WorldWideScience

Sample records for wear debris-induced inflammation

  1. Efficient Inhibition of wear debris-induced inflammation by locally delivered siRNA

    International Nuclear Information System (INIS)

    Peng Xiaochun; Tao Kun; Cheng Tao; Zhu Junfeng; Zhang Xianlong

    2008-01-01

    Aseptic loosening is the most common long-term complication of total joint replacement, which is associated with the generation of wear debris. The purpose of this study was to investigate the inhibitory effect of small interfering RNA (siRNA) targeting tumor necrosis factor-α (TNF-α) on wear debris-induced inflammation. A local delivery of lentivirus-mediated TNF-α siRNA into the modified murine air pouch, which was stimulated by polymethylmethacrylate (PMMA) particles, resulted in significant blockage of TNF-α both in mRNA and protein levels for up to 4 weeks. In addition, significant down-regulation of interleukin-1 (IL-1) and interleukin-6 (IL-6) was observed in TNF-α siRNA-treated pouches. The safety profile of gene therapy was proven by Bioluminescent assay and quantitative fluorescent flux. Histological analysis revealed less inflammatory responses (thinner pouch membrane and decreased cellular infiltration) in TNF-α siRNA-treated pouches. These findings suggest that local delivery of TNF-α siRNA might be an excellent therapeutic candidate to inhibit particle-induced inflammation.

  2. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation

    OpenAIRE

    Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James

    2016-01-01

    Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation ...

  3. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1 and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p500pg/mL. Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate

  4. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation

    Science.gov (United States)

    Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James

    2016-01-01

    Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs) elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1) and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p500pg/mL). Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL) from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate associated

  5. Wear Particles Promote Reactive Oxygen Species-Mediated Inflammation via the Nicotinamide Adenine Dinucleotide Phosphate Oxidase Pathway in Macrophages Surrounding Loosened Implants

    Directory of Open Access Journals (Sweden)

    Weishen Chen

    2015-03-01

    Full Text Available Background/Aims: Prosthesis loosening is closely associated with chronic inflammatory cytokine secretion by macrophages, which are activated by wear particles or inflammatory stimulants such as lipopolysaccharide (LPS. Reactive oxygen species (ROS are critical regulators of inflammation, but their enzymatic sources in response to wear particles and their effects on peri-implant LPS-tolerance remain unclear. Methods: Three ROS-related enzymes—nicotinamide adenine dinucleotide phosphate oxidase (NOX-1 and -2 and catalase—were investigated in interface membrane tissues and in titanium (Ti particle-stimulated macrophages in vitro. The generation of ROS and downstream inflammatory effects were measured with or without pre-incubation with apocynin, an NOX inhibitor. Results: Pre-exposure to Ti particles attenuated NF-κB activation in LPS-stimulated macrophages, indicating that wear particles suppress immune response, which may lead to chronic inflammation. NOX-1 and -2 were highly expressed in aseptically loosened interface membranes and in macrophages stimulated with Ti particles; the particles induced a moderate amount of ROS generation, NF-κB activation, and TNF-a secretion in macrophages, and these effects were suppressed by apocynin. Conclusion: Wear particles induce ROS generation through the NOX signaling pathway, resulting in persistent inflammation and delayed loosening. Thus, the suppression of NOX activity may be a useful strategy for preventing prosthesis loosening.

  6. Tooth wear

    Directory of Open Access Journals (Sweden)

    Tušek Ivan

    2014-01-01

    Full Text Available Tooth wear is the loss of dental hard tissue that was not caused by decay and represents a common clinical problem of modern man. In the etiology of dental hard tissue lesions there are three dominant mechanisms that may act synergistically or separately:friction (friction, which is caused by abrasion of exogenous, or attrition of endogenous origin, chemical dissolution of dental hard tissues caused by erosion, occlusal stress created by compression and flexion and tension that leads to tooth abfraction and microfracture. Wear of tooth surfaces due to the presence of microscopic imperfections of tooth surfaces is clinically manifested as sanding veneers. Tribology, as an interdisciplinary study of the mechanisms of friction, wear and lubrication at the ultrastructural level, has defined a universal model according to which the etiopathogenesis of tooth wear is caused by the following factors: health and diseases of the digestive tract, oral hygiene, eating habits, poor oral habits, bruxism, temporomandibular disorders and iatrogenic factors. Attrition and dental erosion are much more common in children with special needs (Down syndrome. Erosion of teeth usually results from diseases of the digestive tract that lead to gastroesophageal reflux (GER of gastric juice (HCl. There are two basic approaches to the assessment of the degree of wear and dental erosion. Depending on the type of wear (erosion, attrition, abfraction, the amount of calcium that was realised during the erosive attack could be determined qualitatively and quantitatively, or changes in optical properties and hardness of enamel could be recorded, too. Abrasion of teeth (abrasio dentium is the loss of dental hard tissue caused by friction between the teeth and exogenous foreign substance. It is most commonly provoked by prosthetic dentures and bad habits, while its effect depends on the size of abrasive particles and their amount, abrasive particle hardness and hardness of tooth

  7. Tooth wear

    OpenAIRE

    Tušek Ivan; Tušek Jasmina

    2014-01-01

    Tooth wear is the loss of dental hard tissue that was not caused by decay and represents a common clinical problem of modern man. In the etiology of dental hard tissue lesions there are three dominant mechanisms that may act synergistically or separately:friction (friction), which is caused by abrasion of exogenous, or attrition of endogenous origin, chemical dissolution of dental hard tissues caused by erosion, occlusal stress created by compression and flexion and tension that leads to toot...

  8. Tooth wear and wear investigations in dentistry.

    Science.gov (United States)

    Lee, A; He, L H; Lyons, K; Swain, M V

    2012-03-01

    Tooth wear has been recognised as a major problem in dentistry. Epidemiological studies have reported an increasing prevalence of tooth wear and general dental practitioners see a greater number of patients seeking treatment with worn dentition. Although the dental literature contains numerous publications related to management and rehabilitation of tooth wear of varying aetiologies, our understanding of the aetiology and pathogenesis of tooth wear is still limited. The wear behaviour of dental biomaterials has also been extensively researched to improve our understanding of the underlying mechanisms and for the development of restorative materials with good wear resistance. The complex nature of tooth wear indicates challenges for conducting in vitro and in vivo wear investigations and a clear correlation between in vitro and in vivo data has not been established. The objective was to critically review the peer reviewed English-language literature pertaining to prevalence and aetiology of tooth wear and wear investigations in dentistry identified through a Medline search engine combined with hand-searching of the relevant literature, covering the period between 1960 and 2011. © 2011 Blackwell Publishing Ltd.

  9. Abrasive wear of intermetallics

    International Nuclear Information System (INIS)

    Hawk, J.A.; Alman, D.E.; Wilson, R.D.

    1995-01-01

    The US Bureau of Mines is investigating the wear behavior of a variety of advanced materials. Among the many materials under evaluation are intermetallic alloys based on the compounds: Fe 3 Al, Ti 3 Al, TiAl, Al 3 Ti, NiAl and MoSi 2 . The high hardness, high modulus, low density, and superior environmental stability of these compounds make them attractive for wear materials. This paper reports on the abrasive wear of alloys and composites based on the above compounds. The abrasive wear behavior of these alloys and composites are compared to other engineering materials used in wear applications

  10. Polymer wear evaluation

    DEFF Research Database (Denmark)

    Lagerbon, Mikkel; Sivebæk, Ion Marius

    2012-01-01

    Polymer wear plays an increasing role in manufacturing of machine parts for e.g. medical devices. Some of these have an expected lifetime of five to eight years during which very little wear of the components is acceptable. Too much wear compromises the dosage accuracy of the device and thereby...... the safety of the patients. Prediction of the wear of polymers is complicated by the low thermal conductivity of this kind of material. It implies that any acceleration of testing conditions by increased contact pressure and/or sliding velocity will make the polymer fail due to exaggerated heat buildup....... This is not the kind of wear observed in medical devices. In the present work a method was developed capable of evaluating the wear progression in polymer-polymer contacts. The configuration of the setup is injection moulded specimens consisting of an upper part having a toroid shape and a lower flat part. The sliding...

  11. [Orbital inflammation].

    Science.gov (United States)

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Optical wear monitoring

    Science.gov (United States)

    Kidane, Getnet S; Desilva, Upul P.; He, Chengli; Ulerich, Nancy H.

    2016-07-26

    A gas turbine includes first and second parts having outer surfaces located adjacent to each other to create an interface where wear occurs. A wear probe is provided for monitoring wear of the outer surface of the first part, and includes an optical guide having first and second ends, wherein the first end is configured to be located flush with the outer surface of the first part. A fiber bundle includes first and second ends, the first end being located proximate to the second end of the optical guide. The fiber bundle includes a transmit fiber bundle comprising a first plurality of optical fibers coupled to a light source, and a receive fiber bundle coupled to a light detector and configured to detect reflected light. A processor is configured to determine a length of the optical guide based on the detected reflected light.

  13. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro; Ruggeri, Fabrizio; Tempone, Raul; Vilanova, Pedro

    2014-01-01

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict

  14. Wear of ultra-high molecular weight polyethylene against damaged and undamaged stainless steel and diamond-like carbon-coated counterfaces.

    Science.gov (United States)

    Firkins, P; Hailey, J L; Fisher, J; Lettington, A H; Butter, R

    1998-10-01

    The wear of ultra-high molecular weight polyethylene (UHMWPE) in artificial joints and the resulting wear debris-induced osteolysis remains a major clinical concern in the orthopaedic sector. Third-body damage of metallic femoral heads is often cited as a cause of accelerated polyethylene wear, and the use of ceramic femoral heads in the hip is gaining increasing favour. In the knee prostheses and for smaller diameter femoral heads, the application of hard surface coatings, such as diamond-like carbon, is receiving considerable attention. However, to date, there has been little or no investigation of the tribology of these coatings in simulated biological environments. In this study, diamond-like carbon (DLC) has been compared to stainless steel in its undamaged form and following simulated third-body damage. The wear of UHMWPE was found to be similar when sliding against undamaged DLC and stainless steel counterfaces. DLC was found to be much more damage resistant than DLC. Under test conditions that simulate third-body damage to the femoral head, the wear of UHMWPE was seven times lower against DLC than against stainless steel (P < 0.05). The study shows DLC has considerable potential as a femoral bearing surface in artificial joints.

  15. Millisecond bearing wear

    International Nuclear Information System (INIS)

    Blatchley, C.; Sioshansi, P.

    1987-01-01

    Radionuclides have been widely used for many purposes in medicine, metals, transportation, manufacturing and research. Approximately 200 artificially produced nuclides are commercially available from reactors or accelerator sources. Another 400 or so have properties which may make them useful if satisfactory methods of production can be developed. One of the most economically important industrial applications of radionuclides has been in wear measurement and condition monitoring in reciprocating engines. The general techniques developed for this purpose have also been applied in a number of other areas besides engine or lubrication studies. The wear of floor wax applied to linoleum, for example, has been measured by mixing shortlived radionuclides in the wax. In those applications where the material is tagged and then followed, the radionuclides are termed ''tracers,'' similar to the medical tracer materials used to measure uptake or metabolism of biologically active chemicals in the body. The alternate function for the radionuclides is to act as ''markers'' which indicate the amount of material which is remaining at the location of the original activation. Both approaches require that the debris removed from the surface must be carried away from the original site. The first application of radioactive tracers as a diagnostic tool in engines was in 1949. In this technique, an entire wearing part such as a piston ring or gear was first exposed to neutrons in a nuclear reactor. This caused the entire volume of the part to become radioactive. The part was next installed and exposed to wear in the operating engine. Detectors placed near the oil line, an oil filter or a sediment trap then determined the amount of debris from the part by counting the gamma rays escaping from the debris

  16. MOCEAN SURF WEAR -MALLISTO

    OpenAIRE

    Lehtovaara, Hanna

    2013-01-01

    Surffi on urheilulaji, jossa kuljetaan aallon päällä surffilaudalla. Surffaus on lähtöisin Polynesiasta, mutta nykypäivänä surffausta harrastetaan ympäri maailmaa. Opinnäytetyö käsittelee surf wear -malliston suunnittelua ja toteuttamista omalle toi-minimelle Mocean. Työn tavoitteena oli suunnitella toimiva, mutta myös trendikäs mallisto naissurffareille. Mallisto sisältää bikineitä, surffipaitoja legginsejä ja shortseja. Mallisto on suunniteltu naissurffareille, jotka surffaavat lämpimis...

  17. Wear Particle Atlas. Revised

    Science.gov (United States)

    1982-06-28

    Superintendent NOTICE Reproduction of this document in any form by other than naval activities is/Jotbvlhorized except isys^iedcil approval of the SecretarWof...constant. •.■, -1 "if -w \\ SÄNPLlWi V» IVf Figure 3.1.1.1 Simplified Oil Path Ref 21 Scott. D, McCullagh. PJ and Campbell GW Condition Monitoring...Wear Particles in Human Synovial Fluid Arthritis and Rheumatism, 24 (1981) 912-918 30 Evans. C H .andTew W P isolationof Biological Materials

  18. Wear of polymers and composites

    CERN Document Server

    Abdelbary, Ahmed

    2015-01-01

    In the field of tribology, the wear behaviour of polymers and composite materials is considered a highly non-linear phenomenon. Wear of Polymers and Composites introduces fundamentals of polymers and composites tribology. The book suggests a new approach to explore the effect of applied load and surface defects on the fatigue wear behaviour of polymers, using a new tribometer and thorough experiments. It discusses effects of surface cracks, under different static and cyclic loading parameters on wear, and presents an intelligent algorithm, in the form of a neural network, to map the relations

  19. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S

    1981-01-01

    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  20. Wear mechanisms of toughened zirconias

    International Nuclear Information System (INIS)

    Becker, P.C.; Libsch, T.A.; Rhee, S.K.

    1985-01-01

    The dry friction and wear behavior of toughened zirconias against hardened steel was studied using the falex ring and block technique. Three experimental ZrO 2 -Y 2 O 3 ceramics and two commerical ZrO 2 -MgO ceramics were investigated. Each ceramic was tested at 500 and 2000 rpm at normal loads in the range 2.3 to 40.8 kg. Significant trends in the friction and wear data were found correlating composition, test speeds, and loads. Microstructural examination of the ring, ceramic block, and wear debris has shown that the wear process is very complex and incorporates a number of mechanisms

  1. Assessment of wear facets produced by the ACTA wear machine

    DEFF Research Database (Denmark)

    Benetti, Ana R; Larsen, Liselotte; Dowling, Adam H

    2016-01-01

    . The mean wear depth was measured using the traditionally employed 2D and compared with the 3D profilometric (digital) techniques. Data were submitted to analyses of variance, Tukey's post hoc tests and Independent Samples Student's t-tests (where appropriate) at p...OBJECTIVE: To investigate the use of a three-dimensional (3D) digital scanning method in determining the accuracy of the wear performance parameters of resin-based composites (RBCs) determined using a two-dimensional (2D) analogue methodology following in-vitro testing in an Academisch Centrum...... for Tandheelkunde Amsterdam (ACTA) wear machine. METHODS: Specimens compatible with the compartments of the ACTA wear machine specimen wheel (n=10) were prepared from one commercial and four experimental RBCs. The RBC specimens were rotated against an antagonist wheel in a food-like slurry for 220,000 wear cycles...

  2. Tyre and road wear prediction

    NARCIS (Netherlands)

    Lupker, H.A.

    2003-01-01

    Both tyre wear and road polishing are complex phenomenon, which are obviously strongly related; the energy that polishes the road is the energy that wears the tyre. The both depend non-linearly on numerous parameters, like materials used, vehicle and road usage, environmental conditions (i.e.

  3. Rubber glove wearing device

    International Nuclear Information System (INIS)

    Nozaki, Tatsuo; Takada, Kaoru.

    1994-01-01

    Rubber groves are attached each to an upper end of a glove putting vessel having an air-sucking hole on the bottom by enlarging an opening end of the rubber glove and turning back the inside to the outside. When the sucking device is operated, air in the glove putting device is sucked and the rubber glove is expanded by an atmospheric pressure. After expansion of the rubber glove to some extent, the sucking device is stopped, and presence or absence of failures of the rubber glove is confirmed by shrinkage of the rubber glove and by an indication value of a pressure gauge for detecting the pressure change in the vessel. Then, a hand is inserted to the expanded rubber glove, and a detaching switch in the vessel is pushed by a finger tip. A detaching piece at the upper end of the vessel is protruded outwardly to enlarge the turned-back portion of the rubber glove to easily release the rubber glove from the putting vessel, and the rubber glove is put on. This enables to wear the rubber glove and conduct failure test simultaneously. Further, a user can put on the rubber glove without touching the outside of the rubber glove. (I.N.)

  4. Erosive tooth wear in children

    NARCIS (Netherlands)

    Carvalho, T.S.; Lussi, A.; Jaeggi, T.; Gambon, D.L.; Lussi, A.; Ganss, C.

    2014-01-01

    Erosive tooth wear in children is a common condition. Besides the anatomical differences between deciduous and permanent teeth, additional histological differences may influence their susceptibility to dissolution. Considering laboratory studies alone, it is not clear whether deciduous teeth are

  5. Wear mechanisms of coated hardmetals

    International Nuclear Information System (INIS)

    Richter, V.

    2001-01-01

    In the paper several aspects of the wear mechanisms of coated hardmetals, ceramics and super-hard materials (CBN) in machining cast iron are discussed, with particular attention being given to high-speed machining of different cast iron grades. The influence of machining parameters, microstructure, composition and mechanical and chemical properties of the cutting tool and the work-piece material on wear are considered. (author)

  6. Gear Tooth Wear Detection Algorithm

    Science.gov (United States)

    Delgado, Irebert R.

    2015-01-01

    Vibration-based condition indicators continue to be developed for Health Usage Monitoring of rotorcraft gearboxes. Testing performed at NASA Glenn Research Center have shown correlations between specific condition indicators and specific types of gear wear. To speed up the detection and analysis of gear teeth, an image detection program based on the Viola-Jones algorithm was trained to automatically detect spiral bevel gear wear pitting. The detector was tested using a training set of gear wear pictures and a blind set of gear wear pictures. The detector accuracy for the training set was 75 percent while the accuracy for the blind set was 15 percent. Further improvements on the accuracy of the detector are required but preliminary results have shown its ability to automatically detect gear tooth wear. The trained detector would be used to quickly evaluate a set of gear or pinion pictures for pits, spalls, or abrasive wear. The results could then be used to correlate with vibration or oil debris data. In general, the program could be retrained to detect features of interest from pictures of a component taken over a period of time.

  7. Critical component wear in heavy duty engines

    CERN Document Server

    Lakshminarayanan, P A

    2011-01-01

    The critical parts of a heavy duty engine are theoretically designed for infinite life without mechanical fatigue failure. Yet the life of an engine is in reality determined by wear of the critical parts. Even if an engine is designed and built to have normal wear life, abnormal wear takes place either due to special working conditions or increased loading.  Understanding abnormal and normal wear enables the engineer to control the external conditions leading to premature wear, or to design the critical parts that have longer wear life and hence lower costs. The literature on wear phenomenon r

  8. Inflammation and Heart Disease

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Inflammation and Heart Disease Updated:Jun 13,2017 Understand the risks of ... inflammation causes cardiovascular disease, inflammation is common for heart disease and stroke patients and is thought to be ...

  9. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro; Ruggeri, Fabrizio; Tempone, Raul; Vilanova, Pedro

    2016-01-01

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  10. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro; Ruggeri, Fabrizio; Tempone, Raul; Vilanova, Pedro

    2015-01-01

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  11. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2015-01-07

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  12. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2014-01-06

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  13. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2016-01-06

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  14. Wear of micro end mills

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper addresses the important issue of wear on micro end mills considering relevant metrological tools for its characterization and quantification. Investigation of wear on micro end mills is particularly difficult and no data are available in the literature. Small worn volumes cause large...... part. For this investigation 200 microns end mills are considered. Visual inspection of the micro tools requires high magnification and depth of focus. 3D reconstruction based on scanning electron microscope (SEM) images and stereo-pair technique is foreseen as a possible method for quantification...

  15. Calculation of wear (f.i. wear modulus) in the plastic cup of a hip joint prosthesis

    NARCIS (Netherlands)

    Ligterink, D.J.

    1975-01-01

    The wear equation is applied to the wear process in a hip joint prosthesis and a wear modulus is defined. The sliding distance, wear modulus, wear volume, wear area, contact angle and the maximum normal stress were calculated and the theoretical calculations applied to test results. During the wear

  16. Should School Nurses Wear Uniforms?

    Science.gov (United States)

    Journal of School Health, 2001

    2001-01-01

    This 1958 paper questions whether school nurses should wear uniforms (specifically, white uniforms). It concludes that white uniforms are often associated with the treatment of ill people, and since many people have a fear reaction to them, they are not necessary and are even undesirable. Since school nurses are school staff members, they should…

  17. Wear resistance of cast iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-10-01

    Full Text Available In this paper investigations of abrasive and adhesive wear resistance of different cast iron grades have been presented. Examinations showed, that the most advantageous pair of materials is the cast iron – the hardened steel with low-tempered martensite. It was found, that martensitic nodular cast iron with carbides is the most resistant material.

  18. Wear performance of laser processed tantalum coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dittrick, Stanley; Balla, Vamsi Krishna; Bose, Susmita; Bandyopadhyay, Amit, E-mail: amitband@wsu.edu

    2011-12-01

    This first generation investigation evaluates the in vitro tribological performance of laser-processed Ta coatings on Ti for load-bearing implant applications. Linear reciprocating wear tests in simulated body fluid showed one order of magnitude less wear rate, of the order of 10{sup -4} mm{sup 3}(N.m){sup -1}, for Ta coatings compared to Ti. Our results demonstrate that Ta coatings can potentially minimize the early-stage bone-implant interface micro-motion induced wear debris generation due to their excellent bioactivity comparable to that of hydroxyapatite (HA), high wear resistance and toughness compared to popular HA coatings. Highlights: {yields} In vitro wear performance of laser processed Ta coatings on Ti was evaluated. {yields} Wear tests in SBF showed one order of magnitude less wear for Ta coatings than Ti. {yields} Ta coatings can minimize early-stage micro-motion induced wear debris generation.

  19. Measurement of Wear in Radial Journal Bearings

    NARCIS (Netherlands)

    Ligterink, D.J.; Ligterink, D.J.; de Gee, A.W.J.

    1996-01-01

    this article, the measurement of wear in radial journal bearings is discussed, where a distinction is made between stationary and non-stationary contact conditions. Starting with Holm/Archard's wear law, equations are derived for the calculation of the specific wear rate k of the bearing material as

  20. Backside wear in modern total knee designs.

    Science.gov (United States)

    Jayabalan, Prakash; Furman, Bridgette D; Cottrell, Jocelyn M; Wright, Timothy M

    2007-02-01

    Although modularity affords various options to the orthopedic surgeon, these benefits come at a price. The unintended bearing surface between the back surface of the tibial insert and the metallic tray results in micromotion leading to polyethylene wear debris. The objective of this study was to examine the backside wear of tibial inserts from three modern total knee designs with very different locking mechanisms: Insall-Burstein II (IB II), Optetrak, and Advance. A random sample of 71 inserts were obtained from our institution's retrieval collection and examined to assess the extent of wear, depth of wear, and wear damage modes. Patient records were also obtained to determine patient age, body mass index, length of implantation, and reason for revision. Modes of wear damage (abrasion, burnishing, scratching, delamination, third body debris, surface deformation, and pitting) were then scored in each zone from 0 to 3 (0 = 0%, 1 = 0-10%, 2 = 10-50%, and 3 = >50%). The depth of wear was subjectively identified as removal of manufacturing identification markings stamped onto the inferior surface of the polyethylene. Both Advance and IB II polyethylene inserts showed significantly higher scores for backside wear than the Optetrak inserts. All IB II and Advance implants showed evidence of backside wear, whereas 17% (5 out of 30) of the retrieved Optetrak implants had no observable wear. There were no significant differences when comparing the depth of wear score between designs. The locking mechanism greatly affects the propensity for wear and should be considered when choosing a knee implant system.

  1. Assessment of wear dependence parameters in complex model of cutting tool wear

    Science.gov (United States)

    Antsev, A. V.; Pasko, N. I.; Antseva, N. V.

    2018-03-01

    This paper addresses wear dependence of the generic efficient life period of cutting tools taken as an aggregate of the law of tool wear rate distribution and dependence of parameters of this law's on the cutting mode, factoring in the random factor as exemplified by the complex model of wear. The complex model of wear takes into account the variance of cutting properties within one batch of tools, variance in machinability within one batch of workpieces, and the stochastic nature of the wear process itself. A technique of assessment of wear dependence parameters in a complex model of cutting tool wear is provided. The technique is supported by a numerical example.

  2. Influence of nitrogen ion implantation on wear studied by a new laboratory wear test

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, E.; Paszti, F.; Vertessy, Z. (Central Research Inst. for Physics, Hungarian Academy of Sciences, Budapest (Hungary))

    1991-05-01

    A new laboratory wear test is developed in which the wear trace is measured by Rutherford backscattering spectrometry. The advantage of the new test is that the wear rate is directly determinable. The new test setup has been used to study the effects of nitrogen implantation on the wear processes on 115CrV3 steel. The wear rate decreases by a factor of 2 at 4x10{sup 17} N{sup +}/cm{sup 2} implanted dose. (orig.).

  3. Friction and wear in sodium

    International Nuclear Information System (INIS)

    Hoffman, N.J.; Droher, J.J.

    1973-01-01

    In the design of a safe and reliable sodium-cooled reactor one of the more important problem areas is that of friction and wear of components immersed in liquid sodium or exposed to sodium vapor. Sodium coolant at elevated temperatures may severely affect most oxide-bearing surface layers which provide corrosion resistance and, to some extent, lubrication and surface hardness. Consequently, accelerated deterioration may be experienced on engaged-motion contact surfaces, which could result in unexpected reactor shutdown from component malfunction or failure due to galling and seizure. An overall view of the friction and wear phenomena encountered during oscillatory rubbing of surfaces in high-temperature, liquid-sodium environments is presented. Specific data generated at the Liquid Metal Engineering Center (LMEC) on this subject is also presented. (U.S.)

  4. Wear of rolling element bearings in sodium

    International Nuclear Information System (INIS)

    Campbell, C.S.

    1976-01-01

    Rolling element bearings and related mechanisms are attractive for service in liquid sodium but it is not clear what minimum wear rate can be anticipated. For axially loaded angular contact bearings rotation is incompatible with pure rolling on both races and wear arises from the resulting ball spin. The initial pressure distributions and sizes of the contact ellipses can be calculated but will change with bearing wear. However, the most effective distribution for producing wear would be for the full loads to be borne on the tips of the contact areas, whose maximum length is given by examination of the race wear tracks. A calculation on such a basis should set a lower limit for the wear coefficient. Both the torque and instantaneous wear rate of a bearing will be similar functions of the integral over the contact areas of the product of contact pressure and radius from the ball spin axis. A better estimate of wear coefficient should be obtained by relating the average torque, the average wear, the initial torque and the initial wear where the conditions are known. Analysis of tests in sodium at 400 0 C of high speed steel and Stellite bearings by these methods indicates specific wear rates of the order of 10 -15 m 3 /N-m, not unduly out of line with the range of values found in conventional sliding tests

  5. Fluoridation and tooth wear in Irish adults.

    LENUS (Irish Health Repository)

    Burke, F M

    2010-10-01

    The aim of this study was to determine the prevalence of tooth wear in adults in Ireland and its relationship with water fluoridation. The National Survey of Adult Oral Health was conducted in 2000\\/2001. Tooth wear was determined using a partial mouth examination assessing the upper and lower anterior teeth. A total of 2456 subjects were examined. In this survey, increasing levels and severity of tooth wear were associated with ageing. Men were more affected by tooth wear and were more likely to be affected by severe tooth wear than women. It was found that age, and gender were significant predictors of tooth wear (P < 0.01). Overall, there was no significant relationship between fluoridation and tooth wear in this study.

  6. A new methodology for predictive tool wear

    Science.gov (United States)

    Kim, Won-Sik

    An empirical approach to tool wear, which requires a series of machining tests for each combination of insert and work material, has been a standard practice for industries since early part of the twentieth century. With many varieties of inserts and work materials available for machining, the empirical approach is too experiment-intensive that the demand for the development of a model-based approach is increasing. With a model-based approach, the developed wear equation can be extended without additional machining experiments. The main idea is that the temperatures on the primary wear areas are increasing such that the physical properties of the tool material degrade substantially and consequently tool wear increases. Dissolution and abrasion are identified to be the main mechanisms for tool wear. Flank wear is predominantly a phenomenon of abrasion as evident by the presence of a scoring mark on the flank surface. Based on this statement, it is reasonable to expect that the flank-wear rate would increase with the content of hard inclusions. However, experimental flank wear results did not necessary correspond to the content of cementite phase present in the steels. Hence, other phenomena are believed to significantly affect wear behavior under certain conditions. When the cutting temperature in the flank interface is subjected to high enough temperatures, pearlitic structure austenizes. During the formation of a new austenitic phase, the existing carbon is dissolved into the ferrite matrix, which will reduce the abrasive action. To verify the austenitic transformation, turning tests were conducted with plain carbon steels. The machined surface areas are imaged using X-ray diffraction the Scanning Electron Microscope (SEM) and the Transmission Electron Microscope (TEM). On the other hand, crater wear occurs as a result of dissolution wear and abrasive wear. To verify the wear mechanisms of crater wear, various coating inserts as well as uncoated inserts were

  7. Wear mechanisms in ceramic hip implants.

    Science.gov (United States)

    Slonaker, Matthew; Goswami, Tarun

    2004-01-01

    The wear in hip implants is one of the main causes for premature hip replacements. The wear affects the potential life of the prosthesis and subsequent removals of in vivo implants. Therefore, the objective of this article is to review various joints that show lower wear rates and consequently higher life. Ceramics are used in hip implants and have been found to produce lower wear rates. This article discusses the advantages and disadvantages of ceramics compared to other implant materials. Different types of ceramics that are being used are reviewed in terms of the wear characteristics, debris released, and their size together with other biological factors. In general, the wear rates in ceramics were lower than that of metal-on-metal and metal-on-polyethylene combinations.

  8. Radiation tagging measures wear at speed

    International Nuclear Information System (INIS)

    Barrett, Jon.

    1994-01-01

    A new non-invasive technique for performing accelerated wear and corrosion analysis is particularly relevant to power transmission systems. Wear tests that would normally take days or weeks to complete can now be performed in hours. A tiny patch of the wearing component is made mildly radioactive and the drop in activity as material is worn away is monitored. Known as Thin Layer Activation (TLA), the technology was originally developed and pioneered in-house by the Atomic Energy Authority. Since then, the dominant partner has been the automotive sector where TLA has been used extensively for engine wear and lubrication performance analysis. However, TLA could be used in any wear or corrosion environment. Applications include wear analysis of machine tool cutting surfaces, pump impellers and brake linings to the corrosion monitoring of process plant and pipelines. (author)

  9. Determination of rail wear and short-time wear measurements of rails applying radioisotopes

    International Nuclear Information System (INIS)

    Grohmann, H.D.

    1981-01-01

    An energetic model has been developed for calculating rail wear. Short-time wear tests on rails after surface activation and following activity measurements showed a good agreement with the calculated values

  10. Friction & Wear Under Very High Electromagnetic Stress

    National Research Council Canada - National Science Library

    Cowan, Richard S; Danyluk, Steven; Moon, Francis; Ford, J. C; Brenner, Donald W

    2004-01-01

    This document summarizes initial progress toward advancing the fundamental understanding of the friction, wear and mechanics of interfaces subjected to extreme electromagnetic stress, high relative...

  11. Daily Water Requirements when Wearing Body Armor

    National Research Council Canada - National Science Library

    Montain, Scott

    2000-01-01

    .... This report presents the results of model simulations predicting the individual daily water requirements under a broad range of energy expenditures and weather conditions when wearing battle dress...

  12. Truck tyre wear assessment and prediction

    NARCIS (Netherlands)

    Lupker, H.A.; Montanaro, F.; Donadio, D.; Gelosa, E.; Vis, M.A.

    2002-01-01

    Tyre wear is a complex phenomenon. It depends non-linearly on numerous parameters, like tyre compound and design, vehicle type and usage, road conditions and road surface characteristics, environmental conditions (e.g., temperature) and many others. Yet, tyre wear has many economic and ecological

  13. Prediction of wear rates in comminution equipment

    DEFF Research Database (Denmark)

    Jensen, Lucas Roald Dörig; Fundal, Erling; Møller, Per

    2010-01-01

    -resistant high chromium white cast iron (21988/JN/HBW555XCr21), a heat-treated wear resistant steel (Hardox 400) and a plain carbon construction steel (S235). Quartz, which accounts for the largest wear loss in the cement industry, was chosen as abrasive. Other process parameters such as velocity (1–7 m...

  14. Straylight Measurements in Contact Lens Wear

    NARCIS (Netherlands)

    van der Meulen, Ivanka J. E.; Engelbrecht, Leonore A.; van Vliet, Johannes M. J.; Lapid-Gortzak, Ruth; Nieuwendaal, Carla P.; Mourits, Maarten P.; Schlingemann, Reinier O.; van den Berg, Thomas J. T. P.

    2010-01-01

    Purpose: (1) To quantify the effect of contact lens wear on straylight in rigid and soft contact lens wearers and (2) to relate findings to morphological changes and subjective complaints. Methods: Straylight was measured using the Oculus C-Quant during contact lens wear and after contact lens

  15. Tooth Wear Inclination in Great Ape Molars.

    Science.gov (United States)

    Knight-Sadler, Jordan; Fiorenza, Luca

    2017-01-01

    Primate dietary diversity is reflected in their dental morphology, with differences in size and shape of teeth. In particular, the tooth wear angle can provide insight into a species' ability to break down certain foods. To examine dietary and masticatory information, digitized polygon models of dental casts provide a basis for quantitative analysis of wear associated with tooth attrition. In this study, we analyze and compare the wear patterns of Pongo pygmaeus, Gorilla gorillagorilla and Pan troglodytes schweinfurthii lower molars, focusing on the degree of inclination of specific wear facets. The variation in wear angles appears to be indicative of jaw movements and the specific stresses imposed on food during mastication, reflecting thus the ecology of these species. Orangutans exhibit flatter wear angles, more typical of a diet consisting of hard and brittle foods, while gorillas show a wear pattern with a high degree of inclination, reflecting thus their more leafy diet. Chimpanzees, on the other hand, show intermediate inclinations, a pattern that could be related to their highly variable diet. This method is demonstrated to be a powerful tool for better understanding the relationship between food, mastication and tooth wear processes in living primates, and can be potentially used to reconstruct the diet of fossil species. © 2017 S. Karger AG, Basel.

  16. Numerical prediction of car tire wear

    NARCIS (Netherlands)

    Lupker, H.A.; Cheli, F.; Braghin, F.; Gelosa, E.; Keckman, A.

    2004-01-01

    Due to their many economic and ecological implications, the possibility to predict tire wear is of major importance to tire manufacturers, fleet owners and governments. Based on these observations, in 2000, a three-year project named TROWS (Tire and Road Wear and Slip assessment was started. One of

  17. Vibrational characteristics and wear of fuel rods

    International Nuclear Information System (INIS)

    Schmugar, K.L.

    1977-01-01

    Fuel rod wear, due to vibration, is a continuing concern in the design of liquid-cooled reactors. In my report, the methodology and models that are used to predict fuel rod vibrational response and vibratory wear, in a light water reactor environment, are discussed. This methodology is being followed at present in the design of Westinghouse Nuclear Fuel. Fuel rod vibrations are expressed as the normal bending modes, and sources of rod vibration are examined with special emphasis on flow-induced mechanisms in the stable flow region. In a typical Westinghouse PWR fuel assembly design, each fuel rod is supported at multiple locations along the rod axis by a square-shaped 'grid cell'. For a fuel rod /grid support system, the development of small oscillatory motions, due to fluid flow at the rod/grid interface, results in material wear. A theoretical wear mode is developed using the Archard Theory of Adhesive Wear as the basis. Without question certainty, fretting wear becomes a serious problem if it progresses to the stage where the fuel cladding is penetrated and fuel is exposed to the coolant. Westinghouse fuel is designed to minimize fretting wear by limiting the relative motion between the fuel rod and its supports. The wear producing motion between the fuel rod and its supports occurs when the vibration amplitude exceeds the slippage threshold amplitude

  18. Radioisotopic measurement methods for determining the wear railway brake shoe and its rim wearing effect

    International Nuclear Information System (INIS)

    Doman, P.

    1979-01-01

    Under operating conditions the wear of brake shoe was tested by a measuring method based on the principle of radioisotopic thickness measurement. It is characteristic to the sensitivity of the method that the wear caused by the fast braking of a train (speed: 100 km/h) as well as the uneven wear distribution were determinable. Surface activating methods assuring the periodic and continuous evaluation were also developed. A test was performed with galvanic surface activation under operating conditions to determine the rim wearing effect of the brake shoe. Apart from the operational tests a new method based on activated wear measurement was also developed. (author)

  19. Residual Stresses and Sliding Wear.

    Science.gov (United States)

    1982-05-25

    case of rolling contact, taking into account strain hardening during plastic deformation. ..-s calculations (forSAE 52100 at a hardness level of 58.5 R...can reach -800- 1000 MPa. If 033 was comparable to these values, it would indeed effect the wear rate. It is evident that an experimental deter...cc o 40 1 °2 00 I I +A ) S l~lll0 44MUK I CQ E3 e0 El 0 Uc 00 E3 (3 80 j40 c (vclq) SSHHI +ce ce mCQ ce (2E e0 4El EJ) E - 0 El 0 E0 .. t El 0 (vdNp

  20. Modeling wear of cast Ti alloys.

    Science.gov (United States)

    Chan, Kwai S; Koike, Marie; Okabe, Toru

    2007-05-01

    The wear behavior of Ti-based alloys was analyzed by considering the elastic-plastic fracture of individual alloys in response to the relevant contact stress field. Using the contact stresses as the process driving force, wear was computed as the wear rate or volume loss as a function of hardness and tensile ductility for Ti-based cast alloys containing an alpha, alpha+beta or beta microstructure with or without the intermetallic precipitates. Model predictions indicated that wear of Ti alloys increases with increasing hardness but with decreasing fracture toughness or tensile ductility. The theoretical results are compared with experimental data to elucidate the roles of microstructure in wear and contrasted against those in grindability.

  1. The friction wear of electrolytic composite coatings

    International Nuclear Information System (INIS)

    Starosta, R.

    2002-01-01

    The article presents the results of investigation of wear of galvanic composite coatings Ni-Al 2 O 3 and Ni-41%Fe-Al 2 O 3 . The diameter of small parts of aluminium oxide received 0.5; 3; 5 μm. Investigations of friction sliding were effected on PT3 device at Technical University of Gdansk. Counter sample constituted a funnel made of steel NC6 (750 HV). Increase of wear coatings together with the rise of iron content in matrix is observed. The rise of sizes of ceramic particles caused decrease of wear of composite coatings, but rise of steel funnel wear. The friction coefficient increased after ceramic particle s were built in coatings. The best wear resistance characterized Ni-41%Fe-Al 2 O 3 coatings containing 2.2x10 6 mm -2 ceramic particles. (author)

  2. Tool Wear Monitoring Using Time Series Analysis

    Science.gov (United States)

    Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu

    A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.

  3. Biologically Based Restorative Management of Tooth Wear

    Directory of Open Access Journals (Sweden)

    Martin G. D. Kelleher

    2012-01-01

    Full Text Available The prevalence and severity of tooth wear is increasing in industrialised nations. Yet, there is no high-level evidence to support or refute any therapeutic intervention. In the absence of such evidence, many currently prevailing management strategies for tooth wear may be failing in their duty of care to first and foremost improve the oral health of patients with this disease. This paper promotes biologically sound approaches to the management of tooth wear on the basis of current best evidence of the aetiology and clinical features of this disease. The relative risks and benefits of the varying approaches to managing tooth wear are discussed with reference to long-term follow-up studies. Using reference to ethical standards such as “The Daughter Test”, this paper presents case reports of patients with moderate-to-severe levels of tooth wear managed in line with these biologically sound principles.

  4. Predicting railway wheel wear under uncertainty of wear coefficient, using universal kriging

    International Nuclear Information System (INIS)

    Cremona, Marzia A.; Liu, Binbin; Hu, Yang; Bruni, Stefano; Lewis, Roger

    2016-01-01

    Railway wheel wear prediction is essential for reliability and optimal maintenance strategies of railway systems. Indeed, an accurate wear prediction can have both economic and safety implications. In this paper we propose a novel methodology, based on Archard's equation and a local contact model, to forecast the volume of material worn and the corresponding wheel remaining useful life (RUL). A universal kriging estimate of the wear coefficient is embedded in our method. Exploiting the dependence of wear coefficient measurements with similar contact pressure and sliding speed, we construct a continuous wear coefficient map that proves to be more informative than the ones currently available in the literature. Moreover, this approach leads to an uncertainty analysis on the wear coefficient. As a consequence, we are able to construct wear prediction intervals that provide reasonable guidelines in practice. - Highlights: • Wear prediction is of outmost importance for reliability of railway systems. • Wear coefficient is essential in prediction through Archard's equation. • A novel methodology is developed to predict wear and RUL. • Universal kriging is used for wear coefficient and uncertainty estimation. • A simulation study and a real case application are provided.

  5. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  6. Dental wear, wear rate, and dental disease in the African apes.

    Science.gov (United States)

    Elgart, Alison A

    2010-06-01

    The African apes possess thinner enamel than do other hominoids, and a certain amount of dentin exposure may be advantageous in the processing of tough diets eaten by Gorilla. Dental wear (attrition plus abrasion) that erodes the enamel exposes the underlying dentin and creates additional cutting edges at the dentin-enamel junction. Hypothetically, efficiency of food processing increases with junction formation until an optimal amount is reached, but excessive wear hinders efficient food processing and may lead to sickness, reduced fecundity, and death. Occlusal surfaces of molars and incisors in three populations each of Gorilla and Pan were videotaped and digitized. The quantity of incisal and molar occlusal dental wear and the lengths of dentin-enamel junctions were measured in 220 adult and 31 juvenile gorilla and chimpanzee skulls. Rates of dental wear were calculated in juveniles by scoring the degree of wear between adjacent molars M1 and M2. Differences were compared by principal (major) axis analysis. ANOVAs compared means of wear amounts. Pearson correlation coefficients were calculated to compare the relationship between molar wear and incidence of dental disease. Results indicate that quantities of wear are significantly greater in permanent incisors and molars and juvenile molars of gorillas compared to chimpanzees. The lengths of dentin-enamel junctions were predominantly suboptimal. Western lowland gorillas have the highest quantities of wear and the most molars with suboptimal wear. The highest rates of wear are seen in Pan paniscus and Pan t. troglodytes, and the lowest rates are found in P.t. schweinfurthii and G. g. graueri. Among gorillas, G. b. beringei have the highest rates but low amounts of wear. Coefficients between wear and dental disease were low, but significant when all teeth were combined. Gorilla teeth are durable, and wear does not lead to mechanical senescence in this sample.

  7. Wear Characteristics of Metallic Biomaterials: A Review

    Science.gov (United States)

    Hussein, Mohamed A.; Mohammed, Abdul Samad; Al-Aqeeli, Naser

    2015-01-01

    Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  8. Gaussian process regression for tool wear prediction

    Science.gov (United States)

    Kong, Dongdong; Chen, Yongjie; Li, Ning

    2018-05-01

    To realize and accelerate the pace of intelligent manufacturing, this paper presents a novel tool wear assessment technique based on the integrated radial basis function based kernel principal component analysis (KPCA_IRBF) and Gaussian process regression (GPR) for real-timely and accurately monitoring the in-process tool wear parameters (flank wear width). The KPCA_IRBF is a kind of new nonlinear dimension-increment technique and firstly proposed for feature fusion. The tool wear predictive value and the corresponding confidence interval are both provided by utilizing the GPR model. Besides, GPR performs better than artificial neural networks (ANN) and support vector machines (SVM) in prediction accuracy since the Gaussian noises can be modeled quantitatively in the GPR model. However, the existence of noises will affect the stability of the confidence interval seriously. In this work, the proposed KPCA_IRBF technique helps to remove the noises and weaken its negative effects so as to make the confidence interval compressed greatly and more smoothed, which is conducive for monitoring the tool wear accurately. Moreover, the selection of kernel parameter in KPCA_IRBF can be easily carried out in a much larger selectable region in comparison with the conventional KPCA_RBF technique, which helps to improve the efficiency of model construction. Ten sets of cutting tests are conducted to validate the effectiveness of the presented tool wear assessment technique. The experimental results show that the in-process flank wear width of tool inserts can be monitored accurately by utilizing the presented tool wear assessment technique which is robust under a variety of cutting conditions. This study lays the foundation for tool wear monitoring in real industrial settings.

  9. Estimating Wear Of Installed Ball Bearings

    Science.gov (United States)

    Keba, John E.; Mcvey, Scott E.

    1993-01-01

    Simple inspection and measurement technique makes possible to estimate wear of balls in ball bearing, without removing bearing from shaft on which installed. To perform measurement, one observes bearing cage while turning shaft by hand to obtain integral number of cage rotations and to measure, to nearest 2 degrees, number of shaft rotations producing cage rotations. Ratio between numbers of cages and shaft rotations depends only on internal geometry of bearing and applied load. Changes in turns ratio reflect changes in internal geometry of bearing provided measurements made with similar bearing loads. By assuming all wear occurs on balls, one computes effective value for this wear from change in turns ratio.

  10. Minimization of PWR reactor control rods wear

    International Nuclear Information System (INIS)

    Ponzoni Filho, Pedro; Moura Angelkorte, Gunther de

    1995-01-01

    The Rod Cluster Control Assemblies (RCCA's) of Pressurized Water Reactors (PWR's) have experienced a continuously wall cladding wear when Reactor Coolant Pumps (RCP's) are running. Fretting wear is a result of vibrational contact between RCCA rodlets and the guide cards which provide lateral support for the rodlets when RCCA's are withdrawn from the core. A procedure is developed to minimize the rodlets wear, by the shuffling and axial reposition of RCCA's every operating cycle. These shuffling and repositions are based on measurement of the rodlet cladding thickness of all RCCA's. (author). 3 refs, 2 figs, 2 tabs

  11. Tool wear modeling using abductive networks

    Science.gov (United States)

    Masory, Oren

    1992-09-01

    A tool wear model based on Abductive Networks, which consists of a network of `polynomial' nodes, is described. The model relates the cutting parameters, components of the cutting force, and machining time to flank wear. Thus real time measurements of the cutting force can be used to monitor the machining process. The model is obtained by a training process in which the connectivity between the network's nodes and the polynomial coefficients of each node are determined by optimizing a performance criteria. Actual wear measurements of coated and uncoated carbide inserts were used for training and evaluating the established model.

  12. The Wearing Out of Genre Materials

    Science.gov (United States)

    Russ, Joanna

    1971-01-01

    Scenes and plots wear out in three distinct stages: Innocence, Plausibility, and Decadence. Examines westerns, spy stories, nurse novels, detective stories, science fiction, pornography, avant-garde fiction, etc. (Author/RB)

  13. Eye Wear: MedlinePlus Health Topic

    Science.gov (United States)

    ... When You Exercise (National Institute on Aging) - PDF Topic Image MedlinePlus Email Updates Get Eye Wear updates by email What's this? GO Related Health Topics Refractive Errors National Institutes of Health The primary ...

  14. The model of the dependence of the abrasive wear value on the maximal linear wear

    Directory of Open Access Journals (Sweden)

    О.А. Вишневський

    2004-01-01

    Full Text Available  The relation of the contact area of the rubber roll with a sample and the maximal linear wear value is found. The mathematical model of the dependence of the wear volume weight value on the maximal dimple depth is presented with the friction on abrasive particles fixed nonrigidly. The relation of volume weight wear with the rubber roll contact surface area with a sample with the friction on abrasive particles fixed nonrigidly is established.

  15. Inflammation of the Penis

    Science.gov (United States)

    ... Inflammation of the Penis (Balanitis; Posthitis; Balanoposthitis) By Patrick J. Shenot, MD, Associate Professor and Deputy Chair, ... of stimuli to nerves, blood vessels, and the brain. Which of the following happens to blood during ...

  16. Fundamentals of inflammation

    National Research Council Canada - National Science Library

    Serhan, Charles N; Ward, Peter A; Gilroy, Derek W

    2010-01-01

    .... Uncontrolled inflammation has emerged as a pathophysiologic basis for many widely occurring diseases in the general population that were not initially known to be linked to the inflammatory response...

  17. Thin layer activation: measuring wear and corrosion

    International Nuclear Information System (INIS)

    Delvigne, T.; Leyman, D.; Oxorn, K.

    1995-01-01

    The technique known as thin layer activation (TLA) is explained and assessed in this article. Widely used, in for example the automotive industry, TLA allows on-line monitoring of the loss of matter from a critical surface, by wear erosion and corrosion. The technique offers extremely high sensitivity thus leading to reduced test times. On-line wear phenomena can be assessed during operation of a mechanical process, even through thick engine walls. (UK)

  18. Biocompatible wear-resistant thick ceramic coating

    Directory of Open Access Journals (Sweden)

    Vogt Nicola

    2016-09-01

    Full Text Available Sensitisation to immunologically active elements like chromium, cobalt or nickel and debris particle due to wear are serious problems for patients with metallic implants. We tested the approach of using a hard and thick ceramic coating as a wear-resistant protection of titanium implants, avoiding those sensitisation and foreign body problems. We showed that the process parameters strongly influence the coating porosity and, as a consequence, also its hardness.

  19. Third abrasive wear mode: is it possible?

    Directory of Open Access Journals (Sweden)

    Ronaldo Câmara Cozza

    2014-04-01

    Full Text Available The objective of this paper is to propose an initial discussion on the characterization of a third abrasive wear mode. The results obtained in a previous work [1] under different test conditions revealed the occurrence of the superposition of the “rolling” and “grooving” abrasive wear modes. This phenomenon was denoted “micro-rolling abrasion” due to the observation that “rolling abrasion” was found to act on “grooving abrasion”.

  20. Pseudomembranous candidiasis in patient wearing full denture

    Directory of Open Access Journals (Sweden)

    Nurdiana Nurdiana

    2009-06-01

    Full Text Available Background: Oral candidiasis is a common opportunistic infection of the oral cavity caused by an overgrowth of Candida species, the commonest being Candida albicans. Candida albicans is a harmless commensal organism inhabiting the mouths but it can change into pathogen and invade tissue and cause acute and chronic disease. Dentures predispose to infection with Candida in as many as 65% of elderly people wearing full upper dentures. Purpose: The purpose of this case report is to discuss thrush in patient wearing full denture which rapidly developed. Case: This paper report a case of 57 year-old man who came to the Oral Medicine Clinic Faculty of Dentistry Airlangga University with clinical appearance of pseudomembranous candidiasis (thrush. Case Management: Diagnosis of this case is confirmed with microbiology examination. Patient was wearing full upper dentures, and from anamnesis known that patient wearing denture for 24 hours and he had poor oral hygiene. Patient was treated with topical (nystatin oral suspension and miconazole oral gel and systemic (ketoconazole antifungal. Patient also instructed not to wear his denture and cleaned white pseudomembrane on his mouth with soft toothbrush. Conclusion: Denture, habit of wearing denture for 24 hours, and poor oral hygiene are predisposing factors of thrush and it can healed completely after treated with topical and systemic antifungal.

  1. Grain size dependence of wear in ceramics

    International Nuclear Information System (INIS)

    Wu, C.C.; Rice, R.W.; Johnson, D.; Platt, B.A.

