rate of coatings.

  11. HIV-1 assembly in macrophages

    Directory of Open Access Journals (Sweden)

    Benaroch Philippe

    2010-04-01

    Full Text Available Abstract The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines. Early electron microscopy studies suggested that viral assembly takes place at the limiting membrane of an intracellular compartment in macrophages and not at the plasma membrane as in T cells. This was first considered as a late endosomal compartment in which viral budding seems to be similar to the process of vesicle release into multi-vesicular bodies. This view was notably supported by a large body of evidence involving the ESCRT (Endosomal Sorting Complex Required for Transport machinery in HIV-1 budding, the observation of viral budding profiles in such compartments by immuno-electron microscopy, and the presence of late endosomal markers associated with macrophage-derived virions. However, this model needs to be revisited as recent data indicate that the viral compartment has a neutral pH and can be connected to the plasma membrane via very thin micro-channels. To date, the exact nature and biogenesis of the HIV assembly compartment in macrophages remains elusive. Many cellular proteins potentially involved in the late phases of HIV-1 cycle have been identified; and, recently, the list has grown rapidly with the publication of four independent genome-wide screens. However, their respective

  12. Effect of filler size on wear resistance of resin cement.

    Science.gov (United States)

    Shinkai, K; Suzuki, S; Katoh, Y

    2001-11-01

    The purpose of this study was to evaluate the effect of filler size on the wear of resin cements. Materials tested included four experimental dual-cure resin cements (Kuraray) consisting of different-sized filler particles. A rectangular box cavity was prepared on the flattened occlusal surface of extracted human molars. Ceramic inlays for the cavities were fabricated using the Cerec 2 system. The Cerec inlays were cemented with the respective cements and adhesive systems according to the manufacturer's directions. The restored surface was finished by wet-grinding with an 800-grit silicon carbide paper. Six specimens were prepared for each resin cement. Half of the specimens were subjected to a three-body wear test for 200,000 cycles, and the others were subjected to a toothbrush abrasion test for 30,000 cycles. The worn surface of each restoration was scanned by a profilometer (Surfcom 475 A) at eight different points for each restoration. The wear value was determined by measuring the vertical gap depth on the profilometric tracings. The data were statistically analyzed by one-way analysis of variance (ANOVA) and Scheffe's test. The results showed that, with increase of filler size, the wear value decreased in the toothbrush test and increased in the three-body wear test. The cement with 0.04-microm filler exhibited the lowest wear value among the materials in the three-body wear test, and the same wear value as the cement with 0.97-microm filler in the toothbrush test. Based upon the results of this study, it is concluded that the wear of resin cements was affected by the filler size as well as the mode of wear test.

  13. Engine oil wear resistance

    Directory of Open Access Journals (Sweden)

    A.N. Farhanah

    2015-03-01

    Full Text Available Lubricants play a vital role in an internal combustion engine to lubricate parts and help to protect and prolong the engine life. Lubricant also will help to reduce wear by creating lubricating film between the moving parts hence reduce metal-to-metal contacts. Engine oil from three different manufacturers with the same SAE viscosity grade available in market does not mean it will have the same lubricity for an engine. In this study, commercial mineral lubrication oil (SAE 10W-30 from three manufacturers was investigated to compare the lubrication performance at three different temperatures (40˚C, 70˚C and 100˚C in 60 minutes time duration by using four ball wear tester. The speed will be varied from 1000 rpm to 2500 rpm. Results show that all three lubricants have different lubricity performance; the smaller the wear scar, the better the lubricant since the lubricant can protect the moving surfaces from direct metal-to-metal contact occur.

  14. Micro-scale wear characteristics of electroless Ni-P/SiC composite coating under two different sliding conditions

    OpenAIRE

    2014-01-01

    The electroless nickel composite (ENC) with various silicon carbide contents was deposited onto aluminium alloy (LM24) substrate. The wear behaviour and the microhardness of the composite coating samples were investigated and compared with particles free and aluminium substrate samples using micro-scale abrasion tester and microhardness tester respectively. The wear scar marks and wear volume were analysed by optical microscope. The wear tracks were further studied using scanning electron mic...

  15. Pure mechanical wear loss measurement in corrosive wear

    Indian Academy of Sciences (India)

    Yanliang Huang; Xiaoxia Jiang; Sizuo Li

    2000-12-01

    The method for the measurement of the pure mechanical wear loss for 321 stainless steel, 1045 steel and pure iron in the study of the synergy between corrosion and wear was studied. The methods studied included the measurement in distilled water, by cathodic protection and by adding inhibitor KI, and all were compared with the wear loss in air. The experiment showed that the pure mechanical wear losses and friction coefficients obtained by the three methods were close to each other and can be used to calculate the various wear components in the study of the interaction of corrosion and wear, but the measurements in distilled water for pure iron and 1045 steel are not recommended due to their corrosion.

  16. Experimental Research of Erosion Wear of Modified Epoxy Resin Solid Particle%改性环氧树脂固体颗粒冲蚀磨损试验研究

    Institute of Scientific and Technical Information of China (English)

    王彦平; 龚卓; 王起才

    2015-01-01

    采用气流挟沙喷射法对改性环氧树脂材料进行固体颗粒冲蚀磨损试验,考查冲蚀速度和角度对其冲蚀磨损的影响,并探讨了其冲蚀磨损机理,对比了相同冲蚀条件下几种材料冲蚀率的大小。实验结果表明,改性环氧树脂材料冲蚀率与冲蚀速度近似呈线性关系;在不同的冲蚀速度下,改性环氧树脂材料的冲蚀率在45°冲蚀时最大,表现出半塑性材料的冲蚀特征;在相同的冲蚀条件下,改性环氧树脂材料冲蚀率是对比材料(如 M30砂浆、水泥石等)冲蚀率的1/16~1/4,适合用作强风沙流环境下混凝土桥梁墩身的防护材料;冲蚀形貌扫描电子显微镜照片表明,冲蚀能量的法向分量使材料表面产生裂纹和破碎,而其切向分量使材料表面产生切削。%Experiments were carried out to study the effects of impingement angle and particle velocity on the solid particle erosion behaviour of modified epoxy resin by sandblast method,and the mechanism of erosion wear was discussed,in addition,the erosion rates for several different materials were compared. Experimental results show that the relationship between erosion rates of modified epoxy resin and wind-sand flow velocity approximates linear relationship. The erosion rates for modified epoxy resin are highest at 45° impingement angle under different velocity,which follows semi-ductile material erosion laws. The erosion rate of modified epoxy resin is approximately 1/16 ~1/4 of the reference materials (such as M30 mortar, cement stone etc.) at the same condition. Therefore,the modified epoxy resin can be used protection material for concrete bridge pier under gobi wind-sand flow environment. The morphologies scanning electron microscope photoes show that the normal component of erosion energy makes to produce cracks and debris,and the tangential component to produce surface cutting.

  17. Friction and Wear Behavior of GCr15 Under Multiple Movement Condition

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Friction and wear of GCr15 under cross-sliding condition is tested on a ball-on-disc wear test machine. This result shows that the cross-sliding of friction pair leads to different friction and wear behavior. For the condition described in this paper, the friction coefficients with ball reciprocating are smaller than that without ball reciprocating. The friction coefficients increase with the increase of reciprocating frequency.. The wear weight loss of the ball subjected reciprocating sliding decreases, however, the wear weight loss of disc against the reciprocating ball increases. In cross-sliding friction, the worn surfaces of the ball show crinkle appearance along the circumferential sliding traces. Delaminating of small strip debris is formed along the plowing traces on the disc worn surface. The plowing furrow on the disc surfaces looks deeper and wider than that without reciprocating sliding. The size of wear particles from cross-sliding wear is larger than those without reciprocating sliding.

  18. Investigation into the high temperature wear properties of alloys contacting against different counterfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wood, P.D.; Datta, P.K.; Burnell-Gray, J.S. [Northumbria Univ., Newcastle (United Kingdom). Surface Eng. Res. Group; Wood, N.

    1997-12-31

    Wear tests have been conducted on a reciprocating high temperature rig at 750 C and a load of 7N using a stellite 6 and incoloy 800 counterface. The ODS alloys (MA956, PM2000 and PM2000SD) all showed poor wear resistance and the absence of glaze formation when worn against Incoloy 800. Glaze formation occurred when the ODS alloys were tested againststellite 6 providing very good wear protection. Nimonic 80A tested under similar conditions exhibited good wear resistance against Incoloy 800 (presence of glazes) and poor wear resistance against stellite 6 (absence of glazes). Titanium aluminide showed very good wear resistance when tested against incoloy 800 and stellite 6. In both cases, the glaze and underlying oxide particles were entirely formed from the counterface material. These results show the strong influence of the counterface materials on the formation of wear resistant glazes. (orig.) 5 refs.

  19. Heterogeneities in inflammatory and cytotoxic responses of RAW 264.7 macrophage cell line to urban air coarse, fine, and ultrafine particles from six European sampling campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Jalava, P.I.; Salonen, R.O.; Pennanen, A.S.; Sillanpaa, M.; Halinen, A.I.; Happo, M.S.; Hillamo, R.; Brunekreef, B.; Katsouyanni, K.; Sunyer, J.; Hirvonen, M.R. [National Public Health Institute, Kuopio (Finland). Dept. for Environmental Health

    2007-03-15

    We investigated the cytotoxic and inflammatory activities of size-segregated particulate samples (particulate matter, PM) from contrasting air pollution situations in Europe. Coarse (PM10-2.5), fine (PM2.5-0.2), and ultrafine (PM0.2) particulate samples were collected with a modified Harvard high-volume cascade impactor (HVCI). Mouse RAW 264.7 macrophages were exposed to the samples for 24 h. Selected inflammatory mediators, nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF alpha), interleukin 6 (IL-6), macrophage inflammatory protein-2 (MIP-2)), were measured together with cytotoxicity (MTT test), and analysis of apoptosis and cell cycle (propidium iodide staining). The PM10-2.5 samples had a much higher inflammatory activity than the PM2.5-0.2 and PM0.2 samples, but the PM2.5-0.2 samples showed the largest differences in inflammatory activity, and the PM0.2 samples in cytotoxicity, between the sampling campaigns. The PM2.5-0.2 samples from traffic environments in springtime Barcelona and summertime Athens had the highest inflammatory activities, which may be related to the high photochemical activity in the atmosphere during the sampling campaigns. The PM0.2 sample from wintertime Prague with proven impacts from local coal and biomass combustion had very high cytotoxic and apoptotic activities and caused a distinct cell cycle arrest. Thus, particulate size, sources, and atmospheric transformation processes affect the toxicity profile of urban air particulate matter. These factors may explain some of the heterogeneity observed in particulate exposure-response relationships of human health effects in epidemiological studies.

  20. BMP-2 and titanium particles synergistically activate osteoclast formation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, S.X. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedics, Yinchuan, Ningxia Hui Autonomous Region, China, Department of Orthopedics, Affiliated Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China); Guo, H.H. [Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China); Zhang, J. [Institute of Pathology, Xi' an Jiaotong University, Xi' an Shaanxi, China, Institute of Pathology, Xi' an Jiaotong University, Xi' an Shaanxi (China); Yu, B. [Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China); Sun, K.N.; Jin, Q.H. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedics, Yinchuan, Ningxia Hui Autonomous Region, China, Department of Orthopedics, Affiliated Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China)

    2014-05-09

    A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can separately support osteoclast formation induced by the receptor activator of NF-κB ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast formation is unclear. In this study, we show that neither titanium particles nor BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage cells but that BMP-2 synergizes with titanium particles to enhance osteoclast formation in the presence of RANKL, and that at a low concentration, BMP-2 has an optimal effect to stimulate the size and number of multinuclear osteoclasts, expression of osteoclast genes, and resorption area. Our data also clarify that the effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos expression increased throughout the early stages of osteoclastogenesis. BMP-2 and titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared with the titanium group. These data suggested that BMP-2 may be a crucial factor in titanium particle-mediated osteoclast formation.

  1. Comparison of three joint simulator wear debris isolation techniques: acid digestion, base digestion, and enzyme cleavage.

    Science.gov (United States)

    Niedzwiecki, S; Klapperich, C; Short, J; Jani, S; Ries, M; Pruitt, L

    2001-08-01

    Quantification of ultrahigh molecular weight polyethylene (UHMWPE) wear debris remains a challenging task in orthopedic device analysis. Currently, the weight loss method is the only accepted practice for quantifying the amount of wear generated from a PE component. This technique utilizes loaded soak controls and weight differences to account for polymeric material lost through wear mechanisms. This method enables the determination of the amount of wear in the orthopedic device, but it provides no information about debris particulate size distribution. In order to shed light on wear mechanisms, information about the wear debris and its size distribution is necessary. To date, particulate isolation has been performed using the base digestion technique. The method uses a strong base, ultracentrifugation, and filtration to digest serum constituents and to isolate PE debris from sera. It should be noted that particulate isolation methods provide valuable information about particulate size distribution and may elucidate the mechanisms of wear associated with polymeric orthopedic implants; however, these techniques do not yet provide a direct measure of the amount of wear. The aim of this study is to present alternative approaches to wear particle isolation for analysis of polymer wear in total joint replacements without recourse to ultracentrifugation. Three polymer wear debris isolation techniques (the base method, an acid treatment, and an enzymatic digestion technique) are compared for effectiveness in simulator studies. A requirement of each technique is that the wear particulate must be completely devoid of serum proteins in order to effectively image and count these particles. In all methods the isolation is performed through filtration and chemical treatment. Subsequently, the isolated polymer particles are imaged using scanning electron microscopy and quantified with digital image analysis. The results from this study clearly show that isolation can be

  2. Abrasive wear behaviour of as cast and austempered ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Baydogan, M.; Koekden, M.U.; Cimenoglu, H. [Istanbul Technical Univ., Dept. of Metallurgy and Materials Science Engineering Istanbul (Turkey)

    2000-07-01

    In this study, abrasive wear behaviour of as cast and austempered GGG 50 and GGG 80 quality ductile irons was investigated. In the as cast condition, GGG 50 and GGG 80 quality ductile irons were having ferritic and pearlitic matrix structures, respectively. Austempering at 250 C after austenitisation at 900 C for 100 minutes produced bainitic matrix structure in both of the investigated ductile irons. Abrasive wear tests performed by rubbing the as cast and austempered specimens on Al{sub 2}O{sub 3} abrasive bands, revealed that austempering treatment improves abrasion resistance about 10-70% depending on the abrasive particle size and composition of the base iron. In the as cast condition, pearlitic GGG 80 grade ductile iron, has higher wear resistance than ferritic GGG 50 grade ductile iron. In the austempered condition GGG 50 and GGG 80 grade ductile irons which have bainitic matrix structure, exhibit almost similar wear resistance. (orig.)

  3. 钛合金激光熔覆硬质颗粒增强金属间化合物复合涂层耐磨性%Wear Resistance of Laser Clad Hard Particles Reinforced Intermetallic Composite Coating on TA15 Alloy

    Institute of Scientific and Technical Information of China (English)

    冯淑容; 张述泉; 王华明

    2012-01-01

    A wear resistant hard particles reinforced intermetallic composite coating is fabricated on TA15 titanium alloy by the laser cladding process using 54. 51Ti-37. 68Ni-7. 81B4C powder blends as the precursor materials. Microstructure and worn surface morphologies of the coating are characterized by optical microscopy (OM), scan electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under abrasive wear condition. Results indicate the hard particles including additional B,C and in situ synthesized titanium boride and titanium carbide are uniformly distributed in the TiNi/Ti2Ni dual-phase intermetallic matrix. The coating has high hardness and exhibits excellent wear resistance. The mainly wear mechanism of laser clad coating is slight micro-cutting and plastic deformation.%以54.51Ti-37.68Ni-7.81B4C(元素前数字为质量分数值)粉末混合物为原料,利用激光熔覆技术在TA15钛合金基材表面制得了以外加未熔B4C颗粒及快速凝固“原位”生成硼化钛和碳化钛为增强相,以金属间化合物TiNi、Ti2Ni为基体的复合涂层.采用光学显微镜(OM)、X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)等手段分析了涂层显微组织,并测试了涂层的二体磨粒磨损性能.结果表明,激光熔覆硬质颗粒增强金属间化合物复合涂层硬度高、组织均匀并表现出优异的抗磨粒磨损性能.高硬度、高耐磨的B4C、硼化钛和碳化钛陶瓷增强相与高韧性TiNi/Ti2Ni金属间化合物基体的强韧结合是激光熔覆涂层优异耐磨性的主要原因,其磨损机理为轻微的显微切削和塑性变形.

  4. An Alternative Coding System Defining the Total and Severity of Wear

    Science.gov (United States)

    1996-04-01

    of fluid which may be retated to the severity of wear that has occurred in the sampled machine. A 20 to 30ml plastic bottle provides an adequate...University of Wales Swansea Abstract: A ferrous debris monitor is described which is capable of measuring the concentration of ferrous wear debris ...suspended in a lubricant and the severity of wear associated with particle size of this suspended debris . A coding system is proposed : PQ index(total

  5. Effect of porosity on wear resistance of SiCp/Cu composites prepared by pressureless infiltration

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin; QU Xuan-hui; DUAN Bo-hua; HE Xin-bo; QIN Ming-li

    2008-01-01

    The influence of porosity on the wear behavior of high volume fraction (61%) SiCp/Cu composite produced by pressureless infiltration was studied using a sliding, reciprocating and vibrating(SRV) machine. SiCp/Cu composites slid against hardened GCr15 bearing steel ball in the load range of 40-200 N. The results show that the wear rate increases with increasing porosity. The composite containing low porosity shows excellent wear resistance, which is attributed to the presence of mechanically mixed layer on the worn surface. In this case, the dominant wear mechanism is oxidative wear. Comparatively, the composite containing high porosity exhibits inferior wear resistance. Fracture and spalling of the particles are considered as the main causes of severe wear. Third body abrasion is the controlling wear mechanism. In addition, porosity has more important influence on wear rate at high load than at low load. This is associated with the fact that the fracture and spalling of particles is a process of crack initiation and propagation. At lower load, the pores beneath the worn surface can not propagate significantly, while the pores become unstable and easily propagate under high load, which results in a higher wear rate.

  6. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S

    1981-01-01

    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  7. Wear of polymers and composites

    CERN Document Server

    Abdelbary, Ahmed

    2015-01-01

    In the field of tribology, the wear behaviour of polymers and composite materials is considered a highly non-linear phenomenon. Wear of Polymers and Composites introduces fundamentals of polymers and composites tribology. The book suggests a new approach to explore the effect of applied load and surface defects on the fatigue wear behaviour of polymers, using a new tribometer and thorough experiments. It discusses effects of surface cracks, under different static and cyclic loading parameters on wear, and presents an intelligent algorithm, in the form of a neural network, to map the relations

  8. Dry sliding wear of heat treated hybrid metal matrix composites

    Science.gov (United States)

    Naveed, Mohammed; Khan, A. R. Anwar

    2016-09-01

    In recent years, there has been an ever-increasing demand for enhancing mechanical properties of Aluminum Matrix Composites (AMCs), which are finding wide applications in the field of aerospace, automobile, defence etc,. Among all available aluminium alloys, Al6061 is extensively used owing to its excellent wear resistance and ease of processing. Newer techniques of improving the hardness and wear resistance of Al6061 by dispersing an appropriate mixture of hard ceramic powder and whiskers in the aluminium alloy are gaining popularity. The conventional aluminium based composites possess only one type of reinforcements. Addition of hard reinforcements such as silicon carbide, alumina, titanium carbide, improves hardness, strength and wear resistance of the composites. However, these composites possessing hard reinforcement do posses several problems during their machining operation. AMCs reinforced with particles of Gr have been reported to be possessing better wear characteristics owing to the reduced wear because of formation of a thin layer of Gr particles, which prevents metal to metal contact of the sliding surfaces. Further, heat treatment has a profound influence on mechanical properties of heat treatable aluminium alloys and its composites. For a solutionising temperature of 5500C, solutionising duration of 1hr, ageing temperature of 1750C, quenching media and ageing duration significantly alters mechanical properties of both aluminium alloy and its composites. In the light of the above, the present paper aims at developing aluminium based hybrid metal matrix composites containing both silicon carbide and graphite and characterize their mechanical properties by subjecting it to heat treatment. Results indicate that increase of graphite content increases wear resistance of hybrid composites reinforced with constant SiC reinforcement. Further heat treatment has a profound influence on the wear resistance of the matrix alloy as well as its hybrid composites

  9. Nanocrystalline Cellulose Improves the Biocompatibility and Reduces the Wear Debris of Ultrahigh Molecular Weight Polyethylene via Weak Binding.

    Science.gov (United States)

    Wang, Shiwen; Feng, Qiang; Sun, Jiashu; Gao, Feng; Fan, Wei; Zhang, Zhong; Li, Xiaohong; Jiang, Xingyu

    2016-01-26

    The doping of biocompatible nanomaterials into ultrahigh molecular weight polyethylene (UHMWPE) to improve the biocompatibility and reduce the wear debris is of great significance to prolonging implantation time of UHMWPE as the bearing material for artificial joints. This study shows that UHMWPE can form a composite with nanocrystalline cellulose (NCC, a hydrophilic nanosized material with a high aspect ratio) by ball-milling and hot-pressing. Compared to pure UHMWPE, the NCC/UHMWPE composite exhibits improved tribological characteristics with reduced generation of wear debris. The underlying mechanism is related to the weak binding between hydrophilic NCC and hydrophobic UHMWPE. The hydrophilic, rigid NCC particles tend to detach from the UHMWPE surface during friction, which could move with the rubbing surface, serve as a thin lubricant layer, and protect the UHMWPE substrate from abrasion. The biological safety of the NCC/UHMWPE composite, as tested by MC3T3-E1 preosteoblast cells and macrophage RAW264.7 cells, is high, with significantly lower inflammatory responses/cytotoxicity than pure UHMWPE. The NCC/UHMWPE composite therefore could be a promising alternative to the current UHMWPE for bearing applications.

  10. Wear and flexural strength comparisons of alumina/feldspar resin infiltrated dental composites.

    Science.gov (United States)

    Le Roux, A R; Lachman, N; Walker, M; Botha, T

    2008-11-01

    Incorporating a feldspar chemical bond between alumina filler particles is expected to increase the wear-resistant and flexural strength properties. An investigation was carried out to evaluate the influence of the feldspar chemical bonding between alumina filler particles on wear and flexural strength of experimental alumina/feldspar dental composites. It was hypothesized that wear resistance and flexural strength would be significantly increased with increased feldspar mass. Alumina was chemically sintered and bonded with 30% and 60% feldspar mass, silanized and infiltrated with UDMA resin to prepare the dental restorative composite material. Higher wear-resistant characteristics resulted with increased feldspar mass of up to 60% (p 0.05). Feldspar chemical bonding between the alumina particles may improve on the wear-resistance and flexural strength of alumina/feldspar composites.

  11. On the mechanism of running-in during wear tests of a babbitt B83

    Science.gov (United States)

    Valeeva, A. Kh.; Valeev, I. Sh.; Fazlyakhmetov, R. F.; Pshenichnyuk, A. I.

    2015-05-01

    Based on an analysis of changes in the structure of cast babbitt of grade B83 in the process of wear tests and on a comparison of the wear curves of cast babbitt and electroplated coating of the same phase composition, there is proposed a wear mechanism at the running-in stage of B83, which is reduced to the spalling-off of coarse particles of the intermetallic β phase, pressing-in of the cleaved particles into the soft plastic matrix, and the formation of a fairly homogeneous coating uniformly paved by small, hard particles.

  12. Investigation of wear mechanism of tread during operation of railway wheels

    Directory of Open Access Journals (Sweden)

    Svetlana GUBENKO

    2012-01-01

    Full Text Available Causes of wear particles formation on railway wheels tread were investigated. Structural factors connecting with plastic deformation, formation of “white layer”, and also with non-metallic inclusions and corrosive products of wheel steel, defining wear of railway wheels tread during operation were fixed.

  13. Influence of solid contaminants in oil on wear characteristics of nano-Al2O3/Ni composite coating

    Institute of Scientific and Technical Information of China (English)

    杜令忠; 徐滨士; 董世运; 杨华; 吴毅雄

    2004-01-01

    Solid contaminants in lubrication system will cause severe wear of sliding components. In order to improve the wear resistance of the material in oil containing solid contaminants, the brush plated nano-A12 O3/Ni composite coating was prepared and the influence of the sand content and sand size on the tribological property of the coating in oil containing solid contaminants was tested with ball-on-disc tester. The results show that the wear volume increases with increasing the sand content and sand size, and the wear resistance of the composite coating is 20% higher than that of the high-speed plain nickel coating. The main wear mechanisms of the coatings are abrasive wear and adhesive wear. And due to the nano-particle strengthening effect, the wear resistance of the composite coating is improved.

  14. Microstructure and wear properties of tungsten carbide reinforced steel matrix composites

    Institute of Scientific and Technical Information of China (English)

    YOU Xian-qing; SONG Xue-feng; REN Hao; MA Jian-guo; HUANG Man-ping; ZHANG Cheng-jun

    2005-01-01

    WC(27%) reinforced steel matrix composites were produced by using an electroslag melting casting technique. The microstructure of the material was characterized using scanning electron microscopy(SEM), optical microscopy and X-ray diffraction(XRD). Energy dispersive spectroscopy(EDS) and transmission electron micro-scopy were performed to investigate the interfacial composition between WC particle and steel matrix. The results reveal that the WC particles are partially melted into the steel substrate. At the same time, a reaction layer was detected along with the periphery of WC particle, which significantly enhances the bonding strength of the interface. A slipping wear (high stress abrasion) test was utilized to understand the wear behavior of this material. Abrasive experiment displays a better wear resistance than unreinforced steel matrix when coarse WC particles are dispersed into it. The coarse particles provide greater wear-resistance than the fine particles and operatively takes on the most applied loads. Additionally, the large particles have not been peeled during the wear process for a long time, which indicates the effect of interfacial reaction on wear behavior at the ambient temperature. A double carbide (Fe, W)3C is detected in the interface zone between particles and matrices using transmission electron microscopy.

  15. Wear of micro end mills

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper addresses the important issue of wear on micro end mills considering relevant metrological tools for its characterization and quantification. Investigation of wear on micro end mills is particularly difficult and no data are available in the literature. Small worn volumes cause large d...

  16. [Infants wearing teething necklaces].

    Science.gov (United States)

    Taillefer, A; Casasoprana, A; Cascarigny, F; Claudet, I

    2012-10-01

    Numerous infants wear teething necklaces, a quack remedy with a real risk of strangulation or aspiration of small beads. Evaluate parental perceptions and beliefs about the use of teething necklaces and analyze parental knowledge about the associated dangers. Between March and July 2011, in three different pediatric units of a tertiary children's hospital and a general hospital in Toulouse and Montauban (southwest France), voluntary parents were invited to be interviewed about their child wearing a teething necklace. The interviews were conducted following an anthropological approach: they were recorded and then fully transcribed and analyzed. Parents were informed that the conversation was recorded. During the study period, 48 children were eligible. Eleven families refused to participate, 29 parents were interviewed face to face. The children's mean age was 14 years ± 7 months, the male:female ratio was equal to 0.8 (12 boys, 15 girls). The mean age of children when necklace wearing was started was equal to 4 ± 2 months. The mean mother's age was 31 ± 5 years and 33 ± 4 years for fathers. The parents' religion was mostly Catholic (60%). Teething necklaces were mainly made of amber (n=23). Sales information about the risks associated with the necklaces was for the most part absent (92%). The most frequent positive parental perceptions were analgesic properties and a soothing remedy (73%); a birth accessory and memory (64%); an esthetic accessory (60%); a protective amulet (60%); and an alternative or additional element to other traditional therapeutics (55%). The negative parental perceptions (n=4) were an unnecessary accessory, costume jewelry, a pure commercial abuse of a popular belief, a dangerous item with a risk of strangulation, and the absence of proof of its efficacy. Although parents concede that teeth eruption is benign, they fear its related symptoms. To a natural phenomenon a natural response: they use a necklace to satisfy the analogy. The

  17. Switch wear leveling

    Science.gov (United States)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2015-09-01

    An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.

  18. Low friction wear resistant graphene films

    Science.gov (United States)

    Sumant, Anirudha V.; Berman, Diana; Erdemir, Ali

    2017-02-07

    A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.

  19. Nanomedicine engulfed by macrophages for targeted tumor therapy

    Directory of Open Access Journals (Sweden)

    Li S

    2016-08-01

    Full Text Available Siwen Li,1,* Song Feng,1,* Li Ding,1 Yuxi Liu,1 Qiuyun Zhu,1 Zhiyu Qian,2 Yueqing Gu1 1Department of Biomedical Engineering, China Pharmaceutical University, 2Department of Biomedical Engineering, School of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, People’s Republic of China *These authors contributed equally to this work Abstract: Macrophages, exhibiting high intrinsic accumulation and infiltration into tumor tissues, are a novel drug vehicle for directional drug delivery. However, the low drug-loading (DL capacity and the drug cytotoxicity to the cell vehicle have limited the application of macrophages in tumor therapy. In this study, different drugs involving small molecular and nanoparticle drugs were loaded into intrinsic macrophages to find a better way to overcome these limitations. Their DL capacity and cytotoxicity to the macrophages were first compared. Furthermore, their phagocytic ratio, dynamic distributions, and tumoricidal effects were also investigated. Results indicated that more lipid-soluble molecules and DL particles can be phagocytized by macrophages than hydrophilic ones. In addition, the N-succinyl-N'-octyl chitosan (SOC DL particles showed low cytotoxicity to the macrophage itself, while the dynamic biodistribution of macrophages engulfed with different particles/small molecules showed similar profiles, mainly excreted from liver to intestine pathway. Furthermore, macrophages loaded with SOC–paclitaxel (PTX particles exhibited greater therapeutic efficacies than those of macrophages directly carrying small molecular drugs such as doxorubicin and PTX. Interestingly, macrophages displayed stronger targeting ability to the tumor site hypersecreting chemokine in immunocompetent mice in comparison to the tumor site secreting low levels of chemokine in immunodeficiency mice. Finally, results demonstrated that macrophages carrying SOC–PTX are a promising pharmaceutical preparation

  20. Wear Performance of Cu-Alloyed Austempered Ductile Iron

    Science.gov (United States)

    Batra, Uma; Batra, Nimish; Sharma, J. D.

    2013-04-01

    An investigation was carried out to examine the influence of structural and mechanical properties on wear behavior of austempered ductile iron (ADI). Ductile iron (DI) samples were austenitized at 900 °C for 60 min and subsequently austempered for 60 min at three temperatures: 270, 330, and 380 °C. Microstructures of the as-cast DI and ADIs were characterized using optical and scanning microscopy, respectively. The structural parameters, volume fraction of austenite, carbon content of austenite, and ferrite particle size were determined using x-ray diffraction technique. Mechanical properties including Vicker's hardness, 0.2% proof strength, ultimate tensile strength, ductility, and strain hardening coefficient were determined. Wear tests were carried out under dry sliding conditions using pin-on-disk machine with a linear speed of 2.4 m/s. Normal load and sliding distance were 45 N and 1.7 × 104 m, respectively. ADI developed at higher austempering temperature has large amounts of austenite, which contribute toward improvement in the wear resistance through stress-induced martensitic transformation, and strain hardening of austenite. Wear rate was found to depend on 0.2% proof strength, ductility, austenite content, and its carbon content. Study of worn surfaces and nature of wear debris revealed that the fine ausferrite structure in ADIs undergoes oxidational wear, but the coarse ausferrite structure undergoes adhesion, delamination, and mild abrasion too.

  1. Adenovirus-mediated siRNA targeting TNF-α and overexpression of bone morphogenetic protein-2 promotes early osteoblast differentiation on a cell model of Ti particle-induced inflammatory response in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.H.; Yu, C.C.; Sun, S.X. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedic Surgery, Yinchuan (China); Ma, X.J. [Ningxia Medical Autonomous Region of the First People' s Hospital, Department of Orthopedic Surgery, Yinchuan (China); Yang, X.C.; Sun, K.N.; Jin, Q.H. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedic Surgery, Yinchuan (China)

    2013-10-02

    Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.

  2. Adenovirus-mediated siRNA targeting TNF-α and overexpression of bone morphogenetic protein-2 promotes early osteoblast differentiation on a cell model of Ti particle-induced inflammatory response in vitro.

    Science.gov (United States)

    Guo, H H; Yu, C C; Sun, S X; Ma, X J; Yang, X C; Sun, K N; Jin, Q H

    2013-10-01

    Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.

  3. Wear mechanisms of dental composite restorative materials by two different in-vitro methods

    Directory of Open Access Journals (Sweden)

    Juliana Antonino de Souza

    2013-04-01

    Full Text Available In this work two very simple apparatuses, namely the ball crater (or ball-on-plate and the linear reciprocating (or pin-on-plate tests, were used in order to investigate the wear mechanisms of TPH Spectrum® and Resilab Master® dental composite resins. Loads in the range of 100 g to 1 kg and a total number of up to 24000 cycles were employed. During some of these tests, aqueous aluminum oxide suspensions were used as abrasive agent either diluted or not in distilled water. In case of the ball-on-plate test wear is dominated by abrasive and/or adhesive mechanisms, and is characterized by scratches which are composed of wear defects comprising particle detachment, wear of the polymer matrix and ceramic particle abrasion. However, the relative contributions of the two wear mechanisms could not be determined separately. In case of the pin-on-plate test wear is governed by the fatigue mechanism, although abrasive and adhesive wear mechanism are also present. After a certain number of cycles fatigue wear dominates the wear behavior and results in severe material loss. This mechanism seems to be more important in case of more brittle materials and when higher loads are employed. Qualitative analysis of the results suggests that the combination of these two very simple methods under appropriate conditions can yield sound results which may be representative of a number of clinical situations.

