WorldWideScience

Sample records for weapons plutonium disposition

  1. Overview of surplus weapons plutonium disposition

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, G.

    1996-05-01

    The safe disposition of surplus weapons useable plutonium is a very important and urgent task. While the functions of long term storage and disposition directly relate to the Department`s weapons program and the environmental management program, the focus of this effort is particularly national security and nonproliferation.

  2. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    Energy Technology Data Exchange (ETDEWEB)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S. [and others

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  3. Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J; Borisov, G B

    2004-07-21

    A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46 Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.

  4. Disposition of excess weapon plutonium in deep boreholes - site selection handbook

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Woldegabriel, G.; Morley, R.; Plannerer, H.; Rowley, J.

    1996-09-01

    One of the options for disposing of excess weapons plutonium is to place it near the base of deep boreholes in stable crystalline rocks. The technology needed to begin designing this means of disposition already exists, and there are many attractive sites available within the conterminous United States. There are even more potential sites for this option within Russia. The successful design of a borehole system must address two criteria: (1) how to dispose of 50 metric tons of weapons plutonium while making it inaccessible for unauthorized retrieval, and (2) how to prevent contamination of the accessible biosphere, defined here as the Earth`s surface and usable groundwaters.

  5. Long-term criticality concerns associated with disposition of weapons plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.S. [Lawrence Livermore National Lab., CA (United States)

    1997-06-01

    This paper presents a very brief description of criticality concerns resulting from dismantlement of nuclear weapons. Two plutonium disposal options, and associated criticality considerations, are described: (1) irradiating it into reactor-grade spent fuel, and (2) immobilization and burial, either in a geologic repository or in deep, sealed boreholes. Mixed oxide spent fuel could contain 3 to 4 wt% of reactor-grade plutonium. For the immobilization and the deep borehole options to be economically viable, a plutonium content of 3 to 7 wt% would be required. A study is proposed to evaluate the long-term criticality safety concerns for disposition of fissionable material in a geologic setting. 2 refs.

  6. U.S. weapons-usable plutonium disposition policy: Implementation of the MOX fuel option

    Energy Technology Data Exchange (ETDEWEB)

    Woods, A.L. [ed.] [Amarillo National Resource Center for Plutonium, TX (United States); Gonzalez, V.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Political Science

    1998-10-01

    A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective.

  7. Evaluation of alternatives for the disposition of surplus weapons-usable plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J.S.; Butler, J.C. [Univ. of Texas, Austin, TX (United States); Edmunds, T. [Lawrence Livermore National Lab., CA (United States)] [and others

    1997-04-04

    The Department of Energy Record of Decision (ROD) selected alternatives for disposition of surplus, weapons grade plutonium. A major objective of this decision was to prevent the proliferation of nuclear weapons. Other concerns addressed included economic, technical, institutional, schedule, environmental, and health and safety issues. The analysis reported here was conducted in parallel with technical, environmental, and nonproliferation analyses; it uses multiattribute utility theory to combine these considerations in order to facilitate an integrated evaluation of alternatives. This analysis is intended to provide additional insight regarding alternative evaluation and to assist in understanding the rationale for the choice of alternatives recommended in the ROD. Value functions were developed for objectives of disposition, and used to rank alternatives. Sensitivity analyses indicated that the ranking of alternatives for the base case was relatively insensitive to changes in assumptions over reasonable ranges. The analyses support the recommendation of the ROD to pursue parallel development of the vitrification immobilization alternative and the use of existing light water reactors alternative. 27 refs., 109 figs., 20 tabs.

  8. DOE plutonium disposition study: Analysis of existing ABB-CE Light Water Reactors for the disposition of weapons-grade plutonium. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Core reactivity and basic fuel management calculations were conducted on the selected reactors (with emphasis on the System 80 units as being the most desirable choice). Methods used were identical to those reported in the Evolutionary Reactor Report. From these calculations, the basic mission capability was assessed. The selected reactors were studied for modification, such as the addition of control rod nozzles to increase rod worth, and internals and control system modifications that might also be needed. Other system modifications studied included the use of enriched boric acid as soluble poison, and examination of the fuel pool capacities. The basic geometry and mechanical characteristics, materials and fabrication techniques of the fuel assemblies for the selected existing reactors are the same as for System 80+. There will be some differences in plutonium loading, according to the ability of the reactors to load MOX fuel. These differences are not expected to affect licensability or EPA requirements. Therefore, the fuel technology and fuel qualification sections provided in the Evolutionary Reactor Report apply to the existing reactors. An additional factor, in that the existing reactor availability presupposes the use of that reactor for the irradiation of Lead Test Assemblies, is discussed. The reactor operating and facility licenses for the operating plants were reviewed. Licensing strategies for each selected reactor were identified. The spent fuel pool for the selected reactors (Palo Verde) was reviewed for capacity and upgrade requirements. Reactor waste streams were identified and assessed in comparison to uranium fuel operations. Cost assessments and schedules for converting to plutonium disposition were estimated for some of the major modification items. Economic factors (incremental costs associated with using weapons plutonium) were listed and where possible under the scope of work, estimates were made.

  9. Proceedings of the 6th Annual Meeting for Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and WasteTreatment, Storage and Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J

    2005-06-30

    The sixth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held November 15-17, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, and Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 55 Russian attendees from 16 different Russian organizations and four non-Russian attendees from the US. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C. The 16 different Russian design, industrial sites, and scientific organizations in attendance included staff from Rosatom/Minatom, Federal Nuclear and Radiation Safety Authority of Russia (GOSATOMNADZOR, NIERA/GAN), All Russian Designing & Scientific Research Institute of Complex Power Technology (VNIPIET), Khlopin Radium Institute (KRI), A. A. Bochvar All Russian Scientific Research Institute of Inorganic Materials (VNIINM), All Russian & Design Institute of Production Engineering (VNIPIPT), Ministry of Atomic Energy of Russian Federation Specialized State Designing Institute (GSPI), State Scientific Center Research Institute of Atomic Reactors (RIAR), Siberian Chemical Combine Tomsk (SCC), Mayak PO, Mining Chemical Combine (MCC K-26), Institute of Biophysics (IBPh), Sverdlosk Scientific Research Institute of Chemical Machine Building (SNIIChM), Kurchatov Institute (KI), Institute of Physical Chemistry Russian Academy of Science (IPCh RAS) and Radon PO-Moscow. The four non-Russian attendees included

  10. Review of Excess Weapons Plutonium Disposition LLNL Contract Work in Russia-(English)

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L; Borisov, G B

    2002-07-11

    This third meeting of the recently completed and ongoing Russian plutonium immobilization contract work was held at the State Education Center (SEC) in St. Petersburg on January 14-18, 2002. The meeting agenda is reprinted here as Appendix A and the attendance list as Appendix B. The meeting had 58 Russian participants from 21 Russian organizations, including the industrial sites (Mayak, Krasonayarsk-26, Tomsk), scientific institutes (VNIINM, KRI, VNIPIPT, RIAR), design organizations (VNIPIET and GSPI), universities (Nyzhny Novgorod, Urals Technical), Russian Academy of Sciences (Institute of Physical Chemistry or IPhCh, Institute of Ore-Deposit Geology, Petrography, Mineralogy, and Geochemistry or IGEM), Radon-Moscow, S&TC Podol'osk, Kharkov-Ukraine, GAN-SEC-NRS and SNIIChM, the RF Ministry of Atomic Energy (Minatom) and Gosatomnadzor (GAN). This volume, published by LLNL, documents this third annual meeting. Forty-nine technical papers were presented by the Russian participants, and nearly all of these have been collected in this Proceedings. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing this contract work into one place for four days to review and discuss their work amongst each other. (2) Publish a meeting summary and proceedings of all the excellent Russian plutonium immobilization and other plutonium disposition contract work in one document so that the wide extent of the Russian immobilization activities are documented, referencable and available for others to use, as were the Proceedings of the two previous meetings. Attendees gave talks describing their LLNL contract work and submitted written papers documenting their contract work (in English and Russian), in both hard copy and on computer disks. Simultaneous translation into Russian and English was used for presentations made at the State Region Educational Center (SEC).

  11. Excess plutonium disposition using ALWR technology

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, A. (ed.); Buckner, M.R.; Radder, J.A.; Angelos, J.G.; Inhaber, H.

    1993-02-01

    The Office of Nuclear Energy of the Department of Energy chartered the Plutonium Disposition Task Force in August 1992. The Task Force was created to assess the range of practicable means of disposition of excess weapons-grade plutonium. Within the Task Force, working groups were formed to consider: (1) storage, (2) disposal,and(3) fission options for this disposition,and a separate group to evaluate nonproliferation concerns of each of the alternatives. As a member of the Fission Working Group, the Savannah River Technology Center acted as a sponsor for light water reactor (LWR) technology. The information contained in this report details the submittal that was made to the Fission Working Group of the technical assessment of LWR technology for plutonium disposition. The following aspects were considered: (1) proliferation issues, (2) technical feasibility, (3) technical availability, (4) economics, (5) regulatory issues, and (6) political acceptance.

  12. Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

  13. Excess Weapons Plutonium Immobilization in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L.; Borisov, G.B.

    2000-04-15

    The joint goal of the Russian work is to establish a full-scale plutonium immobilization facility at a Russian industrial site by 2005. To achieve this requires that the necessary engineering and technical basis be developed in these Russian projects and the needed Russian approvals be obtained to conduct industrial-scale immobilization of plutonium-containing materials at a Russian industrial site by the 2005 date. This meeting and future work will provide the basis for joint decisions. Supporting R&D projects are being carried out at Russian Institutes that directly support the technical needs of Russian industrial sites to immobilize plutonium-containing materials. Special R&D on plutonium materials is also being carried out to support excess weapons disposition in Russia and the US, including nonproliferation studies of plutonium recovery from immobilization forms and accelerated radiation damage studies of the US-specified plutonium ceramic for immobilizing plutonium. This intriguing and extraordinary cooperation on certain aspects of the weapons plutonium problem is now progressing well and much work with plutonium has been completed in the past two years. Because much excellent and unique scientific and engineering technical work has now been completed in Russia in many aspects of plutonium immobilization, this meeting in St. Petersburg was both timely and necessary to summarize, review, and discuss these efforts among those who performed the actual work. The results of this meeting will help the US and Russia jointly define the future direction of the Russian plutonium immobilization program, and make it an even stronger and more integrated Russian program. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing the work into one place for four days to review and discuss their work with each other; and (2) Publish a meeting summary and a proceedings to compile reports of all the excellent

  14. Decision model for evaluating reactor disposition of excess plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, T.

    1995-02-01

    The US Department of Energy is currently considering a range of technologies for disposition of excess weapon plutonium. Use of plutonium fuel in fission reactors to generate spent fuel is one class of technology options. This report describes the inputs and results of decision analyses conducted to evaluate four evolutionary/advanced and three existing fission reactor designs for plutonium disposition. The evaluation incorporates multiple objectives or decision criteria, and accounts for uncertainty. The purpose of the study is to identify important and discriminating decision criteria, and to identify combinations of value judgments and assumptions that tend to favor one reactor design over another.

  15. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  16. Disposition of plutonium-239 via production of fission molybdenum-99.

    Science.gov (United States)

    Mushtaq, A

    2011-04-01

    A heritage of physical consequences of the U.S.-Soviet arms race has accumulated, the weapons-grade plutonium (WPu), which will become excess as a result of the dismantlement of the nuclear weapons under the arms reduction agreements. Disposition of Pu has been proposed by mixing WPu with high-level radioactive waste with subsequent vitrification into large, highly radioactive glass logs or fabrication into mixed oxide fuel with subsequent irradiation in existing light water reactors. A potential option may be the production of medical isotope molybdenum-99 by using Pu-239 targets.

  17. DOE plutonium disposition study: Pu consumption in ALWRs. Volume 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-15

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document Volume 2, provides a discussion of: Plutonium Fuel Cycle; Technology Needs; Regulatory Considerations; Cost and Schedule Estimates; and Deployment Strategy.

  18. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  19. DOE Plutonium Disposition Study: Pu consumption in ALWRs. Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-15

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document, Volume 1, presents a technical description of the various elements of the System 80 + Standard Plant Design upon which the Plutonium Disposition Study was based. The System 80 + Standard Design is fully developed and directly suited to meeting the mission objectives for plutonium disposal. The bass U0{sub 2} plant design is discussed here.

  20. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  1. 32 CFR 552.125 - Disposition of confiscated weapons.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Disposition of confiscated weapons. 552.125..., Ammunition, and Explosives-Fort Lewis, Washington § 552.125 Disposition of confiscated weapons. Commanders will maintain confiscated weapons in the unit arms room pending final disposition. They will provide...

  2. Weapons plutonium for electricity: a win-win-win solution

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, P. [Synatom, Brussels (Belgium)

    1997-12-31

    Incorporating recovered weapons-grade plutonium into mixed-oxide (MOX) fuel to produce electricity in currently operating reactors is presented as the best option for its disposition from a European utilities perspective. It would be a win-win-win solution. Firstly, it would be a win for the US government as the only technology readily available on an industrial scale and therefore the fastest way to convert the surplus plutonium to a highly proliferation resistant spent fuel form, as well as being the most cost-effective option. It would also have the political advantages of proving to the world that the US is dedicated to the elimination of its surplus plutonium without delay, receiving support from the Western allies of the US, and encouraging the Russians to take the same route. Secondly, it would be a win for the US utilities both in economic terms and in improving their public image through their contribution to world disarmament. Finally, it would be a win for the world as the fastest route to making disarmament irreversible and as the only solution that conserves natural resources. (8 figures; 14 references) (UK).

  3. Strategies for denaturing the weapons-grade plutonium stockpile

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, M.R.; Parks, P.B.

    1992-10-01

    In the next few years, approximately 50 metric tons of weapons-grade plutonium and 150 metric tons of highly-enriched uranium (HEU) may be removed from nuclear weapons in the US and declared excess. These materials represent a significant energy resource that could substantially contribute to our national energy requirements. HEU can be used as fuel in naval reactors, or diluted with depleted uranium for use as fuel in commercial reactors. This paper proposes to use the weapons-grade plutonium as fuel in light water reactors. The first such reactor would demonstrate the dual objectives of producing electrical power and denaturing the plutonium to prevent use in nuclear weapons.

  4. Supplement to the Surplus Plutonium Disposition Draft Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-05-14

    On May 22, 1997, DOE published a Notice of Intent in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS)''. ''The Surplus Plutonium Disposition Draft Environmental Impact Statement'' (SPD Draft EIS) (DOWEIS-0283-D) was prepared in accordance with NEPA and issued in July 1998. It identified the potential environmental impacts of reasonable alternatives for the proposed siting, construction, and operation of three facilities for plutonium disposition. These three facilities would accomplish pit disassembly and conversion, immobilization, and MOX fuel fabrication. For the alternatives that included MOX fuel fabrication, the draft also described the potential environmental impacts of using from three to eight commercial nuclear reactors to irradiate MOX fuel. The potential impacts were based on a generic reactor analysis that used actual reactor data and a range of potential site conditions. In May 1998, DCE initiated a procurement process to obtain MOX fuel fabrication and reactor irradiation services. The request for proposals defined limited activities that may be performed prior to issuance of the SPD EIS Record of Decision (ROD) including non-site-specific work associated with the development of the initial design for the MOX fuel fabrication facility, and plans (paper studies) for outreach, long lead-time procurements, regulatory management, facility quality assurance, safeguards, security, fuel qualification, and deactivation. No construction on the proposed MOX facility would begin before an SPD EIS ROD is issued. In March 1999, DOE awarded a contract to Duke Engineering & Services; COGEMA, Inc.; and Stone & Webster (known as DCS) to provide the requested

  5. A Roadmap and Discussion of Issues for Physics Analyses Required to Support Plutonium Disposition in VVER-1000 Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T.; Drischler, J.D.; Pavlovichev, A.M. Styrine, Y.A.

    2000-06-01

    The purpose of this report is to document the physics analyses that must be performed to successfully disposition weapons-usable plutonium in VVER-1000 reactors in the Russian Federation. The report is a document to support programmatic and financial planning. It does not include documentation of the technical procedures by which physics analyses are performed, nor are the results of any analyses included.

  6. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers

  7. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  8. Optimization and implementation study of plutonium disposition using existing CANDU Reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Since early 1994, the Department of Energy has been sponsoring studies aimed at evaluating the merits of disposing of surplus US weapons plutonium as Mixed Oxide (MOX) fuel in existing commercial Canadian Pressurized Heavy Water reactors, known as CANDU`s. The first report, submitted to DOE in July, 1994 (the 1994 Executive Summary is attached), identified practical and safe options for the consumption of 50 to 100 tons of plutonium in 25 years in some of the existing CANDU reactors operating the Bruce A generating station, on Lake Huron, about 300 km north east of Detroit. By designing the fuel and nuclear performance to operate within existing experience and operating/performance envelope, and by utilizing existing fuel fabrication and transportation facilities and methods, a low cost, low risk method for long term plutonium disposition was developed. In December, 1995, in response to evolving Mission Requirements, the DOE requested a further study of the CANDU option with emphasis on more rapid disposition of the plutonium, and retaining the early start and low risk features of the earlier work. This report is the result of that additional work.

  9. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

  10. Surplus weapons-grade plutonium: a resource for exploring and terraforming Mars

    Energy Technology Data Exchange (ETDEWEB)

    Muscatello, A.C.; Houts, M.G.

    1996-12-31

    With the end of the Cold War, greater than 100 metric tons (MT) of weapons-grade plutonium (WGPu) have become surplus to defense needs in the United States and the Former Soviet Union. This paper is a proposal for an option for WGPu disposition, i.e., use of the plutonium as a fuel for nuclear reactors for Mars exploration and eventual terraforming. WGPu was used in nuclear weapons because it has a much smaller critical mass than highly enriched uranium, allowing lighter weapons with consequent longer ranges. Similarly, WGPu reactors would also require smaller amounts of fuel to attain a critical mass, making the reactor much lighter overall and resulting in large savings in launch costs. The greater than 100 MT of WGPu would generate about 1000 billion kilowatt hours of heat energy, much of which could be converted into electricity. The waste heat would also be useful to a Martian outpost or colony. A potential way of getting the WGPu reactors into space is a large gas gun like that being developed at the Lawrence Livermore National Laboratory to orbit materials by achieving high velocity at the surface, greatly reducing launch costs and enhancing reliability. Reactor components would be launched on conventional rockets or space shuttles, the reactor fuel rods would be injected into orbit using the gas gun, and the reactor would be assembled in space. Implementation of this proposal would allow disposition of a serious, expensive problem on earth by removing the WGPu from the planet and simultaneously provide a very large energy resource for Mars exploration and terraforming.

  11. Fissile materials disposition program plutonium immobilization project baseline formulation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B B; Armantrout, G A; Gray, L; Herman, C C; Shaw, H F; Van Konynenburg, R A

    2000-09-01

    Since 1994 Lawrence Livermore National Laboratory (LLNL), with the help of several other laboratories and university groups, has been the lead laboratory for the Plutonium Immobilization Project (PIP). This involves, among other tasks, the development of a formulation and a fabrication process for a ceramic to be used in the immobilization of excess weapons-usable plutonium. This report reviews the history of the project as it relates to the development of the ceramic form. It describes the sample test plan for the pyrochlore-rich ceramic formulation that was selected, and it specifies the baseline formulation that has been adopted. It also presents compositional specifications (e.g. precursor compositions and mixing recipes) and other form and process specifications that are linked or potentially linked to the baseline formulation.

  12. 32 CFR 552.130 - Disposition of confiscated/seized weapons.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Disposition of confiscated/seized weapons. 552..., Ammunition and Other Dangerous Weapons on Fort Gordon § 552.130 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives, or other devices defined in this subpart, that are confiscated...

  13. 32 CFR 552.104 - Disposition of confiscated/seized weapons.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Disposition of confiscated/seized weapons. 552... RESERVATIONS AND NATIONAL CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Firearms and Weapons § 552.104 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives or other devices defined in...

  14. Plutonium in the marine environment at Thule, NW-Greenland after a nuclear weapons accident

    DEFF Research Database (Denmark)

    Dahlgaard, H.; Eriksson, M.; Ilus, E.

    2001-01-01

    than in sediments. Some biota groups show a somewhat higher uptake of americium than of plutonium. Sediment samples with weapons plutonium from the accident show a significant variation in Pu-240/Pu-239 atom ratios in the range 0.027-0.057. This supports the hypothesis that the Thule plutonium...

  15. Disposition of plutonium as non-fertile fuel for water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, K.; Eaton, S.L.; Ramsey, K.B.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The original intent of this project was to investigate the possible use of a new fuel form as a means of dispositioning the declared surplus inventory of weapons-grade plutonium. The focus soon changed, however, to managing the larger and rapidly growing inventories of plutonium arising in commercial spent nuclear fuel through implementation of a new fuel form in existing nuclear reactors. LANL embarked on a parallel path effort to study fuel performance using advanced physics codes, while also demonstrating the ability to fabricate a new fuel form using standard processes in LANL's Plutonium Facility. An evolutionary fuel form was also examined which could provide enhanced performance over standard fuel forms, but which could be implemented in a much shorter time frame than a completely new fuel form. Recent efforts have focused on implementation of results into global energy models and development of follow-on funding to continue this research.