    1985-01-01

    Pin-On-Disk (POD), microwear tests of Al 2 O 3 , MgO, MgAl 2 O 4 , and ZrO 2 , most being dense and essentially single phase, showed the reciprocal of wear following a hall-petch type relationship. However, extrapolation to infinite grain size always gave a lower intercept than most or all single-crystal values; in particular, Al 2 O 3 data projects to a negative intercept. Initial macro wear tests of some of the same Al 2 O 3 materials also indicate a hall-petch type grain-size dependence, but with a greatly reduced grain-size dependence, giving a positive hall-petch intercept. Further, the macrowear grain-size dependence appears to decrease with increased wear. It is argued that thermal expansion anisotropy (of Al 2 O 3 ) significantly affects the grain size dependence of POD wear, in particular, giving a negative intercept, while elastic anisotropy is suggested as a factor in the grain-size dependence of the cubic (MgO, MgAl 2 O 4 , and ZrO 2 ) materials. The reduced grain-size dependence in the macrowear tests is attributed to overlapping wear tracks reducing the effects of enhanced wear damage, e.g., from elastic and thermal expansion anisotropies

  2. Wear-resistance of Aluminum Matrix Microcomposite Materials

    Directory of Open Access Journals (Sweden)

    M. Kandeva

    2011-03-01

    Full Text Available A procedure is developed for the study of wear of aluminum alloys AlSi7 obtained by casting, reinforced by TiC microparticles, before and after heat treatment. Tribological study is realized under conditions of friction on counterbody with fixed abrasive. Experimental results were obtained for mass wear, wear rate, wear intensity and wear-resistance of the alloys with different wt% of microparticles.

  3. Geotribology - Friction, wear, and lubrication of faults

    Science.gov (United States)

    Boneh, Yuval; Reches, Ze'ev

    2018-05-01

    We introduce here the concept of Geotribology as an approach to study friction, wear, and lubrication of geological systems. Methods of geotribology are applied here to characterize the friction and wear associated with slip along experimental faults composed of brittle rocks. The wear in these faults is dominated by brittle fracturing, plucking, scratching and fragmentation at asperities of all scales, including 'effective asperities' that develop and evolve during the slip. We derived a theoretical model for the rate of wear based on the observation that the dynamic strength of brittle materials is proportional to the product of load stress and loading period. In a slipping fault, the loading period of an asperity is inversely proportional to the slip velocity, and our derivations indicate that the wear-rate is proportional to the ratio of [shear-stress/slip-velocity]. By incorporating the rock hardness data into the model, we demonstrate that a single, universal function fits wear data of hundreds of experiments with granitic, carbonate and sandstone faults. In the next step, we demonstrate that the dynamic frictional strength of experimental faults is well explained in terms of the tribological parameter PV factor (= normal-stress · slip-velocity). This factor successfully delineates weakening and strengthening regimes of carbonate and granitic faults. Finally, our analysis revealed a puzzling observation that wear-rate and frictional strength have strikingly different dependencies on the loading conditions of normal-stress and slip-velocity; we discuss sources for this difference. We found that utilization of tribological tools in fault slip analyses leads to effective and insightful results.

  4. Abrasive wear of ceramic wear protection at ambient and high temperatures

    Science.gov (United States)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  5. Quantitive dynamical wear analysis and the convergent quest for significant wear reduction

    International Nuclear Information System (INIS)

    Sellschop, F.; Kirsch, J.; Derry, T.; Marcus, R.

    1984-01-01

    The maturing of nuclear physics has made the development of ion beam modification of materials possible, bringing new skills and prospects to the world of materials science. In the following paper an outline is given of the history of ion beam modification of materials (IBMM) and its use for altering the surface of metals to combat wear and friction, and monitoring wear in engines

  6. Wear mechanisms and friction parameters for sliding wear of micron-scale polysilicon sidewalls

    NARCIS (Netherlands)

    Alsem, D. H.; van der Hulst, R.; Stach, E. A.; Dugger, M. T.; De Hosson, J. Th. M.; Ritchie, R. O.

    As tribological properties are critical factors in the reliability of silicon-based microelectromechanical systems, it is important to understand what governs wear and friction. Average dynamic friction, wear volumes and morphology have been studied for polysilicon devices fabricated using the

  7. Where Does Inflammation Fit?

    Science.gov (United States)

    Biasucci, Luigi M; La Rosa, Giulio; Pedicino, Daniela; D'Aiello, Alessia; Galli, Mattia; Liuzzo, Giovanna

    2017-09-01

    This review focuses on the complex relationship between inflammation and the onset of acute coronary syndrome and heart failure. In the last few years, two important lines of research brought new and essential information to light in the pathogenesis of acute coronary syndrome: a) the understanding of the immune mediate mechanisms of inflammation in Ischemic Heart Disease (IHD) and b) evidence that the inflammatory mechanisms associated with atherosclerosis and its complications can be modulated by anti-inflammatory molecules. A large amount of data also suggests that inflammation is a major component in the development and exacerbation of heart failure (HF), in a symbiotic relationship. In particular, recent evidence underlies peculiar aspects of the phenomenon: oxidative stress and autophagy; DAMPS and TLR-4 signaling activation; different macrophages lineage and the contribution of NLRP-3 inflammasome; adaptive immune system. A possible explanation that could unify the pathogenic mechanism of these different conditions is the rising evidence that increased bowel permeability may allow translation of gut microbioma product into the circulation. These findings clearly establish the role of inflammation as the great trigger for two of the major cardiovascular causes of death and morbidity. Further studies are needed, to better clarify the issue and to define more targeted approaches to reduce pathological inflammation while preserving the physiological one.

  8. [Connective tissue and inflammation].

    Science.gov (United States)

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  9. PPARs, Obesity, and Inflammation

    Directory of Open Access Journals (Sweden)

    Rinke Stienstra

    2007-01-01

    Full Text Available The worldwide prevalence of obesity and related metabolic disorders is rising rapidly, increasing the burden on our healthcare system. Obesity is often accompanied by excess fat storage in tissues other than adipose tissue, including liver and skeletal muscle, which may lead to local insulin resistance and may stimulate inflammation, as in steatohepatitis. In addition, obesity changes the morphology and composition of adipose tissue, leading to changes in protein production and secretion. Some of these secreted proteins, including several proinflammatory mediators, may be produced by macrophages resident in the adipose tissue. The changes in inflammatory status of adipose tissue and liver with obesity feed a growing recognition that obesity represents a state of chronic low-level inflammation. Various molecular mechanisms have been implicated in obesity-induced inflammation, some of which are modulated by the peroxisome proliferator-activated receptors (PPARs. PPARs are ligand-activated transcription factors involved in the regulation of numerous biological processes, including lipid and glucose metabolism, and overall energy homeostasis. Importantly, PPARs also modulate the inflammatory response, which makes them an interesting therapeutic target to mitigate obesity-induced inflammation and its consequences. This review will address the role of PPARs in obesity-induced inflammation specifically in adipose tissue, liver, and the vascular wall.

  10. Analysis of mechanism of carbide tool wear and control by wear process

    Directory of Open Access Journals (Sweden)

    Pham Hoang Trung

    2017-01-01

    Full Text Available The analysis of physic-mechanical and thermal physic properties of hard alloys depending on their chemical composition is conducted. The correlation of cutting properties and regularities of carbide tool wear with cutting conditions and thermal physic properties of tool material are disclosed. Significant influence on the tool wear of not only mechanical, but, in the first place, thermal physic properties of tool and structural materials is established by the researches of Russian scientists, because in the range of industrial used cutting speeds the cause of tool wear are diffusion processes. The directions of intensity decreasing of tool wear by determining rational processing conditions, the choice of tool materials and wear-resistant coating on tool surface are defined.

  11. Inflammable materials stores

    International Nuclear Information System (INIS)

    Nandagopan, V.

    2017-01-01

    A new Inflammable Materials Stores has been constructed by A and SED, BARC near Gamma Field for storage of inflammable materials falling into Petroleum Class ‘A’ ‘B’ and “C” mainly comprising of oils and lubricants, Chemicals like Acetone, Petroleum Ether etc. which are regularly procured by Central Stores Unit (CSU) for issue to the various divisions of BARC. The design of the shed done by A and SED, BARC was duly got approved from Petroleum and Explosive Safety Organization (PESO) which is a mandatory requirement before commencement of the construction. The design had taken into account various safety factors which is ideally required for an inflammable materials stores

  12. Dental Wear: A Scanning Electron Microscope Study

    Directory of Open Access Journals (Sweden)

    Luca Levrini

    2014-01-01

    Full Text Available Dental wear can be differentiated into different types on the basis of morphological and etiological factors. The present research was carried out on twelve extracted human teeth with dental wear (three teeth showing each type of wear: erosion, attrition, abrasion, and abfraction studied by scanning electron microscopy (SEM. The study aimed, through analysis of the macro- and micromorphological features of the lesions (considering the enamel, dentin, enamel prisms, dentinal tubules, and pulp, to clarify the different clinical and diagnostic presentations of dental wear and their possible significance. Our results, which confirm current knowledge, provide a complete overview of the distinctive morphology of each lesion type. It is important to identify the type of dental wear lesion in order to recognize the contributing etiological factors and, consequently, identify other more complex, nondental disorders (such as gastroesophageal reflux, eating disorders. It is clear that each type of lesion has a specific morphology and mechanism, and further clinical studies are needed to clarify the etiological processes, particularly those underlying the onset of abfraction.

  13. Investigation on wear characteristic of biopolymer gear

    Science.gov (United States)

    Ghazali, Wafiuddin Bin Md; Daing Idris, Daing Mohamad Nafiz Bin; Sofian, Azizul Helmi Bin; Basrawi, Mohamad Firdaus bin; Khalil Ibrahim, Thamir

    2017-10-01

    Polymer is widely used in many mechanical components such as gear. With the world going to a more green and sustainable environment, polymers which are bio based are being recognized as a replacement for conventional polymers based on fossil fuel. The use of biopolymer in mechanical components especially gear have not been fully explored yet. This research focuses on biopolymer for spur gear and whether the conventional method to investigate wear characteristic is applicable. The spur gears are produced by injection moulding and tested on several speeds using a custom test equipment. The wear formation such as tooth fracture, tooth deformation, debris and weight loss was observed on the biopolymer spur gear. It was noted that the biopolymer gear wear mechanism was similar with other type of polymer spur gears. It also undergoes stages of wear which are; running in, linear and rapid. It can be said that the wear mechanism of biopolymer spur gear is comparable to fossil fuel based polymer spur gear, thus it can be considered to replace polymer gears in suitable applications.

  14. Assessment of fretting wear in Hanaro fuel

    International Nuclear Information System (INIS)

    Chae, Hee Taek; Lim, Kyeong Hwan; Kim, Hark Rho

    1999-06-01

    Since the first fuel loading on Feb. 1995, various zero-power tests were performed in HANARO and power ascending tests followed. After the initial fuel loading, Hanaro operation staffs inspected only two fuel bundles which were evaluated to have the highest power at the end of each cycle and they did not recognize anything peculiar in the inspected bundles. At the end of 1996, Hanaro staffs found severe wear damages in the fuel components. After that, the 4th cycle core was re-arranged with fresh fuels only to investigate wear phenomena on the fuel components. The fuel inspections have been performed 25 times periodically since the core re-configuration. In this report, fretting wear characteristics of the fuel assemblies were evaluated and summarized. Wear damages of the improved fuel assembly to resolve the wear problem were compared with those of the original fuel assembly. Based on the results of the fuel inspections, we suggest that fuel inspection need not be done for the first 60 pump operation days in order to reduce the potential of damage by a fuel handling error and an operator's burden of the fuel inspection. (author). 6 refs., 10 tabs., 5 figs

  15. Quercetin, Inflammation and Immunity

    Directory of Open Access Journals (Sweden)

    Yao Li

    2016-03-01

    Full Text Available In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity.

  16. Sinonasal inflammation in COPD

    DEFF Research Database (Denmark)

    Håkansson, Kåre; Konge, L; Thomsen, Simon Francis

    2013-01-01

    In this review we demonstrate that patients with chronic obstructive pulmonary disease (COPD) frequently report sinonasal symptoms. Furthermore, we present evidence that smoking on its own can cause nasal disease, and that in COPD patients, nasal inflammation mimics that of the bronchi. All...... this evidence suggests that COPD related sinonasal disease does exist and that smoking on its own rather than systemic inflammation triggers the condition. However, COPD related sinonasal disease remains to be characterized in terms of symptoms and endoscopic findings. In addition, more studies are needed...... to quantify the negative impact of sinonasal symptoms on the quality of life in COPD patients....

  17. Inflammation in dry eye.

    Science.gov (United States)

    Stern, Michael E; Pflugfelder, Stephen C

    2004-04-01

    Dry eye is a condition of altered tear composition that results from a diseased or dysfunctional lacrimal functional unit. Evidence suggests that inflammation causes structural alterations and/or functional paralysis of the tear-secreting glands. Changes in tear composition resulting from lacrimal dysfunction, increased evaporation and/or poor clearance have pro-inflammatory effects on the ocular surface. This inflammation is responsible in part for the irritation symptoms, ocular surface epithelial disease, and altered corneal epithelial barrier function in dry eye. Anti-inflammatory therapies for dry eye target one or more of the inflammatory mediators/pathways that have been identified in dry eye.

  18. Delamination wear mechanism in gray cast irons

    International Nuclear Information System (INIS)

    Salehi, M.

    2000-01-01

    An investigation of the friction and sliding wear of gray cast iron against chromium plated cast irons was carried out on a newly constructed reciprocating friction and wear tester. The tests were the first to be done on the test rig under dry conditions and at the speed of 170 cm/min, and variable loads of 20-260 N for a duration of 15 min. to 3 hours. The gray cast iron surfaces worn by a process of plastic deformation at the subsurface, crack nucleation, and crack growth leading to formation of plate like debris and therefore the delamination theory applies. No evidence of adhesion was observed. This could be due to formation of oxides on the wear surface which prevent adhesion. channel type chromium plating ''picked'' up cast iron from the counter-body surfaces by mechanically trapping cast iron debris on and within the cracks. The removal of the plated chromium left a pitted surface on the cast iron

  19. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  20. Overview of PVD wear resistant coatings

    International Nuclear Information System (INIS)

    Teeter, F.J.

    1999-01-01

    The combined functionality of wear-resistant and low-friction multilayer coatings has widened application possibilities for a new generation of coated tools. For the first time tool wear mechanisms are comprehensively addressed both at the cutting edge and contact areas away from the edge where chip evacuation is facilitated. Since its recent market introduction a combined TiA1N and WC/C PVD coating has been proven to increase cutting performance in various metal cutting operations, notably drilling and tapping of steels and aluminum alloys. Significant improvements have been obtained under dry as well as with coolant conditions. The results of laboratory metal cutting tests and field trials to date will be described. Correlations between chip formation / wear mechanisms and coating properties are given to explain the effectiveness of this coating. (author)

  1. Duke Power Company's control rod wear program

    International Nuclear Information System (INIS)

    Culp, D.C.; Kitlan, M.S. Jr.

    1990-01-01

    Recent examinations performed at several foreign and domestic pressurized water reactors have identified significant control rod cladding wear, leading to the conclusion that previously believed control rod lifetimes are not attainable. To monitor control rod performance and reduce safety concerns associated with wear, Duke Power Company has developed a comprehensive control rod wear program for Ag-In-Cd and boron carbide (B 4 C) rods at the McGuire and Catawba nuclear stations. Duke Power currently uses the Westinghouse 17 x 17 Ag-In-Cd control rod design at McGuire Unit 1 and the Westinghouse 17 x 17 hybrid B 4 C control rod design with a Ag-In-Cd tip at McGuire Unit 2 and Catawba Units 1 and 2. The designs are similar, with the exception of the absorber material and clad thickness. There are 53 control rods per unit

  2. Surface engineering for enhanced performance against wear

    CERN Document Server

    2013-01-01

    Surface Engineering constitutes a variety of processes and sub processes. Each chapter of this work covers specific processes by experts working in the area. Included for each topic are tribological performances for each process as well as results of recent research. The reader also will benefit from in-depth studies of diffusion coatings, nanocomposite films for wear resistance, surfaces for biotribological applications, thin-film wear, tribology of thermal sprayed coatings, hardfacing, plating for tribology and high energy beam surface modifications. Material scientists as well as engineers working with surface engineering for tribology will be particularly interested in this work.

  3. Collar of Lady's Wear in Qing Dynasty

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-jun

    2007-01-01

    The research is started with a query that whether the width of collar in Qing Dynasty Is too small. The paper bases on the statistics which come from the collection of the Costume Museum of Donghua University. compares the results with the natlonal standard specification, then analyzes the structure and shape of collars in Qing Dynasty, and tells the relationship between collar and the garment. Furthermore, the paper discusses the function of lady's collar in Qing Dynasty and gives a suggestion that collar being an Indicator to distinguish women's wear from children's wear.

  4. Consideration of wear rates at high velocity

    Science.gov (United States)

    Hale, Chad S.

    The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models

  5. Inflammation and Alzheimer's disease

    NARCIS (Netherlands)

    Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G. M.; Cooper, N. R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B. L.; Finch, C. E.; Frautschy, S.; Griffin, W. S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I. R.; McGeer, P. L.; O'Banion, M. K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; van Muiswinkel, F. L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T.

    2000-01-01

    Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer's disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical

  6. The resolution of inflammation

    NARCIS (Netherlands)

    Buckley, Christopher D.; Gilroy, Derek W.; Serhan, Charles N.; Stockinger, Brigitta; Tak, Paul P.

    2013-01-01

    In 2012, Nature Reviews Immunology organized a conference that brought together scientists and clinicians from both academia and industry to discuss one of the most pressing questions in medicine--how do we turn off rampant, undesirable inflammation? There is a growing appreciation that, similarly

  7. Effects of Load and Speed on Wear Rate of Abrasive Wear for 2014 Al Alloy

    Science.gov (United States)

    Odabas, D.

    2018-01-01

    In this paper, the effects of the normal load and sliding speed on wear rate of two-body abrasive wear for 2014 Al Alloy were investigated in detail. In order to understand the variation in wear behaviour with load and speed, wear tests were carried out at a sliding distance of 11 m, a speed of 0.36 m/s, a duration of 30 s and loads in the range 3-11 N using 220 grit abrasive paper, and at a speed range 0.09-0.90 m/s, a load of 5 N and an average sliding distance of 11 m using abrasive papers of 150 grit size under dry friction conditions. Before the wear tests, solution treatment of the 2014 Al alloy was carried out at temperatures of 505 and 520 °C for 1 h in a muffle furnace and then quenched in cold water at 15 °C. Later, the ageing treatment was carried out at 185 °C for 8 h in the furnace. Generally, wear rate due to time increased linearly and linear wear resistance decreased with increasing loads. However, the wear rate was directly proportional to the load up to a critical load of 7 N. After this load, the slope of the curves decreased because the excessive deformation of the worn surface and the instability of the abrasive grains began to increase. When the load on an abrasive grain reaches a critical value, the groove width is about 0.17 of the abrasive grain diameter, and the abrasive grains begin to fail. The wear rate due to time increased slightly as the sliding speed increased in the range 0.09-0.90 m/s. The reason for this is that changes arising from strain rate and friction heating are expected with increasing sliding speeds.

  8. inflammation and iron metabolism

    Directory of Open Access Journals (Sweden)

    A Dzedzej

    2016-08-01

    Full Text Available Following acute physical activity, blood hepcidin concentration appears to increase in response to exercise-induced inflammation, but the long-term impact of exercise on hepcidin remains unclear. Here we investigated changes in hepcidin and the inflammation marker interleukin-6 to evaluate professional basketball players’ response to a season of training and games. The analysis also included vitamin D (25(OHD3 assessment, owing to its anti-inflammatory effects. Blood samples were collected for 14 players and 10 control non-athletes prior to and after the 8-month competitive season. Athletes’ performance was assessed with the NBA efficiency score. At the baseline hepcidin correlated with blood ferritin (r=0.61; 90% CL ±0.31, but at the end of the season this correlation was absent. Compared with the control subjects, athletes experienced clear large increases in hepcidin (50%; 90% CI 15-96% and interleukin-6 (77%; 90% CI 35-131% and a clear small decrease in vitamin D (-12%; 90% CI -20 to -3% at the season completion. Correlations between change scores of these variables were unclear (r = -0.21 to 0.24, 90% CL ±0.5, but their uncertainty generally excluded strong relationships. Athletes were hence concluded to have experienced acute inflammation at the beginning but chronic inflammation at the end of the competitive season. At the same time, the moderate correlation between changes in vitamin D and players’ performance (r=0.43 was suggestive of its beneficial influence. Maintaining the appropriative concentration of vitamin D is thus necessary for basketball players’ performance and efficiency. The assessment of hepcidin has proven to be useful in diagnosing inflammation in response to chronic exercise.

  9. Friction measurement in a hip wear simulator.

    Science.gov (United States)

    Saikko, Vesa

    2016-05-01

    A torque measurement system was added to a widely used hip wear simulator, the biaxial rocking motion device. With the rotary transducer, the frictional torque about the drive axis of the biaxial rocking motion mechanism was measured. The principle of measuring the torque about the vertical axis above the prosthetic joint, used earlier in commercial biaxial rocking motion simulators, was shown to sense only a minor part of the total frictional torque. With the present method, the total frictional torque of the prosthetic hip was measured. This was shown to consist of the torques about the vertical axis above the joint and about the leaning axis. Femoral heads made from different materials were run against conventional and crosslinked polyethylene acetabular cups in serum lubrication. Regarding the femoral head material and the type of polyethylene, there were no categorical differences in frictional torque with the exception of zirconia heads, with which the lowest values were obtained. Diamond-like carbon coating of the CoCr femoral head did not reduce friction. The friction factor was found to always decrease with increasing load. High wear could increase the frictional torque by 75%. With the present system, friction can be continuously recorded during long wear tests, so the effect of wear on friction with different prosthetic hips can be evaluated. © IMechE 2016.

  10. Healthy Contact Lens Wear and Care

    Centers for Disease Control (CDC) Podcasts

    2014-02-04

    In this podcast, CDC’s Dr. Jennifer Cope explains some basic steps for proper wear and care of soft contact lenses.  Created: 2/4/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/4/2014.

  11. Tribology: Friction, lubrication, and wear technology

    Science.gov (United States)

    Blau, Peter J.

    1993-01-01

    The topics are presented in viewgraph form and include the following: introduction and definitions of terms; friction concepts; lubrication technology concepts; wear technology concepts; and tribological transitions. This document is designed for educators who seek to teach these concepts to their students.

  12. ERRATUM: Work smart, wear your hard hat

    CERN Multimedia

    2003-01-01

    An error appeared in the article «Work smart, wear your hard hat» published in Weekly Bulletin 27/2003, page 5. The impact which pierced a hole in the hard hat worn by Gerd Fetchenhauer was the equivalent of a box weighing 5 kg and not 50 kg.

  13. Wear determination in braking systems by radioisotopes

    International Nuclear Information System (INIS)

    Spruch, W.

    1979-01-01

    Friction and wear behaviour of friction couples has been tested applying loads and sliding speeds. The determination was carried out by direct measurements of the lining material and by surface activation of the opposite material with protons. The application limits of several braking materials could be determined and compared

  14. Combating wear in bulk solids handling plants

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    A total of five papers presented at a seminar on problems of wear caused by abrasive effects of materials in bulk handling. Topics of papers cover the designer viewpoint, practical experience from the steel, coal, cement and quarry industries to create an awareness of possible solutions.

  15. Reciprocating wear in a steam environment

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.J.; Gee, M.G. [National Physical Laboratory, Teddington, Middlesex (United Kingdom)

    2010-07-01

    Tests to simulate the wear between sliding components in steam power plant have been performed using a low frequency wear apparatus at elevated temperatures under static load, at ambient pressure, in a steam environment. The apparatus was modified to accept a novel method of steam delivery. The materials tested were pre-exposed in a flowing steam furnace at temperature for either 500 or 3000 hours to provide some simulation of long term ageing. The duration of each wear test was 50 hours and tests were also performed on as-received material for comparison purposes. Data has been compared with results of tests performed on non-oxidised material for longer durations and also on tests without steam to examine the effect of different environments. Data collected from each test consists of mass change, stub height measurement and friction coefficient as well as visual inspection of the wear track. Within this paper, it is reported that both pre-ageing and the addition of steam during testing clearly influence the friction between material surfaces. (orig.)

  16. Brake wear warning device: A concept

    Science.gov (United States)

    Hawkins, S. F.

    1973-01-01

    Heat-insulated wire is introduced through brake shoe and partially into brake lining. Wire is connected to positive terminal and light bulb. When brakes wear to critical point, contact between wire and wheel drum grounds circuit and turns on warning light.

  17. Effective tool wear estimation through multisensory information ...

    African Journals Online (AJOL)

    On-line tool wear monitoring plays a significant role in industrial automation for higher productivity and product quality. In addition, an intelligent system is required to make a timely decision for tool change in machining systems in order to avoid the subsequent consequences on the dimensional accuracy and surface finish ...

  18. Wear-Out Sensitivity Analysis Project Abstract

    Science.gov (United States)

    Harris, Adam

    2015-01-01

    During the course of the Summer 2015 internship session, I worked in the Reliability and Maintainability group of the ISS Safety and Mission Assurance department. My project was a statistical analysis of how sensitive ORU's (Orbital Replacement Units) are to a reliability parameter called the wear-out characteristic. The intended goal of this was to determine a worst case scenario of how many spares would be needed if multiple systems started exhibiting wear-out characteristics simultaneously. The goal was also to determine which parts would be most likely to do so. In order to do this, my duties were to take historical data of operational times and failure times of these ORU's and use them to build predictive models of failure using probability distribution functions, mainly the Weibull distribution. Then, I ran Monte Carlo Simulations to see how an entire population of these components would perform. From here, my final duty was to vary the wear-out characteristic from the intrinsic value, to extremely high wear-out values and determine how much the probability of sufficiency of the population would shift. This was done for around 30 different ORU populations on board the ISS.

  19. 22 CFR 1203.735-212 - Wearing of uniforms.

    Science.gov (United States)

    2010-04-01

    ... RESPONSIBILITIES AND CONDUCT Ethical and Other Conduct and Responsibilities of Employees § 1203.735-212 Wearing of....2b prohibits the purchase from Agency funds of uniforms or any item of personal wearing apparel other...

  20. Investigation of Wear Coefficient of Manganese Phosphate Coated Tool Steel

    Directory of Open Access Journals (Sweden)

    S. Ilaiyavel

    2013-03-01

    Full Text Available In recent years the properties of the coating in terms of wear resistance is of paramount importance in order to prevent the formation of severe damages. In this study, Wear coefficient of uncoated, Manganese Phosphate coated, Manganese Phosphate coated with oil lubricant, Heat treated Manganese Phosphate coated with oil lubricant on AISI D2 steels was investigated using Archard’s equation. The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The volumetric wear loss and wear coefficient were evaluated through pin on disc test using a sliding velocity of 3.0 m/s under normal load of 40 N and controlled condition of temperature and humidity. Based on the results of the wear test, the Heat treated Manganese Phosphate with oil lubricant exhibited the lowest average wear coefficient and the lowest wear loss under 40 N load.

  1. development and performance evaluation of an abrasive wear

    African Journals Online (AJOL)

    User

    advanced countries are not available in Ghana. This makes ... experiment was arranged in a completely randomized design with the soils from the five sites as ... Design of the wear equipment ..... tion of Wear Characteristics of Drill Cultures.

  2. Anisotropy abrasive wear behavior of bagasse fiber reinforced ...

    African Journals Online (AJOL)

    parallel orientation (APO) and normal orientation (NO) by using a two body abrasion wear tester. Three different types of abrasives wear behaviour have been observed in the composite in three orientations and follow the following trends: WNO ...

  3. Stochastic Distribution of Wear of Carbide Tools during Machining ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... The stochastic point model was used to determine the rate of wear distribution of the carbide tool ... Keywords: cutting speed, feed rate, machining time, tool life, reliability, wear.

  4. Corrosive wear. Evaluation of wear and corrosive resistant materials; Noetningskorrosion. Utvaerdering av noetnings- och korrosionsbestaendiga material

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H.; Hjertsen, D.; Waara, P.; Prakash, B.; Hardell, J.

    2007-12-15

    With a new purchase of a waste conveyer screw at hand, for the 'A-warehouse' at the combined power and heating plant at E.ON Norrkoeping, the request for improved construction materials was raised. The previous screw required maintenance with very short intervals due to the difficult operation conditions. With the new screw the expectation is to manage 6 months of operation without interruption. The environment for the screw has two main components that sets the demand on the materials, on one hand the corrosive products that comes along and which forms at digestion of the waste and on the other hand the abrasive content in the waste. The term of the mechanism is wear-corrosion and can give considerably higher material loss than the two mechanisms wear and corrosion separately. Combination of a strong corrosive environment together with extensive wear is something that we today have limited knowledge about. The overall objective of the project has been to establish better wear and corrosive resistant construction materials for a waste conveyer screw that will lead to reduced operational disturbance costs. The evaluation has been performed in both controlled laboratory environments and in field tests, which has given us a better understanding of what materials are more suitable in this tough environment and has given us a tool for future predictions of the wear rate of the different material. The new conveyer screw, installed in February 2007 and with which the field test have been performed, has considerably reduced the wear of the construction and the target of 6 month maintenance-free operation is met with this screw for all the evaluated materials. The wear along the screw varies very much and with a clear trend for all the materials to increase towards the feeding direction of the screw. As an example, the wear plate SS2377 (stainless duplex steel) has a useful life at the most affected areas that is calculated to be 1077 days of operation with the

  5. Sliding Wear and Fretting Wear of DLC-Based, Functionally Graded Nanocomposite Coatings

    Science.gov (United States)

    Miyoshi, K.; Pohlchuck, B.; Street, Kenneth W.; Zabinski, J. S.; Sanders, J. H.; Voevodin, A. a.; Wu, R. L. C.

    1999-01-01

    Improving the tribological functionality of diamondlike carbon (DLC) films--developing, good wear resistance, low friction, and high load-carrying capacity-was the aim of this investigation. Nanocomposite coatings consisting of an amorphous DLC (a-DLC) top layer and a functionally graded titanium-titanium carbon-diamondlike carbon (Ti-Ti(sub x) C(sub y)-DLC) underlayer were produced on AISI 440C stainless steel substrates by the hybrid technique of magnetron sputtering and pulsed-laser deposition. The resultant DLC films were characterized by Raman spectroscopy, scanning electron microscopy, and surface profilometry. Two types of wear experiment were conducted in this investioation: sliding friction experiments and fretting wear experiments. Unidirectional ball-on-disk sliding friction experiments were conducted to examine the wear behavior of an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C stainless steel disk in sliding contact with a 6-mm-diameter AISI 440C stainless steel ball in ultrahigh vacuum, dry nitrogen, and humid air. Although the wear rates for both the coating and ball were low in all three environments, the humid air and dry nitrogen caused mild wear with burnishing, in the a-DLC top layer, and the ultrahigh vacuum caused relatively severe wear with brittle fracture in both the a-DLC top layer and the Ti-Ti(sub x) C(sub y)-DLC underlayer. For reference, amorphous hydrogenated carbon (H-DLC) films produced on a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coatings by using an ion beam were also examined in the same manner. The H-DLC films markedly reduced friction even in ultrahigh vacuum without sacrificing wear resistance. The H-DLC films behaved much like the a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coating in dry nitrogen and humid air, presenting low friction and low wear. Fretting wear experiments were conducted in humid air (approximately 50% relative humidity) at a frequency of 80 Hz and an amplitude of 75 micron on an a

  6. Comparison of two measurement techniques for clinical wear

    DEFF Research Database (Denmark)

    Peters, M C; Delong, R; Pintado, M R

    1999-01-01

    Clinical wear of restorations is generally evaluated by marginal integrity over time. In this study, both a subjective and an objective method for wear assessment are compared, and the relative advantages and disadvantages of each are considered.......Clinical wear of restorations is generally evaluated by marginal integrity over time. In this study, both a subjective and an objective method for wear assessment are compared, and the relative advantages and disadvantages of each are considered....

  7. Wear Analysis of Top Piston Ring to Reduce Top Ring Reversal Bore Wear

    Directory of Open Access Journals (Sweden)

    P. Ilanthirayan

    2017-12-01

    Full Text Available The piston rings are the most important part in engine which controls the lubricating oil consumption and blowby of the gases. The lubricating film of oil is provided to seal of gases towards crankcase and also to give smooth friction free translatory motion between rings and liner. Of the three rings present top ring is more crucial as it does the main work of restricting gases downwards the crankcase. Boundary lubrication is present at the Top dead centre (TDC and Bottom dead centre (BDC of the liner surface. In addition to this, top ring is exposed to high temperature gases which makes the oil present near the top ring to get evaporated and decreasing its viscosity, making metal-metal contact most of the time. Due to this at TDC, excess wear happens on the liner which is termed as Top ring reversal bore wear. The wear rate depends upon many parameters such as lubrication condition, viscosity index, contact type, normal forces acting on ring, geometry of ring face, surface roughness, material property. The present work explores the wear depth for different geometries of barrel ring using Finite Element model with the help of Archard wear law and the same is validated through experimentation. The study reveals that Asymmetric barrel rings have less contact pressure which in turn reduces the wear at Top dead centre.

  8. EICOSANOIDS AND INFLAMMATION

    Directory of Open Access Journals (Sweden)

    A. E. Karateev

    2016-01-01

    Full Text Available Inflammation is the most important element in the pathogenesis of major human diseases. It determines the fundamental value of anti-inflammatory therapy in the modern concept of targeted pathogenetic treatment. The rational choice of anti-inflammatory drugs and the design of new promising agents are inconceivable without clear knowledge of the characteristics of development of an inflammatory response. Eicosanoids, the metabolites of polyunsaturated fatty acids, play a key role in the process of inflammation. These substances have diverse and frequently antagonistic biological effects, which is determined by their chemical structure and specific features of receptors with which they interact. Some of them (prostaglandins, leukotrienes, auxins, and hepoxilins are potential mediators of inflammation and pain; others (lipoxins, epoxyeicosatrienoic acid derivatives, resolvins, protectins, maresins, and endocannabinoids have anti-inflammatory and cytoprotective activities, contributing to the resolution of the inflammatory response. This review describes considers the main classes of eicosanoids, their metabolism, effects, and clinical significance, as well as the possibilities of pharmacological interventions in their synthesis or interaction with receptors. 

  9. Effect of ageing treatment on wear properties and electrical ...

    Indian Academy of Sciences (India)

    ... was in Cu–Cr–Zr alloy aged at 500°C for 2 h and the most wear loss was in specimens aged at 530°C for 2 h. Furthermore, it was observed that the friction coefficient values resulting from wear rate were overlapped with hardness results and there is a decrease tendency of friction coefficient as wear distance increases.

  10. Assessment of the progression of tooth wear on dental casts

    NARCIS (Netherlands)

    Vervoorn-Vis, G.M.G.J.; Wetselaar, P.; Koutris, M.; Visscher, C.M.; Evälahti, M.; Ahlberg, J.; Lobbezoo, F.

    2015-01-01

    Many methods are available for the grading of tooth wear, but their ability to assess the progression of wear over time has not been studied frequently. The aim was to assess whether the occlusal/incisal grading scale of the Tooth Wear Evaluation System (TWES) was sensitive enough for the detection

  11. Increasing Wearing of Prescription Glasses in Individuals with Mental Retardation

    Science.gov (United States)

    DeLeon, Iser G.; Hagopian, Louis P.; Rodriguez-Catter, Vanessa; Bowman, Lynn G.; Long, Ethan S.; Boelter, Eric W.

    2008-01-01

    This study evaluated an intervention for promoting wearing of prescription glasses in 4 individuals with mental retardation who had refused to wear their glasses previously. Distraction through noncontingent reinforcement (NCR) increased independent glasses wearing for 1 of the 4 participants. An intervention consisting of NCR, response cost, and…

  12. Measurement and Evaluation of Wear Frogs Switches ŽSR

    Directory of Open Access Journals (Sweden)

    Urda Ján

    2014-05-01

    Full Text Available This paper deals with the measurement and evaluation of wear frogs switches ZSR. One of the main problems is the oversize wear. The possibilities analysis of this problem is offered through a set of switches and monitoring of selected parameters. One of these parameters is also monitoring the vertical wear

  13. Wear of control rod cluster assemblies and of instrumentation thimbles: first results obtained with the vibrateau wear simulator

    International Nuclear Information System (INIS)

    Zbinden, M.; Hersant, D.

    1993-07-01

    Several REP components are affected by a particular sort of damage called impact/sliding wear. This kind of wear, originating from flow induced vibrations, affects loosely supported tubular structures. The main involved components are: - the RCCAs claddings and the guides tubes, - the instrumentation thimbles, - the fuel rods claddings, - the SG tubes. The R and D Division is concerned with studies aiming to understand and to master the phenomena leading to this wear. The MTC Branch is charged of the study of the wear itself. Tests are carried out on wear rigs to understand and to model wear mechanisms. The following work is related to the two first wear tests campaigns on the VIBRATEAU wear simulator: - a reproducibility test series in order to assess the spreading of the experimental results, - a comparative test series on surface treatments used to improve the components war resistance. (authors). 7 figs., 2 tabs., 4 refs

  14. Research on the effect of wear-ring clearances to the axial and radial force of a centrifugal pump

    International Nuclear Information System (INIS)

    Zhao, W G; Qi, C X; Li, Y B; He, M Y

    2013-01-01

    Varying of the wear-ring clearance not only has a distinct effect on the volumetric loss of the centrifugal pump, but also on the performance of the centrifugal pump including the axial and radial forces. Comparing with the experimental studies, numerical simulation methods have some special advantages, such as the low cost, fast and high efficiency, and convenient to get the detailed structure of the internal flow characteristics, so it has been widely used in the fluid machinery study in recent years. In order to study the effect of wear-ring clearance on the force performance of the centrifugal pump, based on the Reynolds Time-Averaged N-S equations and RNG k-ε turbulence model, a centrifugal pump with three variable styles of the wear-rings was simulated: Only the clearance of the front wear-ring was changed, only the clearance of the back wear-ring was changed and both were changed. Comparing with the experiment, numerical results show a good agreement. In the three changing styles of the clearance, the variable of the clearance of front wear-ring has the most influence on the axial force of the centrifugal pump, while has tiny effect on the radial force for all the conditions

  15. Is tooth wear in the primary dentition predictive of tooth wear in the permanent dentition? Report from a longitudinal study.

    LENUS (Irish Health Repository)

    Harding, M A

    2010-03-01

    To determine the prevalence of tooth wear in the permanent dentition of a sample of 12-year-old school children and establish whether an association exists between tooth wear recorded now and tooth wear recorded in their primary dentition at age five.

  16. Exposure and risks from wearing asbestos mitts

    Directory of Open Access Journals (Sweden)

    Tindall Matthew

    2005-10-01

    Full Text Available Abstract Background Very high fibre inhalation exposure has been measured while people were wearing personal protective equipment manufactured from chrysotile asbestos. However, there is little data that relates specifically to wearing asbestos gloves or mitts, particularly when used in hot environments such as those found in glass manufacturing. The aim of this study was to assess the likely personal exposure to asbestos fibres when asbestos mitts were used. Results Three types of work activity were simulated in a small test room with unused mitts and artificially aged mitts. Neither pair of mitts were treated to suppress the dust emission. The measured respirable fibre exposure levels ranged from Conclusion People who wore asbestos mitts were likely to have been exposed to relatively low levels of airborne chrysotile asbestos fibres, certainly much lower than the standards that were accepted in the 1960's and 70's. The cancer risks from this type of use are likely to be very low.

  17. 3D FEM Simulation of Flank Wear in Turning

    Science.gov (United States)

    Attanasio, Aldo; Ceretti, Elisabetta; Giardini, Claudio

    2011-05-01

    This work deals with tool wear simulation. Studying the influence of tool wear on tool life, tool substitution policy and influence on final part quality, surface integrity, cutting forces and power consumption it is important to reduce the global process costs. Adhesion, abrasion, erosion, diffusion, corrosion and fracture are some of the phenomena responsible of the tool wear depending on the selected cutting parameters: cutting velocity, feed rate, depth of cut, …. In some cases these wear mechanisms are described by analytical models as a function of process variables (temperature, pressure and sliding velocity along the cutting surface). These analytical models are suitable to be implemented in FEM codes and they can be utilized to simulate the tool wear. In the present paper a commercial 3D FEM software has been customized to simulate the tool wear during turning operations when cutting AISI 1045 carbon steel with uncoated tungsten carbide tip. The FEM software was improved by means of a suitable subroutine able to modify the tool geometry on the basis of the estimated tool wear as the simulation goes on. Since for the considered couple of tool-workpiece material the main phenomena generating wear are the abrasive and the diffusive ones, the tool wear model implemented into the subroutine was obtained as combination between the Usui's and the Takeyama and Murata's models. A comparison between experimental and simulated flank tool wear curves is reported demonstrating that it is possible to simulate the tool wear development.

  18. Contact Thermal Analysis and Wear Simulation of a Brake Block

    Directory of Open Access Journals (Sweden)

    Nándor Békési

    2013-01-01

    Full Text Available The present paper describes an experimental test and a coupled contact-thermal-wear analysis of a railway wheel/brake block system through the braking process. During the test, the friction, the generated heat, and the wear were evaluated. It was found that the contact between the brake block and the wheel occurs in relatively small and slowly moving hot spots, caused by the wear and the thermal effects. A coupled simulation method was developed including numerical frictional contact, transient thermal and incremental wear calculations. In the 3D simulation, the effects of the friction, the thermal expansion, the wear, and the temperature-dependent material properties were also considered. A good agreement was found between the results of the test and the calculations, both for the thermal and wear results. The proposed method is suitable for modelling the slowly oscillating wear caused by the thermal expansions in the contact area.

  19. Dynamic SEM wear studies of tungsten carbide cermets

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined. Etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the WC and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation. The wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  20. Macrophages in synovial inflammation

    Directory of Open Access Journals (Sweden)

    Aisling eKennedy

    2011-10-01

    Full Text Available AbstractSynovial macrophages are one of the resident cell types in synovial tissue and while they remain relatively quiescent in the healthy joint, they become activated in the inflamed joint and, along with infiltrating monocytes/macrophages, regulate secretion of pro-inflammatory cytokines and enzymes involved in driving the inflammatory response and joint destruction. Synovial macrophages are positioned throughout the sub-lining layer and lining layer at the cartilage-pannus junction and mediate articular destruction. Sub-lining macrophages are now also considered as the most reliable biomarker for disease severity and response to therapy in rheumatoid arthritis (RA. There is a growing understanding of the molecular drivers of inflammation and an appreciation that the resolution of inflammation is an active process rather than a passive return to homeostasis, and this has implications for our understanding of the role of macrophages in inflammation. Macrophage phenotype determines the cytokine secretion profile and tissue destruction capabilities of these cells. Whereas inflammatory synovial macrophages have not yet been classified into one phenotype or another it is widely known that TNFα and IL-l, characteristically released by M1 macrophages, are abundant in RA while IL-10 activity, characteristic of M2 macrophages, is somewhat diminished.Here we will briefly review our current understanding of macrophages and macrophage polarisation in RA as well as the elements implicated in controlling polarisation, such as cytokines and transcription factors like NFκB, IRFs and NR4A, and pro-resolving factors, such as LXA4 and other lipid mediators which may promote a non-inflammatory, pro-resolving phenotype and may represent a novel therapeutic paradigm.

  1. Wirelessly Interrogated Wear or Temperature Sensors

    Science.gov (United States)

    Woodard, Stanley E.; Taylor, Bryant D.

    2010-01-01

    Sensors for monitoring surface wear and/or temperature without need for wire connections have been developed. Excitation and interrogation of these sensors are accomplished by means of a magnetic-field-response recorder. In a sensor of the present type as in the previously reported ones, the capacitance and, thus, the resonance frequency, varies as a known function of the quantity of interest that one seeks to determine. Hence, the resonance frequency is measured and used to calculate the quantity of interest.

  2. Onset wear in self-assembled monolayers

    International Nuclear Information System (INIS)

    D'Acunto, Mario

    2006-01-01

    Self-assembled monolayers (SAMs) are very useful for the systematic modification of the physical, chemical and structural properties of a surface by varying the chain length, tail group and composition. Many of these properties can be studied making use of atomic force microscopy (AFM), and the interaction between the AFM probe tip and the SAMs can also be considered an excellent reference to study the fundamental properties of dissipation phenomena and onset wear for viscoelastic materials on the nanoscale. We have performed a numerical study showing that the fundamental mechanism for the onset wear is a process of nucleation of domains starting from initial defects. An SAM surface repeatedly sheared by an AFM probe tip with enough applied loads shows the formation of progressive damages nucleating in domains. The AFM induced surface damages involve primarily the formation of radicals from the carbon chain backbones, but the deformations of the chains resulting in changes of period lattice also have to be taken into consideration. The nucleation of the wear domains generally starts at the initial surface defects where the energy cohesion between chains is lower. Moreover, the presence of surface defects is consistent with the changes in lateral force increasing the probability of the activation for the removal of carbon debris from the chain backbone. The quantification of the progressive worn area is performed making use of the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory for phase transition kinetic processes. The advantage of knowing the general conditions for onset wear on the SAM surfaces can help in studying the fundamental mechanisms for the tribological properties of viscoelastic materials, in solid lubrication applications and biopolymer mechanics

  3. Phenomenological modeling of abradable wear in turbomachines

    Science.gov (United States)

    Berthoul, Bérenger; Batailly, Alain; Stainier, Laurent; Legrand, Mathias; Cartraud, Patrice

    2018-01-01

    Abradable materials are widely used as coatings within compressor and turbine stages of modern aircraft engines in order to reduce operating blade-tip/casing clearances and thus maximize energy efficiency. However, rubbing occurrences between blade tips and coating liners may lead to high blade vibratory levels and endanger their structural integrity through fatigue mechanisms. Accordingly, there is a need for a better comprehension of the physical phenomena at play and for an accurate modeling of the interaction, in order to predict potentially unsafe events. To this end, this work introduces a phenomenological model of the abradable coating removal based on phenomena reported in the literature and accounting for key frictional and wear mechanisms including plasticity at junctions, ploughing, micro-rupture and machining. It is implemented within an in-house software solution dedicated to the prediction of full three-dimensional blade/abradable coating interactions within an aircraft engine low pressure compressor. Two case studies are considered. The first one compares the results of an experimental abradable test rig and its simulation. The second one deals with the simulation of interactions in a complete low-pressure compressor. The consistency of the model with experimental observations is underlined, and the impact of material parameter variations on the interaction and wear behavior of the blade is discussed. It is found that even though wear patterns are remarkably robust, results are significantly influenced by abradable coating material properties.

  4. Anthropology, tooth wear, and occlusion ab origine.

    Science.gov (United States)

    Young, W G

    1998-11-01

    The purpose of this essay is to emphasize that anthropology, the study of man in his environments, is a potent tool for scientific discovery and inspiration in dental science. It attempts to capture flashes of creative anthropological insight which have illuminated studies of tooth wear and occlusion in the past. While it documents contributions, understandings, and misunderstandings from Australian and New Zealand dentists, it is not a hagiography. The real saint of this essay is the Australian aborigine. For when men and women are understood in their environments, much is learned from them which challenges preconceptions of our dental science culture. The essay concludes that new, contemporary Australian culture needs to be studied by anthropological approaches if we are to understand how dental erosion is exacerbating tooth wear and damaging the occlusions of contemporary Australians. Much remains to be discovered about contemporary lifestyles, habits, and diets that lead to dental erosion, the principal cause of contemporary tooth wear in this part of the world.

  5. TLA-marker for wear rate monitoring

    International Nuclear Information System (INIS)

    Stan-Sion, C.; Plostinaru, D.; Ivan, A.; Catana, M.; Roman, M.

    1992-01-01

    A very effective and promising method of wear monitoring in industry is the Thin Layer Activation (TLA) method. The main feature of this technique is the creation of thin radioactive layers on the investigated surface by irradiation of the sample with an accelerated ion beam (protons, deuterons, 3-He). In the present paper we describe an extension of the TLA-Method to produce radioactive markers to be implanted into heavy object which can hardly be transported to an accelerator for direct surface activation. The sensitivity of wear measuring is usually 1% of the actual layer thickness. It is obvious that the TLA technique has a sensitivity about two orders of magnitude higher than the activation in the bulk volume, produced in a nuclear reactor. Controlling the activation depth (80 - 250 microns) we produced different marker sets with sensitivities of 1 - 3 microns. The TLA markers were used to measure the wear rate of railway-car brake disks and of the railroad. The measured data were corroborated with other physical parameters of interest. (Author)

  6. TLA-marker for wear rate monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stan-Sion, C; Plostinaru, D; Ivan, A [Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, R-76900 Bucharest, P.O.Box MG-6, (Romania); Catana, M; Roman, M [Institute for Research and Design in Transportation, Bucharest, (Romania)

    1992-01-01

    A very effective and promising method of wear monitoring in industry is the Thin Layer Activation (TLA) method. The main feature of this technique is the creation of thin radioactive layers on the investigated surface by irradiation of the sample with an accelerated ion beam (protons, deuterons, 3-He). In the present paper we describe an extension of the TLA-Method to produce radioactive markers to be implanted into heavy object which can hardly be transported to an accelerator for direct surface activation. The sensitivity of wear measuring is usually 1% of the actual layer thickness. It is obvious that the TLA technique has a sensitivity about two orders of magnitude higher than the activation in the bulk volume, produced in a nuclear reactor. Controlling the activation depth (80 - 250 microns) we produced different marker sets with sensitivities of 1 - 3 microns. The TLA markers were used to measure the wear rate of railway-car brake disks and of the railroad. The measured data were corroborated with other physical parameters of interest. (Author).

  7. Development of counting system for wear measurements using Thin Layer Activation and the Wearing Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    França, Michel de A.; Suita, Julio C.; Salgado, César M., E-mail: mchldante@gmail.com, E-mail: suita@ien.gov.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    This paper focus on developing a counting system for the Wearing Apparatus, which is a device previously built to generate measurable wear on a given surface (Main Source) and to carry the fillings from it to a filter (second source). The Thin Layer Activation is a technique used to produce activity on one of the Wearing Apparatus' piece, this activity is proportional to the amount of material worn, or scrapped, from the piece's surface. Thus, by measuring the activity on those two points it is possible to measure the produced wear. The methodology used in this work is based on simulations through MCNP-X Code to nd the best specifications for shielding, solid angles, detectors dimensions and collimation for the Counting System. By simulating several scenarios, each one different from the other, and analyzing the results in the form of Counts Per Second, the ideal counting system's specifications and geometry to measure the activity in the Main Source and the Filter (second source) is chosen. After that, a set of previously activated stainless steel foils were used to reproduce the real experiments' conditions, this real experiment consists of using TLA and the Wearing Apparatus, the results demonstrate that the counting system and methodology are adequate for such experiments. (author)

  8. Rapid Analyses of Polyetheretherketone Wear Characteristics by Accelerated Wear Testing with Microfabricated Surfaces for Artificial Joint Systems.

    Science.gov (United States)

    Su, Chen-Ying; Kuo, Chien-Wei; Fang, Hsu-Wei

    2017-01-01

    Wear particle-induced biological responses are the major factors resulting in the loosening and then failure of total joint arthroplasties. It is feasible to improve the lubrication and reduce the wear of artificial joint system. Polyetheretherketone (PEEK) is considered as a potential bearing material due to its mechanical characteristics of resistance to fatigue strain. The PEEK wear particles have been indicated to be involved in biological responses in vitro, and further studies regarding the wear phenomena and wear particle generation are needed. In this study, we have established an accelerated wear testing system with microfabricated surfaces. Various contact pressures and lubricants have been utilized in the accelerated wear tests. Our results showed that increasing contact pressure resulted in an increase of wear particle sizes and wear rate, and the size of PEEK wear particles can be controlled by the feature size of microfabricated surfaces. These results provided the information rapidly about factors that affect the morphology and amount of PEEK wear particles and can be applied in the future for application of PEEK on the biological articulation system.

  9. NF-κB decoy oligodeoxynucleotide mitigates wear particle-associated bone loss in the murine continuous infusion model.