  4. Wear mechanisms of dental composite restorative materials by two different in-vitro methods

    Directory of Open Access Journals (Sweden)

    Juliana Antonino de Souza

    2012-01-01

    Full Text Available In this work two very simple apparatuses, namely the ball crater (or ball-on-plate and the linear reciprocating (or pin-on-plate tests, were used in order to investigate the wear mechanisms of TPH Spectrum® and Resilab Master® dental composite resins. Loads in the range of 100 g to 1 kg and a total number of up to 24000 cycles were employed. During some of these tests, aqueous aluminum oxide suspensions were used as abrasive agent either diluted or not in distilled water. In case of the ball-on-plate test wear is dominated by abrasive and/or adhesive mechanisms, and is characterized by scratches which are composed of wear defects comprising particle detachment, wear of the polymer matrix and ceramic particle abrasion. However, the relative contributions of the two wear mechanisms could not be determined separately. In case of the pin-on-plate test wear is governed by the fatigue mechanism, although abrasive and adhesive wear mechanism are also present. After a certain number of cycles fatigue wear dominates the wear behavior and results in severe material loss. This mechanism seems to be more important in case of more brittle materials and when higher loads are employed. Qualitative analysis of the results suggests that the combination of these two very simple methods under appropriate conditions can yield sound results which may be representative of a number of clinical situations.

  5. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yan [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Guo, Xingwu [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhou, Zhifeng [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Dong, Jie [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, Yixiong [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China)

    2015-02-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating.

  6. Tool wear mechanism in turning of novel wear-resisting aluminum bronze

    Institute of Scientific and Technical Information of China (English)

    倪东惠; 夏伟; 张大童; 郭国文; 邵明

    2003-01-01

    Tool wear and wear mechanism during the turning of a wear-resisting aluminum bronze have been stud-ied. Tool wear samples were prepared by using M2 high-speed steel and YW1 cemented carbide tools to turn a novelhigh strength, wear resisting aluminum bronze without coolant and lubricant. Adhesion of workpiece materials wasfound on tool's surface. Under the turning condition used in this study major wear mechanisms for turning aluminumbronze using M2 high-speed steel tool are diffusion wear, adhesive wear and plastic deformation and shear on thecrater. Partial melting of high-speed steel on the rake plays a role in the tool wear also. Major wear mechanisms forturning aluminum bronze using YW1 cemented carbide tool are diffusion wear, attrition wear and sliding wear. Tocontrol the machining temperature is essential to reduce tool wear.

  7. Characteristics of highly cross-linked polyethylene wear debris in vivo.

    Science.gov (United States)

    Baxter, Ryan M; MacDonald, Daniel W; Kurtz, Steven M; Steinbeck, Marla J

    2013-04-01

    Despite the widespread implementation of highly cross-linked polyethylene (HXLPE) liners to reduce the clinical incidence of osteolysis, it is not known if the improved wear resistance will outweigh the inflammatory potential of HXLPE wear debris generated in vivo. Thus, we asked: What are the differences in size, shape, number, and biological activity of polyethylene wear particles obtained from primary total hip arthroplasty revision surgery of conventional polyethylene (CPE) versus remelted or annealed HXLPE liners? Pseudocapsular tissue samples were collected from revision surgery of CPE and HXLPE (annealed and remelted) liners, and digested using nitric acid. The isolated polyethylene wear particles were evaluated using scanning electron microscopy. Tissues from both HXLPE cohorts contained an increased percentage of submicron particles compared to the CPE cohort. However, the total number of particles was lower for both HXLPE cohorts, as a result there was no significant difference in the volume fraction distribution and specific biological activity (SBA; the relative biological activity per unit volume) between cohorts. In contrast, based on the decreased size and number of HXLPE wear debris there was a significant decrease in total particle volume (mm(3)/g of tissue). Accordingly, when the SBA was normalized by total particle volume (mm(3)/gm tissue) or by component wear volume rate (mm(3)/year), functional biological activity of the HXLPE wear debris was significantly decreased compared to the CPE cohort. Indications for this study are that the osteolytic potential of wear debris generated by HXLPE liners in vivo is significantly reduced by improvements in polyethylene wear resistance. Copyright © 2013 Wiley Periodicals, Inc.

  8. Characteristics of highly cross-linked polyethylene wear debris in vivo

    Science.gov (United States)

    Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.

    2014-01-01

    Despite the widespread implementation of highly cross-linked polyethylene (HXLPE) liners to reduce the clinical incidence of osteolysis, it is not known if the improved wear resistance will outweigh the inflammatory potential of HXLPE wear debris generated in vivo. Thus, we asked: What are the differences in size, shape, number, and biological activity of polyethylene wear particles obtained from primary total hip arthroplasty revision surgery of conventional polyethylene (CPE) versus remelted or annealed HXLPE liners? Pseudocapsular tissue samples were collected from revision surgery of CPE and HXLPE (annealed and remelted) liners, and digested using nitric acid. The isolated polyethylene wear particles were evaluated using scanning electron microscopy. Tissues from both HXLPE cohorts contained an increased percentage of submicron particles compared to the CPE cohort. However, the total number of particles was lower for both HXLPE cohorts, as a result there was no significant difference in the volume fraction distribution and specific biological activity (SBA; the relative biological activity per unit volume) between cohorts. In contrast, based on the decreased size and number of HXLPE wear debris there was a significant decrease in total particle volume (mm3/g of tissue). Accordingly, when the SBA was normalized by total particle volume (mm3/gm tissue) or by component wear volume rate (mm3/year), functional biological activity of the HXLPE wear debris was significantly decreased compared to the CPE cohort. Indications for this study are that the osteolytic potential of wear debris generated by HXLPE liners in vivo is significantly reduced by improvements in polyethylene wear resistance. PMID:23436587

  9. They shall wear fringes.

    Science.gov (United States)

    Sugar, M

    1999-01-01

    The multiple functions of clothes include utility, protection, rivalry, disguise, camouflage, display for seduction purposes, aggression, totemism, and status. Here the focus is on a decorative and distinctive hierarchical aspect of ancient dress, the tsitsit or fringes, whose original function is long absent, but that has endured for 3,500 years in Judaism. The beginning of their use beyond the totemic appears related to issues of changing identity from slavery to liberty, endowing noble status, exhibitionism, a symbol of identity, identification with the aggressor, a talisman, and potency. It is conceptualized that they became a symbol, or a specifier, that helped promote group cohesion in ex-slaves who were frightened, dependent, anxious, and not hopeful about their future. The tsitsit aided the development of a new identity and made all Israelites equal and noble to the observer. The durability of this symbol to the present is evident in its daily wear, as an accompaniment to daily prayers, as well as in its use as a burial shroud for males. It appears that the tsitsit have additional multiple functions. These are the promise of oral and genital satisfaction, and the pleasure of the after-life, superego warnings and control of sexual impulses, protection, survival value, and affirmation. Since they offer sublimation with acceptable gratification of instincts, the tsitsit have become ritualized and endure.

  10. Intelligent Detection of Drill Wear

    Science.gov (United States)

    Liu, T. I.; Chen, W. Y.; Anatharaman, K. S.

    1998-11-01

    Backpropagation neural networks (BPNs) were used for on-line detection of drill wear. The neural network consisted of three layers: input, hidden, and output. The input vector comprised drill size, feed rate, spindle speed, and eight features obtained by processing the thrust and torque signals. The output was the drill wear state which either usable or failure. Drilling experiments with various drill sizes, feed rates and spindle speeds were carried out. The learning process was performed effectively by utilising backpropagation with smoothing and an activation function slope. The on-line detection of drill wear states using BPNs achieved 100% reliability even when the drill size, feed rate and spindle speed were changed. In other words, the developed on-line drill wear detection systems have very high robustness and hence can be used in very complex production environments, such as flexible manufacturing systems.

  11. Abrasive wear characteristics and mechanisms of Al2O3/PA1010 composite coatings

    Institute of Scientific and Technical Information of China (English)

    JIA Xian; LING Xiaomei

    2004-01-01

    The abrasive wear characteristics of Al2O3/PA1010 composite coatings on the surface of quenched and low-temperature temper steel 45 were tested on the mmplate abrasive wear testing machine and the same uncoated steel 45 was used as a reference material. Experimental results showed that the abrasive wear resistance of Al2O3//PAl010 composite coatings has a good linear relationship with the volume fraction of Al2O3 particles in Al2O3/PAl010 composite coatings, and the linear correlative coefficient is 0.979. Under the experimental conditions, the size of Al2O3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance of Al2O3/PA l010 composite coatings. By treating the surface of Al2O3 particles with a suitable bonding agent, the distribution of Al2O3 particles in matrix PAl010 is more homogeneous and the bonding state between Al2O3 particles and matrix PAl010 is better. Therefore, the ml2O3 particles in Al2O3/PA1010 composite coatings make the Al2O3/PAl010 composite coatings have better abrasive wear resistance than PA1010 coatings. The wear resistance of Al2O3/PA 1010 composite coatings is about 45% compared with that of steel 45.

  12. Wear resistance properties of austempered ductile iron

    Science.gov (United States)

    Lerner, Y. S.; Kingsbury, G. R.

    1998-02-01

    A detailed review of wear resistance properties of austempered ductile iron (ADI) was undertaken to examine the potential applications of this material for wear parts, as an alternative to steels, alloyed and white irons, bronzes, and other competitive materials. Two modes of wear were studied: adhesive (frictional) dry sliding and abrasive wear. In the rotating dry sliding tests, wear behavior of the base material (a stationary block) was considered in relationship to countersurface (steel shaft) wear. In this wear mode, the wear rate of ADI was only one-fourth that of pearlitic ductile iron (DI) grade 100-70-03; the wear rates of aluminum bronze and leaded-tin bronze, respectively, were 3.7 and 3.3 times greater than that of ADI. Only quenched DI with a fully martensitic matrix slightly outperformed ADI. No significant difference was observed in the wear of steel shafts running against ADI and quenched DI. The excellent wear performance of ADI and its countersurface, combined with their relatively low friction coefficient, indicate potential for dry sliding wear applications. In the abrasive wear mode, the wear rate of ADI was comparable to that of alloyed hardened AISI 4340 steel, and approximately one-half that of hardened medium-carbon AISI 1050 steel and of white and alloyed cast irons. The excellent wear resistance of ADI may be attributed to the strain-affected transformation of high-carbon austenite to martensite that takes place in the surface layer during the wear tests.

  13. Critical component wear in heavy duty engines

    CERN Document Server

    Lakshminarayanan, P A

    2011-01-01

    The critical parts of a heavy duty engine are theoretically designed for infinite life without mechanical fatigue failure. Yet the life of an engine is in reality determined by wear of the critical parts. Even if an engine is designed and built to have normal wear life, abnormal wear takes place either due to special working conditions or increased loading.  Understanding abnormal and normal wear enables the engineer to control the external conditions leading to premature wear, or to design the critical parts that have longer wear life and hence lower costs. The literature on wear phenomenon r

  14. Corrosive wear behavior of 2014 and 6061 aluminum alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    Varma, S.K.; Andrews, S.; Vasquez, G. [Univ. of Texas, El Paso, TX (United States). Dept. of Metallurgical and Materials Engineering

    1999-02-01

    Alloys of 2014 and 6061 aluminum reinforced with 0.1 volume fraction of alumina particles (VFAP) were subjected to impact scratching during a corrosive wear process. The transient currents generated due to the impact were measured in the two composites as well as in their respective monoliths. The effect of solutionizing time on the transient currents was correlated to the near surface microstructures, scratch morphology, concentration of quenched-in vacancies, and changes in grain sizes. It was observed that the transient current values increase with an increase in solutionizing time, indicating that the corrosive wear behavior is not strongly affected by the grain boundaries. However, a combination of pitting and the galvanic corrosion may account for the typical corrosive wear behavior exhibited by the alloys and the composites of this study.

  15. In Vitro Analyses of the Toxicity, Immunological, and Gene Expression Effects of Cobalt-Chromium Alloy Wear Debris and Co Ions Derived from Metal-on-Metal Hip Implants

    Directory of Open Access Journals (Sweden)

    Olga M. Posada

    2015-07-01

    Full Text Available Joint replacement has proven to be an extremely successful and cost-effective means of relieving arthritic pain and improving quality of life for recipients. Wear debris-induced osteolysis is, however, a major limitation and causes orthopaedic implant aseptic loosening, and various cell types including macrophages, monocytes, osteoblasts, and osteoclasts, are involved. During the last few years, there has been increasing concern about metal-on-metal (MoM hip replacements regarding adverse reactions to metal debris associated with the MoM articulation. Even though MoM-bearing technology was initially aimed to extend the durability of hip replacements and to reduce the requirement for revision, they have been reported to release at least three times more cobalt and chromium ions than metal-on-polyethylene (MoP hip replacements. As a result, the toxicity of metal particles and ions produced by bearing surfaces, both locally in the periprosthetic space and systemically, became a concern. Several investigations have been carried out to understand the mechanisms responsible for the adverse response to metal wear debris. This   review aims at summarising in vitro analyses of the toxicity, immunological, and gene expression effects of cobalt ions and wear debris derived from MoM hip implants.

  16. Wear of nanofilled dental composites in a newly-developed in vitro testing device

    Science.gov (United States)

    Lawson, Nathaniel C.

    Purpose. In vivo wear of dental composites can lead to loss of individual tooth function and the need to replace a composite restoration. To evaluate the wear performance of new and existing dental composites, we developed a novel system for measuring in vitro wear and we used this system to analyze the mechanisms of wear of nanofilled composite materials. Methods. A modified wear testing device was designed based on the Alabama wear testing machine. The new device consists of: (1) an antagonist which is lowered to and raised from the composite specimen by weight loading, (2) a motorized stage to cause the antagonist to slide 2mm on the composite surface, and (3) pumps for applying lubricant to the specimens. Various testing parameters of the device were examined before testing, including the impulse force, the third-body medium, the lubricant and antagonist. The parameters chosen for this study were 20N at 1Hz with a 33% glycerine lubricant and stainless steel antagonist. Three nano-composites were fabricated with a BisGMA polymer matrix and 40nm SiO2 filler particles at three filler loads (25%, 50% and 65%). The mechanical properties of the composites were measured. The materials were then tested in the modified wear testing device under impact wear, sliding wear and a combination of impact and sliding wear. The worn surfaces were then analyzed with a non-contact profilometer and SEM. Results. The volumetric wear data indicated that increasing filler content beyond 25% decreased the wear resistance of the composites. Increasing filler content increased hardness and decreased toughness. SEM evaluation of the worn specimens indicated that the 25% filled materials failed by fatigue and the 50% and 65% filled materials failed by abrasive wear. Impact wear produced fretting in this device and sliding wear is more aggressive than impact wear. Conclusion. Based on the results of this study and previous studies on this topic, manufacturers are recommended to use a filler

  17. A review on nozzle wear in abrasive water jet machining application

    Science.gov (United States)

    Syazwani, H.; Mebrahitom, G.; Azmir, A.

    2016-02-01

    This paper discusses a review on nozzle wear in abrasive water jet machining application. Wear of the nozzle becomes a major problem since it may affect the water jet machining performance. Design, materials, and life of the nozzle give significance effect to the nozzle wear. There are various parameters that may influence the wear rate of the nozzle such as nozzle length, nozzle inlet angle, nozzle diameter, orifice diameter, abrasive flow rate and water pressure. The wear rate of the nozzle can be minimized by controlling these parameters. The mechanism of wear in the nozzle is similar to other traditional machining processes which uses a cutting tool. The high pressure of the water and hard abrasive particles may erode the nozzle wall. A new nozzle using a tungsten carbide-based material has been developed to reduce the wear rate and improve the nozzle life. Apart from that, prevention of the nozzle wear has been achieved using porous lubricated nozzle. This paper presents a comprehensive review about the wear of abrasive water jet nozzle.

  18. Extensive Bone Reaction From Catastrophic Oxidized Zirconium Wear.

    Science.gov (United States)

    Cassar-Gheiti, Adrian J; Collins, Dennis; McCarthy, Tom

    2016-01-01

    The use of alternative bearing surfaces for total hip arthroplasty has become popular to minimize wear and increase longevity, especially in young patients. Oxidized zirconium (Oxinium; Smith & Nephew, Memphis, Tennessee) femoral heads were introduced in the past decade for use in total hip arthroplasty. The advantages of oxidized zirconium include less risk of fracture compared with traditional ceramic heads. This case report describes a patient with a history of bilateral avascular necrosis of the femoral head after chemotherapy for acute lymphoblastic leukemia. Nonoperative management of avascular necrosis failed, and the patient was treated with bilateral total hip arthroplasty. The patient was followed at regular intervals and had slow eccentric polyethylene wear during a 10-year period. After 10 years, the patient had accelerated wear, with femoral and acetabular bone changes as a result of Oxinium and ultrahigh-molecular-weight polyethylene wear during a 6-month period. This article highlights the unusual accelerated bone changes that occurred as a result of Oxinium wear particles.

  19. Manganese steel in impact wear testing; Manganhartstahl in Stossverschleisstest

    Energy Technology Data Exchange (ETDEWEB)

    Patzelt, B.; Hemmann, U.; Deters, L. [Magdeburg Univ. (Germany). Inst. fuer Maschinenkonstruktion

    2000-12-01

    Beating arms in impact crushers show high wear. In order to simulate the process of the mainly occuring impact wear, experimental investigations with a special test device were carried out. With this 11 different charges of manganese steel differing in their chemical composition were tested. The different chemical composition of the charges led to different results concerning the wear resistance. A significant interrelationship between wear resistance and macro-hardness of the charges of the manganese steel could be detected. With a faster rotor speed a considerable increase of wear could be determined as well. Microscopical investigations on worn test pieces exhibit a typical embedding of small particles of concrete into the metal matrix. (orig.) [German] Die Schlagleisten in Prallbrechern unterliegen einen hohen Verschleiss. Um den Prozess des hauptsaechlich auftretenden Stossverschleisses zu simulieren, wurden Modelluntersuchungen mit einer speziellen Pruefeinrichtung durchgefuehrt. Dabei konnten 11 verschiedene Chargen von Manganhartstahl, die sich im wesentlichen in ihrer chemischen Zusammensetzung unterschieden, untersucht werden. Die unterschiedliche chemische Zusammensetzung der einzelnen Chargen fuehrte zu unterschiedlichen Ergebnissen hinsichtlich der Verschleissbestaendigkeit der einzelnen Modellschlagleisten. Hierbei ist ein signifikanter Zusammenhang zwischen der Verschleissbestaendigkeit und der Makrohaerte der Manganhartstaehle zu erkennen. Die Umfangsgeschwindigkeit des Rotors der Pruefeinrichtung beeinflusst ebenfalls das Verschleissverhalten, und zwar fuehrte eine hoehere Umfangsgeschwindigkeit zu hoeherem Verschleiss. Mikroskopische Untersuchungen an geschaedigten Probekoerpern zeigten ein Einbetten von kleinsten Partikeln aus Beton im oberflaechennahen Stoffbereich der Metallmatrix. (orig.)

  20. Wear of nanofilled dental composites at varying filler concentrations.

    Science.gov (United States)

    Lawson, Nathaniel C; Burgess, John O

    2015-02-01

    The aim of this study is to examine the effects of nanofiller concentration on the mechanisms of wear of a dental composite. Nanofilled composites were fabricated with a bisphenol A glycidyl methacrylate polymer and 40 nm SiO2 filler particles at three filler loads (25, 50, and 65 wt %). The elastic modulus, flexural strength, and hardness of the composites and the unfilled resin were measured. The materials (n = 8) were tested in the modified wear testing device at 50,000, 100,000, and 200,000 cycles with 20N force at 1 Hz. A 33% glycerine lubricant and stainless steel antagonist were used. The worn composite and antagonist surfaces were analyzed with noncontact profilometry and SEM. The volumetric wear data indicated that there are significant differences between filler concentrations and cycles (p composites. Increasing filler content increased hardness and modulus and increased flexural strength up to 50% fill. SEM evaluation of the worn specimens indicated that the resin and 25% filled materials exhibited cracking and failed by fatigue and the 50 and 65% filled materials exhibited microcutting and failed by abrasive wear. Based on the results of this study, composite manufacturers are recommended to use a filler concentration between 25 and 50% when using nanosized filler particles. © 2014 Wiley Periodicals, Inc.

  1. Effects of some material and experimental variables on the slurry wear characteristics of zinc-aluminum alloys

    Science.gov (United States)

    Prasad, B. K.; Modi, O. P.; Jha, A. K.; Patwardhan, A. K.

    2001-02-01

    In this study, the slurry wear behavior of a zinc-based alloy has been examined by the sample rotation method over a range of traversal speeds and distances. The influence of adding silicon to the alloy system on its wear characteristics has also been examined. The wear rate of the samples increased with increasing traversal distance initially, attained a peak, and then tended to decrease at longer distances. The initial increase in wear rate with distance was attributed to the indenting effect of the slurry constituents ( i.e., liquid droplets and the erodant particles) associated with the corrosive action of the liquid in slurry. On the contrary, factors such as entrapment of the erodant mass as well as the corrosion products in the cavities formed on the specimen surfaces could lead to the decrease in wear rate at longer traversal distances. The existence of silicon particles in the alloy microstructure led to improved wear resistance of the alloy system. This was due to the resistance offered by the hard silicon particles against the impinging action of the slurry constituents. Attainment of the wear rate peak at longer traversal distances in the case of the silicon-containing alloy over the one without the element further substantiated the superior wear resistance offered by the silicon particles. Traversal speed led to higher wear rates irrespective of the test conditions and material composition due to the more severe attack of the medium on the specimen surface. However, the presence of silicon particles in the alloy microstructure offered improved wear resistance (inverse of wear rate).

  2. Calculation of wear (f.i. wear modulus) in the plastic cup of a hip joint prosthesis

    NARCIS (Netherlands)

    Ligterink, D.J.

    1975-01-01

    The wear equation is applied to the wear process in a hip joint prosthesis and a wear modulus is defined. The sliding distance, wear modulus, wear volume, wear area, contact angle and the maximum normal stress were calculated and the theoretical calculations applied to test results. During the wear

  3. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2014-01-06

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  4. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2016-01-06

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  5. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2015-01-07

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  6. The enhancement of wear properties of squeeze-cast A356 composites reinforced with B{sub 4}C particulates

    Energy Technology Data Exchange (ETDEWEB)

    Mazahery, Ali; Shabani, Mohsen Ostad [Islamic Azad Univ., Karaj (Iran, Islamic Republic of)

    2012-07-15

    In the present study, squeeze-cast A356 matrix composites reinforced with B{sub 4}C particles were prepared and different volume fractions of B{sub 4}C particles of various sizes were incorporated into the aluminum alloy by a mechanical stirrer. Wear properties of the unreinforced alloy and composites with different vol.% of boron carbide particles were measured and compared. It is noted that composites exhibit better wear resistance compared to the unreinforced alloy. According to the differences in wear rates of the composites, two separate wear-rate regimes were identified as low- and high-wear-rate regimes. It is observed that all the composite samples reinforced with 1 {mu}m B{sub 4}C particles show high wear-rate, regardless of the particle volume fraction. However, none of the samples containing 50 {mu}m particles display this type of wear regime. Microscopic examination using a scanning electron microscope equipped with an energy-dispersive spectrometer, was carried out on the worn surfaces, subsurfaces, and debris. Rough and smooth regions are distinguished on the worn surface of the composites similar to the unreinforced alloy. (orig.)

  7. Comparative Study of Wear Resistance of the Composite with Microhybrid Structure and Nanocomposite

    Directory of Open Access Journals (Sweden)

    Pieniak Daniel

    2016-12-01

    Full Text Available The aim of the study was to compare microhardness and wear resistance of ceramic-polymer composites with micro and nano-hybrid structure. For the studies commercial composites were used, containing filler particles of the same type but different sizes, nano-sized (Filtek Ultimate and micro-sized (Filtek Z250 composites. Tribological testing was conducted using ball-on-disc micro-tribometer. Vickers testing method was applied for microhardness studies with the use of Futertech FM 700 device. It has been demonstrated that the wear of Filtek Ultimate is almost twice lower in comparison to wear of Filtek Z250 composite. It has been concluded that the use of filler nanoparticles significantly increased wear resistance of the material. Additionally, lack of correlation between material microhardness and wear resistance has been demonstrated.

  8. Dry Sliding Friction and Wear Studies of Fly Ash Reinforced AA-6351 Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    M. Uthayakumar

    2013-01-01

    Full Text Available Fly ash particles are potentially used in metal matrix composites due to their low cost, low density, and availability in large quantities as waste by-products in thermal power plants. This study describes multifactor-based experiments that were applied to research and investigation on dry sliding wear system of stir-cast aluminum alloy 6351 with 5, 10, and 15 wt.% fly ash reinforced metal matrix composites (MMCs. The effects of parameters such as load, sliding speed, and percentage of fly ash on the sliding wear, specific wear rate, and friction coefficient were analyzed using Grey relational analysis on a pin-on-disc machine. Analysis of variance (ANOVA was also employed to investigate which design parameters significantly affect the wear behavior of the composite. The results showed that the applied load exerted the greatest effect on the dry sliding wear followed by the sliding velocity.

  9. Investigation of friction and wear characteristics of cast iron material under various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Ji Hoon; Kim, Chang Lae; Oh, Jeong Taek; Kim, Dae Eun [Yonsei University, Seoul (Korea, Republic of); Nemati, Narguess [School of Materials and Metallurgy, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-08-15

    Cast iron is widely used in fields such as the transport and heavy industries. For parts where contact damage is expected to occur, it is necessary to understand the friction and wear characteristics of cast iron. In this study, we use cast iron plates as the specimens to investigate their friction and wear characteristics. We perform various experiments using a reciprocating type tribotester. We assess the frictional characteristics by analyzing the friction coefficient values that were obtained during the sliding tests. We observe the wear surfaces of cast iron and steel balls using a scanning electron microscope, confocal microscope, and 3D profiler. We investigate the friction and wear characteristics of cast iron by injecting sand and alumina particles having various sizes. Furthermore, we estimate the effect of temperature on the friction and wear characteristics. The results obtained are expected to aid in the understanding of the tribological characteristics of cast iron in industry.

  10. The influence of Co-Cr and UHMWPE particles on infection persistence: an in vivo study in mice.

    Science.gov (United States)

    Hosman, Anton H; Bulstra, Sjoerd K; Sjollema, Jelmer; van der Mei, Henny C; Busscher, Henk J; Neut, Daniëlle

    2012-03-01

    Wear of metal-on-metal (cobalt-chromium, Co-Cr particles) and metal-on-polyethylene (ultra-high-molecular-weight polyethylene, UHMWPE particles) bearing surfaces in hip prostheses is a major problem in orthopedics. This study aimed to compare the influence of Co-Cr and UHMWPE particles on the persistence of infection. Bioluminescent Staphylococcus aureus Xen36 were injected in air pouches prepared in subcutaneous tissue of immuno-competent BALB/c mice (control), as a model for the joint space, in the absence or presence of Co-Cr or UHMWPE particles. Bioluminescence was monitored longitudinally up to 21 days, corrected for absorption and reflection by the particles and expressed relative to the bioluminescence found in the presence of staphylococci only. After termination, air pouch fluid and air pouch membrane were cultured and histologically analyzed. Bioluminescence was initially lower in mice exposed to UHMWPE particles with staphylococci than in mice injected with staphylococci only, possibly because UHMWPE particles initially stimulated a higher macrophage presence in murine air pouch membranes. For mice exposed to Co-Cr particles with staphylococci, bioluminescence was observed to be higher in two out of six animals compared to the presence of staphylococci alone. In the majority of mice, infection risk in the absence or presence of Co-Cr and UHMWPE particles appeared similar, assuming that the longevity of an elevated bioluminescence is indicative of a higher infection risk. However, the presence of Co-Cr particles yielded a higher bioluminescence in two out of six mice, possibly because the macrophage degradative function was hampered by the presence of Co-Cr particles.

  11. Standard Terminology Relating to Wear and Erosion

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 The terms and their definitions given herein represent terminology relating to wear and erosion of solid bodies due to mechanical interactions such as occur with cavitation, impingement by liquid jets or drops or by solid particles, or relative motion against contacting solid surfaces or fluids. This scope interfaces with but generally excludes those processes where material loss is wholly or principally due to chemical action and other related technical fields as, for instance, lubrication. 1.2 This terminology is not exhaustive; the absence of any particular term from this collection does not necessarily imply that its use within this scope is discouraged. However, the terms given herein are the recommended terms for the concepts they represent unless otherwise noted. 1.3 Certain general terms and definitions may be restricted and interpreted, if necessary, to make them particularly applicable to the scope as defined herein. 1.4 The purpose of this terminology is to encourage uniformity and accuracy ...

  12. Erosive Wear and Wear Mechanism of in situ TiCp/Fe Composites

    Institute of Scientific and Technical Information of China (English)

    Zhaojing LIU; Zhiliang NING; Fengzhen LI; Xiurong YAO; Shanzhi REN

    2005-01-01

    The base structure of in situ TiCP/Fe composites fabricated under industrial condition was changed by different heat treatments. Erosive wear tests were carried out and the results were compared with that of wear-resistant white cast iron. The results suggest that the wear resistance of the in situ TiCp/Fe composite is higher than that of wear-resistant white cast iron under the sand erosive wear condition. The wear mechanism of the wear-resistant white cast iron was a cycle process that base surface was worn and carbides were exposed, then carbides was broken and wear pits appeared. While the wear mechanism of in situ TiCp/Fe composite was a cycle process that base surface was worn and TiC grains were exposed and dropped. The wear resistance of in situ TiCp/Fe composite was lower than that of wear-resistant white cast iron under the slurry erosive wear condition. Under such circumstance,the material was not only undergone erosive wear but also electrochemistry erosion due to the contact with water in the medium. The wear behaviours can be a combination of two kinds of wear and the sand erosive wear is worse than slurry erosive wear.

  13. Fluoromica nanoparticle cytotoxicity in macrophages decreases with size and extent of uptake

    Directory of Open Access Journals (Sweden)

    Tee N

    2015-03-01

    Full Text Available Nicolin Tee,1 Yingdong Zhu,2 Gysell M Mortimer,1 Darren J Martin,2 Rodney F Minchin11School of Biomedical Science, University of Queensland, Brisbane, QLD, Australia; 2Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, AustraliaAbstract: Polyurethanes are widely used in biomedical devices such as heart valves, pacemaker leads, catheters, vascular devices, and surgical dressings because of their excellent mechanical properties and good biocompatibility. Layered silicate nanoparticles can significantly increase tensile strength and breaking strain of polyurethanes potentially increasing the life span of biomedical devices that suffer from wear in vivo. However, very little is known about how these nanoparticles interact with proteins and cells and how they might exert unwanted effects. A series of fluoromica nanoparticles ranging in platelet size from 90 to over 600 nm in diameter were generated from the same base material ME100 by high energy milling and differential centrifugation. The cytotoxicity of the resulting particles was dependent on platelet size but in a manner that is opposite to many other types of nanomaterials. For the fluoromicas, the smaller the platelet size, the less toxicity was observed. The small fluoromica nanoparticles (<200 nm were internalized by macrophages via scavenger receptors, which was dependent on the protein corona formed in serum. This internalization was associated with apoptosis in RAW cells but not in dTHP-1 cells. The larger particles were not internalized efficiently but mostly decorated the surface of the cells, causing membrane disruption, even in the presence of 80% serum. This work suggests the smaller fluoromica platelets may be safer for use in humans but their propensity to recognize macrophage scavenger receptors also suggests that they will target the reticulo-endoplasmic system in vivo.Keywords: layered silicates, accumulation, phagocytosis, high

  14. Effect of flame conditions on abrasive wear performance of HVOF sprayed nanostructured WC-12Co coatings

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-yue; LI Chang-jiu; MA Jian; YANG Guan-jun

    2004-01-01

    Nanostructured WC-12Co coatings were deposited by high velocity oxy-fuel (HVOF) spraying with an agglomerated powder. The effect of flame conditions on the microstructure of the nanostructured coatings was investigated. The wear properties of the coatings were characterized using a dry rubber-wheel wear test. The results show that the nanostructured WC-Co coatings consist of WC, W2C, W and an amorphous binder phase. The microstructure of the coating is significantly influenced by the ratio of oxygen flow to fuel flow. Under the lower ratio of oxygen/fuel flow, the nanostructured coating presents a relative dense microstructure and severe decarburization of WC phase occurs during spraying. With increasing ratio of oxygen/fuel flow, the bonding of WC particles in the coating becomes loose resulting from the original structure of feedstock and the decarburization of WC becomes less owing to limited heating to the powder. Both the decarburization of WC particles in spraying and the bonding among WC particles in the coatings affect the wear performance. The examination of the worn surfaces of the nanostructured coatings reveals that the dominant wear mechanisms would be spalling from the interface of WCCo splats when spray particles undergo a limited melting. While the melting state of the spray particles is improved,the dominant wear mechanisms become the plastic deformation and plowing of the matrix and spalling of WC particles from the matrix.

  15. Wear behaviour of cross-linked polyethylene assessed in vitro under severe conditions.

    Science.gov (United States)

    Affatato, Saverio; Bersaglia, Gianluca; Rocchi, Mirko; Taddei, Paola; Fagnano, Concezio; Toni, Aldo

    2005-06-01

    The polyethylene (PE) for hip implants presents serious clinical problems; the production of debris may induce adverse tissue reactions that may lead to extensive bone loss around the implant and consequently osteolysis and implant loosening. Several attempts have been made to improve the wear properties of ultra-high molecular weight polyethylene (UHMWPE). More recently the attention of various researchers has been focused on cross-linked polyethylene (XLPE), due to its improved wear resistance with respect to conventional UHMWPE. This study was aimed at comparing the wear performances of clinically available acetabular liners (Zimmer Inc.) made of electron beam XLPE and conventional UHMWPE. To evaluate the influence of the material properties on wear, conventional UHMWPE and XLPE acetabular cups were tested against deliberately scratched CoCrMo femoral heads (Ra = 0.12-0.14 microm) in a hip joint wear simulator run for 3 million cycles with bovine calf serum as lubricant. Gravimetric measurements revealed significant differences between the wear behaviours of the two sets of acetabular cups: XLPE exhibited a wear rate about 40 times lower than conventional UHMWPE. Raman spectroscopy coupled to partial least-squares analysis was used to evaluate the possible crystallinity changes induced by mechanical stress (and thus the material wear resistance): only the UHMWPE cup which showed the highest weight loss displayed significant crystallinity changes. These results were correlated to the thickness of the plasticity-induced damage layer. The wear debris produced during the tests were isolated according to a validated protocol and imaged by scanning electron microscopy . The wear particles produced by XLPE were smaller than those produced by UHMWPE; the latter were observed as fibrillar and agglomerated particles. The mean equivalent circle diameter was 0.71 and 0.26 microm for UHMWPE and XLPE, respectively.