  16. Long-term retrievability and safeguards for immobilized weapons plutonium in geologic storage

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    If plutonium is not ultimately used as an energy source, the quantity of excess weapons plutonium (w-Pu) that would go into a US repository will be small compared to the quantity of plutonium contained in the commercial spent fuel in the repository, and the US repository(ies) will likely be only one (or two) locations out of many around the world where commercial spent fuel will be stored. Therefore excess weapons plutonium creates a small perturbation to the long-term (over 200,000 yr) global safeguard requirements for spent fuel. There are details in the differences between spent fuel and immobilized w-Pu waste forms (i.e. chemical separation methods, utility for weapons, nuclear testing requirements), but these are sufficiently small to be unlikely to play a significant role in any US political decision to rebuild weapons inventories, or to change the long-term risks of theft by subnational groups.

  17. On weapons plutonium in the arctic environment (Thule, Greenland)

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, M

    2002-04-01

    This thesis concerns a nuclear accident that occurred in the Thule (Pituffik) area, NW Greenland in 1968, called the Thule accident.Results are based on different analytical techniques, i.e. gamma spectrometry, alpha spectrometry, ICP-MS, SEM with EDX and different sediment models, i.e. (CRS, CIC). The scope of the thesis is the study of hot particles. Studies on these have shown several interesting features, e.g. that they carry most of the activity dispersed from the accident, moreover, they have been very useful in the determination of the source term for the Thule accident debris. Paper I, is an overview of the results from the Thule-97 expedition. This paper concerns the marine environment, i.e. water, sediment and benthic animals in the Bylot Sound. The main conclusions are; that plutonium is not transported from the contaminated sediments into the surface water in this shelf sea, the debris has been efficiently buried in the sediment to great depth as a result of biological activity and transfer of plutonium to benthic biota is low. Paper II, concludes that the resuspension of accident debris on land has been limited and indications were, that americium has a faster transport mechanism from the catchment area to lakes than plutonium and radio lead. Paper III, is a method description of inventory calculation techniques in sediment with heterogeneous activity concentration, i.e. hot particles are present in the samples. It is concluded that earlier inventory estimates have been under estimated and that the new inventory is about 3.8 kg (10 TBq) of {sup 239,240}Pu. Paper IV, describes hot particle separation/identification techniques using real-time digital image systems. These techniques are much faster than conventionally used autoradiography and give the results in real time. Paper V, is a study of single isolated hot particles. The most interesting result is that the fission material in the weapons involved in the accident mostly consisted of {sup 235}U

  18. Reactor based plutonium disposition - physics and fuel behaviour benchmark studies of an OECD/NEA experts group

    Energy Technology Data Exchange (ETDEWEB)

    D' Hondt, P. [SCK.CEN, Mol (Belgium); Gehin, J. [ORNL, Oak Ridge, TN (United States); Na, B.C.; Sartori, E. [Organisation for Economic Co-Operation and Development, Nuclear Energy Agency, 92 - Issy les Moulineaux (France); Wiesenack, W. [Organisation for Economic Co-Operation and Development/HRP, Halden (Norway)

    2001-07-01

    One of the options envisaged for disposing of weapons grade plutonium, declared surplus for national defence in the Russian Federation and Usa, is to burn it in nuclear power reactors. The scientific/technical know-how accumulated in the use of MOX as a fuel for electricity generation is of great relevance for the plutonium disposition programmes. An Expert Group of the OECD/Nea is carrying out a series of benchmarks with the aim of facilitating the use of this know-how for meeting this objective. This paper describes the background that led to establishing the Expert Group, and the present status of results from these benchmarks. The benchmark studies cover a theoretical reactor physics benchmark on a VVER-1000 core loaded with MOX, two experimental benchmarks on MOX lattices and a benchmark concerned with MOX fuel behaviour for both solid and hollow pellets. First conclusions are outlined as well as future work. (author)

  19. A HOST PHASE FOR THE DISPOSAL OF WEAPONS PLUTONIUM

    Energy Technology Data Exchange (ETDEWEB)

    WERNER LUTZE; K. B. HELEAN; W. L. GONG - UNIVERSITY OF NEW MEXICO RODNEY C. EWING - UNIVERSITY OF MICHIGAN

    1999-01-01

    Research was conducted into the possible use of zircon (ZrSiO{sub 4}) as a host phase for storage or disposal of excess weapons plutonium. Zircon is one of the most chemically durable minerals. Its structure can accommodate a variety of elements, including plutonium and uranium. Natural zircon contains uranium and thorium together in different quantities, usually in the range of less than one weight percent up to several weight percent. Zircon occurs in nature as a crystalline or a partially to fully metamict mineral, depending on age and actinide element concentration, i.e., on radiation damage. These zircon samples have been studied extensively and the results are documented in the literature in terms of radiation damage to the crystal structure and related property changes, e.g., density, hardness, loss of uranium and lead, etc. Thus, a unique suite of natural analogues are available to describe the effect of decay of {sup 239}Pu on zircon's structure and how zircon's physical and chemical properties will be affected over very long periods of time. Actually, the oldest zircon samples known are over 3 billion years old. This period covers the time for decay of {sup 239}Pu (half-life 24,300 yr.) and most of its daughter {sup 235}U (half-life 700 million yr.). Because of its chemical durability, even under extreme geological conditions, zircon is the most widely used mineral for geochronological dating (7,000 publications). It is the oldest dated mineral on earth and in the universe. Zircon has already been doped with about 10 weight percent of plutonium. Pure PuSiO{sub 4} has also been synthesized and has the same crystal structure as zircon. However, use of zircon as a storage medium or waste form for plutonium requires further materials characterization. Experiments can either be conducted in laboratories where plutonium can be handled or plutonium can be simulated by other elements, and experiments can be done under less restricted conditions. The

  20. 77 FR 44222 - Notice of Availability of the Draft Surplus Plutonium Disposition Supplemental Environmental...

    Science.gov (United States)

    2012-07-27

    ... an oxide form of plutonium suitable for disposition, and the use of mixed oxide (MOX) fuel fabricated... the decision to fabricate 34 metric tons (MT) (37.5 tons) of surplus plutonium into MOX fuel in the MOX Fuel Fabrication Facility (MFFF) (65 FR 1608, January 11, 2000 and 68 FR 20134, April 24,...

  1. The disposition of civil plutonium in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Sadnicki, M.J. [Independent Operational Research Consultant (United Kingdom); Barker, F. [Independent Nuclear Policy Analyst, West Yorkshire (United Kingdom)

    2001-07-01

    This paper quantifies the likely future stockpile of UK separated plutonium, and reviews current UK policy. The current strategy of storing plutonium oxide powder is shown to be inconsistent with passivity and disposability objectives. Analysis also shows that there is little potential for use on a commercial basis of Mixed-Oxide (MOX) fuel to reduce the stockpile. Four plutonium immobilisation options are defined, with particular reference to non-proliferation goals. The resource costs of implementing these options are quantified, together with the resource costs of a programme of Government-subsidized MOX use. Immobilisation may offer a more cost-effective solution than a MOX fuel route. (author)

  2. Plutonium in the marine environment at Thule, NW-Greenland after a nuclear weapons accident

    DEFF Research Database (Denmark)

    Dahlgaard, H.; Eriksson, M.; Ilus, E.

    2001-01-01

    In January 1968, a B52 plane carrying 4 nuclear weapon!: crashed on the sea ice similar to 12 km from the Thule Air Base, in northwest Greenland. The benthic marine environment in the 180-230 m deep Bylot Sound was then contaminated with similar to1.4 TBq Pu-239,Pu-240 (similar to0.5 kg). The site...... than in sediments. Some biota groups show a somewhat higher uptake of americium than of plutonium. Sediment samples with weapons plutonium from the accident show a significant variation in Pu-240/Pu-239 atom ratios in the range 0.027-0.057. This supports the hypothesis that the Thule plutonium...

  3. Disposition of PUREX facility tanks D5 and E6 uranium and plutonium solutions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harty, D.P.

    1993-12-01

    Approximately 9 kilograms of plutonium and 5 metric tons of uranium in a 1 molar nitric acid solution are being stored in two PUREX facility vessels, tanks D5 and E6. The plutonium was accumulated during cleanup activities of the plutonium product area of the PUREX facility. Personnel at PUREX recently completed a formal presentation to the Surplus Materials Peer Panel (SMPP) regarding disposition of the material currently in these tanks. The peer panel is a group of complex-wide experts who have been chartered by EM-64 (Office of Site and Facility Transfer) to provide a third party independent review of disposition decisions. The information presented to the peer panel is provided in the first section of this report. The panel was generally receptive to the information provided at that time and the recommendations which were identified.

  4. Plutonium

    Science.gov (United States)

    Clark, David L.; Hecker, Siegfried S.; Jarvinen, Gordon D.; Neu, Mary P.

    The element plutonium occupies a unique place in the history of chemistry, physics, technology, and international relations. After the initial discovery based on submicrogram amounts, it is now generated by transmutation of uranium in nuclear reactors on a large scale, and has been separated in ton quantities in large industrial facilities. The intense interest in plutonium resulted fromthe dual-use scenario of domestic power production and nuclear weapons - drawing energy from an atomic nucleus that can produce a factor of millions in energy output relative to chemical energy sources. Indeed, within 5 years of its original synthesis, the primary use of plutonium was for the release of nuclear energy in weapons of unprecedented power, and it seemed that the new element might lead the human race to the brink of self-annihilation. Instead, it has forced the human race to govern itself without resorting to nuclear war over the past 60 years. Plutonium evokes the entire gamut of human emotions, from good to evil, from hope to despair, from the salvation of humanity to its utter destruction. There is no other element in the periodic table that has had such a profound impact on the consciousness of mankind.

  5. Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    Following President Clinton`s Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations.

  6. Options For The Disposition Of UK Civil Plutonium Stocks

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.G.; Zimmerman, C.H.; Scales, C.; Worrall, A.; Sims, H.E.; Fowler, L. [Nexia Solutions Ltd (United Kingdom)

    2008-07-01

    The UK Civil Pu Disposition project will identify and assess the viability of several technical options for dealing with the UK's civil separated Pu stockpile and the discriminators that will support technology option down-selection decisions. The overall aim will be to deliver feasible technical options and comprehensive information on political, economic, sociological, environmental and technical factors for each strategic option. This paper briefly describes the work completed to date to assess immobilisation and re-use technologies as disposition strategies and on the work that will identify discriminators to support technology down-selection. The Pu disposition project is anticipated to continue for several years while the necessary investigations are made to fully understand the various options. The work planned over this period is discussed. (authors)

  7. Plutonium and uranium contamination in soils from former nuclear weapon test sites in Australia

    Science.gov (United States)

    Child, D. P.; Hotchkis, M. A. C.

    2013-01-01

    The British government performed a number of nuclear weapon tests on Australian territory from 1952 through to 1963 with the cooperation of the Australian government. Nine fission bombs were detonated in South Australia at Emu Junction and Maralinga, and a further three fission weapons were detonated in the Monte Bello Islands off the coast of Western Australia. A number of soil samples were collected by the Australian Radiation Laboratories in 1972 and 1978 during field surveys at these nuclear weapon test sites. They were analysed by gamma spectrometry and, for a select few samples, by alpha spectrometry to measure the remaining activities of fission products, activation products and weapon materials. We have remeasured a number of these Montebello Islands and Emu Junction soil samples using the ANTARES AMS facility, ANSTO. These samples were analysed for plutonium and uranium isotopic ratios and isotopic concentrations. Very low 240Pu/239Pu ratios were measured at both sites (∼0.05 for Alpha Island and ∼0.02 for Emu Field), substantially below global fallout averages. Well correlated but widely varying 236U and plutonium concentrations were measured across both sites, but 233U did not correlate with these other isotopes and instead showed correlation with distance from ground zero, indicating in situ production in the soils.

  8. Cooperative Studies in the Utilization and Storage of Excess Weapons-Grade Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Bolyatko, V. V. [Moscow Engineering Physics Institute (Russia)

    1998-01-29

    This technical report is a tangible and verifiable deliverable associated with the Nuclear Group subproject “Cooperative Studies in the Utilization and Storage of Excess Weapons-grade Plutonium.” This report is an assessment ofthe work performed by the Russian party from 1 October 1995 through 30 September 1996 regarding milestones defined in the contract between the Moscow Engineering Physics Institute (MEPhI) and the Texas Engineering Experiment Station (TEES). In these interactions, TEES serves as agent of the Amarillo National Resource Center for Plutonium (ANRCP) in the capacity oflead institution for the Nuclear Group of the ANRCP. The official Statement ofWork dated 8 April 1996 enumerates specific milestones and deliverables. In its present form, this report is an edited version ofthe translation submitted to TEES by MEPhI on 7 October 1996. The principal investigators for this subproject are Dr. Paul Nelson of TEES and Dr. Victor Bolyatko of the Moscow Engineering Physics Institute.

  9. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L.D.

    2000-08-17

    A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site.

  10. Conversion of Russian weapon-grade plutonium into oxide for mixed oxide (MOX) fuel fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Glagovski, E.; Zakharkin, B. [A.A. Bochvar All-Russian Research Institute of Inorganic Materials, Russian Research Center, Moscow (Russian Federation); Kolotilov, Y. [Specialized State Design Institute, GSPI, Moscow (Russian Federation); Glagolenko, Y.; Skobtsov, A. [Mayak Production Association, Ozyorsk (Russian Federation); Zygmunt, S.; Mason, C.; Hahn, W.; Durrer, R. [Los Alamos National Lab., Nuclear Materials and Technology Div. NMT, Los Alamos, N.M. (United States); Thomas, S. [National Nuclear Security Administration, Washington DC (United States); Sicard, B.; Brossard, P.; Herlet, N. [CEA Marcoule 30 (France); Fraize, G.; Villa, A. [Cogema, 78 - Saint Quentin en Yvelines (France)

    2001-07-01

    Progress has been made in the Russian Federation towards the conversion of Russian weapons-grade plutonium (W-Pu) into plutonium oxide (PuO{sub 2}) suitable for further manufacture into mixed oxide (MOX) fuels. This program is funded both by French Commissariat at the Atomic Energy (CEA) and the US National Nuclear Security Administration (NNSA). The French program was started in the frame of the two cooperation agreements signed between Russian Federation and France in November 1992 concerning dismantling of nuclear weapons and the use of their nuclear materials for civilian purposes. The US program was started in 1998 in response to US proliferation concerns and the acknowledged international need to decrease available W-Pu. Russia has selected both the conversion process and the manufacturing site. This paper discusses the present state of development towards fulfilling this mission: the demonstration plant designed to process small amounts of Pu and validate all process stages and the industrial plant that will process up to 5 metric tons of Pu per year. (author)

  11. LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, S.E.; Holdaway, R.; Ludwig, S.B. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

  12. LANL's Role in the U.S. Fissile Material Disposition Program

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, Julia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kay, Virginia [NA-233

    2015-02-18

    The process of Fissile Material Disposition is in part a result of the Advanced Recovery and Integrated Extraction System (ARIES), which is an agreement between the U.S. and Russia to dispose of excess plutonium used to make weapons. LANL is one sight that aides in the process of dismantling, storage and repurposing of the plutonium gathered from dismantled weapons. Some uses for the repurposed plutonium is fuel for commercial nuclear reactors which will provide energy for citizens.

  13. Stabilization and immobilization of military plutonium: A non-proliferation perspective

    Energy Technology Data Exchange (ETDEWEB)

    Leventhal, P. [Nuclear Control Institute, Washington, DC (United States)

    1996-05-01

    The Nuclear Control Institute welcomes this DOE-sponsored technical workshop on stabilization and immobilization of weapons plutonium (W Pu) because of the significant contribution it can make toward the ultimate non-proliferation objective of eliminating weapons-usable nuclear material, plutonium and highly enriched uranium (HEU), from world commerce. The risk of theft or diversion of these materials warrants concern, as only a few kilograms in the hands of terrorists or threshold states would give them the capability to build nuclear weapons. Military plutonium disposition questions cannot be addressed in isolation from civilian plutonium issues. The National Academy of Sciences has urged that {open_quotes}further steps should be taken to reduce the proliferation risks posed by all of the world`s plutonium stocks, military and civilian, separated and unseparated...{close_quotes}. This report discusses vitrification and a mixed oxide fuels option, and the effects of disposition choices on civilian plutonium fuel cycles.

  14. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fontana, M.H. [Oak Ridge National Lab., TN (United States); Krakowski, R.A.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Sailor, W.C.; Williamson, M.A. [Los Alamos National Lab., NM (United States)

    1995-04-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.

  15. Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition

    Energy Technology Data Exchange (ETDEWEB)

    Ryskamp, J.M.; Sterbentz, J.W.; Chang, G.S. [and others

    1995-09-01

    An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO{sub 2}) mixed with urania (UO{sub 2}). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified.

  16. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  17. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  18. Utilization of non-weapons-grade plutonium and highly enriched uranium with breeding of the 233U isotope in the VVER reactors using thorium and heavy water

    Science.gov (United States)

    Marshalkin, V. E.; Povyshev, V. M.

    2015-12-01

    A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium-uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D2O, H2O) is proposed. The method is characterized by efficient breeding of the 233U isotope and safe reactor operation and is comparatively simple to implement.

  19. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

  20. Disposition of transuranic residues from plutonium isentropic compression experiment (Pu-ice) conducted at Z machine

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Kapil K [Los Alamos National Laboratory; French, David M [Los Alamos National Laboratory; Humphrey, Betty J [WESTON SOLUTIONS INC.; Gluth, Jeffry [SNL

    2010-01-01

    In 1992, the U.S. Congress passed legislation to discontinue above- and below-ground testing of nuclear weapons. Because of this, the U.S. Department of Energy (DOE) must rely on laboratory experiments and computer-based calculations to verify the reliability of the nation's nuclear stockpile. The Sandia National Laboratories/New Mexico (SNL/NM) Z machine was developed by the DOE to support its science-based approach to stockpile stewardship. SNL/NM researchers also use the Z machine to test radiation effects on various materials in experiments designed to mimic nuclear explosions. Numerous components, parts, and materials have been tested. These experiments use a variety of radionuclides; however, plutonium (Pu) isotopes with greater than ninety-eight percent enrichment are the primary radionuclides used in the experiments designed for stockpile stewardship. In May 2006, SNL/NM received authority that the Z Machine Isentropic Compression Experiments could commence. Los Alamos National Laboratory (LANL) provided the plutonium targets and loaded the target assemblies, which were fabricated by SNL/NM. LANL shipped the loaded assemblies to SNL/NM for Z machine experiments. Three experiments were conducted from May through July 2006. The residues from each experiment, which weighed up to 913 pounds, were metallic and packaged into a respective 55-gallon drum each. Based on a memorandum of understanding between the two laboratories, LANL provides the plutonium samples and the respective radio-isotopic information. SNL/NM conducts the experiments and provides temporary storage for the drums until shipment to LANL for final waste certification for disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. This paper presents a comprehensive approach for documenting generator knowledge for characterization of waste in cooperation with scientists at the two laboratories and addresses a variety of topics such as material control and accountability

  1. SRS vitrification studies in support of the U.S. program for disposition of excess plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Wicks, G.G.; McKibben, J.M.; Plodinec, M.J.; Ramsey, W.G.

    1995-09-01

    Many thousands of nuclear weapons are being retired in the U.S. and Russian as a result of nuclear disarmament activities. These efforts are expected to produce a surplus of about 50 MT of weapons grade plutonium (Pu) in each country. In addition to this inventory, the U.S. Department of Energy (DOE) has more than 20 MT of Pu scrap, residue, etc., and Russian is also believed to have at least as much of this type of material. The entire surplus Pu inventories in the U.S. and Russian present a clear and immediate danger to national and international security. It is important that a solution be found to secure and manage this material effectively and that such an effort be implemented as quickly as possible. One option under consideration is vitrification of Pu into a safe, durable, accountable and proliferation-resistant form. As a result of decades to experience within the DOE community involving vitrification of a variety of hazardous and radioactive wastes, this existing technology can now be expanded to include mobilization of large amounts of Pu. This technology can then be implemented rapidly using the many existing resources currently available. An overall strategy to vitrify many different types of Pu will be already developed throughout the waste management community can be used in a staged Pu vitrification effort. This approach uses the flexible vitrification technology already available and can even be made portable so that it may be brought to the source and ultimately, used to produce a consistent and common borosilicate glass composition for the vitrified Pu. The final composition of this product can be made similar to nationally and internationally accepted HLW glasses.

  2. Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Miner, William N

    1964-01-01

    This pamphlet discusses plutonium from discovery to its production, separation, properties, fabrication, handling, and uses, including use as a reactor fuel and use in isotope power generators and neutron sources.

  3. High-Temperature Oxidation of Plutonium Surrogate Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, Joshua C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    The Plutonium Management and Disposition Agreement (PMDA) is a nuclear non-proliferation agreement designed to remove 34 tons of weapons-grade plutonium from Russia and the United States. While several removal options have been proposed since the agreement was first signed in 2000, processing the weapons-grade plutonium to mixed-oxide (MOX) fuel has remained the leading candidate for achieving the goals of the PMDA. However, the MOX program has received its share of criticisms, which causes its future to be uncertain. One alternative pathway for plutonium disposition would involve oxidizing the metal followed by impurity down blending and burial in the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. This pathway was investigated by use of a hybrid microwave and a muffle furnace with Fe and Al as surrogate materials. Oxidation occurred similarly in the microwave and muffle furnace; however, the microwave process time was significantly faster.

  4. SRS MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site(SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. SRS has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 2 or 3 facility with storage of bulk PuO{sub 2} and assembly, storage, and shipping of fuel bundles in an S and S Category 1 facility. The total Category 1 approach, which is the recommended option, would be done in the 221-H Canyon Building. A facility that was never in service will be removed from one area, and a hardened wall will be constructed in another area to accommodate execution of the LA fuel fabrication. The non-Category 1 approach would require removal of process equipment in the FB-Line metal production and packaging glove boxes, which requires work in a contamination area. The Immobilization Hot Demonstration Program

  5. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    J.P. Nicot

    2000-09-29

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the

  6. Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition

    Energy Technology Data Exchange (ETDEWEB)

    Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W. [and others

    1995-08-01

    Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program.