    Science.gov (United States)

    Lin, Tzu-Hua; Pajarinen, Jukka; Sato, Taishi; Loi, Florence; Fan, Changchun; Córdova, Luis A; Nabeshima, Akira; Gibon, Emmanuel; Zhang, Ruth; Yao, Zhenyu; Goodman, Stuart B

    2016-09-01

    Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Wear particle-induced chronic inflammation is associated with the development of periprosthetic osteolysis. Modulation of NF-κB signaling in macrophages, osteoclasts, and mesenchymal stem cells could potentially mitigate this disease. In the current study, we examined the effects of local delivery of decoy NF-κB oligo-deoxynucleotide (ODN) on wear particle-induced bone loss in a murine continuous femoral particle infusion model. Ultra-high molecular weight polyethylene particles (UHMWPE) with or without lipopolysaccharide (LPS) were infused via osmotic pumps into hollow titanium rods placed in the distal femur of mice for 4weeks. Particle-induced bone loss was evaluated by μCT, and immunohistochemical analysis of sections from the femur. Particle infusion alone resulted in reduced bone mineral density and trabecular bone volume fraction in the distal femur. The decoy ODN reversed the particle-associated bone volume fraction loss around the implant, irrespective of the presence of LPS. Particle-infusion with LPS increased bone mineral density in the distal femur compared with particle-infusion alone. NF-κB decoy ODN reversed or further increased the bone mineral density in the femur (3-6mm from the distal end) exposed to particles alone or particles plus LPS. NF-κB decoy ODN also inhibited macrophage infiltration and osteoclast number, but had no significant effects on osteoblast numbers in femurs exposed to wear particles and LPS. Our study suggests that targeting NF-κB activity via local delivery of decoy ODN has great potential to mitigate wear particle-induced osteolysis. Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Chronic inflammation is crucial for the development of wear particle-associated bone loss. Modulation of NF-κB signaling in macrophages (pro-inflammatory cells), osteoclasts (bone

  10. Inflammation and metabolic disorders.

    Science.gov (United States)

    Navab, Mohamad; Gharavi, Nima; Watson, Andrew D

    2008-07-01

    Poor nutrition, overweight and obesity have increasingly become a public health concern as they affect many metabolic disorders, including heart disease, diabetes, digestive system disorders, and renal failure. Study of the effects of life style including healthy nutrition will help further elucidate the mechanisms involved in the adverse effects of poor nutrition. Unhealthy life style including poor nutrition can result in imbalance in our oxidation/redox systems. Lipids can undergo oxidative modification by lipoxygenases, cyclooxygenases, myeloperoxidase, and other enzymes. Oxidized phospholipids can induce inflammatory molecules in the liver and other organs. This can contribute to inflammation, leading to coronary heart disease, stroke, renal failure, inflammatory bowl disease, metabolic syndrome, bone and joint disorders, and even certain types of cancer. Our antioxidant and antiinflammatory defense mechanisms contribute to a balance between the stimulators and the inhibitors of inflammation. Beyond a point, however, these systems might be overwhelmed and eventually fail. High-density lipoprotein is a potent inhibitor of the formation of toxic oxidized lipids. High-density lipoprotein is also an effective system for stimulating the genes whose products are active in the removal, inactivation, and elimination of toxic lipids. Supporting the high-density lipoprotein function should help maintain the balance in these systems. It is hoped that the present report would elucidate some of the ongoing work toward this goal.

  11. Structurally Integrated Coatings for Wear and Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18

    Wear and corrosion of structures cuts across industries and continues to challenge materials scientists and engineers to develop cost effective solutions. Industries typically seek mature technologies that can be implemented for production with rapid or minimal development and have little appetite for the longer-term materials research and development required to solve complex problems. The collaborative work performed in this project addressed the complexity of this problem in a multi-year program that industries would be reluctant to undertake without government partnership. This effort built upon the prior development of Advanced Abrasion Resistant Materials conduct by Caterpillar Inc. under DOE Cooperative Agreement No. DE-FC26-01NT41054. In this referenced work, coatings were developed that exhibited significant wear life improvements over standard carburized heat treated steel in abrasive wear applications. The technology used in this referenced work, arc lamp fusing of thermal spray coatings, was one of the primary technical paths in this work effort. In addition to extending the capability of the coating technology to address corrosion issues, additional competitive coating technologies were evaluated to insure that the best technology was developed to meet the goals of the program. From this, plasma transferred arc (PTA) welding was selected as the second primary technology that was investigated. Specifically, this project developed improved, cost effective surfacing materials and processes for wear and corrosion resistance in both sliding and abrasive wear applications. Materials with wear and corrosion performance improvements that are 4 to 5 times greater than heat treated steels were developed. The materials developed were based on low cost material systems utilizing ferrous substrates and stainless steel type matrix with hard particulates formed from borides and carbides. Affordability was assessed against other competing hard surfacing or coating

  12. Endometriosis and possible inflammation markers

    Directory of Open Access Journals (Sweden)

    Meng-Hsing Wu

    2015-08-01

    Full Text Available Inflammation plays an important role in the pathogenesis of endometriosis. Infiltration of peritoneal macrophages and local proinflammatory mediators in the peritoneal microenvironment affect ovarian function and pelvic anatomy leading to the symptoms and signs of endometriosis. The identification of a noninvasive marker for endometriosis will facilitate early diagnosis and treatment of this disease. This review provides an overview of local microenvironmental inflammation and systemic inflammation biomarkers in endometriosis.

  13. Association between Severity of Tooth Wear and Dentinal Hypersensitivity

    Directory of Open Access Journals (Sweden)

    Ashok Ayer

    2016-11-01

    Full Text Available Background & Objectives: Tooth wear (attrition, abrasion, erosion, and abfraction is perceived globally as ever increasing problem. Several outcome of the tooth wear are hypersensitivity, esthetic problems, functional impairment, annoyance to the patient, and fracture of the tooth. Among these, the measurable and more commonly reported outcome is hypersensitivity to stimuli. Although dentin hypersensitivity is a common clinical condition and is generally reported by the patient after experiencing a sharp, short pain caused by one of the several different external stimuli, it is often inadequately understood. None of the scientific literature available till date attempted to establish the relationship between tooth wear and dentin hypersensitivity which could be a key factor in monitoring those patients.  The aim of the study was to estimate the association between severity of teeth wear and sensitivity in the patients with reported dentinal hypersensitivity.Materials & Methods: Fifty patients with dentin hypersensitivity were investigated for tooth wear. Tooth wear measured using exact tooth wear index and level of sensitivity to stimuli was recorded using a numerical rating scale. Results: Enamel wear at cervical region of teeth showed a positive correlation (p=.010, similarly, dentin wear at cervical region of teeth showed positive correlation and significant association (p<.001 with dentinal hypersensitivity.Conclusion: The observation supports a significant association between severities of tooth surface wear and dentinal hypersensitivity.

  14. [Patients' reaction to pharmacists wearing a mask during their consultations].

    Science.gov (United States)

    Tamura, Eri; Kishimoto, Keiko; Fukushima, Noriko

    2013-01-01

      This study sought to determine the effect of pharmacists wearing a mask on the consultation intention of patients who do not have a trusting relationship with the pharmacists. We conducted a questionnaire survey of customers at a Tokyo drugstore in August 2012. Subjects answered a questionnaire after watching two medical teaching videos, one in which the pharmacist was wearing a mask and the other in which the pharmacist was not wearing a mask. Data analysis was performed using a paired t-test and multiple logistic regression. The paired t-test revealed a significant difference in 'Maintenance Problem' between the two pharmacist situations. After excluding factors not associated with wearing a mask, multiple logistic regression analysis identified three independent variables with a significant effect on participants not wanting to consult with a pharmacist wearing a mask. Positive factors were 'active-inactive' and 'frequency mask use', a negative factor was 'age'. Our study has shown that pharmacists wearing a mask may be a factor that prevents patients from consulting with pharmacist. Those patients whose intention to consult might be affected by the pharmacists wearing a mask tended to be younger, to have no habit of wearing masks preventively themselves, and to form a negative opinion of such pharmacists. Therefore, it was estimated that pharmacists who wear masks need to provide medical education by asking questions more positively than when they do not wear a mask in order to prevent the patient worrying about oneself.

  15. On the debris-level origins of adhesive wear.

    Science.gov (United States)

    Aghababaei, Ramin; Warner, Derek H; Molinari, Jean-François

    2017-07-25

    Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes.

  16. ON ASSESSMNENT OF PHYSICAL WEAR IN ELEMENTS OF TECHNICAL DEVICES

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2015-01-01

    Full Text Available Real assessment of wear in technical devices, construction structures, minings, their elements and connections is of great importance for provision of operational security and efficiency. Natural properties of the overwhelming majority of materials follow to probabilistic (stochastic laws due to various reasons (external influence, processing technologies and others. An assessment of physical wear rate of buildings and structures and their elements is carried out in the former republics of the USSR mainly in accordance with external physical signs (deflections, cracks, layer separations, etc. but wear percentage is often calculated on the basis of replacement cost in comparison with the initial one even without taking into account inflation which did not officially exist in the USSR. In this case destruction or failure of structure or their elements are considered as 100 % wear.The paper proposes a new methodology for assessment of physical wear rate in accordance with probability ratio of nofailure operation (reliability, minimum ratio is assigned to admissible limit value in conformity with technical requirements for the technical devices, construction structures, minings in question, their elements and connections. In this context minimum permissible wear probability (reliability is taken as 100 % wear rate and its initial index is considered as 0 % wear rate. That is why wear intensity in time depends on type of value probability distribution while determining the rate of physical property. The proposed methodology is intended for probabilistic wear assessment in case of relatively simple changes in strength properties of materials (for example, within the elastic limit.

  17. Comparative evaluation of peri-implant tissues in patients wearing mandibular overdenture with different implant platforms

    Directory of Open Access Journals (Sweden)

    Laércio Almeida de Melo

    2017-01-01

    Full Text Available Background: The poor hygiene of peri-implant tissues causes inflammation at tissue-implant interface, which may impair the rehabilitation success. The aim of this study was to evaluate the influence of external hexagon and Morse taper implants on peri-implant health in patients wearing mandibular overdentures for 1 year. Materials and Methods: A total of 46 implants were evaluated, 28 external hexagon and 18 Morse taper. Plaque index in the mini-abutment, bleeding index, peri-implant inflammation, keratinized mucosa zone, probing depth, and marginal mucosa level were evaluated after 3 months and 1 year of prostheses insertion. Results: Deeper probing was found in the external hexagon group compared with Morse taper (P = 0.024 after 1 year of rehabilitation. Although the Morse taper group exhibited worse scenario of peri-implant inflammation than the external hexagon group (P = 0.001, both groups showed reduced inflammation after 1 year. A larger keratinized mucosa zone was observed with external hexagon implants (P = 0.020. No significant difference was found between the groups for plaque index in the mini-abutment, bleeding index, and marginal mucosa level. Conclusion: In a follow-up period of 1 year, it was concluded that the external hexagon group had a larger probing depth than the Morse taper group. However, better periodontal conditions about inflammation and keratinized mucosa zone were found in external hexagon implants. It was found no influence of implant platform on plaque index in the mini-abutment, bleeding index, and marginal mucosa level.

  18. PET imaging of inflammation

    International Nuclear Information System (INIS)

    Buscombe, J. R.

    2014-01-01

    Inflammatory diseases are common place and often chronic. Most inflammatory cells have increased uptake of glucose which is enhanced in the presence of local cytokines. Therefore, imaging glucose metabolism by the means of 18F-fluoro-deoxy-glucose (FDG) positron emission tomography (PET) holds significant promise in imaging focal inflammation. Most of the work published involved small series of patients with either vasculitis, sarcoid or rheumatoid arthritis. It would appear that FDG PET is a simple and effective technique to identify inflammatory tissue in these conditions. There is even some work to suggest that by comparing baseline and early post therapy scans clinical outcome can be predicted. This would appear to be true with vasculitis as well as retroperitoneal fibrosis. The number of patients in each study is small but the evidence is compelling enough to recommend FDG PET imaging in the routine care of these patients.

  19. Inflammation in Diabetic Retinopathy

    Science.gov (United States)

    Tang, Johnny; Kern, Timothy S.

    2012-01-01

    Diabetes causes a number of metabolic and physiologic abnormalities in the retina, but which of these abnormalities contribute to recognized features of diabetic retinopathy (DR) is less clear. Many of the molecular and physiologic abnormalities that have been found to develop in the retina in diabetes are consistent with inflammation. Moreover, a number of anti-inflammatory therapies have been found to significantly inhibit development of different aspects of DR in animal models. Herein, we review the inflammatory mediators and their relationship to early and late DR, and discuss the potential of anti-inflammatory approaches to inhibit development of different stages of the retinopathy. We focus primarily on information derived from in vivo studies, supplementing with information from in vitro studies were important. PMID:21635964

  20. Infections, inflammation and epilepsy

    Science.gov (United States)

    Vezzani, Annamaria; Fujinami, Robert S.; White, H. Steve; Preux, Pierre-Marie; Blümcke, Ingmar; Sander, Josemir W.; Löscher, Wolfgang

    2016-01-01

    Epilepsy is the tendency to have unprovoked epileptic seizures. Anything causing structural or functional derangement of brain physiology may lead to seizures, and different conditions may express themselves solely by recurrent seizures and thus be labelled “epilepsy.” Worldwide, epilepsy is the most common serious neurological condition. The range of risk factors for the development of epilepsy varies with age and geographic location. Congenital, developmental and genetic conditions are mostly associated with the development of epilepsy in childhood, adolescence and early adulthood. Head trauma, infections of the central nervous system (CNS) and tumours may occur at any age and may lead to the development of epilepsy. Infections of the CNS are a major risk factor for epilepsy. The reported risk of unprovoked seizures in population-based cohorts of survivors of CNS infections from developed countries is between 6.8 and 8.3 %, and is much higher in resource-poor countries. In this review, the various viral, bacterial, fungal and parasitic infectious diseases of the CNS which result in seizures and epilepsy are discussed. The pathogenesis of epilepsy due to brain infections, as well as the role of experimental models to study mechanisms of epileptogenesis induced by infectious agents, is reviewed. The sterile (non-infectious) inflammatory response that occurs following brain insults is also discussed, as well as its overlap with inflammation due to infections, and the potential role in epileptogenesis. Furthermore, autoimmune encephalitis as a cause of seizures is reviewed. Potential strategies to prevent epilepsy resulting from brain infections and non-infectious inflammation are also considered. PMID:26423537

  1. Control of erosive tooth wear: possibilities and rationale

    Directory of Open Access Journals (Sweden)

    Mônica Campos Serra

    2009-06-01

    Full Text Available Dental erosion is a type of wear caused by non bacterial acids or chelation. There is evidence of a significant increase in the prevalence of dental wear in the deciduous and permanent teeth as a consequence of the frequent intake of acidic foods and drinks, or due to gastric acid which may reach the oral cavity following reflux or vomiting episodes. The presence of acids is a prerequisite for dental erosion, but the erosive wear is complex and depends on the interaction of biological, chemical and behavioral factors. Even though erosion may be defined or described as an isolated process, in clinical situations other wear phenomena are expected to occur concomitantly, such as abrasive wear (which occurs, e.g, due to tooth brushing or mastication. In order to control dental loss due to erosive wear it is crucial to take into account its multifactorial nature, which predisposes some individuals to the condition.

  2. Ceramic-like wear behaviour of human dental enamel.

    Science.gov (United States)

    Arsecularatne, J A; Hoffman, M

    2012-04-01

    This paper reports a transmission electron microscopy (TEM) analysis of subsurfaces of enamel specimens following in vitro reciprocating wear tests with an enamel cusp sliding on a flat enamel specimen under hydrated conditions. The obtained results show that crack formation occurred in the wear scar subsurface. The path followed by these cracks seems to be dictated either by the histological structure of enamel or by the contact stress field. Moreover, the analysis of a set of enamel wear results obtained from the literature and application of fracture-based models, originally developed for ceramics, correlate well, confirming the similar wear processes taking place in these materials. This analysis also reveals a marked influence of coefficient of friction on the enamel wear rate: for a higher coefficient of friction value, enamel wear can be severe even under forces generated during normal operation of teeth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Influence of contact conditions on vibration induced wear of metals

    International Nuclear Information System (INIS)

    Hofmann, P.J.; Schettler, T.; Wieling, N.; Steininger, D.A.

    1990-01-01

    Unfavourable design characteristics of nuclear power plant steam generators and heat exchangers in general may result in vibration induced tube wear. A systematic investigation was performed on the contact conditions which may appear between heat exchanger tubes and tube support structure and the influence of different parameters e.g., normal contact force, on the resulting steady state wear rates. It is concluded that not only are contact forces and sliding distances important in the wear process but also the type of relative motion has a decisive influence on the resulting wear rates. For a certain 'work rate', the wear rate caused by repeated impact motions between tube and tube support structure may be an order of magnitude higher than that caused by only sliding motion. This is the result of different operating wear mechanisms which are discussed in this paper. (orig.)

  4. Aging mourning doves by outer primary wear

    Science.gov (United States)

    Wight, H.M.; Blankenship, L.H.; Tomlinson, R.E.

    1967-01-01

    Many immature mourning doves (Zenaidura macroura) cannot be aged by the conventional white-tipped primary covert method if molt has proceeded beyond the 7th primary. A new method of aging doves in this group is based on the presence (immature) or absence (adult) of a buff-colored fringe on the tips of the 9th and 10th primaries. Experienced biologists were nearly 100 percent accurate in aging wings of 100 known-age doves from eastern and midwestern states. The technique is not as reliable for doves from southwestern United States because of added feather wear, apparently from harsh vegetative and soil conditions.

  5. Tribocorrosion wear of austenitic and martensitic steels

    Directory of Open Access Journals (Sweden)

    G. Rozing

    2016-07-01

    Full Text Available This paper explores the impact of tribocorrosion wear caused by an aggressive acidic media. Tests were conducted on samples made of stainless steel AISI 316L, 304L and 440C. Austenitic steels were tested in their nitrided state and martensitic in quenched and tempered and then induction hardened state. Electrochemical corrosion resistance testing and analysis of the microstructure and hardness in the cross section was carried out on samples of selected steels. To test the possibility of applying surface modification of selected materials in conditions of use, tests were conducted on samples/parts in a worm press for final pressing.

  6. A guiding map for inflammation

    DEFF Research Database (Denmark)

    Netea, Mihai G; Balkwill, Frances; Chonchol, Michel

    2017-01-01

    Biologists, physicians and immunologists have contributed to the understanding of the cellular participants and biological pathways involved in inflammation. Here, we provide a general guide to the cellular and humoral contributors to inflammation as well as to the pathways that characterize infl...

  7. Role of glutathione in immunity and inflammation in the lung

    Directory of Open Access Journals (Sweden)

    Pietro Ghezzi

    2011-01-01

    Full Text Available Pietro GhezziBrighton and Sussex Medical School, Trafford Centre, Falmer, Brighton, UKAbstract: Reactive oxygen species and thiol antioxidants, including glutathione (GSH, regulate innate immunity at various levels. This review outlines the redox-sensitive steps of the cellular mechanisms implicated in inflammation and host defense against infection, and describes how GSH is not only important as an antioxidant but also as a signaling molecule. There is an extensive literature of the role of GSH in immunity. Most reviews are biased by an oversimplified picture where “bad” free radicals cause all sorts of diseases and “good” antioxidants protect from them and prevent oxidative stress. While this may be the case in certain fields (eg, toxicology, the role of thiols (the topic of this review in immunity certainly requires wearing scientist’s goggles and being prepared to accept a more complex picture. This review aims at describing the role of GSH in the lung in the context of immunity and inflammation. The first part summarizes the history and basic concepts of this picture. The second part focuses on GSH metabolism/levels in pathology, the third on the role of GSH in innate immunity and inflammation, and the fourth gives 4 examples describing the importance of GSH in the response to infections.Keywords: antioxidants, oxidative stress, sepsis, infection, cysteine

  8. Wear Behavior of an Unstable Knee: Stabilization via Implant Design?

    OpenAIRE

    Reinders, Jörn; Sonntag, Robert; Kretzer, Jan Philippe

    2014-01-01

    Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anteri...

  9. Wearable Android Android wear and Google Fit app development

    CERN Document Server

    Mishra, Sanjay M

    2015-01-01

    Software Development/Mobile/Android/Wearable/Fitness Build ""Wearable"" Applications on the Android Wear and Google Fit Platforms This book covers wearable computing and wearable application development particularly for Android Wear (smartwatches) and Google Fit (fitness sensors). It provides relevant history, background and core concepts of wearable computing and ubiquitous computing, as a foundation for designing/developing applications for the Android Wear and Google Fit platforms. This book is intended for Android wearable enthusiasts, technologists and software developers. Gain ins

  10. Cutting tool wear monitoring with the use of impedance layers

    OpenAIRE

    Sadílek, Marek; Kratochvíl, Jiří; Petrů, Jana; Čep, Robert; Zlámal, Tomáš; Stančeková, Dana

    2014-01-01

    The article deals with problems of cutting process monitoring in real time. It is focused on tool wear by means of impedance layers applied on ceramic cutting inserts. In the experimental part the cutting process is monitored using electrical resistance measurement. The results are compared and verified using the monitored cutting temperature and tool wear. The testing of impedance layers is reasonable mainly for cutting edge diagnostics. The width of this layer determines the wear allowance ...

  11. 3D finite element modeling of sliding wear

    Science.gov (United States)

    Buentello Hernandez, Rodolfo G.

    Wear is defined as "the removal of material volume through some mechanical process between two surfaces". There are many mechanical situations that can induce wear and each can involve many wear mechanisms. This research focuses on the mechanical wear due to dry sliding between two surfaces. Currently there is a need to identify and compare materials that would endure sliding wear under severe conditions such as high velocities. The high costs associated with the field experimentation of systems subject to high-speed sliding, has prevented the collection of the necessary data required to fully characterize this phenomena. Simulating wear through Finite Elements (FE) would enable its prediction under different scenarios and would reduce experimentation costs. In the aerospace, automotive and weapon industries such a model can aid in material selection, design and/or testing of systems subjected to wear in bearings, gears, brakes, gun barrels, slippers, locomotive wheels, or even rocket test tracks. The 3D wear model presented in this dissertation allows one to reasonably predict high-speed sliding mechanical wear between two materials. The model predictions are reasonable, when compared against those measured on a sled slipper traveling over the Holloman High Speed Tests Track. This slipper traveled a distance of 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s.

  12. Wear Behavior of an Unstable Knee: Stabilization via Implant Design?

    Directory of Open Access Journals (Sweden)

    Jörn Reinders

    2014-01-01

    Full Text Available Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anterior cruciate ligament was simulated. In the second, a ligamentous-unstable knee with additionally insufficient posterior cruciate ligament and medial collateral ligament was simulated. Wear was determined gravimetrically and wear particles were analyzed. Implant kinematics was recorded during simulation. Results. Significantly higher wear rates (P≤0.001 were observed for the unstable knee (14.58±0.56 mg/106 cycles compared to the stable knee (7.97 ± 0.87 mg/106 cycles. A higher number of wear particles with only small differences in wear particle characteristics were observed. Under unstable knee conditions, kinematics increased significantly for translations and rotations (P≤0.01. This increase was mainly attributed to higher tibial posterior translation and internal rotations. Conclusion. Higher kinematics under unstable test conditions is a result of insufficient stabilization via implant design. Due to the higher kinematics, increased wear was observed in this study.

  13. A Study on Optimal Wear Design for a Gerotor Pump

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Soon Man; Nam, Hyoung Chul; Lu, Lei; Shin, Joong Ho [Changwon National University, Changwon (Korea, Republic of)

    2009-01-15

    A disadvantage in the design of gerotor pump is a lack of parts that can be adjusted to compensate for wear in the rotor set, and as a consequence, it causes a sharp reduction of efficiency. In this paper, an attempt has been made to reduce the wear rate between the rotors of a gerotor pump. To do this, floating genetic algorithm (FGA) is used as an optimization technique for minimizing the wear rate proportional factor (WRPF). The result shows that the wear rate can be reduced considerably, e.g. approximately 8% in this paper, throughout the optimization using FGA.

  14. Potential countersample materials for in vitro simulation wear testing.

    Science.gov (United States)

    Shortall, Adrian C; Hu, Xiao Q; Marquis, Peter M

    2002-05-01

    Any laboratory investigation of the wear resistance of dental materials needs to consider oral conditions so that in vitro wear results can be correlated with in vivo findings. The choice of the countersample is a critical factor in establishing the pattern of tribological wear and in achieving an efficient in vitro wear testing system. This research investigated the wear behavior and surface characteristics associated with three candidate countersample materials used for in vitro wear testing in order to identify a possible suitable substitute for human dental enamel. Three candidate materials, stainless steel, steatite and dental porcelain were evaluated and compared to human enamel. A variety of factors including hardness, wear surface evolution and frictional coefficients were considered, relative to the tribology of the in vivo situation. The results suggested that the dental porcelain investigated bore the closest similarity to human enamel of the materials investigated. Assessment of potential countersample materials should be based on the essential tribological simulation supported by investigations of mechanical, chemical and structural properties. The selected dental porcelain had the best simulating ability among the three selected countersample materials and this class of material may be considered as a possible countersample material for in vitro wear test purposes. Further studies are required, employing a wider range of dental ceramics, in order to optimise the choice of countersample material for standardized in vitro wear testing.

  15. Radioactive ion implantation as a tool for wear measurements

    International Nuclear Information System (INIS)

    Bagger, C.; Soerensen, G.

    1979-01-01

    The present paper deals with ion implantation of radioactive krypton ions in surfaces with aim of measuring wear of different magnetic materials in sound-heads. The technique is especially suited for a relatively fast comparison of wear-characteristics of materials of varying composition in small inaccessible areas. In the present case utilisation of a 60 KeV accelerator allows determination of a total wear as small as 0.05 μm with an accuracy of 10%. Further the technique yields information of the time dependence of the wear process with an accuracy less than 0.001 μm. (author)

  16. Wear properties of metal ion implanted 4140 steel

    International Nuclear Information System (INIS)

    Evans, P.J.; Paoloni, F.J.

    1994-01-01

    AISI type 4140 (high tensile) steel has been implanted with tungsten and titanium using a metal vapour vacuum arc ion source. Doses in the range (1-5)x10 16 ionscm -2 were implanted to a depth of approximately 30nm. The relative wear resistance between non-implanted and implanted specimens has been estimated using pin-on-disc and abrasive wear tests. Implantation of titanium decreased the area of wear tracks by a factor of 5 over unimplanted steel. In some cases the steel was also hardened by a liquid carburization treatment before implantation. Abrasion tests revealed a further improvement in wear resistance on this material following ion irradiation. ((orig.))

  17. Gas Gun Studies of Interface Wear Effects

    Science.gov (United States)

    Jackson, Tyler; Kennedy, Greg; Thadhani, Naresh

    2011-06-01

    The characteristics of interface wear were studied by performing gas gun experiments at velocities up to 1 km/s. The approach involved developing coefficients of constitutive strength models for Al 6061 and OFHC-Cu, then using those to design die geometry for interface wear gas gun experiments. Taylor rod-on-anvil impact experiments were performed to obtain coefficients of the Johnson-Cook constitutive strength model by correlating experimentally obtained deformed states of impacted samples with those predicted using ANSYS AUTODYN hydrocode. Simulations were used with validated strength models to design geometry involving acceleration of Al rods through a copper concentric cylindrical angular extrusion die. Experiments were conducted using 7.62 mm and 80 mm diameter gas guns. Differences in the microstructure of the interface layer and microhardness values illustrate that stress-strain conditions produced during acceleration of Al through the hollow concentric copper die, at velocities less than 800 m/s, result in formation of a layer via solid state alloying due to severe plastic deformation, while higher velocities produce an interface layer consisting of melted and re-solidified aluminum.

  18. "Work smart, wear your hard hat"

    CERN Multimedia

    2003-01-01

    Falling objects and collisions are frequent occurrences in work sites and hazardous areas. Hard hats can help prevent many types of accident and can even save lives. Just imagine an 800 g spanner falling from a 13 m high scaffold onto the head of someone standing below - a nightmare scenario! The impact to the head is equivalent to that of a 5 kg weight falling from 2 metres. That is just what happened to Gerd Fetchenhauer when he was working on the UA1 experiment. Fortunately, he was wearing a hard hat at the time. "That hat saved my life," he explains. "It punched a hole right through the hat and I was a bit dazed for a couple of hours but otherwise I was OK." Since that day, Gerd Fetchenhauer, now working on CMS, is never seen on a work site without his hard hat on. Work sites have proliferated at CERN with the construction of the LHC and its detectors, and the wearing of hard hats is compulsory (not to mention life-saving). In the underground caverns and experiment halls, where gantry cranes and other h...

  19. How patient-selected colors for removable appliances are reflected in electronically tracked compliance (wear times and wear behavior).

    Science.gov (United States)

    Schott, Timm C; Menne, Dieter

    2018-03-27

    A broad spectrum of colors for removable appliances, intended to optimize acceptance of treatment and patient cooperation, have been available on the dental market for years. This is the first study to analyze how patient-selected colors are reflected in wear times and wear behavior of removable appliances. The study included 117 children (55 girls and 62 boys) who were treated with active removable plate or functional appliances. All patients were offered to choose from 11 different colors, which were pooled into six groups (black, blue, green, yellow, pink, red) for analysis, or to combine any two to four colors ("multicolored" group) for their appliances. All appliances featured a built-in microsensor (TheraMon; MC Technology, Hargelsberg, Austria) for objective wear-time tracking. Differences between wear times were analyzed using pairwise t tests and Tukey correction. The longest median wear times were recorded in the blue and green groups (≈11 h/d) and the shortest ones in the red and pink groups (≈9 h/d), but they were not significantly influenced by the patient-selected colors. The median wear times involved an age-related decrease by 0.56 h/y that was statistically significant ( P = .00005). No gender-specific patterns of wear behavior were observed. Patient-selected colors for removable appliances can presumably improve acceptance of treatment, but they are not associated with statistically significant improvements in wear time or wear behavior.

  20. Metabolic regulation of inflammation.

    Science.gov (United States)

    Gaber, Timo; Strehl, Cindy; Buttgereit, Frank

    2017-05-01

    Immune cells constantly patrol the body via the bloodstream and migrate into multiple tissues where they face variable and sometimes demanding environmental conditions. Nutrient and oxygen availability can vary during homeostasis, and especially during the course of an immune response, creating a demand for immune cells that are highly metabolically dynamic. As an evolutionary response, immune cells have developed different metabolic programmes to supply them with cellular energy and biomolecules, enabling them to cope with changing and challenging metabolic conditions. In the past 5 years, it has become clear that cellular metabolism affects immune cell function and differentiation, and that disease-specific metabolic configurations might provide an explanation for the dysfunctional immune responses seen in rheumatic diseases. This Review outlines the metabolic challenges faced by immune cells in states of homeostasis and inflammation, as well as the variety of metabolic configurations utilized by immune cells during differentiation and activation. Changes in cellular metabolism that contribute towards the dysfunctional immune responses seen in rheumatic diseases are also briefly discussed.

  1. Wear of human enamel: a quantitative in vitro assessment.

    Science.gov (United States)

    Kaidonis, J A; Richards, L C; Townsend, G C; Tansley, G D

    1998-12-01

    Many factors influence the extent and rate at which enamel wears. Clinical studies in humans are limited by difficulties in the accurate quantification of intra-oral wear and by a lack of control over the oral environment. The purpose of this study was to determine the wear characteristics of human dental enamel under controlled experimental conditions. An electro-mechanical tooth wear machine, in which opposing enamel surfaces of sectioned, extracted teeth were worn under various conditions, was used to simulate tooth grinding or bruxism. Enamel surface wear was quantified by weight to an accuracy of 0.1 mg, with water uptake and loss controlled. The variables considered included the structure and hardness of enamel, facet area, duration of tooth contact, relative speed of opposing surfaces, temperature, load, pH, and the nature of the lubricant. Enamel wear under non-lubricated conditions increased with increasing load over the range of 1.7 to 16.2 kg. The addition of a liquid lubricant (pH = 7) reduced enamel wear up to 6.7 kg, but when the load increased above this threshold, the rate of wear increased dramatically. With the viscosity of the lubricant constant and pH = 3, the rate of wear was further reduced to less than 10% of the non-lubricated rate at 9.95 kg, after which the rate again increased substantially. Under more extreme conditions (pH = 1.2, simulating gastric acids), the wear was excessive under all experimental loads. When saliva was used as a lubricant, the amount of wear was relatively low at 9.95 kg, but rapid wear occurred at 14.2 kg and above. These results indicate that under non-lubricated conditions, enamel wear remains low at high loads due to the dry-lubricating capabilities of fine enamel powder. Under lubricated conditions, low loads with an acidic lubricant lead to little enamel wear, whereas very low pH results in a high rate of wear under all loads.

  2. Imaging infection and inflammation

    International Nuclear Information System (INIS)

    Buscombe, John

    1997-01-01

    imaging acute infection on the intensive therapy unit or to reduce radiation dose in the monitoring of a child with inflammatory bowel disease who had to suffer the indignity of a colonoscopy or a barium enema. We also look forward to newer techniques, certainly the use of immuno globulins, both pooled human and monoclonal antibodies directed either against leukocytes or a specific pathogen may prove useful. The new molecular medicine is starting to exploit our knowledge of the mechanisms of infection and inflammation. It may be possible to produce artificial peptides to localize at sites of infections and/or inflammation. Simpler techniques such as radio labelled antibiotics may be the answer. At present one such antibiotic, a quinilone labelled with Technetium-99 m (called infecton) in undergoing an international IAEA trial. A more complex approach will be the use of radio labelled drugs wrapped in 'stealth'liposomes to avoid liver uptake but deliver the pharmaceutical to the granulocyte in vivo. All are under development. We must however also deliver the best clinical service we can at present delivering accurate results with the lowest radiation dose and available when the patient needs it. As such Tc-99 m HMPAO labelled leukocytes and Gallium-67 are still probably the methods of choice in most situations thoung this may be tempered by local needs and factors

  3. Erosive and Mechanical Tooth Wear in Viking Age Icelanders.

    Science.gov (United States)

    Richter, Svend; Eliasson, Sigfus Thor

    2017-08-29

    (1) Background: The importance of the Icelandic Sagas as a source of information about diet habits in medieval Iceland, and possibly other Nordic countries, is obvious. Extensive tooth wear in archaeological material worldwide has revealed that the main cause of this wear is believed to have been a coarse diet. Near the volcano Hekla, 66 skeletons dated from before 1104 were excavated, and 49 skulls could be evaluated for tooth wear. The purpose of this study was to determine the main causes of tooth wear in light of diet and beverage consumption described in the Sagas; (2) Materials and methods: Two methods were used to evaluate tooth wear and seven for age estimation; (3) Results: Extensive tooth wear was seen in all of the groups, increasing with age. The first molars had the highest score, with no difference between sexes. These had all the similarities seen in wear from a coarse diet, but also presented with characteristics that are seen in erosion in modern Icelanders, through consuming excessive amounts of soft drinks. According to the Sagas, acidic whey was a daily drink and was used for the preservation of food in Iceland, until fairly recently; (4) Conclusions: It is postulated that the consumption of acidic drinks and food, in addition to a coarse and rough diet, played a significant role in the dental wear seen in ancient Icelanders.

  4. A study on wear behaviour of Al/6101/graphite composites

    Directory of Open Access Journals (Sweden)

    Pardeep Sharma

    2017-03-01

    Full Text Available The current research work scrutinizes aluminium alloy 6101-graphite composites for their mechanical and tribological behaviour in dry sliding environments. The orthodox liquid casting technique had been used for the manufacturing of composite materials and imperilled to T6 heat treatment. The content of reinforcement particles was taken as 0, 4, 8, 12 and 16 wt.% of graphite to ascertain it is prospective as self-lubricating reinforcement in sliding wear environments. Hardness, tensile strength and flexural strength of cast Al6101 metal matrix and manufactured composites were evaluated. Hardness, tensile strength and flexural strength decreases with increasing volume fraction of graphite reinforcement as compared to cast Al6101 metal matrix. Wear tests were performed on pin on disc apparatus to assess the tribological behaviour of composites and to determine the optimum volume fraction of graphite for its minimum wear rate. Wear rate reduces with increase in graphite volume fraction and minimum wear rate was attained at 4 wt.% graphite. The wear was found to decrease with increase in sliding distance. The average co-efficient of friction also reduces with graphite addition and its minimum value was found to be at 4 wt.% graphite. The worn surfaces of wear specimens were studied through scanning electron microscopy. The occurrence of 4 wt.% of graphite reinforcement in the composites can reveal loftier wear possessions as compared to cast Al6101 metal matrix.

  5. Multi technical analysis of wear mechanisms in axial piston pumps

    Science.gov (United States)

    Schuhler, G.; Jourani, A.; Bouvier, S.; Perrochat, J.-M.

    2017-05-01

    Axial piston pumps convert a motor rotation motion into hydraulic or pneumatic power. Their compactness and efficiency of approximately 0.9 make them suitable for actuation applications especially in aeronautics. However, they suffer a limited life due to the wear of their components. In the literature, studies of axial piston pumps deal with contact between its different elements under lubrication conditions. Nevertheless, they are more focused on analytic or numerical approaches. This study consists in an experimental analysis of worn pump components to highlight and understand wear mechanisms. Piston shoes are central components in the axial piston pump since they are involved in three tribological contacts. These three contacts are thereby studied: piston shoes/swashplate, piston shoes/pistons and piston shoes/shoes hold down plate (SHDP). To perform this analysis, helicopter hydraulic pumps after different operating times have been studied. The wear damage mechanisms and wear debris are analysed using SEM observations. 3D surface roughness measurements are then used to characterize worn surfaces. The observations reveal that in the contact between shoes and swashplate, the main wear mechanism is three-body abrasive wear due to coarse carbides removal. Between shoes and pistons, wear occurs in a less severe way and is mainly due to the debris generated in the first contact and conveyed by the lubricating fluid. In the third contact, the debris are also the prime cause of the abrasive wear and the generation of deep craters in the piston shoes.

  6. Teachers' Perceptions of Adolescent Girls Who Wear Hearing Aids.

    Science.gov (United States)

    Cox, Linda R.; And Others

    1989-01-01

    Females, aged 10-14, were photographed wearing a body aid, a postauricular aid, or no hearing aid. Ratings by 60 college education majors indicated that subjects pictured wearing a hearing aid were rated lower on achievement but higher on factors of appearance, personality, and assertiveness than subjects without the aid. (Author/JDD)

  7. Monitoring of dry sliding wear using fractal analysis

    NARCIS (Netherlands)

    Zhang, Jindang; Regtien, Paulus P.L.; Korsten, Maarten J.

    2005-01-01

    Reliable online monitoring of wear remains a challenge to tribology research as well as to the industry. This paper presents a new method for monitoring of dry sliding wear using digital imaging and fractal analysis. Fractal values, namely fractal dimension and intercept, computed from the power

  8. Investigation of friction and wear characteristics of palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2013-01-01

    Highlights: ► Both wear and friction decrease with the increase of biodiesel concentration. ► Wear and friction appear to decrease more at the range of 10–20% biodiesel in diesel blend. ► The wear of steel ball in biodiesel (B100) was 20% lower than that in diesel (B0). ► Lubricity in terms of wear and friction decreases with the increase of rotating speed. - Abstract: Use of biodiesel in automobile engine is creating tribology related new challenges. The present study aims to assess the friction and wear characteristics of palm biodiesel at different concentration level by using four-ball wear machine. The investigated fuels were biodiesel (B100), diesel (B0) and three different biodiesel blends such as B10 (10% biodiesel in diesel), B20, B50. Tests were conducted at 75 °C under a normal load of 40 kg for 1 h at four different speeds viz, 600, 900, 1200 and 1500 rpm. Worn surfaces of the balls were examined by SEM. Results showed that wear and friction decreased with the increase of biodiesel concentration. The wear of steel ball in B100 was appeared to be 20% lower than that in diesel (B0)

  9. Modelling and analysis of abrasive wear performance of composites ...

    African Journals Online (AJOL)

    It has been observed that fibre length plays a major role in wear phenomenon. The length of the fibre has been optimized using a popular evolutionary technique known as particle swarm optimization (PSO) and neural network. The study recommends that fibre length should be 7-8 mm for minimum wear of the composites.

  10. Wear numbers for ball cup and journal bearings

    NARCIS (Netherlands)

    Ligterink, D.J.; Moes, H.

    1980-01-01

    A wear number is defined for ball cup bearings and for journal bearings where the cup and the cylindrical bearing are made of soft material. This dimensionless wear number provides a relation between the following five quantities: the radius of the ball or the length of the journal bearing in

  11. Surface effects in adhesion, friction, wear, and lubrication

    National Research Council Canada - National Science Library

    Buckley, Donald H

    1981-01-01

    ... for carbon bodies to improve their wear resistance in high altitude aircraft generator applications. Basic researchers found that moisture in the carbon was critical t o its lubrication. Therefore, the presence of moisture o n the surface of the carbon was important. With it present, the carbon lubricated very effectively and very low wear was ...

  12. Occlusal wear of provisional implant-supported restorations

    NARCIS (Netherlands)

    Santing, Hendrik J.; Kleverlaan, Cornelis J.; Werner, Arie; Feilzer, Albert J.; Raghoebar, Gerry M.; Meijer, Henny J. A.

    BACKGROUND: Implant-supported provisional restorations should be resistant to occlusal wear. PURPOSE: The purpose of this laboratory study was to evaluate three-body wear of three indirect laboratory composite resins, five chair side bis-acryl resin-based materials, and two chair side

  13. Fracture mechanics approach to estimate rail wear limits

    Science.gov (United States)

    2009-10-01

    This paper describes a systematic methodology to estimate allowable limits for rail head wear in terms of vertical head-height loss, gage-face side wear, and/or the combination of the two. This methodology is based on the principles of engineering fr...

  14. Apoptosis and inflammation

    Directory of Open Access Journals (Sweden)

    C. Haanen

    1995-01-01

    Full Text Available During the last few decades it has been recognized that cell death is not the consequence of accidental injury, but is the expression of a cell suicide programme. Kerr et al. (1972 introduced the term apoptosis. This form of cell death is under the influence of hormones, growth factors and cytokines, which depending upon the receptors present on the target cells, may activate a genetically controlled cell elimination process. During apoptosis the cell membrane remains intact and the cell breaks into apoptotic bodies, which are phagocytosed. Apoptosis, in contrast to necrosis, is not harmful to the host and does not induce any inflammatory reaction. The principal event that leads to inflammatory disease is cell damage, induced by chemical/physical injury, anoxia or starvation. Cell damage means leakage of cell contents into the adjacent tissues, resulting in the capillary transmigration of granulocytes to the injured tissue. The accumulation of neutrophils and release of enzymes and oxygen radicals enhances the inflammatory reaction. Until now there has been little research into the factors controlling the accumulation and the tissue load of granulocytes and their histotoxic products in inflammatory processes. Neutrophil apoptosis may represent an important event in the control of intlamtnation. It has been assumed that granulocytes disintegrate to apoptotic bodies before their fragments are removed by local macrophages. Removal of neutrophils from the inflammatory site without release of granule contents is of paramount importance for cessation of inflammation. In conclusion, apoptotic cell death plays an important role in inflammatory processes and in the resolution of inflammatory reactions. The facts known at present should stimulate further research into the role of neutrophil, eosinophil and macrophage apoptosis in inflammatory diseases.

  15. Standard Terminology Relating to Wear and Erosion

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 The terms and their definitions given herein represent terminology relating to wear and erosion of solid bodies due to mechanical interactions such as occur with cavitation, impingement by liquid jets or drops or by solid particles, or relative motion against contacting solid surfaces or fluids. This scope interfaces with but generally excludes those processes where material loss is wholly or principally due to chemical action and other related technical fields as, for instance, lubrication. 1.2 This terminology is not exhaustive; the absence of any particular term from this collection does not necessarily imply that its use within this scope is discouraged. However, the terms given herein are the recommended terms for the concepts they represent unless otherwise noted. 1.3 Certain general terms and definitions may be restricted and interpreted, if necessary, to make them particularly applicable to the scope as defined herein. 1.4 The purpose of this terminology is to encourage uniformity and accuracy ...

  16. Feed chute geometry for minimum belt wear

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, A W; Wiche, S J [University of Newcastle, Newcastle, NSW (Australia). Centre for Bulk Solids and Particulate Technologies

    1998-09-01

    The paper is concerned with the feeding and transfer of bulk solids in conveyor belt operation. The paper focuses on chute design where the objective is to prevent spillage and minimise both chute and belt wear. It is shown that these objectives may be met through correct dynamic design of the chute and by directing the flow of bulk solids onto the belt at an acceptable incidence angle. The aim is to match the tangential velocity component of the feed velocity as close as possible to the belt velocity. At the same time, it is necessary to limit the impact pressure due to the change in momentum of the bulk solid as it feeds onto the belt. 2 refs., 8 figs.

  17. Durability analysis of gneiss using wear resistance

    Directory of Open Access Journals (Sweden)

    José Luiz Ernandes Dias Filho

    2014-01-01

    Full Text Available This paper presents a study conducted in gneiss in Santo Antonio de Pádua, RJ, BR, including durability analysis of the rock using slake durability test. Rocks in the region of Pádua are mostly used for ornamental purposes. A lab equipment was developed to evaluate the influence of rotation in the test, allowing for the speed variation of 7 RPM to 238 RPM. This study could be implemented in a wide variety of rock materials, targeting them according to their lifetime in the project. With variation of the wear levels, increasing weight loss was observed until the inertia moment in which the sample holds to the machine wall. The results indicate an increase in linear mass loss. These procedures allow a more precise analysis of durability than can be applied in different different regions of the world.

  18. Cast bulk metallic glass alloys: prospects as wear materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Shiflet, Gary J. (Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA)

    2005-01-01

    Bulk metallic glasses are single phase materials with unusual physical and mechanical properties. One intriguing area of possible use is as a wear material. Usually, pure metals and single phase dilute alloys do not perform well in tribological conditions. When the metal or alloy is lightweight, it is usually soft leading to galling in sliding situations. For the harder metals and alloys, their density is usually high, so there is an energy penalty when using these materials in wear situations. However, bulk metallic glasses at the same density are usually harder than corresponding metals and dilute single phase alloys, and so could offer better wear resistance. This work will discuss preliminary wear results for metallic glasses with densities in the range of 4.5 to 7.9 g/cc. The wear behavior of these materials will be compared to similar metals and alloys.

  19. Sex differences in Hadza dental wear patterns : a preliminary report.

    Science.gov (United States)

    Berbesque, J Colette; Marlowe, Frank W; Pawn, Ian; Thompson, Peter; Johnson, Guy; Mabulla, Audax

    2012-09-01

    Among hunter-gatherers, the sharing of male and female foods is often assumed to result in virtually the same diet for males and females. Although food sharing is widespread among the hunting and gathering Hadza of Tanzania, women were observed eating significantly more tubers than men. This study investigates the relationship between patterns of dental wear, diet, and extramasticatory use of teeth among the Hadza. Casts of the upper dentitions were made from molds taken from 126 adults and scored according to the Murphy dental attrition scoring system. Females had significantly greater anterior occlusal wear than males when we controlled for age. Males exhibited greater asymmetry in wear, with greater wear on the left side in canines, first premolars, and first molars. We suggest that these sex differences in wear patterns reflect the differences seen in the diet, as well as in the use of teeth as tools.

  20. Adhesive, abrasive and oxidative wear in ion-implanted metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1985-01-01

    Ion implantation is increasingly being used to provide wear resistance in metals and cemented tungsten carbides. Field trials and laboratory tests indicate that the best performance is achieved in mild abrasive wear. This can be understood in terms of the classification of wear modes (adhesive, abrasive, oxidative etc.) introduced by Burwell. Surface hardening and work hardenability are the major properties to be enhanced by ion implantation. The implantation of nitrogen or dual implants of metallic and interstitial species are effective. Recently developed techniques of ion-beam-enhanced deposition of coatings can further improve wear resistance by lessening adhesion and oxidation. In order to support such hard coatings, ion implantation of nitrogen can be used as a preliminary treatment. There is thus emerging a versatile group of related hard vacuum treatments involving intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (Auth.)

  1. Thermodynamical Description of Running Discontinuities: Application to Friction and Wear

    Directory of Open Access Journals (Sweden)

    Claude Stolz

    2010-06-01

    Full Text Available The friction and wear phenomena appear due to contact and relative motion between two solids. The evolution of contact conditions depends on loading conditions and mechanical behaviours. The wear phenomena are essentially characterized by a matter loss. Wear and friction are in interaction due to the fact that particles are detached from the solids. A complex medium appears as an interface having a strong effect on the friction condition. The purpose of this paper is to describe such phenomena taking account of different scales of modelization in order to derive some macroscopic laws. A thermodynamical approach is proposed and models of wear are analysed in this framework where the separation between the dissipation due to friction and that due to wear is made. Applications on different cases are presented.

  2. Fractal characteristic in the wearing of cutting tool

    Science.gov (United States)

    Mei, Anhua; Wang, Jinghui

    1995-11-01

    This paper studies the cutting tool wear with fractal geometry. The wearing image of the flank has been collected by machine vision which consists of CCD camera and personal computer. After being processed by means of preserving smoothing, binary making and edge extracting, the clear boundary enclosing the worn area has been obtained. The fractal dimension of the worn surface is calculated by the methods called `Slit Island' and `Profile'. The experiments and calciating give the conclusion that the worn surface is enclosed by a irregular boundary curve with some fractal dimension and characteristics of self-similarity. Furthermore, the relation between the cutting velocity and the fractal dimension of the worn region has been submitted. This paper presents a series of methods for processing and analyzing the fractal information in the blank wear, which can be applied to research the projective relation between the fractal structure and the wear state, and establish the fractal model of the cutting tool wear.

  3. Endometriosis and possible inflammation markers

    OpenAIRE

    Meng-Hsing Wu; Kuei-Yang Hsiao; Shaw-Jenq Tsai

    2015-01-01

    Inflammation plays an important role in the pathogenesis of endometriosis. Infiltration of peritoneal macrophages and local proinflammatory mediators in the peritoneal microenvironment affect ovarian function and pelvic anatomy leading to the symptoms and signs of endometriosis. The identification of a noninvasive marker for endometriosis will facilitate early diagnosis and treatment of this disease. This review provides an overview of local microenvironmental inflammation and systemic inflam...

  4. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    based bulk metallic glasses; in situ composites; ductile phase; wear behaviours. 1. Introduction ... crystalline alloys [2], which led to an abnormal phenomenon that the wear ... of BMGs does not follow the empirical Archard's wear equa- tion which ...

  5. Wear behavior of pressable lithium disilicate glass ceramic.

    Science.gov (United States)

    Peng, Zhongxiao; Izzat Abdul Rahman, Muhammad; Zhang, Yu; Yin, Ling

    2016-07-01

    This article reports effects of surface preparation and contact loads on abrasive wear properties of highly aesthetic and high-strength pressable lithium disilicate glass-ceramics (LDGC). Abrasive wear testing was performed using a pin-on-disk device in which LDGC disks prepared with different surface finishes were against alumina pins at different contact loads. Coefficients of friction and wear volumes were measured as functions of initial surface finishes and contact loads. Wear-induced surface morphology changes in both LDGC disks and alumina pins were characterized using three-dimensional laser scanning microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results show that initial surface finishes of LDGC specimens and contact loads significantly affected the friction coefficients, wear volumes and wear-induced surface roughness changes of the material. Both wear volumes and friction coefficients of LDGC increased as the load increased while surface roughness effects were complicated. For rough LDGC surfaces, three-body wear was dominant while for fine LDGC surfaces, two-body abrasive wear played a key role. Delamination, plastic deformation, and brittle fracture were observed on worn LDGC surfaces. The adhesion of LDGC matrix materials to alumina pins was also discovered. This research has advanced our understanding of the abrasive wear behavior of LDGC and will provide guidelines for better utilization and preparation of the material for long-term success in dental restorations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 968-978, 2016. © 2015 Wiley Periodicals, Inc.

  6. A model for predicting wear rates in tooth enamel.

    Science.gov (United States)

    Borrero-Lopez, Oscar; Pajares, Antonia; Constantino, Paul J; Lawn, Brian R

    2014-09-01

    It is hypothesized that wear of enamel is sensitive to the presence of sharp particulates in oral fluids and masticated foods. To this end, a generic model for predicting wear rates in brittle materials is developed, with specific application to tooth enamel. Wear is assumed to result from an accumulation of elastic-plastic micro-asperity events. Integration over all such events leads to a wear rate relation analogous to Archard׳s law, but with allowance for variation in asperity angle and compliance. The coefficient K in this relation quantifies the wear severity, with an arbitrary distinction between 'mild' wear (low K) and 'severe' wear (high K). Data from the literature and in-house wear-test experiments on enamel specimens in lubricant media (water, oil) with and without sharp third-body particulates (silica, diamond) are used to validate the model. Measured wear rates can vary over several orders of magnitude, depending on contact asperity conditions, accounting for the occurrence of severe enamel removal in some human patients (bruxing). Expressions for the depth removal rate and number of cycles to wear down occlusal enamel in the low-crowned tooth forms of some mammals are derived, with tooth size and enamel thickness as key variables. The role of 'hard' versus 'soft' food diets in determining evolutionary paths in different hominin species is briefly considered. A feature of the model is that it does not require recourse to specific material removal mechanisms, although processes involving microplastic extrusion and microcrack coalescence are indicated. Published by Elsevier Ltd.