  16. IN VITRO WEAR RESISTANCE OF THREE TYPES OF POLYMETHYL METHACRYLATE DENTURE TEETH

    Science.gov (United States)

    Reis, Katia Rodrigues; Bonfante, Gerson; Pegoraro, Luiz Fernando; Conti, Paulo Cesar Rodrigues; de Oliveira, Pedro Cesar Garcia; Kaizer, Osvaldo Bazzan

    2008-01-01

    The wear resistance of denture teeth is important to the longevity of removable prostheses of edentulous patients. The ability of denture teeth to maintain a stable occlusal relationship over time may be influenced by this property. The purpose of this in vitro study was to evaluate the wear resistance of polymethyl methacrylate (PMMA) denture teeth based on their chemical composition when opposed by a ceramic antagonist. The maxillary canines (n=10) of 3 PMMA denture teeth (Trubyte Biotone, cross-linked PMMA; Trilux, highly cross-linked IPN (interpenetrating polymer network)-PMMA; and Vivodent, highly cross-linked PMMA) were secured in an in vitro 2-body wear-testing apparatus that produced sliding contact of the specimens (4.5 cycles/s, sliding distance of 20 mm, under 37°C running water) against glazed or airborne particle abraded ceramic. Wear resistance was measured as height loss (mm) under 300 g (sliding force) after 100,000 cycles, using a digital measuring microscope. Mean values were analyzed by 2-way ANOVA and Tukey's test (α=0.05). The wear of Trubyte Biotone (0.93 ± 0.14 mm) was significantly higher than that of both other types of teeth tested against abraded ceramic (p0.05) in wear among the 3 denture teeth evaluated against glazed ceramic. Trilux and Vivodent teeth tested against either glazed or airborne particle abraded ceramic did not differ significantly from each other (p<0.05). All teeth showed significantly more wear against airborne particle abraded ceramic than against glazed ceramic (p<0.05). In conclusion, the three types of PMMA denture teeth presented significantly different wear resistance against the abraded ceramic. The high-strength PMMA denture teeth were more wear-resistant than the conventional PMMA denture tooth. PMID:19089214

  17. In vitro wear resistance of three types of polymethyl methacrylate denture teeth

    Directory of Open Access Journals (Sweden)

    Katia Rodrigues Reis

    2008-06-01

    Full Text Available The wear resistance of denture teeth is important to the longevity of removable prostheses of edentulous patients. The ability of denture teeth to maintain a stable occlusal relationship over time may be influenced by this property. The purpose of this in vitro study was to evaluate the wear resistance of polymethyl methacrylate (PMMA denture teeth based on their chemical composition when opposed by a ceramic antagonist. The maxillary canines (n=10 of 3 PMMA denture teeth (Trubyte Biotone, cross-linked PMMA; Trilux, highly cross-linked IPN (interpenetrating polymer network-PMMA; and Vivodent, highly cross-linked PMMA were secured in an in vitro 2-body wear-testing apparatus that produced sliding contact of the specimens (4.5 cycles/s, sliding distance of 20 mm, under 37°C running water against glazed or airborne particle abraded ceramic. Wear resistance was measured as height loss (mm under 300 g (sliding force after 100,000 cycles, using a digital measuring microscope. Mean values were analyzed by 2-way ANOVA and Tukey's test (a=0.05. The wear of Trubyte Biotone (0.93 ± 0.14 mm was significantly higher than that of both other types of teeth tested against abraded ceramic (p0.05 in wear among the 3 denture teeth evaluated against glazed ceramic. Trilux and Vivodent teeth tested against either glazed or airborne particle abraded ceramic did not differ significantly from each other (p<0.05. All teeth showed significantly more wear against airborne particle abraded ceramic than against glazed ceramic (p<0.05. In conclusion, the three types of PMMA denture teeth presented significantly different wear resistance against the abraded ceramic. The high-strength PMMA denture teeth were more wear-resistant than the conventional PMMA denture tooth.

  18. Performance of Flame Sprayed Ni-WC Coating under Abrasive Wear Conditions

    Science.gov (United States)

    Harsha, S.; Dwivedi, D. K.; Agarwal, A.

    2008-02-01

    This paper describes the influence of a post spray heat treatment on the microstructure, microhardness and abrasive wear behavior of the flame sprayed Ni-WC (EWAC 1002 ET) coating deposited on the mild steel. Coatings were deposited by using an oxy-acetylene flame spraying torch (Superjet Eutalloy L & T, India). The wear behavior of the coating was evaluated using a pin on disc wear system against SiC abrasive medium of 120 and 600 grades at 5, 10, 15, and 20 N normal load. Results revealed that the influence of normal load on wear is governed by the microstructure, hardness and abrasive grit size. The heat treatment increased average microhardness of the coating. However, it was found that the hardness does not correctly indicate the abrasive wear resistance of Ni-WC coating in an as sprayed and heat treated condition. The heat treatment of the coating improved its abrasive wear resistance against fine abrasive medium while the wear resistance against coarse abrasive was found to be a function of a normal load. At low-normal load (5 and 10 N) the heat treated coating showed lower-wear rate than as spayed coating while at high-normal loads (15 and 20 N) heat treated coating was subjected to higher-wear rate than as sprayed coating. In general, an increase in normal load increased the wear rate. The scanning electron microscopy study indicated that the wear largely takes place by groove formation and scoring of eutectic matrix and the fragmentation of the carbide particles.

  19. Should School Nurses Wear Uniforms?

    Science.gov (United States)

    Journal of School Health, 2001

    2001-01-01

    This 1958 paper questions whether school nurses should wear uniforms (specifically, white uniforms). It concludes that white uniforms are often associated with the treatment of ill people, and since many people have a fear reaction to them, they are not necessary and are even undesirable. Since school nurses are school staff members, they should…

  20. Tooth wear patterns in the deciduous dentition.

    Science.gov (United States)

    Warren, John J; Yonezu, Takuro; Bishara, Samir E

    2002-12-01

    Tooth wear is common in the deciduous dentition. A recent study suggests that tooth wear in the deciduous dentition is related to subsequent tooth wear in adults, so that early identification of factors related to tooth wear could be of long-term benefit. The purposes of this study were to describe patterns of tooth wear in the deciduous dentition and to relate tooth wear to occlusal characteristics and longitudinal dietary patterns. Data were collected as part of a longitudinal study of a cohort of children recruited at birth from Iowa hospitals. Stone casts were obtained in the deciduous dentition stage, and 355 children, 4 to 5 years old, met the selection criteria. Tooth wear was categorized for each tooth as none, mild, moderate, or severe, and related to occlusal characteristics and longitudinal data on fruit juice and soft drink consumption. All children exhibited some tooth wear on at least 1 tooth, and nearly 16% of them had at least 1 tooth with severe wear. Tooth wear was generally more severe in the maxillary arch and the anterior teeth. Severe tooth wear on the molars was significantly related to posterior crossbites, but severe tooth wear on the incisors was related to Class III canine relationships. There were no statistically significant relationships between tooth wear and soft drink or fruit juice consumption. Based on our results, we concluded that mild tooth wear is universal in the deciduous dentition, but only a few occlusal factors are related to severe tooth wear. Tooth wear was not related to any dietary patterns we investigated.

  1. Sliding Wear Behavior of TiC-Reinforced Cu-4 wt.% Ni Matrix Composites

    Science.gov (United States)

    Jha, Pushkar; Gautam, R. K.; Tyagi, Rajnesh; Kumar, Devendra

    2016-10-01

    The present investigation explores the effect of TiC content on the sliding wear properties of Cu-4 wt.% Ni matrix composites. Cu-4 wt.% Ni - x wt.% TiC ( x = 0, 2, 4 and 8 wt.%) metal matrix composites were developed by powder metallurgy route. Their friction and wear was studied under dry sliding at different loads of 5, 7.5 and 10 N and constant sliding speed of 2 m/s using a pin-on-disk machine. The metallographic observations showed an almost uniform distribution of TiC particles in the matrix. Hardness of the composites increased with increasing TiC content (up to 4 wt.%). Friction and wear results of TiC-reinforced composites show better wear resistance than unreinforced matrix alloy. However, the optimum wear resistance was observed for 4 wt.% TiC-reinforced composites. Worn surfaces of specimens indicated the abrasion as the primary mechanism of wear in all the materials investigated in the study. The observed behavior has been explained on the basis of (1) the hardness which results in a decrease in real area of contact in composites containing TiC particles and (2) the formation of a transfer layer of wear debris on the surface of the composites which protects underlying substrate by inhibiting metal-metal contact.

  2. Improvements of harrows wear resistance

    Directory of Open Access Journals (Sweden)

    Warouma Arifa

    2015-12-01

    Full Text Available Wear is the main reason for the loss of performance of the parts for agricultural machinery. It leads to the degradation of the soil working quality. This work aims to highlight the wear resistance of the harrows discs manufactured, consolidated and sharpened differently. The tests were conducted in the laboratory and the field of the Faculty of Exploitation and Repair of Agricultural Machinery of the State Technical University of Kirovograd (Ukraine in 2015. The technical equipment consists of devices for consolidation by electric discharge and for measurement the linear wear of discs, a harrow, a sand test bed, a tractor and discs made of different materials and technologies. Some parameterized were collected during the laboratory test each 5 ha and up to 20 ha of operation and in the fields each 30 ha until the time limit of exploitation. The Laboratory tests have shown that after twenty (20 ha of operation, the wear resistance of the experimental discs made of steel 65G and consolidated by electric discharge with simultaneous grinding (sharpening angle of 30° is 2.95 times higher than the discs in series made of steel 28MnB5. The field experiment gave the following results: According to agro technical requirements, the plowing depth limit of serial discs made of steel 28MnB5 was reached after an operating duration of 120 ha while for experimental discs made of steel 65G and consolidated by electric discharge with simultaneous grinding (sharpening angle of 30 degrees this duration is of 156 ha. The diameter wear limit of experimental discs was reached after an operating duration of 179 ha against 154 ha for the serial ones. Therefore, the new technology can be applied during the manufacture and / or the repair of the discs.

  3. Glutamine Modulates Macrophage Lipotoxicity

    Directory of Open Access Journals (Sweden)

    Li He

    2016-04-01

    Full Text Available Obesity and diabetes are associated with excessive inflammation and impaired wound healing. Increasing evidence suggests that macrophage dysfunction is responsible for these inflammatory defects. In the setting of excess nutrients, particularly dietary saturated fatty acids (SFAs, activated macrophages develop lysosome dysfunction, which triggers activation of the NLRP3 inflammasome and cell death. The molecular pathways that connect lipid stress to lysosome pathology are not well understood, but may represent a viable target for therapy. Glutamine uptake is increased in activated macrophages leading us to hypothesize that in the context of excess lipids glutamine metabolism could overwhelm the mitochondria and promote the accumulation of toxic metabolites. To investigate this question we assessed macrophage lipotoxicity in the absence of glutamine using LPS-activated peritoneal macrophages exposed to the SFA palmitate. We found that glutamine deficiency reduced lipid induced lysosome dysfunction, inflammasome activation, and cell death. Under glutamine deficient conditions mTOR activation was decreased and autophagy was enhanced; however, autophagy was dispensable for the rescue phenotype. Rather, glutamine deficiency prevented the suppressive effect of the SFA palmitate on mitochondrial respiration and this phenotype was associated with protection from macrophage cell death. Together, these findings reveal that crosstalk between activation-induced metabolic reprogramming and the nutrient microenvironment can dramatically alter macrophage responses to inflammatory stimuli.

  4. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease

    Science.gov (United States)

    Keliher, Edmund J.; Ye, Yu-Xiang; Wojtkiewicz, Gregory R.; Aguirre, Aaron D.; Tricot, Benoit; Senders, Max L.; Groenen, Hannah; Fay, Francois; Perez-Medina, Carlos; Calcagno, Claudia; Carlucci, Giuseppe; Reiner, Thomas; Sun, Yuan; Courties, Gabriel; Iwamoto, Yoshiko; Kim, Hye-Yeong; Wang, Cuihua; Chen, John W.; Swirski, Filip K.; Wey, Hsiao-Ying; Hooker, Jacob; Fayad, Zahi A.; Mulder, Willem J. M.; Weissleder, Ralph; Nahrendorf, Matthias

    2017-01-01

    Tissue macrophage numbers vary during health versus disease. Abundant inflammatory macrophages destruct tissues, leading to atherosclerosis, myocardial infarction and heart failure. Emerging therapeutic options create interest in monitoring macrophages in patients. Here we describe positron emission tomography (PET) imaging with 18F-Macroflor, a modified polyglucose nanoparticle with high avidity for macrophages. Due to its small size, Macroflor is excreted renally, a prerequisite for imaging with the isotope flourine-18. The particle's short blood half-life, measured in three species, including a primate, enables macrophage imaging in inflamed cardiovascular tissues. Macroflor enriches in cardiac and plaque macrophages, thereby increasing PET signal in murine infarcts and both mouse and rabbit atherosclerotic plaques. In PET/magnetic resonance imaging (MRI) experiments, Macroflor PET imaging detects changes in macrophage population size while molecular MRI reports on increasing or resolving inflammation. These data suggest that Macroflor PET/MRI could be a clinical tool to non-invasively monitor macrophage biology. PMID:28091604

  5. Needs and challenges in precision wear measurement

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.

    1996-01-10

    Accurate, precise wear measurements are a key element in solving both current wear problems and in basic wear research. Applications range from assessing durability of micro-scale components to accurate screening of surface treatments and thin solid films. Need to distinguish small differences in wear tate presents formidable problems to those who are developing new materials and surface treatments. Methods for measuring wear in ASTM standard test methods are discussed. Errors in using alterate methods of wear measurement on the same test specimen are also described. Human judgemental factors are a concern in common methods for wear measurement, and an experiment involving measurement of a wear scar by ten different people is described. Precision in wear measurement is limited both by the capabilities of the measuring instruments and by the nonuniformity of the wear process. A method of measuring wear using nano-scale indentations is discussed. Current and future prospects for incorporating advanced, higher-precision wear measurement methods into standards are considered.

  6. Consideration of Wear Rates at High Velocities

    Science.gov (United States)

    2010-03-01

    tionally, the texts by Bayer [3; 4], Rabinowicz [30], and Stachowiak [32] thoroughly cover the topic of wear mechanisms. A summary of the material is...March 1976. 30. Rabinowicz , E. Friction and Wear of Metals. John Wiley & Sons, New York, 1995. 31. Saka, N., A. M. Eleiche, and N. P. Suh. “Wear of

  7. An Evaluation of High Velocity Wear

    Science.gov (United States)

    2007-03-01

    x10F~ -4 [18:18-19]. Authors such as Hutchings and Rabinowicz however, do not explicitly limit equation (12) to plastic wear. They suggest that...Surface Melting of Rotating Bands. Wear, Vol. 38, 235- 243 21. Rabinowicz , E. (1965). Friction and Wear of Materials (Second ed.). New York, NY

  8. Macrophage response to cross-linked and conventional UHMWPE.

    Science.gov (United States)

    Sethi, Rajiv K; Neavyn, Mark J; Rubash, Harry E; Shanbhag, Arun S

    2003-07-01

    To prevent wear debris-induced osteolysis and aseptic loosening, cross-linked ultra-high molecular weight polyethylene's (UHMWPE) with improved wear resistance have been developed. Hip simulator studies have demonstrated very low wear rates with these new materials leading to their widespread clinical use. However, the biocompatibility of this material is not known. We studied the macrophage response to cross-linked UHMWPE (XLPE) and compared it to conventional UHMWPE (CPE) as well as other clinically used orthopaedic materials such as titanium-alloy (TiAlV) and cobalt-chrome alloy (CoCr). Human peripheral blood monocytes and murine macrophages, as surrogates for cells mediating peri-implant inflammation, were cultured onto custom designed lipped disks fabricated from the test materials to isolate cells. Culture supernatants were collected at 24 and 48h and analyzed for cytokines such as IL-1alpha, IL-1beta, TNF-alpha and IL-6. Total RNA was extracted from adherent cells and gene expression was analyzed using qualitative RT-PCR. In both in vitro models, macrophages cultured on cross-linked and conventional polyethylene released similar levels of cytokines, which were also similar to levels on control tissue culture dishes. Macrophages cultured on TiAlV and CoCr-alloy released significantly higher levels of cytokines. Human monocytes from all donors varied in the magnitude of cytokines released when cultured on identical surfaces. The variability in individual donor responses to TiAlV and CoCr surfaces may reflect how individuals respond differently to similar stimuli and perhaps reveal a predisposed sensitivity to particular materials.

  9. ROLLING CONTACT FATIGUE AND WEAR OF CrL AND CrM MODE POWDER METALLURGY STEELS

    Directory of Open Access Journals (Sweden)

    Dušan Rodziňák

    2010-03-01

    Full Text Available Contact fatigue properties of sintered steels type CrM and CrL with addition of 0,3-0,7 %C were examined on the device type „pin on disc“ and confronted with wear tests on the same principle. Achieved outcomes are better for CrM material; the higher carbon content the better they are. Fatigue strength ranges from 925 - 1410 MPa and is consistent with the value of hardness. Dry wear tests show that the wear is dependent on the hardness of carbide particles (microhardness and not on macrohardness of material. These causes wear of indentor. Between values obtained from tests of contact fatigue and wear testing is not possible to find relevant compliance. Both rupture mechanisms are based on breaches of other principles, particularly the PM materials are in the mode of wear that is not sufficiently explored.

  10. EFFECT OF TOOL WEAR ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND ACOUSTIC EMISSION OF FRICTION STIR WELDED 6061 Al ALLOY

    Institute of Scientific and Technical Information of China (English)

    W.M. Zeng; H.L. Wu; J. Zhang

    2006-01-01

    Tool condition is one of the main concerns in friction stir welding (FSW), because the geometrical condition of the tool pin including size and shape is strongly connected to the microstructure and mechanical performance of the weld. Tool wear occurs during FSW, especially for welding metal matrix composites with large amounts of abrasive particles, and high melting point materials, which significantly expedite tool wear and deteriorate the mechanical performance of welds.Tools with different pin-wear levels are used to weld 6061 Al alloy, while acoustic emission (AE) sensing, metallographic sectioning, and tensile testing are employed to evaluate the weld quality in various tool wear conditions. Structural characterization shows that the tool wear interferes with the weld quality and accounts for the formation of voids in the nugget zone. Tensile test analysis of samples verifies that both the ultimate tensile strength and the yield strength are adversely affected by the formation of voids in the nugget due to the tool wear. The failure location during tensile test clearly depends on the state of the tool wear, which led to the analysis of the relationships between the structure of the nugget and tool wear. AE signatures recorded during welding reveal that the AE hits concentrate on the higher amplitudes with increasing tool wear. The results show that the AE sensing provides a potentially effective method for the on-line monitoring of tool wear.

  11. Wear evaluation of a cross-linked medical grade polyethylene by ultra thin layer activation compared to gravimetry

    Science.gov (United States)

    Stroosnijder, Marinus F.; Hoffmann, Michael; Sauvage, Thierry; Blondiaux, Gilbert; Vincent, Laetitia

    2005-01-01

    Most of today's artificial joints rely on an articulating couple consisting of a CoCrMo alloy and a medical grade polyethylene. The wear of the polyethylene component is the major cause for long-term failure of these prostheses since the wear debris leads to adverse biological reactions. The polyethylene wear is usually measured by gravimetric methods, which are limited due to a low sensitivity and accuracy. To demonstrate the reliability of ultra thin layer activation (UTLA) as an alternative technique, wear tests on a cross-linked ultra-high-molecular weight polyethylene (XLPE) sliding against CoCrMo were performed on a wear tester featuring multi-directional sliding motion. The amount of polyethylene wear was evaluated by both UTLA and gravimetry. The particular TLA method used in this work employed the implantation of 7Be radioactive recoils into the polyethylene surface by means of a light mass particle beam. The results indicate that apart from its relatively high sensitivity, UTLA also offers the possibility for on-line measurements of polyethylene wear. This makes it a viable and complementary technique in wear test studies for medical implant purposes especially for those involving wear resistant materials and for rapid wear screening.

  12. Macrophages associated with the intrinsic and extrinsic autonomic innervation of the rat gastrointestinal tract.

    Science.gov (United States)

    Phillips, Robert J; Powley, Terry L

    2012-07-02

    Interactions between macrophages and the autonomic innervation of gastrointestinal (GI) tract smooth muscle have received little experimental attention. To better understand this relationship, immunohistochemistry was performed on GI whole mounts from rats at three ages. The phenotypes, morphologies, and distributions of gut macrophages are consistent with the cells performing extensive housekeeping functions in the smooth muscle layers. Specifically, a dense population of macrophages was located throughout the muscle wall where they were distributed among the muscle fibers and along the vasculature. Macrophages were also associated with ganglia and connectives of the myenteric plexus and with the sympathetic innervation. Additionally, these cells were in tight registration with the dendrites and axons of the myenteric neurons as well as the varicosities along the length of the sympathetic axons, suggestive of a contribution by the macrophages to the homeostasis of both synapses and contacts between the various elements of the enteric circuitry. Similarly, macrophages were involved in the presumed elimination of neuropathies as indicated by their association with dystrophic neurons and neurites which are located throughout the myenteric plexus and smooth muscle wall of aged rats. Importantly, the patterns of macrophage-neuron interactions in the gut paralleled the much more extensively characterized interactions of macrophages (i.e., microglia) and neurons in the CNS. The present observations in the PNS as well as extrapolations from homologous microglia in the CNS suggest that GI macrophages play significant roles in maintaining the nervous system of the gut in the face of wear and tear, disease, and aging.

  13. Microstructure and Impact Wear Resistance of TiN Reinforced High Manganese Steel Matrix

    Institute of Scientific and Technical Information of China (English)

    MA You-ping; LI Xiu-lan; WANG Cheng-hui; LU Lu

    2012-01-01

    A high-manganese austenitic steel matrix (Mn13) composite reinforced with TiN ceramic particles was synthesized by means of Vacuum-Evaporation Pattern Casting (V-EPC). The composite microstructure and interface bonding of TiN/matrix were analyzed utilizing optical microscope (OM) and X-ray diffraction (XRD). The effects of different volume fraction of TiN on impact wear resistance were evaluated by MLD-10 impact wear test. The results showed that TiN was evenly distributed in composite layer and had a good interface bonding with matrix when the volume fractions of TiN were 27% and 36% respectively. However, cast defects and TiN agglomeration occurred when the TiN volume fraction increased to 48~. Compared with high-manganese austenitic steel (Mnl3), the im- pact wear resistance of the TiN-reinforced composite is better. In small impact load conditions, composite layer can effectively resist abrasives wear and TiN particles played an important role in determining impact wear resistance of composite layer. In large impact load, the synergistic roles of spalling of TiN particles and the increase of work hardening of Mn13 based material are responsible for impact wear resistance.

  14. Mechanisms for fatigue and wear of polysilicon structural thinfilms

    Energy Technology Data Exchange (ETDEWEB)

    Alsem, Daniel Henricus [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Fatigue and wear in micron-scale polysilicon structural films can severely impact the reliability of microelectromechanical systems (MEMS). Despite studies on fatigue and wear behavior of these films, there is still an on-going debate regarding the precise physical mechanisms for these two important failure modes. Although macro-scale silicon does not fatigue, this phenomenon is observed in micron-scale silicon. It is shown that for polysilicon devices fabricated in the MUMPs foundry and SUMMiT process stress-lifetime data exhibits similar trends in ambient air, shorter lifetimes in higher relative humidity environments and no fatigue failure at all in high vacuum. Transmission electron microscopy of the surface oxides of the samples show an approximate four-fold thickening of the oxide at stress concentrations after fatigue failure, but no thickening after fracture in air or after fatigue cycling in vacuo. It is found that such oxide thickening and fatigue failure (in air) occurs in devices with initial oxide thicknesses of ~4-20 nm. Such results are interpreted and explained by a reaction layer fatigue mechanism; specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure. Polysilicon specimens from the SUMMiT process are used to study wear mechanisms in micron-scale silicon in ambient air. Worn parts are examined by analytical scanning and transmission electron microscopy, while temperature changes are monitored using infrared microscopy. These results are compared with the development of values of static coefficients of friction (COF) with number of wear cycles. Observations show amorphous debris particles (~50-100 nm) created by fracture through the silicon grains (~500 nm), which subsequently oxidize, agglomerate into clusters and create plowing tracks. A nano-crystalline layer (~20-200 nm) forms at worn regions. No dislocations or

  15. Study on drug release of and biological response to UHMWPE wear debris carrying estradiol

    Energy Technology Data Exchange (ETDEWEB)

    Qu Shuxin, E-mail: qushuxin@swjtu.edu.cn [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Liu Aiqin; Liu Xiaomin; Bai Yinlong; Weng Jie [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer We prepared ultra-high molecular weight polyethylene (UHMWPE) loaded with 17{beta}-estradiol (E2) to treat osteolysis after artificial joint replacement. Black-Right-Pointing-Pointer We investigate the in vitro release of E2 and the cell biological response to UHMWPE-E2 wear debris. Black-Right-Pointing-Pointer The in vitro E2 release included three stages during the release process: initial burst release, celerity release and steady release. Black-Right-Pointing-Pointer The UHMWPE-E2 wear debris could promote the proliferation and ALP activity of osteoblasts and inhibit the expression of IL-6 of osteoblasts. Black-Right-Pointing-Pointer The E2 in UHMWPE-E2 would play a role in the treatment of the osteolysis after artificial hip joint replacement. - Abstract: The aim of this study is to investigate in vitro release of 17{beta}-estradiol (E2), the potential drug to treat osteolysis, and the biological response to ultra-high molecular weight polyethylene loaded with E2 (UHMWPE-E2) wear debris. The osteoblasts (MC3T3-E1) and macrophages (RAW264.7) were co-cultured with UHMWPE-E2 wear debris via inversion culture technique, respectively. MTT, ALP and ELISA assay were employed to evaluate the cell proliferation, ALP activity and the expression of interleukin-6 (IL-6). In vitro E2 release included: initial burst release, celerity release and steady release. The E2 released steadily after 40 d and lasted more than 60 d. The E2 in UHMWPE-E2 wear debris promoted the proliferation and ALP activity of MC3T3-E1 cells at the high debris dosages of 8-10 mg. In particular, the UHMWPE-E2 wear debris inhibited the expression of IL-6 of osteoblasts at all dosages in the present study. RAW264.7 cells cultured with UHMWPE-E2 and UHMWPE wear debris exhibited large sizes about 100 {mu}m in diameter. The small size wear debris presented inside of cells indicated that the wear debris activated the phagocytosis of macrophages. The results indicated

  16. Sliding wear resistance of iron aluminides

    Indian Academy of Sciences (India)

    Garima Sharma; M Sundararaman; N Prabhu; G L Goswami

    2003-04-01

    Room temperature dry sliding wear behaviour of iron aluminides containing 28% aluminium and various amounts of chromium has been investigated using pin on disk wear tester. The aluminides were heat treated to have ordered 3 structure. It was found that wear rate of the aluminides increased with the increase of applied normal load and sliding speed. Wear resistance of the aluminides increased with increase in chromium content. SEM observation of the worn surface showed that the microcutting and microploughing were the dominant sliding wear mechanisms.

  17. Fluoridation and tooth wear in Irish adults.

    LENUS (Irish Health Repository)

    Burke, F M

    2010-10-01

    The aim of this study was to determine the prevalence of tooth wear in adults in Ireland and its relationship with water fluoridation. The National Survey of Adult Oral Health was conducted in 2000\\/2001. Tooth wear was determined using a partial mouth examination assessing the upper and lower anterior teeth. A total of 2456 subjects were examined. In this survey, increasing levels and severity of tooth wear were associated with ageing. Men were more affected by tooth wear and were more likely to be affected by severe tooth wear than women. It was found that age, and gender were significant predictors of tooth wear (P < 0.01). Overall, there was no significant relationship between fluoridation and tooth wear in this study.

  18. Wear of micro end mills

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper addresses the important issue of wear on micro end mills considering relevant metrological tools for its characterization and quantification. Investigation of wear on micro end mills is particularly difficult and no data are available in the literature. Small worn volumes cause large...... deviations from the ideal micro tool shape, dramatically changing the cutting edge profile as well as rake and clearance angles. This critically affects the performance of the micro tool leading to increased cutting forces and micro tool deflections with detrimental effects on the accuracy of the machined...... part. For this investigation 200 microns end mills are considered. Visual inspection of the micro tools requires high magnification and depth of focus. 3D reconstruction based on scanning electron microscope (SEM) images and stereo-pair technique is foreseen as a possible method for quantification...

  19. Tribological performance evaluation of tungsten carbide-based cermets and development of a fracture mechanics wear model

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, R.B. [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.; Conway, J.C. Jr. [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.; Amateau, M.F. [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.; Brezler, R.A. III [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.

    1996-12-15

    Tungsten carbide tools may exhibit sudden brittle fracture at high stresses such as are encountered in shear and slitter knives. This has limited the use of tungsten carbide tools to certain applications in spite of their high hardness and wear resistance. The objective of this investigation is to evaluate the tribological performance of selected cermets and develop a fracture mechanics wear model. Six compositions of WC-Co materials (Co ranging from 4 to 30% by weight) with or without TiC, NbC, TaC, or Mo{sub 2}C were selected for relating wear modes of these tool materials to pertinent mechanical properties such as fracture toughness and hardness. The influence of mechanical properties such as Young`s modulus, hardness, fracture toughness, modulus of rupture, and Weibull modulus on wear rates and wear modes of the selected materials is presented and discussed. The major mechanisms of wear in WC-Co materials are discussed as they apply to the development of suitable relationships between wear and mechanical properties. The wear process is by the transfer of steel from the ring to the cemented carbide block specimens, initiation of mode I cracks normal to the mating surface, propagation of mode II cracks parallel to the wear surfaces and the subsequent separation of platelets with adhered WC and Co particles through adhesive forces with the steel ring. The wear rates of the cermets do not show a consistent relationship with mode I or mode II fracture toughness, but a general trend of decreasing wear rate with hardness is seen. This suggests that the tribological performance of these cermets depends on certain specific functions of pertinent parameters including fracture toughness, hardness, applied load, coefficient of friction and microstructural characteristics. A fracture mechanics-based wear model has been developed to relate the steady state wear rate (W{sub ss}) to hardness, mode II fracture toughness, coefficient of friction, and applied load. (orig./MM)

  20. Hydraulic System Wear Debris Analysis.

    Science.gov (United States)

    1982-08-03

    drawn. Each one-=L sample was drawn with a clean plastic pipette of one-mL capacity. The samples were placed in clean Ferrogram preparation bottles ...and from cavities in a block which held linear seals into sampling bottles . Several photographs of this debris , which was deposited on Ferro- grams...silicon in the glass overshadowed the elements of the wear debris . To overcome this difficulty, the Ferrogram should be pre- pared on a carbon-filled

  1. Experimental Investigation of Erosive Wear on the High Chrome Cast Iron Impeller of Slurry Disposal Pump Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    2012-05-01

    Full Text Available Erosive wear occurs on the impeller and volute casing of the slurry disposal pump due to the impact of the ash particles on the impeller with a high velocity. Due to erosive wear, pump life become very short. The service life of centrifugal pump, handling slurry can be increased by reducing the erosive wear. In the present work, the experimental investigation of erosive wear has been carried out on the high speed slurry erosion tester to understand the effects of the ash concentration in slurry, rotational speed of the pump impeller and ash particle size on erosive wear. The erosive wear behavior of high chrome cast iron was investigated by Response surface methodology (RSM. Analysis of variance (ANOVA was used for statistical analysis and the modeled values for the response were obtained with the help of modeled equation. The result shows that the ash concentration in slurry and kinetic energy of the moving particles highly contributes to erosive wear of pump impeller as compared to the ash particle size.

  2. EXPERIMENTAL INVESTIGATION OF EROSIVE WEAR ON THE HIGH CHROME CAST IRON IMPELLER OF SLURRY DISPOSAL PUMP USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Jasbir Singh Ratol

    2012-07-01

    Full Text Available Erosive wear occurs on the impeller and volute casing of the slurry disposal pump due to the impact of the ash particles on the impeller with a high velocity. Due to erosive wear, pump life become very short. The service life of centrifugal pump, handling slurry can be increased by reducing the erosive wear. In the present work, the experimental investigation of erosive wear has been carried out on the high speed slurry erosion tester to understand the effects of the ash concentration in slurry, rotational speed of the pump impeller and ash particle size on erosive wear. The erosive wear behaviour of high chrome cast iron was investigated by Response surface methodology (RSM. Analysis of variance (ANOVA was used for statistical analysis and the modeled values for the response were obtained with the help of modeled equation. The result shows that the ash concentration in slurry and kinetic energy of the moving particles highly contributes to erosive wear of pump impeller as compared to the ash particle size.