  7. Utilization of non-weapons-grade plutonium and highly enriched uranium with breeding of the {sup 233}U isotope in the VVER reactors using thorium and heavy water

    Energy Technology Data Exchange (ETDEWEB)

    Marshalkin, V. E., E-mail: marshalkin@vniief.ru; Povyshev, V. M. [Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics (Russian Federation)

    2015-12-15

    A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium–uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D{sub 2}O, H{sub 2}O) is proposed. The method is characterized by efficient breeding of the {sup 233}U isotope and safe reactor operation and is comparatively simple to implement.

  8. Alternative technical summary report for immobilized disposition in deep boreholes: Immobilized disposal of plutonium in coated ceramic pellets in grout without canisters, Version 4.0. Fissile materials disposition program

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A.M.

    1996-08-23

    This paper summarizes and compares the immobilized and direct borehole disposition alternatives previously presented in the alternative technical summary. The important design concepts, facility features and operational procedures are first briefly described. This is followed by a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

  9. LLNL Site plan for a MOX fuel lead assembly mission in support of surplus plutonium disposition

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, M.C.

    1997-10-01

    The principal facilities that LLNL would use to support a MOX Fuel Lead Assembly Mission are Building 332 and Building 334. Both of these buildings are within the security boundary known as the LLNL Superblock. Building 332 is the LLNL Plutonium Facility. As an operational plutonium facility, it has all the infrastructure and support services required for plutonium operations. The LLNL Plutonium Facility routinely handles kilogram quantities of plutonium and uranium. Currently, the building is limited to a plutonium inventory of 700 kilograms and a uranium inventory of 300 kilograms. Process rooms (excluding the vaults) are limited to an inventory of 20 kilograms per room. Ongoing operations include: receiving SSTS, material receipt, storage, metal machining and casting, welding, metal-to-oxide conversion, purification, molten salt operations, chlorination, oxide calcination, cold pressing and sintering, vitrification, encapsulation, chemical analysis, metallography and microprobe analysis, waste material processing, material accountability measurements, packaging, and material shipping. Building 334 is the Hardened Engineering Test Building. This building supports environmental and radiation measurements on encapsulated plutonium and uranium components. Other existing facilities that would be used to support a MOX Fuel Lead Assembly Mission include Building 335 for hardware receiving and storage and TRU and LLW waste storage and shipping facilities, and Building 331 or Building 241 for storage of depleted uranium.

  10. Design-Only Conceptual Design Report: Plutonium Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    DiSabatino, A.; Loftus, D.

    1999-01-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The siting for the Plutonium Immobilization Plant will be determined pursuant to the site-specific Surplus Plutonium Disposition Environmental Impact Statement in a Plutonium Deposition Record of Decision in early 1999. This document reflects a new facility using the preferred technology (ceramic immobilization using the can-in-canister approach) and the preferred site (at Savannah River). The Plutonium Immobilization Plant accepts plutonium from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors and must be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses: (1) A new building, the Plutonium Immobilization Plant, which will convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize plutonium in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister; (2) The existing Defense Waste Processing Facility for the pouring of high-level waste glass into the canisters; and (3) The Actinide Packaging and Storage Facility to receive and store feed materials. The Plutonium Immobilization Plant uses existing Savannah River Site infra-structure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. The Plutonium Immobilization Plant

  11. The United States Plutonium Balance, 1944 - 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-06-01

    This report updates the report -Plutonium: The first 50 years- which was released by the U.S.Department of Energy (DOE) in 1996. The topic of both reports is plutonium, sometimes referred to as Pu-239, which is capable of sustaining a nuclear chain reaction and is used in nuclear weapons and for nuclear power production. This report updates 1994 data through 2009. The four most significant changes since 1994 include: (a) the completion of cleanup activities at the Rocky Flats Plant in 2005; (b) material consolidation and disposition activities, especially shipments from Hanford to the Savannah River Site; (c) the 2007 declaration of an additional 9.0 MT of weapons grade plutonium to be surplus to defense needs in the coming decades; and (d) the opening of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in 1999.

  12. Sets of Reports and Articles Regarding Cement Wastes Forms Containing Alpha Emitters that are Potentially Useful for Development of Russian Federation Waste Treatment Processes for Solidification of Weapons Plutonium MOX Fuel Fabrication Wastes for

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J

    2003-06-12

    This is a set of nine reports and articles that were kindly provided by Dr. Christine A. Langton from the Savannah River Site (SRS) to L. J. Jardine LLNL in June 2003. The reports discuss cement waste forms and primarily focus on gas generation in cement waste forms from alpha particle decays. However other items such as various cement compositions, cement product performance test results and some cement process parameters are also included. This set of documents was put into this Lawrence Livermore National Laboratory (LLNL) releasable report for the sole purpose to provide a set of documents to Russian technical experts now beginning to study cement waste treatment processes for wastes from an excess weapons plutonium MOX fuel fabrication facility. The intent is to provide these reports for use at a US RF Experts Technical Meeting on: the Management of Wastes from MOX Fuel Fabrication Facilities, in Moscow July 9-11, 2003. The Russian experts should find these reports to be very useful for their technical and economic feasibility studies and the supporting R&D activities required to develop acceptable waste treatment processes for use in Russia as part of the ongoing Joint US RF Plutonium Disposition Activities.

  13. Managing plutonium in Britain. Current options[Mixed oxide nuclear fuels; Nuclear weapons

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the report of a two day meeting to discuss issues arising from the reprocessing of plutonium and production of mixed oxide nuclear fuels in Britain. It was held at Charney Manor, near Oxford, on June 25 and 26, 1998, and was attended by 35 participants, including government officials, scientists, policy analysts, representatives of interested NGO's, journalists, a Member of Parliament, and visiting representatives from the US and Irish governments. The topic of managing plutonium has been a consistent thread within ORG's work, and was the subject of one of our previous reports, CDR 12. This particular seminar arose out of discussions earlier in the year between Dr. Frank Barnaby and the Rt. Hon. Michael Meacher MP, Minister for the Environment. With important decisions about the management of plutonium in Britain pending, ORG undertook to hold a seminar at which all aspects of the subject could be aired. A number of on-going events formed the background to this initiative. The first was British Nuclear Fuels' [BNFL] application to the Environment Agency to commission a mixed oxide fuel [MOX] plant at Sellafield. The second was BNFL's application to vary radioactive discharge limits at Sellafield. Thirdly, a House of Lords Select Committee was in process of taking evidence, on the disposal of radioactive waste. Fourthly, the Royal Society, in a recent report entitled Management of Separated Plutonium, recommended that 'the Government should commission a comprehensive review... of the options for the management of plutonium'. Four formal presentations were made to the meeting, on the subjects of Britain's plutonium policy, commercial prospects for plutonium use, problems of plutonium accountancy, and the danger of nuclear terrorism, by experts from outside the nuclear industry. It was hoped that the industry's viewpoint would also be heard, and BNFL were invited to present a paper, but declined on the grounds that they

  14. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  15. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    Energy Technology Data Exchange (ETDEWEB)

    Bunch, Kyle J.; Jones, Anthony M.; Ramuhalli, Pradeep; Benz, Jacob M.; Denlinger, Laura S.

    2014-05-04

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic

  16. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  17. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  18. Plutonium: The first 50 years. United States plutonium production, acquisition, and utilization from 1944 through 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-02-01

    The report contains important newly declassified information regarding the US production, acquisition, and removals of plutonium. This new information, when combined with previously declassified data, has allowed the DOE to issue, for the first time, a truly comprehensive report on the total DOE plutonium inventory. At the December 7, 1993, Openness Press Conference, the DOE declassified the plutonium inventories at eight locations totaling 33.5 metric tons (MT). This report declassifies the remainder of the DOE plutonium inventory. Newly declassified in this report is the quantity of plutonium at the Pantex Site, near Amarillo, Texas, and in the US nuclear weapons stockpile of 66.1 MT, which, when added to the previously released inventory of 33.5 MT, yields a total plutonium inventory of 99.5 MT. This report will document the sources which built up the plutonium inventory as well as the transactions which have removed plutonium from that inventory. This report identifies four sources that add plutonium to the DOE/DoD inventory, and seven types of transactions which remove plutonium from the DOE/DoD inventory. This report also discusses the nuclear material control and accountability system which records all nuclear material transactions, compares records with inventory and calculates material balances, and analyzes differences to verify that nuclear materials are in quantities as reported. The DOE believes that this report will aid in discussions in plutonium storage, safety, and security with stakeholders as well as encourage other nations to declassify and release similar data. These data will also be available for formulating policies with respect to disposition of excess nuclear materials. The information in this report is based on the evaluation of available records. The information contained in this report may be updated or revised in the future should additional or more detailed data become available.

  19. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    Energy Technology Data Exchange (ETDEWEB)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

  20. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  1. Plutonium Consumption Program, CANDU Reactor Project final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-31

    DOE is investigating methods for long term dispositioning of weapons grade plutonium. One such method would be to utilize the plutonium in Mixed OXide (MOX) fuel assemblies in existing CANDU reactors. CANDU (Canadian Deuterium Uranium) reactors are designed, licensed, built, and supported by Atomic Energy of Canada Limited (AECL), and currently use natural uranium oxide as fuel. The MOX spent fuel assemblies removed from the reactor would be similar to the spent fuel currently produced using natural uranium fuel, thus rendering the plutonium as unattractive as that in the stockpiles of commercial spent fuel. This report presents the results of a study sponsored by the DOE for dispositioning the plutonium using CANDU technology. Ontario Hydro`s Bruce A was used as reference. The fuel design study defined the optimum parameters to disposition 50 tons of Pu in 25 years (or 100 tons). Two alternate fuel designs were studied. Safeguards, security, environment, safety, health, economics, etc. were considered. Options for complete destruction of the Pu were also studied briefly; CANDU has a superior ability for this. Alternative deployment options were explored and the potential impact on Pu dispositioning in the former Soviet Union was studied. An integrated system can be ready to begin Pu consumption in 4 years, with no changes required to the reactors other than for safe, secure storage of new fuel.

  2. Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway.

    Science.gov (United States)

    Wendel, Cato Christian; Fifield, L Keith; Oughton, Deborah H; Lind, Ole Christian; Skipperud, Lindis; Bartnicki, Jerzy; Tims, Stephen G; Høibråten, Steinar; Salbu, Brit

    2013-09-01

    A combination of state-of-the-art isotopic fingerprinting techniques and atmospheric transport modelling using real-time historical meteorological data has been used to demonstrate direct tropospheric transport of radioactive debris from specific nuclear detonations at the Semipalatinsk test site in Kazakhstan to Norway via large areas of Europe. A selection of archived air filters collected at ground level at 9 stations in Norway during the most intensive atmospheric nuclear weapon testing periods (1957-1958 and 1961-1962) has been screened for radioactive particles and analysed with respect to the concentrations and atom ratios of plutonium (Pu) and uranium (U) using accelerator mass spectrometry (AMS). Digital autoradiography screening demonstrated the presence of radioactive particles in the filters. Concentrations of (236)U (0.17-23nBqm(-3)) and (239+240)Pu (1.3-782μBqm(-3)) as well as the atom ratios (240)Pu/(239)Pu (0.0517-0.237) and (236)U/(239)Pu (0.0188-0.7) varied widely indicating several different sources. Filter samples from autumn and winter tended to have lower atom ratios than those sampled in spring and summer, and this likely reflects a tropospheric influence in months with little stratospheric fallout. Very high (236)U, (239+240)Pu and gross beta activity concentrations as well as low (240)Pu/(239)Pu (0.0517-0.077), (241)Pu/(239)Pu (0.00025-0.00062) and (236)U/(239)Pu (0.0188-0.046) atom ratios, characteristic of close-in and tropospheric fallout, were observed in filters collected at all stations in Nov 1962, 7-12days after three low-yield detonations at Semipalatinsk (Kazakhstan). Atmospheric transport modelling (NOAA HYSPLIT_4) using real-time meteorological data confirmed that long range transport of radionuclides, and possibly radioactive particles, from Semipalatinsk to Norway during this period was plausible. The present work shows that direct tropospheric transport of fallout from atmospheric nuclear detonations periodically may have

  3. Plutonium radiation surrogate

    Science.gov (United States)

    Frank, Michael I [Dublin, CA

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  4. R&D plan for immobilization technologies: fissile materials disposition program. Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, H.F.; Armantrout, G.A.

    1996-09-01

    In the aftermath of the Cold War, the US and Russia have agreed to large reductions in nuclear weapons. To aid in the selection of long- term fissile material management options, the Department of Energy`s Fissile Materials Disposition Program (FMDP) is conducting studies of options for the storage and disposition of surplus plutonium (Pu). One set of alternatives for disposition involve immobilization. The immobilization alternatives provide for fixing surplus fissile materials in a host matrix in order to create a solid disposal form that is nuclear criticality-safe, proliferation-resistant and environmentally acceptable for long-term storage or disposal.

  5. Progress on plutonium stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, D. [Defense Nuclear Facilities Safety Board, Washington, DC (United States)

    1996-05-01

    The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE`s stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities.

  6. 77 FR 1920 - Second Amended Notice of Intent To Modify the Scope of the Surplus Plutonium Disposition...

    Science.gov (United States)

    2012-01-12

    ... (MOX) Fuel Fabrication Facility (MFFF), which DOE is constructing at the Savannah River Site (SRS) in... the other alternatives. The MOX fuel alternative is DOE's preferred alternative for surplus plutonium... suitable for MOX fuel fabrication is disposal at the Waste Isolation Pilot Plant (WIPP) in New...

  7. 75 FR 41850 - Amended Notice of Intent to Modify the Scope of the Surplus Plutonium Disposition Supplemental...

    Science.gov (United States)

    2010-07-19

    ... fabrication into mixed uranium-plutonium oxide (MOX) reactor fuel in the Mixed Oxide Fuel Fabrication Facility... will analyze the potential environmental impacts of using MOX fuel in up to five reactors owned by the... processed into MOX fuel or to change the annual throughput, annual environmental impacts, or the types...

  8. Integrated development and testing plan for the plutonium immobilization project

    Energy Technology Data Exchange (ETDEWEB)

    Kan, T.

    1998-07-01

    This integrated plan for the DOE Office of Fissile Materials Disposition (MD) describes the technology development and major project activities necessary to support the deployment of the immobilization approach for disposition of surplus weapons-usable plutonium. The plan describes details of the development and testing (D&T) tasks needed to provide technical data for design and operation of a plutonium immobilization plant based on the ceramic can-in-canister technology (''Immobilization Fissile Material Disposition Program Final Immobilization Form Assessment and Recommendation'', UCRL-ID-128705, October 3, 1997). The plan also presents tasks for characterization and performance testing of the immobilization form to support a repository licensing application and to develop the basis for repository acceptance of the plutonium form. Essential elements of the plant project (design, construction, facility activation, etc.) are described, but not developed in detail, to indicate how the D&T results tie into the overall plant project. Given the importance of repository acceptance, specific activities to be conducted by the Office of Civilian Radioactive Waste Management (RW) to incorporate the plutonium form in the repository licensing application are provided in this document, together with a summary of how immobilization D&T activities provide input to the license activity. The ultimate goal of the Immobilization Project is to develop, construct, and operate facilities that will immobilize from about 18 to 50 tonnes (MT) of U.S. surplus weapons usable plutonium materials in a manner that meets the ''spent fuel'' standard (Fissile Materials Storage and Disposition Programmatic Environmental Impact Statement Record of Decision, ''Storage and Disposition Final PEIS'', issued January 14, 1997, 62 Federal Register 3014) and is acceptable for disposal in a geologic repository. In the can-in-canister technology

  9. Simulations of neutron multiplicity measurements of a weapons-grade plutonium sphere with MCNP-PoliMi.

    Energy Technology Data Exchange (ETDEWEB)

    Mattingly, John K.; Pozzi, Sara A. (University of Michigan, Ann Arbor, MI); Clarke, Shaun D. (University of Michigan, Ann Arbor, MI); Dennis, Ben D. (University of Michigan, Ann Arbor, MI); Miller, Eric C. (University of Michigan, Ann Arbor, MI); Padovani, E. (Polytechnic of Milan, Italy)

    2010-06-01

    With increasing concern over the ability to detect and characterize special nuclear materials, the need for computer codes that can successfully predict the response of detector systems to various measurement scenarios is extremely important. These computer algorithms need to be benchmarked against a variety of experimental configurations to ensure their accuracy and understand their limitations. The Monte Carlo code MCNP-PoliMi is a modified version of the MCNP-4c code. Recently these modifications have been ported into the new MCNPX 2.6.0 code, which gives the new MCNPX-PoliMi a wider variety of options and abilities, taking advantage of the improvements made to MCNPX. To verify the ability of the MCNPX-PoliMi code to simulate the response of a neutron multiplicity detector simulated results were compared to experimental data. The experiment consisted of a 4.5-kg sphere of alpha-phase plutonium that was moderated with various thicknesses of polyethylene. The results showed that our code system can simulate the multiplicity distributions with relatively good agreement with measured data. The enhancements made to MCNP since the release of MCNP-4c have had little to no effect on the ability of the MCNP-PoliMi to resolve the discrepancies observed in the simulated neutron multiplicity distributions when compared experimental data.

  10. Plutonium Vulnerability Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This Plutonium Vulnerability Management Plan describes the Department of Energy`s response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department`s Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B.

  11. Preconceptual design for separation of plutonium and gallium by ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    DeMuth, S.F.

    1997-09-30

    The disposition of plutonium from decommissioned nuclear weapons, by incorporation into commercial UO{sub 2}-based nuclear reactor fuel, is a viable means to reduce the potential for theft of excess plutonium. This fuel, which would be a combination of plutonium oxide and uranium oxide, is referred to as a mixed oxide (MOX). Following power generation in commercial reactors with this fuel, the remaining plutonium would become mixed with highly radioactive fission products in a spent fuel assembly. The radioactivity, complex chemical composition, and large size of this spent fuel assembly, would make theft difficult with elaborate chemical processing required for plutonium recovery. In fabricating the MOX fuel, it is important to maintain current commercial fuel purity specifications. While impurities from the weapons plutonium may or may not have a detrimental affect on the fuel fabrication or fuel/cladding performance, certifying the effect as insignificant could be more costly than purification. Two primary concerns have been raised with regard to the gallium impurity: (1) gallium vaporization during fuel sintering may adversely affect the MOX fuel fabrication process, and (2) gallium vaporization during reactor operation may adversely affect the fuel cladding performance. Consequently, processes for the separation of plutonium from gallium are currently being developed and/or designed. In particular, two separation processes are being considered: (1) a developmental, potentially lower cost and lower waste, thermal vaporization process following PuO{sub 2} powder preparation, and (2) an off-the-shelf, potentially higher cost and higher waste, aqueous-based ion exchange (IX) process. While it is planned to use the thermal vaporization process should its development prove successful, IX has been recommended as a backup process. This report presents a preconceptual design with material balances for separation of plutonium from gallium by IX.

  12. Stop plutonium; Stop plutonium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    This press document aims to inform the public on the hazards bound to the plutonium exploitation in France and especially the plutonium transport. The first part is a technical presentation of the plutonium and the MOX (Mixed Oxide Fuel). The second part presents the installation of the plutonium industry in France. The third part is devoted to the plutonium convoys safety. The highlight is done on the problem of the leak of ''secret'' of such transports. (A.L.B.)

  13. Status of plutonium ceramic immobilization processes and immobilization forms

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.; Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (United States); Vance, E.R.; Jostsons, A. [Australian Nuclear Science and Technology Organization, Menai (Australia)] [and others

    1996-05-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R&D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi{sub 2}O{sub 7}), the desired actinide host phase, with lesser amounts of hollandite (BaAl{sub 2}Ti{sub 6}O{sub 16}) and rutile (TiO{sub 2}). Alternative actinide host phases are also being considered. These include pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}), zircon (ZrSiO{sub 4}), and monazite (CePO{sub 4}), to name a few of the most promising. R&D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO{sub 2} powder, cold press and sinter fabrication methods, and immobilization form formulation issues.

  14. Plutonium Proliferation: The Achilles Heel of Disarmament

    Energy Technology Data Exchange (ETDEWEB)

    Leventhal, Paul (President, Nuclear Control Institute, Washington D.C.)

    2001-02-07

    Plutonium is a byproduct of nuclear fission, and it is produced at the rate of about 70 metric tons a year in the world's nuclear power reactors. Concerns about civilian plutonium ran high in the 1970s and prompted enactment of the Nuclear Non-Proliferation Act of 1978 to give the United States a veto over separating plutonium from U.S.-supplied uranium fuel. Over the years, however, so-called reactor-grade plutonium has become the orphan issue of nuclear non-proliferation, largely as a consequence of pressures from plutonium-separating countries. The demise of the fast breeder reactor and the reluctance of utilities to introduce plutonium fuel in light-water reactors have resulted in large surpluses of civilian, weapons-usable plutonium, which now approach in size the 250 tons of military plutonium in the world. Yet reprocessing of spent fuel for recovery and use of plutonium proceeds apace outside the United States and threatens to overwhelm safeguards and security measures for keeping this material out of the hands of nations and terrorists for weapons. A number of historical and current developments are reviewed to demonstrate that plutonium commerce is undercutting efforts both to stop the spread of nuclear weapons and to work toward eliminating existing nuclear arsenals. These developments include the breakdown of U.S. anti-plutonium policy, the production of nuclear weapons by India with Atoms-for-Peace plutonium, the U.S.-Russian plan to introduce excess military plutonium as fuel in civilian power reactors, the failure to include civilian plutonium and bomb-grade uranium in the proposed Fissile Material Cutoff Treaty, and the perception of emerging proliferation threats as the rationale for development of a ballistic missile defense system. Finally, immobilization of separated plutonium in high-level waste is explored as a proliferation-resistant and disarmament-friendly solution for eliminating excess stocks of civilian and military plutonium.