  7. Occlusal wear of provisional implant-supported restorations.

    Science.gov (United States)

    Santing, Hendrik J; Kleverlaan, Cornelis J; Werner, Arie; Feilzer, Albert J; Raghoebar, Gerry M; Meijer, Henny J A

    2015-02-01

    Implant-supported provisional restorations should be resistant to occlusal wear. The purpose of this laboratory study was to evaluate three-body wear of three indirect laboratory composite resins, five chair side bis-acryl resin-based materials, and two chair side methacrylate-based materials used to fabricate provisional implant-supported restorations. The materials were handled and cured according to the manufacturers' instructions. The three-body wear was measured 1 day, 3 days, 7 days, 4 weeks, and 8 weeks after curing using the ACTA wear device. Wear rate decreased significantly after 8 weeks compared with the first day for all tested materials, except for Estenia C&B. The three-body wear of two indirect laboratory composite resins, that is, Estenia C&B and Solidex, was significantly less compared with all other tested materials used for fabricating provisional implant-supported restorations. Of the chair side materials, the wear rate of Protemp Crown Paste was significantly less compared with the others materials used to fabricate chair side provisional implant-supported restorations. The methacrylate-based materials, Temdent Classic and Trim, showed extreme high wear rates. Based on the results of this laboratory study on long-term wear, the use of indirect composite resin is preferred over chair side methacrylate-based materials when the provisional implant-supported restoration has to be in service for a long period of time. Of the investigated materials, only Estenia C&B and Solidex showed wear rate comparable with posterior resin composites. © 2013 Wiley Periodicals, Inc.

  8. “Can I wear this?” : blending clothing and digital expression by wearing dynamic fabric

    NARCIS (Netherlands)

    Mackey, A.M.; Wakkary, R.L.; Wensveen, S.A.G.; Tomico Plasencia, O

    2017-01-01

    We explore the future scenario of wearing garments with digital display capabilities, or dynamic fabric, in everyday life. Our study, called Greenscreen Dress, investigates the experience of wearing dynamic fabric and how this type of garment quality might alter our daily interactions with clothing

  9. Characterization of wear debris from metal-on-metal hip implants during normal wear versus edge-loading conditions.

    Science.gov (United States)

    Kovochich, Michael; Fung, Ernest S; Donovan, Ellen; Unice, Kenneth M; Paustenbach, Dennis J; Finley, Brent L

    2018-04-01

    Advantages of second-generation metal-on-metal (MoM) hip implants include low volumetric wear rates and the release of nanosized wear particles that are chemically inert and readily cleared from local tissue. In some patients, edge loading conditions occur, which result in higher volumetric wear. The objective of this study was to characterize the size, morphology, and chemistry of wear particles released from MoM hip implants during normal (40° angle) and edge-loading (65° angle with microseparation) conditions. The mean primary particle size by volume under normal wear was 35 nm (range: 9-152 nm) compared with 95 nm (range: 6-573 nm) under edge-loading conditions. Hydrodynamic diameter analysis by volume showed that particles from normal wear were in the nano- (edge-loading conditions generated particles that ranged from Edge-loading conditions generated more elongated particles (4.5%) (aspect ratio ≥ 2.5) and more CoCr alloy particles (9.3%) compared with normal wear conditions (1.3% CoCr particles). By total mass, edge-loading particles contained approximately 640-fold more cobalt than normal wear particles. Our findings suggest that high wear conditions are a potential risk factor for adverse local tissue effects in MoM patients who experience edge loading. This study is the first to characterize both the physical and chemical characteristics of MoM wear particles collected under normal and edge-loading conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 986-996, 2018. © 2017 Wiley Periodicals, Inc.

  10. Aspects of fretting wear of sprayed cermet coatings

    International Nuclear Information System (INIS)

    Chivers, T.C.

    1985-01-01

    Two experimental fretting programmes which investigated aspects of fretting wear of sprayed cermet coatings are reviewed. These programmes were conducted in support of components used in the advanced gas-cooled reactor. It is speculated that the results from these programmes are compatible with a simple two-stage wear model. This model assumes that an initial wear process occurs which is dominated by an interlocking and removal of asperities. Such a phase will be dependent on the superficial contact areas and possibly the interfacial load, but the latter aspect is not considered. This initial wear is of very short duration and is followed by a mild, oxidative, wear mode. Coatings data are also compared with those for structural steels. In short-term low temperature tests it appears that structural steels have comparable performance with the cermet coatings but it is argued that this is an artefact of the wear process. However, at high temperatures (600 0 C) wear of stainless steel could not be determined, the specimens showing a net weight gain. It is concluded that for in-reactor fretting applications cermet coatings will have advantages over structural steels at low temperatures. Even in high temperature regions some operation at low temperatures is experienced and consequently cermet coatings may be useful here also. (orig.)

  11. Impact fretting wear in CO2-based environments

    International Nuclear Information System (INIS)

    Levy, G.; Morri, J.

    1985-01-01

    An impact wear model, based on the load-sliding distance proportionality of wear and the mechanical response of the impacting bodies, was derived and tested against experiment. The experimental work was carried out on a twin vibrator rig capable of repetitive impact of a moving specimen against a stationary target material. The impact wear characteristics of three materials (mild steel, 9Cr-1Mo steel and austenitic 316 steel) against 310 stainless steel were examined over a range of temperatures (18-600 0 C). Additionally the effects of variations in the mechanical parameters (incident energy, ξ i , number N of impacts and angle of incidence φ) as a function of temperature were evaluated for mild steel only. The model was verified for impacting within a stable wear regime at 100 0 C for 9Cr-1Mo steel. The emergence of a severe-to-mild wear transition at elevated temperatures (200-400 0 C), however, introduced an energy and a 'numbers of cycles' effect that caused apparent deviations from theory. It was concluded that for stable single-mechanism wear regimes (metallic, oxidative etc.) oblique elastic impacts with a gross slip component were accurately described by the proposed impact wear model. (orig.)

  12. Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining

    Science.gov (United States)

    Rizzuti, S.; Umbrello, D.

    2011-01-01

    Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.

  13. Effect of tooth profile modification on wear in internal gears

    Science.gov (United States)

    Tunalioglu, M. S.; Tuc, B.

    2018-05-01

    Internal gears are often used in the automotive industry when two gears are required to rotate in the same direction. Tooth shapes, slippage speeds at the beginning and end of meshing are different according to the external gears. Manufacturing of internal gears is more difficult than external gears. Thus, it is necessary to determine the working conditions and wear behavior of internal gears carefully. The profile modification method in terms of strength and surface tension of the gear mechanism are performed in order to increase the load-carrying capability. In this study, profile modification method was performed in the internal gears to reduce the wear on the teeth. For this purpose, the wear of the internal gears was theoretically investigated by adapting the Archard wear equation to the internal gears. Closed circuit power circulation system was designed and manufactured to experimentally investigate the wear in internal gears. With this system, wear tests of gears made of St 50 material without profile modification and different profile modifications were made and the results were compared. Experimental study was performed in the same loading and cycle time conditions to validate the theoretical results and it was seen that the results are compatible. According to the experimental results, it is seen that in the internal gears, when profile modification done the wear is decreased in the teeth tip region.

  14. Extended wearing trial of Trifield lens device for 'tunnel vision'.

    Science.gov (United States)

    Woods, Russell L; Giorgi, Robert G; Berson, Eliot L; Peli, Eli

    2010-05-01

    Severe visual field constriction (tunnel vision) impairs the ability to navigate and walk safely. We evaluated Trifield glasses as a mobility rehabilitation device for tunnel vision in an extended wearing trial. Twelve patients with tunnel vision (5-22 degrees wide) due to retinitis pigmentosa or choroideremia participated in the 5-visit wearing trial. To expand the horizontal visual field, one spectacle lens was fitted with two apex-to-apex prisms that vertically bisected the pupil on primary gaze. This provides visual field expansion at the expense of visual confusion (two objects with the same visual direction). Patients were asked to wear these spectacles as much as possible for the duration of the wearing trial (median 8, range 6-60 weeks). Clinical success (continued wear, indicating perceived overall benefit), visual field expansion, perceived direction and perceived visual ability were measured. Of 12 patients, nine chose to continue wearing the Trifield glasses at the end of the wearing trial. Of those nine patients, at long-term follow-up (35-78 weeks), three reported still wearing the Trifield glasses. Visual field expansion (median 18, range 9-38 degrees) was demonstrated for all patients. No patient demonstrated adaptation to the change in visual direction produced by the Trifield glasses (prisms). For reported difficulty with obstacles, some differences between successful and non-successful wearers were found. Trifield glasses provided reported benefits in obstacle avoidance to 7 of the 12 patients completing the wearing trial. Crowded environments were particularly difficult for most wearers. Possible reasons for long-term discontinuation and lack of adaptation to perceived direction are discussed.

  15. Endogenous Receptor Agonists: Resolving Inflammation

    Directory of Open Access Journals (Sweden)

    Gerhard Bannenberg

    2007-01-01

    Full Text Available Controlled resolution or the physiologic resolution of a well-orchestrated inflammatory response at the tissue level is essential to return to homeostasis. A comprehensive understanding of the cellular and molecular events that control the termination of acute inflammation is needed in molecular terms given the widely held view that aberrant inflammation underlies many common diseases. This review focuses on recent advances in the understanding of the role of arachidonic acid and ω-3 polyunsaturated fatty acids (PUFA–derived lipid mediators in regulating the resolution of inflammation. Using a functional lipidomic approach employing LC-MS-MS–based informatics, recent studies, reviewed herein, uncovered new families of local-acting chemical mediators actively biosynthesized during the resolution phase from the essential fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. These new families of local chemical mediators are generated endogenously in exudates collected during the resolution phase, and were coined resolvins and protectins because specific members of these novel chemical families control both the duration and magnitude of inflammation in animal models of complex diseases. Recent advances on the biosynthesis, receptors, and actions of these novel anti-inflammatory and proresolving lipid mediators are reviewed with the aim to bring to attention the important role of specific lipid mediators as endogenous agonists in inflammation resolution.

  16. Changing in tool steels wear resistance under electron irradiation

    International Nuclear Information System (INIS)

    Braginskaya, A.E.; Manin, V.N.; Makedonskij, A.V.; Mel'nikova, N.A.; Pakchanin, L.M.; Petrenko, P.V.

    1983-01-01

    The tool steels and alloys wear resistance under dry friction after electron irradiation has been studied. Electron irradiation of a wide variety of steels is shown to increase wear resistance. In this case phase composition and lattice parameters changes are observed both in matrix and carbides. The conclusion is drawn that an appreciable increase of steel wear resistance under electron irradiation can be explained both by carbide phase volume gain and changes in it's composition and the formation of carbide phase submicroscopic heterogeneities and, possibly, complexes of defects

  17. Disc-Donut-Tube wear test report, Phase I

    International Nuclear Information System (INIS)

    Kowal, K.; Knaus, S.E.

    1976-06-01

    The report describes a test program which simulated the wear-inducing conditions in the AI Prototype CRBR Steam Generator. This was accomplished by simulating the wear inducing loading and motion of a steam tube against ''disc-donut'' tube spacer plates. It was found that 2- 1 / 4 Cr-1 Mo tubes, wearing against 2- 1 / 4 Cr-l Mo tube spacer plates, seized and galled as deep as .017 inches. Inconel 718 tube spacer plates uniformly wore the tubes as deep as .012 in. Aluminum bronze inserts wore as deep as .003 inches into the tube

  18. Application of Influence Function Method to the Fretting Wear Problems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Yeol; Tian, Li Si; Bae, Joon Woo; Chai, Young Suck [Yeungnam University, Gyongsan (Korea, Republic of)

    2006-07-01

    Numerical analysis by influence function method (IFM) is demonstrated in this study in order to investigate the fretting wear problems on the secondary side of the steam generator, caused by flow induced vibration. Two-dimensional numerical contact model in terms of Cauchy integral equation is developed. The distributions of normal pressures, shear stresses and displacement fields are derived between two contact bodies which have similar elastic properties. The work rate model is adopted to find the wear amounts between two materials. The results are compared with the solutions by finite element analyses, which show the utilization of the present method to the fretting wear problems.

  19. Application of Influence Function Method to the Fretting Wear Problems

    International Nuclear Information System (INIS)

    Lee, Choon Yeol; Tian, Li Si; Bae, Joon Woo; Chai, Young Suck

    2006-01-01

    Numerical analysis by influence function method (IFM) is demonstrated in this study in order to investigate the fretting wear problems on the secondary side of the steam generator, caused by flow induced vibration. Two-dimensional numerical contact model in terms of Cauchy integral equation is developed. The distributions of normal pressures, shear stresses and displacement fields are derived between two contact bodies which have similar elastic properties. The work rate model is adopted to find the wear amounts between two materials. The results are compared with the solutions by finite element analyses, which show the utilization of the present method to the fretting wear problems

  20. Lubricity Additives and Wear with DME in Diesel Injection Pumps

    DEFF Research Database (Denmark)

    Nielsen, Kasper; Sorenson, Spencer C.

    1999-01-01

    In recent years it has been demonstrated that Dimethyl Ether (DME) possess many characteristics that could make it a successful alternative to diesel in the next century. High wear of the fuel injection system has been reported. This is caused by lack of natural protective constituents of Dimethyl...... wear of standard diesel jerk pump plungers elements were made with weight measurements, diameter measurements, 2-D and 3-D surface roughness measurements, and photography by a Michelson interferometer. Several lubricity additives were tested, but none reduced wear levels to those for diesel fuel...

  1. Study of Tool Wear Mechanisms and Mathematical Modeling of Flank Wear During Machining of Ti Alloy (Ti6Al4V)

    Science.gov (United States)

    Chetan; Narasimhulu, A.; Ghosh, S.; Rao, P. V.

    2015-07-01

    Machinability of titanium is poor due to its low thermal conductivity and high chemical affinity. Lower thermal conductivity of titanium alloy is undesirable on the part of cutting tool causing extensive tool wear. The main task of this work is to predict the various wear mechanisms involved during machining of Ti alloy (Ti6Al4V) and to formulate an analytical mathematical tool wear model for the same. It has been found from various experiments that adhesive and diffusion wear are the dominating wear during machining of Ti alloy with PVD coated tungsten carbide tool. It is also clear from the experiments that the tool wear increases with the increase in cutting parameters like speed, feed and depth of cut. The wear model was validated by carrying out dry machining of Ti alloy at suitable cutting conditions. It has been found that the wear model is able to predict the flank wear suitably under gentle cutting conditions.

  2. Automated visual inspection of brake shoe wear

    Science.gov (United States)

    Lu, Shengfang; Liu, Zhen; Nan, Guo; Zhang, Guangjun

    2015-10-01

    With the rapid development of high-speed railway, the automated fault inspection is necessary to ensure train's operation safety. Visual technology is paid more attention in trouble detection and maintenance. For a linear CCD camera, Image alignment is the first step in fault detection. To increase the speed of image processing, an improved scale invariant feature transform (SIFT) method is presented. The image is divided into multiple levels of different resolution. Then, we do not stop to extract the feature from the lowest resolution to the highest level until we get sufficient SIFT key points. At that level, the image is registered and aligned quickly. In the stage of inspection, we devote our efforts to finding the trouble of brake shoe, which is one of the key components in brake system on electrical multiple units train (EMU). Its pre-warning on wear limitation is very important in fault detection. In this paper, we propose an automatic inspection approach to detect the fault of brake shoe. Firstly, we use multi-resolution pyramid template matching technology to fast locate the brake shoe. Then, we employ Hough transform to detect the circles of bolts in brake region. Due to the rigid characteristic of structure, we can identify whether the brake shoe has a fault. The experiments demonstrate that the way we propose has a good performance, and can meet the need of practical applications.

  3. Granulomatous inflammation in Acanthamoeba sclerokeratitis

    Directory of Open Access Journals (Sweden)

    Samrat Chatterjee

    2013-01-01

    Full Text Available This report describes the histopathological findings in a patient with Acanthamoeba sclerokeratitis (ASK. A 58-year-old patient with ASK underwent enucleation and sections of the cornea and sclera were subjected to histopathology and immunohistochemistry with monoclonal mouse antihuman antibodies against T cell CD3 and B cell CD20 antigens. Hematoxylin and Eosin stained sections of the cornea revealed epithelial ulceration, Bowman′s membrane destruction, stromal vascularization, infiltration with lymphocytes, plasma cells, and granulomatous inflammation with multinucleated giant cells (MNGC. The areas of scleritis showed complete disruption of sclera collagen, necrosis and infiltration with neutrophils, macrophages, lymphocytes, and granulomatous inflammation with MNGC. No cyst or trophozoites of Acanthamoeba were seen in the cornea or sclera. Immunophenotyping revealed that the population of lymphocytes was predominantly of T cells. Granulomatous inflammation in ASK is probably responsible for the continuance and progression of the scleritis and management protocols should include immunosuppressive agents alongside amoebicidal drugs.

  4. Applicability of out-of-pile fretting wear tests to in-reactor fretting wear-induced failure time prediction

    Science.gov (United States)

    Kim, Kyu-Tae

    2013-02-01

    In order to investigate whether or not the grid-to-rod fretting wear-induced fuel failure will occur for newly developed spacer grid spring designs for the fuel lifetime, out-of-pile fretting wear tests with one or two fuel assemblies are to be performed. In this study, the out-of-pile fretting wear tests were performed in order to compare the potential for wear-induced fuel failure in two newly-developed, Korean PWR spacer grid designs. Lasting 20 days, the tests simulated maximum grid-to-rod gap conditions and the worst flow induced vibration effects that might take place over the fuel life time. The fuel rod perforation times calculated from the out-of-pile tests are greater than 1933 days for 2 μm oxidized fuel rods with a 100 μm grid-to-rod gap, whereas those estimated from in-reactor fretting wear failure database may be about in the range of between 60 and 100 days. This large discrepancy in fuel rod perforation may occur due to irradiation-induced cladding oxide microstructure changes on the one hand and a temperature gradient-induced hydrogen content profile across the cladding metal region on the other hand, which may accelerate brittleness in the grid-contacting cladding oxide and metal regions during the reactor operation. A three-phase grid-to-rod fretting wear model is proposed to simulate in-reactor fretting wear progress into the cladding, considering the microstructure changes of the cladding oxide and the hydrogen content profile across the cladding metal region combined with the temperature gradient. The out-of-pile tests cannot be directly applicable to the prediction of in-reactor fretting wear-induced cladding perforations but they can be used only for evaluating a relative wear resistance of one grid design against the other grid design.

  5. Standard test method for ranking resistance of plastics to sliding wear using block-on-ring wear test—cumulative wear method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of plastics to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank plastics according to their sliding wear characteristics against metals or other solids. 1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. In addition, the test can be run with different gaseous atmospheres and elevated temperatures, as desired, to simulate service conditions. 1.3 Wear test results are reported as the volume loss in cubic millimetres for the block and ring. Materials of higher wear resistance will have lower volume loss. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with it...

  6. Biomimetic nanoparticles for inflammation targeting

    Directory of Open Access Journals (Sweden)

    Kai Jin

    2018-01-01

    Full Text Available There have been many recent exciting developments in biomimetic nanoparticles for biomedical applications. Inflammation, a protective response involving immune cells, blood vessels, and molecular mediators directed against harmful stimuli, is closely associated with many human diseases. As a result, biomimetic nanoparticles mimicking immune cells can help achieve molecular imaging and precise drug delivery to these inflammatory sites. This review is focused on inflammation-targeting biomimetic nanoparticles and will provide an in-depth look at the design of these nanoparticles to maximize their benefits for disease diagnosis and treatment.

  7. IMMUNOLOGICAL MECHANISMS OF LOCAL INFLAMMATION

    OpenAIRE

    V. A. Chereshnev; M. V. Chereshneva

    2011-01-01

    Abstract.  The  lecture  presents  current  data,  as  well  as  authors’  view  to  the  issue  of  immune  system involvement into inflammation. General physiological principles of immune system functioning are considered in details. Immunological mechanisms of local inflammation and participation of immune system components are analyzed with regard of protective/adaptive reactions in inflammatory foci. Original formulations of basic concepts are presented from the viewpoint of pathophysiol...

  8. Tribological wear behavior of diamond reinforced composite coating

    International Nuclear Information System (INIS)

    Venkateswarlu, K.; Ray, Ajoy Kumar; Gunjan, Manoj Kumar; Mondal, D.P.; Pathak, L.C.

    2006-01-01

    In the present study, diamond reinforced composite (DRC) coating has been applied on mild steel substrate using thermal spray coating technique. The composite powder consists of diamond, tungsten carbide, and bronze, which was mixed in a ball mill prior deposition by thermal spray. The microstructure and the distribution of diamond and tungsten carbide particle in the bronze matrix were studied. The DRC-coated mild steel substrates were assessed in terms of their high stress abrasive wear and compared with that of uncoated mild steel substrates. It was observed that when sliding against steel, the DRC-coated sample initially gains weight, but then loses the transferred counter surface material. In case of abrasive wear, the wear rate was greatly reduced due to the coating; wherein the wear rate decreased with increase in diamond content

  9. Wearing courses for unpaved roads in southern Africa: a review

    CSIR Research Space (South Africa)

    Netterberg, F

    1988-07-01

    Full Text Available The requirements of and some specifications for wearing courses for unpaved roads are reviewed. It is concluded that further development of specifications is required, and that there is probably great scope for improvement of our unpaved roads...

  10. Hardfacing materials used in valves for seating and wear surfaces

    International Nuclear Information System (INIS)

    Knecht, W.G.

    1996-01-01

    Most valves and essentially all critical service valves utilize hardfacing materials for seating and wear surfaces to minimize wear and galling. The type of hardfacing materials used, the methods of deposition, and the quality of the final product all contribute to the wear characteristics, required operating force, and life of the final product. Over the last forty years the most prevalent hardfacing materials furnished to the commercial nuclear industry consisted of cobalt base and nickel base materials. In the last several years there has been extensive development and evaluation work performed on iron base hardfacing materials. This presentation will address the wear characteristics of the various materials and the importance of consistent quality of deposited materials necessary to achieve optimum product performance and longevity

  11. Friction and wear methodologies for design and control

    CERN Document Server

    Straffelini, Giovanni

    2015-01-01

    This book introduces the basic concepts of contact mechanics, friction, lubrication, and wear mechanisms, providing simplified analytical relationships that are useful for quantitative assessments. Subsequently, an overview on the main wear processes is provided, and guidelines on the most suitable design solutions for each specific application are outlined. The final part of the text is devoted to a description of the main materials and surface treatments specifically developed for tribological applications and to the presentation of tribological systems of particular engineering relevance. The text is up to date with the latest developments in the field of tribology and provides a theoretical framework to explain friction and wear problems, together with practical tools for their resolution. The text is intended for students on Engineering courses (both bachelor and master degrees) who must develop a sound understanding of friction, wear, lubrication, and surface engineering, and for technicians or professi...

  12. Hardfacing materials used in valves for seating and wear surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, W.G.

    1996-12-01

    Most valves and essentially all critical service valves utilize hardfacing materials for seating and wear surfaces to minimize wear and galling. The type of hardfacing materials used, the methods of deposition, and the quality of the final product all contribute to the wear characteristics, required operating force, and life of the final product. Over the last forty years the most prevalent hardfacing materials furnished to the commercial nuclear industry consisted of cobalt base and nickel base materials. In the last several years there has been extensive development and evaluation work performed on iron base hardfacing materials. This presentation will address the wear characteristics of the various materials and the importance of consistent quality of deposited materials necessary to achieve optimum product performance and longevity.

  13. Performance evaluation of thin wearing courses through scaled accelerated trafficking.

    Science.gov (United States)

    2014-01-01

    The primary objective of this study was to evaluate the permanent deformation (rutting) and fatigue performance of : several thin asphalt concrete wearing courses using a scaled-down accelerated pavement testing device. The accelerated testing : was ...

  14. Friction and wear properties of diamonds and diamond coatings

    International Nuclear Information System (INIS)

    Hayward, I.P.

    1991-01-01

    The recent development of chemical vapor deposition techniques for diamond growth enables bearings to be designed which exploit diamond's low friction and extreme resistance to wear. However, currently produced diamond coatings differ from natural diamond surfaces in that they are polycrystalline and faceted, and often contain appreciable amounts of non-diamond material (i.e. graphitic or amorphous carbon). Roughness, in particular, influences the friction and wear properties; rough coatings severely abrade softer materials, and can even wear natural diamond sliders. Nevertheless, the best available coatings exhibit friction coefficients as low as those of natural diamond and are highly resistant to wear. This paper reviews the tribological properties of natural diamond, and compares them with those of chemical vapor deposited diamond coatings. Emphasis is placed on the roles played by roughness and material transfer in controlling frictional behavior. (orig.)

  15. Wear monitoring of single point cutting tool using acoustic emission ...

    Indian Academy of Sciences (India)

    feeds are used, the coating remains intact throughout the duration of testing. Wear ... present global industrial scenario is to produce quality products at competitive price. .... Coated carbide tool was selected based on its wider application.

  16. PWR control rods wear by vibrations induced by coolant fluid

    International Nuclear Information System (INIS)

    Reynier, R.

    1997-01-01

    Flow induced vibrations in pressurised water reactors generate the wear of control rods against their guidance systems. Alternate sliding (at 320 deg. C in water) and impact-sliding tests (at room temperature in air) were carried out on 304 L austenitic stainless steel control rods' claddings. Microstructural analysis were made on the wear scars of the tube specimen using Scanning ELectron Microscopy, microhardness measurements and X-ray diffractometry. The alternate sliding leads to an important mass loss, a strong plastic deformation due to the strain hardening of the surface layers and generates strong compressive residual stresses. These results are specific to a severe wear case. Therefore, the impact-sliding mode induces martensitic phase, a cracked oxide layer and a compressive residual stresses weaker than those created in the alternate sliding case. This type of motion leads to a milder wear of the control rods

  17. Assessment of mechanical and three-body abrasive wear peculiarity ...

    Indian Academy of Sciences (India)

    directional fabric reinforcement offers a unique solution for ... showed good performance to the three-body abrasive wear. .... plied by the Pioneer Chemical Company, Delhi, India. ..... Theoretical and measured densities of composites, along.

  18. Optimization of the wearing time for passive individual dosimeters

    International Nuclear Information System (INIS)

    Aleinikov, V.E.; )

    1998-01-01

    A cost-benefit equation was derived for the optimum wearing time of passive individual dosemeters. This equation was applied to the long-normal distribution of occupational individual doses. A plot of the optimum wearing time in dependence on the lower detection limit is reproduced. It is shown that the optimum wearing time depends on the dose distribution as well as on the quotient of the cost assigned to the unit collective dose, α, the cost of the dosemeter, C, and the lower detection limit, D. If the C/α ratio is infinitesimal, the optimum wearing time is directly proportional to the square root of the DL product (L is the dose limit) and inversely proportional to the average annual individual dose for the log-normal distribution. (P.A.)

  19. Wear properties of metal ion implanted 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J. (Applications of Nuclear Physics, Ansto, Private Mail Bag 1, Menai, NSW 2234 (Australia)); Paoloni, F.J. (Department of Electrical and Computer Engineering, University of Wollongong, GPO Box 1144, Wollongong, NSW 2500 (Australia))

    1994-07-01

    AISI type 4140 (high tensile) steel has been implanted with tungsten and titanium using a metal vapour vacuum arc ion source. Doses in the range (1-5)x10[sup 16]ionscm[sup -2] were implanted to a depth of approximately 30nm. The relative wear resistance between non-implanted and implanted specimens has been estimated using pin-on-disc and abrasive wear tests. Implantation of titanium decreased the area of wear tracks by a factor of 5 over unimplanted steel. In some cases the steel was also hardened by a liquid carburization treatment before implantation. Abrasion tests revealed a further improvement in wear resistance on this material following ion irradiation. ((orig.))

  20. Study of wear performance of deep drawing tooling

    Science.gov (United States)

    Naranje, Vishal G.; Karthikeyan, Ram; Nair, Vipin

    2017-09-01

    One of the most common challenges for many of the mechanical engineers and also in the field of materials science is the issue of occurrences of wear of the material parts which is used in certain applications that involves such surface interactions. In this paper, wear behaviour of particular grade High Carbon High Chromium Steel and many most famously D2, H13, O1 known as the Viking steel has been studied, evaluated and analyzed under certain processing parameters such as speed, load, track diameter and time required for deep drawing process to know it’s the wear rate and coefficient of friction. Also, the significance of the processing parameters which is used for wear testing analysis is also examined.

  1. A Wear Geometry Model of Plain Woven Fabric Composites

    Directory of Open Access Journals (Sweden)

    Gu Dapeng

    2014-09-01

    Full Text Available The paper g describes a model meant for analysis of the wear geometry of plain woven fabric composites. The referred model consists of a mathematical description of plain woven fabric based on Peirce’s model coupled with a stratified method for the solution of the wear geometry. The evolutions of the wear area ratio of weft yarn, warp yarn and matrix resin on the worn surface are simulated by MatLab software in combination of warp and weft yarn diameters, warp and weft yarn-to-yarn distances, fabric structure phases (SPs. By comparing theoretical and experimental results from the PTFE/Kevlar fabric wear experiment, it can be concluded that the model can present a trend of the component area ratio variations along with the thickness of fabric, but has a inherently large error in quantitative analysis as an idealized model.

  2. Application of charged particle activation for testing machine part wear

    International Nuclear Information System (INIS)

    Kosimova, M.; Tendera, P.

    1985-01-01

    The results of application of the charge particle activation method to investigate machine part wear are presented. Study of radionuclide activity and yield has been carried out at the U-120M isochronous cyclotron by means of the method of iron foil piles from 20 to 100 μm in thick. Protons and deuterons have been used. Wear measurement is based on determination of wear particle activity in a butyric medium. An example of the results of a bench test of activated piston rings and cylinder liner of the engine for trucks is given. The method of surface activation is shown to be acceptable for studying machine part wear under the regular service conditions, especially on the stage of the primary investigations and development, when sampling structural materials and estimating different lubricating oil applicability

  3. Complex technique for studying the machine part wear

    International Nuclear Information System (INIS)

    Grishko, V.A.; Zhushma, V.F.

    1981-01-01

    A technique to determine the wear of steel details rolling with sliding with circulatory lubrication is suggested. The functional diagram of the experimental device and structural diagrams of equipment to register the wear of tested samples and forming the lubricating layer between them, are considered. Results of testing three conples of disc samples and the data characterizing the dependence of sample wear on the value of contact stress are presented. The peculiarity of the device used is synchronous registering of the lubricating layer formation in the place of contact and detail mass loss in time which is realized correspondingly over discharge voltage on the lubricating layer and the intensity of radiation from detail wear products activated by neutrons. On the basis, of the investigation the conclusion is made that MEhF-1 oil has a greater antiwear effectiveness than the universal TAD-17 1 oil used presently [ru

  4. Corrosion and wear resistant metallic layers produced by electrochemical methods

    DEFF Research Database (Denmark)

    Christoffersen, Lasse; Maahn, Ernst Emanuel

    1999-01-01

    Corrosion and wear-corrosion properties of novel nickel alloy coatings with promising production characteristics have been compared with conventional bulk materials and hard platings. Corrosion properties in neutral and acidic environments have been investigated with electrochemical methods....... Determination of polarisation resistance during 100 hours followed by stepwise anodic polarisation seems to be a promising technique to obtain steady state data on slowly corroding coatings with transient kinetics. A slurry test enables determination of simultaneous corrosion and abrasive wear. Comparison...... of AISI 316, hard chromium and hardened Ni-P shows that there is no universal correlation between surface hardness and wear-corrosion loss. The possible relation between questionable passivity of Ni-P coatings and their high wear-corrosion loss rate compared to hard chromium is discussed....

  5. Investigation on cause of the elevator turbine wear

    Science.gov (United States)

    Zhang, J.; Ouyang, W. P.; Xue, J. A.

    2018-03-01

    Elevator traction turbine is often worn for various reasons, causing serious safety hazard. It is explained the main causes of traction wheel wear in detail in combination with a large number of engineering experience. The effect of turbine wear on the actual operation of the elevator is verified by contrast experiment, which is helpful to identify risks early. It is put forward on some reasonable suggestions for elevator inspection, maintenance and management.

  6. Method for radar detection of persons wearing wires

    OpenAIRE

    Fox, William P.

    2014-01-01

    8,730,098 B1 Methods are described for radar detection of persons wearing wires using radar spectra data including the vertical polarization (VV) radar cross section and the horizontal polarization (HH) radar cross section for a person. In one embodiment, the ratio of the vertical polarization (VV) radar cross section to the horizontal polarization (HH) radar cross section for a person is compared to a detection threshold to determine whether the person is wearing wire...

  7. Research into properties of wear resistant ceramic metal plasma coatings

    Science.gov (United States)

    Ivancivsky, V. V.; Skeeba, V. Yu; Zverev, E. A.; Vakhrushev, N. V.; Parts, K. A.

    2018-03-01

    The study considers one of the promising ways to improve the quality of wear resistant plasma ceramic coatings by implementing various powder mixtures. The authors present the study results of the nickel-ceramic and cobalt-ceramic coating properties and describe the specific character of the investigated coatings composition. The paper presents the results of the coating microhardness, chemical and adhesive strength studies. The authors conducted wear resistance tests of composite coatings in comparison with the plasma coatings of initial powder components.

  8. Adhesion and wear properties of boro-tempered ductile iron

    International Nuclear Information System (INIS)

    Kayali, Yusuf; Yalcin, Yilmaz; Taktak, Suekrue

    2011-01-01

    Highlights: → In this study, the wear and adhesion properties of BDI were investigated. → Boro-tempering process under several heat treatment conditions was examined. → Optical microscope, SEM and XRD analysis were carried out to investigate the microstructure. → It was observed that boro-tempering process improves micro-hardness and wear properties of ductile irons. -- Abstract: In this study, adhesion and wear properties of boro-tempered ductile iron (BDI) were investigated. Boro-tempering was carried out on two stage processes i.e. boronizing and tempering. At the first stage, ductile iron samples were boronized by using pack process at 900 o C for 1, 3, and 5 h and then, secondly tempered at 250, 300, 350, and 400 o C for 1 h. X-ray diffraction (XRD) analysis of boro-tempered samples showed that FeB and Fe 2 B phases were found on the surface of the samples. The Daimler-Benz Rockwell-C adhesion test was used to assess the adhesion of boride layer. Test result showed that adhesion decreased with increasing boriding time and increased with increasing tempering temperature. Dry sliding wear tests of these samples were performed against Al 2 O 3 ball at a constant sliding speed and loads of 5 and 10 N. Wear tests indicated that boro-tempering heat treatment increased wear resistance of ductile iron. In addition, it was found that while wear rate of boro-tempered samples decreased with increasing boriding time, there is no significant affect of tempering temperature on wear rate.

  9. Wear and Degradation Modes in Selected Vehicle Tribosystems

    OpenAIRE

    G. Pantazopoulos; A. Tsolakis; P. Psyllaki; A. Vazdirvanidis

    2015-01-01

    The wear and degradation mechanisms of two principle vehicle tribosystems are presented to elucidate the main causes of their premature failure. The first case study concerns the malfunction of an automotive cast iron pressure plate operated in an automobile clutch system. The second is related to the unexpected failure of a stainless steel brake disk of a high performance motorcycle. Both components are designed to function under sliding friction conditions that lead to the severe wear of co...

  10. Acoustic Emission Measurements for Tool Wear Evaluation in Drilling

    Science.gov (United States)

    Gómez, Martín P.; Migliori, Julio; Ruzzante, José E.; D'Attellis, Carlos E.

    2009-03-01

    In this work, the tool condition in a drilling process of SAE 1040 steel samples was studied by means of acoustic emission. The studied drill bits were modified with artificial and real failures, such as different degrees of wear in the cutting edge and in the outer corner. Some correlation between mean power of the acoustic emission parameters and the drill bit wear condition was found.

  11. Determination of a Wear Initiation Cycle by using a Contact Resistance Measurement in Nuclear Fuel Fretting

    International Nuclear Information System (INIS)

    Lee, Young Ho; Kim, Hyung Kyu

    2008-01-01

    In nuclear fuel fretting, the improving of the contact condition with a modified spring shape is a useful method for increasing the wear resistance of the nuclear fuel rod. This is because the fretting wear resistance between the fuel rod and grid spring is mainly affected by the grid spring shape rather than the environment, the contact modes, etc. In addition, the wear resistance is affected by the wear debris behavior between contact surfaces. So, it is expected that the wear initiation of each spring shape should be determined in order to evaluate a wear resistance. However, it is almost impossible to measure the wear behavior in contact surfaces on a real time basis because the contact surfaces are always hidden. Besides, the results of the worn surface observation after the fretting wear tests are restricted to archive the information on the wear debris behavior and the formation mechanism of the wear scar. In order to evaluate the wear behavior during the fretting wear tests, it is proposed that the contact resistance measurement is a useful method for examining the wear initiation cycle and modes. Generally, fretting wear damages are rapidly progressed by a localized plastic deformation between the contact surfaces, crack initiation and fracture of the deformed surface with a strain hardening difference between a surface and a subsurface and finally a detachment of wear debris. After this, wear debris is easily oxidized by frictional heat, test environment, etc. At this time, a small amount of electric current applied between the contact surfaces will be influenced by the wear debris, which could be an obstacle to an electric current flow. So, it is possible to archive the information on the wear behavior by measuring the contact resistance. In order to determine the wear initiation cycle during the fretting wear tests, in this study, fretting wear tests have been performed by applying a constant electric current in room temperature air

  12. Hydrogen ion induced ultralow wear of PEEK under extreme load

    Science.gov (United States)

    Yan, Shuai; Wang, Anying; Fei, Jixiong; Wang, Zhenyang; Zhang, Xiaofeng; Lin, Bin

    2018-03-01

    As a high-performance engineering polymer, poly(ether ether ketone) (PEEK) is a perfect candidate material for applications under extreme working conditions. However, its high wear rate greatly shortens its service life. In this study, ultralow friction and wear between PEEK and silicon nitride (Si3N4) under extreme-load conditions (with a mean contact pressure above 100 MPa) are found in acid lubricating solutions. Both friction and wear decrease sharply with decreasing pH. At pH = 1, the friction coefficient decreases by an order of magnitude and the wear rate of the PEEK decreases by two orders of magnitude compared to the results with water lubrication. These reductions in friction and wear occur for different speed, load, and surface roughness conditions. The underlying mechanism can be attributed to the formation of hydrogen-ion-induced electrical double layers on the surfaces of PEEK and Si3N4. The combined effect of the resulting repulsive force, electro-viscosity, and low shear strength of the water layer dramatically reduces both friction and wear.

  13. 3D cutting tool-wear monitoring in the process

    Energy Technology Data Exchange (ETDEWEB)

    Cerce, Luka; Pusavec, Franci; Kopac Janez [University of Ljubljana, Askerceva (Slovenia)

    2015-09-15

    The tool-wear of cutting tools has a very strong impact on the product quality as well as efficiency of the machining processes. Therefore, it in-the process characterization is crucial. This paper presents an innovative and reliable direct measuring procedure for measuring spatial cutting tool-wear with usage of laser profile sensor. The technique provides possibility for determination of 3D wear profiles, as advantage to currently used 2D techniques. The influence of the orientation of measurement head on the accuracy and the amount of captured reliable data was examined and the optimal setup of the measuring system was defined. Further, a special clamping system was designed to mount the measurement device on the machine tool turret. To test the measurement system, tool-life experiment was performed. Additionally, a new tool-life criterion was developed, including spatial characteristics of the tool-wear. The results showed that novel tool-wear and tool-life diagnostic represent objective and robust estimator of the machining process. Additionally, such automation of tool-wear diagnostics on machine tool provides higher productivity and quality of the machining process.

  14. Fault Wear by Damage Evolution During Steady-State Slip

    Science.gov (United States)

    Lyakhovsky, Vladimir; Sagy, Amir; Boneh, Yuval; Reches, Ze'ev

    2014-11-01

    Slip along faults generates wear products such as gouge layers and cataclasite zones that range in thickness from sub-millimeter to tens of meters. The properties of these zones apparently control fault strength and slip stability. Here we present a new model of wear in a three-body configuration that utilizes the damage rheology approach and considers the process as a microfracturing or damage front propagating from the gouge zone into the solid rock. The derivations for steady-state conditions lead to a scaling relation for the damage front velocity considered as the wear-rate. The model predicts that the wear-rate is a function of the shear-stress and may vanish when the shear-stress drops below the microfracturing strength of the fault host rock. The simulated results successfully fit the measured friction and wear during shear experiments along faults made of carbonate and tonalite. The model is also valid for relatively large confining pressures, small damage-induced change of the bulk modulus and significant degradation of the shear modulus, which are assumed for seismogenic zones of earthquake faults. The presented formulation indicates that wear dynamics in brittle materials in general and in natural faults in particular can be understood by the concept of a "propagating damage front" and the evolution of a third-body layer.

  15. Wear behavior of niobium carbide coated AISI 52100 steel

    International Nuclear Information System (INIS)

    Fernandes, Frederico Augusto Pires; Casteletti, Luiz Carlos; Oliveira, Carlos Kleber Nascimento de; Lombardi Neto, Amadeu; Totten, George Edward

    2010-01-01

    Bearing steels must have high hardness, good wear resistance and dimensional stability. The aim of this work was to study the effect of NbC coating, produced using the thermo-reactive deposition (TRD) process, on the wear resistance of the AISI 52100 steel. Untreated AISI 52100 samples were ground up to 600 mesh emery paper. The bath was composed of 5wt.% ferroniobium (65 wt.% Nb), 3wt.% aluminum and (Na2B4O7) to 100%. Samples were treated at 1000 deg C for 4h and quenched in oil directly from the bath. The resulting layer was characterized by X-ray diffraction, scanning electron microscopy and a micro-abrasive wear testing. The thermo-reactive deposition process in molten borax produced a hard and homogeneous layer composed by NbC, which was confirmed by X-ray diffraction. The NbC coating produced a great increase in the wear resistance of the AISI 52100 steel, decreasing the wear rate by an order of magnitude in relation to the substrate. For coated and uncoated samples the worn volume and wear rate increases with the load. (author)

  16. Wear studies of engine components using neutron activation techniques

    International Nuclear Information System (INIS)

    Banados Perez, H.E.; Carvalho, G.; Daltro, T.F.L.

    1984-01-01

    The results obtained in a series of tests for determining the wearing rate of some diesel engine components are reported. The pieces investigated were the needles of fuel injection nozzles, that were previously irradiated with a 10 13 nv in the IEA-R1 nuclear reactor, and the wearing rate was established for different types of fuels. Total wear was calculated by measuring the specific activity of 51 Cr present in the fuel and originated by metal particles worn from the needle. Wear were performed using a device that simulated the actual working conditions of the injection nozzles. The system was run during 350 hours and, along that period, 36 fuel samples of 10 ml each, were collected and analysed for cumulative wear calculation. A metal concentration as low as 10- 6 g in 10 ml of fuel sample could be measured by this method. At present time this procedure is being applied for measuring the wear-rate of other nozzle parts, using localized neutron activation techiques. (Author) [pt

  17. Genetic models for CNS inflammation

    DEFF Research Database (Denmark)

    Owens, T; Wekerle, H; Antel, J

    2001-01-01

    The use of transgenic technology to over-express or prevent expression of genes encoding molecules related to inflammation has allowed direct examination of their role in experimental disease. This article reviews transgenic and knockout models of CNS demyelinating disease, focusing primarily on ...

  18. Natural products to target inflammation

    NARCIS (Netherlands)

    Allijn, Iris Eva

    2016-01-01

    Chapter 1 Most Western lifestyle diseases such as type 2 diabetes mellitus, cardiovascular disease and cancer have a chronic inflammatory process at its base. Therefore, inflammation is an important therapeutic target. Due to their potency, steroidal drugs dominate the current treatment of

  19. Purinergic Receptors in Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    Ana Guzman-Aranguez

    2014-01-01

    Full Text Available Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A, and P1,P5-diadenosine pentaphosphate (Ap5A are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl-5′-N-methylcarboxamidoadenosine (CF101 have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.

  20. Imaging techniques for myocardial inflammation

    International Nuclear Information System (INIS)

    O'Connell, J.B.; Henkin, R.E.; Robinson, J.A.

    1986-01-01

    Dilated cardiomyopathy (DC) represents a heterogeneous group of disorders which results in morbidity and mortality in young individuals. Recent evidence suggests that a subset of these patients have histologic evidence of myocarditis which is potentially treatable with immunosuppression. The identification of myocardial inflammation may therefore lead to development of therapeutic regimens designed to treat the cause rather than the effect of the myocardial disease. Ultimately, this may result in improvement in the abysmal prognosis of DC. The currently accepted technique for identification of active myocardial inflammation is endomyocardial biopsy. This technique is not perfect, however, since pathologic standards for the diagnosis of myocarditis have not been established. Furthermore, focal inflammation may give rise to sampling error. The inflammation-avid radioisotope gallium-67 citrate has been used as an adjunct to biopsy improving the yield of myocarditis from 7 percent to 36 percent. Serial imaging correlates well to biopsy results. Future studies are designed to study the applicability of lymphocyte labelling techniques to myocardial inflammatory disease

  1. Preeclampsia, Hypoxia, Thrombosis, and Inflammation

    Directory of Open Access Journals (Sweden)

    Amir A. Shamshirsaz

    2012-01-01

    Full Text Available Reductions in uteroplacental flow initiate a cascade of molecular effects leading to hypoxia, thrombosis, inflammation, and endothelial cell dysfunction resulting in untoward pregnancy outcomes. In this review, we detail these effects and their relationship to preeclampsia (PE and intrauterine growth restriction (IUGR.

  2. Nitrogen implantation of steels: A treatment which can initiate sustained oxidative wear

    International Nuclear Information System (INIS)

    Hale, E.B.; Reinbold, R.; Missouri Univ., Rolla; Kohser, R.A.

    1987-01-01

    Falex wear tests on mild (SAE 3135) steel samples treated by either nitrogen implantation (2.5x10 17 N 2 + cm -2 at 180 keV) or low temperature (about 315 0 C) oxidation are reported. The results show that both treatments lead to about an order-of-magnitude reduction in the long-term wear rate of the steel. In addition to the wear rate measurements, the wear member asymmetry behavior, scanning electron microscopy studies, Auger spectra and sputter profiles all indicate that the wear modes induced by both treatments are the same and are oxidative wear. These results confirm the previously proposed initiator-sustainer wear model in which implanted nitrogen simply acts as an initiator of favorable oxidative wear but is not directly involved in maintaining the sustained wear resistance. Possible mechanisms for both the initiation process and the sustained wear process are reviewed and discussed. (orig.)

  3. Standard guide for measuring the wear volumes of piston ring segments run against flat coupons in reciprocating wear tests

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide covers and describes a profiling method for use accurately measuring the wear loss of compound-curved (crowned) piston ring specimens that run against flat counterfaces. It does not assume that the wear scars are ideally flat, as do some alternative measurement methods. Laboratory-scale wear tests have been used to evaluate the wear of materials, coatings, and surface treatments that are candidates for piston rings and cylinder liners in diesel engines or spark ignition engines. Various loads, temperatures, speeds, lubricants, and durations are used for such tests, but some of them use a curved piston ring segment as one sliding partner and a flat or curved specimen (simulating the cylinder liner) as its counterface. The goal of this guide is to provide more accurate wear measurements than alternative approaches involving weight loss or simply measuring the length and width of the wear marks. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its ...

  4. Wear analysis of disc cutters of full face rock tunnel boring machine

    Science.gov (United States)

    Zhang, Zhaohuang; Meng, Liang; Sun, Fei

    2014-11-01

    Wear is a major factor of disc cutters' failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians' experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters' life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters.

  5. Prenatal Inflammation Linked to Autism Risk

    Science.gov (United States)

    ... Thursday, January 24, 2013 Prenatal inflammation linked to autism risk Maternal inflammation during early pregnancy may be related to an increased risk of autism in children, according to new findings supported by ...

  6. A mechanistic understanding of the wear coefficient: From single to multiple asperities contact

    Science.gov (United States)

    Frérot, Lucas; Aghababaei, Ramin; Molinari, Jean-François

    2018-05-01

    Sliding contact between solids leads to material detaching from their surfaces in the form of debris particles, a process known as wear. According to the well-known Archard wear model, the wear volume (i.e. the volume of detached particles) is proportional to the load and the sliding distance, while being inversely proportional to the hardness. The influence of other parameters are empirically merged into a factor, referred to as wear coefficient, which does not stem from any theoretical development, thus limiting the predictive capacity of the model. Based on a recent understanding of a critical length-scale controlling wear particle formation, we present two novel derivations of the wear coefficient: one based on Archard's interpretation of the wear coefficient as the probability of wear particle detachment and one that follows naturally from the up-scaling of asperity-level physics into a generic multi-asperity wear model. As a result, the variation of wear rate and wear coefficient are discussed in terms of the properties of the interface, surface roughness parameters and applied load for various rough contact situations. Both new wear interpretations are evaluated analytically and numerically, and recover some key features of wear observed in experiments. This work shines new light on the understanding of wear, potentially opening a pathway for calculating the wear coefficient from first principles.

  7. Impact of Advertising on Tampon Wear-time Practices

    Directory of Open Access Journals (Sweden)

    Kara E. Woeller

    2015-01-01

    Full Text Available Objectives (1 To determine whether advertising nighttime tampon use for up to eight hours was understood to be consistent with label recommendations and (2 to determine whether television and print advertising with this message affected tampon wear times in adults and teens. Methods (1 A comprehension study (online advertising and follow-up questionnaire among women aged 14–49 years (300 per group who viewed either the test or a control advertising message; (2 Diary-based surveys of tampon wear times performed prior to ( n = 292 adults, 18–49 years, 74 teens, 12–17 years and after ( n = 287 adults, 104 teens the launch of national advertising. Results Significantly more test message viewers than controls stated tampons should be worn less than or equal to eight hours (93.6% vs. 88.6%, respectively, P = 0.049. A directionally higher percentage of test message viewers said they would use a pad if sleeping longer than eight hours (52% vs. 42% of controls. Among the women who used tampons longer than eight hours when sleeping, 52% reported they would wake up and change compared with 45% of controls. No significant difference between baseline and follow-up diary surveys was found among teens or adults in various measures of tampon wear time (mean wear times; usage intervals from less than two hours to more than 10 hours; percentage of tampons used for more than or equal to eight hours; frequency of wearing at least one tampon more than eight hours. Conclusions Advertising nighttime tampon wear for up to eight hours effectively communicated label recommendations but did not alter tampon wear times. The informational intervention had limited impact on established habits.

  8. Impact of Advertising on Tampon Wear-time Practices.

    Science.gov (United States)

    Woeller, Kara E; Miller, Kenneth W; Robertson-Smith, Amy L; Bohman, Lisa C

    2015-01-01

    (1) To determine whether advertising nighttime tampon use for up to eight hours was understood to be consistent with label recommendations and (2) to determine whether television and print advertising with this message affected tampon wear times in adults and teens. (1) A comprehension study (online advertising and follow-up questionnaire) among women aged 14-49 years (300 per group) who viewed either the test or a control advertising message; (2) Diary-based surveys of tampon wear times performed prior to (n = 292 adults, 18-49 years, 74 teens, 12-17 years) and after (n = 287 adults, 104 teens) the launch of national advertising. Significantly more test message viewers than controls stated tampons should be worn less than or equal to eight hours (93.6% vs. 88.6%, respectively, P = 0.049). A directionally higher percentage of test message viewers said they would use a pad if sleeping longer than eight hours (52% vs. 42% of controls). Among the women who used tampons longer than eight hours when sleeping, 52% reported they would wake up and change compared with 45% of controls. No significant difference between baseline and follow-up diary surveys was found among teens or adults in various measures of tampon wear time (mean wear times; usage intervals from less than two hours to more than 10 hours; percentage of tampons used for more than or equal to eight hours; frequency of wearing at least one tampon more than eight hours). Advertising nighttime tampon wear for up to eight hours effectively communicated label recommendations but did not alter tampon wear times. The informational intervention had limited impact on established habits.

  9. Ignition of a Combustible Atmosphere by Incandescent Carbon Wear Particles

    Science.gov (United States)

    Buckley, Donald H.; Swikert, Max A.; Johnson, Robert L.