  3. Factors contributing to rapid wear and osteolysis in hips with modular acetabular bearings made of hylamer.

    Science.gov (United States)

    Scott, D L; Campbell, P A; McClung, C D; Schmalzried, T P

    2000-01-01

    There have been several reports of osteolysis associated with rapid wear of Hylamer. A detailed analysis of retrieved implants and tissues can identify factors contributing to rapid wear and osteolysis. The mean linear wear rate of 12 liners was 0.49 mm/y, and 11 of 12 hips had progressive retroacetabular osteolysis. The average patient age was 50 years, and the mean implantation time was 50 months. All liners were sterilized by gamma irradiation in air. There was an 11-month difference in the average shelf-life of the 3 liners that were white and those that were darker in color. The volumetric wear rate of the white liners was 30% less than that of the others, suggesting a difference in the wear resistance of the liners as a function of shelf life. The mean average surface roughness (Ra) and the mean maximum surface roughness (R(max)) of the femoral heads were increased 3-fold and 50-fold compared with typical values for unused femoral heads. Evidence of 3-body wear, such as metal particles embedded in the liners, was commonly present. The pattern of backside liner deformation and burnishing was consistent with relative motion between the liner and the shell. In addition to generating Hylamer wear particles, repetitive axial motion between the liner and shell could generate fluid pressure, which transmitted through holes in the acetabular shell could cause or contribute to the development of retroacetabular osteolysis. Hylamer particles of variable shape and size, consistent with generation by several wear modes, were isolated from periprosthetic tissues.

  4. Higher wear-rate of third-generation metal-backed Reflection cups with eto-sterilised UHMWPE at a mean 13 years follow-up.

    Science.gov (United States)

    Hengst, David M; Thomsen, Per B; Homilius, Morten; Hansen, Torben B; Stilling, Maiken

    2014-12-01

    Polyethylene (PE) wear and osteolysis is a recognised problem with non-cross linked PE liners and first generation modular cup designs. Wear particles induce osteolysis leading to aseptic loosening. We retrospectively compared the linear PE wear and implant survival and revision rates of the Reflection Cup and the Duraloc 300. After a mean clinical follow-up of 13 years (range 11-15 years), the 2D linear PE wear-rate of the Reflection liner (n = 68) was 0.23 mm/year, with a mean total wear of 3.14 mm (1.04-7.36), SD 1.45. The wear-rate of the Duraloc 300 cups (n = 32) was 0.14 mm/year, with a mean total wear of 1.84 mm (0.55-4.63), SD 1.07. The difference in PE wear-rate as well as mean total wear was highly significant (p = 0.0001). There was a positive correlation between wear-rate and both Oxford Hip Score and Harris Hip Score (p = 0.02). Large acetabular cup size (>54 mm), HA coating on the stem and age <50 years did not influence PE wear. The higher wear-rate in the Reflection liners could be related to the EtO sterilisation. Intermediate and long-term follow-up is advisable.

  5. The Effects of Austenitizing Conditions on the Microstructure and Wear Resistance of a Centrifugally Cast High-Speed Steel Roll

    Science.gov (United States)

    Kang, Minwoo; Lee, Young-Kook

    2016-07-01

    The influences of austenitizing conditions on the microstructure and wear resistance of a centrifugally cast high-speed steel roll were investigated through thermodynamic calculation, microstructural analysis, and high-temperature wear tests. When the austenitizing temperature was between 1323 K and 1423 K (1050 °C and 1150 °C), coarse eutectic M2C plates were decomposed into a mixture of MC and M6C particles. However, at 1473 K (1200 °C), the M2C plates were first replaced by both new austenite grains and MC particles without M6C particles, and then remaining M2C particles were dissolved during the growth of MC particles. The wear resistance of the HSS roll was improved with increasing austenitizing temperature up to 1473 K (1200 °C) because the coarse eutectic M2C plates, which are vulnerable to crack propagation, changed to disconnected hard M6C and MC particles.

  6. Fabrication, microstructural characterization and wear characteristics of A380 alloy-alumina composites

    KAUST Repository

    Nurani, Sheikh Jaber

    2016-03-10

    To obtain better mechanical and tribological properties than aluminium alloys aluminium is reinforced with alumina particles making aluminium metal matrix composites. In this work scrap piston A380 alloy was used as the matrix alloy. Alumina particles were added by 5%, 10% and 15% into matrix alloy respectively to form desired composites by stir casting technique. Pin on disc wear testing machine with counter surface as steel disc of hardness HRC 32 and surface roughness of 0.62 μm was used to conduct the wear test. In result composites showed superior wear resistance property over A380 alloy. The effect of load, sliding speed and sliding distance on wear behaviour were also examined in this study. Wear mechanism was identified from the worn surface. Both optical and scanning electron microscope (SEM) of the composites was performed to determine the microstructures. Optical micrograph shows grain size decreases with addition of alumina particles. EDS analysis was performed to confirm the presence of α-Al matrix, primary Si particles and intermetallic. As a general method, phase compositions were analyzed by using a scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS). Optical microstructures were consistent with the SEM micrographs. © 2015 IEEE.

  7. Friction and Wear Behaviors of Nano-Silicates in Water

    Institute of Scientific and Technical Information of China (English)

    Chen Boshui; Lou Fang; Fang Jianhua; Wang Jiu; Li Jia

    2009-01-01

    Nano-metric magnesium silicate and zinc silicate with particle size of about 50--70nm were prepared in water by the method of chemical deposition. The antiwear and friction reducing abilities of the nano-silicates, as well as their compos-ites with oleie acid tri-ethanolamine (OATEA), were evaluated on a four-ball friction tester. The topographies and tribochemical features of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS). Results show that nano-silicates alone provide poor antiwear and friction reducing abilities in water, but exhibits excellent synergism with OATEA in reducing friction and wear. The synergism in reducing friction and wear between naao-silicates and OATEA does exist almost regardless of particle sizes and species, and may be attributed, on one hand, to the formation of an adsorption film of OATEA, and, on the other hand, to the formation oftdbochemical species of silicon dioxide and iron oxides on the friction surfaces. Tribo-reactions and tribo-adsorptions of nano-silicates and OATEA would produce hereby an effective composite boondary lubrication film, which could efficiently enhance the anti-wear and friction-reducing abilities of water.

  8. Erosion wear analysis of solid particles in liquid-solid two-phase flow of right-angle bend pipe%直角弯管内液固两相流固体颗粒冲蚀磨损分析

    Institute of Scientific and Technical Information of China (English)

    丁矿; 朱宏武; 张建华; 朱君尧; 罗璇

    2013-01-01

    Internal flow law of right-angle bend pipe is analyzed base on the CFD method. Calculation results show that flow separation occurs at the 90° corner and in downstream horizontal pipeline and obvious secondary circulation in the downstream horizontal pipeline. Erosion model provided by the Erosion and Corrosion Joint Research Center of Tulsa University (E/CRC) is introduced on the basis of flow field calculation to conduct the research on erosive wear of the right-angle bend pipe, in which spatial distribution characteristics of solid particles as well as maximum erosion rate and overall quality loss of upstream and downstream pipe walls are analyzed to show good consistency between calculation results and experimental data. Spatial distribution characteristics of solid particles depend on fluid flow characteristics and the most serious wear occurs at the bent pipe corner and inside wall surface of downstream pipeline. Flow rate, particle concentration and particle diameter have a significant effect on the maximum erosion rate, of which the flow rate follows an exponential growth relationship so that flow rates of upstream and downstream pipe walls respectively reach the index of 2.5 and 2.3.%基于流体力学(CFD)方法,分析了直角弯管的内部流动规律,计算结果表明:直角弯管在90°转角和下游水平管路中存在流动分离现象,同时在下游水平管路中形成明显的二次环流.在流场计算的基础上,引入TulSa大学冲蚀与腐蚀联合研究中心(E/CRC)提供的冲蚀模型,对直角弯管的冲蚀磨损问题进行研究,分析了固体颗粒的空间分布特征和上下游管壁的最大冲蚀率以及总体质量损失,计算结果与实验数据具有良好的一致性.固体颗粒的空间分布特征依赖于流体流动特性,磨损最严重的位置发生在弯管转角处和下游管路的内侧壁面.流速、颗粒浓度和颗粒直径对最大冲蚀率有明显影响,其中,流速与最大冲蚀率呈指数

  9. Microstructure and wear resistance of spray-formed supermartensitic stainless steel

    Directory of Open Access Journals (Sweden)

    Guilherme Zepon

    2013-06-01

    Full Text Available Since the early 90's the oil industry has been encouraging the development of corrosion and wear resistant alloys for onshore and offshore pipeline applications. In this context supermartensitic stainless steel was introduced to replace the more expensive duplex stainless steel for tubing applications. Despite the outstanding corrosion resistance of stainless steels, their wear resistance is of concern. Some authors reported obtaining material processed by spray forming, such as ferritic stainless steel, superduplex stainless steel modified with boron, and iron-based amorphous alloys, which presented high wear resistance while maintaining the corrosion performance1,2. The addition of boron to iron-based alloys promotes the formation of hard boride particles (M2B type which improve their wear resistances3-9. This work aimed to study the microstructure and wear resistance of supermartensitic stainless steel modified with 0.3 wt. (% and 0.7 wt. (% processed by spray forming (SF-SMSS 0.3%B and SF-SMSS 0.7%B, respectively. These boron contents were selected in order to improve the wear resistance of supermartensitic stainless steel through the formation of uniformly distributed borides maintaining the characteristics of the corrosion resistant matrix. SF-SMSS 0.7%B presents an abrasive wear resistance considerably higher than spray-formed supermartensitic stainless steel without boron addition (SF-SMSS.

  10. Un-lubricated sliding wear performance of unalloyed austempered ductile iron under high contact stresses

    Energy Technology Data Exchange (ETDEWEB)

    Zimba, J.; Samandi, M.; Yu, D.; Chandra, T.; Navara, E.; Simbi, D.J

    2004-08-15

    The dry sliding wear behaviour of unalloyed austempered ductile iron (ADI) was studied in a reciprocating tribotester using contact loads in the range 40-140 N. The results obtained show that austempering in the temperature range 325-375 deg. C significantly improves the tribological properties of the unalloyed spheroidal graphite iron. The friction coefficient was reduced by a factor of ten (10) with the wear resistance increasing by several orders of magnitude. The improvement in wear performance was attributed to: the lubricity inherent the graphite nodules, the increase in initial hardness brought about by the ausferrite structure, and the work hardening of the surface as retained austenite is transformed to martensite by plastic deformation, and in the process reducing considerably the sensitivity of the specific wear rate to loading. Optical, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) results pertaining to the wear tracks suggest that two main wear mechanisms are responsible for material removal in the unlubricated sliding wear of ADI, namely, plastic yielding and oxidation, with the latter producing hard oxide particles that act as abrasives. Massive plastic yielding followed by delamination and sometimes oxidation accounts for material loss in the much softer as cast ductile spheroidal graphite iron.

  11. A new methodology for predictive tool wear

    Science.gov (United States)

    Kim, Won-Sik

    An empirical approach to tool wear, which requires a series of machining tests for each combination of insert and work material, has been a standard practice for industries since early part of the twentieth century. With many varieties of inserts and work materials available for machining, the empirical approach is too experiment-intensive that the demand for the development of a model-based approach is increasing. With a model-based approach, the developed wear equation can be extended without additional machining experiments. The main idea is that the temperatures on the primary wear areas are increasing such that the physical properties of the tool material degrade substantially and consequently tool wear increases. Dissolution and abrasion are identified to be the main mechanisms for tool wear. Flank wear is predominantly a phenomenon of abrasion as evident by the presence of a scoring mark on the flank surface. Based on this statement, it is reasonable to expect that the flank-wear rate would increase with the content of hard inclusions. However, experimental flank wear results did not necessary correspond to the content of cementite phase present in the steels. Hence, other phenomena are believed to significantly affect wear behavior under certain conditions. When the cutting temperature in the flank interface is subjected to high enough temperatures, pearlitic structure austenizes. During the formation of a new austenitic phase, the existing carbon is dissolved into the ferrite matrix, which will reduce the abrasive action. To verify the austenitic transformation, turning tests were conducted with plain carbon steels. The machined surface areas are imaged using X-ray diffraction the Scanning Electron Microscope (SEM) and the Transmission Electron Microscope (TEM). On the other hand, crater wear occurs as a result of dissolution wear and abrasive wear. To verify the wear mechanisms of crater wear, various coating inserts as well as uncoated inserts were

  12. Wear Characteristics of Oleophobic Coatings in Aerospace Applications

    Science.gov (United States)

    Shams, Hamza; Basit, Kanza

    2016-05-01

    This paper investigates the wear characteristics of oleophobic coatings when applied over Inconel 718, which has widespread applications in the aerospace industry. Coatings once applied were selectively exposed to controlled uni-and then multi-directional stand storm conditions. Size and speed of sand particles colliding with the work surface were carefully moderated to simulate sand storm conditions. Study of friction was performed using Lateral Force Microscopy (LFM) coupled with standard optical microscopy. The analysis has been used to devise a coefficient of friction value and in turn suggest wear behavior of the coated surface including the time associated with exposure of the base substrate. The analysis after validation aims to suggest methods for safe usage of these coatings for aerospace applications.

  13. Reinforcement of the bulk crowns excavator technology by dispersion hardening of titanium carbide to increase wear resistance

    Science.gov (United States)

    Chumanov, I.; Anikeev, A.; Chumanov, V.

    2017-02-01

    Dispersed particles embedded in the metal, improve the mechanical properties, particularly wear resistance. Introduction of the metal particles in a controlled and their distribution is difficult because of the density difference and the metal particles introduced. This article provides a method for the introduction of particles in the volume of metal, it contains a proposed strengthening technique described experiment course. During the experiment, the volume-reinforced castings from wear-resistant steel, the results of studies of the microstructure by optical and scanning electron microscopy, and mechanical tests of prototypes have been obtained.

  14. Dry sliding wear studies of aluminum matrix hybrid composites

    Directory of Open Access Journals (Sweden)

    V.V. Monikandan

    2016-12-01

    Full Text Available In the present work, hybrid composites are fabricated with self-lubricating characteristics to make them as resource-efficient materials. AA6061-10 wt. % B4C–MoS2 hybrid composites reinforced with 2.5, 5 and 7.5 wt. % concentration of MoS2 particles are produced using stir casting technique, and mechanical and tribological properties are evaluated. Microstructural characterization of the hybrid composites revealed the uniform distribution of reinforcement (B4C and MoS2 particles in the matrix material. Hardness and fracture toughness of the hybrid composites are decreased monotonously with an increase in the addition of MoS2 particles. Dry sliding tribological studies conducted using a pin-on-disk tribotester under atmospheric conditions revealed the formation of MoS2-lubricated tribolayer on the worn pin surface which significantly influenced the tribological properties. The addition of MoS2 particles decreased the friction coefficient and wear rate of the hybrid composites. Delamination and abrasion are observed to be the controlling wear mechanisms and material in the form of platelet-shaped debris, and flow-type chip debris is formed, and a long and shallow crater on the worn pin surface of the hybrid composite is also observed.

  15. Microstructure and Dry-Sliding Wear Behavior of B4C Ceramic Particulate Reinforced Al 5083 Matrix Composite

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2016-09-01

    Full Text Available B4C ceramic particulate–reinforced Al 5083 matrix composite with various B4C content was fabricated successfully via hot-press sintering under Argon atmosphere. B4C particles presented relative high wettability, bonding strength and symmetrical distribution in the Al 5083 matrix. The hardness value, friction coefficient and wear resistance of the composite were higher than those of the Al 5083 matrix. The augment of the B4C content resulted in the increase of the friction coefficient and decrease of the wear mass loss, respectively. The 30 wt % B4C/Al 5083 composite exhibited the highest wear resistance. At a low load of 50 N, the dominant wear mechanisms of the B4C/Al 5083 composite were micro-cutting and abrasive wear. At a high load of 200 N, the dominant wear mechanisms were micro-cutting and adhesion wear associated with the formation of the delamination layer which protected the composite from further wear and enhanced the wear resistance under the condition of high load.

  16. Development of Stellite alloy composites with sintering/HIPing technique for wear-resistant applications

    Energy Technology Data Exchange (ETDEWEB)

    Opris, C.D. [Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Liu, R. [Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada)]. E-mail: rliu@mae.carleton.ca; Yao, M.X. [Deloro Stellite Inc., Belleville, Ont., K8N 5C4 (Canada); Wu, X.J. [Institute for Aerospace Research, National Research Council of Canada, Ottawa, Ont., K1A 0R6 (Canada)

    2007-07-01

    Cobalt-based superalloys, Stellite 694 and Stellite 712, composites were developed with the reinforcement of titanium-carbide particles for wear-resistant applications. The specimens were fabricated using the powder metallurgy technique, combined with hot isostatic pressing. Calorimetric effects of the alloy powders were investigated using the differential scanning calorimetry technique, which provided the theoretical basis of designing the sintering cycles. The phases formed in the microstructures were analyzed using the scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS) techniques. The wear test was conducted on a ball-on-disc tribometer. It was demonstrated that the wear resistance of the alloys had been increased significantly by the titanium-carbide reinforcement and the hot isostatic pressing process had enhanced the wear resistance of the materials.

  17. [Macrophages in asthma].

    Science.gov (United States)

    Medina Avalos, M A; Orea Solano, M

    1997-01-01

    Every time they exist more demonstrations of the paper than performs the line monocytes-macrophage in the patogenesis of the bronchial asthma. The mononuclear phagocytes cells, as the alveolar macrophages, also they can be activated during allergic methods. The monocytes macrophages are possible efficient inductors of the inflammation; this due to the fact that they can secrete inflammatory mediators, between those which are counted the pre-forming granules of peptides, metabolites of oxidation activation, activator of platelets activator and metabolites of the arachidonic acid. The identification of IL-1 in the liquidate of the bronchial ablution of sick asthmatic, as well as the identification of IL-1 in the I bronchioalveolar washing of places of allergens cutaneous prick, supports the activation concept mononuclear of phagocytic cells in allergic sufferings.

  18. Macrophages and Iron Metabolism.

    Science.gov (United States)

    Soares, Miguel P; Hamza, Iqbal

    2016-03-15

    Iron is a transition metal that due to its inherent ability to exchange electrons with a variety of molecules is essential to support life. In mammals, iron exists mostly in the form of heme, enclosed within an organic protoporphyrin ring and functioning primarily as a prosthetic group in proteins. Paradoxically, free iron also has the potential to become cytotoxic when electron exchange with oxygen is unrestricted and catalyzes the production of reactive oxygen species. These biological properties demand that iron metabolism is tightly regulated such that iron is available for core biological functions while preventing its cytotoxic effects. Macrophages play a central role in establishing this delicate balance. Here, we review the impact of macrophages on heme-iron metabolism and, reciprocally, how heme-iron modulates macrophage function.

  19. Surface Wear Measurement Using Optical Correlation Technique

    Science.gov (United States)

    Acinger, Kresimir

    1983-12-01

    The coherent optical correlation technique was applied for measuring the surface wear of a tappet (part of car engine), worn by friction with the camshaft. It was found that maximum correlation intensity decays exponentially with the number of wear cycles (i.e. camshaft revolutions). Tappets of the same make have an identical rate of correlation decay. Tappets of different makes have different rates of correlation decay which are in agreement with observed long term wear.

  20. Dynamic and kinematic effects in the friction and wear of rubber

    Science.gov (United States)

    Gerrard, David Peter

    Research is presented which focuses on the micro-mechanical processes that dominate the friction and wear of rubber. New test concepts and equipment were developed to study the dynamic and kinematic effects involved in these processes. Several new analytical tools were presented to explain the observed results in quantifiable terms. Experiments conducted on filled NR confirmed that a transition in wear behavior does not occur across a wide range of power inputs. Examination of the debris distributions across the contact revealed that an agglomeration process of intrinsic particles occurs, the extent of which is purely a function of distance from the contact's leading edge. This revelation is used to explain the commonly reported bimodal size distribution of debris generated during rubber wear and to expose the mechanical process that generates intrinsic debris as the primary cause of wear. The effect of contact length (i.e. extent of agglomeration) on corresponding friction and wear levels was studied. The effects of dynamically changing slip orientation on the properties of a coated abrasive and the friction and wear of a filled SBR were studied. The process of removal of intrinsic debris from a rubber surface was described in terms of a micro-mechanical fatigue fracture process that occurs at varying rates that are dependent on the frictional work acting on the average intrinsic nodule. The model was successfully tested against previously published data and new data and was shown to account for pressure and abrasive effects with one set of two constants. The potential effects of pattern morphologies on rubber friction and wear were examined as well. The wear patterns showed a clear tendency to roll up as opposed to peeling back. The intrinsic wear model was then applied to a description of pattern wear by assuming that the rate of intrinsic abrasion across a pattern is simply a function of the local pressure distribution which varies from the front to the back

  1. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer.

    Science.gov (United States)

    Ismail, Noura; Wang, Yijie; Dakhlallah, Duaa; Moldovan, Leni; Agarwal, Kitty; Batte, Kara; Shah, Prexy; Wisler, Jon; Eubank, Tim D; Tridandapani, Susheela; Paulaitis, Michael E; Piper, Melissa G; Marsh, Clay B

    2013-02-07

    Microvesicles are small membrane-bound particles comprised of exosomes and various-sized extracellular vesicles. These are released by several cell types. Microvesicles have a variety of cellular functions from communication to mediating growth and differentiation. Microvesicles contain proteins and nucleic acids. Previously, we showed that plasma microvesicles contain microRNAs (miRNAs). Based on our previous report, the majority of peripheral blood microvesicles are derived from platelets, while mononuclear phagocytes, including macrophages, are the second most abundant population. Here, we characterized macrophage-derived microvesicles and explored their role in the differentiation of naive monocytes. We also identified the miRNA content of the macrophage-derived microvesicles. We found that RNA molecules contained in the macrophage-derived microvesicles were transported to target cells, including mono cytes, endothelial cells, epithelial cells, and fibroblasts. Furthermore, we found that miR-223 was transported to target cells and was functionally active. Based on our observations, we hypothesize that microvesicles bind to and activate target cells. Furthermore, we find that microvesicles induce the differentiation of macrophages. Thus, defining key components of this response may identify novel targets to regulate host defense and inflammation.

  2. The Friction and Wear of Active Lubricants in theSleeve-ring Pair Lubricated by Presence of Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    ZHOUQiang; LIJian-ping; LONGHong-sheng

    2004-01-01

    The effect of magnetic fteld on the tribological process of sleeve-ring pair lubricated by WRL lu-bricants was investigated by means of a NG-x wear tester and a PS5013 video microscope. The friction coefficient (f) and the wear weight(W) in lubricating test with WRL lubricant were decreased with the increase in the ,mag-netic field vertical to the rubbing surface, and an almost zero wear lubricating situation was gained in a magneticfield of 1000A/m. The captured wear micro particles on the rubbing surface were observed in the testing process,and the theoretical analysis of magnetic effects was completed. It is indicated that the magnetic field has not only a capturing action of wear micro particles on the worn surface, but also a inducing polarization0 of magnetic anisotropy of lubricant molecular. The actions promote the absorption of WRL lubricant into the wear swrface aswell as wear micro-particles, so that a good tribological effect is obtained when both magnetic field and WRL pr-esent.

  3. Cell elasticity determines macrophage function.

    Directory of Open Access Journals (Sweden)

    Naimish R Patel

    Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.

  4. Characterization of wear debris in total elbow arthroplasty.

    Science.gov (United States)

    Day, Judd S; Baxter, Ryan M; Ramsey, Matthew L; Morrey, Bernard F; Connor, Patrick M; Kurtz, Steven M; Steinbeck, Marla J

    2013-07-01

    The purpose of this study was to evaluate wear debris in periprosthetic tissues at the time of revision total elbow arthroplasty. Polyethylene, metallic, and bone cement debris were characterized, and the tissue response was quantified. Capsular and medullary tissue samples were collected during revision surgery. Polyethylene debris was characterized by scanning electron microscopy after tissue digestion. The concentrations of metal and cement debris were quantified by inductively coupled plasma mass spectrometry. Tissue response was graded with a semiquantitative histologic method. Polyethylene particle size varied from the submicron range to over 100 μm. The mean diameter ranged from 0.6 μm to about 1 μm. Particles in the synovial tissues were larger and less abundant than those in tissues from the medullary canal. Cement, titanium alloy, and low levels of cobalt-chrome debris were also present, with cement predominating over metal debris. Histiocyte response was associated with small polyethylene particles (0.5-2 μm), and giant cells were associated with large polyethylene particles (>2 μm). Histiocyte scores positively correlated with the polyethylene particle number and the presence of metal. We have shown that periprosthetic tissues of total elbow patients who have undergone revision for loosening and osteolysis contain polyethylene, cement, and metal debris. Although the polyethylene particles were of a size and shape that have been previously shown to result in activation of phagocytic cells, osteolysis after total elbow arthroplasty is a multimodal process. Because of the presence of multiple wear particle sources, a cause-and-effect relationship between polyethylene debris and osteolysis cannot be established with certainty. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  5. Lentivirus-mediated TNF-α gene silencing and overexpression of osteoprotegerin inhibit titanium particle-induced inflammatory response and osteoclastogenesis in vitro.

    Science.gov (United States)

    Peng, Li; Wang, Hongzhi; Song, Keguan; Wang, Hai; Liu, Ping

    2016-01-01

    Macrophages and osteoclasts release proinflammatory factors and promote osteoclastogenesis following the phagocytosis of wear particles. During this pathological process, receptor of nuclear factor κB ligand (RANKL) and tumor necrosis factor (TNF)-α are critical factors contributing to resorption and the inflammatory response. The present study aimed to construct recombination lentivirus vectors carrying TNF-α small interfering (si)RNA and osteoprotegerin (OPG) cDNA, and to examine the effects of Lenti‑siTNFα‑OPG on the wear particle‑induced inflammatory response and osteoclastogenesis in a titanium (Ti) particle‑induced‑inflammatory response cell model. Lenti‑siTNFα‑OPG vectors were constructed and transnfected into RAW264.7 and MC3T3‑E1 cells, respectively, prior to particle stimulation. The protein levels of TNF‑α, OPG and RANKL were evaluated using western blot analysis and enzyme‑linked immunosorbent assays, and the mRNA expression levels of the inflammatory factors, TNF‑α, interleukin (IL)‑1β and IL‑6, as well as OPG and RANKL, were measured using reverse transcription‑quantitative polymerase chain reaction analysis. The activity of alkaline phosphatase (ALP) was examined using an ALP kit. In the presence of the Lenti‑siTNFα‑OPG vector, the mRNA expression levels of the inflammatory factors and RANKL were downregulated, as were the protein levels of TNF‑α. The mRNA expression and protein levels of OPG were upregulated, and ALP activity was increased. These findings suggested that Lenti‑siTNFα‑OPG transfection inhibited the wear particle‑induced inflammatory response and osteoclastogenesis, which warrants further investigation for the prevention and/or treatment of wear particle-induced osteolysis.

  6. Heat Treatment Effect on Microstructure, Hardness and Wear Resistance of Cr26 White Cast Iron

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shaoping; SHEN Yehui; ZHANG Hao; CHEN Dequan

    2015-01-01

    High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950℃ to 1050℃, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000℃, followed by a subsequent 2 h tempering at 400℃. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the “supporting” effect of the matrix and the“protective” effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.

  7. Heat treatment effect on microstructure, hardness and wear resistance of Cr26 white cast iron

    Science.gov (United States)

    Zhou, Shaoping; Shen, Yehui; Zhang, Hao; Chen, Dequan

    2015-01-01

    High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 °C to 1050 °C, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 °C, followed by a subsequent 2 h tempering at 400 °C. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.

  8. Wear behaviour of coating of aluminium matrix composites fabricated by thermal spray method; Comportamiento a desgaste de recubrimientos de material compuesto de matriz de aluminio fabricados por proyeccion termica

    Energy Technology Data Exchange (ETDEWEB)

    Campo, M.; Escalera, M. D.; Torres, B.; Rams, J.; Urena, A.

    2007-07-01

    In this work, the wear behaviour of coatings made of aluminium matrix composites reinforced with 20% of SiC particles and manufactured by thermal spray method with oxyacetylene flame has been investigated. the wear behaviour between coating with uncoated particles and sol-gel silica coated ones heat treated at 500 degree centigree and 725 degree centigree have been compared. The sprayed coatings with silica coated particles are more homogeneous and less porous due to increase of wettability by molten aluminium that takes place on coated particles. The microstructure of the sprayed coatings, the wear surfaces and the wear debris have been analysed using optical microscopy, scanning electron microscopy and micro-analysis techniques (EDX). The results show a smaller wear rate, a lower friction coefficient and more reduced loss of mass for the coatings sprayed with particles with sol-gel silica coatings than those made with uncoated particles. (Author) 15 refs.

  9. Comparison of the Wear Behavior of UHMWPE Lubricated by Human Plasma and Brine

    Institute of Scientific and Technical Information of China (English)

    WANG Shi-bo; GE Shi-rong; NORM Gitis; MICHAEL Vinogradov; XIAO Jun

    2007-01-01

    The effect of plasma and brine lubricants on the friction and wear behavior of UHMWPE were studied by using the geometry of a Si3N4 ball sliding on a UHMWPE disc under patterns of uni-directional reciprocation and bi-directional sliding motions. The worn surface and wear particles produced in these two lubricants were analyzed. Sliding motion pattern affected the friction coefficients lubricated with plasma, while seldom affected that lubricated with brine. UHMWPE lubricated with plasma showed about half of the wear rate of that lubricated with brine. The two rates were 0.75 pg/m and 2.19 pg/m for the two motion patterns, respectively. However, wear particles generated in plasma included a greater amount of small particles, compared to that in brine. In uni-directional reciprocation, the main wear mechanism is ploughing both in plasma and in brine. In bi-directional sliding modes, the significant characteristic is ripples on the worn surface in plasma, while there are oriented fibers on the worn surface in brine.

  10. Abrasive Wear Map of Polymer Tapes in Sand Dust Environment

    Institute of Scientific and Technical Information of China (English)

    WU Tong-hai; DIAO Dong-feng

    2006-01-01

    To make clear the wear conditions of ATM (Automatic Teller Machine) tribosystem when servicing in Chinese sand dust environment, abrasive wear of two kinds of polymer tapes specified for ATM, PI (Polyimide) and PEN (Polyethylene-2, 6-naphthalenedicarboxylate), was investigated in simulated sand dust environment with ATM tape-scraper tribosystem under various conditions of loads and sliding distances. The surface profiles of worn tape were measured with a surface profiler in order to calculating the wear cross-section areas and the wear volumes. The specific wear rates of polymer tapes were calculated under load conditions of 0.6, 1 and 1.5 N, and wear mechanisms were investigated with optical topography photos. As main results, the specific wear rates show stage variations in the wear process and the wear resistance of polymer tape shows good relationship with the mechanical deformation factors. In consideration of the service life, four wear models are generalized according to the magnitude of specific wear rates,which include no wear, mild wear, normal wear and severe wear model and the corresponding wear mechanisms for the four wear models are discussed with typical worn topographies. Based on the wear models and corresponding wear mechanisms, the abrasive wear maps of two polymer tapes servicing in sand dust environments are concluded for its industrial applications.

  11. Wear Behaviour of Al-6061/SiC Metal Matrix Composites

    Science.gov (United States)

    Mishra, Ashok Kumar; Srivastava, Rajesh Kumar

    2016-06-01

    Aluminium Al-6061 base composites, reinforced with SiC particles having mesh size of 150 and 600, which is fabricated by stir casting method and their wear resistance and coefficient of friction has been investigated in the present study as a function of applied load and weight fraction of SiC varying from 5, 10, 15, 20, 25, 30, 35 and 40 %. The dry sliding wear properties of composites were investigated by using Pin-on-disk testing machine at sliding velocity of 2 m/s and sliding distance of 2000 m over a various loads of 10, 20 and 30 N. The result shows that the reinforcement of the metal matrix with SiC particulates up to weight percentage of 35 % reduces the wear rate. The result also show that the wear of the test specimens increases with the increasing load and sliding distance. The coefficient of friction slightly decreases with increasing weight percentage of reinforcements. The wear surfaces are examined by optical microscopy which shows that the large grooved regions and cavities with ceramic particles are found on the worn surface of the composite alloy. This indicates an abrasive wear mechanism, which is essentially a result of hard ceramic particles exposed on the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight fraction of SiC and average coefficient of friction decreases linearly with increasing applied load, weight fraction of SiC and mesh size of SiC. The best result has been obtained at 35 % weight fraction and 600 mesh size of SiC.

  12. Processing and study of the wear and friction behaviour of discrete graded Cu hybrid composites

    Indian Academy of Sciences (India)

    T Ram Prabhu

    2015-06-01

    Discrete functionally graded composites are the novel composites which have high potential in the brake friction material applications. In this paper, we have prepared discrete functional graded Cu/10%SiC/20%graphite(Gr)/10%boron nitride (h-BN) hybrid composites by the layer stacking compaction and pressure sintering techniques.We have considered two types of composites based on h-BN particle sizes. The size ranges of h-BN used were 140–180 and 3–25 m. The friction and wear properties of the composites were evaluated in a laboratory scale brake inertial dynamometer at low (5, 10 m s−1) and high sliding speeds (30, 35 m s−1) and, high braking load (2000 N) conditions. In addition, we have performed microstructure characterization, density, hardness and flexural strength measurements.Wear surface morphology studies were also carried out using stereoscope and scanning electron microscope. Our experiments lead to the following important results: (1) the large size h-BN particle improves the densification of the hybridized composite layer and provides higher wear resistance and better braking performance at all sliding speeds, (2) the wear loss (by mass) and the stopping distance/time increase with sliding speeds due to the increase in the braking energy, (3) at low sliding speeds (5, 10 m s−1), abrasive wear is the main wear mechanism, whereas many different wear mechanisms (delamination, oxidation, abrasive) are cooccuring at higher sliding speeds (30, 35 m s−1), (4) the mechanical properties (flexural strength and surface hardness) of composites are not affected by the h-BN particle size, (5) the incorporation of copper layer in the discrete layer structure deflects and arrests the crack at the copper/composite layer interface, thus improving the fracture resistance in addition to improving the bulk thermal conductivity.

  13. AN EXAMINATION OF THE CYTOTOXIC EFFECTS OF SILICA ON MACROPHAGES

    Science.gov (United States)

    Allison, A. C.; Harington, J. S.; Birbeck, M.