  15. Options for converting excess plutonium to feed for the MOX fuel fabrication facility

    Energy Technology Data Exchange (ETDEWEB)

    Watts, Joe A [Los Alamos National Laboratory; Smith, Paul H [Los Alamos National Laboratory; Psaras, John D [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory; Joyce, Jr., Edward L [Los Alamos National Laboratory

    2009-01-01

    The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

  16. Screening study for evaluation of the potential for system 80+ to consume excess plutonium - Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-30

    As part of the U.S. effort to evaluate technologies offering solutions for the safe disposal or utilization of surplus nuclear materials, the fiscal year 1993 Energy and Water Appropriations legislation provided the Department of Energy (DOE) the necessary funds to conduct multi-phased studies to determine the technical feasibility of using reactor technologies for the triple mission of burning weapons grade plutonium, producing tritium for the existing smaller weapons stockpile, and generating commercial electricity. DOE limited the studies to five advanced reactor designs. Among the technologies selected is the ABB-Combustion Engineering (ABB-CE) System 80+. The DOE study, currently in Phase ID, is proceeding with a more detailed evaluation of the design`s capability for plutonium disposition.

  17. Screening study for evaluation of the potential for system 80+ to consume excess plutonium - Volume 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-30

    As part of the U.S. effort to evaluate technologies offering solutions for the safe disposal or utilization of surplus nuclear materials, the fiscal year 1993 Energy and Water Appropriations legislation provided the Department of Energy (DOE) the necessary funds to conduct multi-phased studies to determine the technical feasibility of using reactor technologies for the triple mission of burning weapons grade plutonium, producing tritium for the existing smaller weapons stockpile, and generating commercial electricity. DOE limited the studies to five advanced reactor designs. Among the technologies selected is the ABB-Combustion Engineering (ABB-CE) System 80+. The DOE study, currently in Phase ID, is proceeding with a more detailed evaluation of the design`s capability for plutonium disposition.

  18. Continuation application for the Amarillo National Resource Center for Plutonium, a higher education consortium consisting of Texas A and M University, Texas Tech University, and the University of Texas at Austin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-29

    This report describes the 5 tasks to be covered under this project and compiles budget information. Task 1 is to establish a Plutonium Information Resource, which has been established in Amarillo, Texas. Task 2, Advisory Functions, coordinates studies and activities relating to the disposition of excess weapons-grade plutonium. Task 3, Environmental, Public Health, and Safety, supports soil remediation activities. Task 4, Education and Outreach, is supporting four programs: K--12 education improvement in science and math courses; Academic intervention to identify and encourage high ability high school and middle school students with potential to become scientists and engineers; Graduate education evaluation; and Public outreach programs. Task 5, Plutonium and other Materials Studies, is currently funding two projects for the disposition of high explosives: a feasibility study of burning a mixture of high explosives and other materials in a commercial coal-fired power plant and synthesis of diamond by shock compression of bucky ball with explosives.

  19. Reconversion of nuclear weapons

    CERN Document Server

    Kapitza, Sergei P

    1993-01-01

    The nuclear predicament or nuclear option. Synopsis of three lectures : 1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separration of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?

  20. Non-proliferation, safeguards, and security for the fissile materials disposition program immobilization alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, R.A.; Jaeger, C.D.; Tolk, K.M. [Sandia National Labs., Albuquerque, NM (United States); Moore, L.R. [Lawrence Livermore National Lab., CA (United States)

    1996-05-01

    The Department of Energy is analyzing long-term storage and disposition alternatives for surplus weapons-usable fissile materials. A number of different disposition alternatives are being considered. These include facilities for storage, conversion and stabilization of fissile materials, immobilization in glass or ceramic material, fabrication of fissile material into mixed oxide (MOX) fuel for reactors, use of reactor based technologies to convert material into spent fuel, and disposal of fissile material using geologic alternatives. This paper will focus on how the objectives of reducing security and proliferation risks are being considered, and the possible facility impacts. Some of the areas discussed in this paper include: (1) domestic and international safeguards requirements, (2) non-proliferation criteria and measures, (3) the threats, and (4) potential proliferation, safeguards, and security issues and impacts on the facilities. Issues applicable to all of the possible disposition alternatives will be discussed in this paper. However, particular attention is given to the plutonium immobilization alternatives.

  1. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, III, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239Pu and ≥90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  2. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, P. III

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO{sub 2} assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the {sup 239}Pu and {ge}90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  3. Direct vitrification of plutonium-containing materials (PCM`s) with the glass material oxidation and dissolution system (GMODS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W. Beahm, E.C.; Parker, G.W.; Rudolph, J.C.; Haas, P.A.; Malling, G.F.; Elam, K.; Ott, L.

    1995-10-30

    The end of the cold war has resulted in excess PCMs from nuclear weapons and associated production facilities. Consequently, the US government has undertaken studies to determine how best to manage and dispose of this excess material. The issues include (a) ensurance of domestic health, environment, and safety in handling, storage, and disposition, (b) international arms control agreements with Russia and other countries, and (c) economics. One major set of options is to convert the PCMs into glass for storage or disposal. The chemically inert characteristics of glasses make them a desirable chemical form for storage or disposal of radioactive materials. A glass may contain only plutonium, or it may contain plutonium along with other radioactive materials and nonradioactive materials. GMODS is a new process for the direct conversion of PCMs (i.e., plutonium metal, scrap, and residues) to glass. The plutonium content of these materials varies from a fraction of a percent to pure plutonium. GMODS has the capability to also convert other metals, ceramics, and amorphous solids to glass, destroy organics, and convert chloride-containing materials into a low-chloride glass and a secondary clean chloride salt strewn. This report is the initial study of GMODS for vitrification of PCMs as input to ongoing studies of plutonium management options. Several tasks were completed: initial analysis of process thermodynamics, initial flowsheet analysis, identification of equipment options, proof-of-principle experiments, and identification of uncertainties.

  4. Plutonium controversy

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.

    1980-01-01

    The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated. (ACR)

  5. Controlling Weapons-Grade Fissile Material

    Science.gov (United States)

    Rotblat, J.

    1977-01-01

    Discusses the problems of controlling weapons-grade fissionable material. Projections of the growth of fission nuclear reactors indicates sufficient materials will be available to construct 300,000 atomic bombs each containing 10 kilograms of plutonium by 1990. (SL)

  6. What is plutonium stabilization, and what is safe storage of plutonium?

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.

    1995-06-29

    The end of the cold war has resulted in the shutdown of nuclear weapons production and the start of dismantlement of significant numbers of nuclear weapons. This, in turn, is creating an inventory of plutonium requiring interim and long-term storage. A key question is, ``What is required for safe, multidecade, plutonium storage?`` The requirements for storage, in turn, define what is needed to stabilize the plutonium from its current condition into a form acceptable for interim and long-term storage. Storage requirements determine if research is required to (1) define required technical conditions for interim and long-term storage and (2) develop or improve current stabilization technologies. Storage requirements depend upon technical, policy, and economic factors. The technical issues are complicated by several factors. Plutonium in aerosol form is highly hazardous. Plutonium in water is hazardous. The plutonium inventory is in multiple chemical forms--some of which are chemically reactive. Also, some of the existing storage forms are clearly unsuitable for storage periods over a few years. Gas generation by plutonium compounds complicates storage: (1) all plutonium slowly decays creating gaseous helium and (2) the radiation from plutonium decay can initiate many chemical reactions-some of which generate significant quantities of gases. Gas generation can pressurize sealed storage packages. Last nuclear criticality must be avoided.

  7. Fissile material disposition program: Screening of alternate immobilization candidates for disposition of surplus fissile materials

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L.W.

    1996-01-08

    With the end of the Cold War, the world faces for the first time the need to dismantle vast numbers of ``excess`` nuclear weapons and dispose of the fissile materials they contain, together with fissile residues in the weapons production complex left over from the production of these weapons. If recently agreed US and Russian reductions are fully implemented, tens of thousands of nuclear weapons, containing a hundred tons or more of plutonium and hundreds of tonnes* of highly enriched uranium (HEU), will no longer be needed worldwide for military purposes. These two materials are the essential ingredients of nuclear weapons, and limits on access to them are the primary technical barrier to prospective proliferants who might desire to acquire a nuclear weapons capability. Theoretically, several kilograms of plutonium, or several times that amount of HEU, is sufficient to make a nuclear explosive device. Therefore, these materials will continue to be a potential threat to humanity for as long as they exist.

  8. EVALUATION OF IMPURITY EXTREMES IN A PLUTONIUM-LOADED BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J; Kevin Fox, K; Charles Crawford, C; Ned Bibler, N; Elizabeth Hoffman, E; Tommy Edwards, T

    2007-11-12

    A vitrification technology utilizing a lanthanide borosilicate (LaBS) glass appears to be a viable option for the disposition of excess weapons-useable plutonium that is not suitable for processing into mixed oxide (MOX) fuel. A significant effort to develop a glass formulation and vitrification process to immobilize plutonium was completed in the mid-1990s. The LaBS glass formulation was found to be capable of immobilizing in excess of 10 wt % Pu and to be tolerant of a range of impurities. To confirm the results of previous testing with surrogate Pu feeds containing impurities, four glass compositions were selected for fabrication with actual plutonium oxide and impurities. The four compositions represented extremes in impurity type and concentration. The homogeneity and durability of these four compositions were measured. The homogeneity of the glasses was evaluated using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). The XRD results indicated that the glasses were amorphous with no evidence of crystalline species in the glass. The SEM/EDS analyses did show the presence of some undissolved PuO{sub 2} material. The EDS spectra indicated that some of the PuO{sub 2} crystals also contained hafnium oxide. The SEM/EDS analyses showed that there were no heterogeneities in the glass due to the feed impurities. The durability of the glasses was measured using the Product Consistency Test (PCT). The PCT results indicated that the durability of Pu impurity glasses was comparable with Pu glasses without impurities and significantly more durable than the Environmental Assessment (EA) glass used as the benchmark for repository disposition of high-level waste (HLW) glasses.

  9. Plutonium in the Arctic Marine Environment — A Short Review

    Directory of Open Access Journals (Sweden)

    Lindis Skipperud

    2004-01-01

    Full Text Available Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which has resulted in a relatively uniform, underlying global distribution of plutonium. Previous studies of plutonium in the Kara Sea have shown that, at certain sites, other releases have given rise to enhanced local concentrations. Since different plutonium sources are characterised by distinctive plutonium-isotope ratios, evidence of a localised influence can be supported by clear perturbations in the plutonium-isotope ratio fingerprints as compared to the known ratio in global fallout. In Kara Sea sites, such perturbations have been observed as a result of underwater weapons tests at Chernaya Bay, dumped radioactive waste in Novaya Zemlya, and terrestrial runoff from the Ob and Yenisey Rivers. Measurement of the plutonium-isotope ratios offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers.

  10. SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    NORTON SH

    2010-02-23

    CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material. The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford

  11. PF-4 actinide disposition strategy

    Energy Technology Data Exchange (ETDEWEB)

    Margevicius, Robert W [Los Alamos National Laboratory

    2010-05-28

    The dwindling amount of Security Category I processing and storage space across the DOE Complex has driven the need for more effective storage of nuclear materials at LANL's Plutonium Facility's (PF-4's) vault. An effort was begun in 2009 to create a strategy, a roadmap, to identify all accountable nuclear material and determine their disposition paths, the PF-4 Actinide Disposition Strategy (PADS). Approximately seventy bins of nuclear materials with similar characteristics - in terms of isotope, chemical form, impurities, disposition location, etc. - were established in a database. The ultimate disposition paths include the material to remain at LANL, disposition to other DOE sites, and disposition to waste. If all the actions described in the document were taken, over half of the containers currently in the PF-4 vault would been eliminated. The actual amount of projected vault space will depend on budget and competing mission requirements, however, clearly a significant portion of the current LANL inventory can be either dispositioned or consolidated.

  12. Plutonium Story

    Science.gov (United States)

    Seaborg, G. T.

    1981-09-01

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.

  13. Seaborg's Plutonium ?

    CERN Document Server

    Norman, Eric B; Telhami, Kristina E

    2014-01-01

    Passive x-ray and gamma-ray analysis was performed on UC Berkeley's EH&S Sample S338. The object was found to contain Pu-239 and no other radioactive isotopes. The mass of Pu-239 contained in this object was determined to be 2.0 +- 0.3 micrograms. These observations are consistent with the identification of this object being the 2.77-microgram plutonium oxide sample described by Glenn Seaborg and his collaborators as the first sample of Pu-239 that was large enough to be weighed.

  14. Using an induction melter with a cold crucible for the immobilization of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Kushnikov, V.V.; Matiunin, Yu.I.; Smelova, T.V. [A.A. Bochvara All Russian Scientific Research Institute of Non-Organic Materials, Moscow (Russian Federation)

    1996-05-01

    This report evaluates the possibilities for immobilizing weapons-grade plutonium in glass-type materials that satisfy requirements for eventual burial in deep geologic repositories and correspond to the standards set for spent fuel.

  15. Plutonium Immobilization Project System Design Description for Can Loading System

    Energy Technology Data Exchange (ETDEWEB)

    Kriikku, E.

    2001-02-15

    The purpose of this System Design Description (SDD) is to specify the system and component functions and requirements for the Can Loading System and provide a complete description of the system (design features, boundaries, and interfaces), principles of operation (including upsets and recovery), and the system maintenance approach. The Plutonium Immobilization Project (PIP) will immobilize up to 13 metric tons (MT) of U.S. surplus weapons usable plutonium materials.

  16. SEPARATION OF PLUTONIUM

    Science.gov (United States)

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  17. Amarillo National Resource Center for Plutonium quarterly technical progress report, August 1, 1997--October 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report summarizes activities of the Amarillo National Resource Center for Plutonium during the quarter. The report describes the Electronic Resource Library; DOE support activities; current and future environmental health and safety programs; pollution prevention and pollution avoidance; communication, education, training, and community involvement programs; and nuclear and other material studies, including plutonium storage and disposition studies.

  18. Special Weapons

    Data.gov (United States)

    Federal Laboratory Consortium — Supporting Navy special weapons, the division provides an array of engineering services, technical publication support services, logistics support services, safety...

  19. Theory of Antineutrino Monitoring of Burning MOX Plutonium Fuels

    CERN Document Server

    Hayes, A C; Nieto, Michael Martin; WIlson, W B

    2011-01-01

    This letter presents the physics and feasibility of reactor antineutrino monitoring to verify the burnup of plutonium loaded in the reactor as a Mixed Oxide (MOX) fuel. It examines the magnitude and temporal variation in the antineutrino signals expected for different MOX fuels, for the purposes of nuclear accountability and safeguards. The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium. Thus, antineutrino monitoring could be used to verify the destruction of plutonium in reactors, though verifying the grade of the plutonium being burned is found to be more challenging.

  20. Amarillo National Resource Center for Plutonium 1999 plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-30

    The purpose of the Amarillo National Resource Center for Plutonium is to serve the Texas Panhandle, the State of Texas and the US Department of Energy by: conducting scientific and technical research; advising decision makers; and providing information on nuclear weapons materials and related environment, safety, health, and nonproliferation issues while building academic excellence in science and technology. This paper describes the electronic resource library which provides the national archives of technical, policy, historical, and educational information on plutonium. Research projects related to the following topics are described: Environmental restoration and protection; Safety and health; Waste management; Education; Training; Instrumentation development; Materials science; Plutonium processing and handling; and Storage.

  1. Geomorphology of plutonium in the Northern Rio Grande

    Energy Technology Data Exchange (ETDEWEB)

    Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography

    1993-03-01

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

  2. Development of advanced mixed oxide fuels for plutonium management

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-06-01

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium.

  3. Plutonium isotope ratio variations in North America

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert E [Los Alamos National Laboratory; La Mont, Stephen P [Los Alamos National Laboratory; Eisele, William F [Los Alamos National Laboratory; Fresquez, Philip R [Los Alamos National Laboratory; Mc Naughton, Michael [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory

    2010-12-14

    Historically, approximately 12,000 TBq of plutonium was distributed throughout the global biosphere by thermo nuclear weapons testing. The resultant global plutonium fallout is a complex mixture whose {sup 240}Pu/{sup 239}Pu atom ratio is a function of the design and yield of the devices tested. The average {sup 240}Pu/{sup 239}Pu atom ratio in global fallout is 0.176 + 014. However, the {sup 240}Pu/{sup 239}Pu atom ratio at any location may differ significantly from 0.176. Plutonium has also been released by discharges and accidents associated with the commercial and weapons related nuclear industries. At many locations contributions from this plutonium significantly alters the {sup 240}Pu/{sup 239}Pu atom ratios from those observed in global fallout. We have measured the {sup 240}Pu/{sup 239}Pu atom ratios in environmental samples collected from many locations in North America. This presentation will summarize the analytical results from these measurements. Special emphasis will be placed on interpretation of the significance of the {sup 240}Pu/{sup 239}Pu atom ratios measured in environmental samples collected in the Arctic and in the western portions of the United States.

  4. [Biological weapons].

    Science.gov (United States)

    Kerwat, K; Becker, S; Wulf, H; Densow, D

    2010-08-01

    Biological weapons are weapons of mass destruction that use pathogens (bacteria, viruses) or the toxins produced by them to target living organisms or to contaminate non-living substances. In the past, biological warfare has been repeatedly used. Anthrax, plague and smallpox are regarded as the most dangerous biological weapons by various institutions. Nowadays it seems quite unlikely that biological warfare will be employed in any military campaigns. However, the possibility remains that biological weapons may be used in acts of bioterrorism. In addition all diseases caused by biological weapons may also occur naturally or as a result of a laboratory accident. Risk assessment with regard to biological danger often proves to be difficult. In this context, an early identification of a potentially dangerous situation through experts is essential to limit the degree of damage. Georg Thieme Verlag KG Stuttgart * New York.

  5. Plutonium, Mineralogy and Radiation Effects

    Science.gov (United States)

    Ewing, R. C.

    2006-05-01

    During the past fifty years, more than 1,800 metric tonnes of Pu and substantial quantities of other "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranic elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), or are of environmental concern because of their long half- lives and radiotoxicity (e.g., 239Pu, t1/2 = 24,100 years, and 237Np, t1/2 = 2.1 million years). There are two basic strategies for the disposition of these elements: 1.) to "burn" or transmute the actinides using nuclear reactors or accelerators; 2.) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, such as zircon or isometric pyrochlore, A2B2O7 (A = rare earths; B = Ti, Zr, Sn, Hf; Fd3m; Z=8), for the immobilization of actinides, particularly plutonium. One of the principal concerns has been the accumulation of structural damage caused by alpha-decay events, particularly from the recoil nucleus. Systematic ion beam irradiation studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high fluences of alpha-decay event damage. Some compositions, Gd2Ti2O7, are amorphized at relatively low doses (0.2 displacements per atom, dpa, at room temperature), while other compositions, Gd2Zr2O7, do not amorphize (even at doses of > 40 dpa at 25K), but instead disorder to a defect fluorite structure. By changing the composition of the A-site (e.g., substitution of different rare earth elements), the temperature above which the pyrochlore composition can no longer be amorphized, Tc, varies by >600 K (e.g., Lu2Ti2O7: Tc = 480 K; Gd2Ti2O7: Tc = 1120 K). The variation in response to irradiation as a function of composition can be used to model the long

  6. Foucaults Dispositive

    DEFF Research Database (Denmark)

    Raffnsøe, Sverre; Gudmand-Høyer, Marius T.; Thaning, Morten Sørensen

    2016-01-01

    While Foucault’s work has had a crucial impact on organizational research, the analytical potential of the dispositive has not been sufficiently developed. The purpose of this article is to reconstruct the notion of the dispositive as a key conception in Foucault’s thought, particularly in his...... lectures at the Collège de France, and to develop dispositional analytics with specific reference to matters of organization. Foucault’s dispositional analysis articulates a history of interrelated social technologies that have been constructed to organize how we relate to each other. The article...... contribute to a more complex understanding of organizational dynamics, power, strategy, resistance, and critique. Dispositional analytics allows for a new interpretation and use of Foucault in relation to organization studies....

  7. Representing dispositions

    Directory of Open Access Journals (Sweden)

    Röhl Johannes

    2011-08-01

    Full Text Available Abstract Dispositions and tendencies feature significantly in the biomedical domain and therefore in representations of knowledge of that domain. They are not only important for specific applications like an infectious disease ontology, but also as part of a general strategy for modelling knowledge about molecular interactions. But the task of representing dispositions in some formal ontological systems is fraught with several problems, which are partly due to the fact that Description Logics can only deal well with binary relations. The paper will discuss some of the results of the philosophical debate about dispositions, in order to see whether the formal relations needed to represent dispositions can be broken down to binary relations. Finally, we will discuss problems arising from the possibility of the absence of realizations, of multi-track or multi-trigger dispositions and offer suggestions on how to deal with them.