    1960-01-01

    A study was made to determine whether carbon wear particles from carbon elements in sliding contact with a metal surface were sufficiently hot to cause ignition of a combustible atmosphere. In some machinery, electric potential differences and currents may appear at the carbon-metal interface. For this reason the effect of these voltages and currents on the ability of carbon wear particles to cause ignition was evaluated. The test specimens used in the investigation were carbon vanes taken from a fuel pump and flat 21-inch-diameter 2 metal disks (440-C stainless steel) representing the pump housing. During each experiment a vane was loaded against a disk with a 0.5-pound force, and the disk was rotated to give a surface speed of 3140 feet per minute. The chamber of the apparatus that housed the vane and the disk was filled with a combustible mixture of air and propane. Various voltages and amperages were applied across the vane-disk interface. Experiments were conducted at temperatures of 75, 350, 400, and 450 F. Fires were produced by incandescent carbon wear particles obtained at conditions of electric potential as low as 106 volts and 0.3 ampere at 400 F. Ignitions were obtained only with carbon wear particles produced with an electric potential across the carbon-vane-disk interface. No ignitions were obtained with carbon wear particles produced in the absence of this potential; also, the potential difference produced no ignitions in the absence of carbon wear particles. A film supplement showing ignition by incandescent wear particles is available.

  10. Fissure sealant materials: Wear resistance of flowable composite resins.

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  11. Relationship between Inflammation and Cardiovascular Diseases

    OpenAIRE

    Riddhi Patel; Henish Patel; Rachana Sarawade

    2013-01-01

    Inflammation is a part of complex biological response of vascular tissue to harmful stimuli such as pathogens, damaged cells or irritants. Recent advance in basic science have established a fundamental role for inflammation immediating all stages of cardiovascular diseases from initiation, progression and complications. Inflammation is thread linking to cardiovascular diseases. Clinical studies have shown that this emerging biology of inflammation play important role in pathogenesis of acute ...

  12. Alveolar inflammation in cystic fibrosis

    DEFF Research Database (Denmark)

    Ulrich, Martina; Worlitzsch, Dieter; Viglio, Simona

    2010-01-01

    and ceramide accumulation. We sought to investigate CF lung inflammation in the alveoli. METHODS: Lung tissue from 14 CF patients and four healthy individuals was analyzed for numbers of effector cells, elastin and collagen concentrations, inflammatory markers and density of Pseudomonas aeruginosa....... Additionally, desmosine and isodesmosine concentrations were determined in 52 urine specimens from CF patients to estimate the burden of elastase activities in respiratory secretions. RESULTS: Elastin concentration was significantly decreased and collagen significantly increased in CF alveolar tissues...... as compared to age-matched, healthy individuals. Elastin split products were significantly increased in urine samples from patients with CF and correlated inversely with age, indicating local tissue remodelling due to elastin degradation by unopposed proteolytic enzymes. Alveolar inflammation was also...

  13. IMMUNOLOGICAL MECHANISMS OF LOCAL INFLAMMATION

    Directory of Open Access Journals (Sweden)

    V. A. Chereshnev

    2011-01-01

    Full Text Available Abstract.  The  lecture  presents  current  data,  as  well  as  authors’  view  to  the  issue  of  immune  system involvement into inflammation. General physiological principles of immune system functioning are considered in details. Immunological mechanisms of local inflammation and participation of immune system components are analyzed with regard of protective/adaptive reactions in inflammatory foci. Original formulations of basic concepts are presented from the viewpoint of pathophysiology, immunopathology and clinical immunology, as being applied to the issues discussed. (Med. Immunol., 2011, vol. 13, N 6, pp 557-568

  14. Ageing: From inflammation to cancer

    OpenAIRE

    Leonardi, G.; Accardi, G.; Monastero, R.; Nicoletti, F.; Libra, M.

    2018-01-01

    Ageing is the major risk factor for cancer development. Hallmark of the ageing process is represented by inflammaging, which is a chronic and systemic low-grade inflammatory process. Inflammation is also a hallmark of cancer and is widely recognized to influence all cancer stages from cell transformation to metastasis. Therefore, inflammaging may represent the biological phenomena able to couple ageing process with cancer development. Here we review the molecular and cellular pathway involved...

  15. Experimental fretting-wear studies of steam generator materials

    International Nuclear Information System (INIS)

    Fisher, N.J.; Chow, A.B.; Weckwerth, M.K.

    1994-01-01

    Flow-induced vibration of steam generator tubes results in fretting-wear damage due to impacting and rubbing of the tubes against their supports. This damage can be predicted by computing tube response to flow-induced excitation forces using analytical techniques, and then relating this response to resultant wear damage using experimentally-derived wear coefficients. Fretting-wear of steam generator materials has been studied experimentally at Chalk River Laboratories for two decades. Tests are conducted in machines that simulate steam generator environmental conditions and tube-to-support dynamic interactions. Different tube and support materials, tube-to-support clearances and tube support geometries have been studied. As well, the effect of environmental conditions, such as temperature, oxygen content, pH and chemistry control additive, have been investigated. Early studies showed that damage was related to contact force as long as other parameters, such as geometry and motion were held constant. Later studies have shown that damage is related to a parameter called work-rate, which combines both contact force and sliding distance. Results of short- and long-term fretting-wear tests for CANDU steam generator materials at realistic environmental conditions are presented. These results demonstrate that work-rate is appropriate correlating parameter for impact-sliding interaction

  16. Extensive Bone Reaction From Catastrophic Oxidized Zirconium Wear.

    Science.gov (United States)

    Cassar-Gheiti, Adrian J; Collins, Dennis; McCarthy, Tom

    2016-01-01

    The use of alternative bearing surfaces for total hip arthroplasty has become popular to minimize wear and increase longevity, especially in young patients. Oxidized zirconium (Oxinium; Smith & Nephew, Memphis, Tennessee) femoral heads were introduced in the past decade for use in total hip arthroplasty. The advantages of oxidized zirconium include less risk of fracture compared with traditional ceramic heads. This case report describes a patient with a history of bilateral avascular necrosis of the femoral head after chemotherapy for acute lymphoblastic leukemia. Nonoperative management of avascular necrosis failed, and the patient was treated with bilateral total hip arthroplasty. The patient was followed at regular intervals and had slow eccentric polyethylene wear during a 10-year period. After 10 years, the patient had accelerated wear, with femoral and acetabular bone changes as a result of Oxinium and ultrahigh-molecular-weight polyethylene wear during a 6-month period. This article highlights the unusual accelerated bone changes that occurred as a result of Oxinium wear particles. Copyright 2016, SLACK Incorporated.

  17. Agave Chewing and Dental Wear: Evidence from Quids.

    Directory of Open Access Journals (Sweden)

    Emily E Hammerl

    Full Text Available Agave quid chewing is examined as a potential contributing behavior to hunter-gatherer dental wear. It has previously been hypothesized that the contribution of Agave quid chewing to dental wear would be observed in communities wherever phytolith-rich desert succulents were part of subsistence. Previous analysis of coprolites from a prehistoric agricultural site, La Cueva de los Muertos Chiquitos in Durango, Mexico, showed that Agave was a consistent part of a diverse diet. Therefore, quids recovered at this site ought to be useful materials to test the hypothesis that dental wear was related to desert succulent consumption. The quids recovered from the site were found to be largely derived from chewing Agave. In this study, the quids were found to be especially rich in phytoliths, and analysis of dental casts made from impressions left in the quids revealed flat wear and dental attrition similar to that of Agave-reliant hunter-gatherers. Based on evidence obtained from the analysis of quids, taken in combination with results from previous studies, it is determined that Agave quid chewing was a likely contributing factor to dental wear in this population. As such, our method provides an additional avenue of dental research in areas where quids are present.

  18. Predicting wear of hydrotransport pipelines in oil sand slurries

    Energy Technology Data Exchange (ETDEWEB)

    Been, J.; Lu, B.; Wolodko, J. [Alberta Research Council, Edmonton, AB (Canada); Kiel, D. [Coanda Research and Development Corp., Burnaby, BC (Canada)

    2008-07-01

    An overview of erosion and corrosion methods and techniques was presented. Wear to pipelines is influenced by slurry flow and chemistry; solids loading; and electrochemical interactions. While several experimental techniques have been developed to rank the performance of different pipeline materials, experiments do not currently provide accurate quantitative prediction of pipeline wear in the field. Rotating cylinder electrodes (RCE) and jet impingement methods are used to study the effect of flow velocity on corrosion rate. Slurry pot erosion-corrosion testers are used to rank materials for use in more dilute, less turbulent slurries. Coriolois slurry erosion testers are used to rank the erosion resistance of different pipeline materials. A pilot-scale flow loop is now being constructed by the Alberta Research Council (ARC) in order to replicate wet erosion phenomena in oil sands applications. The flow loop will be used to simulate the field conditions of oil sands pipelines and develop predictive wear data and models. Coulombic shear stress and characteristic wall velocities have been determined using a 2-layer model designed to represent flow as 2 distinct layers. To date, the flow loop pilot study has demonstrated that wear rates in smaller diameter flow loops are not significantly different than larger diameter field installations. Preliminary calculations have demonstrated that the flow loop can be used to accurately simulate the hydrodynamics and wear typically experienced in field slurry flows. 67 refs., 2 tabs., 7 figs.

  19. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  20. Wear reduction through piezoelectrically-assisted ultrasonic lubrication

    International Nuclear Information System (INIS)

    Dong, Sheng; J Dapino, Marcelo

    2014-01-01

    Traditional lubricants are undesirable in harsh aerospace environments and certain automotive applications. Ultrasonic vibrations can be used to reduce and modulate the effective friction coefficient between two sliding surfaces. This paper investigates the relationship between friction force reduction and wear reduction in ultrasonically lubricated surfaces. A pin-on-disc tribometer is modified through the addition of a piezoelectric transducer which vibrates the pin at 22 kHz in the direction perpendicular to the rotating disc surface. Friction and wear metrics including volume loss, surface roughness, friction forces and apparent stick-slip effects are measured without and with ultrasonic vibrations at three different sliding velocities. SEM imaging and 3D profilometry are used to characterize the wear surfaces and guide model development. Over the range of speeds considered, ultrasonic vibrations reduce the effective friction force up to 62% along with a wear reduction of up to 49%. A simple cube model previously developed to quantify friction force reduction is implemented which describes wear reduction within 15% of the experimental data. (paper)

  1. A new production technique for wear resistant ring-hammers

    Directory of Open Access Journals (Sweden)

    Li Shifeng

    2011-11-01

    Full Text Available Based on a great number of laboratory experiments, a new technique has been developed for producing wear resistant ring-hammers. In this technology, lost foam casting with iron sand was combined to make mold; a special alloy was used to inoculate the molten steel, and proper heat treatment was used to further improve mechanical properties of wear resistant ring-hammers. The influence of this new production technology on the microstructure and mechanical properties of wear resistant ring-hammers was studied. Results show that iron sand molding, having the inherent characteristic of sand molding, changes the type of metallic compounds, refines crystal grains and increases the fineness of microstructure. Practical experience verified that the properties of the ring-hammers produced with this new technique are as follows: tensile strength (Rm 720 MPa, impact toughness (ak > 210 J•cm-2 and hardness > 200 HB. After water quenching from 1,080℃ (holding for 4 h and tempering at 320℃ for 3 h, the best wear resistance is obtained, and the wear resistance is 1.6 times higher than that of common high manganese ring-hammers.

  2. Modeling and Tool Wear in Routing of CFRP

    International Nuclear Information System (INIS)

    Iliescu, D.; Fernandez, A.; Gutierrez-Orrantia, M. E.; Lopez de Lacalle, L. N.; Girot, F.

    2011-01-01

    This paper presents the prediction and evaluation of feed force in routing of carbon composite material. In order to extend tool life and improve quality of the machined surface, a better understanding of uncoated and coated tool behaviors is required. This work describes (1) the optimization of the geometry of multiple teeth tools minimizing the tool wear and the feed force, (2) the optimization of tool coating and (3) the development of a phenomenological model between the feed force, the routing parameters and the tool wear. The experimental results indicate that the feed rate, the cutting speed and the tool wear are the most significant factors affecting the feed force. In the case of multiple teeth tools, a particular geometry with 14 teeth right helix right cut and 11 teeth left helix right cut gives the best results. A thick AlTiN coating or a diamond coating can dramatically improve the tool life while minimizing the axial force, roughness and delamination. A wear model has then been developed based on an abrasive behavior of the tool. The model links the feed rate to the tool geometry parameters (tool diameter), to the process parameters (feed rate, cutting speed and depth of cut) and to the wear. The model presented has been verified by experimental tests.

  3. Allowable stem nut wear and diagnostic monitoring for MOVs

    International Nuclear Information System (INIS)

    Swinburne, P.

    1994-01-01

    After a motor-operated valve (MOV) stem nut failure in 1991 that contributed to a forced plant shutdown, the FitzPatrick Plant staff developed criteria to check for excessive stem nut wear in MOVs. Allowable stem nut wear monitoring uses both direct dimensional measurement and diagnostic test data interpretation. The wear allowance is based on the recommended permitted backlash discussed in the Electric Power Research Institute/Nuclear Maintenance Assistance Center Technical Repair Guideline for the Limitorque SMB-000 Motor Actuator. The diagnostic analysis technique measures the time at zero load and compares this with a precalculated allowable zero force time. Excessive zero force time may be the result of other MOV problems, such as a loose stem nut lock nut or excessive free play in the drive sleeve bearing. Stress levels for new or nominal stem nuts and stem nuts with the full wear allowance were compared. Bending and shear stresses at the thread root increase for the maximum wear condition when compared with a open-quotes newclose quotes stem nut. These stresses are directly related to the thread root thickness. For typical MOV loading and common stem threading (with two diameters of thread engagement), the thread stresses are well within acceptable limits for ASTM B584-C86300 (formerly B147-863) manganese bronze (typical stem nut material)

  4. Optimization of turning process through the analytic flank wear modelling

    Science.gov (United States)

    Del Prete, A.; Franchi, R.; De Lorenzis, D.

    2018-05-01

    In the present work, the approach used for the optimization of the process capabilities for Oil&Gas components machining will be described. These components are machined by turning of stainless steel castings workpieces. For this purpose, a proper Design Of Experiments (DOE) plan has been designed and executed: as output of the experimentation, data about tool wear have been collected. The DOE has been designed starting from the cutting speed and feed values recommended by the tools manufacturer; the depth of cut parameter has been maintained as a constant. Wear data has been obtained by means the observation of the tool flank wear under an optical microscope: the data acquisition has been carried out at regular intervals of working times. Through a statistical data and regression analysis, analytical models of the flank wear and the tool life have been obtained. The optimization approach used is a multi-objective optimization, which minimizes the production time and the number of cutting tools used, under the constraint on a defined flank wear level. The technique used to solve the optimization problem is a Multi Objective Particle Swarm Optimization (MOPS). The optimization results, validated by the execution of a further experimental campaign, highlighted the reliability of the work and confirmed the usability of the optimized process parameters and the potential benefit for the company.

  5. Peritoneal solute transport and inflammation.

    Science.gov (United States)

    Davies, Simon J

    2014-12-01

    The speed with which small solutes cross the peritoneal membrane, termed peritoneal solute transport rate (PSTR), is a key measure of individual membrane performance. PSTR can be quantified easily by using the 4-hour dialysate to plasma creatinine ratio, which, although only an approximation to the diffusive characteristics of the membrane, has been well validated clinically in terms of its relationship to patient survival and changes in longitudinal membrane function. This has led to changes in peritoneal dialysis modality use and dialysis prescription. An important determinant of PSTR is intraperitoneal inflammation, as exemplified by local interleukin 6 production, which is largely independent of systemic inflammation and its relationship to comorbid conditions and increased mortality. There is no strong evidence to support the contention that the peritoneal membrane in some individuals with high PSTR is qualitatively different at the start of treatment; rather, it represents a spectrum that is determined in part by genetic factors. Both clinical and experimental evidence support the view that persistent intraperitoneal inflammation, detected as a continuously high or increasing PSTR, may predispose the membrane to progressive fibrosis. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  6. Fretting friction and wear characteristics of magnetorheological fluid under different magnetic field strengths

    International Nuclear Information System (INIS)

    Zhang, P.; Lee, K.H.; Lee, C.H.

    2017-01-01

    A magnetorheological fluid (MRF) performs differently under different magnetic field strength. This study examined the fretting friction and wear characteristics of MRFs under a range of magnetic field strengths and oscillation frequencies. The fretting friction and wear behaviors of MRF are investigated using a fretting friction and wear tester. The surfaces of specimen are examined by optical microscopy and 3D surface profilometer before and after the tests and wear surface profiles, the wear volume loss and wear coefficient for each magnetic field strength are evaluated. The results show that the friction and wear properties of MRF change according to the magnetic field strength and oscillation frequency. - Highlights: • Fretting friction and wear characteristics of MRF is examined. • The friction coefficients increased with increasing magnetic field strength. • The coefficient of friction decreased with increasing oscillation frequency. • Wear volume and coefficient become worse with increasing magnetic field strength.

  7. Wear of Spur Gears Having a Dithering Motion and Lubricated with a Perfluorinated Polyether Grease

    Science.gov (United States)

    Krantz, Timothy; Oswald, Fred; Handschuh, Robert

    2007-01-01

    Gear contact surface wear is one of the important failure modes for gear systems. Dedicated experiments are required to enable precise evaluations of gear wear for a particular application. The application of interest for this study required evaluation of wear of gears lubricated with a grade 2 perfluorinated polyether grease and having a dithering (rotation reversal) motion. Experiments were conducted using spur gears made from AISI 9310 steel. Wear was measured using a profilometer at test intervals encompassing 10,000 to 80,000 cycles of dithering motion. The test load level was 1.1 GPa maximum Hertz contact stress at the pitch-line. The trend of total wear as a function of test cycles was linear, and the wear depth rate was approximately 1.2 nm maximum wear depth per gear dithering cycle. The observed wear rate was about 600 times greater than the wear rate for the same gears operated at high speed and lubricated with oil.

  8. Inflammation

    DEFF Research Database (Denmark)

    Holst-Hansen, Thomas

    of the cytokine secreting cells will affect the collective dynamical behaviour. By describing cytokine-releasing cells as an excitable medium, we related medium size and density to a transition between a collective excitable and bistable state. Finally, we considered how a single cell model of bistable phenotype...... expression leads to bimodal expression on a population level and how the distribution of phenotype expression is altered by gene copy number variations. We assumed that a positive feedback is responsible for the bistability at the single cell level and show that the position of the feedback relative to gene...

  9. Amorphous Metallic Alloys: Pathways for Enhanced Wear and Corrosion Resistance

    Science.gov (United States)

    Aditya, Ayyagari; Felix Wu, H.; Arora, Harpreet; Mukherjee, Sundeep

    2017-11-01

    Amorphous metallic alloys are widely used in bulk form and as coatings for their desirable corrosion and wear behavior. Nevertheless, the effects of heat treatment and thermal cycling on these surface properties are not well understood. In this study, the corrosion and wear behavior of two Zr-based bulk metallic glasses were evaluated in as-cast and thermally relaxed states. Significant improvement in wear rate, friction coefficient, and corrosion penetration rate was seen for both alloys after thermal relaxation. A fully amorphous structure was retained with thermal relaxation below the glass transition. There was an increase in surface hardness and elastic modulus for both alloys after relaxation. The improvement in surface properties was explained based on annihilation of free volume.

  10. Friction and wear behavior of glasses and ceramics

    Science.gov (United States)

    Buckley, D. H.

    1973-01-01

    Adhesion, friction, and wear behavior of glasses and ionic solids are reviewed. These materials are shown to behave in a manner similar to other solids with respect to adhesion. Their friction characteristics are shown to be sensitive to environmental constituents and surface films. This sensitivity can be related to a reduction in adhesive bonding and the changes in surficial mechanical behavior associated with Rehbinder and Joffe effects. Both friction and wear properties of ionic crystalline solids are highly anisotropic. With metals in contact with ionic solids the fracture strength of the ionic solid and the shear strength in the metal and those properties that determine these will dictate which of the materials undergoes adhesive wear. The chemical activity of the metal plays an important role in the nature and strength of the adhesive interfacial bond that develops between the metal and a glass or ionic solid.

  11. The friction and wear of γ-irradiated polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Briscoe, B.J.; Ni, Z.

    1984-01-01

    The exposure of polytetrafluoroethylene (PTFE) to γ radiation significantly reduces the molecular weight but below the gross softening temperature suppresses the overall molecular domain mobility. The shear modulus and creep resistance increase but the toughness is reduced. Data are presented to substantiate these trends and to interpret their influence on the friction and wear of γ-damaged PTFE. The sliding friction on smooth rigid counterfaces increases but the wear in this configuration is decreased. The rate of abrasion on rough rigid counterfaces is increased. There is also an improvement in the ultimate load-bearing capacity. All the changes produced are a function of the exposure but most of the effects are fully manifested by 20 Mrad. The general conclusion is that the extent of the molecular mobility or migration induced by mechanical stresses, imposed in both the interface and the bulk of the polymer, has a critical effect on the friction and wear processes. (Auth.)

  12. Binder extrusion of sliding wear of WC-Co alloys

    International Nuclear Information System (INIS)

    Larsen-Basse, J.

    1985-01-01

    It has previously been proposed that preferential removal of the cobalt binder is an important mechanism in the abrasive wear of cemented carbides in the WC-Co family. It is here demonstrated that binder extrusion occurs also in metal-to-metal sliding wear contacts. The wear scar generated by sliding a hardened steel ball repeatedly over a polished WC-Co surface was studied by SEM. The extruded cobalt fragments accumulate by surface defects, such as cracks caused by the sliding loaded ball, and gradual microfragmentation of the carbide grains follows. The energy required to extrude the cobalt and cause the gradual change in surface layer microstructure is provided by the frictional forces

  13. Dry sliding wear of Ni alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    E. Akbarzadeh Chiniforush

    2016-09-01

    Full Text Available Measurements of dry sliding wear are presented for ductile irons with composition Fe-3.56C-2.67Si-0.25Mo-0.5Cu and Ni contents of 0.8 and 1.5 in wt.% with applied loads of 50, 100 and 150 N for austempering temperatures of 270, 320, and 370 °C after austenitizing at 870 °C for 120 min. The mechanical property measurements show that the grades of the ASTM 897M: 1990 Standard can be satisfied for the selected austempering conditions. The results show that wear resistance is independent of austempering temperature with an applied load of 50 N, but there is a strong dependence at higher austempering temperatures with applied loads of 100 and 150 N. Observations indicate that wear is due to subsurface fatigue with cracks nucleated at deformed graphite nodules.

  14. Advanced Wear Simulation for Bulk Metal Forming Processes

    Directory of Open Access Journals (Sweden)

    Behrens Bernd-Arno

    2016-01-01

    Full Text Available In the recent decades the finite element method has become an essential tool for the cost-efficient virtual process design in the metal forming sector in order to counter the constantly increasing quality standards, particularly from the automotive industry as well as intensified international competition in the forging industry. An optimized process design taking precise tool wear prediction into account is a way to increase the cost-efficiency of the bulk metal forming processes. The main objective of the work presented in this paper is a modelling algorithm, which allows predicting die wear with respect to a geometry update during the forming simulation. Changes in the contact area caused by geometry update lead to the different die wear distribution. It primarily concerns the die areas, which undergo high thermal and mechanical loads.

  15. Wearing ambidextrous vinyl gloves does not impair manual dexterity.

    Science.gov (United States)

    Drabek, Tomas; Boucek, Charles D; Buffington, Charles W

    2013-01-01

    Universal precautions mandate that health care workers wear gloves to prevent the unintended spread of bloodborne pathogens. Gloves may affect manual dexterity, generally delaying task completion. Our previous study showed that wearing the wrong size latex surgical glove degraded manual dexterity. The use of non-sterile and non-latex gloves may limit certain risks and be more cost-effective. However, such gloves may produce different results. We hypothesized that ambidextrous vinyl examination gloves would degrade manual dexterity compared with bare hands. We studied 20 random subjects from a medical environment. Subjects performed a standard battery of Grooved Pegboard tasks while bare-handed, wearing ambidextrous non-sterile vinyl gloves that were their preferred size, a size too small, and a size too large. The order was randomized with a Latin Square design to minimize the effects of time, boredom, and fatigue on the subjects. Subjects were also invited to comment on the fit of different size gloves. Wearing vinyl gloves of both the preferred size and a size up or down failed to affect manual dexterity vs. bare hands on time to insert pegs, and pegs dropped during insertion or removal. In contrast, the time to remove pegs was reduced by wearing preferred size vinyl gloves compared with performing the task with bare hands (Pgloves that were too small caused significant hand discomfort. Vinyl gloves surprisingly do not degrade manual dexterity even when worn in ill-fitting sizes. Wearing a preferred size vinyl glove vs. bare hands may improve dexterity in selected tasks. Choosing a comfortable, large size seems the best strategy when the preferred size is unavailable. Thinner vinyl gloves may improve grip and may not degrade touch as much as latex surgical gloves and may thus represent a reasonable choice for selected tasks.

  16. Pipe bend wear - is tungsten carbide the answer?

    International Nuclear Information System (INIS)

    Freinkel, D.

    1988-01-01

    The purpose of the investigation was to compare the relative wear resistance of various grades of sintered tungsten carbide liners against a mild steel standard in a full-scale pneumatic conveying testing rig. Speciments ranging in cobalt content from 6 to 30 per cent and in grain size from 0,56 to 2,98 microns, including a mild steel standard, were placed on a specially designed holder which fitted into a tee type 100 mm diameter bend. The specimens were tested under various operating conditions, ie air velocity ranging from 28m/s to 52m/s, impact angles of 30 0 to 70 0 mass flow rates of 35kg/min to 83kg/min and phase densities of 1,2 to 2,9, using a 4 mm nominal size crushed granite rock. The experimental results show that the ultrafine-grained, low cobalt (6 per cent) tungsten carbide displays little sensitivity to varying velocities, impact angles, mass flow rates or phase densities, and consistently gave the best wear resistance under all testing conditions. It consistently showed the least wear resistance under all testing conditions and performed only slightly better than mild steel. The effect of the carbide grain size was found to be small, although the finer grain sizes displayed greater wear resistance than the coarse grains. The effect of cobalt content was such that the lower cobalt specimens (6 per cent range) consistently performed better than the higher cobalt contents (10 per cent, 15 per cent, 30 per cent) under all testing conditions; the wear resistance decreasing with increasing cobalt content. An empirical model for the prediction of wear for each type of material tested has been proposed, given the particular operating conditions. Microstructurally it has been shown that there is a definite relationship between erosion resistance and the inverse of the magnetic coercivity of the tungsten carbide alloys

  17. Industrial tribology tribosystems, friction, wear and surface engineering, lubrication

    CERN Document Server

    Mang, Theo; Bartels, Thorsten

    2010-01-01

    Integrating very interesting results from the most important R & D project ever made in Germany, this book offers a basic understanding of tribological systems and the latest developments in reduction of wear and energy consumption by tribological measures. This ready reference and handbook provides an analysis of the most important tribosystems using modern test equipment in laboratories and test fields, the latest results in material selection and wear protection by special coatings and surface engineering, as well as with lubrication and lubricants.This result is a quick introductio

  18. Wear and corrosion performance of metallurgical coatings in sodium

    International Nuclear Information System (INIS)

    Johnson, R.N.; Farwick, D.G.

    1980-01-01

    The friction, wear, and corrosion performance of several metallurgical coatings in 200 to 650 0 C sodium are reviewed. Emphasis is placed on those coatings which have successfully passed the qualification tests necessary for acceptance in breeder reactor environments. Tests include friction, wear, corrosion, thermal cycling, self-welding, and irradiation exposure under as-prototypic-as-possible service conditions. Materials tested were coatings of various refractory metal carbides in metallic binders, nickel-base and cobalt-base alloys and intermetallic compounds such as the aluminides and borides. Coating processes evaluated included plasma spray, detonation gun, sputtering, spark-deposition, and solid-state diffusion

  19. Nodal wear model: corrosion in carbon blast furnace hearths

    International Nuclear Information System (INIS)

    Verdeja, L. F.; Gonzalez, R.; Alfonso, A.; Barbes, M. F.

    2003-01-01

    Criteria developed for the Nodal Wear Model (NWM) were applied to estimate the shape of the corrosion profiles that a blast furnace hearth may acquire during its campaign. Taking into account design of the hearth, the boundary conditions, the characteristics of the refractory materials used and the operation conditions of the blast furnace, simulation of wear profiles with central well, mushroom and elephant foot shape were accomplished. The foundations of the NWM are constructed considering that the corrosion of the refractory is a function of the temperature present at each point (node) of the liquid metal-refractory interface and the corresponding physical and chemical characteristics of the corrosive fluid. (Author) 31 refs

  20. Radioactive tracer system to indicate drill bit wear or failure

    International Nuclear Information System (INIS)

    Fries, B.A.

    1975-01-01

    A radioactive tracer system for indicating drill bit wear or failure utilizing radioactive krypton 85 in clathrate form, in the form of water-soluble kryptonates, or dissolved grease, is described. Preferably the radioactive krypton is placed so that when drill bit wear or failure occurs, the radioactive krypton 85 is relased and effectively becomes diffused in the circulating drilling fluid. At the surface, the radioactive krypton 85 gas is separated from the circulating drilling fluid by gas-mud separating means and is transported as a gas to a counting chamber where an accurate radioactivity count of beta rays released from the krypton is obtained. (Patent Office Record)

  1. A Multiple Model Prediction Algorithm for CNC Machine Wear PHM

    Directory of Open Access Journals (Sweden)

    Huimin Chen

    2011-01-01

    Full Text Available The 2010 PHM data challenge focuses on the remaining useful life (RUL estimation for cutters of a high speed CNC milling machine using measurements from dynamometer, accelerometer, and acoustic emission sensors. We present a multiple model approach for wear depth estimation of milling machine cutters using the provided data. The feature selection, initial wear estimation and multiple model fusion components of the proposed algorithm are explained in details and compared with several alternative methods using the training data. The final submission ranked #2 among professional and student participants and the method is applicable to other data driven PHM problems.

  2. Assessing dental wear in reindeer using geometric morphometrical methods

    Directory of Open Access Journals (Sweden)

    Rolf Rødven

    2009-01-01

    Full Text Available Assessing dental wear is a useful tool for monitoring the interaction between ungulates and their food resources. However, using a univariate measurement for dental wear, like for instance height of the first molar may not capture the variation in dental wear important for the dental functional morphology. We here demonstrate a method for assessing dental wear for ungulates by using geometric morphometrical methods on 11 mandibles from nine Svalbard reindeer (Rangifer tarandus platyrhynchus. Shape measurements were obtained from a combination of fixed and sliding semi-landmarks, and dental wear was estimated using residual variation of the landmarks. The morphometric measurements obtained showed a good fit when compared to subjective scores of dental wear. We conclude that this method may give a more integrated and robust assessment of dental wear than univariate methods, and suggest it to be used as an alternative or in addition to traditional measurements of dental wear.Abstract in Norwegian / Sammendrag:Vurdering av tannslitasje hos rein ved hjelp av geometrisk morfometriske metoder Vurdering av tannslitasje er en anvendbar metode for å overvåke betydningen av miljøet for livshistorien til hovdyr. Imidlertid vil bruk av et enkelt mål, som for eksempel høyde på første molar, ikke nødvendigvis fange opp variasjonen i tannslitasje som er viktig i forhold til tennenes funksjonelle morfologi. I denne artikkelen viser vi hvordan tannslitasje kan vurderes ved å anvende geometrisk morfometriske metoder på 11 underkjever fra ni Svalbardrein (Rangifer tarandus platyrhynchus. Formen på tannrekka ble målt ved hjelp av en kombinasjon av fikserte og glidende semi-landemerker, hvor tannslitasje ble estimert ved å bruke residual variasjon av landemerkene. De morfometriske målene stemte godt overens med subjektiv vurdering av tannslitasje. Vi konkluderer at denne metoden kan gi en mer integrert og robust vurdering av tannslitasje enn univariate

  3. Decontamination of radioactive contaminated protective wear using dry cleaning solvent

    International Nuclear Information System (INIS)

    Muthiah, Pushpa; Chitra, S.; Paul, Biplob

    2013-01-01

    Liquid waste generated by conventional decontamination of radioactive contaminated cotton protective wear using detergent affects the chemical treatment of the plant. To reduce the generation of aqueous detergent waste, dry cleaning of cotton protective wear, highly soiled with oil and grease towards decontamination was tried with organic solvents. Mineral turpentine oil (MTO) among various other organic solvents was identified as a suitable organic solvent. As MTO leaves characteristic odour on the cloth, various commercial fragrances for the removal of the odour were tried. Application of the optimised dry cleaning solvent and commercial fragrance was adopted in plant scale operation. (author)

  4. Analysis of wear of antifriction bearing using radioisotope method

    International Nuclear Information System (INIS)

    Bejcek, V.

    1986-01-01

    The time course was studied of the wear of one type of antifriction bearing in dependence on the thickness of lubricating film for five types of lubricating oil. The theory is described of the development of lubricating film, the experiment and its evaluation, and a detailed list is given of numerical results and practical conclusions. Briefly mentioned is the principle of the radioisotope method which has been described elsewhere: prior to the experiment the balls of the bearing were activated with a neutron beam from a nuclear reactor and the wear was determined from the activity of the worn material carried away by the lubricant. (A.K.)

  5. An in vitro investigation of human enamel wear by restorative dental materials

    International Nuclear Information System (INIS)

    Adachi, L.K.; Saiki, M.; De Campos, T.N.

    2001-01-01

    A radiometric method was applied to asses enamel wear by another enamel and by restorative materials. The radioactive enamel was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with the radioactive enamel. The enamel wear was evaluated by measuring the beta-activity of 32 P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another natural enamel or by resin materials. Resin materials caused less enamel wear than another natural enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. (author)

  6. Probabilistic Analysis of Wear of Polymer Material used in Medical Implants

    Directory of Open Access Journals (Sweden)

    T. Goswami

    2016-05-01

    Full Text Available Probabilistic methods are applied to the study of fatigue wear of sliding surfaces. A variance of time to failure (to occurrence of maximum allowable wear depth is evaluated as a function of a mean wear rate of normal wear and a size of wear particles. A method of estimating probability of failure-free work during a certain time interval (reliability is presented. An effect of the bedding-in phase of wear on the reliability is taken into account. Experimental data for Ultra High Molecular Weight Polyethylene (UHMWPE cups of artificial hip implants is used to make numerical calculations.

  7. Obesity and Inflammation: Epidemiology, Risk Factors, and Markers of Inflammation

    Directory of Open Access Journals (Sweden)

    Heriberto Rodríguez-Hernández

    2013-01-01

    Full Text Available Obesity is a public health problem that has reached epidemic proportions with an increasing worldwide prevalence. The global emergence of obesity increases the risk of developing chronic metabolic disorders. Thus, it is an economic issue that increased the costs of the comorbidities associated. Moreover, in recent years, it has been demonstrated that obesity is associated with chronic systemic inflammation, this status is conditioned by the innate immune system activation in adipose tissue that promotes an increase in the production and release of pro-inflammatory cytokines that contribute to the triggering of the systemic acute-phase response which is characterized by elevation of acute-phase protein levels. On this regard, low-grade chronic inflammation is a characteristic of various chronic diseases such as metabolic syndrome, cardiovascular disease, diabetes, hypertension, non-alcoholic fatty liver disease, and some cancers, among others, which are also characterized by obesity condition. Thus, a growing body of evidence supports the important role that is played by the inflammatory response in obesity condition and the pathogenesis of chronic diseases related.

  8. Chemokines in cancer related inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Allavena, Paola; Germano, Giovanni; Marchesi, Federica [Department of Immunology and Inflammation, IRCCS Humanitas Clinical Institute, Via Manzoni 56, 20089, Rozzano, Milan (Italy); Mantovani, Alberto, E-mail: alberto.mantovani@humanitasresearch.it [Department of Immunology and Inflammation, IRCCS Humanitas Clinical Institute, Via Manzoni 56, 20089, Rozzano, Milan (Italy); Department of Translational Medicine, University of Milan (Italy)

    2011-03-10

    Chemokines are key players of the cancer-related inflammation. Chemokine ligands and receptors are downstream of genetic events that cause neoplastic transformation and are abundantly expressed in chronic inflammatory conditions which predispose to cancer. Components of the chemokine system affect multiple pathways of tumor progression including: leukocyte recruitment, neo-angiogenesis, tumor cell proliferation and survival, invasion and metastasis. Evidence in pre-clinical and clinical settings suggests that the chemokine system represents a valuable target for the development of innovative therapeutic strategies.

  9. Milling tool wear diagnosis by feed motor current signal using an artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Khajavi, Mehrdad Nouri; Nasernia, Ebrahim; Rostaghi, Mostafa [Dept. of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of)

    2016-11-15

    In this paper, a Multi-layer perceptron (MLP) neural network was used to predict tool wear in face milling. For this purpose, a series of experiments was conducted using a milling machine on a CK45 work piece. Tool wear was measured by an optical microscope. To improve the accuracy and reliability of the monitoring system, tool wear state was classified into five groups, namely, no wear, slight wear, normal wear, severe wear and broken tool. Experiments were conducted with the aforementioned tool wear states, and different machining conditions and data were extracted. An increase in current amplitude was observed as the tool wear increased. Furthermore, effects of parameters such as tool wear, feed, and cut depth on motor current consumption were analyzed. Considering the complexity of the wear state classification, a multi-layer neural network was used. The root mean square of motor current, feed, cut depth, and tool rpm were chosen as the input and amount of flank wear as the output of MLP. Results showed good performance of the designed tool wear monitoring system.

  10. Experimental Research on the Determination of the Coefficient of Sliding Wear under Iron Ore Handling Conditions

    Directory of Open Access Journals (Sweden)

    G. Chen

    2017-09-01

    Full Text Available The handling of iron ore bulk solids maintains an increasing trend due to economic development. Because iron ore particles have hard composites and irregular shapes, the bulk solids handling equipment surface can suffer from severe sliding wear. Prediction of equipment surface wear volume is beneficial to the efficient maintenance of worn areas. Archard’s equation provides a theoretical solution to predict wear volume. To use Archard’s equation, the coefficient of sliding wear must be determined. To our best knowledge, the coefficient of sliding wear for iron ore handling conditions has not yet been determined. In this research, using a pin-on-disk tribometer, the coefficients of sliding wear for both Sishen particles and mild steel are determined with regard to iron ore handling conditions. Both naturally irregular and spherical shapes of particles are used to estimate average values of wear rate. Moreover, the hardness and inner structures of Sishen particles are examined, which adds the evidence of the interpretation of wear results. It is concluded that the coefficients of sliding wear can vary largely for both Sishen particle and mild steel. The wear rate decreases from transient- to steady-state. The average coefficient of sliding wear is capable of predicting wear with respect to long distances at the steady-state. Two types of sliding friction are distinguished. In addition, it is found that the temperature rise of the friction pairs has negligible influence on wear rate.

  11. Edge loading has a paradoxical effect on wear in metal-on-polyethylene total hip arthroplasties.

    Science.gov (United States)

    Harris, William H

    2012-11-01

    Edge wear is an adverse factor that can negatively impact certain THAs. In some metal-on-metal THAs, it can lead to adverse tissue reactions including aseptic lymphocytic vasculitis-associated lesions and even to pseudotumor formation. In some ceramic-on-ceramic THAs, it can lead to squeaking and/or stripe wear. Edge wear in metal-on-metal and ceramic-on-ceramic THAs can also be associated with accelerated wear across the articulation of these joints. I asked: Does edge wear occur in metal-on-polyethylene (MOP) articulations? And if so, does it increase joint wear? I examined the evidence in the literature for edge wear occurring in MOP THA and then assessed the evidence in the literature for data supporting the concept that edge wear in MOP hips could accelerate wear across the articulation over time. Extensive data in the literature confirm edge wear is common in MOP THA. Surprisingly, the evidence does not support that it accelerates wear across the articulation. In fact, substantial data support the concept that it does not. These observations suggest, in terms of edge wear accelerating overall wear, MOP articulation may have a privileged position compared to hard-on-hard THA articulations.

  12. Specific material effects of wear-particle-induced inflammation and osteolysis at the bone–implant interface: A rat model

    Directory of Open Access Journals (Sweden)

    Lisa K. Longhofer

    2017-01-01

    Conclusion: Different biomaterials in particulate form exert different forms of adverse effects in terms of the amount of osteolysis and inflammatory reactions on bone tissue at the bone–implant interface. It provides information for engineering more appropriate materials for arthroplasty components.

  13. Multiscale Modeling of Wear Degradation in Cylinder Liners

    KAUST Repository

    Moraes, Alvaro; Ruggeri, Fabrizio; Tempone, Raul; Vilanova, Pedro

    2014-01-01

    both to predict and to avoid them. To achieve this, a monitoring system of the wear level should be implemented to decrease the risk of failure. In this work, we take a first step into the development of a multiscale indirect inference methodology

  14. Use of nuclear techniques for measuring thin wears

    International Nuclear Information System (INIS)

    Jeanneau, B.

    1989-01-01

    Wear measurements with apparatus of classical metrology like profilography or tridimensional analysis, need a certain number of conditions, in particular, dismantling of the machine into parts, which give less of time and money. Radioactive methods permit to avoid such a dismantling, isn't sensitive to the temperature of the part... and according to their sensitivity, reduce the test duration

  15. Heat stress reduction of helicopter crew wearing a ventilated vest

    NARCIS (Netherlands)

    Reffeltrath, P.A.

    2006-01-01

    Background: Helicopter pilots are often exposed to periods of high heat strain, especially when wearing survival suits. Therefore, a prototype of a ventilated vest was evaluated on its capability to reduce the heat strain of helicopter pilots during a 2-h simulated flight. Hypothesis: It was

  16. Tooth wear in three ethnic groups in Sabah (northern Borneo).

    Science.gov (United States)

    Milosevic, A; Lo, M S

    1996-12-01

    The prevalence and associated aetiologies of tooth wear were investigated in three ethnic groups in Sabah (Northern Borneo) using the Tooth Wear Index (TWI). The number of surfaces with enamel wear only, dentine exposed for less than a third or dentine exposed for more than a third were categorised into the TW minimal, moderate or severe respectively. A structured questionnaire was used to elicit medical/dental history, oral hygiene practices, satisfaction with body image, diet and other personal habits/details. The sample comprised of a self selected sample of 148 dental hospital attenders; 47 (32 per cent) each of ethnic Chinese and Malay and 54 (36 per cent) of ethnic Kadazan, matched for age and with a similar number of scoreable teeth per subject. Dentine exposure within the total sample was a common finding (95 per cent TW with moderate, 41 per cent TW severe). The Kadazan group had significantly (P Chinese or Malay. Tobacco chewing was positively associated (rho = +0.4, P Chinese subjects. The aetiological factors associated with this tooth wear are different to those encountered in Western cultures.

  17. Radioactive wear tests of four cylinder liner materials

    International Nuclear Information System (INIS)

    Sylte, G.

    1976-01-01

    An investigation on the wear properties of various liner materials, financed by a research grant from NTNF (Royal Norwegian Council for Scientific and Industrial Research), is reported. The investigation was carried out by the Division of Internal Combustion Engines, Trondheim, Univ.,Norway, on a two-stroke, turbocharged, medium speed diesel engine (Wichmann 2ACAT, 280 by 420 mm). Thin pearlitic cast iron inserts of various compositions were pressed into the upper part of a specially machined cylinder liner. These inserts were activated in a nuclear reactor, and tracer techniques employed to measure the wear rate. Gas oil was used as a fuel throughout all tests. The insert technique employed, and the handling methods devised, were satisfactory. This part of the project must be characterised as being very successful. Originally, six different liner materials were specified, but due to misunderstandings duplications resulted in only four different materials finally being received at the laboratory. The engine tests disclosed that the wear rates of all four materials were low under laboratory conditions, and therefore difficult to measure accurately. Nevertheless, the wear properties of the inserts clearly fell into two distinct classes, which may be termed good and excellent. The relative values inside each group are, however, more uncertain due to the cumulative effects of errors, instrument drift, measurement statistics, etc. (Auth.)

  18. Combined Corrosion and Wear of Aluminium Alloy 7075-T6

    NARCIS (Netherlands)

    Liu, Y.; Mol, J.M.C.; Janssen, G.C.A.M.

    2016-01-01

    The aluminium alloy 7075-T6 is widely used in engineering. In some applications, like slurry transport, corrosion and abrasion occur simultaneously, resulting in early material failure. In the present work, we investigated the combined effect of corrosion and wear on the aluminium alloy 7075-T6. We

  19. Wear Assessment of Conical Pick used in Coal Cutting Operation

    Czech Academy of Sciences Publication Activity Database

    Dewangan, S.; Chattopadhyaya, S.; Hloch, Sergej

    -, 11/2014 (2014), s. 1-6 ISSN 0723-2632 Institutional support: RVO:68145535 Keywords : conical pick * wear * SEM * EDX Subject RIV: JQ - Machines ; Tools Impact factor: 2.420, year: 2014 http://link.springer.com/article/10.1007/s00603-014-0680-z

  20. Severe wear behaviour of alumina balls sliding against diamond

    Indian Academy of Sciences (India)

    Wear and friction data were recorded for microwave plasma chemical vapour deposition (MWCVD) grown PCD coatings of four different types, out of which two ... CSIR–Central Glass & Ceramic Research Institute, Kolkata 700032, India; Department of Chemistry, National Institute of Technology, Durgapur 713209, India ...

  1. A wear-resistant zirconia ceramic for low friction application

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.; Ran, S.; Wiratha, K.W.; Blank, D.H.A.; Pasaribu, H.R.; Sloetjes, J.W.; Schipper, D.J.

    2004-01-01

    A high wear-resistant ceramic/ceramic couple is described associated with low friction. By adding a small amount CuO to yttria-doped tetragonal zirconia (Y-TZP) the (dry) coefficient of friction against alumina is only 0.2 during a sliding distance of 3-5 km after which the coefficient drastically increases and a transition from mild to sever wear occurs. Pure Y-TZP exhibits a coefficient of friction of 0.7 under the same experimental conditions but wear remains mild during the test (upto 10 km of sliding distance). These small amounts of CuO also strongly influence the densification behaviour. Sintering of this system occurs in several steps where among other things dissolution of CuO in the Y-TZP matrix as well as liquid phase sintering takes place. Non-uniform shrinkage of the CuO-doped system resulting in relative large microcracks in the ceramic can explain its sudden drastic increase in coefficient of friction and wear rate after 3-5 km of operation. (orig.)

  2. Muscle Activity during Dryland Swimming while Wearing a Triathlon Wetsuit

    Directory of Open Access Journals (Sweden)

    Ciro Agnelli

    2018-01-01

    Full Text Available Background: Triathletes typically wear a wetsuit during the swim portion of an event, but it is not clear if muscle activity is influenced by wearing a wetsuit. Purpose: To investigate if shoulder muscle activity was influenced by wearing a full-sleeve wetsuit vs. no wetsuit during dryland swimming. Methods: Participants (n=10 males; 179.1±13.2 cm; 91.2±7.25 kg; 45.6±10.5 years completed two dry land swimming conditions on a swim ergometer: No Wetsuit (NW and with Wetsuit (W. Electromyography (EMG of four upper extremity muscles was recorded (Noraxon telemetry EMG, 500 Hz during each condition: Trapezius (TRAP, Triceps (TRI, Anterior Deltoid (AD and Posterior Deltoid (PD. Each condition lasted 90 seconds with data collected during the last 60 seconds. Resistance setting was self-selected and remained constant for both conditions. Stroke rate was controlled at 60 strokes per minute by having participants match a metronome. Average (AVG and Root Mean Square (RMS EMG were calculated over 45 seconds and each were compared between conditions using a paired t-test (α=0.05 for each muscle. Results: PD and AD AVG and RMS EMG were each greater (on average 40.0% and 66.8% greater, respectively during W vs. NW (p0.05. Conclusion: The greater PD and AD muscle activity while wearing a wetsuit might affect swimming performance and /or stroke technique on long distance event.

  3. Can centrifugation affect the morphology of polyethylene wear debris ?

    Czech Academy of Sciences Publication Activity Database

    Zolotarevova, E.; Fejfarková, Z.; Entlicher, G.; Lapčíková, Monika; Šlouf, Miroslav; Pokorný, D.; Sosna, A.

    2008-01-01

    Roč. 265, 11-12 (2008), s. 1914-1917 ISSN 0043-1648 R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyethyelene wear particles * total joint replacement * centrifugation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.509, year: 2008

  4. New methodology for fast prediction of wheel wear evolution

    Science.gov (United States)

    Apezetxea, I. S.; Perez, X.; Casanueva, C.; Alonso, A.

    2017-07-01

    In railway applications wear prediction in the wheel-rail interface is a fundamental matter in order to study problems such as wheel lifespan and the evolution of vehicle dynamic characteristic with time. However, one of the principal drawbacks of the existing methodologies for calculating the wear evolution is the computational cost. This paper proposes a new wear prediction methodology with a reduced computational cost. This methodology is based on two main steps: the first one is the substitution of the calculations over the whole network by the calculation of the contact conditions in certain characteristic point from whose result the wheel wear evolution can be inferred. The second one is the substitution of the dynamic calculation (time integration calculations) by the quasi-static calculation (the solution of the quasi-static situation of a vehicle at a certain point which is the same that neglecting the acceleration terms in the dynamic equations). These simplifications allow a significant reduction of computational cost to be obtained while maintaining an acceptable level of accuracy (error order of 5-10%). Several case studies are analysed along the paper with the objective of assessing the proposed methodology. The results obtained in the case studies allow concluding that the proposed methodology is valid for an arbitrary vehicle running through an arbitrary track layout.

  5. Hard metal - a wear resistant material. Hartmetall - ein verschleissbestaendiger Werkstoff

    Energy Technology Data Exchange (ETDEWEB)

    Kolaska, J.; Dreyer, K. (Krupp Widia GmbH, Essen (Germany, F.R.))

    1989-01-01

    The article provides a survey of the various types of alloys of presently used carbides, their production processes and properties. Cermets (alloys with a high content of titanium carbide) are in the foreground here. With an eye on the future, advancements of further improved carbide materials are described, which feature at the same time a high resistance to wear and tenacity. (orig.).

  6. Thermophysical properties of selected wear-resistant alloys

    International Nuclear Information System (INIS)

    Farwick, D.G.; Johnson, R.N.

    1980-06-01

    Thermophysical properties of 13 selected wear-resistant materials, including specific heat, thermal conductivity, thermal diffusivity, and thermal expansion (instantaneous, mean, and linear) are provided. The Center for Information and Numerical Data Analysis and Synthesis (CINDAS) at Purdue University supplied properties data

  7. Microstructure and wear behaviour of FeAl-based composites ...

    Indian Academy of Sciences (India)

    FeAl-based composites; precipitation; mechanical properties; wear. 1. Introduction. Fe–Al alloys ... ground to 1500 grit and polished with alumina powder. (0.5 μm). ... Alloy-2 (figure 2) consists of cuboid-shaped ZrC (region C), an FeAl matrix ...

  8. Wear prediction on total ankle replacement effect of design parameters

    CERN Document Server

    Saad, Amir Putra Bin Md; Harun, Muhamad Noor; Kadir, Mohammed Rafiq Abdul

    2016-01-01

    This book develops and analyses computational wear simulations of the total ankle replacement for the stance phase of gait cycle. The emphasis is put on the relevant design parameters. The book presents a model consisting of three components; tibial, bearing and talar representing their physiological functions.

  9. Abrasive wear behaviour of bio-active glass ceramics containing ...

    Indian Academy of Sciences (India)

    In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by fracture ...

  10. Legislative prohibitions on wearing a headscarf: are they justified ...

    African Journals Online (AJOL)

    In recent years the headscarf has been described as a symbol of Islam's oppression of women and simultaneously of terrorism. As the debate regarding the acceptability of the headscarf in the modern world continues, an increasing number of states have legislated to ban the wearing of the headscarf. This article critically ...

  11. Assessment of mechanical and three-body abrasive wear peculiarity ...

    Indian Academy of Sciences (India)

    The three-body abrasive wear characteristic of fabricated composites has been assessed under different operating conditions. For this, the three-body abrasion test is done on dry abrasion test rig (TR-50)and analysed using Taguchi's experimental design scheme and analysis of variance. The results obtained from these ...