    1966-01-01

    Effects of silica, diamond dust, and carrageenan on mouse macrophages were studied by phase-contrast cine-micrography, electron microscopy, histochemical techniques for lysosomal enzymes and measurements of the release of lysosomal enzymes into the culture medium. All added materials were rapidly taken up into phagosomes, to which lysosomes became attached. In all cases lysosomal enzymes were discharged into the phagosomes to form secondary lysosomes. Within 24 hr most of the silica particles and enzyme had escaped from the secondary lysosomes and lysosomal enzymes were found in the culture media. Most macrophages were killed by this time. With nontoxic particles (diamond dust, aluminium-coated silica, or silica in the presence of the protective agent polyvinyl-pyridine-N-oxide, PVPNO) ingested particles and lysosomal enzymes were retained within the secondary lysosomes for a much longer time, and cytotoxic effects were considerably delayed or absent altogether. It is concluded that silica particles are toxic because they are efficiently taken up by macrophages and can then react relatively rapidly with the membranes surrounding the secondary lysosomes. The particles and lytic enzymes can then escape into the cytoplasm, producing general damage, and thence into the culture medium. It is suggested that hydrogen bonding of silicic acid with lipid and protein constituents of the membrane accounts for the induced permeability. Protective agents such as PVPNO are retamed in lysosomes and preferentially form hydrogen bonds with silicic acid. Carrageenan is demonstrable within macrophages by its metachromatic reaction. It brings about release of enzymes from secondary lysosomes, but much more slowly than does silica. Silica released from killed macrophages is as cytotoxic as the original preparation. It is suggested that repeated cycles of macrophage killing in vivo leads to the mobilization of fibroblasts and fibrogenesis characterizing the disease silicosis. PMID

  14. Study on torsional fretting wear behavior of a ball-on-socket contact configuration simulating an artificial cervical disk

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Wang, Fei [School of Material Science and Engineering, China University of Mining and Technology, Xuzhou 221116 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Wang, Qingliang [School of Material Science and Engineering, China University of Mining and Technology, Xuzhou 221116 (China); Liu, Yuhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-10-01

    A ball-on-socket contact configuration was designed to simulate an artificial cervical disk in structure. UHMWPE (ultra high molecular weight polyethylene) hot pressed by powders and Ti6Al4V alloy were selected as the material combination of ball and socket. The socket surface was coated by a ~ 500 nm C-DLC (carbon ion implantation-diamond like carbon) mixed layer to improve its surface nano hardness and wear resistance. The torsional fretting wear behavior of the ball-on-socket model was tested at different angular displacements under 25% bovine serum lubrication with an axial force of 100 N to obtain more realistic results with that in vivo. The fretting running regimes and wear damage characteristics as well as wear mechanisms for both ball and socket were studied based on 2D (two dimension) optical microscope, SEM (scanning electron microscope) and 3D (three dimension) profiles. With the increase of angular displacement amplitude from 1° to 7°, three types of T-θ (Torsional torque-angular displacement amplitude) curves (i.e., linear, elliptical and parallelogram loops) corresponding to running regimes of PSR (partial slip regime), MR (mixed regime) and SR (slip regime) were observed and analyzed. Both the central region and the edge zone of the ball and socket were damaged. The worn surfaces were characterized by wear scratches and wear debris. In addition, more severe wear damage and more wear debris appeared on the central region of the socket at higher angular displacement amplitude. The dominant damage mechanism was a mix of surface scratch, adhesive wear and abrasive wear for the UHMWPE ball while that for the coated socket was abrasive wear by PE particles and some polishing and rolling process on the raised overgrown DLC grains. The frictional kinetic behavior, wear type, damage region and damage mechanism for the ball-on-socket model revealed significant differences with those of a ball-on-flat contact while showing better consistency with that of in

  15. Oscillating sliding wear of TiC and TiN laser hardfacings

    Energy Technology Data Exchange (ETDEWEB)

    Schuessler, A.; Zum Gahr, K.H. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.). Inst. fuer Material- und Festkoerperforschung 1 - Teilinstitut Kernbrennstoffe)

    1991-01-01

    TiC-and TiN-steel composite layers containing about 40-60 vol.% of hard phases were produced on a die steel 90MnCrV8 using a CO{sub 2}-laser. Resulting layers consisted of homogeneously distributed hard particles (median size: 3 {mu}m and 31 {mu}m) embedded in a martensitic matrix and exhibited low surface roughness. Resistance to oscillating sliding wear was measured using a laboratory tribometer (ball on disc) with counterbodies of bearing steel and Al{sub 2}O{sub 3} respectively. Both friction and wear of composites were substantially lower than that of the hardened untreated steel. Wear intensity depended on type and size of incorporated hard particles of the composite layer. (orig.).

  16. Wear study of Total Ankle Replacement explants by microstructural analysis.

    Science.gov (United States)

    Cottrino, S; Fabrègue, D; Cowie, A P; Besse, J-L; Tadier, S; Gremillard, L; Hartmann, D J

    2016-08-01

    The implantation of Total Ankle Replacement (TAR) prostheses generally gives satisfactory results. However, a high revision rate is associated with the Ankle Evolutive System (AES) implant, due to periprosthetic osteolysis that generates significant cortical lesions and bone cysts in the periprosthetic region. Radioclinical and histological analyses of peri-implant tissues show the presence of numerous foreign particles that may come from the implant. It is known that a precocious wear of materials may lead to an important rate of foreign body in tissues and may generate osteolysis lesions and inflammatory reactions. Thus the objectives of this retrospective study of 10 AES TAR implants (recovered after revision surgeries) are to understand how the prostheses wear out, which part is the most stressed and to determine the nature and size of foreign body particles. A better understanding of friction mechanisms between the three parts of the implant and of the nature and morphology of foreign particles generated was needed to explain the in vivo behavior of the implant. This was achieved using microstuctural and tomographic analysis of both implants parts and periprosthetic tissues.

  17. Enamel wear opposing polished and aged zirconia.

    Science.gov (United States)

    Burgess, J O; Janyavula, S; Lawson, N C; Lucas, T J; Cakir, D

    2014-01-01

    Aging of dental zirconia roughens its surface through low temperature degradation. We hypothesized that age-related roughening of zirconia crowns may cause detrimental wear to the enamel of an opposing tooth. To test our hypothesis, we subjected artificially aged zirconia and reference specimens to simulated mastication in a wear device and measured the wear of an opposing enamel cusp. Additionally, the roughness of the pretest surfaces was measured. The zirconia specimens, artificially aged by autoclave, showed no significant increase in roughness compared to the nonaged specimens. Furthermore, no significant difference in material or opposing enamel wear between the aged and nonaged zirconia was seen. All zirconia specimens showed less material and opposing enamel wear than the enamel to enamel control or veneering porcelain specimens. Scanning electron micrographs showed relatively smooth surfaces of aged and nonaged zirconia following wear testing. The micrographs of the veneering ceramic showed sharp fractured edges and fragments of wear debris. Zirconia may be considered a wear-friendly material for restorations opposing enamel, even after simulated aging.

  18. Numerical prediction of car tire wear

    NARCIS (Netherlands)

    Lupker, H.A.; Cheli, F.; Braghin, F.; Gelosa, E.; Keckman, A.

    2004-01-01

    Due to their many economic and ecological implications, the possibility to predict tire wear is of major importance to tire manufacturers, fleet owners and governments. Based on these observations, in 2000, a three-year project named TROWS (Tire and Road Wear and Slip assessment was started. One of

  19. Concrete ice abrasion rig and wear measurements

    NARCIS (Netherlands)

    Shamsutdinova, G.; Rike, P.B.; Hendriks, M.A.N.; Jacobsen, S.

    2015-01-01

    The wear of concrete material due to ice movement is a challenge for offshore and coastal structures. Concrete surfaces exposed to moving ice are subjected to wear at various rates depending on concrete and ice properties. At NTNU, Department of Structural Engineering, concrete ice abrasion phenomen

  20. Contact lens wear is intrinsically inflammatory.

    Science.gov (United States)

    Efron, Nathan

    2017-01-01

    Eye-care practitioners typically associate ocular inflammation during contact lens wear with serious complications such as microbial keratitis; however, more subtle mechanisms may be at play. This paper tests the notion that contact lens wear is intrinsically inflammatory by exploring whether uncomplicated contact lens wear meets the classical, clinical definition of inflammation - rubor (redness), calor (heat), tumor (swelling), dolor (pain) and functio laesa (loss of function) - as well as the contemporary, sub-clinical definition of inflammation (cellular and biochemical reactions). It is demonstrated that all of these clinical and sub-clinical criteria are met with hydrogel lens wear and most are met with silicone hydrogel lens wear, indicating that uncomplicated contact lens wear is intrinsically inflammatory. Consideration of both traditional and contemporary thinking about the role of inflammation in the human body leads to the perhaps surprising conclusion that the chronic, low grade, sub-clinical inflammatory status of the anterior eye during contact lens wear, which may be termed 'para-inflammation', is a positive, protective phenomenon, whereby up-regulation of the immune system, in a non-damaging way, maintains the eye in a state of 'heightened alert', ready to ward off any extrinsic noxious challenge. Characterisation of this inflammatory status may lead to the development of lens engineering or pharmacological strategies to modulate contact lens-induced inflammation, so as to render lens wear more safe and comfortable. © 2016 Optometry Australia.

  1. Inhibition of erosive wear by fluoride varnish

    NARCIS (Netherlands)

    Vieira, A.; Jager, D. H. J.; Ruben, J. L.; Huysmans, M. C. D. N. J. M.

    2007-01-01

    It has been suggested that fluoride products with a protective mechanical component are advantageous in the prevention of erosive wear. The aim of this study was to evaluate in situ the effect of fluoride varnish (FV) in the prevention of wear due to erosion and combined erosion and toothbrush abras

  2. Concrete ice abrasion rig and wear measurements

    NARCIS (Netherlands)

    Shamsutdinova, G.; Rike, P.B.; Hendriks, M.A.N.; Jacobsen, S.

    2015-01-01

    The wear of concrete material due to ice movement is a challenge for offshore and coastal structures. Concrete surfaces exposed to moving ice are subjected to wear at various rates depending on concrete and ice properties. At NTNU, Department of Structural Engineering, concrete ice abrasion phenomen

  3. Friction and Wear Behaviors of Nanostructured Metals

    Institute of Scientific and Technical Information of China (English)

    Zhong HAN; Yusheng ZHANG; Ke LU

    2008-01-01

    Nanostructured (ns) materials, i.e., polycrystalline materials with grain sizes in the nanometer regime (typically below 100 nm), have drawn considerable attention in the past decades due to their unique properties such as high strength and hardness. Wear resistance of ns materials, one of the most important properties for engineering materials, has been extensively investigated in the past decades. Obvious differences have been identified in friction and wear behaviors Between the ns materials and their corresponding coarse-grained (cg) counterparts, consistently correlating with their unique structure characteristics and mechanical properties. On the other hand, the superior tribological properties of ns materials illustrate their potential applications under contact loads. The present overview will summarize the important progresses achieved on friction and wear behaviors of ns metallic materials, including ultrafine-grained (ufg) materials in recent years. Tribological properties and effects on friction and wear behaviors of ns materials will be discussed under different wear conditions including abrasive wear, sliding wear, and fretting wear. Their correlations with mechanical properties will be analyzed. Perspectives on development of this field will be highlighted as well.

  4. Inhibition of erosive wear by fluoride varnish

    NARCIS (Netherlands)

    Vieira, A.; Jager, D. H. J.; Ruben, J. L.; Huysmans, M. C. D. N. J. M.

    2007-01-01

    It has been suggested that fluoride products with a protective mechanical component are advantageous in the prevention of erosive wear. The aim of this study was to evaluate in situ the effect of fluoride varnish (FV) in the prevention of wear due to erosion and combined erosion and toothbrush

  5. Erosion wear behaviour and mechanism of abradable seal coating

    Institute of Scientific and Technical Information of China (English)

    冉丽萍

    2002-01-01

    The erosion wear behaviour and mechanism of several middle temperature seal coatings were investigated by a CMS-100 self-made vacuum sand erosion machine. The results show that the relationship between the erosion mass loss and the erosion time is linear, the coatings hold a maximum erosion rate at 60° impact angle, and the relationship between the erosion rate and the impact speed is an exponential function. The speed exponent increases with the increase of the impact angle. At 90° impact, indentations and extruded lips were generated on the coating surface subjected to impact. With repetitive impact by the abrasive particles, the extruded lips were work-hardened and peeled off, while flattened metal phase grains were impacted repeatedly, loosed and debonded. At 30° impact, the erosion wear of the coating is characterized by micro-cutting, plowing and tunneling via pores and non-metal phase. The model of the erosion mechanism is advanced on the basis of the above-mentioned erosion wear behaviour.

  6. Which design and biomaterial factors affect clinical wear performance of total disc replacements? A systematic review.

    Science.gov (United States)

    Veruva, Sai Y; Steinbeck, Marla J; Toth, Jeffrey; Alexander, Dominik D; Kurtz, Steven M

    2014-12-01

    Total disc replacement was clinically introduced to reduce pain and preserve segmental motion of the lumbar and cervical spine. Previous case studies have reported on the wear and adverse local tissue reactions around artificial prostheses, but it is unclear how design and biomaterials affect clinical outcomes. Which design and material factors are associated with differences in clinical wear performance (implant wear and periprosthetic tissue response) of (1) lumbar and (2) cervical total disc replacements? We performed a systematic review on the topics of implant wear and periprosthetic tissue response using an advanced search in MEDLINE and Scopus electronic databases. Of the 340 references identified, 33 were retrieved for full-text evaluation, from which 16 papers met the inclusion criteria (12 on lumbar disc replacement and five on cervical disc replacement; one of the included studies reported on both lumbar and cervical disc replacement), which involved semiquantitative analysis of wear and adverse local tissue reactions along with a description of the device used. An additional three papers were located by searching bibliographies of key articles. There were seven case reports, three case series, two case-control studies, and seven analytical studies. The Methodological Index for Non-randomized Studies (MINORS) Scale was used to score case series and case-control studies, which yielded mean scores of 10.3 of 16 and 17.5 of 24, respectively. In general, the case series (three) and case-control (two) studies were of good quality. In lumbar regions, metal-on-polymer devices with mobile-bearing designs consistently generated small and large polymeric wear debris, triggering periprosthetic tissue activation of macrophages and giant cells, respectively. In the cervical regions, metal-on-polymer devices with fixed-bearing designs had similar outcomes. All metal-on-metal constructs tended to generate small metallic wear debris, which typically triggered an

  7. Preparation of Wear Resistant Materials by Melting and Diffusion Process

    Institute of Scientific and Technical Information of China (English)

    YU Shihao; WEI Xueping; ZENG Hui

    2012-01-01

    A wear-resistant material reinforced with VCp was manufactured by the in-mold melting process,in which the high-vanadium alloy-rods were melted by high temperature liquid steel and elements diffused into the liquid.Microstructure of the material was examined by OM,SEM,and XRD,and alloy elements in the diffusion layer were studied by EDS,and the hardness of the material was tested by HRS.The experimental results show that the material gradually changes hardness,which is due to the uniformly existents of carbide particles on martensite matrix and the gradient distribution of vanadium and carbide.

  8. Transcriptional Regulation and Macrophage Differentiation.

    Science.gov (United States)

    Hume, David A; Summers, Kim M; Rehli, Michael

    2016-06-01

    Monocytes and macrophages are professional phagocytes that occupy specific niches in every tissue of the body. Their survival, proliferation, and differentiation are controlled by signals from the macrophage colony-stimulating factor receptor (CSF-1R) and its two ligands, CSF-1 and interleukin-34. In this review, we address the developmental and transcriptional relationships between hematopoietic progenitor cells, blood monocytes, and tissue macrophages as well as the distinctions from dendritic cells. A huge repertoire of receptors allows monocytes, tissue-resident macrophages, or pathology-associated macrophages to adapt to specific microenvironments. These processes create a broad spectrum of macrophages with different functions and individual effector capacities. The production of large transcriptomic data sets in mouse, human, and other species provides new insights into the mechanisms that underlie macrophage functional plasticity.

  9. The macrophages in rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Laria A

    2016-02-01

    Full Text Available Antonella Laria, Alfredomaria Lurati , Mariagrazia Marrazza , Daniela Mazzocchi, Katia Angela Re, Magda Scarpellini Rheumatology Unit, Fornaroli Hospital, Magenta, Italy Abstract: Macrophages belong to the innate immune system giving us protection against pathogens. However it is known that they are also involved in rheumatic diseases. Activated macrophages have two different phenotypes related to different stimuli: M1 (classically activated and M2 (alternatively activated. M1 macrophages release high levels of pro-inflammatory cytokines, reactive nitrogen and oxygen intermediates killing microorganisms and tumor cells; while M2 macrophages are involved in resolution of inflammation through phagocytosis of apoptotic neutrophils, reduced production of pro-inflammatory cytokines, and increased synthesis of mediators important in tissue remodeling, angiogenesis, and wound repair. The role of macrophages in the different rheumatic diseases is different according to their M1/M2 macrophages phenotype. Keywords: macrophage, rheumatic diseases

  10. Biologically Based Restorative Management of Tooth Wear

    Directory of Open Access Journals (Sweden)

    Martin G. D. Kelleher

    2012-01-01

    Full Text Available The prevalence and severity of tooth wear is increasing in industrialised nations. Yet, there is no high-level evidence to support or refute any therapeutic intervention. In the absence of such evidence, many currently prevailing management strategies for tooth wear may be failing in their duty of care to first and foremost improve the oral health of patients with this disease. This paper promotes biologically sound approaches to the management of tooth wear on the basis of current best evidence of the aetiology and clinical features of this disease. The relative risks and benefits of the varying approaches to managing tooth wear are discussed with reference to long-term follow-up studies. Using reference to ethical standards such as “The Daughter Test”, this paper presents case reports of patients with moderate-to-severe levels of tooth wear managed in line with these biologically sound principles.

  11. Wear simulation effects on overdenture stud attachments.

    Science.gov (United States)

    Rutkunas, Vygandas; Mizutani, Hiroshi; Takahashi, Hidekazu; Iwasaki, Naohiko

    2011-01-01

    The aim of this study was to evaluate wear effects on overdenture resilient attachments. Six commercially available attachments were investigated: ERA orange and white (EO and EW), Locator pink, white and blue (LRP, LRW and LRB) and OP anchor (OP). Five specimens were used for wear simulation while other two specimens served as controls. Fifteen thousands insertion-removal cycles were simulated. Dimensional changes and surface characteristics were evaluated using light microscopy and SEM, respectively. Sudden decrease of retentive force was characteristic for EO and EW attachments. Retentive force of Locator attachments fluctuated throughout the wear simulation period. Dimensional changes and surface wear was more expressed on plastic cores than on plastic rings of attachment males. Based on SEM analysis, some of the specimens obtained smoother surface after wear simulation. Mechanism of retention loss of resilient overdenture attachments can be only partially explained by dimensional changes and surface alterations.

  12. Modeling wear of cast Ti alloys.

    Science.gov (United States)

    Chan, Kwai S; Koike, Marie; Okabe, Toru

    2007-05-01

    The wear behavior of Ti-based alloys was analyzed by considering the elastic-plastic fracture of individual alloys in response to the relevant contact stress field. Using the contact stresses as the process driving force, wear was computed as the wear rate or volume loss as a function of hardness and tensile ductility for Ti-based cast alloys containing an alpha, alpha+beta or beta microstructure with or without the intermetallic precipitates. Model predictions indicated that wear of Ti alloys increases with increasing hardness but with decreasing fracture toughness or tensile ductility. The theoretical results are compared with experimental data to elucidate the roles of microstructure in wear and contrasted against those in grindability.

  13. Assessment of variations in wear test methodology.

    Science.gov (United States)

    Gouvêa, Cresus V D; Weig, Karin; Filho, Thales R M; Barros, Renata N

    2010-01-01

    The properties of composite resin for dental fillings were improved by development, but its weakness continues to be its wear strength. Several tests have been proposed to evaluate wear in composite resin materials. The aim of this study was to verify how polishing and the type of abrasive can influence the wear rate of composite resin. The test was carried out on two groups. In one group we employed an ormocer and a hybrid composite that was polished group the composite was polished with the same abrasive paper plus a 1 microm and 0.25 microm grit diamond paste. A three-body wear test was performed using the metal sphere of the wear test machine, the composite and an abrasive. A diamond paste and aluminum oxide dispersion were used as abrasive. Analysis of the results showed that there was no difference between polishing techniques, but revealed a difference between abrasives.

  14. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  15. EXPOSURE TO SWINE HOUSING DUST MODULATES MACROPHAGE MORPHOLOGY AND FUNCTION

    Directory of Open Access Journals (Sweden)

    Ruth J. Pender

    2014-01-01

    Full Text Available Swine Confinement Facility (SCF dust consists of a complex mixture of feed grain particles, bacterial components, organic particulates and gases. When these particles are inhaled they deposit along the respiratory tract and mediate respiratory symptoms and disease in swine farmers and facility workers. Macrophages ingest and eliminate microbes and debris under chronic conditions; however, the role of macrophages in agricultural-related respiratory disease has not been fully elucidated. The goal was to evaluate the hypothesis that chronic exposure to SCF dust causes inflammation by modulating pulmonary protein levels and macrophage function. Balb/c mice were exposed to 5, 12.5 and 25% SCF Dust Extract (DE via nebulization 30 min/day five days a week, for eight weeks with weekends excluded. Bronchoalveolar Lavage Fluid (BALF was collected and analyzed for protein concentration, leukocyte distribution and macrophage morphology. For comparison, THP-1 monocytic cells were exposed to 0.1-10% DE overnight and evaluated for phagocytosis and reactive oxygen species production. Repeated exposure to DE via nebulizer caused a significant increase in protein concentration and inflammatory cell number, namely macrophages, in a dose-dependent manner within the lung as compared to controls. Macrophages with pseudopods and vacuoles were the most abundant leukocytes within BALF of mice exposed to DE. Similarly, in vitro studies with 10% DE treated THP-1 cells revealed enhanced phagocytosis (p<0.05, pseudopodia and vacuolization following exposure to compared to control cells. In addition, there were time- and dose-dependent increases of intracellular ROS production by THP-1 cells exposed to 5 and 10% DE compared to control (p<0.01. These findings indicate repeated, long-term inhalation of swine confinement facility dust may mediate chronic airway and lung inflammation through modulation of protein concentration and macrophage function. The aerosolized dust

  16. Energetic aspects of boring tools wear

    Directory of Open Access Journals (Sweden)

    Lazarová Edita

    2002-03-01

    Full Text Available In the process of rock desintegration a boring tool is subjected to the wear. From a viewpoint of the bit wear, changes on the contact of operating tool with rock at its one-shot and rerun load or overload by external forces are technically significant. Theis change results in the degradation of bit working properties and the output of desintegration also decreases. In the major part of cases, together with the bit wear, the contact area of a tool with a rock massifs enhanced and this fact causes an increase of fines (dust creation during the desintegration. The wear is always connected with a friction, forces action, deformation, damage, and the increased mechanical work consumption. As to energetic aspects of bit wear, the wear was observed as a function of bore length and in the most of cases as a dependence of the operating time. A linear dependence between the wear intensity (bit wear per unit of bore length and the specific energy of desintegration (energy consumed per volume unit of desintegrated rock was experimentally verified. Thus, the changes of bit wear can be implicitly observed by monitoring the specific energy. At the same time, the specific energy is a function of input parameters of the desintegration process and in the field of applicable external forces it shows an extreme (minimum. Therefore, the specific energy is useful for the extreme optimisation of the rock desintegration process from the viewpoint of the bit wear. It was mathematically proven that the tool output at the desintegration exponentially decreases with the amount of work consumed in the rock desintegration. The derivation of this knowledge comes out from the Krendelev equation.

  17. Macrophage reprogramming: influence of latex beads with various functional groups on macrophage phenotype and phagocytic uptake in vitro.

    Science.gov (United States)

    Akilbekova, Dana; Philiph, Rachel; Graham, Austin; Bratlie, Kaitlin M

    2015-01-01

    Macrophages play a crucial role in initiating immune responses with various functions ranging from wound healing to antimicrobial actions. The type of biomaterial is suggested to influence macrophage phenotype. Here, we show that exposing M1- and M2-activated macrophages to polystyrene latex beads bearing different functional groups can alter secretion profiles, providing a possible method for altering the course of the host response. Macrophages were stimulated with either lipopolysaccharide or interleukin (IL) 4 and cultured for 24 h with 10 different latex beads. Proinflammatory cytokines (tumor necrosis factor α, monocyte chemotactic protein 1) and nitrite served as markers for the M1 phenotype and proangiogenic cytokine (IL-10) and arginase activity for M2 cells. The ability of the macrophages to phagocytize Escherichia coli particles and water contact angles of the polymers were also assessed. Different patterns of cytokine expression and phagocytosis activity were induced by the various particles. Particles did not polarize the cells toward one specific phenotype versus another, but rather induced changes in both pro- and anti-inflammatory markers. Our results suggest a dependence of pro- and anti-inflammatory cytokines and phagocytic activities on material type and cytokine stimuli. These data also illustrate how biomaterials can be exploited to alter host responses for drug delivery and tissue engineering applications.

  18. Dry Sliding Wear Behavior of Spark Plasma Sintered Fe-Based Bulk Metallic Glass/Graphite Composites

    Directory of Open Access Journals (Sweden)

    Xiulin Ji

    2016-09-01

    Full Text Available Bulk metallic glass (BMG and BMG-graphite composites were fabricated using spark plasma sintering at the sintering temperature of 575 °C and holding time of 15 min. The sintered composites exhibited partial crystallization and the presence of distributed porosity and graphite particles. The effect of graphite reinforcement on the tribological properties of the BMG/graphite composites was investigated using dry ball-on-disc sliding wear tests. The reinforcement of graphite resulted in a reduction in both the wear rate and the coefficient of friction as compared to monolithic BMG samples. The wear surfaces of BMG/graphite composites showed regions of localized wear loss due to microcracking and fracture, as was also the case with the regions covered with graphite-rich protective film due to smearing of pulled off graphite particles.

  19. Epoxy matrix composites filled with micro-sized LD sludge: wear characterization and analysis

    Science.gov (United States)

    Purohit, Abhilash; Satapathy, Alok

    2016-02-01

    Owing to the very high cost of conventional filler materials in polymer composites, exploring the possibility of using low cost minerals and industrial wastes for this purpose has become the need of the hour. In view of this, the present work includes the development and the wear performance evaluation of a new class of composites consisting of epoxy and microsized LD sludge. LD sludge or the Linz-Donawitz Sludge (LDS) are the fine solid particles recovered after wet cleaning of the gas emerging from LD convertors during steel making. Epoxy composites filled with different proportions (0, 5, 10, 15 and 20 wt %) of LDS are fabricated by conventional hand lay-up technique. Dry sliding wear trials are performed on the composite specimens under different test conditions as per ASTM G 99 following a design of experiment approach based on Taguchi's orthogonal arrays. The Taguchi approach leads to the recognition of most powerful variables that predominantly control the wear rate. This parametric analysis reveals that LDS content and sliding velocity affects the specific wear rate more significantly than normal load and sliding distance. Furthermore with increase in LDS content specific wear rate of the composite decreases for a constant sliding velocity. The sliding wear behavior of these composites under an extended range of test conditions is predicted by a model based on the artificial neural network (ANN).

  20. An integrated ultrasonic-inductive pulse sensor for wear debris detection

    Science.gov (United States)

    Du, Li; Zhe, Jiang

    2013-02-01

    One approach to detect signs of potential machine failure is to detect wear debris in the lubrication oil of a rotating or reciprocating machine because the size and the concentration of wear debris particles in the oil show a direct relationship with the level of wear. In this article, a proof-of-principle integrated wear debris sensor consisting of an ultrasonic pulse sensor and an inductive pulse sensor for detecting wear debris in lubrication oil is presented. The ultrasonic pulse sensor detects all solid debris (metallic and non-metallic debris). A flow recess structure is utilized to ensure that all wear debris passes the acoustic focal region so that all debris can be accurately counted and sized. The inductive pulse sensor detects and counts all metallic debris (ferrous and non-ferrous) based on the inductive Coulter counting principle. By comparing the results from the two sensing components, the sensor is capable of differentiating and detecting non-metallic debris, ferrous metallic debris and non-ferrous metallic debris.

  1. The Tribological Performance of Hardfaced/ Thermal Sprayed Coatings for Increasing the Wear Resistance of Ventilation Mill Working Parts

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2015-09-01

    Full Text Available During the coal pulverizing, the working parts of the ventilation mill are being worn by the sand particles. For this reason, the working parts are usually protected with materials resistant to wear (hardfaced/thermal sprayed coatings. The aim of this study was to evaluate the tribological performance of four different types of coatings as candidates for wear protection of the mill’s working parts. The coatings were produced by using the filler materials with the following nominal chemical composition: NiFeBSi-WC, NiCrBSiC, FeCrCTiSi, and FeCrNiCSiBMn, and by using the plasma arc welding and flame and electric arc spraying processes. The results showed that Ni-based coatings exhibited higher wear resistance than Fe-based coatings. The highest wear resistance showed coating produced by using the NiFeBSi-WC filler material and plasma transferred arc welding deposition process. The hardness was not the only characteristic that affected the wear resistance. In this context, the wear rate of NiFeBSi-WC coating was not in correlation with its hardness, in contrast to other coatings. The different wear performance of NiFeBSi-WC coating was attributed to the different type and morphological features of the reinforcing particles (WC.

  2. Wear forms of heterogeneous electro-rheological fluids working in a hydraulic clutch system

    Science.gov (United States)

    Ziabska, E.; Duchowski, J.; Olszak, A.; Osowski, K.; Kesy, A.; Kesy, Z.; Choi, S. B.

    2017-09-01

    The paper presents experimental results concerning the wear of heterogeneous electro-rheological (ER) fluids operating as working fluids in a complex clutch system consisting of a hydrodynamic clutch and a cylinder viscous clutch. The change of electric field intensity in the clutches results in change of sheer stress values in working fluids what causes the change of transmitted torque. This work shows that the most important factors affecting the wear of the ER fluid are the electric field of high intensity, the accompanying electrical breakdown, and the high temperature of the silicone oil. In addition, the water from the humid air absorbed mainly by hygroscopic particles influences a significant impact on the wear of the working fluid. Various forms of wear particles of the fluid depending on the prevailing conditions such as working mode are observed from the microscopic aspects. It is observed that the particles are flattened, rolled out or smashed into smaller fragments, partially melted, wrinkled and glued or caked. In addition, it is identified that the partial destruction of silicone oil is occurred due to the damage of the hydrocarbon chains, as evidenced by the decrease in its viscosity and the presence of the particle matter newly containing silicon.

  3. Wear and Failure Mechanism of PTFE/SiO2/Epoxy Composites

    NARCIS (Netherlands)

    Shen, J.T.; Pei, Y.T.; De Hosson, J.Th.M.

    2016-01-01

    In this work, the wear and failure mechanism of polytetrafluoroethylene (PTFE)/SiO2/epoxy composites with a high concentration of SiO2 particles under dry sliding is examined. In the composite with 12.5 wt.% PTFE, a significant rise of the coefficient of friction (COF) appears after sliding over

  4. Inhibition of titanium particle-induced inflammatory osteolysis through inactivation of cannabinoid receptor 2 by AM630.

    Science.gov (United States)

    Geng, D C; Xu, Y Z; Yang, H L; Zhu, X S; Zhu, G M; Wang, X B

    2010-10-01

    Wear particle could induce inflammatory osteolysis and is the primary pathological factor for aseptic loosening. Although it is known that cannabinoid receptor 2 (CB2) inhibits osteoclast differentiation, the effect on inflammatory osteolysis induced by wear particles remains unclear. This study examined the effect of CB2 in the regulation of osteoclast differentiation in a murine macrophage cell line (RAW264.7), which has been shown to be stimulated by titanium (Ti) particles and receptor activator of the NF-kappaB ligand (RANKL). Results showed that CB2 expression in RAW cells cultured with Ti particles and RANKL. CB2 inactivation by AM630, a CB2 selective antagonist, effectively inhibited osteoclastogenesis in the differentiation medium system. AM630 treatment (> or =100 nM) significantly reduced the number of tartrate-resistant acid phosphatase-positive cells when compared with the control. Real-time reverse transcription polymerase chain reaction analysis revealed that AM630 (100 nM) inhibited mRNA expression of RANK and cathepsin K in RAW cells stimulated by Ti particles and RANKL. Moreover, enzyme-linked immunosorbent assay showed that AM630 (100 nM) reduced protein expression of interleukin-1beta and tumor necrosis factor-alpha in RAW cells cultured with Ti particles. In addition, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide revealed that AM630 had no toxic effect on RAW cells. These results suggested that CB2 inactivation by AM630 could provide a promising therapeutic target for treating or preventing aseptic loosening.

  5. [Development of drug delivery systems for targeting to macrophages].

    Science.gov (United States)

    Chono, Sumio

    2007-09-01

    Drug delivery systems (DDS) using liposomes as drug carriers for targeting to macrophages have been developed for the treatment of diseases that macrophages are related to their progress. Initially, DDS for the treatment of atherosclerosis are described. The influence of particle size on the drug delivery to atherosclerotic lesions that macrophages are richly present and antiatherosclerotic effects following intravenous administration of liposomes containing dexamethasone (DXM-liposomes) was investigated in atherogenic mice. Both the drug delivery efficacy of DXM-liposomes (particle size, 200 nm) to atherosclerotic lesions and their antiatherosclerotic effects were greater than those of 70 and 500 nm. These results indicate that there is an optimal particle size for drug delivery to atherosclerotic lesions. DDS for the treatment of respiratory infections are then described. The influence of particle size and surface mannosylation on the drug delivery to alveolar macrophages (AMs) and antibacterial effects following pulmonary administration of liposomes containing ciprofloxacin (CPFX-liposomes) was investigated in rats. The drug delivery efficacy of CPFX-liposomes to AMs was particle size-dependent over the range 100-1000 nm and then became constant at over 1000 nm. These results indicate that the most effective size is 1000 nm. Both the drug delivery efficacy of mannosylated CPFX-liposomes (particle size, 1000 nm) to AMs and their antibacterial effects were significantly greater than those of unmodified CPFX-liposomes. These results indicate that the surface mannosylation is useful method for drug delivery to AMs. This review provides useful information to help in the development of novel pharmaceutical formulations aimed at drug targeting to macrophages.