  8. Plutonium Finishing Plant

    Data.gov (United States)

    Federal Laboratory Consortium — The Plutonium Finishing Plant, also known as PFP, represented the end of the line (the final procedure) associated with plutonium production at Hanford.PFP was also...

  9. Plutonium Training Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, Galya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wolkov, Benjamin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-26

    This report was created to examine the current state of plutonium training in the United States and to discover ways in which to ensure that the next generation of plutonium workers are fully qualified.

  10. Safeguardability of the vitrification option for disposal of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S. [Los Alamos National Lab., NM (United States)

    1996-05-01

    Safeguardability of the vitrification option for plutonium disposition is rather complex and there is no experience base in either domestic or international safeguards for this approach. In the present treaty regime between the US and the states of the former Soviet Union, bilaterial verifications are considered more likely with potential for a third-party verification of safeguards. There are serious technological limitations to applying conventional bulk handling facility safeguards techniques to achieve independent verification of plutonium in borosilicate glass. If vitrification is the final disposition option chosen, maintaining continuity of knowledge of plutonium in glass matrices, especially those containing boron and those spike with high-level wastes or {sup 137}Cs, is beyond the capability of present-day safeguards technologies and nondestructive assay techniques. The alternative to quantitative measurement of fissile content is to maintain continuity of knowledge through a combination of containment and surveillance, which is not the international norm for bulk handling facilities.

  11. From separations to reconstitution - a short history of Plutonium in the U.S. and Russia

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L W

    1999-04-15

    During the cold war plutonium was produced in reactors in both the US and Russia. It was then separated from the residual uranium and fission products by a variety of precipitation processes, such as Bismuth Phosphate, Redox, Butex, Purex, etc. in the US and uranium acetate and Purex in Russia. After a period of time in the field, plutonium weapons were recycled and the plutonium re-purified and returned to weapons. purification was accomplished by a variety of aqueous and molten salt processes, such as nitric-hydrofluoric acid dissolution followed by anion exchange, Purex modifications, molten salt extraction, electrorefining, etc. in the US and nitric acid dissolution or sodium hydroxide fusion followed by anion exchange in Russia. At the end of the Cold War, plutonium production of weapons-grade plutonium was cut off in the US and is expected to be cut off in Russia shortly after the turn of the century. Now both countries are looking at methods to reconstitute plutonium with fission products to render it no longer useful for nuclear weapons. These methods include immobilization in a ceramic matrix and then encasement in fission product laden glass, irradiation of MOX fuel, and disposal as waste in WIPP in the US and irradiation of MOX fuel in Russia. This paper details the contrast between the treatment of plutonium during the cold war and after the cold war was over.

  12. PLUTONIUM-THORIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  13. PLUTONIUM CLEANING PROCESS

    Science.gov (United States)

    Kolodney, M.

    1959-12-01

    A method is described for rapidly removing iron, nickel, and zinc coatings from plutonium objects while simultaneously rendering the plutonium object passive. The method consists of immersing the coated plutonium object in an aqueous acid solution containing a substantial concentration of nitrate ions, such as fuming nitric acid.

  14. Further Studies of Plutonium and Americium at Thule, Greenland

    DEFF Research Database (Denmark)

    Aarkrog, Asker; Dahlgaard, Henning; Nilsson, Karen Kristina

    1984-01-01

    Eleven years after the accidental loss of nuclear weapons in 1968, the fourth scientific expedition to Thule occurred. The estimated inventory of 1 TBq 239,240Pu in the marine sediments was unchanged when compared with the estimate based on the 1974 data. Plutonium from the accident had moved fur...

  15. A Graphical Examination of Uranium and Plutonium Fissility

    Science.gov (United States)

    Reed, B. Cameron

    2008-01-01

    The issue of why only particular isotopes of uranium and plutonium are suitable for use in nuclear weapons is analyzed with the aid of graphs and semiquantitative discussions of parameters such as excitation energies, fission barriers, reaction cross-sections, and the role of processes such as [alpha]-decay and spontaneous fission. The goal is to…

  16. Selected papers for global `95 concerning plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Sutcliffe, W.G. [ed.

    1996-06-14

    This report contains selected papers from the Global `95 Conference ``Evaluation of Emerging Nuclear Fuel Cycle Systems,`` held in Versailles, Sept. 11-14, 1995. The 11 papers in Part I are from ``Benefits and Risks of Reprocessing`` sessions. The 7 papers in Part II are some of the more interesting poster papers that relate to the use of Pu for power generation. Finally, the 3 papers are on the topic of management and disposition of Pu from retired nuclear weapons.

  17. Plutonium focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Assistant Secretary for the Office of Environmental Management (EM) at the U.S. Department of Energy (DOE) chartered the Plutonium Focus Area (PFA) in October 1995. The PFA {open_quotes}...provides for peer and technical reviews of research and development in plutonium stabilization activities...{close_quotes} In addition, the PFA identifies and develops relevant research and technology. The purpose of this document is to focus attention on the requirements used to develop research and technology for stabilization, storage, and preparation for disposition of nuclear materials. The PFA Technology Summary presents the approach the PFA uses to identify, recommend, and review research. It lists research requirements, research being conducted, and gaps where research is needed. It also summarizes research performed by the PFA in the traditional research summary format. This document encourages researchers and commercial enterprises to do business with PFA by submitting research proposals or {open_quotes}white papers.{close_quotes} In addition, it suggests ways to increase the likelihood that PFA will recommend proposed research to the Nuclear Materials Stabilization Task Group (NMSTG) of DOE.

  18. Standard specification for sintered (Uranium-Plutonium) dioxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This specification covers finished sintered and ground (uranium-plutonium) dioxide pellets for use in thermal reactors. It applies to uranium-plutonium dioxide pellets containing plutonium additions up to 15 % weight. This specification may not completely cover the requirements for pellets fabricated from weapons-derived plutonium. 1.2 This specification does not include (1) provisions for preventing criticality accidents or (2) requirements for health and safety. Observance of this specification does not relieve the user of the obligation to be aware of and conform to all applicable international, federal, state, and local regulations pertaining to possessing, processing, shipping, or using source or special nuclear material. Examples of U.S. government documents are Code of Federal Regulations Title 10, Part 50Domestic Licensing of Production and Utilization Facilities; Code of Federal Regulations Title 10, Part 71Packaging and Transportation of Radioactive Material; and Code of Federal Regulations Tit...

  19. Uranium in the Nuclear Fuel Cycle: Creation of Plutonium (Invited)

    Science.gov (United States)

    Ewing, R. C.

    2009-12-01

    One of the important properties of uranium is that it can be used to “breed” higher actinides, particularly plutonium. During the past sixty years, more than 1,800 metric tonnes of Pu, and substantial quantities of the “minor” actinides, such as Np, Am and Cm, have been generated in nuclear reactors - a permanent record of nuclear power. Some of these transuranium elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., 239Pu and 237Np). In fact, the new strategies of the Advance Fuel Cycle Initiative (AFCI) are, in part, motivated by an effort to mitigate some of the challenges of the disposal of these long-lived actinides. There are two basic strategies for the disposition of these heavy elements: 1.) to “burn” or transmute the actinides using nuclear reactors or accelerators; 2.) to “sequester” the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, such as zircon or isometric pyrochlore, A2B2O7 (A= rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage1. The radiation stability of these compositions is closely related to the structural distortions that can be accommodated for specific pyrochlore compositions and the electronic structure of the B-site cation. Recent developments in the understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms.

  20. Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, David M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-13

    The ARIES Program at the Los Alamos National Laboratory removes plutonium metal from decommissioned nuclear weapons, and converts it to plutonium dioxide in a specially-designed Direct Metal Oxidation furnace. The plutonium dioxide is analyzed for specific surface area, particle size distribution, and moisture content. The purpose of these analyses is to certify that the plutonium dioxide powder meets or exceeds the specifications of the end-user, and the specifications for the packaging and transport of nuclear materials. Analytical results from plutonium dioxide from ARIES development activities, from ARIES production activities, from muffle furnace oxidation of metal, and from metal that was oxidized over a lengthy time interval in air at room temperature, are presented. The processes studied produce plutonium dioxide powder with distinct differences in measured properties, indicating the significant influence of oxidation conditions on physical properties.

  1. Properties of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jin Su; Yoon, Hwan Ki; Min, Kyung Sik; Kim, Hyun Tae; Ahn, Jong Sung; Kwag, Eon Ho; Ryu, Keon Joong [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-03-01

    Plutonium has unique chemical and physical properties. Its uniqueness in use has led to rare publications, in Korea. This report covers physical aspects of phase change of metal plutonium, mechanical properties, thermal conductivity, etc, chemical aspects of corrosion, oxidation, how to produce plutonium from spent fuels by describing various chemical treatment methods, which are currently used and were used in the past. It also contains characteristics of the purex reprocessing process which is the most widely used nowadays. And show processes to purify and metalize from recovered plutonium solution. Detection and analysis methods are introduced with key pints for handling, critical safety, toxicity, and effects on peoples. This report gives not only a general idea on what plutonium is, rather than deep technical description, but also basic knowledge on plutonium production and safeguards diversion from the view point of nonproliferation. 18 refs. (Author) .new.

  2. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  3. Weapons dismantlement issues in independent Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Zack, N.R. [Los Alamos National Lab., NM (United States); Kirk, E.J. [American Association for the Advancement of Science, Washington, DC (United States)

    1994-07-01

    The American Association for the Advancement of Science sponsored a seminar during September 1993, in Kiev, Ukraine, entitled ``Toward a Nuclear Free Future -- Barriers and Problems.`` It brought together Ukrainians, Belarusians, and Americans to discuss the legal, political, safeguards and security, economic, and technical dimensions of nuclear weapons dismantlement and destruction. US representatives initiated discussions on legal and treaty requirements and constraints, safeguards and security issues surrounding dismantlement, storage and disposition of nuclear materials, warhead transportation, and economic considerations. Ukrainians gave presentations on arguments for and against the Ukraine keeping nuclear weapons, Ukrainian Parliament non-approval of START I, alternative strategies for dismantling silos and launchers, and economic and security implications of nuclear weapons removal from the Ukraine. Participants from Belarus discussed proliferation and control regime issues, This paper will highlight and detail the issues, concerns, and possible impacts of the Ukraine`s dismantlement of its nuclear weapons.

  4. High-temperature vacuum distillation separation of plutonium waste salts

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E. [Los Alamos National Lab., NM (United States)

    1996-10-01

    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen.

  5. Future Remains: Industrial Heritage at the Hanford Plutonium Works

    Science.gov (United States)

    Freer, Brian

    This dissertation argues that U.S. environmental and historic preservation regulations, industrial heritage projects, history, and art only provide partial frameworks for successfully transmitting an informed story into the long range future about nuclear technology and its related environmental legacy. This argument is important because plutonium from nuclear weapons production is toxic to humans in very small amounts, threatens environmental health, has a half-life of 24, 110 years and because the industrial heritage project at Hanford is the first time an entire U.S. Department of Energy weapons production site has been designated a U.S. Historic District. This research is situated within anthropological interest in industrial heritage studies, environmental anthropology, applied visual anthropology, as well as wider discourses on nuclear studies. However, none of these disciplines is really designed or intended to be a completely satisfactory frame of reference for addressing this perplexing challenge of documenting and conveying an informed story about nuclear technology and its related environmental legacy into the long range future. Others have thought about this question and have made important contributions toward a potential solution. Examples here include: future generations movements concerning intergenerational equity as evidenced in scholarship, law, and amongst Native American groups; Nez Perce and Confederated Tribes of the Umatilla Indian Reservation responses to the Hanford End State Vision and Hanford's Canyon Disposition Initiative; as well as the findings of organizational scholars on the advantages realized by organizations that have a long term future perspective. While these ideas inform the main line inquiry of this dissertation, the principal approach put forth by the researcher of how to convey an informed story about nuclear technology and waste into the long range future is implementation of the proposed Future Remains clause, as

  6. Radionuclide Basics: Plutonium

    Science.gov (United States)

    ... remnants of nuclear weapons testing and nuclear reactor accidents. The microscopic particles from atmospheric nuclear weapons testing ... Budget and Results Jobs and Internships Headquarters Offices Regional Offices Labs and Research Centers Discover. Accessibility EPA ...

  7. Plutonium contamination in soils and sediments at Mayak PA, Russia.

    Science.gov (United States)

    Skipperud, Lindis; Salbu, Brit; Oughton, Deborah H; Drozcho, Eugeny; Mokrov, Yuri; Strand, Per

    2005-09-01

    The Mayak Production Association (Mayak PA) was established in the late 1940's to produce plutonium for the Soviet Nuclear Weapons Programme. In total, seven reactors and two reprocessing plants have been in operation. Today, the area comprises both military and civilian reactors as well as reprocessing and metallurgical plants. Authorized and accidental releases of radioactive waste have caused severe contamination to the surrounding areas. In the present study, [alpha]-spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS) have been used to determine plutonium activities and isotope ratios in soil and sediment samples collected from reservoirs of the Techa River at the Mayak area and downstream Techa River. The objective of the study was to determine the total inventory of plutonium in the reservoirs and to identify the different sources contributing to the plutonium contamination. Results based on [alpha]-spectrometry and ICP-MS measurements show the presence of different sources and confirmed recent reports of civilian reprocessing at Mayak. Determination of activity levels and isotope ratios in soil and sediment samples from the Techa River support the hypothesis that most of the plutonium, like other radionuclides in the Techa River, originated from the very early waste discharges to the Techa River between 1949 and 1951. Analysis of reservoir sediment samples suggest that about 75% of the plutonium isotopes could have been released to Reservoir 10 during the early weapons production operation of the plant, and that the majority of plutonium in Reservoir 10 originates from discharges from power production or reprocessing. Enhanced 240Pu/239Pu atom ratios in river sediment upper layers (0-2 cm) between 50 and 250 km downstream from the plant indicate a contribution from other, non-fallout sources.

  8. PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS

    Science.gov (United States)

    Coffinberry, A.S.

    1959-08-25

    >New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.

  9. Plutonium bioaccumulation in seabirds.

    Science.gov (United States)

    Strumińska-Parulska, Dagmara I; Skwarzec, Bogdan; Fabisiak, Jacek

    2011-12-01

    The aim of the paper was plutonium (²³⁸Pu and ²³⁹⁺²⁴⁰Pu) determination in seabirds, permanently or temporarily living in northern Poland at the Baltic Sea coast. Together 11 marine birds species were examined: 3 species permanently residing in the southern Baltic, 4 species of wintering birds and 3 species of migrating birds. The obtained results indicated plutonium is non-uniformly distributed in organs and tissues of analyzed seabirds. The highest plutonium content was found in the digestion organs and feathers, the smallest in skin and muscles. The plutonium concentration was lower in analyzed species which feed on fish and much higher in herbivorous species. The main source of plutonium in analyzed marine birds was global atmospheric fallout.

  10. Plutonium storage criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chung, D. [Scientech, Inc., Germantown, MD (United States); Ascanio, X. [Dept. of Energy, Germantown, MD (United States)

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less than 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.

  11. Optimisation of deep burn incineration of reactor waste plutonium in a PBMR DPP-400 core

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [School for Mechanical and Nuclear Engineering, North West University, PUK-Campus, Private Bag X6001, Internal Post Box 360, Potchefstroom 2520 (South Africa); Mulder, Eben J. [School for Mechanical and Nuclear Engineering, North West University (South Africa); Reitsma, Frederik [Calvera Consultants (South Africa)

    2014-05-01

    In this article an original set of coupled neutronics and thermo-hydraulic simulation results for the VSOP 99/05 diffusion code are presented for advanced fuel cycles for the incineration of weapons-grade plutonium, reactor-grade plutonium and reactor-grade plutonium with its associated Minor Actinides in the 400 MW{sub th} Pebble Bed Modular Reactor Demonstration Power Plant. These results are also compared to those of the standard 9.6 wt% enriched 9 g/fuel sphere U/Pu fuel cycle. The weapons-grade and reactor-grade plutonium fuel cycles produced good burn-ups. However, the addition of the Minor Actinides to the reactor-grade plutonium caused a large decrease in the burn-up and thus an unacceptable increase in the heavy metal (HM) content in the spent fuel, which was intended for direct disposal in a deep geological repository, without chemical reprocessing. All the plutonium fuel cycles failed the adopted safety limits used in the PBMR400 in that either the maximum fuel temperature of 1130 °C during normal operation, or the maximum power density of 4.5 kW/sphere was exceeded. All the plutonium fuel cycles also produced positive uniform temperature reactivity coefficients, i.e. the reactivity coefficient where the temperatures of the fuel and the graphite moderator in the fuel spheres were varied together. These unacceptable positive coefficients were experienced at low temperatures, typically below 700 °C. This was due to the influence of the thermal fission cross-section resonances of {sup 239}Pu and {sup 241}Pu. Weapons-grade plutonium produced the worst safety performance. The safety performance of the reactor-grade plutonium also deteriorated when the HM loading was reduced from 3 g/sphere to 2 g or 1 g.

  12. Plutonium immobilization in glass and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, D.A. [Lockheed Martin Idaho Technologies, Idaho Falls (United States); Murphy, W.M. [Southwest Research Institute, San Antonio, TX (United States)

    1996-05-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 {degrees}C, a higher temperature (1450 {degrees}C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature.

  13. PLUTONIUM SEPARATION METHOD

    Science.gov (United States)

    Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.

    1958-11-18

    The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.

  14. PLUTONIUM ELECTROREFINING CELLS

    Science.gov (United States)

    Mullins, L.J. Jr.; Leary, J.A.; Bjorklund, C.W.; Maraman, W.J.

    1963-07-16

    Electrorefining cells for obtaining 99.98% plutonium are described. The cells consist of an impure liquid plutonium anode, a molten PuCl/sub 3/-- alkali or alkaline earth metal chloanode, a molten PuCl/sub 3/-alkali or alkaline earth metal chloride electrolyte, and a nonreactive cathode, all being contained in nonreactive ceramic containers which separate anode from cathode by a short distance and define a gap for the collection of the purified liquid plutonium deposited on the cathode. Important features of these cells are the addition of stirrer blades on the anode lead and a large cathode surface to insure a low current density. (AEC)

  15. Utilization of plutonium in a high temperature gas-cooled reactor with spherical fuel elements; Nutzung von Plutonium im Kugelhaufen-Hochtemperaturreaktor

    Energy Technology Data Exchange (ETDEWEB)

    Khorochev, M.

    1998-09-01

    This thesis deals with the use of reactor and weapon grade plutonium in High Temperature Gas Cooled Reactors (HTR) with spherical fuel elements. As an example, a 350 MW{sub th} MODUL type reactor is investigated in detail. The purpose of the study was to find the possibilities and limits of using plutonium effectively in a Pebble Bed HTR. Fuel cycles were optimized with respect to different goals under the condition that safety requirements must be strictly fulfilled. A compromise between opposite optimization criteria (e.g., higher destruction rate or smaller residual amount of plutonium in the spent fuel) was achieved. Calculational studies of plutonium cycles in a Pebble Red Reactor were performed using the VSOP Code. The results show that a Pebble Red Reactor potentially provides for extremely high burnup of plutonium. The high burnup was achieved by separate loading of the plutonium in feed and of uranium in breed type fuel elements. Both fuel element types undergo different numbers of passes through the reactor until the intended burnup is achieved. Two reference cases are derived from a parametric study, one for the use of reactor grade plutonium with uranium, and another one for weapon grade plutonium with thorium as the breed material. Both reference cycles prove that the HTR-350 Module reactor offers a good concept for the destruction of both plutonium grades. (orig.) [Deutsch] In der vorliegenden Arbeit wird der Einsatz von Waffen- und Reaktorplutonium in Hochtemperaturreaktoren mit kugelfoermigen Brennelementen behandelt. Als Anwendungsbeispiel wird eine modulare Anlage mit einer Leistung von 350 MW{sub th} im Detail untersucht. Das Ziel der Arbeit bestand darin, die Moeglichkeiten und Grenzen fuer einen effektiven Abbrand von Plutonium in Kugelhaufenreaktoren kennenzulernen. Unter Wahrung hoher Sicherheitsansprueche wurden Brennstoffkreislaeufe identifiziert, welche fuer unterschiedliche Zielvorgaben optimiert wurden. Schliesslich wurde ein Kompromiss

  16. A Plutonium-Contaminated Wound, 1985, USA

    Energy Technology Data Exchange (ETDEWEB)

    Doran M. Christensen, DO, REAC/TS Associate Director and Staff Physician Eugene H. Carbaugh, CHP, Staff Scientist, Internal Dosimetry Manager, Pacific Northwest National Laboratory, Richland, Washington

    2012-02-02

    A hand injury occurred at a U.S. facility in 1985 involving a pointed shaft (similar to a meat thermometer) that a worker was using to remove scrap solid plutonium from a plastic bottle. The worker punctured his right index finger on the palm side at the metacarpal-phalangeal joint. The wound was not through-and- through, although it was deep. The puncture wound resulted in deposition of ~48 kBq of alpha activity from the weapons-grade plutonium mixture with a nominal 12 to 1 Pu-alpha to {sup 241}Am-alpha ratio. This case clearly showed that DTPA was very effective for decorporation of plutonium and americium. The case is a model for management of wounds contaminated with transuranics: (1) a team approach for dealing with all of the issues surrounding the incident, including the psychological, (2) early surgical intervention for foreign-body removal, (3) wound irrigation with DTPA solution, and (4) early and prolonged DTPA administration based upon bioassay and in vivo dosimetry.