  12. Influence of quartz particles on wear in vertical roller mills

    DEFF Research Database (Denmark)

    Jensen, Lucas R.D.; Friis, Henrik; Fundal, Erling

    2010-01-01

    The standard closed circuit comminution process commonly employed in industrial vertical roller mills has been analyzed to determine the influence of typical abrasive minerals on wear rates. With the main focus on raw mixes used in cement plants, synthetic mixtures imitating were prepared. Using...

  13. Wear monitoring of protective nitride coatings using image processing

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Guibert, M.; Belin, M.

    2010-01-01

    -meter with up to 105 19 repetitive cycles, eventually leaving the embedded TiN signal layer uncovered at the bottom the wear scar. 20 The worn surface was characterized by subsequent image processing. A color detection of the wear scar with 21 the exposed TiN layer by a simple optical imaging system showed......A double-layer model system, consisting of a thin layer of tribological titanium aluminum nitride (TiAlN) on 17 top of titanium nitride (TiN), was deposited on polished 100Cr6 steel substrates. The TiAlN top-coatings 18 were exposed to abrasive wear by a reciprocating wear process in a linear tribo...... a significant increase up to a factor of 2 of 22 the relative color values from the TiAlN top layers to the embedded TiN signal layers. This behavior agrees 23 well with the results of reflectance detection experiment with a red laser optical system on the same system. 24 Thus we have demonstrated that image...

  14. Development of wear resistant ceramic coatings for diesel engine components

    Energy Technology Data Exchange (ETDEWEB)

    Haselkorn, M.H. (Caterpillar, Inc., Peoria, IL (United States))

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  15. Vibration and wear characteristics of steam generator tubes

    International Nuclear Information System (INIS)

    Choi, Young Hwan

    2003-06-01

    This study investigates the fluid elastic instability characteristics of Steam Generator (SG) U-tubes with defect and the safety assessment of the potential for fretting-wear damages on Steam Generator (SG) U-tubes caused by foreign object in operating nuclear power plants. The operating SG shell-side flow field conditions for determining the fluid elastic instability or fretting-wear parameters such as damping ratio, added mass and flow velocity are obtained from three-dimensional SG flow calculation using the ATHOS3 code. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for the U-tubes either with axial or circumferential flaw with different sizes. Special emphases are on the effects of flaw orientation and size on the modal and instability characteristics of tubes, which are expressed in terms of the natural frequency, corresponding mode shape and stability ratio. Also, the wear rate of U-tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted, and discussed in this study is the effect of the flow velocity and vibration of the tube on the remaining life of the tube. In addition, addressed is the effect of the internal pressure on the vibration and fretting-wear characteristics of the tube

  16. Wear resistance of polypropylene-SiC composite

    Science.gov (United States)

    Abenojar, J.; Enciso, B.; Martínez, MA; Velasco, F.

    2017-05-01

    In this work, the wear resistance of thermoplastic composites with a high amount of ceramic is evaluated. Composites made of polypropylene (PP) and silicon carbide (SiC) powder at 50 wt% were used with the final objective of manufacturing ablative materials. This is the first part of a project studying the wear resistance and the mechanical properties of those composites, to be used in applications like habitat industry. In theory, the exposure to high temperature of ablative materials involves the elimination of thermal energy by the sacrifice of surface polymer. In our case, PP will act as a heat sink, up to the reaction temperature (melting or sublimation), where endothermic chemical decomposition into charred material and gaseous products occurs. As the surface is eroded, it is formed a SiC like-foam with improved insulation performance. Composites were produced by extrusion and hot compression. The wear characterization was performed by pin-on-disk test. Wear test was carried out under standard ASTM G99. The parameters were 120 rpm speed, 15 N load, a alumina ball with 6 mm as pin and 1000 m sliding distance. The tracks were also observed by opto-digital microscope.

  17. Porosity and wear resistance of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermal-sprayed coatings offer practical and economical solutions for corrosion and wear protection of components or tools. To improve the coating properties, heat treatment such as preheat is applied. The selection of coating and substrate materials is a key factor in improving the quality of the coating morphology after the heat treatment. This paper presents the experimental results regarding the effect of preheat temperatures, i.e. 200°C, 300°C and 400°C, on porosity and wear resistance of tungsten carbide (WC) coating sprayed by flame thermal coating. The powders and coatings morphology were analyzed by a Field Emission Scanning Electron Microscope equipped with Energy Dispersive Spectrometry (FE-SEM/EDS), whereas the phase identification was performed by X-Ray diffraction technique (XRD). In order to evaluate the quality of the flame spray obtained coatings, the porosity, micro-hardness and wear rate of the specimens was determined. The results showed that WC coating gives a higher surface hardness from 1391 HVN up to 1541 HVN compared to that of the non-coating. Moreover, the wear rate increased from 0.072 mm3/min. to 0.082 mm3/min. when preheat temperature was increased. Preheat on H13 steel substrate can reduce the percentage of porosity level from 10.24 % to 3.94% on the thermal spray coatings.

  18. Tooth wear : a systematic review of treatment options

    NARCIS (Netherlands)

    Muts, Erik-Jan; van Pelt, Hans; Edelhoff, Daniel; Krejci, Ivo; Cune, Marco

    2014-01-01

    STATEMENT OF PROBLEM: Treatment of tooth wear is increasing. Because no evidence-based guidelines are available, the clinician may have difficulties deciding which treatment option to choose to resolve complex situations. PURPOSE: The purpose of this systematic review was to identify similarities

  19. Controlled wear of vitrified abrasive materials for precision grinding ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2Machining Research Group, Department of Engineering, University of ... ods are applied to analyse the cutting mechanism in grinding. .... (d) Chemical reaction between abrasive and workpiece material at elevated temperatures ... most common method used for measuring wear flat area employs an optical, or an electron.

  20. Wear resistance of polypropylene-SiC composite

    International Nuclear Information System (INIS)

    Abenojar, J; Enciso, B; Martínez, MA; Velasco, F

    2017-01-01

    In this work, the wear resistance of thermoplastic composites with a high amount of ceramic is evaluated. Composites made of polypropylene (PP) and silicon carbide (SiC) powder at 50 wt% were used with the final objective of manufacturing ablative materials. This is the first part of a project studying the wear resistance and the mechanical properties of those composites, to be used in applications like habitat industry. In theory, the exposure to high temperature of ablative materials involves the elimination of thermal energy by the sacrifice of surface polymer. In our case, PP will act as a heat sink, up to the reaction temperature (melting or sublimation), where endothermic chemical decomposition into charred material and gaseous products occurs. As the surface is eroded, it is formed a SiC like-foam with improved insulation performance. Composites were produced by extrusion and hot compression. The wear characterization was performed by pin-on-disk test. Wear test was carried out under standard ASTM G99. The parameters were 120 rpm speed, 15 N load, a alumina ball with 6 mm as pin and 1000 m sliding distance. The tracks were also observed by opto-digital microscope. (paper)

  1. Obstructive sleep apnea and inflammation.

    LENUS (Irish Health Repository)

    McNicholas, Walter T

    2012-02-01

    The pathogenesis of cardiovascular complications in obstructive sleep apnea syndrome (OSAS) is not fully understood but is likely multifactorial in origin. Inflammatory processes play an important role in the pathogenesis of atherosclerosis, and circulating levels of several markers of inflammation have been associated with future cardiovascular risk. These include cell adhesion molecules such as intercellular adhesion molecule-1 and selectins, cytokines such as tumour necrosis factor alpha and interleukin 6, chemokines such as interleukin 8, and C-reactive protein. There is also increasing evidence that inflammatory processes play an important role in the cardiovascular pathophysiology of OSAS and many of the inflammatory markers associated with cardiovascular risk have been reported as elevated in patients with OSAS. Furthermore, animal and cell culture studies have demonstrated preferential activation of inflammatory pathways by intermittent hypoxia, which is an integral feature of OSAS. The precise role of inflammation in the development of cardiovascular disease in OSAS requires further study, particularly the relationship with oxidative stress, metabolic dysfunction, and obesity.

  2. Intraocular inflammation in autoimmune diseases.

    Science.gov (United States)

    Pras, Eran; Neumann, Ron; Zandman-Goddard, Gisele; Levy, Yair; Assia, Ehud I; Shoenfeld, Yehuda; Langevitz, Pnina

    2004-12-01

    The uveal tract represents the vascular organ of the eye. In addition to providing most of the blood supply to the intraocular structures, it acts as a conduit for immune cells, particularly lymphocytes, to enter the eye. Consequently, the uveal tract is represented in many intraocular inflammatory processes. Uveitis is probably a misnomer unless antigens within the uvea are the direct targets of the inflammatory process. A better term of the condition is "intraocular inflammation" (IOI). To review the presence of IOI in autoimmune diseases, the immunopathogenic mechanisms leading to disease, and treatment. We reviewed the English medical literature by using MEDLINE (1984-2003) employing the terms "uveitis," "intraocular inflammation," and "autoimmune diseases." An underlying autoimmune disease was identified in up to 40% of patients with IOI, and included spondyloarthropathies, Behcets disease, sarcoidosis, juvenile chronic arthritis, Vogt-Koyanagi-Harada syndrome (an inflammatory syndrome including uveitis with dermatologic and neurologic manifestations), immune recovery syndrome, and uveitis with tubulointerstitial disease. The immunopathogenesis of IOI involves enhanced T-cell response. Recently, guidelines for the use of immunosuppressive drugs for inflammatory eye disease were established and include: corticosteroids, azathioprine, methotrexate, mycophenolate mofetil, cyclosporine, tacrolimus, cyclophosphamide, and chlorambucil. New therapies with limited experience include the tumor necrosis factor alpha inhibitors, interferon alfa, monoclonal antibodies against lymphocyte surface antigens, intravenous immunoglobulin (IVIG), and the intraocular delivery of immunosuppressive agents. An underlying autoimmune disease was identified in up to 40% of patients with IOI. Immunosuppressive drugs, biologic agents, and IVIG are employed for the treatment of IOI in autoimmune diseases.

  3. Homeostasis, inflammation, and disease susceptibility.

    Science.gov (United States)

    Kotas, Maya E; Medzhitov, Ruslan

    2015-02-26

    While modernization has dramatically increased lifespan, it has also witnessed the increasing prevalence of diseases such as obesity, hypertension, and type 2 diabetes. Such chronic, acquired diseases result when normal physiologic control goes awry and may thus be viewed as failures of homeostasis. However, while nearly every process in human physiology relies on homeostatic mechanisms for stability, only some have demonstrated vulnerability to dysregulation. Additionally, chronic inflammation is a common accomplice of the diseases of homeostasis, yet the basis for this connection is not fully understood. Here we review the design of homeostatic systems and discuss universal features of control circuits that operate at the cellular, tissue, and organismal levels. We suggest a framework for classification of homeostatic signals that is based on different classes of homeostatic variables they report on. Finally, we discuss how adaptability of homeostatic systems with adjustable set points creates vulnerability to dysregulation and disease. This framework highlights the fundamental parallels between homeostatic and inflammatory control mechanisms and provides a new perspective on the physiological origin of inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Problems of locomotive wheel wear in fleet replacement

    Directory of Open Access Journals (Sweden)

    L.P. Lingaytis

    2013-08-01

    Full Text Available Purpose. To conduct a research and find out the causes of defects appearing on the wheel thread of freight locomotives 2М62 and SIEMENS ER20CF. Methodology. To find the ways to solve this problem comparing the locomotive designs and their operating conditions. Findings. After examining the nature of the wheel wear the main difference was found: in locomotives of the 2M62 line wears the wheel flange, and in the locomotives SIEMENS ER20CF – the tread surface. After installation on the 2M62 locomotive the lubrication system of flanges their wear rate significantly decreased. On the new freight locomotives SIEMENS ER20CF the flange lubrication systems of the wheel set have been already installed at the factory, however the wheel thread is wearing. As for locomotives 2M62, and on locomotives SIEMENS ER20CF most wear profile skating wheels of the first wheel set. On both locomotive lines the 2М62 and the SIEMENS ER20CF the tread profile of the first wheel set most of all is subject to the wear. After reaching the 170 000 km run, the tread surface of some wheels begins to crumble. There was a suspicion that the reason for crumb formation of the wheel surface may be insufficient or excessive wheel hardness or its chemical composition. In order to confirm or deny this suspicion the following studies were conducted: the examination of the rim surface, the study of the wheel metal hardness and the document analysis of the wheel production and their comparison with the results of wheel hardness measurement. Practical value. The technical condition of locomotives is one of the bases of safety and reliability of the rolling stock. The reduction of the wheel wear significantly reduces the operating costs of railway transport. After study completion it was found that there was no evidence to suggest that the ratio of the wheel-rail hardness could be the cause of the wheel surface crumbling.

  5. Surface and sliding wear behaviour of different coatings and steels

    Energy Technology Data Exchange (ETDEWEB)

    Vera-Cardenas, E.E. [Universidad Politecnica de Pachuca, Zempoala, Hidalgo (Mexico)]. E-mail: evera@upp.edu.mx; Vite-Torres, M. [Instituto Politecnico Nacional, Mexico D.F. (Mexico)]. E-mail: drmanulvite9@hotmail.com; Lewis, R. [University of Sheffield (United Kingdom)]. E-mail: roger.lewis@sheffield.ac.uk

    2012-01-15

    In this work, the sliding wear behaviour of the coatings TiN, CrN and WC/C applied on steel substrates was studied using a reciprocating wear test machine. All tests were carried out in dry conditions, at room temperature (20-23 degrees Celsius and 45% - 50% relative humidity). The average sliding velocity was 0.08 m/s and an amplitude of 2 mm was used. The applied loads were 11.76 N (Po = 1.74 GPa) and 7.84 N (Po = 1.52 GPa). Optical microscopy was used to observe the characteristics of wear scars and spalls and possible causes of their formation. The variation of the friction coefficient against the number of cycles was obtained. This was used to determine more precisely the time (number of cycles) where the coating presented the first signs of wear, in addition Energy Dispersive X-ray analysis (EDS) was performed, as well as Scanning Electron Microscopy (SEM) and hardness tests on the wear traces, which reinforced the previous observations. Thus it was possible to know the wear life of different coatings and possible causes of variation. Increasing the load was an important factor in the variation of wear life results. But it is also important to consider other factors such as surface roughness and thickness of coatings. [Spanish] En este trabajo se estudio el comportamiento en desgaste por deslizamiento de los recubrimientos de TiN, CrN y WC/C aplicados sobre sustratos de acero. Las pruebas se realizaron con una maquina reciprocante en condiciones secas a temperatura ambiente (20-23 grados centigrados y 45% - 50% de humedad relativa). Se empleo una velocidad promedio de 0.08 m/s y una amplitud de 2 mm. Las cargas aplicadas fueron de 11.76N (Po = 1.74 GPa) y de 7.84 N (Po = 1.52 GPa). Se realizo microscopia optica para observar las caracteristicas de las zonas de desgaste y sus posibles causas de formacion. Se obtuvo graficamente la variacion del coeficiente de friccion con el numero de ciclos. Estos datos se emplearon para determinar con mayor precision el

  6. Feasibility of wear compensation in micro EDM milling based on discharge counting and discharge population characterization

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; Tristo, G.

    2011-01-01

    This paper investigates the applicability of real time wear compensation in micro EDM milling based on discharge counting and discharge population characterization. Experiments were performed involving discharge counting and tool electrode wear measurement in a wide range of process parameters...

  7. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    Science.gov (United States)

    Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Popovich, Dragan; Halloran, Joseph P.; Fulcher, Michael L.; Cook, Randy C.

    2009-04-14

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  8. Quantification of in vivo implant wear in total knee replacement from dynamic single plane radiography

    Science.gov (United States)

    Teeter, Matthew G.; Seslija, Petar; Milner, Jaques S.; Nikolov, Hristo N.; Yuan, Xunhua; Naudie, Douglas D. R.; Holdsworth, David W.

    2013-05-01

    An in vivo method to measure wear in total knee replacements was developed using dynamic single-plane fluoroscopy. A dynamic, anthropomorphic total knee replacement phantom with interchangeable, custom-fabricated components of known wear volume was created, and dynamic imaging was performed. For each frame of the fluoroscopy data, the relative location of the femoral and tibial components were determined, and the apparent intersection of the femoral component with the tibial insert was used to calculate wear volume, wear depth, and frequency of intersection. No difference was found between the measured and true wear volumes. The precision of the measurements was ±39.7 mm3 for volume and ±0.126 mm for wear depth. The results suggest the system is capable of tracking wear volume changes across multiple time points in patients. As a dynamic technique, this method can provide both kinematic and wear measurements that may be useful for evaluating new implant designs for total knee replacements.

  9. Analysis of Button Bit Wear and Performance of Down-The-Hole ...

    African Journals Online (AJOL)

    Michael O. Mensah

    2015-12-02

    Dec 2, 2015 ... revealed that wear of rock drill bit is influenced by rock properties. ... equivalent quartz content and silica content are dominant rock properties affecting wear rate of bit button of DTH drill. ..... Cutting, Drilling and Blasting: Rock.

  10. Thermally-treated Pt-coated silicon AFM tips for wear resistance in ferroelectric data storage

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Palacio, Manuel; Kwak, Kwang Joo

    2008-01-01

    In ferroelectric data storage, a conductive atomic force microscopy (AFM) probe with a noble metal coating is placed in contact with a lead zirconate titanate (PZT) film. The understanding and improvement of probe tip wear, particularly at high velocities, is needed for high data rate recording. A commercial Pt-coated silicon AFM probe was thermally treated in order to form platinum silicide at the near-surface. Nanoindentation, nanoscratch and wear experiments were performed to evaluate the mechanical properties and wear performance at high velocities. The thermally treated tip exhibited lower wear than the untreated tip. The tip wear mechanism is adhesive and abrasive wear with some evidence of impact wear. The enhancement in mechanical properties and wear resistance in the thermally treated film is attributed to silicide formation in the near-surface. Auger electron spectroscopy and electrical resistivity measurements confirm the formation of platinum silicide. This study advances the understanding of thin film nanoscale surface interactions

  11. Influence of heat treatment on the wear life of hydraulic fracturing tools

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Chao; Liu, Yonghong; Wang, Hanxiang; Qin, Jie; Shen, Yang; Zhang, Shihong [China University of Petroleum, Qingdao (China)

    2017-02-15

    Wear phenomenon has caused severe damage or failure of fracturing tools in oil and gas industry. In this paper, influence of heat treatment on the mechanical properties and wear resistance of fracturing tool made of lamellar graphite grey cast iron were investigated. The surface composition and microstructure were characterized by X-ray diffraction (XRD) and metallographic microscope. Sliding wear tests were performed to study the tribological behavior. Tests results showed that wear rates of treated specimens decreased by 33 %. Besides, worn morphology and wear debris were analyzed using Scanning electron microscope (SEM) and Energy dispersive Xray spectra (EDS). Wear failure mechanisms of specimens were identified. Furthermore, on-site experiment results indicated that wear loss of treated samples decreased by 37.5 %. The wear life of hydraulic fracturing tools can be improved obviously by the heat treatment.

  12. Influence of heat treatment on the wear life of hydraulic fracturing tools

    International Nuclear Information System (INIS)

    Zheng, Chao; Liu, Yonghong; Wang, Hanxiang; Qin, Jie; Shen, Yang; Zhang, Shihong

    2017-01-01

    Wear phenomenon has caused severe damage or failure of fracturing tools in oil and gas industry. In this paper, influence of heat treatment on the mechanical properties and wear resistance of fracturing tool made of lamellar graphite grey cast iron were investigated. The surface composition and microstructure were characterized by X-ray diffraction (XRD) and metallographic microscope. Sliding wear tests were performed to study the tribological behavior. Tests results showed that wear rates of treated specimens decreased by 33 %. Besides, worn morphology and wear debris were analyzed using Scanning electron microscope (SEM) and Energy dispersive Xray spectra (EDS). Wear failure mechanisms of specimens were identified. Furthermore, on-site experiment results indicated that wear loss of treated samples decreased by 37.5 %. The wear life of hydraulic fracturing tools can be improved obviously by the heat treatment

  13. Wear-resistant powder materials with intermetallic hardening. I. Nonporous materials for antifriction purposes

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, G.K.; Akopov, N.L.; Karapetyan, F.K.; Manukyan, N.N.

    1987-09-01

    This article investigates the wear resistance, microhardness, microstructure, and crystal-phase behavior of a molybdenum alloy solid lubricant under cyclic wear and sliding friction tests against steel 45. Calculated and experimental results are given.

  14. Fretting Wear Behaviors of Aluminum Cable Steel Reinforced (ACSR Conductors in High-Voltage Transmission Line

    Directory of Open Access Journals (Sweden)

    Xingchi Ma

    2017-09-01

    Full Text Available This work reports the fretting wear behavior of aluminum cable steel reinforced (ACSR conductors for use in high-voltage transmission line. Fretting wear tests of Al wires were conducted on a servo-controlled fatigue testing machine with self-made assistant apparatus, and their fretting process characteristics, friction force, wear damage, and wear surface morphology were detailed analyzed. The results show that the running regime of Al wires changes from a gross slip regime to a mixed regime more quickly as increasing contact load. With increasing amplitudes, gross slip regimes are more dominant under contact loads of lower than 30 N. The maximum friction force is relatively smaller in the NaCl solution than in a dry friction environment. The primary wear mechanisms in dry friction environments are abrasive wear and adhesive wear whereas abrasive wear and fatigue damage are dominant in NaCl solution.

  15. Prostate cancer and inflammation: the evidence

    OpenAIRE

    Sfanos, Karen S; De Marzo, Angelo M

    2012-01-01

    Chronic inflammation is now known to contribute to several forms of human cancer, with an estimated 20% of adult cancers attributable to chronic inflammatory conditions caused by infectious agents, chronic noninfectious inflammatory diseases and / or other environmental factors. Indeed, chronic inflammation is now regarded as an ‘enabling characteristic’ of human cancer. The aim of this review is to summarize the current literature on the evidence for a role for chronic inflammation in prosta...

  16. Stick-slip friction and wear of articular joints

    Science.gov (United States)

    Lee, Dong Woog; Banquy, Xavier; Israelachvili, Jacob N.

    2013-01-01

    Stick-slip friction was observed in articular cartilage under certain loading and sliding conditions and systematically studied. Using the Surface Forces Apparatus, we show that stick-slip friction can induce permanent morphological changes (a change in the roughness indicative of wear/damage) in cartilage surfaces, even under mild loading and sliding conditions. The different load and speed regimes can be represented by friction maps—separating regimes of smooth and stick-slip sliding; damage generally occurs within the stick-slip regimes. Prolonged exposure of cartilage surfaces to stick-slip sliding resulted in a significant increase of surface roughness, indicative of severe morphological changes of the cartilage superficial zone. To further investigate the factors that are conducive to stick-slip and wear, we selectively digested essential components of cartilage: type II collagen, hyaluronic acid (HA), and glycosaminoglycans (GAGs). Compared with the normal cartilage, HA and GAG digestions modified the stick-slip behavior and increased surface roughness (wear) during sliding, whereas collagen digestion decreased the surface roughness. Importantly, friction forces increased up to 2, 10, and 5 times after HA, GAGs, and collagen digestion, respectively. Also, each digestion altered the friction map in different ways. Our results show that (i) wear is not directly related to the friction coefficient but (ii) more directly related to stick-slip sliding, even when present at small amplitudes, and that (iii) the different molecular components of joints work synergistically to prevent wear. Our results also suggest potential noninvasive diagnostic tools for sensing stick-slip in joints. PMID:23359687

  17. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    2012-12-01

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

  18. Destructive investigations of decommissioned guide tubes: characterization of wear

    International Nuclear Information System (INIS)

    Ambard, A.; Lina, A.; Bosselut, D.; Deforge, D.; Robinot, P.; Thebault, Y.; Paulhies, M.; Maingot, S.

    2011-01-01

    The wear of control rods has been a major maintenance concern for EDF since the nineties. Surface treatment of the rods (nitriding, chrome plating) were developed to deal with this issue. However, the question came to know whether the guiding tube in which those new control rods are inserted are also worn. EDF interest into guide tube wear has been renewed by the slow increase of the drop time in B06 position. EDF performed field examinations and some laboratory experiments to answer to this question. Two guide tubes were extracted from various cores. They were chosen due to their different positions within the core and the different nature of their counter bodies (different control rods surface treatment). Their continuous part were sliced to reduce their activity. Their dimensions were measured and compared to the nominal dimensions. Wear was evidenced with a low level. It is mainly concentrated around the notch. Some distinctions could be made depending on the guiding tube examined. Metallographic examinations were performed using SEM. The wear patterns of the guiding tubes appear similar from those of the control rods, which means that similar wear mechanisms must be involved. A tentative explanation of the increase of the rod drop time in position B06 is proposed. A tentative explanation of the low increase of rod drop time is presented. It could result from the conjunction of a larger pressing force in B06 position than in other position of the core as well as the conformal contact observed. The conformal contact in itself could results from the larger pressing force and the use of hardened rods. The findings of these field examinations have comforted EDF strategy concerning B06 guide tubes: they are changed before their drop time reaches a critical value. (authors)

  19. Surface chemical modification for exceptional wear life of MEMS materials

    Directory of Open Access Journals (Sweden)

    R. Arvind Singh

    2011-12-01

    Full Text Available Micro-Electro-Mechanical-Systems (MEMS are built at micro/nano-scales. At these scales, the interfacial forces are extremely strong. These forces adversely affect the smooth operation and cause wear resulting in the drastic reduction in wear life (useful operating lifetime of actuator-based devices. In this paper, we present a surface chemical modification method that reduces friction and significantly extends the wear life of the two most popular MEMS structural materials namely, silicon and SU-8 polymer. The method includes surface chemical treatment using ethanolamine-sodium phosphate buffer, followed by coating of perfluoropolyether (PFPE nanolubricant on (i silicon coated with SU-8 thin films (500 nm and (ii MEMS process treated SU-8 thick films (50 μm. After the surface chemical modification, it was observed that the steady-state coefficient of friction of the materials reduced by 4 to 5 times and simultaneously their wear durability increased by more than three orders of magnitude (> 1000 times. The significant reduction in the friction coefficients is due to the lubrication effect of PFPE nanolubricant, while the exceptional increase in their wear life is attributed to the bonding between the -OH functional group of ethanolamine treated SU-8 thin/thick films and the -OH functional group of PFPE. The surface chemical modification method acts as a common route to enhance the performance of both silicon and SU-8 polymer. It is time-effective (process time ≤ 11 min, cost-effective and can be readily integrated into MEMS fabrication/assembly processes. It can also work for any kind of structural material from which the miniaturized devices are/can be made.

  20. Experiences in applying surface activation and the thin-layer difference method in comparative wear measurements of motor car components

    International Nuclear Information System (INIS)

    Sturm, H.

    1981-01-01

    On the basis of wear studies of valve rockers and valves of diesel engines the radiometric methods applied are presented. Measuring requirements to be met are discussed. Evaluation of the results ranges from determination of wear depths to standardized and specific wear intensities. The latter may be used for comparing wear rates under any conditions at any times, for determining the most important wear mechanisms and for taking measures aimed at improving the wear behaviour

  1. Fretting wear of ZrN and Zr(21% Hf)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Atar, E. [Gebze Inst. of Tech., Material Science and Engineering Dept., Kocaeli (Turkey); Cimenoglu, H.; Kayali, E.S. [Istanbul Technical Univ., Dept. of Metallurgy and Materials Engineering, Istanbul (Turkey)

    2004-07-01

    In this study, the wear behaviours of ZrN and Zr(21% Hf)N coatings, deposited on hardened AISI D2 cold work tool steel were examined by a fretting wear tester. The hardness of ZrN and Zr(21% Hf)N coatings were almost the same, where as they exhibited different wear resistance. Addition of 21% Hf to ZrN coating achieved about 25% increase in the wear resistance. (orig.)

  2. Fretting wear of ZrN and Zr(21% Hf)N coatings

    International Nuclear Information System (INIS)

    Atar, E.; Cimenoglu, H.; Kayali, E.S.

    2004-01-01

    In this study, the wear behaviours of ZrN and Zr(21% Hf)N coatings, deposited on hardened AISI D2 cold work tool steel were examined by a fretting wear tester. The hardness of ZrN and Zr(21% Hf)N coatings were almost the same, where as they exhibited different wear resistance. Addition of 21% Hf to ZrN coating achieved about 25% increase in the wear resistance. (orig.)

  3. Tibiofemoral wear in standard and non-standard squat: implication for total knee arthroplasty.

    Science.gov (United States)

    Fekete, Gusztáv; Sun, Dong; Gu, Yaodong; Neis, Patric Daniel; Ferreira, Ney Francisco; Innocenti, Bernardo; Csizmadia, Béla M

    2017-01-01

    Due to the more resilient biomaterials, problems related to wear in total knee replacements (TKRs) have decreased but not disappeared. In the design-related factors, wear is still the second most important mechanical factor that limits the lifetime of TKRs and it is also highly influenced by the local kinematics of the knee. During wear experiments, constant load and slide-roll ratio is frequently applied in tribo-tests beside other important parameters. Nevertheless, numerous studies demonstrated that constant slide-roll ratio is not accurate approach if TKR wear is modelled, while instead of a constant load, a flexion-angle dependent tibiofemoral force should be involved into the wear model to obtain realistic results. A new analytical wear model, based upon Archard's law, is introduced, which can determine the effect of the tibiofemoral force and the varying slide-roll on wear between the tibiofemoral connection under standard and non-standard squat movement. The calculated total wear with constant slide-roll during standard squat was 5.5 times higher compared to the reference value, while if total wear includes varying slide-roll during standard squat, the calculated wear was approximately 6.25 times higher. With regard to non-standard squat, total wear with constant slide-roll during standard squat was 4.16 times higher than the reference value. If total wear included varying slide-roll, the calculated wear was approximately 4.75 times higher. It was demonstrated that the augmented force parameter solely caused 65% higher wear volume while the slide-roll ratio itself increased wear volume by 15% higher compared to the reference value. These results state that the force component has the major effect on wear propagation while non-standard squat should be proposed for TKR patients as rehabilitation exercise.

  4. Investigation on hard coating of pivot-jewel bearing and wearing performance

    International Nuclear Information System (INIS)

    Han Kun; Dai Xingjian

    2014-01-01

    The reliability of high speed rotating machine is related to the anti-wear properties of pivot jewel bearing used in the system. To reduce its wearing process, hard coating method is used on the steel pivot. Through the wearing test on specialized facilities, its founded that the TiN coating shows better performance than DLC coating, and multi-layer TiN coating can slow down the pivot's wearing process obviously compared to other methods. (authors)

  5. Correlation between the wear behaviour and the mechanical properties of several surface treatments

    International Nuclear Information System (INIS)

    Lelait, L.; Lina, A.; Rezakhanlou, R.; Duysen, J.C. van; Stebut, J. von

    1993-01-01

    Surface mechanical strength of chromium base (electrolytic and plasma sprayed) coatings is studied for friction and wear applications in nuclear environment. Indentation, scratch, and wear testing results are compared. In particular intrinsic coating brittleness is investigated as a mechanism responsible for impact wear. Electrolytic, hard chromium plate has a wear resistance well below that of the spray coated specimens studied. Acoustic emission level and brittle damage features are shown to be correlated. (orig.)

  6. Fretting and wear of stainless and ferritic steels in LMFBR steam generators

    International Nuclear Information System (INIS)

    Lewis, M.W.J.; Campbell, C.S.

    1981-01-01

    Steam generators for LMFBR's may be subject to both fretting wear as a result of flow-induced vibrations and to wear from larger amplitude sliding movements from thermal changes. Results of tests simulating the latter are given for stainless and ferritic steels. For the assessment of fretting wear damage, vibration assessments must be combined with data on specific wear rates. Test mechanisms used to study fretting in sodium covering impact, impact-slide and pure rubbing are described and results presented. (author)

  7. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The level of nuclear plant radiation exposure due to activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. Laboratory pin-on-disc and rolling contact wear tests were used to evaluate the wear performance of several coatings. Based on the results of these tests, multilayer Cr-nitride coatings and ion nitriding are the most promising approaches

  8. Standard test method for ranking resistance of materials to sliding wear using block-on-ring wear test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of materials to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank pairs of materials according to their sliding wear characteristics under various conditions. 1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. However, the interlaboratory testing has been limited to metals. In addition, the test can be run with various lubricants, liquids, or gaseous atmospheres, as desired, to simulate service conditions. Rotational speed and load can also be varied to better correspond to service requirements. 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. Wear test results are reported as the volume loss in cubic millimetres for both the block and ring. Materials...

  9. Investigation on the Tribological Behavior and Wear Mechanism of Five Different Veneering Porcelains.

    Directory of Open Access Journals (Sweden)

    Jie Min

    Full Text Available The primary aim of this research was to investigate the wear behavior and wear mechanism of five different veneering porcelains.Five kinds of veneering porcelains were selected in this research. The surface microhardness of all the samples was measured with a microhardness tester. Wear tests were performed on a ball-on-flat PLINT fretting wear machine, with lubrication of artificial saliva at 37°C. The friction coefficients were recorded by the testing system. The microstructure features, wear volume, and damage morphologies were recorded and analyzed with a confocal laser scanning microscope and a scanning electron microscope. The wear mechanism was then elucidated.The friction coefficients of the five veneering porcelains differ significantly. No significant correlation between hardness and wear volume was found for these veneering porcelains. Under lubrication of artificial saliva, the porcelain with higher leucite crystal content exhibited greater wear resistance. Additionally, leucite crystal size and distribution in glass matrix influenced wear behavior. The wear mechanisms for these porcelains were similar: abrasive wear dominates the early stage, whereas delamination was the main damage mode at the later stage. Furthermore, delamination was more prominent for porcelains with larger crystal sizes.Wear compatibility between porcelain and natural teeth is important for dental restorative materials. Investigation on crystal content, size, and distribution in glass matrix can provide insight for the selection of dental porcelains in clinical settings.

  10. Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip

    International Nuclear Information System (INIS)

    Chung, Koo-Hyun; Lee, Yong-Ha; Kim, Dae-Eun

    2005-01-01

    The wear of an atomic force microscope (AFM) tip is one of the crucial issues in AFM as well as in other probe-based applications. In this work, wear tests under extremely low normal load using an AFM were conducted. Also, in order to understand the nature of silicon tip wear, the wear characteristics of crystal silicon and amorphous silicon oxide layer were investigated by a high-resolution transmission electron microscope (HRTEM). It was found that fracture of the tip readily occurred due to impact during the approach process. Experimental results showed that the impact should be below 0.1 nN s to avoid significant fracture of the tip. Also, it was observed that wear of the amorphous layer, formed at the end of the tip, occurred at the initial stage of the silicon tip damage process. Based on Archard's wear law, the wear coefficient of the amorphous layer was in the range of 0.009-0.014. As for the wear characteristics of the silicon tip, it was shown that wear occurred gradually under light normal load and the wear rate decreased with increase in the sliding distance. As for the wear mechanism of the silicon tip, oxidation wear was identified to be the most significant. It was shown that the degree of oxidation was higher under high normal load and in a nitrogen environment, oxidation of the silicon tip was reduced

  11. Assessment of the amount of tooth wear on dental casts and intra-oral photographs

    NARCIS (Netherlands)

    Wetselaar, P.; Wetselaar-Glas, M.J.M.; Koutris, M.; Visscher, C.M.; Lobbezoo, F.

    2016-01-01

    Tooth wear is a multifactorial condition, leading to the loss of dental hard tissues. Many grading scales are available to assess the amount of tooth wear, one of which is the tooth wear evaluation system (TWES). A grading scale can be used chairside, on casts and on photographs. The aim was to test

  12. Reduction of Erosion Wear of Mean Pressure Cylinder of Steam Turbines Operating Beyond Critical Parameters

    Directory of Open Access Journals (Sweden)

    V. P. Kascheev

    2009-01-01

    Full Text Available The paper considers problems leading to erosion wear of flowing part of a mean pressure turbine cylinder operating beyond critical parameters. Explanation of erosion wear of flowing part of a mean pressure turbine cylinder which is proved in practice and recommendations for wear reduction are given in the paper

  13. Processing and study of the wear and friction behaviour of discrete ...

    Indian Academy of Sciences (India)

    due to the increase in the braking energy, (3) at low sliding speeds (5, 10 m s−1), abrasive wear is the main wear ... tion materials, gas turbine thermal barrier coatings, armour ..... in a optimum level to balance both the wear loss and the stop-.

  14. A Novel Method for Assessment of Polyethylene Liner Wear in Radiopaque Tantalum Acetabular Cups

    DEFF Research Database (Denmark)

    Troelsen, Anders; Greene, Meridith E; Ayers, David C

    2015-01-01

    Conventional radiostereometric analysis (RSA) for wear is not possible in patients with tantalum cups. We propose a novel method for wear analysis in tantalum cups. Wear was assessed by gold standard RSA and the novel method in total hip arthroplasty patients enrolled in a randomized controlled...

  15. Bionic design methodology for wear reduction of bulk solids handling equipment

    NARCIS (Netherlands)

    Chen, G.; Schott, D.L.; Lodewijks, G.

    2016-01-01

    Large-scale handling of particulate solids can cause severe wear on bulk solids handling equipment surfaces. Wear reduces equipment life span and increases maintenance cost. Examples of traditional methods to reduce wear of bulk solids handling equipment include optimizing transport operations

  16. Optimization of pulsed DC PACVD parameters: Toward reducing wear rate of the DLC films

    Science.gov (United States)

    Ebrahimi, Mansoureh; Mahboubi, Farzad; Naimi-Jamal, M. Reza

    2016-12-01

    The effect of pulsed direct current (DC) plasma-assisted chemical vapor deposition (PACVD) parameters such as temperature, duty cycle, hydrogen flow, and argon/CH4 flow ratio on the wear behavior and wear durability of the diamond-like carbon (DLC) films was studied by using response surface methodology (RSM). DLC films were deposited on nitrocarburized AISI 4140 steel. Wear rate and wear durability of the DLC films were examined with the pin-on-disk method. Field emission scanning electron microscopy, Raman spectroscopy, and nanoindentation techniques were used for studying wear mechanisms, chemical structure, and hardness of the DLC films. RSM results show that duty cycle is one of the important parameters that affect the wear rate of the DLC samples. The wear rate of the samples deposited with a duty cycle of >75% decreases with an increase in the argon/CH4 ratio. In contrast, for a duty cycle of <65%, the wear rate increases with an increase in the argon/CH4 ratio. The wear durability of the DLC samples increases with an increase in the duty cycle, hydrogen flow, and argon/CH4 flow ratio at the deposition temperature between 85 °C and 110 °C. Oxidation, fatigue, abrasive wear, and graphitization are the wear mechanisms observed on the wear scar of the DLC samples deposited with the optimum deposition conditions.

  17. Wear-Induced Changes in FSW Tool Pin Profile: Effect of Process Parameters

    Science.gov (United States)

    Sahlot, Pankaj; Jha, Kaushal; Dey, G. K.; Arora, Amit

    2018-06-01

    Friction stir welding (FSW) of high melting point metallic (HMPM) materials has limited application due to tool wear and relatively short tool life. Tool wear changes the profile of the tool pin and adversely affects weld properties. A quantitative understanding of tool wear and tool pin profile is crucial to develop the process for joining of HMPM materials. Here we present a quantitative wear study of H13 steel tool pin profile for FSW of CuCrZr alloy. The tool pin profile is analyzed at multiple traverse distances for welding with various tool rotational and traverse speeds. The results indicate that measured wear depth is small near the pin root and significantly increases towards the tip. Near the pin tip, wear depth increases with increase in tool rotational speed. However, change in wear depth near the pin root is minimal. Wear depth also increases with decrease in tool traverse speeds. Tool pin wear from the bottom results in pin length reduction, which is greater for higher tool rotational speeds, and longer traverse distances. The pin profile changes due to wear and result in root defect for long traverse distance. This quantitative understanding of tool wear would be helpful to estimate tool wear, optimize process parameters, and tool pin shape during FSW of HMPM materials.

  18. Wear behaviour of wear-resistant adaptive nano-multilayered Ti-Al-Mo-N coatings

    Science.gov (United States)

    Sergevnin, V. S.; Blinkov, I. V.; Volkhonskii, A. O.; Belov, D. S.; Kuznetsov, D. V.; Gorshenkov, M. V.; Skryleva, E. A.

    2016-12-01

    Coating samples in the Ti-Al-Mo-N system were obtained by arc-PVD method at variable bias voltage Ub applied to the substrate, and the partial pressure of nitrogen P(N2) used as a reaction gas. The deposited coatings were characterized by a nanocrystalline structure with an average grain size of 30-40 nm and multilayered architecture with alternating layers of (Ti,Al)N nitride and Mo-containing phases with a thickness comparable to the grain size. Coatings of (Ti,Al)N-Mo-Mo2N and (Ti,Al)N-Mo2N compositions were obtained by changing deposition parameters. The obtained coatings had hardness of 40 GPa and the relative plastic deformation under microindentation up to 60%. (Ti,Al)N-Mo2N coatings demonstrated better physicomechanical characteristics, showing high resistance to crack formation and destruction through the plastic deformation mechanism without brittle fracturing, unlike (Ti,Al)N-Mo-Mo2N. The friction coefficient of the study coatings (against Al2O3 balls under dry condition using a pin-on-disc method) reached the values of 0.35 and 0.5 at 20 °C and 500 °C respectively, without noticeable wear within this temperature range. These tribological properties were achieved by forming MoO3 acting as a solid lubricant. At higher temperatures the deterioration in the tribological properties is due to the high rate of MoO3 sublimation from friction surfaces.

  19. Wear of PEEK-OPTIMA® and PEEK-OPTIMA®-Wear Performance articulating against highly cross-linked polyethylene.

    Science.gov (United States)

    East, Rebecca H; Briscoe, Adam; Unsworth, Anthony

    2015-03-01

    The idea of all polymer artificial joints, particularly for the knee and finger, has been raised several times in the past 20 years. This is partly because of weight but also to reduce stress shielding in the bone when stiffer materials such as metals or ceramics are used. With this in mind, pin-on-plate studies of various polyetheretherketone preparations against highly cross-linked polyethylene were conducted to investigate the possibility of using such a combination in the design of a new generation of artificial joints. PEEK-OPTIMA(®) (no fibre) against highly cross-linked polyethylene gave very low wear factors of 0.0384 × 10(-6) mm(3)/N m for the polyetheretherketone pins and -0.025 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates. The carbon-fibre-reinforced polyetheretherketone (PEEK-OPTIMA(®)-Wear Performance) also produced very low wear rates in the polyetheretherketone pins but produced very high wear in the highly cross-linked polyethylene, as might have been predicted since the carbon fibres are quite abrasive. When the fibres were predominantly tangential to the sliding plane, the mean wear factor was 0.052 × 10(-6) mm(3)/N m for the pins and 49.3 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates; a half of that when the fibres ran axially in the pins (0.138 × 10(-6) mm(3)/N m for the pins and 97.5 × 10(-6) mm/ N m for the cross-linked polyethylene plates). PEEK-OPTIMA(®) against highly cross-linked polyethylene merits further investigation. © IMechE 2015.

  20. Microbiota, Inflammation and Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Cécily Lucas

    2017-06-01

    Full Text Available Colorectal cancer, the fourth leading cause of cancer-related death worldwide, is a multifactorial disease involving genetic, environmental and lifestyle risk factors. In addition, increased evidence has established a role for the intestinal microbiota in the development of colorectal cancer. Indeed, changes in the intestinal microbiota composition in colorectal cancer patients compared to control subjects have been reported. Several bacterial species have been shown to exhibit the pro-inflammatory and pro-carcinogenic properties, which could consequently have an impact on colorectal carcinogenesis. This review will summarize the current knowledge about the potential links between the intestinal microbiota and colorectal cancer, with a focus on the pro-carcinogenic properties of bacterial microbiota such as induction of inflammation, the biosynthesis of genotoxins that interfere with cell cycle regulation and the production of toxic metabolites. Finally, we will describe the potential therapeutic strategies based on intestinal microbiota manipulation for colorectal cancer treatment.

  1. Inflammation in renal atherosclerotic disease.

    Science.gov (United States)

    Udani, Suneel M; Dieter, Robert S

    2008-07-01

    The study of renal atherosclerotic disease has conventionally focused on the diagnosis and management of renal artery stenosis. With the increased understanding of atherosclerosis as a systemic inflammatory process, there has been increased interest in vascular biology at the microvasculature level. While different organ beds share some features, the inflammation and injury in the microvasculature of the kidney has unique elements as well. Understanding of the pathogenesis yields a better understanding of the clinical manifestations of renal atherosclerotic disease, which can be very subtle. Furthermore, identifying the molecular mechanisms responsible for the progression of kidney damage can also direct clinicians and scientists toward targeted therapies. Existing therapies used to treat atherosclerotic disease in other vascular beds may also play a role in the treatment of renal atherosclerotic disease.

  2. Insulin resistance and chronic inflammation

    Directory of Open Access Journals (Sweden)

    Natalia Matulewicz

    2016-12-01

    Full Text Available Insulin resistance is a condition of reduced biological response to insulin. Growing evidence indicates the role of the chronic low-grade inflammatory response in the pathogenesis of insulin resistance. Adipose tissue in obesity is characterized by increased lipolysis with the excessive release of free fatty acids, and is also a source of proinflammatory cytokines. Both these factors may inhibit insulin action. Proinflammatory cytokines exert their effect by stimulating major inflammatory NFκB and JNK pathways within the cells. Inflammatory processes in other insulin responsive tissues may also play a role in inducing insulin resistance. This paper is an overview of the chronic low-grade inflammation in adipose tissue, skeletal muscle, liver and endothelial cells during the development of insulin resistance.

  3. Liver inflammation during monocrotaline hepatotoxicity

    International Nuclear Information System (INIS)

    Copple, Bryan L.; Ganey, Patricia E.; Roth, Robert A.

    2003-01-01

    Monocrotaline (MCT) is a pyrrolizidine alkaloid (PA) plant toxin that causes hepatotoxicity in humans and animals. Human exposure occurs from consumption of contaminated grains and herbal teas and medicines. Intraperitoneal injection (i.p.) of 300 mg/kg MCT in rats produced time-dependent hepatic parenchymal cell (HPC) injury beginning at 12 h. At this time, an inflammatory infiltrate consisting of neutrophils (PMNs) appeared in areas of hepatocellular injury, and activation of the coagulation system occurred. PMN accumulation was preceded by up-regulation of the PMN chemokines cytokine-induced neutrophil chemoattractant-1 (CINC-1) and macrophage inflammatory protein-2 (MIP-2) in the liver. The monocyte chemokine, monocyte chemoattractant protein-1 (MCP-1), was also upregulated. Inhibition of Kupffer cell function with gadolinium chloride (GdCl 3 ) significantly reduced CINC-1 protein in plasma after MCT treatment but had no effect on hepatic PMN accumulation. Since inflammation can contribute to either pathogenesis or resolution of tissue injury, we explored inflammatory factors as a contributor to MCT hepatotoxicity. To test the hypothesis that PMNs contribute to MCT-induced HPC injury, rats were depleted of PMNs with a rabbit anti-PMN serum prior to MCT treatment. Anti-PMN treatment reduced hepatic PMN accumulation by 80% but had no effect on MCT-induced HPC injury or activation of the coagulation system. To test the hypothesis that Kupffer cells and/or tumor necrosis factor-α (TNF-α) are required for MCT-induced HPC injury, rats were treated with either GdCl 3 to inhibit Kupffer cell function or pentoxifylline (PTX) to prevent synthesis of TNF-α. Neither treatment prevented MCT-induced HPC injury. Results from these studies suggest that PMNs, Kupffer cells and TNF-α are not critical mediators of MCT hepatotoxicity. Accordingly, although inflammation occurs in the liver after MCT treatment, it is not required for HPC injury and possibly occurs secondary to

  4. A comparative study on the fretting wear properties of advanced zirconium fuel cladding materials

    International Nuclear Information System (INIS)

    Lee, Young Ho; Kim, Hyung Kyu; Park, Jeong Yong; Kim, Jun Hwan

    2005-06-01

    Fretting wear tests were carried out in room and high temperature water in order to evaluate the wear properties of new zirconium nuclear fuel claddings (K2∼K6) and the commercial claddings (M5, zirlo and zircaloy-4). The objective is to compare the wear resistance of K2∼K6 claddings with that of the commercial ones at the same test condition. After the wear tests, the average wear volume and the maximum wear depth were evaluated and compared at each test condition. As a result, it is difficult to select the most wear-resistant cladding between the K2∼K6 claddings and the commercial ones. This is because the average wear volume and maximum depth of each cladding included between the scattering range of measured results. However, wear resistance of the tested claddings based on the average wear volume and maximum wear depth could be summarized as follows: K5 > zircaloy-4 > (K2,K3) > (K4,M5) > K6 > zirlo at room temperature, zircaloy-4 > K5 > (K3,K4,zirlo) > (K2,K6) > M5 at high temperature and pressure. Therefore, it is concluded that K5 cladding among the tested new zirconium alloys has relatively higher wear-resistance in room and high temperature condition. In order to examine the wear mechanism, it is necessary to systematically study with the consideration of the alloying element effect and test environment. In this report, the wear test procedure and the wear evaluation method are described in detail

  5. A Comparative Study on the Formation Mechanism of Wear Scars during the Partial and Full Scale Fretting Wear Tests of Spacer Grids

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Shin, Chang Hwan; Oh, Dong Seok; Kang, Heung Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Fretting wear studies for evaluating the contact damages of nuclear fuel rods have been focused on the contact shape, rod motion, contact condition, environment, etc.. However, fretting wear mechanism was dramatically changed with slight variation of test variables such as test environments and contact shapes. For example, in an unlubricated condition, effects of wear debris and/or its layer on the fretting wear mechanism showed that the formation of a well-developed layer on the contact surfaces has a beneficial effect for decreasing a friction coefficient. Otherwise, a severe wear was happened due to a third body abrasion. In addition, in water lubrication condition, some of wear debris was remained on worn surface of fuel rod specimens at both sliding and impacting loading conditions. So, it is apparent that a wear rate of fuel rod specimen was easily accelerated by the third-body abrasion. This is because the restrained agglomeration behavior between generated wear particles results in rapid removal of wear debris and its layer. In case of contact shape effects, previous studies show that wear debris are easily trapped between contact surfaces and its debris layer was well developed in a localized area especially in a concave spring rather than a convex spring shape. Consequently, localized wear was happened at both ends of a concave spring and center region of a convex spring. So, it is useful for determining the fretting wear resistance of spacer gird spring and dimple by using part unit in the various lubricated conditions. It is well known that the fretting wear phenomenon of nuclear fuel rod is originated from a flow-induced vibration (FIV) due to the rapid primary coolant. This means that both rod vibration and debris removal behavior were affected by flow fields around the contact regions between fuel rod and spring/dimple. However, all most of the fretting tests were performed by simulating rod vibrating motions such as axial vibration, conservative rod

  6. A Comparative Study on the Formation Mechanism of Wear Scars during the Partial and Full Scale Fretting Wear Tests of Spacer Grids

    International Nuclear Information System (INIS)

    Lee, Young Ho; Shin, Chang Hwan; Oh, Dong Seok; Kang, Heung Seok

    2012-01-01

    Fretting wear studies for evaluating the contact damages of nuclear fuel rods have been focused on the contact shape, rod motion, contact condition, environment, etc.. However, fretting wear mechanism was dramatically changed with slight variation of test variables such as test environments and contact shapes. For example, in an unlubricated condition, effects of wear debris and/or its layer on the fretting wear mechanism showed that the formation of a well-developed layer on the contact surfaces has a beneficial effect for decreasing a friction coefficient. Otherwise, a severe wear was happened due to a third body abrasion. In addition, in water lubrication condition, some of wear debris was remained on worn surface of fuel rod specimens at both sliding and impacting loading conditions. So, it is apparent that a wear rate of fuel rod specimen was easily accelerated by the third-body abrasion. This is because the restrained agglomeration behavior between generated wear particles results in rapid removal of wear debris and its layer. In case of contact shape effects, previous studies show that wear debris are easily trapped between contact surfaces and its debris layer was well developed in a localized area especially in a concave spring rather than a convex spring shape. Consequently, localized wear was happened at both ends of a concave spring and center region of a convex spring. So, it is useful for determining the fretting wear resistance of spacer gird spring and dimple by using part unit in the various lubricated conditions. It is well known that the fretting wear phenomenon of nuclear fuel rod is originated from a flow-induced vibration (FIV) due to the rapid primary coolant. This means that both rod vibration and debris removal behavior were affected by flow fields around the contact regions between fuel rod and spring/dimple. However, all most of the fretting tests were performed by simulating rod vibrating motions such as axial vibration, conservative rod

  7. IL-1 as a target in inflammation.

    Science.gov (United States)

    Ito, Yuki; Kaneko, Naoe; Iwasaki, Tomoyuki; Morikawa, Shinnosuke; Kaneko, Kentaro; Masumoto, Junya

    2015-03-16

    Inflammation is a protective response to eliminate cytotoxic agents and pathogens. Various factors are thought to be involved in the pathological changes in tissues caused by inflammation. Interleukin 1, an inflammatory cytokine, is thought to have diverse physiological functions and to play an important role in inflammatory disease. In this review, we discuss interleukin-1 as a target of inflammatory disease.