  6. Abrasive Wear Performance of Aluminium Modified Epoxy-Glass Fiber Composites

    Science.gov (United States)

    Kamble, Vikram G.; Mishra, Punyapriya; Al Dabbas, Hassan A.; Panda, H. S.; Fernandez, Johnathan Bruce

    2015-07-01

    For a long time, Aluminum filled epoxies molds have been used in rapid tooling process. These molds are very economical when applied in manufacturing of low volume of plastic parts. To improve the thermal conductivity of the material, the metallic filler material is added to it and the glass fiber improves the wear resistance of the material. These two important parameters establish the life of composites. The present work reports on abrasive wear behavior of Aluminum modified epoxy and glass fiber composite with 5 wt.% and 10 wt.% of aluminum particles. Through pin on disc wear testing machine, we studied the wear behaviors of composites, and all these samples were fabricated by using hand layup process. Epoxy resin was used as matrix material which was reinforced with Glass fiber and Aluminum as filler. The composite with 5 wt.% and 10 wt.% of Al was cast with dimensions 100 × 100 × 6 mm. The specimens were machined to a size of 6 × 6 × 4 mm for abrasive testing. Abrasive tests were carried out for different grit paper sizes, i.e., 150, 320, 600 at different sliding distance, i.e., 20, 40, 60 m at different loads of 5, 10 and 15 N and at constant speed. The weight loss due to wear was calculated along with coefficient of friction. Hardness was found using Rockwell hardness machine. The SEM morphology of the worn out surface wear was analyzed to understand the wear mechanism. Results showed that the addition of Aluminum particles was beneficial for low abrasive conditions.

  7. Wear behavior of Ni/WC surface-infiltrated composite coating on copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gui-rong; Ma, Ying; Hao, Yuan [Lanzhou University of Technology, Gansu (China). State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals; Song, Wen-ming [Lanzhou University of Technology, Gansu (China). State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals; Lanzhou Petroleum Machinery Institute, Gansu (China); Li, Jian [Wuhan Research Institute of Materials Protection (China); Lu, Jin-jun [Chinese Academy of Sciences, Lanzhou, Gansu (China). State Key Laboratory of Solid Lubrication

    2016-01-15

    Ni/WC surface-infiltrated composite coating was fabricated on copper alloy substrate through vacuum infiltration casting using Ni-based alloying powder and with different WC particle contents as raw materials. The wear behavior of Ni/WC surface-infiltrated composite coating was investigated using a block-on-ring tester at different loads and sliding speeds at room temperature. Results show that the wear rate of Ni/WC surface-infiltrated composite coating decreased to approximately one-sixth of the wear rate of the Ni-based alloy infiltrated coating. This phenomenon resulted from the supporting function of WC particles under varying loads applied on the specimen surface and the antifriction effect of the transformation layer. Wear rate was reduced by the Ni/WC-infiltrated composite coating with increasing load, especially when the load exceeded 100 N. The friction coefficient decreased with increasing sliding speed for all infiltrated coatings at any load condition. The reduction in the friction coefficient at high sliding speed was larger than that at low sliding speed with increasing load. The wear mechanism was dominated by oxidation under all experimental conditions and accompanied by adhesion and abrasion mechanisms at high load and high sliding speed.

  8. Wear Characteristics of Metallic Biomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hussein

    2015-05-01

    Full Text Available Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  9. Prediction of Wear in Crosslinked Polyethylene Unicompartmental Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Jonathan Netter

    2015-05-01

    Full Text Available Wear-related complications remain a major issue after unicompartmental arthroplasty. We used a computational model to predict knee wear generated in vitro under diverse conditions. Inverse finite element analysis of 2 different total knee arthroplasty designs was used to determine wear factors of standard and highly crosslinked polyethylene by matching predicted wear rates to measured wear rates. The computed wear factor was used to predict wear in unicompartmental components. The articular surface design and kinematic conditions of the unicompartmental and tricompartmental designs were different. Predicted wear rate (1.77 mg/million cycles was very close to experimental wear rate (1.84 mg/million cycles after testing in an AMTI knee wear simulator. Finite element analysis can predict experimental wear and may reduce the cost and time of preclinical testing.

  10. Identification of polyethylene glycol-resistant macrophages on stealth imaging in vitro using fluorescent organosilica nanoparticles.

    Science.gov (United States)

    Nakamura, Michihiro; Hayashi, Koichiro; Nakano, Mutsuki; Kanadani, Takafumi; Miyamoto, Kazue; Kori, Toshinari; Horikawa, Kazuki

    2015-02-24

    An in vitro imaging system to evaluate the stealth function of nanoparticles against mouse macrophages was established using fluorescent organosilica nanoparticles. Surface-functionalized organosilica nanoparticles with polyethylene glycol (PEG) were prepared by a one-step process, resulting in a brush-type PEG layer. A simultaneous dual-particle administration approach enabled us to evaluate the stealth function of nanoparticles with respect to single cells using time-lapse fluorescent microscopic imaging and flow cytometry analyses. Single-cell imaging and analysis revealed various patterns and kinetics of bare and PEGylated nanoparticle uptake. The PEGylated nanoparticles revealed a stealth function against most macrophages (PEG-sensitive macrophages); however, a stealth function against certain macrophages (PEG-insensitive macrophages) was not observed. We identified and characterized the PEG-resistant macrophages that could take up PEGylated nanoparticles at the same level as bare nanoparticles.

  11. Mechanical Properties and Friction/Wear Behavior of Copper Alloyed Powder Composites

    Institute of Scientific and Technical Information of China (English)

    DENG Chen-hong; CHEN Guang-zhi; GE Qi-lu

    2005-01-01

    Copper alloyed powder composites containing nanoparticles were developed by hot pressing. Effects of nanoscale activated sintering aid and fine ceramic particles Al2O3 on hardness, working quality, and behaviors of friction and wear of the composites have been studied, compared with the composites including microscale activated sintering aid and microscale ceramic particles. The microstructures of the samples were analyzed by SEM. The results show that the materials with nanoscale sintering aid and fine ceramic particles have better mechanical properties and abrasive resistance than the materials with microscale activated sintering aid and microceramic particles. Moreover, element mutual transfer occurs between samples (strip) and abrasive wheel (ring).

  12. Prediction of wear rates in comminution equipment

    DEFF Research Database (Denmark)

    Jensen, Lucas Roald Dörig; Fundal, Erling; Møller, Per

    2010-01-01

    Raw material comminution equipment may be exposed to excessive wear, which makes it difficult to operate minerals processing plants continuously because lengthy and unplanned shut-downs interrupt the overall process. In general, most comminution equipment is fine-tuned to operate at low vibrations......-resistant high chromium white cast iron (21988/JN/HBW555XCr21), a heat-treated wear resistant steel (Hardox 400) and a plain carbon construction steel (S235). Quartz, which accounts for the largest wear loss in the cement industry, was chosen as abrasive. Other process parameters such as velocity (1–7 m...

  13. The predictive analysis of wear work-rates in wear test rigs

    Energy Technology Data Exchange (ETDEWEB)

    Phalippou, C.; Delaune, X.

    1996-12-31

    Impact and sliding wear in components is classically studied, as far as the wear laws are concerned, in specific wear test rigs that simulate the vibratory motion induced by the flow. In this paper, an experimental and numerical study on the impact forces and wear work-rates of a typical AECL rig is presented. The mode shapes and frequencies are measured and compared with finite element computations. Impact and sliding motions between the wear specimens are calculated and compared to the experimental results. Impact forces, mean values of wear work-rates as well as the specimen relative motions are found to be close to the experimental data. (authors). 14 refs., 9 figs., 5 tabs.

  14. Fracture and Tribological Evaluation of Dental Composite Resins Containing Pre-polymerized Particle Fillers

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The fracture and tribological evaluation of dental composite resin containing pre-polymerized particle fillers wereinvestigated. Composite resins, e.g. metafil, silux plus, heliomolar and palfique estelite were selected as specimensin order to evaluate the effects of pre-polymerized particle filler on the fracture and wear characteristics of compositeresins. In the wear tests, a ball-on-flat wear test method was used. The friction coefficient of metafil was quite high.The wear resistance of silux plus and palfique estelite was better than that of metafil and heliomolar underthe sameexperimental condition. The main wear mechanism of composite resins containing pre-polymerized particle fillers wasan abrasive wear by brittle fracture of pre-polymerized particles and by debonding of fillers and matrix.

  15. Bioelectric modulation of macrophage polarization

    Science.gov (United States)

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-02-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.

  16. STUDIES ON TOOL WEAR CONDITION MONITORING

    Directory of Open Access Journals (Sweden)

    Hüseyin Metin ERTUNÇ

    2001-01-01

    Full Text Available In this study, wear mechanisms on cutting tools, especially for the drill bits, during the cutting operation have been investigated. As the importance of full automation in industry has gained substantial importance, tool wear condition monitoring during the cutting operation has been the subject of many investigators. Tool condition monitoring is very crucial in order to change the tool before breakage. Because tool breakage can cause considerable economical damage to both the machine tool and workpiece. In this paper, the studies on the monitoring of drill bit wear in literature have been introduced; the direct/indirect techniques used and sensor fusion techniques have been summarized. The methods which were proposed to determine tool wear evolution as processing the sensor signals collected have been provided and their references have been given for detailed information.

  17. Wear behavior of austenite containing plate steels

    Science.gov (United States)

    Hensley, Christina E.

    As a follow up to Wolfram's Master of Science thesis, samples from the prior work were further investigated. Samples from four steel alloys were selected for investigation, namely AR400F, 9260, Hadfield, and 301 Stainless steels. AR400F is martensitic while the Hadfield and 301 stainless steels are austenitic. The 9260 exhibited a variety of hardness levels and retained austenite contents, achieved by heat treatments, including quench and tempering (Q&T) and quench and partitioning (Q&P). Samples worn by three wear tests, namely Dry Sand/Rubber Wheel (DSRW), impeller tumbler impact abrasion, and Bond abrasion, were examined by optical profilometry. The wear behaviors observed in topography maps were compared to the same in scanning electron microscopy micrographs and both were used to characterize the wear surfaces. Optical profilometry showed that the scratching abrasion present on the wear surface transitioned to gouging abrasion as impact conditions increased (i.e. from DSRW to impeller to Bond abrasion). Optical profilometry roughness measurements were also compared to sample hardness as well as normalized volume loss (NVL) results for each of the three wear tests. The steels displayed a relationship between roughness measurements and observed wear rates for all three categories of wear testing. Nanoindentation was used to investigate local hardness changes adjacent to the wear surface. DSRW samples generally did not exhibit significant work hardening. The austenitic materials exhibited significant hardening under the high impact conditions of the Bond abrasion wear test. Hardening in the Q&P materials was less pronounced. The Q&T microstructures also demonstrated some hardening. Scratch testing was performed on samples at three different loads, as a more systematic approach to determining the scratching abrasion behavior. Wear rates and scratch hardness were calculated from scratch testing results. Certain similarities between wear behavior in scratch testing

  18. Wear Behavior of Mechanically Alloyed Ti-Based Bulk Metallic Glass Composites Containing Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    2016-11-01

    Full Text Available The present paper reports the preparation and wear behavior of mechanically alloyed Ti-based bulk metallic glass composites containing carbon nanotube (CNT particles. The differential scanning calorimeter results show that the thermal stability of the amorphous matrix is affected by the presence of CNT particles. Changes in glass transition temperature (Tg and crystallization temperature (Tx suggest that deviations in the chemical composition of the amorphous matrix occurred because of a partial dissolution of the CNT species into the amorphous phase. Although the hardness of CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composites is increased with the addition of CNT particles, the wear resistance of such composites is not directly proportional to their hardness, and does not follow the standard wear law. A worn surface under a high applied load shows that the 12 vol. % CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composite suffers severe wear compared with monolithic Ti50Cu28Ni15Sn7 bulk metallic glass.

  19. A Study of Slipper and Rail Wear Interaction at Low Speed

    Science.gov (United States)

    2014-06-19

    taking care of the boys, a house and a dog and for not getting discouraged. I pray that they will learn as I have how important it is to ensure Yahovah...wear, delamination wear, seizure wear, melt wear, severe oxidational wear and adhesive wear. Adhesive wear comprised of three zones: low speed...model is experiencing seizure or melt wear, then something is wrong with the model. Lim and Ashby also published on their wear map the normalized wear

  20. Third abrasive wear mode: is it possible?

    Directory of Open Access Journals (Sweden)

    Ronaldo Câmara Cozza

    2014-04-01

    Full Text Available The objective of this paper is to propose an initial discussion on the characterization of a third abrasive wear mode. The results obtained in a previous work [1] under different test conditions revealed the occurrence of the superposition of the “rolling” and “grooving” abrasive wear modes. This phenomenon was denoted “micro-rolling abrasion” due to the observation that “rolling abrasion” was found to act on “grooving abrasion”.

  1. Biotribology :articular cartilage friction, wear, and lubrication

    OpenAIRE

    Schroeder, Matthew O

    1995-01-01

    This study developed, explored, and refined techniques for the in vitro study of cartilage-on-cartilage friction, deformation, and wear. Preliminary results of in vitro cartilage-on- cartilage experiments with emphasis on wear and biochemistry are presented. Cartilage-bone specimens were obtained from the stifle joints of steers from a separate controlled study. The load, sliding speed, and traverse of the lower specimens were held constant as lubricant and test length were varied. Lubric...

  2. Pseudomembranous candidiasis in patient wearing full denture

    Directory of Open Access Journals (Sweden)

    Nurdiana Nurdiana

    2009-06-01

    Full Text Available Background: Oral candidiasis is a common opportunistic infection of the oral cavity caused by an overgrowth of Candida species, the commonest being Candida albicans. Candida albicans is a harmless commensal organism inhabiting the mouths but it can change into pathogen and invade tissue and cause acute and chronic disease. Dentures predispose to infection with Candida in as many as 65% of elderly people wearing full upper dentures. Purpose: The purpose of this case report is to discuss thrush in patient wearing full denture which rapidly developed. Case: This paper report a case of 57 year-old man who came to the Oral Medicine Clinic Faculty of Dentistry Airlangga University with clinical appearance of pseudomembranous candidiasis (thrush. Case Management: Diagnosis of this case is confirmed with microbiology examination. Patient was wearing full upper dentures, and from anamnesis known that patient wearing denture for 24 hours and he had poor oral hygiene. Patient was treated with topical (nystatin oral suspension and miconazole oral gel and systemic (ketoconazole antifungal. Patient also instructed not to wear his denture and cleaned white pseudomembrane on his mouth with soft toothbrush. Conclusion: Denture, habit of wearing denture for 24 hours, and poor oral hygiene are predisposing factors of thrush and it can healed completely after treated with topical and systemic antifungal.

  3. Wear Calculation for Sliding Friction Pairs

    Science.gov (United States)

    Springis, G.; Rudzitis, J.; Avisane, A.; Leitans, A.

    2014-04-01

    One of the principal objectives of modern production process is the improvement of quality level; this means also guaranteeing the required service life of different products and increase in their wear resistance. To perform this task, prediction of service life of fitted components is of crucial value, since with the development of production technologies and measuring devices it is possible to determine with ever increasing precision the data to be used also in analytical calculations. Having studied the prediction theories of wear process that have been developed in the course of time and can be classified into definite groups one can state that each of them has shortcomings that might strongly impair the results thus making unnecessary theoretical calculations. The proposed model for wear calculation is based on the application of theories from several branches of science to the description of 3D surface micro-topography, assessing the material's physical and mechanical characteristics, substantiating the regularities in creation of the material particles separated during the wear process and taking into consideration definite service conditions of fittings. ums Mūsdienu ražošanas procesa viens no pamatmērķiem ir produkcijas kvalitātes līmeņa paaugstināšana, tas nozīmē arī dažādu izstrādājumu nepieciešamā kalpošanas laika nodrošināšanu un nodilumizturības palielināšanu. Svarīga loma šī uzdevuma sasniegšanā ir salāgojamo detaļu kalpošanas laika prognozēšanai, kas ir ļoti aktuāls jautājums, jo attīstoties dažādām ražošanas, kā arī mēriekārtu tehnoloģijām, kļūst iespējams arvien precīzāk noteikt nepieciešamos datus, kuri vēlāk tiek izmantoti arī analītiskajos aprēķinos. Apskatot laika gaitā izstrādātās dilšanas procesa prognozēšanas teorijas, kuras var klasificēt, apkopojot tās noteiktās grupās, ņemot par pamatu līdzīgas teorētiskās pieejas, jāsaka, ka katrai no tām piemīt da

  4. Effects of wheat starch on erosive wear of E-glass fibre reinforced epoxy resin composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, V.K. [Department of Mechanical Engineering, Institute of Technology, Banaras Hindu University, Varanasi 221005 (India)]. E-mail: vk_sa@yahoo.co.in

    2006-11-05

    Erosive wear tests were carried out to study the effects of particle, impingement angle and particle velocity on the solid particle erosion behaviour of E-glass fibre reinforced epoxy resin (GFRP) composites. The erosive wear of wheat flour powder filled composites is evaluated at different impingement angles from 30 deg. to 90 deg. and at three different velocities of 24, 35 and 52 m s{sup -1}. The erodent used is silica sand with the size range 150-250 {mu}m of irregular shapes. The result shows erosive wear rates of GFRP composite with 2 g wheat flour, as filler is the lowest. This restricts fiber-matrix debonding. Pure glass epoxy without any filler shows the highest erosion rate due to weak bonding strength. The morphologies of eroded surface were examined by the scanning electron microscope.

  5. Microstructure, Properties and Wear Behaviors of (Ni3Al)p Reinforced Cu Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    I brahim Celikyurek; Nese O. Korpe; Tugba Olcer; Remzi Gurler

    2011-01-01

    Pure copper and its composites reinforced with Ni3Al particles were produced by powder metallurgy (PM). Ni3Al powders were produced by mechanical ball milling from vacuum arc melted compounds. The Ni3Al powders were characterized by X-ray diffraction (XRD). The microscopy examinations revealed that the Ni3Al particles were distributed uniformly in the matrix. The effects of the particle fraction on the density, electrical conductivity, strength and dry sliding wear resistance of composite were investigated. It was found that the density and electrical conductivity of the composites decrease while the compression yield strength and wear resistance of composites increase with an increase in the particle fraction. The dry sliding wear tests were performed with pin-on-disk geometry. After sliding wear tests, the worn surfaces were examined by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). Results have shown that the wear mechanism is oxidative and adhesive.

  6. Multiphase Flow and Wear in the Cutting Head of Ultra-high Pressure Abrasive Water Jet

    Institute of Scientific and Technical Information of China (English)

    YANG Minguan; WANG Yuli; KANG Can; YU Feng

    2009-01-01

    Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal jet flow of the cutting head at the condition of ultra-high pressure. The multiphase flow in the cutting head is numerically simulated to study the abrasive motion mechanism and wear inside the cutting head at the pressure beyond 300 Mpa. Visible predictions of the particles trajectories and wear rate in the cutting head are presented. The influences of the abrasive physical properties, size of the jewel orifice and the operating pressure on the trajectories are discussed. Based on the simulation, a wear experiment is carried out under the corresponding pressures. The simulation and experimental results show that the flow in the mixing chamber is composed of the jet core zone and the disturbance zone, both affect the particles trajectories. The mixing efficiency drops with the increase of the abrasive granularity. The abrasive density determines the response of particles to the effects of different flow zones, the abrasive with medium density gives the best general performance. Increasing the operating pressure or using the jewel with a smaller orifice improves the coherency of particles trajectories but increases the wear rate of the jewel holder at the same time. Walls of the jewel holder, the entrance of the mixing chamber and the convergence part of the mixing tube are subject to wear out. The computational and experimental results give a qualitative consistency which proves that this numerical method can provide a reliable and visible cognition of the flow characteristics of ultra-high pressure abrasive water jet. The investigation is benefit for improving the machining properties of water jet cutting systems and the optimization design of the cutting head.

  7. Modeling of wear behavior of Al/B{sub 4}C composites produced by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Ismail; Bektas, Asli [Gazi Univ., Ankara (Turkey). Dept. of Industrial Design Engineering; Guel, Ferhat; Cinci, Hanifi [Gazi Univ., Ankara (Turkey). Dept. of Materials and Metallurgy Engineering

    2017-06-01

    Wear characteristics of composites, Al matrix reinforced with B{sub 4}C particles percentages of 5, 10,15 and 20 produced by the powder metallurgy method were studied in this study. For this purpose, a mixture of Al and B{sub 4}C powders were pressed under 650 MPa pressure and then sintered at 635 C. The analysis of hardness, density and microstructure was performed. The produced samples were worn using a pin-on-disk abrasion device under 10, 20 and 30 N load through 500, 800 and 1200 mesh SiC abrasive papers. The obtained wear values were implemented in an artificial neural network (ANN) model having three inputs and one output using feed forward backpropagation Levenberg-Marquardt algorithm. Thus, the optimum wear conditions and hardness values were determined.

  8. Wear Behavior of Aluminium Metal Matrix Composite Prepared from Industrial Waste

    Directory of Open Access Journals (Sweden)

    L. Francis Xavier

    2016-01-01

    Full Text Available With an increase in the population and industrialization, a lot of valuable natural resources are depleted to prepare and manufacture products. However industrialization on the other hand has waste disposal issues, causing dust and environmental pollution. In this work, Aluminium Metal Matrix Composite is prepared by reinforcing 10 wt% and 20 wt% of wet grinder stone dust particles an industrial waste obtained during processing of quarry rocks which are available in nature. In the composite materials design wear is a very important criterion requiring consideration which ensures the materials reliability in applications where they come in contact with the environment and other surfaces. Dry sliding wear test was carried out using pin-on-disc apparatus on the prepared composites. The results reveal that increasing the reinforcement content from 10 wt% to 20 wt% increases the resistance to wear rate.

  9. Wear resistance analysis of the aluminum 7075 alloy and the nanostructured aluminum 7075 - silver nanoparticles composites

    Directory of Open Access Journals (Sweden)

    Estrada-Ruiz R.H.

    2016-01-01

    Full Text Available Nanostructured composites of the aluminum 7075 alloy and carbon-coated silver nanoparticles were synthetized by the mechanical milling technique using a high-energy mill SPEX 8000M; the powders generated were compacted, sintered and hot-extruded to produce 1 cm-diameter bars. The composites were then subjected to a wear test using a pin-on-disc device to validate the hypothesis that second phase-ductile nanometric particles homogenously distributed throughout the metalmatrix improve the wear resistance of the material. It was found that silver nanoparticles prevent the wear of the material by acting as an obstacle to dislocations movement during the plastic deformation of the contact surface, as well as a solid lubricant when these are separated from the metal-matrix.

  10. Wear Behaviour of A356/TiAl3 in Situ Composites Produced by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Seda Çam

    2016-02-01

    Full Text Available In this study, the effects of in situ TiAl3 particles on dry sliding wear behavior of A356 aluminum alloy (added Ti composites were investigated. The wear samples were prepared by adding different amounts of Ti (4%, 6%, and 8% into A356 powder alloy by mechanical alloying. The mechanically alloyed powders were cold pressed at 600 MPa and sintered 530 °C for 1 h in argon atmosphere and cooled in the furnace. After the sintering process, the samples were characterized. The results show that AlTi and TiAl3 intermetallic phases were formed and their amount increased depending on the amount of Ti added into A356 powder alloy. Out of the samples sintered with different titanium amounts (1 h at 530 °C, the highest hardness value and, accordingly, the lowest wear amount, were observed in the alloy containing 8% Ti.

  11. Microstructure and wear resistance of high chromium cast iron containing niobium

    Directory of Open Access Journals (Sweden)

    Zhang Zhiguo

    2014-05-01

    Full Text Available In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the alloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.

  12. Wear Property of Cast Steel Wheel Material in Rail Truck

    Institute of Scientific and Technical Information of China (English)

    MI Guo-fa; LIU Yan-lei; ZHANG Bin; FU Xiu-qin; ZHANG Hong; SONG Guo-xiang

    2009-01-01

    Wear property of material plays a key role in the service time of workpiece.A major objective in the development of new wheel materials is to improve the wear performance.The wear property of B and B+ grade cast steel materials was reported.The results showed that B+ grade cast steel material exhibited better wear property than the B grade material.Carbon content related to the hardness match was the principal factor affecting the wear properties.

  13. Wear-resistance of Aluminum Matrix Microcomposite Materials

    Directory of Open Access Journals (Sweden)

    M. Kandeva

    2011-03-01

    Full Text Available A procedure is developed for the study of wear of aluminum alloys AlSi7 obtained by casting, reinforced by TiC microparticles, before and after heat treatment. Tribological study is realized under conditions of friction on counterbody with fixed abrasive. Experimental results were obtained for mass wear, wear rate, wear intensity and wear-resistance of the alloys with different wt% of microparticles.

  14. LDL Receptor-Related Protein-1 (LRP1 Regulates Cholesterol Accumulation in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna P Lillis

    Full Text Available Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1 to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR-deficient background (macLRP1-/-. After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.

  15. Behavior of HVOF WC-10Co4Cr Coatings with Different Carbide Size in Fine and Coarse Particle Abrasion

    Science.gov (United States)

    Ghabchi, Arash; Varis, Tommi; Turunen, Erja; Suhonen, Tomi; Liu, Xuwen; Hannula, S.-P.

    2010-01-01

    A modified ASTM G 65 rubber wheel test was employed in wet and dry conditions using 220 nm titania particles and 368 μm sand particles, respectively. Both tests were conducted on WC-CoCr coatings produced with two powders with different carbide grain sizes (conventional and sub-micron) to address the effect of carbide size and abrasive medium characteristics on the wear performance. The same spot before and after the wet abrasion wear testing was analyzed in detail using SEM to visualize wear mechanisms. It was shown that the wear mechanism depends on the relative size of the carbide and abrasive particles. Wear mechanisms in dry sand abrasion were studied by analyzing the single scratches formed by individual abrasive particles. Interaction of surface open porosity with moving abrasive particles causes formation of single scratches. By tailoring the carbide size, the wear performance can be improved.

  16. Corrosion and wear properties of Ni-Sn-P ternary deposits on mild steel via electroless method

    Directory of Open Access Journals (Sweden)

    A.P.I. Popoola

    2016-09-01

    Full Text Available The rising necessity to improve corrosion and wear resistance of metals for engineering applications cannot be over emphasized. This has led to employing diverse models, method and techniques to obtain better corrosion and wear resistances for metallic materials and components which will otherwise fail during service. This work investigated the effect of Ni-P binary and Ni-Sn-P ternary electroless depositions on the corrosion and wear behavior of mild steel. Micro-structural examination using scanning electron microscopy (SEM analysis shows finer and more evenly distributed particle orientation across the substrate surface. The Ni-Sn-P ternary deposits on the mild steel displayed from the linear polarization analysis a better corrosion resistance with corrosion rate values of 0.000246 mm/yr as compared with that of the Ni-P binary deposits with 0.016672 mm/yr. Also the coefficient of friction of the unplated sample varies between 0 and 0.08 while for the plated samples the coefficient of friction was relatively lesser and ranged from 0 to 0.02. Significant improvement in corrosion resistance was also indicated by a positive shift in potential. Sliding wear analysis demonstrates consistently enhanced wear resistance of the ternary deposits as well as the binary deposits, with the ternary Sn addition showing better resistance to wear. This work has established that Ni-Sn-P electroless coating of mild steel can be used to improve the corrosion and wear resistance for engineering applications.

  17. SIV Infection of Lung Macrophages.

    Directory of Open Access Journals (Sweden)

    Yue Li

    Full Text Available HIV-1 depletes CD4+ T cells in the blood, lymphatic tissues, gut and lungs. Here we investigated the relationship between depletion and infection of CD4+ T cells in the lung parenchyma. The lungs of 38 Indian rhesus macaques in early to later stages of SIVmac251 infection were examined, and the numbers of CD4+ T cells and macrophages plus the frequency of SIV RNA+ cells were quantified. We showed that SIV infected macrophages in the lung parenchyma, but only in small numbers except in the setting of interstitial inflammation where large numbers of SIV RNA+ macrophages were detected. However, even in this setting, the number of macrophages was not decreased. By contrast, there were few infected CD4+ T cells in lung parenchyma, but CD4+ T cells were nonetheless depleted by unknown mechanisms. The CD4+ T cells in lung parenchyma were depleted even though they were not productively infected, whereas SIV can infect large numbers of macrophages in the setting of interstitial inflammation without depleting them. These observations point to the need for future investigations into mechanisms of CD4+ T cell depletion at this mucosal site, and into mechanisms by which macrophage populations are maintained despite high levels of infection. The large numbers of SIV RNA+ macrophages in lungs in the setting of interstitial inflammation indicates that lung macrophages can be an important source for SIV persistent infection.

  18. Analysis of polyethylene wear of reverse shoulder components: A validated technique and initial clinical results.

    Science.gov (United States)

    Lewicki, Kathleen A; Bell, John-Erik; Van Citters, Douglas W

    2016-06-27

    One of the most prevalent phenomena associated with reverse total shoulder arthroplasty (rTSA) is scapular notching. Current methods examine only the damage to the scapula and no methods are available for quantifying the total wear volume of the polyethylene humeral bearing. Quantifying the polyethylene material loss may provide insight into the mechanism for scapular notching and into the particle dose delivered to the patient. A coordinate measurement machine (CMM) and custom computer algorithms were employed to quantify the volumetric wear of polyethylene humeral bearings. This technique was validated using two never-implanted polyethylene humeral liners with a controlled amount of wear in clinically relevant locations. The technique was determined to be accurate to within 10% of the known value and within 5 mm(3) of the gravimetrically determined values. Following validation, ten retrieved polyethylene humeral liners were analyzed to determine a baseline for future clinical tests. Four of the ten polyethylene humeral liners showed visible and measureable wear volumes ranging from 40 mm(3) to 90 mm(3) total with a maximum wear rate as high as 470 mm(3) /year in one short duration and significantly damaged humeral liner. This validated technique has the potential to relate patient outcomes such as scapular notching grades to polyethylene release into the body. While the total wear volumes are less than reported in literature for cases of osteolysis in knee and hip patients, dosages are well within the osteolytic thresholds that have been suggested, indicating that osteolysis may be a clinical concern in the shoulder. This work provides the basis for future studies that relate volumetric wear to patient outcomes. This article is protected by copyright. All rights reserved.

  19. Preparation and Wear Resistance of Aluminum Composites Reinforced with In Situ Formed TiO/Al2O3

    Science.gov (United States)

    Qin, Q. D.; Huang, B. W.; Li, W.; Zeng, Z. Y.

    2016-05-01

    An in situ TiO/Al2O3-reinforced Al composite is successfully prepared using a powder metallurgy route by the reaction of Ti2CO and Al powder. The Ti2CO powder is produced by carrying out a carbothermic reduction of titanium dioxide at 1000 °C. XRD results show that the final product is composed of Al, TiO, Al2O3, and Al3Ti. Morphology examination of the composite reveals the presence of bigger blocks of TiO and fine particles of Al2O3 and the volume fraction of reinforcement is found to range between 18 and 55%. As the volume fraction of the reinforced materials approaches 50%, the particles start to agglomerate. Dry sliding wear tests conducted using a conventional pin-on-disk testing machine show that the wear resistance of the composite is higher than that of the pure aluminum ingot. The wear rate of the composite increases almost linearly with the increase in the wear distance. The sliding wear test shows that as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear mechanism is also discussed.

  20. Effect of TiB2 Additives on Wear Behavior of NiCrBSi-Based Plasma-Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Oleksandr UMANSKYI

    2016-05-01

    Full Text Available The influence of titanium diboride additives on microstructure and wear-resistance of NiCrBSi thermally sprayed coatings deposited on a steel substrate has been studied. NiCrBSi-based composite powders with 10, 20, 40 wt.% TiB2 particles content were produced. The structure of NiCrSiB-TiB2 coatings consists of TiB2 and CrB grains distributed in Ni-based matrix. The wear-resistance of NiCrSiB-TiB2 plasma sprayed coatings in dry sliding conditions against the same coating using pin-on-disk tester. It was determined that the amount of titanium diboride particles in  NiCrBSi-based coatings influences essentially on the wear  resistance and wear mechanism. The NiCrBSi-based plasma sprayed coatings containing 20 wt. % of TiB2 possess the highest wear resistance due to the realization of mechano-oxidational wear mechanism.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7307

  1. A surface crosslinked UHMWPE stabilized by vitamin E with low wear and high fatigue strength.

    Science.gov (United States)

    Oral, Ebru; Ghali, Bassem W; Rowell, Shannon L; Micheli, Brad R; Lozynsky, Andrew J; Muratoglu, Orhun K

    2010-09-01

    Wear particle-induced periprosthetic osteolysis has been a clinical problem driving the development of wear resistant ultrahigh molecular weight polyethylene (UHMWPE) for total joint replacement. Radiation crosslinking has been used to decrease wear through decreased plastic deformation; but crosslinking also reduces mechanical properties including fatigue resistance, a major factor limiting the longevity of joint implants. Reducing UHMWPE wear with minimal detriment to mechanical properties is an unaddressed need for articular bearing surface development. Here we report a novel approach to achieve this by limiting crosslinking to the articular surface. The antioxidant vitamin E reduces crosslinking efficiency in UHMWPE during irradiation with increasing concentration, thus we propose to spatially control the crosslink density distribution by controlling the vitamin E concentration profile. Surface crosslinking UHMWPE prepared using this approach had high wear resistance and decreased crosslinking in the bulk resulting in high fatigue crack propagation resistance. The interface region did not represent a weakness in the material due to the gradual change in the crosslink density. Such an implant has the potential of decreasing risk of fatigue fracture of total joint implants as well as expanding the use of UHMWPE to younger and more active patients.