  17. Kr-85 signatures for various plutonium production schemes

    Energy Technology Data Exchange (ETDEWEB)

    Stanoszek, Paul [Carl Friedrich von Weizsaecker-Centre for Science and Peace Research (Germany)

    2009-07-01

    Kr-85 is considered to be the best atmospheric indicator of unreported weapon-grade material production. This fact is based on the half-life of 10.76 years of Kr-85 and its chemical inactivity, which makes it even detectable after extended periods of cooling time. Kr-85 is produced as fission product during nuclear reactor operation and remains in the fuel until reprocessing starts. In order to determine the detectability of plutonium production the Kr-85 source term has to be assessed. The important issue of this presentation is the question on the minimum signal that an inspector can expect under the assumption that a proliferator minimizes his Kr-85 generation in order to circumvent a Kr-85 detection. A further assumption is that for nuclear weapon production a burn-up of typically around 2 MWd/kg is used. In addition, if clandestine plutonium production takes place, the source term might be used to estimate the amount of separated plutonium. The methodology of this study is based on a linkage between MCNPX and MATLAB. All results for actinide concentrations and Kr-85 are evaluated for different enrichments of U-235 and compared to known literature data. The Kr-85 source term per kilogram plutonium depends on the enrichments. As a result the lowest Kr-85 source term is found for depleted uranium.

  18. A perspective on the proliferation risks of plutonium mines

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, E.S. [Nuclear Control Institute, Washington, DC (United States)

    1996-05-01

    The program of geologic disposal of spent fuel and other plutonium-containing materials is increasingly becoming the target of criticism by individuals who argue that in the future, repositories may become low-cost sources of fissile material for nuclear weapons. This paper attempts to outline a consistent framework for analyzing the proliferation risks of these so-called {open_quotes}plutonium mines{close_quotes} and putting them into perspective. First, it is emphasized that the attractiveness of plutonium in a repository as a source of weapons material depends on its accessibility relative to other sources of fissile material. Then, the notion of a {open_quotes}material production standard{close_quotes} (MPS) is proposed: namely, that the proliferation risks posed by geologic disposal will be acceptable if one can demonstrate, under a number of reasonable scenarios, that the recovery of plutonium from a repository is likely to be as difficult as new production of fissile material. A preliminary analysis suggests that the range of circumstances under which current mined repository concepts would fail to meet this standard is fairly narrow. Nevertheless, a broad application of the MPS may impose severe restrictions on repository design. In this context, the relationship of repository design parameters to easy of recovery is discussed.

  19. Plutonium dissolution process

    Science.gov (United States)

    Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry

    1996-01-01

    A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

  20. Vitrification of plutonium at Rocky Flats the argument for a pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L. [Rocky Mountain Peace Center, Boulder, CO (United States)

    1996-05-01

    Current plans for stabilizing and storing the plutonium at Rocky Flats Plant fail to put the material in a form suitable for disposition and resistant to proliferation. Vitrification should be considered as an alternate technology. The vitrification should begin with a small-scale pilot plant.

  1. Postulated accident scenarios in weapons disassembly

    Energy Technology Data Exchange (ETDEWEB)

    Payne, S.S. [Dept. of Energy, Albuquerque, NM (United States)

    1997-06-01

    A very brief summary of three postulated accident scenarios for weapons disassembly is provided in the paper. The first deals with a tetrahedral configuration of four generic pits; the second, an infinite planar array of generic pits with varying interstitial water density; and the third, a spherical shell with internal mass suspension in water varying the size and mass of the shell. Calculations were performed using the Monte Carlo Neutron Photon transport code MCNP4A. Preliminary calculations pointed to a need for higher resolution of small pit separation regimes and snapshots of hydrodynamic processes of water/plutonium mixtures.

  2. PLUTONIUM METALLOGRAPHY AT LOS ALAMOS

    Energy Technology Data Exchange (ETDEWEB)

    PEREYRA, RAMIRO A. [Los Alamos National Laboratory; LOVATO, DARRYL [Los Alamos National Laboratory

    2007-01-08

    From early days of the Manhattan program to today, scientists and engineers have continued to investigate the metallurgical properties of plutonium (Pu). Although issues like aging was not a concern to the early pioneers, today the reliability of our aging stockpile is of major focus. And as the country moves toward a new generation of weapons similar problems that the early pioneers faced such as compatibility, homogeneity and malleability have come to the forefront. And metallography will continue to be a principle tool for the resolution of old and new issues. Standard metallographic techniques are used for the preparation of plutonium samples. The samples are first cut with a slow speed idamond saw. After mounting in Epon 815 epoxy resin, the samples are ground through 600 grit silicon carbide paper. PF 5070 (a Freon substitute) is used as a coolant, lubricant, and solvent for most operations. Rough mechanical polished is done with 9-{mu} diamond using a nap less cloth, for example nylon or cotton. Final polish is done with 1-{mu} diamond on a nappy cloth such as sylvet. Ethyl alcohol is then used ultrasonically to clean the samples before electro polishing. The sample is then electro-polished and etched in an electrolyte containing 10% nitric acid, and 90% dimethyleneformalmide. Ethyl alcohol is used as a final cleaning agent. Although standard metallographic preparation techniques are used, there are several reasons why metallography of Pu is difficult and challenging. Firstly, because of the health hazards associated with its radioactive properties, sample preparation is conducted in glove boxes. Figure 1 shows the metallography line, in an R and D facility. Since they are designed to be negative in pressure to the laboratory, cross-contamination of abrasives is a major problem. In addition, because of safety concerns and waste issues, there is a limit to the amount of solvent that can be used. Secondly, Pu will readily hydride or oxidize when in contact

  3. METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE

    Science.gov (United States)

    Tolley, W.B.; Smith, R.C.

    1959-12-15

    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  4. History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S., Fluor Daniel Hanford

    1997-02-18

    The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

  5. Application of proposed mutual reciprocal inspection measurement techniques to a weapon component

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.W.; Frankle, C.M. [Los Alamos National Lab., NM (United States); Gosnell, T.B. [Lawrence Livermore National Lab., CA (United States)

    1997-04-01

    The shape-measurement technique proposed by Russian scientists for mutual reciprocal inspections (MRI) of plutonium from dismantled nuclear weapons has been applied to a US weapon component. Measurement procedures are described. Results of the measurements are {open_quotes}self-normalized{close_quotes} to remove any classified information and further renormalized to results of previous joint US/Russian measurements of an unclassified plutonium piece. Data are presented in tabular and graphical form, conforming to the method of presentation recommended by Russian experts during the previous measurements.

  6. Aqueous Solution Chemistry of Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Clark, David L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-28

    Things I have learned working with plutonium: Chemistry of plutonium is complex; Redox equilibria make Pu solution chemistry particularly challenging in the absence of complexing ligands; Understanding this behavior is key to successful Pu chemistry experiments; There is no suitable chemical analog for plutonium.

  7. A collaborative effort to address the distribution of plutonium-contaminated sludge in Livermore, California.

    Science.gov (United States)

    Sutton, Patrice; Cabasso, Jacqueline; Barreau, Tracy; Kelley, Marylia

    2012-01-01

    Plutonium releases from the U.S. nuclear weapons laboratory in Livermore, California resulted in the contamination of sewage sludge. Two research models to address the potential public health impacts of plutonium-contaminated sludge distribution were undertaken. One model was a collaborative approach that emphasized incorporating local knowledge into the scientific analysis and fostering the growth of mutually respectful relationships between scientists, governmental, and non-governmental collaborators. The second was a dose-assessment approach that utilized existing data to estimate radiological doses from exposure to plutonium contaminated sewage sludge and compared the estimated doses with those that have caused sickness or death. The two models reached different conclusions; neither addressed issues of intergenerational equity and primary prevention of exposure. Advancing an ethical research agenda will involve looking upstream of the contamination and working toward sustainable solutions to security that do not involve the public health threats embedded in the global embrace of nuclear weapons.

  8. Technical evaluation panel summary report. Ceramic and glass immobilization options fissile materials disposition program

    Energy Technology Data Exchange (ETDEWEB)

    Myers, B. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brummond, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Armantrout, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaw, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jantzen, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jostons, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McKibben, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Strachan, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vienna, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1997-12-23

    This report documents the results of a technical evaluation of the merits of ceramic and glass immobilization forms for the disposition of surplus weapons-useable plutonium. The evaluation was conducted by a Technical Evaluation Panel (TEP), whose members were selected to cover a relevant range of scientific and technical expertise and represented each of the technical organizations involved in the Plutonium Immobilization Program. The TEP held a formal review at Lawrence Liver-more National Laboratory (LLNL) from July 2%August 1, 1997. Following this review, the TEP documented the review and its evaluation of the two immobilization technologies in this report to provide a technical basis for a recommendation by LLNL to the Department of Energy (DOE) for the preferred immobilization form. The comparison of the glass and ceramic forms and manufacturing processes was a tremendous challenge to the TEP. The two forms and their processes are similar in many ways. The TEP went to great effort to accurately assess what were, in many cases, fine details of the processes, unit operations, and the glass and ceramic forms themselves. The set of criteria used by the Fissile Materials Disposition Program (FMDP) in past screenings and down-selections was used to measure-the two options. One exception is that the TEP did not consider criteria that were largely nontechnical (namely international impact, public acceptance, and effects on other : DOE programs). The TEP' s measures and assessments are documented in detail. Care was taken to ensure that the data used were well documented and traceable to their source. Although no final conclusion regarding the preferred form was reached or explicitly stated in this report (this was not within the TEP' s charter), no "show stoppers" were identified for either form. Both forms appear capable of satisfying all the criteria, as interpreted by the TEP. The TEP identified a number of distinct and quantifiable differences between

  9. The effect of the composition of plutonium loaded on the reactivity change and the isotopic composition of fuel produced in a fast reactor

    Science.gov (United States)

    Blandinskiy, V. Yu.

    2014-12-01

    This paper presents the results of a numerical investigation into burnup and breeding of nuclides in metallic fuel consisting of a mixture of plutonium and depleted uranium in a fast reactor with sodium coolant. The feasibility of using plutonium contained in spent nuclear fuel from domestic thermal reactors and weapons-grade plutonium is discussed. It is shown that the largest production of secondary fuel and the least change in the reactivity over the reactor lifetime can be achieved when employing plutonium contained in spent nuclear fuel from a reactor of the RBMK-1000 type.

  10. Nuclear weapons modernizations

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, Hans M. [Federation of American Scientists, Washington, DC (United States)

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  11. Management of disused plutonium sealed sources

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, Julia Rose [Los Alamos National Laboratory; Pearson, Michael W [Los Alamos National Laboratory; Abeyta, Cristy [Los Alamos National Laboratory

    2010-01-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources since 1999, including more than 2,400 Plutonium (Pu)-238 sealed sources and 653 Pu-239-bearing sources that represent more than 10% of the total sources recovered by GTRI/OSRP to date. These sources have been recovered from hundreds of sites within the United States (US) and around the world. OSRP grew out of early efforts at the Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program, a loan-lease program that serviced 31 countries, as well as domestic users. In the conduct of these recovery operations, GTRI/OSRP has been required to solve problems related to knowledge-of-inventory, packaging and transportation of fissile and heat-source materials, transfer of ownership, storage of special nuclear material (SNM) both at US Department of Energy (DOE) facilities and commercially, and disposal. Unique issues associated with repatriation from foreign countries, including end user agreements required by some European countries and denials of shipment, will also be discussed.

  12. Unallocated Off-Specification Highly Enriched Uranium: Recommendations for Disposition

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, D. N.; Boeke, S. G.; Tousley, D. R.; Bickford, W.; Goergen, C.; Williams, W.; Hassler, M.; Nelson, T.; Keck, R.; Arbital, J.

    2002-02-27

    The U.S. Department of Energy (DOE) has made significant progress with regard to disposition planning for 174 metric tons (MTU) of surplus Highly Enriched Uranium (HEU). Approximately 55 MTU of this 174 MTU are ''offspec'' HEU. (''Off-spec'' signifies that the isotopic or chemical content of the material does not meet the American Society for Testing and Materials standards for commercial nuclear reactor fuel.) Approximately 33 of the 55 MTU have been allocated to off-spec commercial reactor fuel per an Interagency Agreement between DOE and the Tennessee Valley Authority (1). To determine disposition plans for the remaining {approx}22 MTU, the DOE National Nuclear Security Administration (NNSA) Office of Fissile Materials Disposition (OFMD) and the DOE Office of Environmental Management (EM) co-sponsored this technical study. This paper represents a synopsis of the formal technical report (NNSA/NN-0014). The {approx} 22 MTU of off-spec HEU inventory in this study were divided into two main groupings: one grouping with plutonium (Pu) contamination and one grouping without plutonium. This study identified and evaluated 26 potential paths for the disposition of this HEU using proven decision analysis tools. This selection process resulted in recommended and alternative disposition paths for each group of HEU. The evaluation and selection of these paths considered criteria such as technical maturity, programmatic issues, cost, schedule, and environment, safety and health compliance. The primary recommendations from the analysis are comprised of 7 different disposition paths. The study recommendations will serve as a technical basis for subsequent programmatic decisions as disposition of this HEU moves into the implementation phase.

  13. Assessment of plutonium in the Savannah River Site environment. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-12-31

    Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports.

  14. Plutonium transport in the environment.

    Science.gov (United States)

    Kersting, Annie B

    2013-04-01

    The recent estimated global stockpile of separated plutonium (Pu) worldwide is about 500 t, with equal contributions from nuclear weapons and civilian nuclear energy. Independent of the United States' future nuclear energy policy, the current large and increasing stockpile of Pu needs to be safely isolated from the biosphere and stored for thousands of years. Recent laboratory and field studies have demonstrated the ability of colloids (1-1000 nm particles) to facilitate the migration of strongly sorbing contaminants such as Pu. In understanding the dominant processes that may facilitate the transport of Pu, the initial source chemistry and groundwater chemistry are important factors, as no one process can explain all the different field observations of Pu transport. Very little is known about the molecular-scale geochemical and biochemical mechanisms controlling Pu transport, leaving our conceptual model incomplete. Equally uncertain are the conditions that inhibit the cycling and mobility of Pu in the subsurface. Without a better mechanistic understanding for Pu at the molecular level, we cannot advance our ability to model its transport behavior and achieve confidence in predicting long-term transport. Without a conceptual model that can successfully predict long-term Pu behavior and ultimately isolation from the biosphere, the public will remain skeptical that nuclear energy is a viable and an attractive alternative to counter global warming effects of carbon-based energy alternatives. This review summarizes our current understanding of the relevant conditions and processes controlling the behavior of Pu in the environment, gaps in our scientific knowledge, and future research needs.

  15. Plutonium isotopes in the terrestrial environment at the Savannah River Site, USA: a long-term study.

    Science.gov (United States)

    Armstrong, Christopher R; Nuessle, Patterson R; Brant, Heather A; Hall, Gregory; Halverson, Justin E; Cadieux, James R

    2015-02-01

    This work presents the findings of a long-term plutonium (Pu) study at Savannah River Site (SRS) conducted between 2003 and 2013. Terrestrial environmental samples were obtained at the Savannah River National Laboratory (SRNL) in the A-Area. Plutonium content and isotopic abundances were measured over this time period by α particle and thermal ionization mass spectrometry (3STIMS). We detail the complete process of the sample collection, radiochemical separation, and measurement procedure specifically targeted to trace plutonium in bulk environmental samples. Total plutonium activities were determined to be not significantly above atmospheric global fallout. However, the (238)Pu/(239+240)Pu activity ratios attributed to SRS are substantially different than fallout due to past (238)Pu production on the site. The (240)Pu/(239)Pu atom ratios are reasonably consistent from year to year and are lower than fallout indicating an admixture of weapons-grade material, while the (242)Pu/(239)Pu atom ratios are higher than fallout values, again due to actinide production activities. Overall, the plutonium signatures obtained in this study reflect a distinctive mixture of weapons-grade, heat source, and higher burn-up plutonium with fallout material. This study provides a unique opportunity for developing and demonstrating a blue print for long-term low-level monitoring of trace plutonium in the environment.

  16. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J. [Pacific Northwest Lab., Richland, WA (United States); Nass, R. [Nuclear Fuel Services, Inc. (United States)

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  17. An analysis of plutonium immobilization versus the "spent fuel" standard

    Energy Technology Data Exchange (ETDEWEB)

    Gray, W L; McKibben, J M

    1998-06-16

    Safe Pu management is an important and urgent task with profound environmental, national, and international security implications. Presidential Policy Directive 13 and analyses by scientific, technical, and international policy organizations brought about a focused effort within the Department of Energy (DOE) to identify and implement long-term disposition paths for surplus Pu. The principal goal is to render surplus Pu as inaccessible and unattractive for reuse in nuclear weapons as Pu in spent reactor fuel. In the Programmatic Environmental Impact Statement and Record of Decision for the Storage and Disposition of Weapons- Usable Fissile Materials (1997), DOE announced pursuit of two disposition technologies: (1) irradiation of Pu as MOX fuel in existing reactors and (2) immobilization of Pu into solid forms containing fission products as a radiation barrier. DOE chose an immobilization approach that includes "use of the can-in-canister option.. . for a portion of the surplus, non-pit Pu material." In the can-in-canister approach, cans of glass or ceramic forms containing Pu are encapsulated within canisters of HLW glass. In support of the selection process, a technical evaluation of retrievability and recoverability of Pu from glass and ceramic forms by a host nation and by rogue nations or subnational groups was completed. The evaluation involved determining processes and flowsheets for Pu recovery, comparing these processes against criteria and metrics established by the Fissile Materials Disposition Program and then comparing the recovery processes against each other and against SNF processes.

  18. Crystalline matrices for the immobilization of plutonium and actinides

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E.B.; Burakov, E.E.; Galkin, Ya.B.; Starchenko, V.A.; Vasiliev, V.G. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    1996-05-01

    The management of weapon plutonium, disengaged as a result of conversion, is considered together with the problem of the actinide fraction of long-lived high level radioactive wastes. It is proposed to use polymineral ceramics based on crystalline host-phases: zircon ZrSiO{sub 4} and zirconium dioxide ZrO{sub 2}, for various variants of the management of plutonium and actinides (including the purposes of long-term safe storage or final disposal from the human activity sphere). It is shown that plutonium and actinides are able to form with these phases on ZrSiO{sub 4} and ZrO{sub 2} was done on laboratory level by the hot pressing method, using the plasmochemical calcination technology. To incorporate simulators of plutonium into the structure of ZrSiO{sub 4} and ZrO{sub 2} in the course of synthesis, an original method developed by the authors as a result of studying the high-uranium zircon (Zr,U) SiO{sub 4} form Chernobyl {open_quotes}lavas{close_quotes} was used.

  19. AECL/US INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors -- Fuel Requirements and Down-Select Report

    Energy Technology Data Exchange (ETDEWEB)

    William Carmack; Randy D. Lee; Pavel Medvedev; Mitch Meyer; Michael Todosow; Holly B. Hamilton; Juan Nino; Simon Philpot; James Tulenko

    2005-06-01

    The U.S. Advanced Fuel Cycle Program and the Atomic Energy Canada Ltd (AECL) seek to develop and demonstrate the technologies needed to minimize the overall Pu and minor actinides present in the light water reactor (LWR) nuclear fuel cycles. It is proposed to reuse the Pu from LWR spent fuel both for the energy it contains and to decrease the hazard and proliferation impact resulting from storage of the Pu and minor actinides. The use of fuel compositions with a combination of U and Pu oxide (MOX) has been proposed as a way to recycle Pu and/or minor actinides in LWRs. It has also been proposed to replace the fertile U{sup 238} matrix of MOX with a fertile-free matrix (IMF) to reduce the production of Pu{sup 239} in the fuel system. It is important to demonstrate the performance of these fuels with the appropriate mixture of isotopes and determine what impact there might be from trace elements or contaminants. Previous work has already been done to look at weapons-grade (WG) Pu in the MOX configuration [1][2] and the reactor-grade (RG) Pu in a MOX configuration including small (4000 ppm additions of Neptunium). This program will add to the existing database by developing a wide variety of MOX fuel compositions along with new fuel compositions called inert-matrix fuel (IMF). The goal of this program is to determine the general fabrication and irradiation behavior of the proposed IMF fuel compositions. Successful performance of these compositions will lead to further selection and development of IMF for use in LWRs. This experiment will also test various inert matrix material compositions with and without quantities of the minor actinides Americium and Neptunium to determine feasibility of incorporation into the fuel matrices for destruction. There is interest in the U.S. and world-wide in the investigation of IMF (inert matrix fuels) for scenarios involving stabilization or burn down of plutonium in the fleet of existing commercial power reactors. IMF offer the

  20. Manufacturing of Plutonium Tensile Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Cameron M [Los Alamos National Laboratory

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  1. Plutonium worker dosimetry.