  8. Inflammation versus Host Defense in Obesity

    OpenAIRE

    Wu, Huaizhu; Ballantyne, Christie M.

    2014-01-01

    Obesity is characterized by a state of low-grade, chronic inflammation. Wang et al. (2014) report that immune cells from obese mice have decreased production of IL-22, a cytokine involved in immune responses and inflammation, and reveal therapeutic effects of exogenous IL-22 against obesity-linked metabolic dysfunctions.

  9. Dual role of neutrophils in inflammation

    NARCIS (Netherlands)

    Pillay, J.

    2011-01-01

    Systemic inflammation is a hallmark of trauma, sepsis and various severe infectious diseases. Severe systemic inflammation can lead to inflammatory complications. The Acute Respiratory Distress Syndrome (ARDS) and Multiple Organ Dysfunction Syndrome (MODS) are seen after trauma and in sepsis and are

  10. Reparative inflammation takes charge of tissue regeneration

    NARCIS (Netherlands)

    Karin, Michael; Clevers, Hans

    2016-01-01

    Inflammation underlies many chronic and degenerative diseases, but it also mitigates infections, clears damaged cells and initiates tissue repair. Many of the mechanisms that link inflammation to damage repair and regeneration in mammals are conserved in lower organisms, indicating that it is an

  11. THE WEAR OF INJECTION MOULD FUNCTIONAL PARTS IN CONTACT WITH POLYMER COMPOSITES

    Directory of Open Access Journals (Sweden)

    Janette Brezinová

    2009-02-01

    Full Text Available The paper deals with the evaluation of material wear of injection moulds made of aluminium alloy Alumec 89 and copper alloy Moldmax HH in friction couples with plastomer materials with various filler contents. The friction relations in injection moulding were simulated in an adhesion dry wear test using an Amsler machine, with an area contact of the friction couple materials. The wear intensity was evaluated by determination of friction coefficient and relative wearing by the mass loss. Surface morphology changes of evaluated alloys after wear and the thermal conditions in particular friction couples were analysed simultaneously.

  12. The synergism of impact wear and oxidation in carbon dioxide environments

    International Nuclear Information System (INIS)

    Morri, J.R.

    1987-01-01

    The impact fretting wear characteristics in Co 2 of a 9%Cr steel against a 310SS counterface have been studied between 100 0 and 500 0 C. An energy effect was identified in which high energy impacts suppressed a severe-to-mild wear transition for low energy impacts between 250 0 and 350 0 C. In addition a severe form of high temperature wear (above 400 0 C) was observed in which pitting of the 9Cr steel and transfer to the 310SS occurred. Subsequent wear scar examination revealed a wear mechanism dominated by the interaction of the oxidation characteristics and the changing mechanical behaviour of the 9Cr. (author)

  13. Evaluation of dry sliding wear behavior of silicon particles reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Sun Zhiqiang; Zhang Di; Li Guobin

    2005-01-01

    This paper reports a study on the wear property of powder metallurgy aluminum matrix composites 9Si/Al-Cu-Mg. A on rock wear-testing machine is used to evaluate the wear property of the composites, in which a GCrl5 steel ring is used as the counter face material. The wear behavior of the composites under different conditions is studied. The optical microscope and scanning electron microscope are used to analyze the worn surfaces and the subsurface of the composites in order to research the wear mechanism of the composites. Results indicate that the weight loss of the composite were lower than that of the matrix alloy

  14. Theoretical-experimental analysis of the fretting/impact wear in fuel rods

    International Nuclear Information System (INIS)

    Pecos, Luis F.

    2001-01-01

    Nuclear power plant fuel elements are subjected to flow induced vibrations. A consequence of these vibrations is impact/fretting wear in fuel rods or sliding shoes. Because of the difficulties to assert the mechanism of impact/fretting wear phenomenon it is necessary to use semiempirical formulations in order to predict the wear rate of the components. The results of a series of experiments with Zr-4 specimens are presented in this work. A parameter called 'work-rate' was used to normalize the wear rates and interpret the results in terms of wear coefficient. (author) [es

  15. [The importance of wear couples for younger endoprosthesis patients].

    Science.gov (United States)

    Kircher, J; Bergschmidt, P; Bader, R; Kluess, D; Besser-Mahuzir, E; Leder, A; Mittelmeier, W

    2007-04-01

    The success and long-term survival rates of modern joint arthroplasty leads to a high patient satisfaction and, together with its technical improvements, has broadened the indications to an increasingly younger population. Limitations to the established systems are the long-term survival rates, which are mainly influenced by wear of the articulating parts and the resulting problems. Beside "classic" long-stemmed cemented shafts articulating with metal against polyethylene, short-stemmed or cup designs with a hard-hard self pairing are increasingly used in total hip arthroplasty. This paper reflects the current state of the art in joint arthroplasty for younger patients with the focus on wear couples and discusses future perspectives. Special interest is focused on the advantages and disadvantages of ceramic bearings, problems with allergies to implant components and the design of endoprostheses with regard to avoidance of impingement.

  16. Nano-crystallization of steel wire and its wear behavior

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.H. [School of Electromechanical Engineering, Xian University of Architecture and Technology, Xian 716000 (China) and School of Materials Science and Engineering, Northwestern Polytecnical University, Xian 710072 (China)], E-mail: xuyunhua@vip.163.com; Peng, J.H. [School of Electromechanical Engineering, Xian University of Architecture and Technology, Xian 716000 (China); Fang, L. [State Key Laboratory for Mechanical Behavior of Materials, Xian Jiaotong University, Xian 710049 (China)

    2008-06-15

    As carbon steel wire is widely used in civil engineering and industry, it is quite important to increase its strength. In the present paper, a severe cold drawing approach is applied to increase strength and is shown to produce nano grains. With increasing true strain, the tensile strength increases continuously and the cementite flake thickness decreases correspondingly. It is observed by transmission electron microscopy that a significant amount of cementite flakes have been fragmented and dissolved at true strains. Finally, the grains are transformed to nano-sized crystals. Additionally, the cold drawn nano-sized steel wire has been knitted and filled with polyurethane to produce a composite material. Three-body abrasive wear tests show that the wear resistance of the test material is even better than that of high-Cr white cast irons.

  17. Nano-crystallization of steel wire and its wear behavior

    International Nuclear Information System (INIS)

    Xu, Y.H.; Peng, J.H.; Fang, L.

    2008-01-01

    As carbon steel wire is widely used in civil engineering and industry, it is quite important to increase its strength. In the present paper, a severe cold drawing approach is applied to increase strength and is shown to produce nano grains. With increasing true strain, the tensile strength increases continuously and the cementite flake thickness decreases correspondingly. It is observed by transmission electron microscopy that a significant amount of cementite flakes have been fragmented and dissolved at true strains. Finally, the grains are transformed to nano-sized crystals. Additionally, the cold drawn nano-sized steel wire has been knitted and filled with polyurethane to produce a composite material. Three-body abrasive wear tests show that the wear resistance of the test material is even better than that of high-Cr white cast irons

  18. Evolution of wear and friction along experimental faults

    Science.gov (United States)

    Boneh, Yeval; Chang, Jefferson C.; Lockner, David A.; Reches, Zeev

    2014-01-01

    We investigate the evolution of wear and friction along experimental faults composed of solid rock blocks. This evolution is analyzed through shear experiments along five rock types, and the experiments were conducted in a rotary apparatus at slip velocities of 0.002–0.97 m/s, slip distances from a few millimeters to tens of meters, and normal stress of 0.25–6.9 MPa. The wear and friction measurements and fault surface observations revealed three evolution phases: A) An initial stage (slip distances evolution stages are clearly recognizable for experimental faults made from bare rock blocks, our analysis suggests that natural faults “bypass” the first two stages and slip at gouge-controlled steady-state conditions.

  19. Fabrication and wear protection performance of superhydrophobic surface on zinc

    Energy Technology Data Exchange (ETDEWEB)

    Wan Yong, E-mail: wanyong@qtech.edu.cn [School of Mechanical Engineering, Qingdao Technological University, 11 Fushun Road, Qingdao 266033 (China); Wang Zhongqian; Xu Zhen; Liu Changsong [School of Mechanical Engineering, Qingdao Technological University, 11 Fushun Road, Qingdao 266033 (China); Zhang Junyan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou 730000 (China)

    2011-06-15

    A simple two-step process has been developed to render zinc surface superhydrophobic, resulting in low friction coefficient and long wear resistance performance. The ZnO film with uniform and packed nanorod structure was firstly created by immersing the zinc substrates into 4% N,N-dimethylformamide solution. The as-fabricated surface was then coated a layer of fluoroalkylsilane (FAS) by gas phase deposition. Scanning electron microscopy (SEM) and water contact angle (WCA) measurement have been performed to characterize the morphological feature, chemical composition and superhydrophobicity of the surface. The resulting surfaces have a WCA as high as 156 deg. and provide effective friction-reducing and wear protection for zinc substrate.

  20. Fabrication and wear protection performance of superhydrophobic surface on zinc

    International Nuclear Information System (INIS)

    Wan Yong; Wang Zhongqian; Xu Zhen; Liu Changsong; Zhang Junyan

    2011-01-01

    A simple two-step process has been developed to render zinc surface superhydrophobic, resulting in low friction coefficient and long wear resistance performance. The ZnO film with uniform and packed nanorod structure was firstly created by immersing the zinc substrates into 4% N,N-dimethylformamide solution. The as-fabricated surface was then coated a layer of fluoroalkylsilane (FAS) by gas phase deposition. Scanning electron microscopy (SEM) and water contact angle (WCA) measurement have been performed to characterize the morphological feature, chemical composition and superhydrophobicity of the surface. The resulting surfaces have a WCA as high as 156 deg. and provide effective friction-reducing and wear protection for zinc substrate.

  1. Wearing an abdominal belt increases diastolic blood pressure.

    Science.gov (United States)

    Rafacz, W; McGill, S M

    1996-09-01

    The purpose of this study was to determine the effect of wearing an abdominal belt on blood pressure (systolic and diastolic) and heart rate during a variety of tasks. The belt was typical of the elastic type with suspenders and Velcro tabs for cinching the belt snug. The tasks performed included sitting at rest, sitting with the torso inclined forward at 45 degrees, standing with the torso inclined forward at 45 degrees (with and without holding an 11-kg weight), a trunk axial rotation task, and squat lifting. Blood pressure was monitored noninvasively with a FINAPRES blood pressure monitor. Twenty healthy men performed each task with and without the abdominal belt. Although no significant increases in mean systolic blood pressure or heart rate were found, there was a significant increase in diastolic blood pressure in all conditions. All people considering wearing an abdominal belt should also consider the risks and liability associated with the additional cardiovascular load, particularly heart attack and stroke.

  2. Mechanical And Microstructural Evaluation Of A Wear Resistant Steel

    International Nuclear Information System (INIS)

    Santos, F.L.F. dos; Vieira, A.G.; Correa, E.C.S.; Pinheiro, I.P.

    2010-01-01

    In the present work, the analysis of the mechanical properties and the microstructural features of a high strength low alloy steel, containing chromium, molybdenum and boron, subjected to different heat treatments, was conducted. After austenitizing at 910 deg C for 10 minutes, three operations were carried out: oil quenching, oil quenching followed by tempering at 200 deg C for 120 minutes and austempering at 400 deg C for 5 minutes followed by water cooling. The analysis was performed through tensile and hardness tests, optical microscopy and X-ray diffraction. The bainitic structure led to high strength and toughness, both essential mechanical properties for wear resistant steels. The occurrence of allotriomorphic ferrite and retained austenite in the samples also increased the wear resistance. This phenomenon is related to the fact that both structures are able to be deformed and, in the case of the retained austenite, the transformation induced plasticity TRIP effect may take place as the material is used. (author)

  3. Force Modelling in Orthogonal Cutting Considering Flank Wear Effect

    Science.gov (United States)

    Rathod, Kanti Bhikhubhai; Lalwani, Devdas I.

    2017-05-01

    In the present work, an attempt has been made to provide a predictive cutting force model during orthogonal cutting by combining two different force models, that is, a force model for a perfectly sharp tool plus considering the effect of edge radius and a force model for a worn tool. The first force model is for a perfectly sharp tool that is based on Oxley's predictive machining theory for orthogonal cutting as the Oxley's model is for perfectly sharp tool, the effect of cutting edge radius (hone radius) is added and improve model is presented. The second force model is based on worn tool (flank wear) that was proposed by Waldorf. Further, the developed combined force model is also used to predict flank wear width using inverse approach. The performance of the developed combined total force model is compared with the previously published results for AISI 1045 and AISI 4142 materials and found reasonably good agreement.

  4. Study of Stainless Steel Resistance in Conditions of Tribocorrosion Wear

    Directory of Open Access Journals (Sweden)

    Goran Rozing

    2015-07-01

    Full Text Available Analyzed was the influence of tribocorrosion wear due to effects of fatty acids present in the processed medium. The analysis was conducted on samples made of two austenitic and two martensitic stainless steels. Austenitic steels were tested in their nitrided state and martensitic in their induction hardened state. Conducted were laboratory tests of corrosion resistance of samples, analysis of the microstructure and hardness. To see how the applied processes for modifying the surface of stainless steels behave in realistic conditions, it was conducted the examination of samples/parts of a sunflower cake chain conveyer. Based on the comparison of results obtained in the laboratory and in real conditions, it was estimated that steels AISI 420 and AISI 431 with induction hardened surfaces have a satisfactory resistance to abrasive-adhesive wear in the presence of fatty acids.

  5. Carbon-Based Wear Coatings: Properties and Applications

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2003-01-01

    The technical function of numerous engineering systems - such as vehicles, machines, and instruments - depends on the processes of motion and on the surface systems. Many processes in nature and technology depend on the motion and dynamic behavior of solids, liquids, and gases. Smart surface systems are essential because of the recent technological push toward higher speeds, loads, and operating temperatures; longer life; lighter weight and smaller size (including nanotechnology); and harsh environments in mechanical, mechatronic, and biomechanical systems. If proper attention is not given to surface systems, then vehicles, machines, instruments, and other technical systems could have short lives, consume excessive energy, experience breakdowns, result in liabilities, and fail to accomplish their missions. Surface systems strongly affect our national economy and our lifestyles. At the NASA Glenn Research Center, we believe that proper attention to surface systems, especially in education, research, and application, could lead to economic savings of between 1.3 and 1.6 percent of the gross domestic product. Wear coatings and surface systems continue to experience rapid growth as new coating and surface engineering technologies are discovered, more cost-effective coating and surface engineering solutions are developed, and marketers aggressively pursue, uncover, and exploit new applications for engineered surface systems in cutting tools and wear components. Wear coatings and smart surface systems have been used widely in industrial, consumer, automotive, aerospace, and biomedical applications. This presentation expresses the author's views of and insights into smart surface systems in wear coatings. A revolution is taking place in carbon science and technology. Diamond, an allotrope of carbon, joins graphite, fullerenes, and nanotubes as its major pure carbon structures. It has a unique combination of extreme properties: hardness and abrasion resistance; adhesion

  6. THE CORROSION BEHAVIOR AND WEAR RESISTANCE OF GRAY CAST IRON

    Directory of Open Access Journals (Sweden)

    Lina F. Kadhim

    2018-01-01

    Full Text Available Gray cast iron has many applications as pipes , pumps and valve bodies where it has influenced by heat and contact with other solutions . This research has studied the corrosion behavior and Vickers hardness of gray cast iron by immersion in four strong alkaline solutions (NaOH, KOH, Ca(OH2, LiOHwith three concentrations (1%,2%,3% of each solution. Dry sliding wear has carried out before and after the heat treatments (stress relief ,normalizing, hardening and tempering. In this work ,maximum wear strength has obtained at tempered gray cast iron and minimum corrosion rate has obtained in LiOH solution by forming protective white visible oxide layer.

  7. Effect of bagasse ash reinforcement on dry sliding wear behaviour of polymer matrix composites

    International Nuclear Information System (INIS)

    Aigbodion, V.S.; Hassan, S.B.; Agunsoye, J.O.

    2012-01-01

    Highlights: → The influence of wear parameters on the wear rate of RLDPE were investigated. → The predicted wear rate of the RLDPE and it composites were found to lie close to that experimentally observed ones. → The results showed that the addition of bagasse ash as filler materials in RLDPE composites increase the wear resistance. -- Abstract: The tribological behaviour of recycled low density polyethylene (RLDPE) polymer composites with bagasse ash particles as a reinforcement was studied using a pin-on-disc wear rig under dry sliding conditions. The influence of wear parameters like, applied load, sliding speed, sliding distance and percentage of bagasse ash fillers, on the wear rate were investigated. A plan of experiments was performed to acquire data in a controlled way. Scanning electron microscope was used to analyse the worn surface of the samples. Linear regression equation and analysis of variance (ANOVA) were employed to investigate the influence of process parameters on the wear rate of the samples. The predicted wear rate of the RLDPE and it composites were found to lie close to that experimentally observed ones. The confirmation of the experiments conducted using ANOVA to verify the optimal testing parameters show that sliding speed and applied load had significant effect on the wear rate. The results showed that the addition of bagasse ash as filler materials in RLDPE composites increase the wear resistance of the composite greatly.

  8. Friction and wear behavior of steam-oxidized ferrous PM compacts

    Energy Technology Data Exchange (ETDEWEB)

    Raj, P. Philomen-D-Anaand; GopalaKrishna, A. [Dept. of Mechanical Engineering, Jawaharlal Nehru Technological University, Kakinada (India); Palaniradja, K [Dept. of Mechanical Engineering, Pondicherry Engineering College, Pondicherry (India)

    2016-10-15

    This study determines density effect by assessing sintering temperature and graphite content on the dry sliding wear characteristics of steam-treated iron materials using a pin-on-disk wear test. The specimens were prepared from atomized premixed iron base powders and contained 0.1 to 1.0 wt.% carbon compacted at different densities (5.9 g/cc to 6.8 g/cc). The specimens were sintered for 1 h at different sintering temperatures (1090°C to 1130°C), and then subjected to continuous steam treatment at 540°C for 95 min through in situ Powder metallurgy (PM) technique. Steam treatment was proposed to improve the wear performances of the components of PM. Wear tests were conducted using a pin-on-disk-type machine. Load ranged from 20 N to 60 N. Sliding distance and sliding velocity of 312 m and 0.26 m/s, respectively, were adopted for all tests. Scanning electron microscope was used to analyze wear surface. Increased density and graphite content reduced the wear rate of steam-treated materials. Hardness increased with increasing graphite content. Wear mechanism, wear rate map, and wear maps were drawn for the test result data. Wear transition map identified mild, severe, and ultra-severe wear regimes as functions of applied load.

  9. Influence of applied load on wear behavior of C/C-Cu composites under electric current

    Directory of Open Access Journals (Sweden)

    Jian Yin

    2017-04-01

    Full Text Available Using carbon fiber needled fabrics with Cu-mesh and graphite powder as the preform, Cu mesh modified carbon/carbon(C/C-Cu composites were prepared by chemical vapor deposition (CVD with C3H6 and impregnation-carbonization (I/C with furan resin. C/C composites, as a comparison, were also prepared. Their microstructures and wear morphologies were observed by optical microscopy (OM and scanning electron microscope (SEM, respectively. Wear behavior of C/C and C/C-Cu composites under different applied loads were investigated on a pin-on-disc wear tester. The results show that Cu meshes are well dispersed and pyrolytic carbon is in rough laminar structure. Both C/C and C/C-Cu composites had good wear properties. The current-carrying capacity of C/C-Cu composites increases and the arc discharge is hindered as the applied load increases from 40 N to 80 N. Both C/C and C/C-Cu composites had good wear properties. The mass wear rate of C/C-Cu composites under 80 N was only 4.2% of that under 60 N. In addition, C/C-Cu composites represent different wear behaviors because wear mechanisms of arc erosion, abrasive wear, adhesive wear, and oxidative wear are changing under different applied loads.

  10. Experimental Study of the Hygrothermal Effect on Wear Behavior of Composite Materials

    Directory of Open Access Journals (Sweden)

    Fadhel Abbas. Abdulla

    2017-07-01

    Full Text Available The hygrothermal effect on the wear behavior of composite material (fiberglass and polyester resin vf=40% was investigated experimentally in this work. The study includes manufacturing of test device (pin on disc according to ASTM G 99. In order to study the hygrothermal effect on wear behavior of composite materials the hygrothermal chamber was manufactured. The experimental results show that the wear of glass fiber/polyester increased with increasing the load, sliding speed and sliding distance. The load and sliding distance were more effective on the wear of the composite rather than sliding speed. Also, it has been revealed that, the hygrothermal is considerable effect that, the wear rate of glass fiber/polyester without hygrothermal effect is lower than wear with hygrothermal effect. Applied load is the wear factor that has the highest physical influence on the wear of composites materials than other wear factors. Also, the wear of glass fiber/polyester without hygrothermal effect is lower than wear with hygrothermal effect.

  11. Research on Oxidation Wear Behavior of a New Hot Forging Die Steel

    Science.gov (United States)

    Shi, Yuanji; Wu, Xiaochun

    2018-01-01

    Dry sliding tests for the hot forging die steel DM were performed in air under the test temperature at 400-700 °C and the time of 0.5-4 h by a UMT-3 high-temperature wear tester. The wear behavior and characteristics were studied systematically to explore the general characters in severe oxidation conditions. The results showed that a mild-to-severe oxidation wear transition occurred with an increase in the test temperature and duration. The reason was clarified as the unstable M6C carbides coarsening should be responsible for the severe delamination of tribo-oxide layer. More importantly, an intense oxidation wear with lower wear rates was found when the experimental temperature reaches 700 °C or after 4 h of test time at 600 °C, which was closely related to the degradation behavior during wear test. Furthermore, a new schematic diagram of oxidation wear of DM steel was proposed.

  12. High Temperature Dry Sliding Friction and Wear Performance of Laser Cladding WC/Ni Composite Coating

    Directory of Open Access Journals (Sweden)

    YANG Jiao-xi

    2016-06-01

    Full Text Available Two different types of agglomerate and angular WC/Ni matrix composite coatings were deposited by laser cladding. The high temperature wear resistance of these composite coatings was tested with a ring-on-disc MMG-10 apparatus. The morphologies of the worn surfaces were observed using a scanning electron microscopy (SEM equipped with an energy dispersive spectroscopy (EDS for elemental composition. The results show that the high temperature wear resistance of the laser clad WC/Ni-based composite coatings is improved significantly with WC mass fraction increasing. The 60% agglomerate WC/Ni composite coating has optimal high temperature wear resistance. High temperature wear mechanism of 60% WC/Ni composite coating is from abrasive wear of low temperature into composite function of the oxidation wear and abrasive wear.

  13. Sliding wear and friction behavior of zirconium alloy with heat-treated Inconel718

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H., E-mail: kimjhoon@cnu.ac.kr [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.M. [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.K.; Jeon, K.L. [Nuclear Fuel Technology Department, Korea Nuclear Fuel, 1047 Daedukdae-ro, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-04-01

    In water-cooled nuclear reactors, the sliding of fuel rod can lead to severe wear and it is an important issue to sustain the structural integrity of nuclear reactor. In the present study, sliding wear behavior of zirconium alloy in dry and water environment using Pin-On-Disk sliding wear tester was investigated. Wear resistance of zirconium alloy against heat-treated Inconel718 pin was examined at room temperature. Sliding wear tests were carried out at different sliding distance, axial load and sliding speed based on ASTM (G99-05). The results of these experiments were verified with specific wear rate and coefficient of friction. The micro-mechanisms responsible for wear in zirconium alloy were identified to be microcutting and microcracking in dry environment. Moreover, micropitting and delamination were observed in water environment.

  14. Wear behaviour of Armco iron after irradiation with neutrons and alpha particles

    International Nuclear Information System (INIS)

    Szatzschneider, K.

    1977-04-01

    The effects of neutron and alpha particle irradiation on the wear behaviour of Armco iron were studied. For the investigation, a pin-desk test facility was designed and built. From the experiments an influence upon wear of the type of irradiation, and the radiation dose was determined, which, however, cannot be explained - on the basis of existing wear theories - by the change in the macroscopic-mechanical properties of the material. It has again been shown that an indication of the hardness is not sufficient to describe wear. The influence of the history of the material (irradiation, annealing, deformation) is very strong and connot be predicted because of the multiplicity of interdependences. Wear in the low wear area was identified as being due to oxidation, in the high wear area as metallic. (orig./GSC) [de

  15. Dry sliding wear behaviour of organo-modified montmorillonite filled epoxy nanocomposites using Taguchi's techniques

    International Nuclear Information System (INIS)

    Rashmi; Renukappa, N.M.; Suresha, B.; Devarajaiah, R.M.; Shivakumar, K.N.

    2011-01-01

    Highlights: → Successful fabrication of OMMT filled epoxy nanocomposites by high-shear mixing mehod. → Systematic tribological behaviour of the nanocomposites was made using Taguchi method. → Worn surface morphologies of the samples were discussed for different wear mechanisms. → Generation of wear data for sliding/bearing parts for different industries. -- Abstract: The aim of the research article is to study the dry sliding wear behaviour of epoxy with different wt.% of organo-modified montmorillonite (OMMT) filled nanocomposites. An orthogonal array (L 9 ) was used to investigate the influence of tribological parameters. The results indicate that the sliding distance emerges as the most significant factor affecting wear rate of epoxy nanocomposites. Experimental results showed that the inclusion of 5 wt.% OMMT nanofiller increased the wear resistance of the epoxy nanocomposite significantly. Furthermore, the worn surfaces of the samples were analyzed by scanning electron microscopy (SEM) to study the wear mechanisms and to correlate them with the wear test results.

  16. Fundamentals of friction and wear on the nanoscale

    CERN Document Server

    Gnecco, Enrico

    2014-01-01

    This book provides an updated review on the development of scanning probe microscopy and related techniques, and the availability of computational techniques not even imaginable a few decades ago. The 36 chapters cover instrumental aspects, theoretical models and selected experimental results, thus offering a broad panoramic view on fundamental issues in nanotribology which are currently being investigated. Compared to the first edition, several topics have been added, including triboluminescence, graphene mechanics, friction and wear in liquid environments, capillary condensation, and multisc

  17. Abrasive Wear of Alloyed Cast Steels Applied for Heavy Machinery

    Directory of Open Access Journals (Sweden)

    Studnicki A.

    2015-03-01

    Full Text Available In the paper the results and analysis of abrasive wear studies were shown for two grades of cast steels: low-alloyed cast steel applied for heavy machinery parts such as housing, covers etc. and chromium cast steels applied for kinetic nodes of pin-sleeve type. Studies were performed using the modified in Department of Foundry pin-on-disc method.

  18. The correction of occlusal vertical dimension on tooth wear

    Directory of Open Access Journals (Sweden)

    Rostiny Rostiny

    2007-12-01

    Full Text Available The loss of occlusal vertical dimension which is caused by tooth wear is necessarily treated to regain vertical dimension. Correctional therapy should be done as early possible. In this case, simple and relatively low cost therapy was performed. In unserve loss of occlusal vertical dimension, partial removable denture could be used and the improvement of lengthening anterior teeth using composite resin to improve to regain vertical dimensional occlusion.

  19. Features wear nodes mechanization wing aircraft operating under dynamic loads

    Directory of Open Access Journals (Sweden)

    А.М. Хімко

    2009-03-01

    Full Text Available  The conducted researches of titanic alloy ВТ-22 at dynamic loading with cycled sliding and dynamic loading in conditions of rolling with slipping. It is established that roller jamming in the carriage increases wear of rod of mechanization of a wing to twenty times. The optimum covering for strengthening wearied sites and restoration of working surfaces of wing’s mechanization rod is defined.

  20. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Mike L. Fulcher; Kenneth L. Knittel

    2004-06-08

    The work performed on this program was to develop wear resistant, tough FM composite materials with efforts focused on WC-Co based FM systems. The materials were developed for use in mining industry wear applications. Components of interest were drill bit inserts for drilling blast holes. Other component applications investigated included wear plates for a variety of equipment such as pit shovels, wear surfaces for conveyors, milling media for ball milling operations, hydrocyclone cones, grader blades and dozer teeth. Cross-cutting technologies investigated included hot metal extrusion dies, drill bits for circuit board fabrication, cutting tools for cast iron and aluminum machining. An important part of the work was identification of the standard materials used in drilling applications. A materials trade study to determine those metals and ceramics used for mining applications provided guidance for the most important materials to be investigated. WC-Co and diamond combinations were shown to have the most desirable properties. Other considerations such as fabrication technique and the ability to consolidate shifted the focus away from diamond materials and toward WC-Co. Cooperating partners such as Kennametal and Kyocera assisted with supplies, evaluations of material systems, fabricated parts and suggestions for cross-cutting technology applications for FM architectures. Kennametal provided the raw materials (WC-Co and Al-TiCN powders) for the extent of the material evaluations. Kyocera shared their research into various FM systems and provided laboratory testing of fabricated materials. Field testing provided by partners Superior Rock Bit and Brady Mining and Construction provided insight into the performance of the fabricated materials under actual operational conditions. Additional field testing of cross-cutting technology, the extrusion of hot metals, at Extruded Metals showed the potential for additional market development.

  1. Who are the Devils Wearing Prada in New York City?

    OpenAIRE

    Chen, KuanTing; Chen, Kezhen; Cong, Peizhong; Hsu, Winston H.; Luo, Jiebo

    2015-01-01

    Fashion is a perpetual topic in human social life, and the mass has the penchant to emulate what large city residents and celebrities wear. Undeniably, New York City is such a bellwether large city with all kinds of fashion leadership. Consequently, to study what the fashion trends are during this year, it is very helpful to learn the fashion trends of New York City. Discovering fashion trends in New York City could boost many applications such as clothing recommendation and advertising. Does...

  2. MATHEMATICAL MODEL OF WEAR CHARACTER FAILURE IN AIRCRAFT OPERATION

    OpenAIRE

    Радько, Олег Віталійович; Молдован, Володимир Дмитрович

    2016-01-01

    In this paper the mathematical model of failures associated with wear during aircraft exploitationis developed. Тhe calculations of the distribution function, distribution density and failurerate gamma distribution at low coefficients of variation and the relatively low value of averagewear rate for the current time, which varies quite widely. The results coincide well with thephysical concepts and can be used to build different models of aircraft. Gamma distribution is apretty good model for...

  3. Limitations imposed by wearing armour on Medieval soldiers' locomotor performance

    OpenAIRE

    Askew, Graham N.; Formenti, Federico; Minetti, Alberto E.

    2011-01-01

    In Medieval Europe, soldiers wore steel plate armour for protection during warfare. Armour design reflected a trade-off between protection and mobility it offered the wearer. By the fifteenth century, a typical suit of field armour weighed between 30 and 50 kg and was distributed over the entire body. How much wearing armour affected Medieval soldiers' locomotor energetics and biomechanics is unknown. We investigated the mechanics and the energetic cost of locomotion in armour, and determined...

  4. Friction and wear in hot forging of steels

    International Nuclear Information System (INIS)

    Daouben, E.; Dubar, L.; Dubar, M.; Deltombe, R.; Dubois, A.; Truong-Dinh, N.; Lazzarotto, L.

    2007-01-01

    In the field of hot forging of steels, the mastering of wear phenomena enables to save cost production, especially concerning tools. Surfaces of tools are protected thanks to graphite. The existing lubrication processes are not very well known: amount and quality of lubricant, lubrication techniques have to be strongly optimized to delay wear phenomena occurrence. This optimization is linked with hot forging processes, the lubricant layers must be tested according to representative friction conditions. This paper presents the first part of a global study focused on wear phenomena encountered in hot forging of steels. The goal is the identification of reliable parameters, in order to bring knowledge and models of wear. A prototype testing stand developed in the authors' laboratory is involved in this experimental analysis. This test is called Warm and Hot Upsetting Sliding Test (WHUST). The stand is composed of a heating induction system and a servo-hydraulic system. Workpieces taken from production can be heated until 1200 deg. C. A nitrided contactor representing the tool is heated at 200 deg. C. The contactor is then coated with graphite and rubs against the workpiece, leaving a residual track on it. Friction coefficient and surface parameters on the contactor and the workpiece are the most representative test results. The surface parameters are mainly the sliding length before defects occurrence, and the amplitude of surface profile of the contactor. The developed methodology will be first presented followed by the different parts of the experimental prototype. The results of experiment show clearly different levels of performance according to different lubricants

  5. Wear-resistant ball bearings for space applications

    Science.gov (United States)

    Boving, H.; Hintermann, H. E.; Hanni, W.; Bondivenne, E.; Boeto, M.; Conde, E.

    1977-01-01

    Ball bearings consisting of steel parts of which the rings are coated with hard, wear resistant, chemical vapor deposited TiC are described. Experiments conducted in ultrahigh vacuum, using cages of various materials with self-lubricating properties, show that such bearings are suitable for space applications. The results of laboratory tests on the ESA Meteosat Radiometer Focalizing mechanism, which contains six coated bearings, are summarized.

  6. Unravelling the Functional Biomechanics of Dental Features and Tooth Wear

    Science.gov (United States)

    Benazzi, Stefano; Nguyen, Huynh Nhu; Kullmer, Ottmar; Hublin, Jean-Jacques

    2013-01-01

    Most of the morphological features recognized in hominin teeth, particularly the topography of the occlusal surface, are generally interpreted as an evolutionary functional adaptation for mechanical food processing. In this respect, we can also expect that the general architecture of a tooth reflects a response to withstand the high stresses produced during masticatory loadings. Here we use an engineering approach, finite element analysis (FEA), with an advanced loading concept derived from individual occlusal wear information to evaluate whether some dental traits usually found in hominin and extant great ape molars, such as the trigonid crest, the entoconid-hypoconulid crest and the protostylid have important biomechanical implications. For this purpose, FEA was applied to 3D digital models of three Gorilla gorilla lower second molars (M2) differing in wear stages. Our results show that in unworn and slightly worn M2s tensile stresses concentrate in the grooves of the occlusal surface. In such condition, the trigonid and the entoconid-hypoconulid crests act to reinforce the crown locally against stresses produced along the mesiodistal groove. Similarly, the protostylid is shaped like a buttress to suffer the high tensile stresses concentrated in the deep buccal groove. These dental traits are less functional in the worn M2, because tensile stresses decrease physiologically in the crown with progressing wear due to the enlargement of antagonistic contact areas and changes in loading direction from oblique to nearly parallel direction to the dental axis. This suggests that the wear process might have a crucial influence in the evolution and structural adaptation of molars enabling to endure bite stresses and reduce tooth failure throughout the lifetime of an individual. PMID:23894570

  7. Wear performance of garnet aluminium composites at high contact pressure

    Science.gov (United States)

    Sharma, Anju; Arora, Rama; Kumar, Suresh; Singh, Gurmel; Pandey, O. P.

    2016-05-01

    To satisfy the needs of the engineering sector, researchers and material scientists in this area adopted the development of composites with tailor made properties to enhance efficiency and cost savings in the manufacturing sector. The technology of the mineral industry is shaping the supply and demand of minerals derived materials. The composites are best classified as high performance materials have high strength-to-weight ratios, and require controlled manufacturing environments for optimum performance. Natural mineral garnet was used as the reinforcement of composite because of satisfactory mechanical properties as well as an attractive ecological alternative to others ceramics. For this purpose, samples have been prepared with different sizesof the garnet reinforcement using the mechanical stirring method to achieve the homogeneously dispersed strengthening phase. A systematic study of the effect of high contact pressure on the sliding wear behaviour of garnet reinforced LM13 alloy composites is presented in this paper. The SEM analysis of the worn samples and debris reveals the clues about the wear mechanism. The drastic improvement in the wear resistance of the composites at high contact pressure shows the high potential of the material to be used in engineering applications.

  8. Physical and Constructive (Limiting) Criterions of Gear Wheels Wear

    Science.gov (United States)

    Fedorov, S. V.

    2018-01-01

    We suggest using a generalized model of friction - the model of elastic-plastic deformation of the body element, which is located on the surface of the friction pairs. This model is based on our new engineering approach to the problem of friction-triboergodynamics. Friction is examined as transformative and dissipative process. Structural-energetic interpretation of friction as a process of elasto-plastic deformation and fracture contact volumes is proposed. The model of Hertzian (heavy-loaded) friction contact evolution is considered. The least wear particle principle is formulated. It is mechanical (nano) quantum. Mechanical quantum represents the least structural form of solid material body in conditions of friction. It is dynamic oscillator of dissipative friction structure and it can be examined as the elementary nanostructure of metal’s solid body. At friction in state of most complete evolution of elementary tribosystem (tribocontact) all mechanical quanta (subtribosystems) with the exception of one, elasticity and reversibly transform energy of outer impact (mechanic movement). In these terms only one mechanical quantum is the lost - standard of wear. From this position we can consider the physical criterion of wear and the constructive (limiting) criterion of gear teeth and other practical examples of tribosystems efficiency with new tribology notion - mechanical (nano) quantum.

  9. Wear mechanisms in powder metallurgy high speed steels matrix composites

    International Nuclear Information System (INIS)

    Gordo, E.; Martinez, M. A.; Torralba, J. M.; Jimenez, J. A.

    2001-01-01

    The development of metal matrix composites has a major interest for automotive and cutting tools industries since they possess better mechanical properties and wear resistance than corresponding base materials. One of the manufacturing methods for these materials includes processing by powder metallurgy techniques. in this case, blending of both, base material and reinforcement powders constitute the most important process in order to achieve a homogeneous distribution of second phase particles. in the present work, composite materials of M3/2 tool steel reinforced with 2.5,5 and 8 vol% of niobium carbide have been prepared. In order to ensure a homogeneous mix, powders of both materials were mixed by dry high-energy mechanical milling at 200 r.p.m. for 40 h. After a recovering annealing, two routes for consolidate were followed die pressing and vacuum sintering, and hot isostatic pressing (HIP). Pin-on-disc tests were carried out to evaluate wear behaviour in all the materials. Results show that ceramic particles additions improve wear resistance of base material. (Author) 9 refs

  10. Wear studies on diamond layers; Verschleissuntersuchungen an Diamantschichten

    Energy Technology Data Exchange (ETDEWEB)

    Deuerler, F. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachgebiet Materialkunde; Pohl, M.; Tikana, L. [Bochum Univ. (Germany). Inst. fuer Werkstoffe

    2000-08-01

    Wear studies were carried out on thin CVD diamond layers on WC/Co hard metal substrate. The diamond and hard metal system was exposed to abrasive particles, and the time to initial failure and the size of the wear crater were recorded. In the cavitation test, vibrational cavitation is induced by a sonotrode immersed in a liquid and excited by ultrasonic waves. The wear damage on the surface are recorded by quantitative image analysis as percent surface damage. The mechanism of layer failure (adhesive, cohesive) can be assessed qualitatively by means of SEM pilctures. The effects of surface pretreatment on the adhesive strength of the coating are investigated as well. [German] Das Verhalten von duennen CVD-Diamantschichten auf WC/Co-Hartmetallsubstraten unter Verschleissbeanspruchung wird beschrieben. Dabei wird der Schichtverbund Diamant-Hartmetall im Strahlverschleisstest abrasiven Partikeln ausgesetzt und die Zeit bis zum ersten Schichtversagen sowie die Groesse des Verschleisskraters registriert. Beim Kavitationstest erzeugt eine durch Ultraschall angeregte Sonotrode, die in eine Fluessigkeit eintaucht, Schwingungskavitation. Die durch Oberflaechenzerruettung verursachten Verschleissschaeden an der Schichtoberflaeche werden ueber quantitative Bildanalyse als prozentuale Flaechenschaedigung erfasst. Der Mechanismus des Schichtversagens (adhaesiv, kohaesiv) kann anhand von REM-Aufnahmen qualitativ beurteilt werden. Die Auswirkungen einer Vorbehandlung der Oberflaeche des Hartmetalls auf die fuer die Anwendung massgebliche Haftfestigkeit der Beschichtung werden betrachtet. (orig.)

  11. Statistical models for expert judgement and wear prediction

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1994-01-01

    This thesis studies the statistical analysis of expert judgements and prediction of wear. The point of view adopted is the one of information theory and Bayesian statistics. A general Bayesian framework for analyzing both the expert judgements and wear prediction is presented. Information theoretic interpretations are given for some averaging techniques used in the determination of consensus distributions. Further, information theoretic models are compared with a Bayesian model. The general Bayesian framework is then applied in analyzing expert judgements based on ordinal comparisons. In this context, the value of information lost in the ordinal comparison process is analyzed by applying decision theoretic concepts. As a generalization of the Bayesian framework, stochastic filtering models for wear prediction are formulated. These models utilize the information from condition monitoring measurements in updating the residual life distribution of mechanical components. Finally, the application of stochastic control models in optimizing operational strategies for inspected components are studied. Monte-Carlo simulation methods, such as the Gibbs sampler and the stochastic quasi-gradient method, are applied in the determination of posterior distributions and in the solution of stochastic optimization problems. (orig.) (57 refs., 7 figs., 1 tab.)

  12. Multiscale Modeling of Wear Degradation in Cylinder Liners

    KAUST Repository

    Moraes, Alvaro

    2014-03-20

    Every mechanical system is naturally subjected to some kind of wear process that, at some point, will cause failure in the system if no monitoring or treatment process is applied. Since failures often lead to high economical costs, it is essential both to predict and to avoid them. To achieve this, a monitoring system of the wear level should be implemented to decrease the risk of failure. In this work, we take a first step into the development of a multiscale indirect inference methodology for state-dependent Markovian pure jump processes. This allows us to model the evolution of the wear level and to identify when the system reaches some critical level that triggers a maintenance response. Since the likelihood function of a discretely observed pure jump process does not have an expression that is simple enough for standard nonsampling optimization methods, we approximate this likelihood by expressions from upscaled models of the data. We use the Master Equation (ME) to assess the goodness-of-fit and to compute the distribution of the hitting time to the critical level.

  13. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  14. Tribopolymerization as an anti-wear mechanism. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Furey, M.J.

    1996-04-01

    The primary objective of this activity is to obtain the necessary data which would enhance, promote, and encourage the introduction of advanced lubrication technology into the marketplace. This includes (a) defining specific but different applications, (b) establishing the limits or ranges of applied loads, speeds, and temperatures over which the concept of tribopolymerization would work in reducing wear and/or friction, (c) continuing in efforts to understand the film-forming process (this rates to (b) above), using this knowledge to develop new and even more effective additives, and (d) exploring possible connections with private and investment companies for the licensing and marketing of products which will reduce friction and wear in a variety of applications. Progress was made in several different but connected areas. These included (a) establishing of load/velocity limits of selected monomers for ceramic lubrication, (b) the discovery of new and effective monomers designed for higher temperature anti-wear applications, (c) improvements and modifications of the high load/high speed pin-on-disk machine, (d) the initiation of related or spin-off projects designed to get their advanced technology into the marketplace, (e) the filing of three new patent applications, and (f) collaborative research with Dr. Kajdas--the co-inventor with Dr. Furey--on tribopolymerization as a novel and effective approach to the boundary lubrication of ceramics and steel. These and other elements of progress made during the first Quarter of 1996 are discussed briefly.

  15. Vibration and wear prediction for steam generator tubes: Final report

    International Nuclear Information System (INIS)

    Rao, M.S.M.; Gupta, G.D.; Eisinger, F.L.

    1988-06-01

    As part of the overall EPRI program to develop a mechanistic model for tube fretting and wear prediction, Foster Wheeler Development Corporation undertook the responsibility of developing analytical models to predict structural response and wear in a multispan tube. The project objective was to develop the analytical capability to simulate the time-dependent motion of a multispan steam generator tube in the presence of the clearance gaps at each tube baffle or support. The models developed were to simulate nonlinear tube-to-tube support interaction by determining the impact force, the sliding distance, and the resultant tube wear. Other objectives of the project included: validate the models by comparing the analytical results with the EPRI tests done at Combustion Engineering (C-E) on single multispan tubes; test the models for simulating the U-bend region of the steam generator tube, including the antivibration bars; and develop simplified methods to treat the nonlinear dynamic problem of a multispan tube so that computing costs could be minimized. 15 refs., 53 figs., 27 tabs

  16. Thin layer activation technique applied to the measurement of wear

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, P [UKAEA Research Group, Harwell. Atomic Energy Research Establishment

    1978-01-01

    A thin layer of radioactive atoms is produced in the material by bombardment with charged particles, and as the material is worn away the total activity level is monitored. If the activity to depth relationship is then known the amount of material worn away can be determined. By a selective choice of the charged particle species and energy the depth of the active layer, its natural decay rate, and the energy of the emitted radiation can be pre-determined. The Harwell Tandem Electrostatic Generator has been found very suitable for the work. The total activity level can be made as little or as large as required, but a level around 5 to 10 microcuries is usually found to be adequate, and the active layer usually has a depth of 50 to 300 ..mu..m. The activated area can be from < 1 mm/sup 2/ to 4 cm/sup 2/. Particular reference is made to the production of /sup 56/Co in Fe. Experimental arrangements for the irradiation of components are described. Some practical applications undertaken by Harwell for industry are briefly mentioned, including wear of diesel engine valve seatings and fuel injection equipment, engine testing of lubricants, surface loss of rails and railway wheels, wear of gears, wear of graphite bearing materials, and corrosion and erosion of materials. 4 references.

  17. Fatigue and wear of metalloid-ion-implanted metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Richter, E.; Rauschenbach, B.; Blochwitz, C.

    1985-01-01

    The effect of metalloid ion implantation on the fatigue behaviour and wear of nickel and two steels has been investigated. These metals were implanted with boron, carbon and nitrogen ions at energies from 30 to 60 keV and with doses from 1 X 10 16 to 1 X 10 18 ions cm -2 at room temperature. The mechanical behaviour of fatigued nickel was studied in push-pull tests at room temperature. Wear measurements were made using a pin-and-disc technique. The surface structure, dislocation arrangement and modification of the implantation profile resulting from mechanical tests on metals which had been implanted with metalloid ions were examined using high voltage electron microscopy, transmission high energy electron diffraction, scanning electron microscopy and Auger electron spectroscopy. It is reported that nitrogen and boron ion implantation improves the fatigue lifetime, changes the number and density of the slip bands and modifies the dislocation arrangements in nickel. The cyclic deformation leads to recrystallization of the boron-ion-induced amorphous structure of nickel and to diffusion of the boron and nitrogen in the direction of the surface. The wear behaviour of steels was improved by implantation of mass-separated ions and by implantation of ions without mass separation. (Auth.)

  18. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: two-body wear, gloss retention, roughness and Martens hardness.

    Science.gov (United States)

    Mörmann, Werner H; Stawarczyk, Bogna; Ender, Andreas; Sener, Beatrice; Attin, Thomas; Mehl, Albert

    2013-04-01

    This study determined the two-body wear and toothbrushing wear parameters, including gloss and roughness measurements and additionally Martens hardness, of nine aesthetic CAD/CAM materials, one direct resin-based nanocomposite plus that of human enamel as a control group. Two-body wear was investigated in a computer-controlled chewing simulator (1.2 million loadings, 49N at 1.7Hz; 3000 thermocycles 5/50°C). Each of the 11 groups consisted of 12 specimens and 12 enamel antagonists. Quantitative analysis of wear was carried out with a 3D-surface analyser. Gloss and roughness measurements were evaluated using a glossmeter and an inductive surface profilometer before and after abrasive toothbrushing of machine-polished specimens. Additionally Martens hardness was measured. Statistically significant differences were calculated with one-way ANOVA (analysis of variance). Statistically significant differences were found for two-body wear, gloss, surface roughness and hardness. Zirconium dioxide ceramics showed no material wear and low wear of the enamel antagonist. Two-body wear of CAD/CAM-silicate and -lithium disilicate ceramics, -hybrid ceramics and -nanocomposite as well as direct nanocomposite did not differ significantly from that of human enamel. Temporary polymers showed significantly higher material wear than permanent materials. Abrasive toothbrushing significantly reduced gloss and increased roughness of all materials except zirconium dioxide ceramics. Gloss retention was highest with zirconium dioxide ceramics, silicate ceramics, hybrid ceramics and nanocomposites. Temporary polymers showed least gloss retention. Martens hardness differed significantly among ceramics, between ceramics and composites, and between resin composites and acrylic block materials as well. All permanent aesthetic CAD/CAM block materials tested behave similarly or better with respect to two-body wear and toothbrushing wear than human enamel, which is not true for temporary polymer CAD

  19. Wear behavior of human enamel against lithium disilicate glass ceramic and type III gold.

    Science.gov (United States)

    Lee, Ahreum; Swain, Michael; He, Lihong; Lyons, Karl

    2014-12-01

    The wear behavior of human enamel that opposes different prosthetic materials is still not clear. The purpose of this in vitro study was to investigate and compare the friction and wear behavior of human tooth enamel that opposes 2 indirect restorative materials: lithium disilicate glass ceramic and Type III gold. Friction-wear tests on human enamel (n=5) that opposes lithium disilicate glass ceramic (n=5) and Type III gold (n=5) were conducted in a ball-on-flat configuration with a reciprocating wear testing apparatus. The wear pairs were subjected to a normal load of 9.8 N, a reciprocating amplitude of approximately 200 μm, and a reciprocating frequency of approximately 1.6 Hz for up to 1100 cycles per test under distilled water lubrication. The frictional force of each cycle was recorded, and the corresponding friction coefficient for different wear pairs was calculated. After wear testing, the wear scars on the enamel specimens were examined under a scanning electron microscope. Type III gold had a significantly lower steady-state friction coefficient (P=.009) and caused less wear damage on enamel than lithium disilicate glass ceramic. Enamel that opposed lithium disilicate glass ceramic exhibited cracks, plow furrows, and surface loss, which indicated abrasive wear as the prominent wear mechanism. In comparison, the enamel wear scar that opposed Type III gold had small patches of gold smear adhered to the surface, which indicated a predominantly adhesive wear mechanism. A lower friction coefficient and better wear resistance were observed when human enamel was opposed by Type III gold than by lithium disilicate glass ceramic in vitro. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Helmet wearing in Kenya: prevalence, knowledge, attitude, practice and implications.