  2. Investigation of anti-wear performance of automobile lubricants using thin layer activation analysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Jayashree [Isotope and Radiation Application Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Thakre, G.D. [Tribology and Combustion Division, Indian Institute of Petroleum, Dehradun 248005, Uttarakhand (India); Pant, H.J., E-mail: hjpant@barc.gov.in [Isotope and Radiation Application Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Samantray, J.S. [Isotope and Radiation Application Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Arya, P.K. [Tribology and Combustion Division, Indian Institute of Petroleum, Dehradun 248005, Uttarakhand (India); Sharma, S.C.; Gupta, A.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2017-05-15

    An investigation was carried out to examine the anti-wear behavior of automobile lubricants using thin layer activation analysis technique. For this study disc gears made of EN 31 steel were labeled with a small amount of radioactivity by irradiating with 13 MeV proton beam from a particle accelerator. Experiments on wear rate measurement of the gear were carried out by mounting the irradiated disc gear on a twin-disc tribometer under lubricated condition. The activity loss was monitored by using a NaI(Tl) scintillation detector integrated with a multichannel analyzer. The relative remnant activity was correlated with thickness loss by generating a calibration curve. The wear measurements were carried out for four different types of lubricants, named as, L1, L2, L3 and L4. At lower load L1 and L4 were found to exhibit better anti-wear properties than L2 and L3, whereas, L4 exhibited the best anti-wear performance behavior than other three lubricants at all the loads and speeds investigated.

  3. Mechanical and Wear Properties of SiC/Graphite Reinforced Al359 Alloy-based Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    Shubhranshu Bansal

    2015-07-01

    Full Text Available Al359 alloy was reinforced with Silicon Carbide and Silicon Carbide/Graphite particles using stir casting process. Thereafter their mechanical and wear properties were investigated. It was found that the hardness of the Al359-Silicon Carbide composite is better than Al359-Silicon Carbide-Graphite composite. The Silicon Carbide/Graphite reinforced composite exhibits a superior ultimate tensile strength against Silicon Carbide reinforced composite. The wear test was conducted at different loading, sliding velocities and sliding distances conditions. Results showed that the wear resistance of Al359 alloy increased with the reinforcement of Silicon Carbide/Graphite material for higher loading, sliding velocities and sliding distance conditions. SEM images of the worn surface of the pin were examined to study their wear mechanism.Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 330-338, DOI: http://dx.doi.org/10.14429/dsj.65.8676

  4. Effects of Deep Cryogenic Treatment on Wear Mechanisms and Microthermal Expansion for the Material of Drive Elements

    Directory of Open Access Journals (Sweden)

    Yuh-Ping Chang

    2013-01-01

    Full Text Available By the composite heat treatments, the strength and the surface hardness of the materials of drive elements can be improved. Moreover, the high accurate and capable machines can be obtained. For the numerous composite heat treatments, the deep cryogenic treatment has been used widely for the purpose of low thermal expansion in the industry. Therefore, this paper is further to investigate the low friction, wear resistance, and low thermal expansion for the carburizing steels of drive elements with deep cryogenic treatment. According to the experimental results, martensitic transformation occurred after the deep cryogenic treatment. The effects of deep cryogenic treatment on wear mechanisms are significant. The shape of wear particles changes from slip tongue to smooth stratification. Moreover, the surface magnetization is smaller for the case of Carburizing-Deep cryogenic treatment. Hence, the wear mechanism becomes simple. Besides, the thermal expansion is significantly smaller for the case of Carburizing-Deep cryogenic treatment.

  5. REDUCED ENGINE FRICTION AND WEAR

    Energy Technology Data Exchange (ETDEWEB)

    Ron Matthews

    2005-05-01

    This Final Technical Report discusses the progress was made on the experimental and numerical tasks over the duration of this project regarding a new technique for decreasing engine friction and wear via liner rotation. The experimental subtasks involved quantifying the reduction in engine friction for a prototype rotating liner engine relative to a comparable baseline engine. Both engine were single cylinder conversions of nominally identical production four-cylinder engines. Hot motoring tests were conducted initially and revealed that liner rotation decreased engine friction by 20% under motoring conditions. A well-established model was used to estimate that liner rotation should decrease the friction of a four-cylinder engine by 40% under hot motoring conditions. Hot motoring tear-down tests revealed that the crankshaft and valve train frictional losses were essentially the same for the two engines, as expected. However, the rotating liner engine had much lower (>70%) piston assembly friction compared to the conventional engine. Finally, we used the Instantaneous IMEP method to compare the crank-angle resolved piston assembly friction for the two engines. Under hot motoring conditions, these measurements revealed a significant reduction in piston assembly friction, especially in the vicinity of compression TDC when the lubrication regime transitions from hydrodynamic through mixed and into boundary friction. We have some remaining problems with these measurements that we expect to solve during the next few weeks. We will then perform these measurements under firing conditions. We also proposed to improve the state-of-the-art of numerical modeling of piston assembly friction for conventional engines and then to extend this model to rotating liner engines. Our research team first modeled a single ring in the Purdue ring-liner test rig. Our model showed good agreement with the test rig data for a range of speeds and loads. We then modeled a complete piston

  6. Structural transformations in wear resistance of iron- and cobalt-based amorphous alloys during abrasive wear

    Science.gov (United States)

    Korshunov, L. G.; Shabashov, V. A.; Chernenko, N. L.

    2010-04-01

    The wear resistance and structural changes in a number of amorphous alloys based on iron and cobalt and in high-carbon tool steels are studied during wear by a fixed abrasive (crondum, Carborundum) at room temperature and -196°C. The abrasive wear resistance of the amorphous alloys is shown to be 1.6-3.1 lower than that of the high-carbon tool steels having a similar hardness. The relatively low level of the abrasive wear resistance of the amorphous alloys is assumed to be caused by strain softening of their surface during wear. A nanocrystalline structure is found to form in local microvolumes in a thin deformed surface layer of the alloys.

  7. Severe impingement of lumbar disc replacements increases the functional biological activity of polyethylene wear debris.

    Science.gov (United States)

    Baxter, Ryan M; Macdonald, Daniel W; Kurtz, Steven M; Steinbeck, Marla J

    2013-06-05

    Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all three size

  8. Incisor wear and age in Yellowstone bison

    Science.gov (United States)

    Christianson, D.A.; Gogan, P.J.P.; Podruzny, K.M.; Olexa, E.M.

    2005-01-01

    Biologists commonly use tooth eruption and wear patterns or cementum annuli techniques to estimate age of ungulates. However, in some situations the accuracy or sampling procedures of either approach are undesirable. We investigated the progression of several quantitative measures of wear with age, using permanent first incisors from Yellowstone bison (Bison bison), and tested for differences between sexes and herds. We further investigated the relationship of wear and age to explore an age-estimation method. Labial-lingual width (LLW) correlated best with assigned age (r2=0.66, males; r2=0.76 females). Labial-lingual width differed between sexes, with females showing ∼0.2 mm more wear than males. Additionally, differences in rate of wear existed between bison of the northern and central Yellowstone herds (1.2 and 0.9 mm/year, respectively). We developed a regression formula to test the power of LLW as an estimator of Yellowstone bison age. Our method provided estimated ages within 1 year of the assigned age 73% and 82% of the time for female and male bison, respectively.

  9. Dental Wear: A Scanning Electron Microscope Study

    Directory of Open Access Journals (Sweden)

    Luca Levrini

    2014-01-01

    Full Text Available Dental wear can be differentiated into different types on the basis of morphological and etiological factors. The present research was carried out on twelve extracted human teeth with dental wear (three teeth showing each type of wear: erosion, attrition, abrasion, and abfraction studied by scanning electron microscopy (SEM. The study aimed, through analysis of the macro- and micromorphological features of the lesions (considering the enamel, dentin, enamel prisms, dentinal tubules, and pulp, to clarify the different clinical and diagnostic presentations of dental wear and their possible significance. Our results, which confirm current knowledge, provide a complete overview of the distinctive morphology of each lesion type. It is important to identify the type of dental wear lesion in order to recognize the contributing etiological factors and, consequently, identify other more complex, nondental disorders (such as gastroesophageal reflux, eating disorders. It is clear that each type of lesion has a specific morphology and mechanism, and further clinical studies are needed to clarify the etiological processes, particularly those underlying the onset of abfraction.

  10. Brush seal shaft wear resistant coatings

    Science.gov (United States)

    Howe, Harold

    1995-03-01

    Brush seals suffer from high wear, which reduces their effectiveness. This work sought to reduce brush seal wear by identifying and testing several industry standard coatings. One of the coatings was developed for this work. It was a co-sprayed PSZ with boron-nitride added for a high temperature dry lubricant. Other coatings tested were a PSZ, chrome carbide and a bare rotor. Testing of these coatings included thermal shocking, tensile testing and wear/coefficient of friction testing. Wear testing consisted of applying a coating to a rotor and then running a sample tuft of SiC ceramic fiber against the coating. Surface speeds at point of contact were slightly over 1000 ft/sec. Rotor wear was noted, as well as coefficient of friction data. Results from the testing indicates that the oxide ceramic coatings cannot withstand the given set of conditions. Carbide coatings will not work because of the need for a metallic binder, which oxidizes in the high heat produced by friction. All work indicated a need for a coating that has a lubricant contained within itself and the coating must be resistant to an oxidizing environment.

  11. Impact wear behaviors of Hadfield manganese steel

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; XU Yun-hua; CEN Qi-hong; ZHU Jin-hua

    2005-01-01

    Impact wear behaviors of Hadfield manganese steel at different impact angles were investigated. The results of impact wear tests show that there exists a critical impact load for Hadfield steel. The wear rate suddenly turns down after some impact cycles when the impact load is greater than the critical load. The critical impact load is smaller than 8.2 J in this research because the nano-sized austenitic grains embedded in amorphous delay the crack propagation in subsurface. From high resolution transmission electron microscope (HRTEM) examination of subsurface microstructure, it is found that a large amount of nano-sized grains embedded in bulk amorphous matrix are fully developed and no martensitic transformation occurs during the impact wear process. The analytical results of worn surface morphology and debris indicate that the initiation of crack, propagation and spalling are restricted in the amorphous phase, resulting in the size distribution of debris in nano-sizes, which is the reason why the wear rate of Hadfield steel is greatly decreased at high impact load.

  12. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:... potentialregulators of macrophage inflammatory activities. PubmedID 12472665 Title Macrophage-stimulatin

  13. [Wear and different restorative materials--a review].

    Science.gov (United States)

    Beyth, N; Sharon, E; Lipovetsky, M; Smidt, A

    2006-07-01

    Wear of materials is a complex and unpredictable phenomenon. The variables affecting the mechanism of wear include the properties of the two contacting materials and the surrounding and interfacial media. This paper reviews the dental wear of different restorative materials and their counter effect on the tooth structure. It presents the updated classifications for tooth surface lesions termed dental wear, and discusses the wear behavior of various restorative materials. Some guidelines for restorative material selection are given. Clinical wear bears a multifactorial etiology, understanding the mechanism of action is an important step in an appropriate restoration material selection. Each material selected should meet the individual wear behavior and needs. Individual factors may enhance the wear rates: aggressive tooth brushing, parafunctions, diet, acidic/aqueous environment, surface geometry, and diminished tooth support. Supportive treatment following restoration is important to monitor wear rates.

  14. Macrophage cholesterol efflux correlates with lipoprotein subclass distribution and risk of obstructive coronary artery disease in patients undergoing coronary angiography

    Directory of Open Access Journals (Sweden)

    Kremer Werner

    2009-04-01

    Full Text Available Abstract Background Studies in patients with low HDL have suggested that impaired cellular cholesterol efflux is a heritable phenotype increasing atherosclerosis risk. Less is known about the association of macrophage cholesterol efflux with lipid profiles and CAD risk in normolipidemic subjects. We have therefore measured macrophage cholesterol efflux in142 normolipidemic subjects undergoing coronary angiography. Methods Monocytes isolated from blood samples of patients scheduled for cardiac catheterization were differentiated into macrophages over seven days. Isotopic cholesterol efflux to exogenously added apolipoprotein A-I and HDL2 was measured. Quantitative cholesterol efflux from macrophages was correlated with lipoprotein subclass distribution in plasma from the same individuals measured by NMR-spectroscopy of lipids and with the extent of coronary artery disease seen on coronary angiography. Results Macrophage cholesterol efflux was positively correlated with particle concentration of smaller HDL and LDL particles but not with total plasma concentrations of HDL or LDL-cholesterol. We observed an inverse relationship between macrophage cholesterol efflux and the concntration of larger and triglyceride rich particles (VLDL, chylomicrons. Subjects with significant stenosis on coronary angiography had lower cholesterol efflux from macrophages compared to individuals without significant stenosis (adjusted p = 0.02. Conclusion Macrophage cholesterol efflux is inversely correlated with lipoprotein particle size and risk of CAD.

  15. Melanocortin receptors as novel effectors of macrophage responses in inflammation

    Directory of Open Access Journals (Sweden)

    Hetal B Patel

    2011-09-01

    Full Text Available Macrophages have crucial functions in initiating the inflammatory reaction in a strict temporal and spatial manner to provide a ‘clear-up’ response required for resolution. Hormonal peptides such as melanocortins modulate macrophage reactivity and attenuate inflammation ranging from skin inflammation to joint disease and reperfusion injury. The melanocortins (e.g. ACTH and αMSH elicit regulatory properties through activation of a family of GPCRs, the MC receptors; MC1-MC5. Several studies have focused on MC1 and MC3 as anti-inflammatory receptors expressed on cells of the macrophage lineage. We review here elements of the melanocortin pathway with particular attention to macrophage function in anti-inflammatory and pro-resolving inflammatory settings. Evidence shows that ACTH, αMSH and other MC agonists can activate MC1 and MC3 on macrophage through cAMP and/or NFκB-dependent mechanisms to abrogate pro-inflammatory cytokines, chemokines and NO and enhance anti-inflammatory mediators such as IL-10 and HO-1. Melanocortins and their receptors regulate inflammation by inhibiting leukocyte recruitment to and interaction with inflamed tissue. An intensely exciting addition to this field of research has been the ability of an αMSH analogue; AP214 to activate MC3 expressed on macrophage to enhance their clearance of both zymosan particles and apoptotic neutrophils thus putting melanocortins in line with other pro-resolving mediators. The use of mouse colonies mutated or nullified for MC1 or MC3, respectively as well as availability of selective MC receptor agonist/antagonists have been key to deciphering mechanisms by which elements of the melanocortin system play a role in these phenomena. We review here melanocortin pathway components with attention to the macrophage, reiterating receptor targets required for pro-resolving properties. The overall outcome will be identification of selective MC agonists as a strategy for innovative anti

  16. Variations in erosive wear of metallic materials with temperature via the electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaochen; Yu, Bin [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Yan, X.G. [School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China); Li, D.Y., E-mail: dongyang.li@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China)

    2016-04-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  17. Microstructural Characterisation and Wear Behaviour of Diamond Composite Materials

    Directory of Open Access Journals (Sweden)

    Xing S. Li

    2010-02-01

    Full Text Available Since the initial research leading to the production of diamond composite materials, there have been several important developments leading to significant improvements in the properties of these superhard composite materials. Apart from the fact that diamonds, whether originating from natural resources or synthesised commercially, are the hardest and most wear-resistant materials commonly available, there are other mechanical properties that limit their industrial application. These include the low fracture toughness and low impact strength of diamond. By incorporating a range of binder phases into the sintering production process of these composites, these critically important properties have been radically improved. These new composites can withstand much higher operating temperatures without markedly reducing their strength and wear resistance. Further innovative steps are now being made to improve the properties of diamond composites by reducing grain and particle sizes into the nano range. This review will cover recent developments in diamond composite materials with special emphasis on microstructural characterisation. The results of such studies should assist in the design of new, innovative diamond tools as well as leading to radical improvements in the productivity of cutting, drilling and sawing operations in the exploration, mining, civil construction and manufacturing industries.

  18. Refractory ceramic fibers activate alveolar macrophage eicosanoid and cytokine release.

    Science.gov (United States)

    Leikauf, G D; Fink, S P; Miller, M L; Lockey, J E; Driscoll, K E

    1995-01-01

    Refractory ceramic fiber has been developed for industrial processes requiring materials with high thermal and mechanical stability. To evaluate the biological activity of this fiber, rat alveolar macrophages were exposed for < or = 24 h to 0-1,000 micrograms/ml of refractory ceramic fiber, crocidolite asbestos, silica (fibrogenic particles), or titanium dioxide (a nonfibrogenic particle), and eicosanoid, tumor necrosis factor-alpha (TNF), and lactate dehydrogenase release were measured. Particle dimensions were determined by electron microscopy. Radioactivity coeluting with leukotriene B4 (LTB4) and immunoreactive LTB4 and TNF release increased after refractory ceramic fiber and were similar in magnitude after asbestos but less than after silica. For example, the total [3H]eicosanoid release increased 3.9-fold after refractory ceramic fiber, 4.6-fold after asbestos, and 8.7-fold after silica. Refractory ceramic fiber and asbestos also have similar particle dimensions (diameter, length, and surface area). Inasmuch as macrophage-derived LTB4 and TNF are potent mediators in inflammatory events, including migration and activation of neutrophils, these findings suggest that refractory ceramic fiber can activate macrophages in vitro to release mediators relevant to in vivo findings of inflammation and fibrotic lung disease in laboratory animals.

  19. The effects of vanadium on the microstructure and wear resistance of centrifugally cast Ni-hard rolls

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Minwoo, E-mail: aonia@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Suh, Yongchan, E-mail: ycsuh@hyundai-steel.com [Roll Development Team, HYUNDAI STEEL, 444 Songnae-dong, Nam-gu, Pohang, Gyeongbuk 790-785 (Korea, Republic of); Oh, Yong-Jun, E-mail: yjoh@hanbat.ac.kr [Department of Advanced Materials Science and Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of); Lee, Young-Kook, E-mail: yklee@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-10-01

    Highlights: • V addition changed the pro-eutectic phase from austenite to vermicular (V,Nb)C. • Pro-eutectic (V,Nb)C particles were segregated to the inner part of the roll. • Wear loss was inversely proportional to MC fraction under the same graphite fraction. • Cementite particles acted as the initiation site and propagation path of cracks. • High-temperature wear sequence of centrifugally cast Ni-hard rolls was suggested. - Abstract: The effects of V on the microstructure and wear resistance of centrifugally cast Ni-hard rolls are investigated under a constant fraction of graphite using electron microscopes and a revolving disk-type high-temperature wear tester. The volume fraction of (V,Nb)C particles was increased at the expense of the volume fraction of cementite with an increase in the V concentration. However, the volume fraction of graphite was held nearly constant by controlling the concentration ratio of Si and Cr. As the V concentration was higher than 3 wt.%, the pro-eutectic phase was changed from austenite to (V,Nb)C carbide. The pro-eutectic vermicular (V,Nb)C particles were segregated to the inner part of the roll during centrifugal casting. The wear resistance was improved with an addition of V due to the high volume fractions of the coarse eutectic and pro-eutectic (V,Nb)C particles and the precipitation hardening of fine (V,Nb)C particles in the martensitic matrix. The worn surface showed that cementite particles acted as the initiation site and propagation route of cracks.

  20. The Delamination Theory of Wear - III

    Science.gov (United States)

    1977-12-01

    117. 18 A. P. Orson , J. Mach. Phys. Solids, 2 (1954) 197 - 211, 19 D. R. Wheeler and D, H. Buckley, Wear, 83 (1975) 65. 20 V. C, Scott end H. Wilman...papers were also published In Volume 44 no. I of the Journal Wear, edited by1). Scott . "ELSEVIER SEQUOIA S.A., LAUSANNE, 1977 APproved for public ioleoee...possible without the enthusiasm and support of Messrs. Douglas Scott and VOrnon C, Westoott. This kind of research cannot reodily be undertaken at a

  1. Consideration of wear rates at high velocity

    Science.gov (United States)

    Hale, Chad S.

    The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models

  2. Wear Analysis of Wind Turbine Gearbox Bearings

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL; Walker, Larry R [ORNL; Xu, Hanbing [ORNL; Parten, Randy J [ORNL; Qu, Jun [ORNL; Geer, Tom [ORNL

    2010-04-01

    The objective of this effort was to investigate and characterize the nature of surface damage and wear to wind turbine gearbox bearings returned from service in the field. Bearings were supplied for examination by S. Butterfield and J. Johnson of the National Wind Technology Center (NREL), Boulder, Colorado. Studies consisted of visual examination, optical and electron microscopy, dimensional measurements of wear-induced macro-scale and micro-scale features, measurements of macro- and micro-scale hardness, 3D imaging of surface damage, studies of elemental distributions on fracture surfaces, and examinations of polished cross-sections of surfaces under various etched and non-etched conditions.

  3. Surface engineering for enhanced performance against wear

    CERN Document Server

    2013-01-01

    Surface Engineering constitutes a variety of processes and sub processes. Each chapter of this work covers specific processes by experts working in the area. Included for each topic are tribological performances for each process as well as results of recent research. The reader also will benefit from in-depth studies of diffusion coatings, nanocomposite films for wear resistance, surfaces for biotribological applications, thin-film wear, tribology of thermal sprayed coatings, hardfacing, plating for tribology and high energy beam surface modifications. Material scientists as well as engineers working with surface engineering for tribology will be particularly interested in this work.

  4. Micromechanisms of friction and wear introduction to relativistic tribology

    CERN Document Server

    Lyubimov, Dmitrij; Pinchuk, Leonid

    2013-01-01

    The modern vision of the micromechanism of friction and wear is explored, from the examination of ideal and real crystal structure and adhesion properties to the dynamics of solid frictional interaction. The fundamental quantum-mechanical and relativity principles of particle interaction are considered as basis of friction micro-process examination. The changes in solid structure originated from the influence of different kinds of force fields are considered. The principal possibility of relativity effect manifestation by friction is explained. The critical state of friction – triboplasma – was studied. Structural peculiarities of triboplasma, the kinetics of its transformation during frictional interaction as well as the influence of plasma and postplasma processes on tribojunction friction characteristics and complex formation by friction were examined. The book addresses to tribology researchers.

  5. Dry sliding wear investigation of Al6082/Gr metal matrix composites by response surface methodology

    Directory of Open Access Journals (Sweden)

    Pardeep Sharma

    2016-01-01

    Full Text Available The effect of graphite particles on the dry sliding wear behaviour of Al6082 alloy composites produced by conventional stir casting method has been investigated. The percentage of reinforcement was varied from 0% to 12% in a step of 3. The result showed that with the addition of graphite particles micro- and macro-hardness reduced by 11.11% and 10.44%, respectively. The tribological behaviour of composites was investigated by pin on disc apparatus. Percentage reinforcement, load, sliding speed and sliding distance were taken as the process variable. Response surface methodology has been used to plan and analyze the experiment. Results showed that sliding distance is the most influential factor and load is the factor which affects the wear least.

  6. Structure and abrasive wear resistance of R6M5 steel-tungsten carbide composite coatings

    Science.gov (United States)

    Gnyusov, S. F.

    2012-09-01

    Features of the structure formation, composition, and abrasive wear resistance of R6M5 steel-tungsten carbide (R6M5-WC) composite coatings have been studied as dependent on the WC content. The introduction of ˜20 wt % WC into the hardening composition leads to an increase in the fraction of M6C carbide (in the form of eutectic inclusions with average size ˜5.9 μm at grain boundaries and dispersed ˜0.25 μm particles in the volume of grains), while a large proportion of metastable austenite (˜88 vol %) is still retained. The R6M5-WC coatings exhibit high abrasive wear resistance, which is ensured by the γ → α' martensite transformation during friction and a muiltimodal size distribution of hardening particles.

  7. Severe Impingement of Lumbar Disc Replacements Increases the Functional Biological Activity of Polyethylene Wear Debris

    Science.gov (United States)

    Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.

    2013-01-01

    Background: Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. Methods: The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Results: Grouping of particles by size ranges that represented high biological relevance (10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all three size ranges. In both cohorts, the functional biological activity correlated with the

  8. Tribological effects of particle concentration of an iron particle suspension

    Institute of Scientific and Technical Information of China (English)

    W.C.Leung; P.L.Wong; C.Feng; W.A.Bullough

    2001-01-01

    The general friction and wear performance of an iron particulate suspension underboundary lubrication conditions are presented. The suspension is a mixture of 1-5 micrometerdiameter carbonyl iron particles with commercial hydraulic oil, which resembles typical compositionof magneto-rheological fluids. The investigation involves changing the particle concentration of thesuspension. The optimal concentration of the suspension from a tribological view point can be ob-served from the experimental results,which provides a reference to the design of the particle load-ing of magneto-rheological fluids.

  9. Study on torsional fretting wear behavior of a ball-on-socket contact configuration simulating an artificial cervical disk.

    Science.gov (United States)

    Wang, Song; Wang, Fei; Liao, Zhenhua; Wang, Qingliang; Liu, Yuhong; Liu, Weiqiang

    2015-10-01

    A ball-on-socket contact configuration was designed to simulate an artificial cervical disk in structure. UHMWPE (ultra high molecular weight polyethylene) hot pressed by powders and Ti6Al4V alloy were selected as the material combination of ball and socket. The socket surface was coated by a ~500 nm C-DLC (carbon ion implantation-diamond like carbon) mixed layer to improve its surface nano hardness and wear resistance. The torsional fretting wear behavior of the ball-on-socket model was tested at different angular displacements under 25% bovine serum lubrication with an axial force of 100 N to obtain more realistic results with that in vivo. The fretting running regimes and wear damage characteristics as well as wear mechanisms for both ball and socket were studied based on 2D (two dimension) optical microscope, SEM (scanning electron microscope) and 3D (three dimension) profiles. With the increase of angular displacement amplitude from 1° to 7°, three types of T-θ (Torsional torque-angular displacement amplitude) curves (i.e., linear, elliptical and parallelogram loops) corresponding to running regimes of PSR (partial slip regime), MR (mixed regime) and SR (slip regime) were observed and analyzed. Both the central region and the edge zone of the ball and socket were damaged. The worn surfaces were characterized by wear scratches and wear debris. In addition, more severe wear damage and more wear debris appeared on the central region of the socket at higher angular displacement amplitude. The dominant damage mechanism was a mix of surface scratch, adhesive wear and abrasive wear for the UHMWPE ball while that for the coated socket was abrasive wear by PE particles and some polishing and rolling process on the raised overgrown DLC grains. The frictional kinetic behavior, wear type, damage region and damage mechanism for the ball-on-socket model revealed significant differences with those of a ball-on-flat contact while showing better consistency with that of in

  10. Characterization of the wear resistant aluminum oxide - 40% titaniumdioxide coating

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2014-02-01

    Full Text Available Plasma spray coatings play an important role in the design of surface properties of engineering components in order to increase their durability and performance under different operating conditions. Coatings are the most often used for wear resistance. This paper presents the microstructure and mechanical properties Al2O3_­40wt.%TiO2 coating resistant to dry friction slide, grain abrasion and erosion of particles at operating temperatures up to 540°C. In order to obtain the optimal characteristics of coating was performed  optimization  of deposition parameters. The powder Al2O3­40wt.%TiO2 is deposited atmospheric plasma spraying (APS process with a plasma current of 700, 800 and 900A. Evaluate the quality of the coating Al2O3­40wt.%TiO2 were made on the basis of their hardness, tensile bond strength and microstructure. The best performance showed the deposited layers with 900A. The morphology of the powder particles Al2O3­40wt.%TiO2 was examined with SEM (Scanning Electron Microscope. Microstructure of the coatings was examined by light microscopy. Analysis of the deposited layers was performed in accordance with standard Pratt & Whitney. Evaluation of mechanical properties of the layers was done by examining HV0.3 microhardness and tensile strength of the tensile testing. Studies have shown that plasma currents significantly affects the mechanical properties and microstructure of coatings which are of crucial importance for the protection for components subjected to wear       

  11. Road dust from pavement wear and traction sanding

    Energy Technology Data Exchange (ETDEWEB)

    Kupiainen, K.

    2007-07-01

    Vehicles affect the concentrations of ambient airborne particles through exhaust emissions, but particles are also formed in the mechanical processes in the tire-road interface, brakes, and engine. Particles deposited on or in the vicinity of the road may be re-entrained, or resuspended, into air through vehicle-induced turbulence and shearing stress of the tires. A commonly used term for these particles is 'road dust'. The processes affecting road dust emissions are complex and currently not well known. Road dust has been acknowledged as a dominant source of PM10 especially during spring in the sub-arctic urban areas, e.g. in Scandinavia, Finland, North America and Japan. The high proportion of road dust in sub-arctic regions of the world has been linked to the snowy winter conditions that make it necessary to use traction control methods. Traction control methods include dispersion of traction sand, melting of ice with brine solutions, and equipping the tires with either metal studs (studded winter tires), snow chains, or special tire design (friction tires). Several of these methods enhance the formation of mineral particles from pavement wear and/or from traction sand that accumulate in the road environment during winter. When snow and ice melt and surfaces dry out, traffic-induced turbulence makes some of the particles airborne. A general aim of this study was to study processes and factors underlying and affecting the formation and emissions of road dust from paved road surfaces. Special emphasis was placed on studying particle formation and sources during tire road interaction, especially when different applications of traction control, namely traction sanding and/or winter tires were in use. Respirable particles with aerodynamic diameter below 10 micrometers (PM10) have been the main concern, but other size ranges and particle size distributions were also studied. The following specific research questions were addressed: (i) How do traction

  12. Astrocytes Resist HIV-1 Fusion but Engulf Infected Macrophage Material

    Directory of Open Access Journals (Sweden)

    Rebecca A. Russell

    2017-02-01

    Full Text Available HIV-1 disseminates to diverse tissues and establishes long-lived viral reservoirs. These reservoirs include the CNS, in which macrophage-lineage cells, and as suggested by many studies, astrocytes, may be infected. Here, we have investigated astrocyte infection by HIV-1. We confirm that astrocytes trap and internalize HIV-1 particles for subsequent release but find no evidence that these particles infect the cell. Astrocyte infection was not observed by cell-free or cell-to-cell routes using diverse approaches, including luciferase and GFP reporter viruses, fixed and live-cell fusion assays, multispectral flow cytometry, and super-resolution imaging. By contrast, we observed intimate interactions between HIV-1-infected macrophages and astrocytes leading to signals that might be mistaken for astrocyte infection using less stringent approaches. These results have implications for HIV-1 infection of the CNS, viral reservoir formation, and antiretroviral therapy.

  13. Wear behaviour of laser melted an ion implanted materials.

    NARCIS (Netherlands)

    Beurs, Hans de

    1988-01-01

    The emphasis in this thesis is on the development of wear resistant materials by laser melting. Furthermore, the principle aim is to search for the dislocation characteristics common to the wear process in heterogeneous materials. ... Zie: Summary

  14. Comparison of two measurement techniques for clinical wear

    DEFF Research Database (Denmark)

    Peters, M C; Delong, R; Pintado, M R

    1999-01-01

    Clinical wear of restorations is generally evaluated by marginal integrity over time. In this study, both a subjective and an objective method for wear assessment are compared, and the relative advantages and disadvantages of each are considered....

  15. Interactions between nonlinear spur gear dynamics and surface wear

    Science.gov (United States)

    Ding, Huali; Kahraman, Ahmet

    2007-11-01

    In this study, two different dynamic models, a finite elements-based deformable-body model and a simplified discrete model, and a surface wear model are combined to study the interaction between gear surface wear and gear dynamic response. The proposed dynamic gear wear model includes the influence of worn surface profiles on dynamic tooth forces and transmission error as well as the influence of dynamic tooth forces on wear profiles. This paper first introduces the nonlinear dynamic models that include gear backlash and time-varying gear mesh stiffness, and a wear model separately. It presents a comparison to experiments for validation of the dynamic models. The dynamic models are combined with the wear model to study the interaction of surface wear and dynamic behavior in both linear and nonlinear response regimes. At the end, several sets of simulation results are used to demonstrate the two-way relationship between nonlinear gear dynamics and surface wear.

  16. Effect of femoral head size on the wear of metal on metal bearings in total hip replacements under adverse edge-loading conditions.

    Science.gov (United States)

    Al-Hajjar, Mazen; Fisher, John; Williams, Sophie; Tipper, Joanne L; Jennings, Louise M

    2013-02-01

    Metal-on-metal (MoM) bearings have shown low-wear rates under standard hip simulator conditions; however, retrieval studies have shown large variations in wear rates and mechanisms. High-wear in vivo has caused catastrophic complications and has been associated with steep cup-inclination angle (rotational malpositioning). However, increasing the cup-inclination angle in vitro has not replicated the increases in wear to the same extent as those observed in retrievals. Clinically relevant wear rates, patterns, and particles were observed in vitro for ceramic-on-ceramic bearings when microseparation (translational malpositioning) conditions were introduced into the gait cycle. In the present study, 28 and 36-mm MoM bearings were investigated under adverse conditions. Increasing the cup angle from 45° to 65° resulted in a significant increase in the wear rate of the 28 mm bearings. However, for the 36 mm bearings, head-rim contact did not occur under the steep cup-angle condition, and the wear rate did not increase. The introduction of microseparation to the gait cycle significantly increased the wear rate of the MoM bearings. Cup angle and head size did not influence the wear rate under microseparation conditions. This study indicated that high-in vivo wear rates were associated with edge loading due to rotational malpositioning such as high-cup-inclination angle and translational malpositioning that could occur due to several surgical factors. Translational malpositioning had a more dominant effect on the wear rate. Preclinical simulation testing should be undertaken with translational and rotational malpositioning conditions as well as standard walking cycle conditions defined by the ISO standard. Copyright © 2012 Wiley Periodicals, Inc.

  17. DMPD: Monocyte/macrophage traffic in HIV and SIV encephalitis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960230 Monocyte/macrophage traffic in HIV and SIV encephalitis. Kim WK, Corey S, ...Show Monocyte/macrophage traffic in HIV and SIV encephalitis. PubmedID 12960230 Title Monocyte/macrophage traffic

  18. Impact of UHMWPE texture on friction and wear resistance of hip prosthesis

    Directory of Open Access Journals (Sweden)

    Eddoumy Fatima

    2013-11-01

    Full Text Available Ultra High Molecular Weight PolyEthylene (UHMWPE is a polymer widely used in hip implants (prostheses as a bearing surface against metal, because of its good mechanical properties and biocompatibility [1]. Nevertheless, the durability of such implants is limited because of failure resulting from osteolysis and aseptic loosening. These two phenomenons are due to the immune response of human body consecutive to the apparition of wear particles of UHMWPE with time.