    Science.gov (United States)

    Birchall, Alan; Puncher, M; Harrison, J; Riddell, A; Bailey, M R; Khokryakov, V; Romanov, S

    2010-05-01

    Epidemiological studies of the relationship between risk and internal exposure to plutonium are clearly reliant on the dose estimates used. The International Commission on Radiological Protection (ICRP) is currently reviewing the latest scientific information available on biokinetic models and dosimetry, and it is likely that a number of changes to the existing models will be recommended. The effect of certain changes, particularly to the ICRP model of the respiratory tract, has been investigated for inhaled forms of (239)Pu and uncertainties have also been assessed. Notable effects of possible changes to respiratory tract model assumptions are (1) a reduction in the absorbed dose to target cells in the airways, if changes under consideration are made to the slow clearing fraction and (2) a doubling of absorbed dose to the alveolar region for insoluble forms, if evidence of longer retention times is taken into account. An important factor influencing doses for moderately soluble forms of (239)Pu is the extent of binding of dissolved plutonium to lung tissues and assumptions regarding the extent of binding in the airways. Uncertainty analyses have been performed with prior distributions chosen for application in epidemiological studies. The resulting distributions for dose per unit intake were lognormal with geometric standard deviations of 2.3 and 2.6 for nitrates and oxides, respectively. The wide ranges were due largely to consideration of results for a range of experimental data for the solubility of different forms of nitrate and oxides. The medians of these distributions were a factor of three times higher than calculated using current default ICRP parameter values. For nitrates, this was due to the assumption of a bound fraction, and for oxides due mainly to the assumption of slower alveolar clearance. This study highlights areas where more research is needed to reduce biokinetic uncertainties, including more accurate determination of particle transport rates

  2. Amarillo National Resource Center for plutonium. Work plan progress report, November 1, 1995--January 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Cluff, D. [Texas Tech Univ., Lubbock, TX (United States)

    1996-04-01

    The Center operates under a cooperative agreement between DOE and the State of Texas and is directed and administered by an education consortium. Its programs include developing peaceful uses for the materials removed from dismantled weapons, studying effects of nuclear materials on environment and public health, remedying contaminated soils and water, studying storage, disposition, and transport of Pu, HE, and other hazardous materials removed from weapons, providing research and counsel to US in carrying out weapons reductions in cooperation with Russia, and conducting a variety of education and training programs.

  3. Nonstrategic Nuclear Weapons

    Science.gov (United States)

    2014-01-03

    William Potter , and Nikolai Sokov, Reducing and Regulating Tactical (Nonstrategic) Nuclear Weapons in Europe, The James Martin Center For...See William C. Potter and Nikolai Sokov, “Nuclear Weapons that People Forget,” International Herald Tribune, May 31, 2000. 87 Sam Nunn, Igor...their security.97 94 Kent Harris , “NATO Allies Want U.S. Nuclear Weapons out of Europe

  4. Probing Phonons in Plutonium

    Science.gov (United States)

    Wong, Joe

    2004-03-01

    The phonon spectra of plutonium and its alloys have been sought after in the past few decades following the discovery of this actinide element in 1941, but with no success. This was due to a combination of the high neutron absorption cross section of 239Pu, the common isotope, and non-availability of large single crystals of any Pu-bearing materials. We have recent designed a high resolution inelastic x-ray scattering experiment using a bright synchrotron x-ray beam at the European Sychrotron Radiation Facility (ESRF), Grenoble and mapped the full phonon dispersion curves of an fcc delta-phase polycrystalline Pu-Ga alloy (1). Several unusual features including, a large elastic anisotropy, a small shear elastic modulus C', a Kohn-like anomaly in the T1[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. Our results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for d-plutonium.(2) This work was performed in collaboration with Dr. M. Krisch (ESRF)) and Prof. T.-C. Chiang (UIU), and under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. Joe Wong et al. Science, vol.301, 1078 (2003) 2. X. Dai et al. Science, vol.300, 953 (2003)

  5. SUPPORTING SAFE STORAGE OF PLUTONIUM-BEARING MATERIALS THROUGH SCIENCE, ENGINEERING AND SURVEILLANCE

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, K.; Chandler, G.; Gardner, C.; Louthan, M.; Mcclard, J.

    2009-11-10

    Reductions in the size of the U. S. nuclear weapons arsenal resulted in the need to store large quantities of plutonium-bearing metals and oxides for prolonged periods of time. To assure that the excess plutonium from the U. S. Department of Energy (DOE) sites was stored in a safe and environmentally friendly manner the plutonium-bearing materials are stabilized and packaged according to well developed criteria published as a DOE Standard. The packaged materials are stored in secure facilities and regular surveillance activities are conducted to assure continuing package integrity. The stabilization, packaging, storage and surveillance requirements were developed through extensive science and engineering activities including those related to: plutonium-environment interactions and container pressurization, corrosion and stress corrosion cracking, plutonium-container material interactions, loss of sealing capability and changes in heat transfer characteristics. This paper summarizes some of those activities and outlines ongoing science and engineering programs that assure continued safe and secure storage of the plutonium-bearing metals and oxides.

  6. Criticality investigations for the fixed bed nuclear reactor using thorium fuel mixed with plutonium or minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Suemer [Beykoz Lojistik Meslek Yueksekokulu, Beykoz, Istanbul (Turkey)], E-mail: sumer@gazi.edu.tr; Sahin, Haci Mehmet; Acir, Adem [Beykoz Lojistik Meslek Yueksekokulu, Istanbul (Turkey); Al-Kusayer, Tawfik Ahmed [King Saud University, College of Engineering, P.O. Box 800, Riyadh 11421 (Saudi Arabia)

    2009-08-15

    Prospective fuels for a new reactor type, the so called fixed bed nuclear reactor (FBNR) are investigated with respect to reactor criticality. These are (1) low enriched uranium (LEU); (2) weapon grade plutonium + ThO{sub 2}; (3) reactor grade plutonium + ThO{sub 2}; and (4) minor actinides in the spent fuel of light water reactors (LWRs) + ThO{sub 2}. Reactor grade plutonium and minor actinides are considered as highly radio-active and radio-toxic nuclear waste products so that one can expect that they will have negative fuel costs. The criticality calculations are conducted with SCALE5.1 using S{sub 8}-P{sub 3} approximation in 238 neutron energy groups with 90 groups in thermal energy region. The study has shown that the reactor criticality has lower values with uranium fuel and increases passing to minor actinides, reactor grade plutonium and weapon grade plutonium. Using LEU, an enrichment grade of 9% has resulted with k{sub eff} = 1.2744. Mixed fuel with weapon grade plutonium made of 20% PuO{sub 2} + 80% ThO{sub 2} yields k{sub eff} = 1.2864. Whereas a mixed fuel with reactor grade plutonium made of 35% PuO{sub 2} + 65% ThO{sub 2} brings it to k{sub eff} = 1.267. Even the very hazardous nuclear waste of LWRs, namely minor actinides turn out to be high quality nuclear fuel due to the excellent neutron economy of FBNR. A relatively high reactor criticality of k{sub eff} = 1.2673 is achieved by 50% MAO{sub 2} + 50% ThO{sub 2}. The hazardous actinide nuclear waste products can be transmuted and utilized as fuel in situ. A further output of the study is the possibility of using thorium as breeding material in combination with these new alternative fuels.

  7. Learning more about plutonium; En savoir plus sur le plutonium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This digest brochure explains what plutonium is, where it comes from, how it is used, its recycling into Mox fuel, its half life, historical discovery, its presence in the environment, toxicity and radioactivity. (J.S.)

  8. Microdistribution and Long-Term Retention of 239Pu (NO3)4 in the Respiratory Tracts of an Acutely Exposed Plutonium Worker and Experimental Beagle Dogs

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Christopher E.; Wilson, Dulaney A.; Brooks, Antone L.; McCord, Stacey; Dagle, Gerald E.; James, Anthony C.; Tolmachev, Sergei Y.; Thrall, Brian D.; Morgan, William F.

    2012-11-01

    The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [239Pu (NO3)4] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histological lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a non-uniform distribution of plutonium throughout the lung tissue. Fibrotic scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma. Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the sub-pleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential increase in cancer risk.

  9. Microdistribution and long-term retention of 239Pu (NO3)4 in the respiratory tracts of an acutely exposed plutonium worker and experimental beagle dogs.

    Science.gov (United States)

    Nielsen, Christopher E; Wilson, Dulaney A; Brooks, Antone L; McCord, Stacey L; Dagle, Gerald E; James, Anthony C; Tolmachev, Sergei Y; Thrall, Brian D; Morgan, William F

    2012-11-01

    The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [(239)Pu (NO(3))(4)] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histologic lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a nonuniform distribution of plutonium throughout the lung tissue. Fibrotic scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma. Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the subpleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential to increase cancer risk.

  10. Guide of good practices for occupational radiological protection in plutonium facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TS replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.

  11. Low-Level Plutonium Bioassay Measurements at the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, T; Brown, T; Hickman, D; Marchetti, A; Williams, R; Kehl, S

    2007-06-18

    Plutonium-239 ({sup 239}Pu) and plutonium-240 ({sup 240}Pu) are important alpha emitting radionuclides contained in radioactive debris from nuclear weapons testing. {sup 239}Pu and {sup 240}Pu are long-lived radionuclides with half-lives of 24,400 years and 6580 years, respectively. Concerns over human exposure to plutonium stem from knowledge about the persistence of plutonium isotopes in the environment and the high relative effectiveness of alpha-radiation to cause potential harm to cells once incorporated into the human body. In vitro bioassay tests have been developed to assess uptakes of plutonium based on measured urinary excretion patterns and modeled metabolic behaviors of the absorbed radionuclides. Systemic plutonium absorbed by the deep lung or from the gastrointestinal tract after ingestion is either excreted or distributed to other organs, primarily to the liver and skeleton, where it is retained for biological half-times of around 20 and 50 years, respectively. Dose assessment and atoll rehabilitation programs in the Marshall Islands have historically given special consideration to residual concentrations of plutonium in the environment even though the predicted dose from inhalation and/or ingestion of plutonium accounts for less than 5% of the annual effective dose from exposure to fallout contamination. Scientists from the Lawrence Livermore National Laboratory (LLNL) have developed a state-of-the-art bioassay test to assess urinary excretion rates of plutonium from Marshallese populations. This new heavy-isotope measurement system is based on Accelerator Mass Spectrometry (AMS). The AMS system at LLNL far exceeds the standard measurement requirements established under the latest United States Department of Energy (DOE) regulation, 10CFR 835, for occupational monitoring of plutonium, and offers several advantages over classical as well as competing new technologies for low-level detection and measurement of plutonium isotopes. The United States

  12. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Gauld, Ian C [ORNL

    2011-10-01

    In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium

  13. The disposition index

    DEFF Research Database (Denmark)

    Faerch, K; Brøns, C; Alibegovic, A C

    2010-01-01

    hyperbola with the product of the two variables being constant for individuals with the same degree of glucose tolerance (the disposition index). Strengths and limitations of the disposition index have been widely debated in the literature. In this review we will focus on another and until recently...... unrecognized dimension of the disposition index, namely the issue of adjusting insulin secretion for hepatic versus peripheral insulin sensitivity. An underlying assumption of this issue is that the liver as compared to muscle plays a different role in the regulation of in vivo insulin secretion....

  14. Virtual nuclear weapons

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, J.F.

    1997-08-01

    The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

  15. What is a Dispositive?

    DEFF Research Database (Denmark)

    Raffnsøe, Sverre; Gudmand-Høyer, Marius T.; Thaning, Morten Sørensen

    This article advances the ‘dispositive’ (le dispositif) as a key conception in Foucault’s work. As developed in his annual lectures in 1978 and 1979, the dispositive represents a crucial constituent of societal analysis on par with the familiar analytics of power/knowledge and the governmentality...... perspective – indeed it forms a lesser known intermediary between these. Foucault’s dispositional analysis articulates a history of connected social technologies that we have constructed to relate to each other. Expounding these points, the article distinguishes various dispositional prototypes and develops...... key ‘socio-ontological’ implications of the analy-sis. Reinstating the proper analytical status of the dispositive contributes to the reception of the important notion; the interpretation of Foucault’s entire oeuvre; and a resourceful approach to the study of contemporary societal problems....

  16. Neurotoxic Weapons and Syndromes.

    Science.gov (United States)

    Carota, Antonio; Calabrese, Pasquale; Bogousslavsky, Julien

    2016-01-01

    The modern era of chemical and biological warfare began in World War I with the large-scale production and use of blistering and choking agents (chlorine, phosgene and mustard gases) in the battlefield. International treaties (the 1925 Geneva Protocol, the 1975 Biological and Toxin Weapons Convention and the 1993 Chemical Weapons Convention) banned biological and chemical weapons. However, several countries are probably still engaged in their development. Hence, there is risk of these weapons being used in the future. This chapter will focus on neurotoxic weapons (e.g. nerve agents, chemical and biological neurotoxins, psychostimulants), which act specifically or preeminently on the central nervous system and/or the neuromuscular junction. Deeply affecting the function of the nervous system, these agents either have incapacitating effects or cause clusters of casualties who manifest primary symptoms of encephalopathy, seizures, muscle paralysis and respiratory failure. The neurologist should be prepared both to notice patterns of symptoms and signs that are sufficiently consistent to raise the alarm of neurotoxic attacks and to define specific therapeutic interventions. Additionally, extensive knowledge on neurotoxic syndromes should stimulate scientific research to produce more effective antidotes and antibodies (which are still lacking for most neurotoxic weapons) for rapid administration in aerosolized forms in the case of terrorist or warfare scenarios. © 2016 S. Karger AG, Basel.

  17. Alternatives for the disposition of PUREX organic solution

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, D.W.

    1995-06-16

    This Supporting Document submits options and recommendations for final management of Tank 40 Plutonium-Uranium Extraction (PUREX) Plant organic solution per Tri-Party Agreement Milestorm Number M-80-00-T03. Hanford is deactivating the PUREX Plant for the US DOE. One the key element of this Deactivation is disposition of approximately 81,300 liters (21,500 gallons) of slightly radioactively contaminated organic solution to reduce risk to the environment, reduce cost of long-term storage, and assure regulatory compliance. An announcement in the Commerce Business Daily (CBD) on October 14, 1994 has resulted in the submission of proposals from two facilities capabLe of receiving and thermally destroying the solution. Total decomposition by thermal destruction is the recommended option for the disposition of the PUREX organic solution and WHC is evaluating the proposals from the two facilities.

  18. USING 3-D MODELING TO IMPROVE THE EFFICIENCY FOR REMOVING PLUTONIUM PROCESSING EQUIMENT FROM GLOVEBOXES AT THE PLUTONIUM FINISHANG PLANT

    Energy Technology Data Exchange (ETDEWEB)

    CROW SH; KYLE RN; MINETTE MJ

    2008-07-15

    The Plutonium Finishing Plant at the Department of Energy's Hanford Site in southeastern Washington State began operations in 1949 to process plutonium and plutonium products. Its primary mission was to produce plutonium metal, fabricate weapons parts, and stabilize reactive materials. These operations, and subsequent activities, were performed in production lines, consisting primarily of hundreds of gloveboxes. Over the years, these gloveboxes and attendant processes have been continuously modified. The plant is currently inactive and Fluor Hanford has been tasked with cleaning out contaminated equipment and gloveboxes from the facility so it can be demolished in the near future. Approximately 100 gloveboxes at PFP have been cleaned out in the past four years and about 90 gloveboxes remain to be cleaned out. Because specific commitment dates for this work have been established with the State of Washington and other entities, it is important to adopt work practices that increase the safety and speed of this effort. The most recent work practice to be adopted by Fluor Hanford D and D workers is the use of 3-D models to make the process of cleaning out the radioactive gloveboxes more efficient. The use of 3-D models has significantly improved the work-planning process by giving workers a clear image of glovebox construction and composition, which in turn is used to determine cleanout methods and work sequences. The 3-D visual products also enhance safety by enabling workers to more easily identify hazards and implement controls. Further, the ability to identify and target the removal of radiological material early in the D and D process provides substantial dose reduction for the workers.

  19. Characterization of plutonium-bearing wastes by chemical analysis and analytical electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, R.G. [Los Alamos National Lab., NM (United States); Buck, E.C.; Dietz, N.L.; Bates, J.K.; Van Deventer, E.; Chaiko, D.J. [Argonne National Lab., IL (United States)

    1995-09-01

    This report summarizes the results of characterization studies of plutonium-bearing wastes produced at the US Department of Energy weapons production facilities. Several different solid wastes were characterized, including incinerator ash and ash heels from Rocky Flats Plant and Los Alamos National Laboratory; sand, stag, and crucible waste from Hanford; and LECO crucibles from the Savannah River Site. These materials were characterized by chemical analysis and analytical electron microscopy. The results showed the presence of discrete PuO{sub 2}PuO{sub 2{minus}x}, and Pu{sub 4}O{sub 7} phases, of about 1{mu}m or less in size, in all of the samples examined. In addition, a number of amorphous phases were present that contained plutonium. In all the ash and ash heel samples examined, plutonium phases were found that were completely surrounded by silicate matrices. Consequently, to achieve optimum plutonium recovery in any chemical extraction process, extraction would have to be coupled with ultrafine grinding to average particle sizes of less than 1 {mu}m to liberate the plutonium from the surrounding inert matrix.

  20. Plutonium release from Fukushima Daiichi fosters the need for more detailed investigations.

    Science.gov (United States)

    Schneider, Stephanie; Walther, Clemens; Bister, Stefan; Schauer, Viktoria; Christl, Marcus; Synal, Hans-Arno; Shozugawa, Katsumi; Steinhauser, Georg

    2013-10-18

    The contamination of Japan after the Fukushima accident has been investigated mainly for volatile fission products, but only sparsely for actinides such as plutonium. Only small releases of actinides were estimated in Fukushima. Plutonium is still omnipresent in the environment from previous atmospheric nuclear weapons tests. We investigated soil and plants sampled at different hot spots in Japan, searching for reactor-borne plutonium using its isotopic ratio ²⁴⁰Pu/²³⁹Pu. By using accelerator mass spectrometry, we clearly demonstrated the release of Pu from the Fukushima Daiichi power plant: While most samples contained only the radionuclide signature of fallout plutonium, there is at least one vegetation sample whose isotope ratio (0.381 ± 0.046) evidences that the Pu originates from a nuclear reactor (²³⁹⁺²⁴⁰Pu activity concentration 0.49 Bq/kg). Plutonium content and isotope ratios differ considerably even for very close sampling locations, e.g. the soil and the plants growing on it. This strong localization indicates a particulate Pu release, which is of high radiological risk if incorporated.

  1. 238Pu: accumulation, tissue distribution, and excretion in Mayak workers after exposure to plutonium aerosols.

    Science.gov (United States)

    Suslova, Klara G; Sokolova, Alexandra B; Khokhryakov, Viktor V; Miller, Scott C

    2012-03-01

    The alpha spectrometry measurements of specific activity of 238Pu and 239Pu in urine from bioassay examinations of 1,013 workers employed at the radiochemical and plutonium production facilities of the Mayak Production Association and in autopsy specimens of lung, liver, and skeleton from 85 former nuclear workers who died between 1974-2009, are summarized.The accumulation fraction of 238Pu in the body and excreta has not changed with time in workers involved in production of weapons-grade plutonium production (e.g., the plutonium production facility and the former radiochemical facility). The accumulation fraction of 238Pu in individuals exposed to plutonium isotopes at the newer Spent Nuclear Fuel Reprocessing Plant ranged from 0.13% up to 27.5% based on the autopsy data. No statistically significant differences between 238Pu and 239Pu in distribution by the main organs of plutonium deposition were found in the Mayak workers. Based on the bioassay data,the fraction of 238Pu activity in urine is on average 38-69% of the total activity of 238Pu and 239Pu, which correlates with the isotopic composition in workplace air sampled at the Spent Nuclear Fuel Reprocessing Plant. In view of the higher specific activity of 238Pu, the contribution of 238Pu to the total internal dose, particularly in the skeleton and liver, might be expected to continue to increase, and continued surveillance is recommended.

  2. Operational research in weapon system

    Directory of Open Access Journals (Sweden)

    R. S. Varma

    1958-04-01

    Full Text Available "The paper is divided into three parts: (a The first part deals with what operational research is. (bThe second part gives what we mean by Weapon Systems and discusses considerations that determine the choice of a particular weapon system from a class weapon systems. (cThe third part deals with some aspects of weapon replacement policy.The effectiveness of a weapon system is defined as E=D/C where E is weapon effectiveness (a comparative figure of merit; D is total damage inflicted or prevented and C is total cost, D and C being reduced to common dimensions. During the course of investigations, criteria regarding to choice of weapon or weapons from a set of weapon systems are established through production function and military effect curves. A procedure is described which maximizes the expectation of military utility in order to select a weapon system from the class of weapon systems. This is done under the following simplifying assumptions: (a Non- decreasing utility function; (b Constant average cost for each kind of weapons; and (c Independence of the performance of each unit of weapon. Some of the difficulties which arises when any of these restrictions is relaxed are briefly mentioned. Finally, the policy of weapon replacement and the factors governing the same are described."

  3. Development of Remote Plutonium Valence State Analyzer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In the Purex process of spent fuel reprocessing, the separation of uranium and plutonium depends on the capability extracting state plutonium ions with various valence by TBP. The separate degree of

  4. Recovery studies for plutonium machining oil coolant

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, J. D.; Baldwin, C. E.

    1977-04-27

    Lathe coolant oil, contaminated with plutonium and having a carbon tetrachloride diluent, is generated in plutonium machining areas at Rocky Flats. A research program was initiated to determine the nature of plutonium in this mixture of oil and carbon tetrachloride. Appropriate methods then could be developed to remove the plutonium and to recycle the oil and carbon tetrachloride. Studies showed that the mixtures of spent oil and carbon tetrachloride contained particulate plutonium and plutonium species that are soluble in water or in oil and carbon tetrachloride. The particulate plutonium was removed by filtration; the nonfilterable plutonium was removed by adsorption on various materials. Laboratory-scale tests indicated the lathe-coolant oil mixture could be separated by distilling the carbon tetrachloride to yield recyclable products.