    Science.gov (United States)

    Bachani, A M; Hung, Y W; Mogere, S; Akunga, D; Nyamari, J; Hyder, A A

    2017-03-01

    In light of the increasing prevalence of motorcycles on Kenyan roads, there is a need to address the safety of individuals using this mode of transport. Helmet use has been proven to be effective in preventing head injuries and fatalities in the event of a crash. This study aims to understand the prevalence of helmet use as well as knowledge, attitudes, and practices in two districts in Kenya over a 5-year period (2010-2014). Observational studies on helmet use at randomly selected locations throughout each district were done every quarter to estimate the prevalence of helmet use. Roadside knowledge, attitude, and practice (KAP) surveys were done two times a year in each district. Helmet use among motorcycle drivers and passengers in Thika and Naivasha was assessed through systematic observations at randomly selected locations in the two districts between August 2010 and December 2014. Roadside KAP surveys were administered in both sites to motorcyclists in areas where they stopped, including motorcycle bays, petrol stations and rest areas near the helmet observation sites. Secondary analysis of trauma registries was also used. Negative binomial regressions were used to assess trends of helmet wearing among motorcyclists over time, and logistic regressions were used to analyze associated risk factors as well as association with health outcomes among those admitted to the four hospitals. A total of 256,851 motorcycles were observed in the two target districts during the study period. Overall, prevalence of helmet use among motorcycle drivers in Thika and Naivasha across all periods was 35.12% (95% confidence interval [CI]: 34.87%-35.38%) and 37.42% (95% CI: 37.15%-37.69%) respectively. Prevalence of helmet wearing remained similar after the passage of a traffic amendment bill. These results were not statistically significant in either Thika or in Naivasha. Data from the KAP survey showed that respondents recognized the life-saving effect of wearing a helmet, but

  1. Consequences of wear interruption for discomfort with contact lenses.

    Science.gov (United States)

    Papas, Eric B; Tilia, Daniel; Tomlinson, Daniel; Williams, Josh; Chan, Eddy; Chan, Jason; Golebiowski, Blanka

    2014-01-01

    To establish whether increased end-of-day discomfort during soft contact lens wear is associated with short-term changes occurring to the lens itself. Twenty-seven subjects wore hydrogel lenses (Focus Dailies; Alcon) bilaterally for 10 hours on two separate days. Comfort was reported using 1-100 numerical rating scales (1 = intolerable discomfort, 100 = lens cannot be felt). Day 1 ratings were taken before lens insertion and at 0.05, 5, and 10 hours post-insertion. Day 2 ratings occurred at similar times, but lenses were removed after the 5-hour assessment and either reinserted (n = 14) or newly replaced (n = 12). An additional rating was taken 5 minutes after re-insertion. Wear then continued to the 10-hour point. In a separate study, 24 different subjects repeated these procedures using a silicone hydrogel lens (AirOptix Aqua; Alcon) with wear taking place on 3 days to permit lens replacement to be with existing as well as new lenses in all subjects. For hydrogel lenses, comfort scores (mean ± 95% CI) reported after 10 hours were 79.4 ± 8.3 when lenses were worn un-replaced, compared with 73.2 ± 9.2 for replacement with the existing lens. When replacement was with a brand new lens, the corresponding values were 72.9 ± 10.9 (un-replaced) versus 69.2 ± 12.8 (new lens replacement). For silicone hydrogel lenses, 10-hour comfort was 90.3 ± 3.2 (un-replaced) versus 92.2 ± 2.9 (replacement with existing lens) versus 90.0 ± 3.3 (replacement with new lens). Differences between replacement conditions were not significant in any case (analysis of variance, p > 0.05). Final comfort was not influenced by replacing lenses midway through the wearing period. Comfort decrements experienced by users of these daily contact lenses towards the later part of the wearing period are not caused by changes occurring to the lenses on this time scale. Possible alternative etiological factors include a fatigue-like response in one or more ocular tissues or stimulation of ocular

  2. Nonspecific inflammation in the face

    International Nuclear Information System (INIS)

    Hyun, Young Min; Park, Rae Chung; Jung, Hwan Sug; Choi, Soon Chul; Park, Tae Won; You, Dong Soo

    1997-01-01

    Patient with complaints of swelling, pain in the maxillary region and discomfort visited Seoul National University Dental Hospital in August last year. Clinical examination and diagnostic imagings implied he was suffered from fungal hyphal infection but no causative fungus was found by the histopathologic and microbiologic investigation. Therefore he was diagnosed with nonspecific inflammation. But as yet, we do think this case is very similar to some kinds of mucomycosis. So we presented this case for more thorough discussion. Following are founded in the examination. 1. Patient had suffered from Diabetes mellitus and complained of stuffiness, headache, swelling in buccal cheeks and paraesthesia. And we found more maxillary bony destruction and ulcer with elevated margin in the palate by clinical examination. 2. In the first visit, Plain films revealed general bony destruction of the maxilla, radiopaqueness in the sinonasal cavities. CT and MRI showed soft tissue mass filled in the paranasal sinus except frontal sinus and bony destruction in in valved bones. 3. No causative bacteria and fungus was found in the biopsy and microbiologic cultures. 4. Caldwell-Luc operation and curettage were carried and antibiotics were taken for 4 months. But now he was worse than in the past. 5. In the second visit, involvement of orbit, parapharyngeal sinus, clivus, cavernous sinus and middle cranial fossa we re seen clearly in the CT and MRI.

  3. Modeling of chronic ovary inflammation

    Directory of Open Access Journals (Sweden)

    N. А. Volkova

    2014-04-01

    Full Text Available In our country preservation of the population reproductive health is a high-priority direction of modern medicine. In many cases, the cause of reproductive disorders in women is a chronic infectious inflammation of the small pelvis, the frequency of which in recent years had no tendency to decrease. The choice of inactivated vaccine of Staphylococcus aureus as a phlogogen was due to the fact that the etiological role of the aerobic infection remains the leading one in gynecological pathology. The aim of research was studying of the ability to use the inactivated vaccine of Staphylococcus aureus strain 209 for modeling of chronic inflammation of the ovaries in laboratory mice. Materials and methods. 25 mature outbred white female mice weighing 18-20 g were used as experimental animals, which formed next groups: 1 control (n=5 – animals without any interventions and 2 experimental (n=20 – animals with one-fold intraperitoneal injection of inactivated Staphylococcus aureus strain 209 vaccine in the dose of 50х106 microbial bodies in 0,3 ml of physiological solution. Efficiency of the modeling pathology was performed by histomorphometric and hematological methods on the 7th, 14th, 21st and 31st days. All the manipulations with animals were carried out in accordance to the requirements of bioethics and the international principles of the European Convention for the protection of vertebrate animals. For statistical study ANOVA and t-Student tests were used with application of Microsoft Excel Program. Results. In the group of control animals the form and histological structure of ovaries were regular for mature mice without signs of inflammatory changes. The leukocyte infiltration, hemodynamic disorders and minor dystrophic changes of granulosa cells were determined on the 7th day in the ovaries of experimental animals. The increasing of observation period up to 14 days on the background of hemodynamic disorders resulted in the appearance of

  4. Zinc in Infection and Inflammation

    Directory of Open Access Journals (Sweden)

    Nour Zahi Gammoh

    2017-06-01

    Full Text Available Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB, a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  5. Zinc in Infection and Inflammation.

    Science.gov (United States)

    Gammoh, Nour Zahi; Rink, Lothar

    2017-06-17

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  6. Influence of halogen irradiance on short- and long-term wear resistance of resin-based composite materials.

    LENUS (Irish Health Repository)

    Bhamra, Gurcharn S

    2009-02-01

    The Oregon Health Science University (OHSU) four-chamber oral wear simulator was used to examine the impact of halogen irradiance on the short- and long-term wear behavior of four-methacrylate resin-based composites (RBCs). The hypothesis proposed was that exacerbated wear would occur following the long-term wear of RBCs irradiated under non-optimized irradiance conditions.

  7. Neurogenic inflammation in human and rodent skin

    DEFF Research Database (Denmark)

    Schmelz, M; Petersen, Lars Jelstrup

    2001-01-01

    The combination of vasodilation and protein extravasation following activation of nociceptors has been termed "neurogenic inflammation." In contrast to rodents, no neurogenic protein extravasation can be elicited in healthy human skin. Dermal microdialysis has considerably increased our knowledge...... about neurogenic inflammation in human skin, including the involvement of mast cells.......The combination of vasodilation and protein extravasation following activation of nociceptors has been termed "neurogenic inflammation." In contrast to rodents, no neurogenic protein extravasation can be elicited in healthy human skin. Dermal microdialysis has considerably increased our knowledge...

  8. The influence of nominal stress on wear factors of carbon fibre-reinforced polyetheretherketone (PEEK-OPTIMA® Wear Performance) against zirconia toughened alumina (Biolox® delta ceramic).

    Science.gov (United States)

    Evans, Andrew; Horton, Henrietta; Unsworth, Anthony; Briscoe, Adam

    2014-06-01

    Carbon fibre-reinforced polyetheretherketone is an attractive alternative to ultra-high-molecular-weight polyethylene in artificial joints, but little has been published on the influence of stress on the wear factor. We know that in ultra-high-molecular-weight polyethylene, the wear factor reduces as the normal stress increases, which is counter-intuitive but very helpful in the case of non-conforming contacts. In this study, carbon fibre-reinforced polyetheretherketone (PEEK-OPTIMA ® Wear Performance) has been investigated in a pin-on-plate machine under steady loads and under stresses typical of hip and knee joints. At stresses below about 6 MPa, wear factors are between 10 and a 100 times lower than for ultra-high-molecular-weight polyethylene but at higher stresses the wear factors increase substantially. © IMechE 2014.

  9. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    International Nuclear Information System (INIS)

    Mao, Yan; Li, Zhuguo; Feng, Kai; Guo, Xingwu; Zhou, Zhifeng; Dong, Jie; Wu, Yixiong

    2015-01-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating

  10. Fretting wear characteristic tests of X2-GEN midgrid for SMART under a FIV rod trace

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Lee, Kang Hee; Kim, Jae Yong; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2011-12-15

    The KEPCO Nuclear Fuel Co. requested the fretting wear characteristic tests of a X2-GEN midgrid under a FIV rod trace at room temperature air. The following results were obtained for the fretting wear test. {center_dot} Fretting wear tests under a FIV rod trace Based on the result of the fretting wear tests of the X2-GEN and 17ACE7 1x1 mid-grid under a FIV rod trace, X2-GEN mid-grid showed a slightly severe wear volume rather than 17ACE7 spring. But, maximum wear depth shows an opposite behavior. This is due to spring shape effect. The fretting wear mechanisms at each mid-grid were influenced by each spring shape, that are depended on the different impacting behavior under a FIV rod motion. Up to 5x105 cycles, wear characteristics of each mid-grid shows a relatively similar wear rate. Consequently, it is necessary to further study for examining exact fretting wear behavior under a FIV rod tra

  11. Reciprocating sliding wear of Inconel 600 tubing in room temperature air

    International Nuclear Information System (INIS)

    Kim, Hun; Choi, Jong Hyun; Kim, Jun Ki; Hong, Hyun Seon; Kim, Seon Jin

    2003-01-01

    The sliding wear behavior of the material of a steam generator in a nuclear power station (Inconel 600) was investigated at room temperature. Effects of the wear parameters such as material combination, sliding distance and contact stress were examined with various mating materials including 304 austenitic stainless steel, Inconel 600 and Al-Cu alloy 2011. In the prediction of the wear volume by Archard's wear equation, the standard error range was calculated to be ±4.04x10 -9 m 3 and the reliability to be 71.9% for the combination of Inconel 600 and 304 stainless steel. The error range was considered to be relatively broad because the wear coefficient in Archard's equation was assumed to be a constant, regardless of the changes in the mechanical properties during the wear. In the present study, the sliding wear behavior turned out to be influenced by the material combination; the wear volume of 304 stainless steel did not linearly increase with the sliding distance, while that of other material combinations exhibited linear increases. Based on the experimental results, the wear coefficient was modified as a function of the sliding distance. The calculation with the modified wear equation showed that the error range narrowed down to ±2.60x10 -9 m 3 and the reliability increased to 75.3%, compared to Archard's original equation

  12. Steam generator fretting-wear damage: A summary of recent findings

    International Nuclear Information System (INIS)

    Guerout, F.M.; Fisher, N.J.

    1999-01-01

    Flow-induced vibration of steam generator (SG) tubes may sometimes result in fretting-wear damage at the tube-to-support locations. Fretting-wear damage predictions are largely based on experimental data obtained at representative test conditions. Fretting-wear of SG materials has been studied at the Chalk River Laboratories for two decades. Tests are conducted in fretting-wear test machines that simulate SG environmental conditions and tube-to-support dynamic interactions. A new high-temperature force and displacement measuring system was developed to monitor tube-to-support interaction (i.e., work-rate) at operating conditions. This improvement in experimental fretting-wear technology was used to perform a comprehensive study of the effect of various environment and design parameters on SG tube wear damage. This paper summarizes the results of tests performed over the past 4 yr to study the effect of temperature, water chemistry, support geometry, and tube material on fretting-wear. The results show a significant effect of temperature on tube wear damage. Therefore, fretting-wear tests must be performed at operating temperatures in order to be relevant. No significant effect of the type of water treatment on tube wear damage was observed. For predominantly impacting motion, the wear of SG tubes in contact with 410 stainless steel is similar regardless of whether Alloy 690 or Alloy 800 is used as tubing material or whether lattice bars or broached hole supports are used. Based on results presented in this paper, an average wear coefficient value is recommended that is used for the prediction of SG tube wear depth versus time

  13. Investigation of piston ring – cylinder liner dry wear using a block-on-ring test rig

    DEFF Research Database (Denmark)

    Bihlet, Uffe; Klit, Peder; Felter, Christian L.

    Characterization of the wear of piston rings and cylinder liner is an important aspect of large two stroke diesel engine design. Two major wear mechanisms exist; corrosive wear and mechanical wear. This paper deals with the most aggressive form of the latter, which is known as scuffing. Different...... that ceramic coating on the piston ring decreases the dry wear rate of both piston ring and liner, while the coefficient of friction is increased....

  14. Prostate cancer and inflammation: the evidence

    Science.gov (United States)

    Sfanos, Karen S; De Marzo, Angelo M

    2014-01-01

    Chronic inflammation is now known to contribute to several forms of human cancer, with an estimated 20% of adult cancers attributable to chronic inflammatory conditions caused by infectious agents, chronic noninfectious inflammatory diseases and / or other environmental factors. Indeed, chronic inflammation is now regarded as an ‘enabling characteristic’ of human cancer. The aim of this review is to summarize the current literature on the evidence for a role for chronic inflammation in prostate cancer aetiology, with a specific focus on recent advances regarding the following: (i) potential stimuli for prostatic inflammation; (ii) prostate cancer immunobiology; (iii) inflammatory pathways and cytokines in prostate cancer risk and development; (iv) proliferative inflammatory atrophy (PIA) as a risk factor lesion to prostate cancer development; and (v) the role of nutritional or other antiinflammatory compounds in reducing prostate cancer risk. PMID:22212087

  15. Regulation of pulmonary inflammation by mesenchymal cells

    NARCIS (Netherlands)

    Alkhouri, Hatem; Poppinga, Wilfred Jelco; Tania, Navessa Padma; Ammit, Alaina; Schuliga, Michael

    2014-01-01

    Pulmonary inflammation and tissue remodelling are common elements of chronic respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and pulmonary hypertension (PH). In disease, pulmonary mesenchymal cells not only contribute to tissue

  16. Exercise alleviates depression related systemic inflammation in ...

    African Journals Online (AJOL)

    Exercise alleviates depression related systemic inflammation in chronic obstructive pulmonary disease patients. ... African Health Sciences ... Currently, physical activity is an important lifestyle factor that has the potential to modify inflammatory ...

  17. Lipid profile, hyperglycaemia, systemic inflammation and ...

    African Journals Online (AJOL)

    Food and nutrition challenges in Southern Africa. ... and anthropometry as cardiovascular risk factors and their association with dietary intakes in ... Hyperglycaemia and systemic inflammation was also prevalent, but no obesity was observed.

  18. Myricetin attenuates lung inflammation and provides protection ...

    African Journals Online (AJOL)

    stress in lungs ... Table 1: Effect of myricetin on oxidative stress biomarkers in the lung; mean ± SEM (n = 20); # compared with .... known to release MPO during acute inflammation .... on acute hypoxia-induced exercise intolerance and.

  19. Applying nanomedicine in maladaptive inflammation and angiogenesis

    NARCIS (Netherlands)

    Alaarg, Amr; Pérez-Medina, Carlos; Metselaar, Josbert M.; Nahrendorf, Matthias; Fayad, Zahi A.; Storm, Gert; Mulder, Willem J. M.

    2017-01-01

    Inflammation and angiogenesis drive the development and progression of multiple devastating diseases such as atherosclerosis, cancer, rheumatoid arthritis, and inflammatory bowel disease. Though these diseases have very different phenotypic consequences, they possess several common

  20. Skeletal muscle regeneration is modulated by inflammation

    Directory of Open Access Journals (Sweden)

    Wenjun Yang

    2018-04-01

    Full Text Available Skeletal muscle regeneration is a complex process orchestrated by multiple steps. Recent findings indicate that inflammatory responses could play central roles in bridging initial muscle injury responses and timely muscle injury reparation. The various types of immune cells and cytokines have crucial roles in muscle regeneration process. In this review, we briefly summarise the functions of acute inflammation in muscle regeneration. The translational potential of this article: Immune system is closely relevant to the muscle regeneration. Understanding the mechanisms of inflammation in muscle regeneration is therefore critical for the development of effective regenerative, and therapeutic strategies in muscular disorders. This review provides information for muscle regeneration research regarding the effects of inflammation on muscle regeneration. Keywords: Chronic muscle disorders, Cytokines, Immune cells, Inflammation, Muscle regeneration, Muscle stem cells

  1. Radioisotopic Imaging of Neuro-inflammation

    International Nuclear Information System (INIS)

    Winkeler, A.; Boisgard, R.; Martin, M.; Tavitian, B.

    2010-01-01

    Inflammatory responses are closely associated with many neurologic disorders and influence their outcome. In vivo imaging can document events accompanying neuro-inflammation, such as changes in blood flow, vascular permeability, tightness of the blood-to-brain barrier, local metabolic activity, and expression of specific molecular targets. Here, we briefly review current methods for imaging neuro-inflammation, with special emphasis on nuclear imaging techniques. (authors)

  2. Role of Brain Inflammation in Epileptogenesis

    OpenAIRE

    Choi, Jieun; Koh, Sookyong

    2008-01-01

    Inflammation is known to participate in the mediation of a growing number of acute and chronic neurological disorders. Even so, the involvement of inflammation in the pathogenesis of epilepsy and seizure-induced brain damage has only recently been appreciated. Inflammatory processes, including activation of microglia and astrocytes and production of proinflammatory cytokines and related molecules, have been described in human epilepsy patients as well as in experimental models of epilepsy. Fo...

  3. Ocular discomfort responses after short periods of contact lens wear.

    Science.gov (United States)

    Papas, Eric; Tilia, Daniel; McNally, John; de la Jara, Percy Lazon

    2015-06-01

    To investigate if contact lens-related discomfort is a function of the time of day at which lenses are worn. This was a randomized, crossover, open-label clinical trial where subjective responses, with and without contact lenses, were assessed every 2 hours during five stages (A to E). Each stage began at the time when subjects would normally have inserted their contact lenses (T0). During stage A, no lenses were worn, whereas in stage B, lenses were worn continuously for 12 hours. In stages C to E, lenses were worn for only 4 hours. Contact lenses were inserted at T0 for stage C, but for stages D and E, lenses were not inserted until T0 + 4 and T0 + 8 hours, respectively. Mixed linear models were used for statistical analysis. In the absence of contact lenses, ocular comfort and dryness remained reasonably constant throughout the observation period. Ocular comfort and dryness decreased during 12 hours of continuous lens wear and became significantly worse from the 8-hour time onward compared with insertion (p 0.05) to the first 4 hours of continuous contact lens wear. Comparing the scores of each of these stages with the no-lens response at the corresponding time showed no significant differences for comfort (p > 0.23) or dryness (p > 0.37). Short periods of wear can be experienced at any time of day without significant change in ocular discomfort and dryness. This suggests that subjective responses at the end of the day are determined by the length of time lenses are in contact with the eye, rather than the time of day at which lenses are worn.

  4. A wavelet filtering method for cumulative gamma spectroscopy used in wear measurements

    International Nuclear Information System (INIS)

    Bianchi, Davide; Lenauer, Claudia; Betz, Gerhard; Vernes, András

    2017-01-01

    Continuous ultra-mild wear quantification using radioactive isotopes involves measuring very low amounts of activity in limited time intervals. This results in gamma spectra with poor signal-to-noise ratio and hence very scattered wear data, especially during running-in, where wear is intrinsically low. Therefore, advanced filtering methods reducing the wear data scattering and making the calculation of the main peak area more accurate are mandatory. An energy-time dependent threshold for wavelet detail coefficients based on Poisson statistics and using a combined Barwell law for the estimation of the average photon counting rate is then introduced. In this manner, it was shown that the accuracy of running-in wear quantification is enhanced. - Highlights: • Time-dependent Poisson statistics. • Wavelet-based filtering of cumulative gamma spectra. • Improvement of low wear analysis.

  5. New Challenges in Tribology: Wear Assessment Using 3D Optical Scanners.

    Science.gov (United States)

    Valigi, Maria Cristina; Logozzo, Silvia; Affatato, Saverio

    2017-05-18

    Wear is a significant mechanical and clinical problem. To acquire further knowledge on the tribological phenomena that involve freeform mechanical components or medical prostheses, wear tests are performed on biomedical and industrial materials in order to solve or reduce failures or malfunctions due to material loss. Scientific and technological advances in the field of optical scanning allow the application of innovative devices for wear measurements, leading to improvements that were unimaginable until a few years ago. It is therefore important to develop techniques, based on new instrumentations, for more accurate and reproducible measurements of wear. The aim of this work is to discuss the use of innovative 3D optical scanners and an experimental procedure to detect and evaluate wear, comparing this technique with other wear evaluation methods for industrial components and biomedical devices.

  6. Mechanical and wear properties of pre-alloyed molybdenum P/M steels with nickel addition

    Directory of Open Access Journals (Sweden)

    Yamanoglu R.

    2012-01-01

    Full Text Available The aim of this study is to understand the effect of nickel addition on mechanical and wear properties of molybdenum and copper alloyed P/M steel. Specimens with three different nickel contents were pressed under 400 MPa and sintered at 1120ºC for 30 minutes then rapidly cooled. Microstructures and mechanical properties (bending strength, hardness and wear properties of the sintered specimens were investigated in detail. Metallographical investigations showed that the microstructures of consolidated specimens consist of tempered martensite, bainite, retained austenite and pores. It is also reported that the amount of pores varies depending on the nickel concentration of the alloys. Hardness of the alloys increases with increasing nickel content. Specimens containing 2% nickel showed minimum pore quantity and maximum wear resistance. The wear mechanism changed from abrasive wear at low nickel content to adhesive wear at higher nickel content.

  7. Contradictory effect of chromate inhibitor on corrosive wear of aluminium alloy

    International Nuclear Information System (INIS)

    Pokhmurskii, V.I.; Zin, I.M.; Vynar, V.A.; Bily, L.M.

    2011-01-01

    Research highlights: → Corrosive wear of aluminium alloy in inhibited artificial acid rain was studied. → Tribometer with linear reciprocating ball-on-flat geometry was used.→ Corrosion potential, polarization current and friction coefficient were measured. → Chromate decreases corrosion of aluminium alloy under wear conditions. → Chromate in general accelerates corrosive wear of the alloy in acid rain. - Abstract: The corrosive wear of D16T aluminium alloy in artificial acid rain was studied. A special tribometer with the linear reciprocating ball-on-flat geometry was used. The setup allows to measure simultaneously an open circuit potential, to carry out potentiostatic and potentiodynamic polarization studies of the alloy corrosion and to record the friction coefficient. It was established that the addition of strontium chromate inhibitor to the working environment decreases an electrochemical corrosion of the aluminium alloy under wear conditions, but in general accelerates its destruction due to insufficient wear resistance of a formed surface film.

  8. Numerical modelling of tool wear in turning with cemented carbide cutting tools

    Science.gov (United States)

    Franco, P.; Estrems, M.; Faura, F.

    2007-04-01

    A numerical model is proposed for analysing the flank and crater wear resulting from the loss of material on cutting tool surface in turning processes due to wear mechanisms of adhesion, abrasion and fracture. By means of this model, the material loss along cutting tool surface can be analysed, and the worn surface shape during the workpiece machining can be determined. The proposed model analyses the gradual degradation of cutting tool during turning operation, and tool wear can be estimated as a function of cutting time. Wear-land width (VB) and crater depth (KT) can be obtained for description of material loss on cutting tool surface, and the effects of the distinct wear mechanisms on surface shape can be studied. The parameters required for the tool wear model are obtained from bibliography and experimental observation for AISI 4340 steel turning with WC-Co cutting tools.

  9. Wear of resin composites: Current insights into underlying mechanisms, evaluation methods and influential factors

    Directory of Open Access Journals (Sweden)

    Akimasa Tsujimoto

    2018-05-01

    Full Text Available Summary: The application of resin composites in dentistry has become increasingly widespread due to the increased aesthetic demands of patients, improvements in the formulation of resin composites, and the ability of these materials to bond to tooth structures, together with concerns about dental amalgam fillings. As resistance to wear is an important factor in determining the clinical success of resin composite restoratives, this review article defines what constitutes wear and describes the major underlying phenomena involved in this process. Insights are further included on both in vivo and in vitro tests used to determine the wear resistance of resin composite and the relationships between these tests. The discussion focuses on factors that contribute to the wear of resin composite. Finally, future perspectives are included on both clinical and laboratory tests and on the development of resin composite restorations. Keywords: Resin composites, Wear resistance, Wear testing

  10. Couple of biomimetic surfaces with different morphologies for remanufacturing nonuniform wear rail surface

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Yang, Lin; Zhang, Haifeng; Feng, Li; Zhang, Peng

    2018-02-01

    In this work, biomimetic laser treatment was performed on repairing and remanufacturing the nonuniform worn rail surface. The wearing depth distribution of three work regions of a failure rail surface was discussed, and different thickness hardening layers with different microstructure, microhardness and wear resistances were detected from the worm surfaces. Varying wear resistances of the surfaces with different biomimetic morphologies were obtained by biomimetic laser treatments, and the corresponding effect on the lubrication sliding wear of treated and untreated surfaces were studied for comparative study. In addition, the relationship between wear resistance and the spacing of units was also provided, which can lay the important theoretical foundation for avoiding the wear resistance of the serious worn surface is less than that of the slight worn surface in the future practical applications.

  11. Numerical modelling of tool wear in turning with cemented carbide cutting tools

    International Nuclear Information System (INIS)

    Franco, P.; Estrems, M.; Faura, F.

    2007-01-01

    A numerical model is proposed for analysing the flank and crater wear resulting from the loss of material on cutting tool surface in turning processes due to wear mechanisms of adhesion, abrasion and fracture. By means of this model, the material loss along cutting tool surface can be analysed, and the worn surface shape during the workpiece machining can be determined. The proposed model analyses the gradual degradation of cutting tool during turning operation, and tool wear can be estimated as a function of cutting time. Wear-land width (VB) and crater depth (KT) can be obtained for description of material loss on cutting tool surface, and the effects of the distinct wear mechanisms on surface shape can be studied. The parameters required for the tool wear model are obtained from bibliography and experimental observation for AISI 4340 steel turning with WC-Co cutting tools

  12. Wear behavior of steam generator tubes in nuclear power plant operating condition

    International Nuclear Information System (INIS)

    Kim, In-Sup; Hong, Jin-Ki; Kim, Hyung-Nam; Jang, Ki-Sang

    2003-01-01

    Reciprocating sliding wear tests were performed on steam generator tubes materials at steam generator operating temperature. The material surfaces react with oxygen to form oxides. The oxide properties such as formation rate and mechanical properties are varied with the test temperature and alloy composition. So, it is important to investigate the wear properties of each steam generator tube materials in steam generator operating condition. The tests results indicated that the wear coefficient in work rate model of alloy 690 was faster than that of alloy 800. From the scanning electron microscopy observation, the wear scars were similar each other and worn surfaces were covered with oxide layers. It seemed that the oxide layers were formed by wear debris sintering or cold welding and these layer properties affected the wear rate of steam generator tube materials. (author)

  13. An experimental modeling and acoustic emission monitoring of abrasive wear in a steel/diabase pair

    Science.gov (United States)

    Korchuganov, M. A.; Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2016-11-01

    The earthmoving of permafrost soil is a critical task for excavation of minerals and construction on new territories. Failure by abrasive wear is the main reason for excavation parts of earthmoving and soil cutting machines. Therefore investigation of this type of wear is a challenge for developing efficient and wear resistant working parts. This paper is focused on conducting tribological experiments with sliding the steel samples over the surface of diabase stone sample where abrasive wear conditions of soil cutting are modeled experimentally. The worn surfaces of all samples have been examined and transfer of metal and stone particles revealed. The acoustic emission (AE) signals have been recorded and related to the results of worn surface analysis. he acoustic emission (AE) signals have been recorded and related to the results of worn surface analysis. As shown the wear intensity correlates to that of acoustic emission. Both acoustic emission signal median frequency and energy are found to be sensitive to the wear mode.

  14. Wear Characterization of Aluminium/Basalt Fiber Reinforced Metal Matrix Composites - A Novel Material

    Directory of Open Access Journals (Sweden)

    P. Amuthakkannan

    2017-06-01

    Full Text Available Aluminum alloy based metal matrix composite participate have a wider applications in wear resistance applications. Attempt made in current study is that, basalt fiber reinforced aluminum metal matrix composite have been prepared using stir casting method. Different weight percentage of basalt fiber reinforced with Al (6061 metal matrix composites are used to study the wear resistance of the composites. For wear study, percentage of reinforcement, normal load and sliding velocity are the considered as important parameters. To study the effect of basalt fiber reinforcement on the dry sliding wear of Al6061 alloy composites the Pin On wear tester is used. Initially hardness of the composites was tested, it was found that increasing reinforcement in the composite hardness value of the composites also increased. Based on the Grey relation analysis (GRA the effects of wear resistance of the composites were studied.

  15. Bedrock erosion by sliding wear in channelized granular flow

    Science.gov (United States)

    Hung, C. Y.; Stark, C. P.; Capart, H.; Smith, B.; Maia, H. T.; Li, L.; Reitz, M. D.

    2014-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Bedrock wear can be separated into impact and sliding wear processes. Here we focus on sliding wear. We have conducted experiments with a 40-cm-diameter grainflow-generating rotating drum designed to simulate dry channelized debris flows. To generate sliding erosion, we placed a 20-cm-diameter bedrock plate axially on the back wall of the drum. The rotating drum was half filled with 2.3-mm-diameter grains, which formed a thin grain-avalanching layer with peak flow speed and depth close to the drum axis. The whole experimental apparatus was placed on a 100g-ton geotechnical centrifuge and, in order to scale up the stress level, spun to a range of effective gravity levels. Rates and patterns of erosion of the bedrock plate were mapped after each experiment using 3d micro-photogrammetry. High-speed video and particle tracking were employed to measure granular flow dynamics. The resulting data for granular velocities and flow geometry were used to estimate impulse exchanges and forces on the bedrock plate. To address some of the complexities of granular flow under variable gravity levels, we developed a continuum model framed around a GDR MiDi rheology. This model allowed us to scale up boundary forcing while maintaining the same granular flow regime, and helped us to understand important aspects of the flow dynamics including e.g. fluxes of momentum and kinetic energy. In order to understand the detailed processes of boundary forcing, we performed numerical simulations with a new contact dynamics model. This model confirmed key aspects of our continuum model and provided information on second-order behavior such as fluctuations in the forces acting on the wall. By combining these measurements and theoretical analyses, we have developed and calibrated a constitutive model for sliding wear that is a threshold function of

  16. Tribology - friction, lubrication and wear: fifty years on. 2 v

    International Nuclear Information System (INIS)

    1987-01-01

    The paper presents the proceedings of the International Tribology Conference held in London (United Kingdom), 1987, and organised by the Institution of Mechanical Engineers. The aim of the conference was to address the current status and future developments in all aspects of tribology. The conference proceedings contained 121 papers, and the sessions were structured under six headings: hydrodynamic, elastohydrodynamic and mixed lubrication; friction and wear; contact mechanics; materials; design and applications; and lubricants. Four papers were chosen for INIS and indexed separately. (U.K.)

  17. Standard Test Method for Abrasive Wear Resistance of Cemented

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the determination of abrasive wear resistance of cemented carbides. 1.2 The values stated in inch-pound units are to be regarded as the standard. The SI equivalents of inch-pound units are in parentheses and may be approximate. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. Laser cladding of wear resistant metal matrix composite coatings

    International Nuclear Information System (INIS)

    Yakovlev, A.; Bertrand, Ph.; Smurov, I.

    2004-01-01

    A number of coatings with wear-resistant properties as well as with a low friction coefficient are produced by laser cladding. The structure of these coatings is determined by required performance and realized as metal matrix composite (MMC), where solid lubricant serves as a ductile matrix (e.g. CuSn), reinforced by appropriate ceramic phase (e.g. WC/Co). One of the engineered coating with functionally graded material (FGM) structure has a dry friction coefficient 0.12. Coatings were produced by coaxial injection of powder blend into the zone of laser beam action. Metallographic and tribological examinations were carried out confirming the advanced performance of engineered coatings

  19. QUALITY EVALUATION OF THE TPP POWER GENERATING UNITS WEAR RECONDITIONING

    Directory of Open Access Journals (Sweden)

    E. M. Farhadzadeh

    2016-01-01

    Full Text Available Reconditioning of the power generating unit worn equipment and devices is conducted during the scheduled repair period. Quality of wear reconditioning is evaluated by technical state and repair work implementation. Quality of the repair work execution characterizes logistical activities of the power station and the repair services and is rated by a five-grade scale. There are three technical conditions: adequate, subject to reservations, falling short of the technical standard documentation requirements. In practical work these constraints give place to essential ambiguity of the decision. Further to regulating techniques by way of informational support, the authors propose conducting the wear-reconditioning quality evaluation (repair quality accordingly the technical-and-economic indexes pattern of change. The paper recommends applying similarly the fivegrade system in evaluating the power generating unit technical state and distinguishes intolerable, dissatisfactory, fair, good and model estimates. The study demonstrates the assessment criteria dependence on the character of reliability and economical efficiency of performance variation after the repair with increase or decrease of the technical-and-economic indexes in reference to their mean, minimum and maximum values before the repair. The cases ascribed to intolerable quality of the wear reconditioning are those with one or more technical-and-economic indexes that not only failed to improve their values but deteriorated, and at that they became the worst amongst observable values. The model quality estimate of the wear reconditioning is allotted under condition that the power unit technical-and-economic index valuations after the repair not merely improved but also exceeded the best among those under observation. The developed method and algorithm for quality evaluation of the scheduled repair implementation contribute to practical realization of the independent monitoring. This monitoring

  20. Simulation and Measurement of Wheel on Rail Fatigue and Wear

    OpenAIRE

    Dirks, Babette

    2015-01-01

    The life of railway wheels and rails has been decreasing in recent years. This is mainly caused by more traffic and running at higher vehicle speed. A higher speed usually generates higher forces, unless compensated by improved track and vehicle designs, in the wheel-rail contact, resulting in more wear and rolling contact fatigue (RCF) damage to the wheels and rails. As recently as 15 years ago, RCF was not recognised as a serious problem. Nowadays it is a serious problem in many countries a...

  1. Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites.

    Science.gov (United States)

    Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang

    2018-02-07

    The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiC p /Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiC p /Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiC p /Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiC p /Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different

  2. Wear Characteristics of Ceramic Coating Materials by Plasma Spray under the Lubricative Environment

    International Nuclear Information System (INIS)

    Kim, Chang Ho

    2001-02-01

    This paper is to investigate the wear behaviors of two types of ceramics, Al 2 O 3 and TiO 2 , by coated plasma thermal spray method under the lubricative environment. The lubricative environments are grease fluids, a general hydraulic fluids, and bearing fluids. The wear testing machine used a pin on disk type. Wear characteristics, which were friction force, friction coefficient and the specific wear rate, according to the lubricative environments were obtained at the four kinds of load, and the sliding velocity is 0.2m/sec. After the wear experiments, the wear surfaces of the each test specimen were observed by a scanning electronic microscope. The obtained results are as follows. : 1. The friction coefficients of TiO 2 coating materials are 0.11 ∼ 0.16 range and those of Al 2 O 3 are 0.24 ∼ 0.39. The friction coefficient of two coating materials is relative to the hardness of these materials. 2. The friction coefficient of TiO 2 coating materials in three lubricative environments is almost same to each other in spite of changing of applied loads. 3. The friction coefficient of Al 2 O 3 coating materials is more large in low load than high load. And the friction coefficient in grease is more large than a general hydraulic and bearing fluids had almost same friction coefficient. 4. The specific wear rate in TiO 2 is greatly increasing according to change the applied loads, but that in Al 2 O 3 is slightly. And the wear in grease is the least among three lubricating environments. 5. On the wear mechanism by SEM image observation, the wear of Al 2 O 3 is adhesive wear and TiO 3 is abrasive wear

  3. Fundamental studies on dynamic wear behavior of SBR rubber compounds modified by SBR rubber powder

    OpenAIRE

    Euchler, Eric; Heinrich, Gert; Michael, Hannes; Gehde, Michael; Stocek, Radek; Kratina, Ondrej; Kipscholl, Reinhold; Bunzel, Jörg-Michael; Saal, Wolfgang

    2016-01-01

    The aim of this study is focused on the experimental investigation of dynamic wear behavior of carbon black filled rubber compounds comprising pristine styrene butadiene rubber (SBR) together with incorporated SBR ground rubber (rubber powder). We also analyzed and described quantitatively the service conditions of some dynamically loaded rubber products, which are liable to wear (e.g. conveyor belts, tires). Beside the well-known standard test method to characterize wear resistance at steady...

  4. Survey on Road-Tyre Contact Patch Pattern and Wear Related Aspects

    OpenAIRE

    Azodo Adinife Patrick

    2017-01-01

    Motor vehicle end-users approaches to tyre safety issues in automobiles translate to a number of tyre failure risk factors. This study basically assessed tread wear pattern of tyres in passenger cars used on Nigeria roads. The result obtained showed that 75.4% of the assessed tyres showed uneven wear pattern resulting from incorrect tyre-road contact effects. This observed high proportion of uneven tyre tread wear pattern implies high rate of inconsequential regard for tyre safety.

  5. Survey on Road-Tyre Contact Patch Pattern and Wear Related Aspects

    Directory of Open Access Journals (Sweden)

    Azodo Adinife Patrick

    2017-11-01

    Full Text Available Motor vehicle end-users approaches to tyre safety issues in automobiles translate to a number of tyre failure risk factors. This study basically assessed tread wear pattern of tyres in passenger cars used on Nigeria roads. The result obtained showed that 75.4% of the assessed tyres showed uneven wear pattern resulting from incorrect tyre-road contact effects. This observed high proportion of uneven tyre tread wear pattern implies high rate of inconsequential regard for tyre safety.

  6. An intelligent condition monitoring system for on-line classification of machine tool wear

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Fu; Hope, A D; Javed, M [Systems Engineering Faculty, Southampton Institute (United Kingdom)

    1998-12-31

    The development of intelligent tool condition monitoring systems is a necessary requirement for successful automation of manufacturing processes. This presentation introduces a tool wear monitoring system for milling operations. The system utilizes power, force, acoustic emission and vibration sensors to monitor tool condition comprehensively. Features relevant to tool wear are drawn from time and frequency domain signals and a fuzzy pattern recognition technique is applied to combine the multisensor information and provide reliable classification results of tool wear states. (orig.) 10 refs.

  7. An intelligent condition monitoring system for on-line classification of machine tool wear

    Energy Technology Data Exchange (ETDEWEB)

    Fu Pan; Hope, A.D.; Javed, M. [Systems Engineering Faculty, Southampton Institute (United Kingdom)

    1997-12-31

    The development of intelligent tool condition monitoring systems is a necessary requirement for successful automation of manufacturing processes. This presentation introduces a tool wear monitoring system for milling operations. The system utilizes power, force, acoustic emission and vibration sensors to monitor tool condition comprehensively. Features relevant to tool wear are drawn from time and frequency domain signals and a fuzzy pattern recognition technique is applied to combine the multisensor information and provide reliable classification results of tool wear states. (orig.) 10 refs.

  8. Experimental Study of the Hygrothermal Effect on Wear Behavior of Composite Materials

    OpenAIRE

    Fadhel Abbas. Abdulla; Katea L. Hamid

    2017-01-01

    The hygrothermal effect on the wear behavior of composite material (fiberglass and polyester resin vf=40%) was investigated experimentally in this work. The study includes manufacturing of test device (pin on disc) according to ASTM G 99. In order to study the hygrothermal effect on wear behavior of composite materials the hygrothermal chamber was manufactured. The experimental results show that the wear of glass fiber/polyester increased with increasing the load, sliding speed and sliding di...

  9. Abrasive Wear of Four Direct Restorative Materials by Standard and Whitening Dentifrices

    Science.gov (United States)

    2013-06-01

    Weader, E., Liscombe, C., & Holt, J.S. (2005). The measurement of enamel and dentine abrasion by tooth - whitening products using an in situ model...ABRASION OF TOOTH STRUCTURE Hard tissue abrasion is a familiar consequence of toothbrushing. Enamel , dentin, and cementum differ in their...LESIONS Cervical enamel wear is common; however, relatively few epidemiologic studies have distinguished between cervical enamel wear and tooth wear in

  10. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    Science.gov (United States)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  11. Changes in food processing and occlusal dental wear during the early agricultural period in northwest Mexico.

    Science.gov (United States)

    Watson, James T

    2008-01-01

    Crown dimensions and occlusal surface wear rate and wear plane were evaluated using paired first and second mandibular molars from a sample of 84 Early Agricultural period (1600 B.C.-A.D. 200) skeletons from northwest Mexico. Although this period represents a major shift in subsistence strategies in the Sonoran Desert, from food-foraging to agriculture, archaeological and dental pathology studies have identified this period as one of relative dietary stability. It was therefore predicted that very little variation in occlusal wear would have occurred between the early phase (San Pedro: 1600-800 B.C.) and late phase (Cienega: 800 B.C.-A.D. 200). Comparison of crown diameters identified some phenotypic differences between sexes but not between archaeological phases. Molar occlusal surfaces were then divided into four quadrants, and wear scores recorded for each quadrant. Principle axis analysis was performed between total wear scores of paired, adjacent first and second mandibular molars to assess rate and occlusal wear plane over time. The analysis demonstrated that both wear rate and wear plane increased from the early to the late phase of the Early Agricultural period. These results indicate that although diet may have indeed remained stable during this period in the Sonoran Desert increases in the rate of wear and wear plane may reflect changes in food-processing techniques. It is suggested that more intensive processing of agricultural products during the Cienega phase simultaneously softened the diet to create more tooth-contact wear and introduced more grit to cause faster and more angled wear on the molar occlusal surfaces. (c) 2007 Wiley-Liss, Inc.

  12. Modeling of Wear of Knives of Paper-Cutting Machines in Use

    OpenAIRE

    Кулак, Михаил Иосифович; Медяк, Диана Михайловна

    2016-01-01

    Development of the theory of cutting of paper and methods of measurement of width of the cutting edge in the course of wear of a knife is analyzed. Device to a micrometer for measurement of the tool edge width and a way of determination of radius of a curve of the cutting edge of such tool is presented. The card of wear of a knife is constructed and process of wear of the self-sharpened knife is investigated.

  13. Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions

    Directory of Open Access Journals (Sweden)

    Herbst Margaret C

    2004-12-01

    Full Text Available Abstract Background Exposure to fine particulate matter air pollutants (PM2.5 affects heart rate variability parameters, and levels of serum proteins associated with inflammation, hemostasis and thrombosis. This study investigated sources potentially responsible for cardiovascular and hematological effects in highway patrol troopers. Results Nine healthy young non-smoking male troopers working from 3 PM to midnight were studied on four consecutive days during their shift and the following night. Sources of in-vehicle PM2.5 were identified with variance-maximizing rotational principal factor analysis of PM2.5-components and associated pollutants. Two source models were calculated. Sources of in-vehicle PM2.5 identified were 1 crustal material, 2 wear of steel automotive components, 3 gasoline combustion, 4 speed-changing traffic with engine emissions and brake wear. In one model, sources 1 and 2 collapsed to a single source. Source factors scores were compared to cardiac and blood parameters measured ten and fifteen hours, respectively, after each shift. The "speed-change" factor was significantly associated with mean heart cycle length (MCL, +7% per standard deviation increase in the factor score, heart rate variability (+16%, supraventricular ectopic beats (+39%, % neutrophils (+7%, % lymphocytes (-10%, red blood cell volume MCV (+1%, von Willebrand Factor (+9%, blood urea nitrogen (+7%, and protein C (-11%. The "crustal" factor (but not the "collapsed" source was associated with MCL (+3% and serum uric acid concentrations (+5%. Controlling for potential confounders had little influence on the effect estimates. Conclusion PM2.5 originating from speed-changing traffic modulates the autonomic control of the heart rhythm, increases the frequency of premature supraventricular beats and elicits pro-inflammatory and pro-thrombotic responses in healthy young men.

  14. Wear behavior of tetragonal zirconia polycrystal versus titanium and titanium alloy

    International Nuclear Information System (INIS)

    Kanbara, Tsunemichi; Yajima, Yasutomo; Yoshinari, Masao

    2011-01-01

    The aim of this study was to clarify the influence of tetragonal zirconia polycrystal (TZP) on the two-body wear behavior of titanium (Ti). Two-body wear tests were performed using TZP, two grades of cp-Ti or Ti alloy in distilled water, and the cross-sectional area of worn surfaces was measured to evaluate the wear behavior. In addition, the surface hardness and coefficient of friction were determined and an electron probe microanalysis performed to investigate the underlying mechanism of wear. The hardness of TZP was much greater than that of Ti. The coefficient of friction between Ti and Ti showed a higher value than the Ti/TZP combination. Ti was more susceptible to wear by both TZP and Ti than TZP, indicating that the mechanism of wear between TZP and Ti was abrasive wear, whereas that between Ti and Ti was adhesive wear. No remarkable difference in the amount of wear in Ti was observed between TZP and Ti as the opposite material, despite the hardness value of Ti being much smaller than that of TZP. (communication)

  15. Asperity-Level Origins of Transition from Mild to Severe Wear

    Science.gov (United States)

    Aghababaei, Ramin; Brink, Tobias; Molinari, Jean-François

    2018-05-01

    Wear is the inevitable damage process of surfaces during sliding contact. According to the well-known Archard's wear law, the wear volume scales with the real contact area and as a result is proportional to the load. Decades of wear experiments, however, show that this relation only holds up to a certain load limit, above which the linearity is broken and a transition from mild to severe wear occurs. We investigate the microscopic origins of this breakdown and the corresponding wear transition at the asperity level. Our atomistic simulations reveal that the interaction between subsurface stress fields of neighboring contact spots promotes the transition from mild to severe wear. The results show that this interaction triggers the deep propagation of subsurface cracks and the eventual formation of large debris particles, with a size corresponding to the apparent contact area of neighboring contact spots. This observation explains the breakdown of the linear relation between the wear volume and the normal load in the severe wear regime. This new understanding highlights the critical importance of studying contact beyond the elastic limit and single-asperity models.

  16. Wear of Polished Steel Surfaces in Dry Friction Linear Contact on Polimer Composites with Glass Fibres

    Directory of Open Access Journals (Sweden)

    D. Rus

    2013-12-01

    Full Text Available It is generally known that the friction and wear between polymers and polished steel surfaces has a special character, the behaviour to friction and wear of a certain polymer might not be valid for a different polymer, moreover in dry friction conditions. In this paper, we study the reaction to wear of certain polymers with short glass fibres on different steel surfaces, considering the linear friction contact, observing the friction influence over the metallic surfaces wear. The paper includes also its analysis over the steel’s wear from different points of view: the reinforcement content influence and tribological parameters (load, contact pressure, sliding speed, contact temperature, etc.. Thus, we present our findings related to the fact that the abrasive component of the friction force is more significant than the adhesive component, which generally is specific to the polymers’ friction. Our detections also state that, in the case of the polyamide with 30% glass fibres, the steel surface linear wear rate order are of 10-4 mm/h, respectively the order of volumetric wear rate is of 10-6 cm3 /h. The resulting volumetric wear coefficients are of the order (10-11 – 10-12 cm3/cm and respectively linear wear coefficients of 10-9 mm/cm.

  17. Effect of thermal treatments on the wear behaviour of duplex stainless steels

    International Nuclear Information System (INIS)

    Fargas, G; Mestra, A; Anglada, M; Mateo, A

    2009-01-01

    Duplex stainless steel (DSS) is a family of steels characterized by two-phase microstructure with similar percentages of ferrite (α) and austenite (γ).Their attractive combination of mechanical properties and corrosion resistance has increased its use in last decades in the marine and petrochemical industries. Nevertheless, an inappropriate heat treatment can induce the precipitation of secondary phases which affect directly their mechanical properties and corrosion resistance. There are few works dealing with the influence of heat treatments on wear behaviour of these steels in the literature. For instances, this paper aims to determine wear kinetic and sliding wear volume developed as a function of heat treatment conditions. Therefore, the samples were heat treated from 850 deg. C to 975 deg.C before sliding wear tests. These wear tests were carried out using ball on disk technique at constant sliding velocity and different sliding distances. Two methodologies were used to calculate the wear volume: weight loss and area measurement using a simplified contact model. Microstructural observations showed the presence of sigma phase for all studied conditions. The formation kinetics of this phase is faster at 875 deg. C and decrease at higher temperatures. Results related to wear showed that the hardness introduced due to the presence of sigma phase plays an important role on wear behaviour for this steel. It was observed also that wear rates decreased when increasing the percentage of sigma phase on the microstructure.

  18. In vitro wear assessments of fixed and mobile UHMWPE total knee replacement

    International Nuclear Information System (INIS)

    Affatato, Saverio; Bracco, Pierangiola; Sudanese, Alessandra

    2013-01-01

    Highlights: ► In this study we examined the wear behaviour of total knee UHMWPE menisci. ► We used two different knee designs: mobile and fixed menisci. ► We used a knee simulator and FTIR analyses to evaluate the wear behaviour. ► Our conclusions are that the two designs had a different wear behaviour. - Abstract: This work discusses the wear behaviour of two different ultra-high-molecular-weight-polyethylene tibial component designs. Mobile and fixed bearings were tested on a knee wear simulator for 5 million cycles using bovine calf serum as lubricant. We correlated the wear results with the chemical characterisation of the investigated materials: Fourier Transformed Infra Red Spectroscopy analyses, Differential Scanning Calorimetry and cross-link density measurements were used to assess the chemical features of this polyethylene. Mobile and fixed polyethylene inserts showed a different wear behaviour: the mobile designs components showed lower weight losses than the fixed components (109 ± 6 mg and 163 ± 80 mg, respectively). Significant statistical differences were observed in wear rate (P = 0.035, Kolmogorov–Smirnov Test for two samples). From a molecular point of view, typical radiation-induced oxidation profiles were observed in all the tested polyethylene samples, but the overall degradation was more significant in the fixed bearing inserts and this is likely to play a role on the wear performances

  19. Effect of soot on oil properties and wear of engine components

    International Nuclear Information System (INIS)

    Green, D A; Lewis, R

    2007-01-01

    The objective of the work outlined in this paper was to increase the understanding of the wear mechanisms that occur within a soot contaminated contact zone, to help in future development of a predictive wear model to assist in the automotive engine valve train design process. The paper builds on previous work by the author, through testing of different lubricants and increased levels of soot contamination. Wear testing has been carried out using specimens operating under realistic engine conditions, using a reciprocating test-rig specifically designed for this application, where a steel disc is held in a heated bath of oil and a steel ball is attached to a reciprocating arm (replicating a sliding elephant's foot valve train contact). Detailed analysis of the test specimens has been performed using scanning electron microscopy to identify wear features relating to the proposed wear mechanisms. Analysis of worn engine components from durability engine tests has also been carried out for a comparison between specimen tests and engine testing. To assist the understanding of the wear test results obtained, the physical properties of contaminated lubricants were investigated, through viscosity, traction and friction measurements. The results have revealed how varying lubrication conditions change the wear rate of engine components and determine the wear mechanism that dominates in specific situations. Testing has also shown the positive effects of advanced engine lubricants to reduce the amount of wear produced with soot present

  20. Wear Process Analysis of the Polytetrafluoroethylene/Kevlar Twill Fabric Based on the Components’ Distribution Characteristics

    Directory of Open Access Journals (Sweden)

    Gu Dapeng

    2017-12-01

    Full Text Available Polytetrafluoroethylene (PTFE/Kevlar fabric or fabric composites with excellent tribological properties have been considered as important materials used in bearings and bushing, for years. The components’ (PTFE, Kevlar, and the gap between PTFE and Kevlar distribution of the PTFE/Kevlar fabric is uneven due to the textile structure controlling the wear process and behavior. The components’ area ratio on the worn surface varying with the wear depth was analyzed not only by the wear experiment, but also by the theoretical calculations with our previous wear geometry model. The wear process and behavior of the PTFE/Kevlar twill fabric were investigated under dry sliding conditions against AISI 1045 steel by using a ring-on-plate tribometer. The morphologies of the worn surface were observed by the confocal laser scanning microscopy (CLSM. The wear process of the PTFE/Kevlar twill fabric was divided into five layers according to the distribution characteristics of Kevlar. It showed that the friction coefficients and wear rates changed with the wear depth, the order of the antiwear performance of the previous three layers was Layer III>Layer II>Layer I due to the area ratio variation of PTFE and Kevlar with the wear depth.