  19. Prediction Models for Sliding Wear of AA3003/Al2O3 Composites

    Directory of Open Access Journals (Sweden)

    Chennakesava R Alavala

    2016-07-01

    Full Text Available In the present work, the AA3003/Al2O3 metal matrix composites were manufactured at 10% and 30% volume fractions of Al2O3. The composites were wear tested at different levels of normal load, sliding speed and sliding distances. The microstructure of worn surfaces pertaining to AA3003/ Al2O3 composite reveals the fracture of AA3033 alloy matrix as well as the detachment of Al2O3 particles from the matrix

  20. ERRATUM: Work smart, wear your hard hat

    CERN Multimedia

    2003-01-01

    An error appeared in the article «Work smart, wear your hard hat» published in Weekly Bulletin 27/2003, page 5. The impact which pierced a hole in the hard hat worn by Gerd Fetchenhauer was the equivalent of a box weighing 5 kg and not 50 kg.

  1. Reciprocating wear in a steam environment

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.J.; Gee, M.G. [National Physical Laboratory, Teddington, Middlesex (United Kingdom)

    2010-07-01

    Tests to simulate the wear between sliding components in steam power plant have been performed using a low frequency wear apparatus at elevated temperatures under static load, at ambient pressure, in a steam environment. The apparatus was modified to accept a novel method of steam delivery. The materials tested were pre-exposed in a flowing steam furnace at temperature for either 500 or 3000 hours to provide some simulation of long term ageing. The duration of each wear test was 50 hours and tests were also performed on as-received material for comparison purposes. Data has been compared with results of tests performed on non-oxidised material for longer durations and also on tests without steam to examine the effect of different environments. Data collected from each test consists of mass change, stub height measurement and friction coefficient as well as visual inspection of the wear track. Within this paper, it is reported that both pre-ageing and the addition of steam during testing clearly influence the friction between material surfaces. (orig.)

  2. Saliva parameters and erosive wear in adolescents

    NARCIS (Netherlands)

    Zwier, N.; Huysmans, M.C.D.N.J.M.; Jager, D.H.J.; Ruben, J.; Bronkhorst, E.M.; Truin, G.J.

    2013-01-01

    The aim of this study was to investigate the relationship between several parameters of saliva and erosive wear in adolescents. (Un-)stimulated saliva was collected from 88 adolescents with erosion and 49 controls (age 16 ± 1 years). Flow rate, pH and buffer capacity were determined immediately.

  3. Saliva Parameters and Erosive Wear in Adolescents

    NARCIS (Netherlands)

    Zwier, N.; Huysmans, M. C. D. N. J. M.; Jager, D. H. J.; Ruben, J.; Bronkhorst, E. M.; Truin, G. J.

    2013-01-01

    The aim of this study was to investigate the relationship between several parameters of saliva and erosive wear in adolescents. (Un-)stimulated saliva was collected from 88 adolescents with erosion and 49 controls (age 16 +/- 1 years). Flow rate, pH and buffer capacity were determined immediately.

  4. Healthy Contact Lens Wear and Care

    Centers for Disease Control (CDC) Podcasts

    2014-02-04

    In this podcast, CDC’s Dr. Jennifer Cope explains some basic steps for proper wear and care of soft contact lenses.  Created: 2/4/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/4/2014.

  5. Friction and wear of human hair fibres

    Science.gov (United States)

    Bowen, James; Johnson, Simon A.; Avery, Andrew R.; Adams, Michael J.

    2016-06-01

    An experimental study of the tribological properties of hair fibres is reported, and the effect of surface treatment on the evolution of friction and wear during sliding. Specifically, orthogonally crossed fibre/fibre contacts under a compressive normal load over a series of 10 000 cycle studies are investigated. Reciprocating sliding at a velocity of 0.4 mm s-1, over a track length of 0.8 mm, was performed at 18 °C and 40%-50% relative humidity. Hair fibres retaining their natural sebum were studied, as well as those stripped of their sebum via hexane cleaning, and hair fibres conditioned using a commercially available product. Surface topography modifications resulting from wear were imaged using scanning electron microscopy and quantified using white light interferometry. Hair fibres that presented sebum or conditioned product at the fibre/fibre junction exhibited initial coefficients of friction at least 25% lower than those that were cleaned with hexane. Coefficients of friction were observed to depend on the directionality of sliding for hexane cleaned hair fibres after sufficient wear cycles that cuticle lifting was present, typically on the order 1000 cycles. Cuticle flattening was observed for fibre/fibre junctions exposed to 10 mN compressive normal loads, whereas loads of 100 mN introduced substantial cuticle wear and fibre damage.

  6. Tribology: Friction, lubrication, and wear technology

    Science.gov (United States)

    Blau, Peter J.

    1993-01-01

    The topics are presented in viewgraph form and include the following: introduction and definitions of terms; friction concepts; lubrication technology concepts; wear technology concepts; and tribological transitions. This document is designed for educators who seek to teach these concepts to their students.

  7. Corrosive wear. Evaluation of wear and corrosive resistant materials; Noetningskorrosion. Utvaerdering av noetnings- och korrosionsbestaendiga material

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H.; Hjertsen, D.; Waara, P.; Prakash, B.; Hardell, J.

    2007-12-15

    With a new purchase of a waste conveyer screw at hand, for the 'A-warehouse' at the combined power and heating plant at E.ON Norrkoeping, the request for improved construction materials was raised. The previous screw required maintenance with very short intervals due to the difficult operation conditions. With the new screw the expectation is to manage 6 months of operation without interruption. The environment for the screw has two main components that sets the demand on the materials, on one hand the corrosive products that comes along and which forms at digestion of the waste and on the other hand the abrasive content in the waste. The term of the mechanism is wear-corrosion and can give considerably higher material loss than the two mechanisms wear and corrosion separately. Combination of a strong corrosive environment together with extensive wear is something that we today have limited knowledge about. The overall objective of the project has been to establish better wear and corrosive resistant construction materials for a waste conveyer screw that will lead to reduced operational disturbance costs. The evaluation has been performed in both controlled laboratory environments and in field tests, which has given us a better understanding of what materials are more suitable in this tough environment and has given us a tool for future predictions of the wear rate of the different material. The new conveyer screw, installed in February 2007 and with which the field test have been performed, has considerably reduced the wear of the construction and the target of 6 month maintenance-free operation is met with this screw for all the evaluated materials. The wear along the screw varies very much and with a clear trend for all the materials to increase towards the feeding direction of the screw. As an example, the wear plate SS2377 (stainless duplex steel) has a useful life at the most affected areas that is calculated to be 1077 days of operation with the

  8. Structurally Integrated Coatings for Wear and Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18

    Wear and corrosion of structures cuts across industries and continues to challenge materials scientists and engineers to develop cost effective solutions. Industries typically seek mature technologies that can be implemented for production with rapid or minimal development and have little appetite for the longer-term materials research and development required to solve complex problems. The collaborative work performed in this project addressed the complexity of this problem in a multi-year program that industries would be reluctant to undertake without government partnership. This effort built upon the prior development of Advanced Abrasion Resistant Materials conduct by Caterpillar Inc. under DOE Cooperative Agreement No. DE-FC26-01NT41054. In this referenced work, coatings were developed that exhibited significant wear life improvements over standard carburized heat treated steel in abrasive wear applications. The technology used in this referenced work, arc lamp fusing of thermal spray coatings, was one of the primary technical paths in this work effort. In addition to extending the capability of the coating technology to address corrosion issues, additional competitive coating technologies were evaluated to insure that the best technology was developed to meet the goals of the program. From this, plasma transferred arc (PTA) welding was selected as the second primary technology that was investigated. Specifically, this project developed improved, cost effective surfacing materials and processes for wear and corrosion resistance in both sliding and abrasive wear applications. Materials with wear and corrosion performance improvements that are 4 to 5 times greater than heat treated steels were developed. The materials developed were based on low cost material systems utilizing ferrous substrates and stainless steel type matrix with hard particulates formed from borides and carbides. Affordability was assessed against other competing hard surfacing or coating

  9. STUDY ON WEAR AND DESTRUCTION OF HOB IN GEAR HOBBING

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The wear and destruction appearances of hobs are researched. The reasons of the wear and destruction of hobare analyzed. And the influence of the change of the hobbing force and the hobbing temperature on the wear and destruc-tion of hob in gear hobbing is also analyzed. In gear hobbing, the main wear mechanisms are adhesion and ploughingwhen cutting the 20CrMnTi gear using W 18Cr4V high-speed steel hob.

  10. A panorama of tooth wear during the medieval period.

    Science.gov (United States)

    Esclassan, Rémi; Hadjouis, Djillali; Donat, Richard; Passarrius, Olivier; Maret, Delphine; Vaysse, Frédéric; Crubézy, Eric

    2015-01-01

    Tooth wear is a natural phenomenon and a universal occurrence that has existed from the origin of humankind and depends on the way of life, especially diet. Tooth wear was very serious in ancient populations up to the medieval period. The aim of this paper is to present a global view of tooth wear in medieval times in Europe through different parameters: scoring systems, quantity and direction of wear, gender, differences between maxilla and mandible, relations with diet, caries, tooth malpositions and age.

  11. Wear numbers for ball cup and journal bearings

    OpenAIRE

    Ligterink, D.J.; Moes, H.

    1980-01-01

    A wear number is defined for ball cup bearings and for journal bearings where the cup and the cylindrical bearing are made of soft material. This dimensionless wear number provides a relation between the following five quantities: the radius of the ball or the length of the journal bearing in millimetres, the wear modulus in newtons per square millimetre, the maximum wear depth rate of the cup or the cylindrical bearing in millimetres per second, the force between the mating surfaces in newto...

  12. The effect of boron on the wear behavior of iron-based hardfacing alloys for nuclear power plants valves

    Science.gov (United States)

    Yoo, Jeong Wan; Lee, Seong Hun; Yoon, Chong S.; Kim, Seon Jin

    2006-06-01

    The effect of boron of Fe-Cr-C-Si alloys, replacing Stellite 6 traditionally used in nuclear power industry, on the high temperature wear resistance was characterized. Sliding wear tests of Fe-Cr-C-Si-xB (x = 0.3, 0.6, 1.0 and 2.0 wt%) alloys were performed in air at temperatures ranging from 300 to 725 K under a contact stress of 103 MPa. Low-boron alloys containing less than 0.6 wt% boron showed the excellent wear resistance than any other tested alloys in an elevated temperature. The improvement was associated with the matrix hardening by promotion of the γ → α‧ strain-induced martensitic transformation occurred during wear. In addition, protective oxide layers formed on the contacting surface reduced the wear loss by minimizing the direct metal-to-metal contact. However, high-boron alloys containing more than 1 wt% boron showed somewhat larger amount of wear loss than low-boron alloys due to the absence of the strain-induced martensitic transformation and the presence of the brittle FeB particles connected with easy crack initiation.

  13. Tempering-Induced Microstructural Changes in the Weld Heat-Affected Zone of 9 to 12 Pct Cr Steels and Their Influence on Sliding Wear

    Science.gov (United States)

    Velkavrh, Igor; Kafexhiu, Fevzi; Klien, Stefan; Diem, Alexander; Podgornik, Bojan

    2017-01-01

    Increasing amount of tribological applications is working under alternating high/low temperature conditions where the material is subjected to temperature fatigue mechanisms such as creep, softening due to annealing, and at the same time must withstand mechanical wear due to sliding contact with pairing bodies. Steam turbine valves, gate valves, valve heads, stems, seats and bushings, and contacting surfaces of the carrier elements are some examples of such applications. The purpose of the present study is to evaluate the potential of X20 and P91 steels as materials for applications operating under combined effect of mechanical wear and alternating high/low temperature conditions. It was focused on how the microstructural changes occurring in the weld zone affect the wear properties of the selected materials. Generally, with longer tempering time and higher tempering temperature, the number of carbide precipitates decreased, while their relative spacing increased. Before tempering, the morphology of the steel matrix (grain size, microstructure homogeneity) governed the wear resistance of both steels, while after tempering wear response was determined by the combination of the number and the size of carbide particles. After tempering, in X20 steel larger number of stable M23C6 carbides was observed as compared with P91 steel, resulting in lower wear rates. It was observed that for both steels, a similar combination of number density and size distribution of carbide particles provided the highest wear resistance.

  14. Mechanics and mechanisms of surface damage in Al-Si alloys under ultra-mild wear conditions

    Science.gov (United States)

    Chen, Ming

    Al-Si alloys intended for use in engine components must operate under ultra-mild wear (UMW) conditions to fit an acceptable amount of wear during a typical vehicle life. This study simulated surface damage in a UMW regime on five chemically etched Al-Si alloy surfaces using a pin-on-disc tribometer at low loads (0.5-2.0 N) under boundary lubricated conditions. The five alloys contained 11 to 25 wt.% Si and differed in matrix hardness, silicon particle morphology, and size. The mechanisms leading to the UMW damage and the role that the matrix hardness and microstructure play on said mechanisms were studied. Quantitative measurement methods based on statistical analysis of particle height changes and material loss from elevated aluminum using a profilometer technique were developed and used to assess UMW. The Greenwood and Tripp's numerical model was adapted to analyze the contact that occurred between Al-Si alloys with silicon particles protruding above the aluminum and steel balls. The estimation of the real contact pressure applied to the silicon particles was used to rationalize the damage mechanisms. The UMW mechanisms consisted of (i) abrasive wear on the top of the silicon particle surfaces; (ii) sinking-in of the silicon particles; (iii) piling-up of the aluminium around sunken-in particles and (vi) wear of the aluminium by the counterface, which eventually led to the initiation of UMW-II. Increasing the size or areal density of silicon particles with small aspect ratios delayed the onset of UMW-II by providing resistance against the silicon particles sinking-in and the aluminum piling-up. The UMW wear rates, however, began to decrease after long sliding cycles once an oil residue layer supported by hardened ultra-fine subsurface grains formed on the deformed aluminium matrix. The layer formation depended on the microstructure and applied load. Overall experimental observations suggested that Al-11% Si with small silicon particles exhibited optimal long

  15. Sliding Wear and Fretting Wear of DLC-Based, Functionally Graded Nanocomposite Coatings

    Science.gov (United States)

    Miyoshi, K.; Pohlchuck, B.; Street, Kenneth W.; Zabinski, J. S.; Sanders, J. H.; Voevodin, A. a.; Wu, R. L. C.

    1999-01-01

    Improving the tribological functionality of diamondlike carbon (DLC) films--developing, good wear resistance, low friction, and high load-carrying capacity-was the aim of this investigation. Nanocomposite coatings consisting of an amorphous DLC (a-DLC) top layer and a functionally graded titanium-titanium carbon-diamondlike carbon (Ti-Ti(sub x) C(sub y)-DLC) underlayer were produced on AISI 440C stainless steel substrates by the hybrid technique of magnetron sputtering and pulsed-laser deposition. The resultant DLC films were characterized by Raman spectroscopy, scanning electron microscopy, and surface profilometry. Two types of wear experiment were conducted in this investioation: sliding friction experiments and fretting wear experiments. Unidirectional ball-on-disk sliding friction experiments were conducted to examine the wear behavior of an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C stainless steel disk in sliding contact with a 6-mm-diameter AISI 440C stainless steel ball in ultrahigh vacuum, dry nitrogen, and humid air. Although the wear rates for both the coating and ball were low in all three environments, the humid air and dry nitrogen caused mild wear with burnishing, in the a-DLC top layer, and the ultrahigh vacuum caused relatively severe wear with brittle fracture in both the a-DLC top layer and the Ti-Ti(sub x) C(sub y)-DLC underlayer. For reference, amorphous hydrogenated carbon (H-DLC) films produced on a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coatings by using an ion beam were also examined in the same manner. The H-DLC films markedly reduced friction even in ultrahigh vacuum without sacrificing wear resistance. The H-DLC films behaved much like the a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coating in dry nitrogen and humid air, presenting low friction and low wear. Fretting wear experiments were conducted in humid air (approximately 50% relative humidity) at a frequency of 80 Hz and an amplitude of 75 micron on an a

  16. Low in vitro third-body wear on total hip prostheses induced by calcium sulphate used for local antibiotic therapy

    Directory of Open Access Journals (Sweden)

    R Heuberger

    2014-10-01

    Full Text Available In case of implant associated infection, implant preservation is associated with high failure rates. Therefore, a removal or exchange of the implant is most often mandatory for treatment success. Alternatively, under certain conditions, local antibiotic delivery can be applied – preserving the implant, using for example calcium sulphate as a resorbable carrier. In this work, third-body wear on total hip prostheses caused by calcium sulphate particles was tested in a hip simulator. Inlays made of ultra-high-molecular-weight polyethylene (UHMWPE and cross-linked polyethylene (XLPE against 28 mm CoCrMo heads and 36 mm alumina pairings were tested in triplicate, both with and without calcium sulphate particles in the test liquid. Neither the alumina articulations nor the CoCrMo heads were affected by the calcium sulphate particles since calcium sulphate is a relatively soft material. The polyethylene inlays showed 39-89 % higher wear during exposure compared to references, but wear returned to normal when no more particles were added. Thus, calcium sulphate might be used as antibiotic carrier even in the presence of total hip prostheses without fearing excessive third-body wear.

  17. Low in vitro third-body wear on total hip prostheses induced by calcium sulphate used for local antibiotic therapy.

    Science.gov (United States)

    Heuberger, R; Wahl, P; Krieg, J; Gautier, E

    2014-10-23

    In case of implant associated infection, implant preservation is associated with high failure rates. Therefore, a removal or exchange of the implant is most often mandatory for treatment success. Alternatively, under certain conditions, local antibiotic delivery can be applied - preserving the implant, using for example calcium sulphate as a resorbable carrier. In this work, third-body wear on total hip prostheses caused by calcium sulphate particles was tested in a hip simulator. Inlays made of ultra-high-molecular-weight polyethylene (UHMWPE) and cross-linked polyethylene (XLPE) against 28 mm CoCrMo heads and 36 mm alumina pairings were tested in triplicate, both with and without calcium sulphate particles in the test liquid. Neither the alumina articulations nor the CoCrMo heads were affected by the calcium sulphate particles since calcium sulphate is a relatively soft material. The polyethylene inlays showed 39-89 % higher wear during exposure compared to references, but wear returned to normal when no more particles were added. Thus, calcium sulphate might be used as antibiotic carrier even in the presence of total hip prostheses without fearing excessive third-body wear.

  18. Self-dispersed crumpled graphene balls in oil for friction and wear reduction

    Science.gov (United States)

    Dou, Xuan; Koltonow, Andrew R.; He, Xingliang; Jang, Hee Dong; Wang, Qian; Chung, Yip-Wah; Huang, Jiaxing

    2016-01-01

    Ultrafine particles are often used as lubricant additives because they are capable of entering tribological contacts to reduce friction and protect surfaces from wear. They tend to be more stable than molecular additives under high thermal and mechanical stresses during rubbing. It is highly desirable for these particles to remain well dispersed in oil without relying on molecular ligands. Borrowing from the analogy that pieces of paper that are crumpled do not readily stick to each other (unlike flat sheets), we expect that ultrafine particles resembling miniaturized crumpled paper balls should self-disperse in oil and could act like nanoscale ball bearings to reduce friction and wear. Here we report the use of crumpled graphene balls as a high-performance additive that can significantly improve the lubrication properties of polyalphaolefin base oil. The tribological performance of crumpled graphene balls is only weakly dependent on their concentration in oil and readily exceeds that of other carbon additives such as graphite, reduced graphene oxide, and carbon black. Notably, polyalphaolefin base oil with only 0.01–0.1 wt % of crumpled graphene balls outperforms a fully formulated commercial lubricant in terms of friction and wear reduction. PMID:26811466

  19. Recycled Aluminium Cans/Eggshell Composites: Evaluation of Mechanical and Wear Resistance Properties

    Directory of Open Access Journals (Sweden)

    J.O. Agunsoye

    2015-03-01

    Full Text Available Aluminium based metal matrix composites have been produced from recycled aluminium cans and 150µm sized eggshell particles using a stir cast process. The mechanical properties of the control and aluminium can/eggshell composites produced have been investigated. The microstructures of the aluminium can/eggshell composites were examined with the aids of Scanning Electron Microscope (SEM after the sample surfaces have been carefully prepared and etched with aqueous solution of 0.5 cm3 nitric acid. Micrographs revealed that there was a homogenous distribution of eggshell particles within the aluminium can matrix. An indication of effective stirring action during the melting process. The wear resistance was also investigated under different applied loads (6 to 14 N on an abrasive surface emery paper of grade 220. The results revealed an increase in Young’s modulus of elasticity and yield stress from 1,206.45 and 50.23 Mpa respectively of the cast aluminium can with 0 % eggshell particle to the maximum of 3,258.87and 73.2 MPa of aluminium can/12 % eggshell composites. The hardness values increased from 66.23 to 75.13 VN. There was a gradual increase in wear rate of the tested samples as the applied load increased. However, the wear resistance of the aluminium can/6 % eggshell and aluminium can/12 % eggshell composites increased significantly. Hence, recycling of aluminium cans and eggshells can be harnessed into development of useful engineering metal matrix composite materials.

  20. Wear Resistance and Mechanical Behaviour of Epoxy/Mollusk Shell Biocomposites developed for Structural Applications

    Directory of Open Access Journals (Sweden)

    I.O. Oladele

    2016-09-01

    Full Text Available Epoxy resin is one of the strongest commercially exploitable thermosetting polymers in the polymer family; however its expensive nature in comparison with other thermosetting polymers such as vinylester and polyester limits its applications as a structural material. Inexpensive fillers on the other hand, especially those derived from agro-industrial wastes are very important in reducing the overall cost of polymer composites and furthermore influential in enhancing some of their engineering properties. In the present study, the wear resistance and mechanical behaviour of epoxy polymer matrix filled with <75 and 75 μm calcined particles of African land snail shells have been comparatively investigated. The wear resistance and the mechanical behaviour of the composites were studied via Taber Abraser and INSTRON universal testing machine. Also, the elemental constituents of the calcined snail shell and the epoxy biocomposites were characterized by X-Ray Fluorescence Spectroscopy and Scanning Electron Microscopy/Energy Dispersion Spectroscopy. From the experimental results, it was observed that, at the highest filler loading, smaller particle size presented a biocomposite with significant enhancement in wear and mechanical properties. However, it was also observed that increase in particle size showed no significant enhancement in the mechanical properties of the biocomposites.

  1. Wear Debris Characterization and Corresponding Biological Response: Artificial Hip and Knee Joints

    Directory of Open Access Journals (Sweden)

    Md J. Nine

    2014-02-01

    Full Text Available Wear debris, of deferent sizes, shapes and quantities, generated in artificial hip and knees is largely confined to the bone and joint interface. This debris interacts with periprosthetic tissue and may cause aseptic loosening. The purpose of this review is to summarize and collate findings of the recent demonstrations on debris characterization and their biological response that influences the occurrence in implant migration. A systematic review of peer-reviewed literature is performed, based on inclusion and exclusion criteria addressing mainly debris isolation, characterization, and biologic responses. Results show that debris characterization largely depends on their appropriate and accurate isolation protocol. The particles are found to be non-uniform in size and non-homogeneously distributed into the periprosthetic tissues. In addition, the sizes, shapes, and volumes of the particles are influenced by the types of joints, bearing geometry, material combination, and lubricant. Phagocytosis of wear debris is size dependent; high doses of submicron-sized particles induce significant level of secretion of bone resorbing factors. However, articles on wear debris from engineered surfaces (patterned and coated are lacking. The findings suggest considering debris morphology as an important parameter to evaluate joint simulator and newly developed implant materials.

  2. Severe tooth wear: European consensus statement on management guidelines

    DEFF Research Database (Denmark)

    Loomans, Bas AC; Opdam, Niek JM; Attin, Thomas

    2017-01-01

    This paper reports a European expert consensus statement on guidelines for the management of severe tooth wear. It focuses on the definition of physiological versus pathological tooth wear and recommends diagnosis, monitoring and counseling to define the activity of the wear. Restorative...

  3. 16 CFR 423.6 - Textile wearing apparel.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Textile wearing apparel. 423.6 Section 423.6 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES CARE LABELING OF TEXTILE WEARING APPAREL AND CERTAIN PIECE GOODS AS AMENDED § 423.6 Textile wearing apparel. This section applies to...

  4. Wear resistance of the biocompatible phospholipid polymer-grafted highly cross-linked polyethylene liner against larger femoral head.

    Science.gov (United States)

    Moro, Toru; Takatori, Yoshio; Kyomoto, Masayuki; Ishihara, Kazuhiko; Kawaguchi, Hiroshi; Hashimoto, Masami; Tanaka, Takeyuki; Oshima, Hirofumi; Tanaka, Sakae

    2015-07-01

    The use of larger femoral heads to prevent the dislocation of artificial hip joints has recently become more common. However, concerns about the subsequent use of thinner polyethylene liners and their effects on wear rate have arisen. Previously, we prepared and evaluated the biological and mechanical effects of a novel highly cross-linked polyethylene (CLPE) liner with a nanometer-scaled graft layer of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC). Our findings showed that the PMPC-grafted particles were biologically inert and caused no subsequent bone resorptive responses and that the PMPC-grafting markedly decreased wear in a hip joint simulator. However, the metal or ceramic femoral heads used in this previous study had a diameter of 26 mm. Here, we investigated the wear-resistance of the PMPC-grafted CLPE liner with a 40-mm femoral head during 10 × 10(6) cycles of loading in the hip joint simulator. The results provide preliminary evidence that the grafting markedly decreased gravimetric wear rate and the volume of wear particles, even when coupled with larger femoral heads. Thus, we believe the PMPC-grafting will prolong artificial hip joint longevity both by preventing aseptic loosening and by improving the stability of articular surface.

  5. 蓝玉簪颗粒抑制脂多糖诱导大鼠肺泡巨噬细胞TNF-α产生及相关机制研究%Gentiana veitchiorum particles inhibited LPS induced pulmonary alveolar macrophages(AM)TNF-α production and the underlying mechanism

    Institute of Scientific and Technical Information of China (English)

    侯颖; 曹蔚; 李涛; 刘水冰; 张晓楠; 李旭波; 田琼; 尤福生

    2011-01-01

    AIM: To investigate the effect of Gentiana veitchiorum particles on the expression of TNF-α in pulmonary alveolar macrophages (AM) which induced by LPS, to explain the mechanism about anti-inflammatory action of Gentiana veitchiorum particles. METHODS: Purification of rat AM, TNF-α level in AM culture supematant was detected by ELISA. Western blot method for detecting the expression of TNF-α and pERK in the AM. While application of ERK antagonist (PD98059) in rat AM and the expression of TNFα was observed by Western blot. RESULTS: Gentiana veitchiorum particles can reduce the LPS induced AM TNF-α increase in dose dependent manner. Gentiana veitchiorum particles (100 mg/L) can significantly reduce the LPS induc ed pERK and TNF-α protein expression in AM. compared with LPS stimulation group, we found that ERK inhibitor ( PD98059 30 mol/L), Gentiana veitchiorum particles intervention and Gentiana veitchiorum particles + PD98059 groups' TNF-α expression were significantly reduced in rat AM. CONCLUSION: Gentiana veitchiorum particles can inhibit the LPS induced pulmonary AM TNF-α expression, one of the possible mechanism is to inhibit the extracailular signal transduction pathway.%目的:探讨蓝玉簪颗粒对脂多糖(LPS)诱导大鼠肺泡巨噬细胞(AM)内TNF-α表达及可能作用机制.方法:分离纯化AM,应用ELISA法检测蓝玉簪颗粒对LPS诱导的大鼠AM培养上清中的TNF-α水平的影响,应用Western blot方法检测大鼠AM内TNF-α及pERK蛋白表达水平,同时应用ERK拮抗剂(PD98059)观察AM内TNF-α蛋白表达.结果:蓝玉簪颗粒可剂量依赖的降低由于LPS刺激导致的AM培养上清内TNF-α含量升高;蓝玉簪(100 mg/L)颗粒可显著降低由于LPS刺激导致的AM细胞内pERK及TNF-α蛋白表达升高;ERK特异性抑制剂(PD98059 30 mol/L)及蓝玉簪颗粒干预,蓝玉簪颗粒+PD98059干预后,我们发现与LPS刺激组相比,大鼠AM中TNF-α表达显著降低.结论:蓝玉

  6. Is tooth wear in the primary dentition predictive of tooth wear in the permanent dentition? Report from a longitudinal study.

    LENUS (Irish Health Repository)

    Harding, M A

    2010-03-01

    To determine the prevalence of tooth wear in the permanent dentition of a sample of 12-year-old school children and establish whether an association exists between tooth wear recorded now and tooth wear recorded in their primary dentition at age five.

  7. Imaging of macrophage-related lung diseases

    Energy Technology Data Exchange (ETDEWEB)

    Marten, Katharina; Hansell, David M. [Royal Brompton Hospital, Department of Radiology, London (United Kingdom)

    2005-04-01

    Macrophage-related pulmonary diseases are a heterogeneous group of disorders characterized by macrophage accumulation, activation or dysfunction. These conditions include smoking-related interstitial lung diseases, metabolic disorders such as Niemann-Pick or Gaucher disease, and rare primary lung tumors. High-resolution computed tomography abnormalities include pulmonary ground-glass opacification secondary to infiltration by macrophages, centrilobular nodules or interlobular septal thickening reflecting peribronchiolar or septal macrophage accumulation, respectively, emphysema caused by macrophage dysfunction, and honeycombing following macrophage-related lung matrix remodeling. (orig.)

  8. Processing Parameters Influence on Wear Resistance Behaviour of Friction Stir Processed Al-TiC Composites

    Directory of Open Access Journals (Sweden)

    E. T. Akinlabi

    2014-01-01

    Full Text Available Friction stir processing (FSP being a novel process is employed for the improvement of the mechanical properties of a material and the production of surface layer composites. The vital role of the integrity of surface characteristics in the mechanical properties of materials has made the research studies into surface modification important in order to improve the performance in practical applications. This study investigates the effect of processing parameters on the wear resistance behavior of friction stir processed Al-TiC composites. This was achieved through microstructural characterization by using both the optical and scanning electron microscope (SEM, microhardness profiling, and tribological characterization by means of the wear. The microhardness profiling of the processed samples revealed an increased hardness value, which was a function of the TiC particles incorporated when compared to the parent material. The wear resistance property was also found to increase as a result of the TiC powder addition. The right combination of processing parameters was found to improve the wear resistance property of the composites produced.

  9. Effect of increasingly metallized hybrid reinforcement on the wear mechanisms of magnesium nanocomposite

    Indian Academy of Sciences (India)

    S FIDA HASSAN; A M AL-QUTUB; S ZABIULLAH; K S TUN; M GUPTA

    2016-08-01

    Strength and ductility of pure magnesium have experienced simultaneous improvement due to the presence of nanosize hybrid (yttria and copper) reinforcement. Increasing the vol% (i.e., 0.3–1.0) of ductile metallic copper particles in reinforcement has further enhanced the strength of agnesium.Wear behaviour of these magnesium hybrid nanocomposites was investigated using pin-on-disc dry sliding tests against hardened tool steel using a constant sliding speed of 1ms$^{−1}$ under a range of loads from5 to 30 N for a sliding distance of 1000 m. Scanning electron microscopy identified abrasion and delamination as primary wear mechanisms in the hybrid nanocomposite.Oxidation was active in nanocomposite with higher copper content, tested under higher load and positively affected the wear resistance. Limited thermal softening was observed when tested at a relatively higher load. High frictional heat dissipation capacity couples with higher hardness resisted adhesive wear which is common mechanism for magnesium composite.

  10. Microstructures and Wear Performance of PTAW Deposited Ni-Based Coatings with Spherical Tungsten Carbide

    Directory of Open Access Journals (Sweden)

    Dewei Deng

    2015-10-01

    Full Text Available The Ni-based coatings with different content of spherical tungsten carbide were deposited by plasma transfer arc welding (PTAW method on 304 austenitic stainless steel sheets in this study. The microstructure and wear property of spherical tungsten carbide particle reinforced composite coatings were investigated by means of optical microscope, scanning electron microscope (SEM, X-ray diffraction (XRD, electron probe microanalysis (EPMA and sliding wear test. It is shown that the fraction of spherical tungsten carbides has an important influence on microstructure of Ni-based overlay. The Ni40 overlay consists of γ-Ni dendrites with interdendritic Ni-based eutectics, borides and carbides improving the wear resistance. In the case of composite coatings with different content of tungsten carbide, many new phases are observed, such as Ni2W4C and NiW. In addition, there are a large number of irregular structures in composite coatings, such as acicular structure and irregular stripe organization. The results of sliding wear test indicate that the mass loss of coatings is influenced by the content of tungsten carbide. The mass loss decreases with the increase of tungsten carbide fraction. At high load, the abrasive resistance of composite coating with 60 wt. % tungsten carbide is improved about 50-fold compared to that of Ni40 overlay.

  11. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers

    Directory of Open Access Journals (Sweden)

    Witold Brostow

    2017-03-01

    Full Text Available Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs. We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic—with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention.

  12. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers.

    Science.gov (United States)

    Brostow, Witold; Lobland, Haley E Hagg; Hnatchuk, Nathalie; Perez, Jose M

    2017-03-16

    Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs). We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic-with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention.

  13. Wear Studies on Metal Matrix Composites: a Taguchi Approach

    Institute of Scientific and Technical Information of China (English)

    S. Basavarajappa; G. Chandramohan

    2005-01-01

    An attempt has been made to study the influence of wear parameters like applied load, sliding speed, sliding distance and percentage of reinforcement on the dry sliding wear of the metal matrix composites. A plan of experiments,based on techniques of Taguchi, was pedormed to acquire data in controlled way. An orthogonal