  5. Plutonium focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  6. Zone refining of plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The purpose of this study was to investigate zone refining techniques for the purification of plutonium metal. The redistribution of 10 impurity elements from zone melting was examined. Four tantalum boats were loaded with plutonium impurity alloy, placed in a vacuum furnace, heated to 700{degrees}C, and held at temperature for one hour. Ten passes were made with each boat. Metallographic and chemical analyses performed on the plutonium rods showed that, after 10 passes, moderate movement of certain elements were achieved. Molten zone speeds of 1 or 2 inches per hour had no effect on impurity element movement. Likewise, the application of constant or variable power had no effect on impurity movement. The study implies that development of a zone refining process to purify plutonium is feasible. Development of a process will be hampered by two factors: (1) the effect on impurity element redistribution of the oxide layer formed on the exposed surface of the material is not understood, and (2) the tantalum container material is not inert in the presence of plutonium. Cold boat studies are planned, with higher temperature and vacuum levels, to determine the effect on these factors. 5 refs., 1 tab., 5 figs.

  7. A mechanism for plutonium pyrophoricity

    Science.gov (United States)

    Martz, Joseph C.; Haschke, John M.; Stakebake, Jerry L.

    1994-06-01

    A proposed mechanism for plutonium pyrophoricity quantitatively predicts the ignition temperature of plutonium as a function of surface : mass ratio and particle size. Plutonium must exceed 475°C before self-ignition occurs. External heating of massive samples is necessary to achieve this condition, while finely divided materials can reach the ignition point by an alternative, two-step mechanism. First, the thin layer of surface PuO 2 on the metal undergoes kinetically controlled reduction to Pu 2O 3 near 150°C. Second, the trivalent Pu 2O 3 reacts with gas-phase oxygen to reform PuO 2. Heat generated from the second reaction is sufficient to raise the temperature of small particles or thin foils above the 475°C ignition point. Details of this mechanism are given, including a discussion of plutonium oxidation and a calculation of adiabatic temperature increase due to oxidation of the Pu 2O 3 surface layer. Plutonium pyrophoricity data are summarized and compared to model results.

  8. Selecting a plutonium vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Jouan, A. [Centre d`Etudes de la Vallee du Rhone, Bagnols sur Ceze (France)

    1996-05-01

    Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing of plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.

  9. Investigation of environmental samples from Fukushima with respect to uranium and plutonium by AMS; Untersuchung von Umweltproben aus Fukushima in Bezug auf Plutonium und Uran mittels AMS

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Stephanie

    2017-02-01

    In March 2011, the nuclear power plant Fukushima Dai-ichi was seriously damaged by a tsunami caused by an earthquake. During the accident large quantities of radionuclides, mainly of the volatile elements cesium and iodine, were released to the environment. In small amounts refractory elements such as plutonium and uranium have also been released. Plutonium and the uraniumisotope {sup 236}U have primarily been delivered by human activities in the environment. Large amounts were released during the atmospheric nuclear weapons tests. Additional sources are accidents in nuclear facilities, like Chernobyl. Every source has its own characteristic isotopic composition. It is therefore possible to determine the origin of the contamination by measuring the isotopic ratios of {sup 240}Pu/{sup 239}Pu and {sup 236}U/{sup 238}U. These ratios can be determined by using accelerator mass spectrometry. Due to its high sensitivity, it is possible to measure even small amounts of plutonium and especially of {sup 236}U. These measurements were performed using the compact 500 kV facility ''TANDY'' of ETH Zurich. In 2013 and 2015 vegetation, litter and soil drill core samples were taken in the contaminated area in Fukushima prefecture. In 2015 samples were taken as close to the sampling locations of the 2013 campaign as possible. After isolation of plutonium and uranium by chemical extraction, separate targets were prepared for the measurement. The {sup 240}Pu/{sup 239}Pu ratios indicate global fallout as the plutonium source for most samples. The plutonium of the reactors of Fukushima Dai-ichi is located in the upper layers like in vegetation or litter. From the uranium ratios alone the reactors could not unambigously be identified as the source of {sup 236}U. However, this is plausible in the cases were reactor plutonium was detected. None of the samples contained higher plutonium activity concentrations than in the rest of Japan, caused by global fallout. This

  10. Wounds and weapons

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, H. [Asklepios Klinik St. Georg, Roentgenabteilung, Lohmuehlenstrasse 5, 20099 Hamburg (Germany)], E-mail: Hermann.vogel@ak-stgeorg.lbk-hh.de; Dootz, B. [Asklepios Klinik St. Georg, Roentgenabteilung, Lohmuehlenstrasse 5, 20099 Hamburg (Germany)

    2007-08-15

    Purpose: X-ray findings are described, which are typical for injuries due to conventional weapons. It is intended to demonstrate that radiographs can show findings characteristic for weapons. Material and method: The radiograms have been collected in Vietnam, Croatia, Serbia, Bosnia, Chad, Iran, Afghanistan, USA, Great Britain, France, Israel, Palestine, and Germany. Results: Radiograms of injuries due to hand grenades show their content (globes) and cover fragments. The globes are localized regionally in the victim's body. Survivors of cluster bombs show singular or few globes; having been hit by many globes would have been lethal. Shotguns produce characteristic distributions of the pallets and depth of penetration different from those of hand grenades and cluster bombs; cover fragments are lacking. Gunshot wounds (GSW) can be differentiated in those to low velocity bullets, high velocity projectiles, and projectiles, which disintegrate on impact. The radiogram furnishes the information about a dangerous shock and helps to recognize the weapon. Radiograms of victims of explosion show fragments and injuries due to the blast, information valid for therapy planning and prognosis. The radiogram shows details which can be used in therapy, forensic medicine and in war propaganda - examples could be findings typical for cluster bombs and for dumdum bullets; it shows the cruelty of the employment of weapons against humans and the conflict between the goal of medical care and those of military actions. Conclusion: Radiographs may show, which weapon has been employed; they can be read as war reports.

  11. Wounds and weapons.

    Science.gov (United States)

    Vogel, H; Dootz, B

    2007-08-01

    X-ray findings are described, which are typical for injuries due to conventional weapons. It is intended to demonstrate that radiographs can show findings characteristic for weapons. The radiograms have been collected in Vietnam, Croatia, Serbia, Bosnia, Chad, Iran, Afghanistan, USA, Great Britain, France, Israel, Palestine, and Germany. Radiograms of injuries due to hand grenades show their content (globes) and cover fragments. The globes are localized regionally in the victim's body. Survivors of cluster bombs show singular or few globes; having been hit by many globes would have been lethal. Shotguns produce characteristic distributions of the pallets and depth of penetration different from those of hand grenades and cluster bombs; cover fragments are lacking. Gunshot wounds (GSW) can be differentiated in those to low velocity bullets, high velocity projectiles, and projectiles, which disintegrate on impact. The radiogram furnishes the information about a dangerous shock and helps to recognize the weapon. Radiograms of victims of explosion show fragments and injuries due to the blast, information valid for therapy planning and prognosis. The radiogram shows details which can be used in therapy, forensic medicine and in war propaganda - examples could be findings typical for cluster bombs and for dumdum bullets; it shows the cruelty of the employment of weapons against humans and the conflict between the goal of medical care and those of military actions. Radiographs may show, which weapon has been employed; they can be read as war reports.

  12. Plutonium Oxide Process Capability Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    Meier, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  13. Tabulated Neutron Emission Rates for Plutonium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shores, Erik Frederick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-24

    This work tabulates neutron emission rates for 80 plutonium oxide samples as reported in the literature. Plutonium-­238 and plutonium-­239 oxides are included and such emission rates are useful for scaling tallies from Monte Carlo simulations and estimating dose rates for health physics applications.

  14. 49 CFR 175.704 - Plutonium shipments.

    Science.gov (United States)

    2010-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2010-10-01 2010-10-01 false Plutonium shipments. 175.704 Section...

  15. Bioterrorism: toxins as weapons.

    Science.gov (United States)

    Anderson, Peter D

    2012-04-01

    The potential for biological weapons to be used in terrorism is a real possibility. Biological weapons include infectious agents and toxins. Toxins are poisons produced by living organisms. Toxins relevant to bioterrorism include ricin, botulinum, Clostridium perfrigens epsilson toxin, conotoxins, shigatoxins, saxitoxins, tetrodotoxins, mycotoxins, and nicotine. Toxins have properties of biological and chemical weapons. Unlike pathogens, toxins do not produce an infection. Ricin causes multiorgan toxicity by blocking protein synthesis. Botulinum blocks acetylcholine in the peripheral nervous system leading to muscle paralysis. Epsilon toxin damages cell membranes. Conotoxins block potassium and sodium channels in neurons. Shigatoxins inhibit protein synthesis and induce apoptosis. Saxitoxin and tetrodotoxin inhibit sodium channels in neurons. Mycotoxins include aflatoxins and trichothecenes. Aflatoxins are carcinogens. Trichothecenes inhibit protein and nucleic acid synthesis. Nicotine produces numerous nicotinic effects in the nervous system.

  16. Plutonium stabilization and packaging system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This document describes the functional design of the Plutonium Stabilization and Packaging System (Pu SPS). The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements of the DOE standard for safe storage of these materials for 50 years. This system will support completion of stabilization and packaging campaigns of the inventory at a number of affected sites before the year 2002. The package will be standard for all sites and will provide a minimum of two uncontaminated, organics free confinement barriers for the packaged material.

  17. Weapon of the Weak?

    DEFF Research Database (Denmark)

    Amber, Van der Graaf; Otjes, Simon; Rasmussen, Anne

    2016-01-01

    Social media have the potential to offset existing inequalities in representation among interest groups and act as a ‘weapon of the weak’ by providing a technological infrastructure that allows even groups with limited resources to create content and interact across the globe. We expand on the sp......Social media have the potential to offset existing inequalities in representation among interest groups and act as a ‘weapon of the weak’ by providing a technological infrastructure that allows even groups with limited resources to create content and interact across the globe. We expand...

  18. The Optimum Replacement of Weapon

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao; ZHANG Jin-chun

    2002-01-01

    The theory of LCC (Life Cycle Cost) is applied in this paper. The relation between the economic life of weapon and the optimum replacement is analyzed. The method to define the optimum replacement time of weapon is discussed.

  19. Multiple smart weapons employment mechanism

    Energy Technology Data Exchange (ETDEWEB)

    McGlynn, M.P.; Meiklejohn, W.D.

    1993-07-20

    A digital communications armament network adaptor is described for carrying multiple smart weapons on a single wing pylon station of an aircraft, comprising: an aircraft having a weapons controller configured in compliance with MIL-STD 1553; multiple wing-mounted pylons on said aircraft, each providing a weapons station with communications and ejection and release mechanisms electrically connected to said controller for the airborne launch of smart weapons; a multiple ejector rack affixed to at least one pylon, said rack holding a plurality of smart weapons; and an electronic digital network connected between the controller and said rack-mounted smart weapons, said network located in said rack and including circuitry which receives coded digital communications from said controller and selectively rebroadcasts said communications to one of said smart weapons on said rack designated by said coded communications, thereby controlling all required functions of said designated smart weapon.

  20. Development of an alternate pathway for materials destined for disposition to WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Georgette Y [Los Alamos National Laboratory; Mckerley, Bill [Los Alamos National Laboratory; Veazey, Gerald W [Los Alamos National Laboratory; Ricketts, Thomas E [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos National Laboratory currently has an inventory of process residues that may be viable candidates for disposition to the Waste Isolation Pilot Project (WIPP) located at Carlsbad, New Mexico. A recent 'Attractiveness Level D' exemption allows for the discard of specified intractable materials regardless of the percent plutonium. However, the limits with respect to drum loadings must be met. Cementation is a key component of the aqueous nitrate flowsheet and serves as a 'bleed-off' stream for impurities separated from the plutonium during processing operations. The main 'feed' to the cementation operations are the 'bottoms' from the evaporation process. In the majority of cases, the cemented bottoms contain less than the allowed amount per drum for WIPP acceptance. This project would expand the route to WIPP for items that have no defined disposition path, are difficult to process, have been through multiple passes, have no current recovery operations available to recover the plutonium and that are amenable to cementation. This initial work will provide the foundation for a full scale disposition pathway of the candidate materials. Once the pathway has been expanded and a cementation matrix developed, routine discard activities will be initiated.

  1. Plutonium inventory characterization technical evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Wittman, G.R., Westinghouse Hanford

    1996-07-10

    This is a technical report on the data, gathered to date, under WHC- SD-CP-TP-086, Rev. 1, on the integrity of the food pack cans currently being used to store plutonium or plutonium compounds at the Plutonium Finishing Plant. Workplan PFP-96-VO-009, `Inspection of Special Nuclear Material Using X-ray`, was used to gather data on material and containment conditions using real time radiography. Some of those images are included herein. A matrix found in the `Plutonium Inventory Characterization Implementation Plan` was used to categorize different plutonium items based upon the type of material being stored and the life expectancy of the containers.

  2. Method of separating thorium from plutonium

    Science.gov (United States)

    Clifton, D.G.; Blum, T.W.

    A method of chemically separating plutonium from thorium is claimed. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  3. Nuclear weapon detection categorization analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This statement of work is for the Proof of Concept for nuclear weapon categories utility in Arms control. The focus of the project will be to collect, analyze and correlate Intrinsic Radiation (INRAD) calculation results for the purpose of defining measurable signatures that differentiate categories of nuclear weapons. The project will support START III negotiations by identifying categories of nuclear weapons. The categories could be used to clarify sub-limits on the total number of nuclear weapons.

  4. Is plutonium really necessary

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, V.

    1976-09-09

    Not all activities associated with nuclear power contribute equally to proliferation potential, but some fuel-cycle activities (i.e., reprocessing) are considered too dangerous to be permitted in non-weapons countries. This paper assesses the feasibility of keeping Pu out of the nuclear fuel cycle. It is pointed out that there is no technical necessity of using Pu as nuclear fuel so long as /sup 235/U is available. Analysis of the economics of recycling spent fuel products in LWRs in the U.S. shows that the net economic benefit of recycle is uncertain and might even be negative; it will have an insignificant effect on the cost of nuclear power. It is argued that reprocessing of spent fuel be deferred until recycle in LWRs can be shown to yield economic benefits sufficiently large to compensate for the risks, or the viability of the breeder as an important commercial source of power has been demonstrated. According to the low estimate of U requirements, the world would have enough U resources well into the 21st century, although if the high estimate is used, the world would exhaust its reserves by the year 2000. Evidence indicates that nuclear power will grow more slowly than the forecasts of the nuclear advocates. Thus, there may be no need for an early decision to undertake recycling, and research on breeder development can proceed at a slower rate. (DLC)

  5. Plutonium inventories for stabilization and stabilized materials

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.K.

    1996-05-01

    The objective of the breakout session was to identify characteristics of materials containing plutonium, the need to stabilize these materials for storage, and plans to accomplish the stabilization activities. All current stabilization activities are driven by the Defense Nuclear Facilities Safety Board Recommendation 94-1 (May 26, 1994) and by the recently completed Plutonium ES&H Vulnerability Assessment (DOE-EH-0415). The Implementation Plan for accomplishing stabilization of plutonium-bearing residues in response to the Recommendation and the Assessment was published by DOE on February 28, 1995. This Implementation Plan (IP) commits to stabilizing problem materials within 3 years, and stabilizing all other materials within 8 years. The IP identifies approximately 20 metric tons of plutonium requiring stabilization and/or repackaging. A further breakdown shows this material to consist of 8.5 metric tons of plutonium metal and alloys, 5.5 metric tons of plutonium as oxide, and 6 metric tons of plutonium as residues. Stabilization of the metal and oxide categories containing greater than 50 weight percent plutonium is covered by DOE Standard {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides{close_quotes} December, 1994 (DOE-STD-3013-94). This standard establishes criteria for safe storage of stabilized plutonium metals and oxides for up to 50 years. Each of the DOE sites and contractors with large plutonium inventories has either started or is preparing to start stabilization activities to meet these criteria.

  6. Applying Agile MethodstoWeapon/Weapon-Related Software

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D; Armendariz, M; Blackledge, M; Campbell, F; Cloninger, M; Cox, L; Davis, J; Elliott, M; Granger, K; Hans, S; Kuhn, C; Lackner, M; Loo, P; Matthews, S; Morrell, K; Owens, C; Peercy, D; Pope, G; Quirk, R; Schilling, D; Stewart, A; Tran, A; Ward, R; Williamson, M

    2007-05-02

    This white paper provides information and guidance to the Department of Energy (DOE) sites on Agile software development methods and the impact of their application on weapon/weapon-related software development. The purpose of this white paper is to provide an overview of Agile methods, examine the accepted interpretations/uses/practices of these methodologies, and discuss the applicability of Agile methods with respect to Nuclear Weapons Complex (NWC) Technical Business Practices (TBPs). It also provides recommendations on the application of Agile methods to the development of weapon/weapon-related software.

  7. Linking legacies: Connecting the Cold War nuclear weapons production processes to their environmental consequences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    In the aftermath of the Cold War, the US has begun addressing the environmental consequences of five decades of nuclear weapons production. In support of this effort, the National Defense Authorization Act for Fiscal Year 1995 directed the Department of Energy (DOE) to describe the waste streams generated during each step in the production of nuclear weapons. Accordingly, this report responds to this mandate, and it is the Department`s first comprehensive analysis of the sources of waste and contamination generated by the production of nuclear weapons. The report also contains information on the missions and functions of nuclear weapons facilities, on the inventories of waste and materials remaining at these facilities, as well as on the extent and characteristics of contamination in and around these facilities. This analysis unites specific environmental impacts of nuclear weapons production with particular production processes. The Department used historical records to connect nuclear weapons production processes with emerging data on waste and contamination. In this way, two of the Department`s legacies--nuclear weapons manufacturing and environmental management--have become systematically linked. The goal of this report is to provide Congress, DOE program managers, non-governmental analysts, and the public with an explicit picture of the environmental results of each step in the nuclear weapons production and disposition cycle.

  8. Nonstrategic Nuclear Weapons

    Science.gov (United States)

    2017-02-21

    have eased in recent years, with their nuclear tests in 1998 and continued animosity toward each other, India and Pakistan have joined the list of...could be complex, difficult, and very time- consuming . 137 Given the large disparity in the numbers of U.S. and Russian nonstrategic nuclear weapons

  9. Medicalized weapons & modern war.

    Science.gov (United States)

    Gross, Michael L

    2010-01-01

    "Medicalized" weapons--those that rely on advances in neuroscience, physiology, and pharmacology--offer the prospect of reducing casualties and protecting civilians. They could be especially useful in modern asymmetric wars in which conventional states are pitted against guerrilla or insurgent forces. But may physicians and other medical workers participate in their development?

  10. Neutrino Counter Nuclear Weapon

    CERN Document Server

    Tang, Alfred

    2008-01-01

    Radiations produced by neutrino-antineutrino annihilation at the Z0 pole can be used to heat up the primary stage of a thermonuclear warhead and can in principle detonate the device remotely. Neutrino-antineutrino annihilation can also be used as a tactical assault weapon to target hideouts that are unreachable by conventional means.

  11. Nuclear weapons in Europe

    CERN Document Server

    Calogero, F

    1981-01-01

    Information speech given by Prof. Calogero from the university of Roma to describe the actual situation of nuclear weapons in Europe, the strategical reasons or justifications for this deployment, the prospects of negociations, and what scientists could do and do on this issue.

  12. Pakistans Nuclear Weapons

    Science.gov (United States)

    2016-02-12

    Memorandum from Air Commodore Khalid Banuri, 2011. 84 Mahmud Ali Durrani, “Pakistan’s Strategic Thinking and the Role of Nuclear Weapons...Richard P. Cronin , K. Alan Kronstadt, and Sharon Squassoni. Also see CRS Report RL33498, Pakistan-U.S. Relations, by K. Alan Kronstadt. 168 For a

  13. The first weighing of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-09-10

    The following text, transcribed from the remarks of those scientists who gathered at the University of Chicago on September 10, 1967, to celebrate the 25th anniversary of the first weighing of plutonium, tells an important part of the story of this fascinating new element that is destined to play an increasingly significant role in the future of man.

  14. New Gas Gun Helping Scientists Better Understand Plutonium Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A

    2005-09-20

    One of the most daunting scientific and engineering challenges today is ensuring the safety and reliability of the nation's nuclear arsenal. To effectively meet that challenge, scientists need better data showing how plutonium, a key component of nuclear warheads, behaves under extreme pressures and temperatures. On July 8, 2003, Lawrence Livermore researchers performed the inaugural experiment of a 30-meter-long, two-stage gas gun designed to obtain those data. The results from a continuing stream of successful experiments on the gas gun are strengthening scientists' ability to ensure that the nation's nuclear stockpile is safe and reliable. The JASPER (Joint Actinide Shock Physics Experimental Research) Facility at the Department of Energy's (DOE's) Nevada Test Site (NTS) is home to the two-stage gas gun. In the gun's first test, an unqualified success, Livermore scientists fired a projectile weighing 28.6 grams and traveling about 5.21 kilometers per second when it impacted an extremely small (about 30-gram) plutonium target. This experiment marked the culmination of years of effort in facility construction, gun installation, system integration, design reviews, and federal authorizations required to bring the experimental facility online. Ongoing experiments have drawn enthusiastic praise from throughout DOE, the National Nuclear Security Administration (NNSA), and the scientific community. NNSA Administrator Linton Brooks said, ''Our national laboratories now have at their disposal a valuable asset that enhances our due diligence to certify the nuclear weapons stockpile in the absence of underground nuclear weapons testing.''

  15. Non-lethal weapons and their characteristics

    OpenAIRE

    DAMJANOVIC DRAGAN Z.

    2015-01-01

    Non-lethal weapons, also called less-lethal weapons, less-than lethal weapons, non-deadly weapons, compliance weapons, or pain-inducing weapons are weapons intended to be less likely to kill a living target than conventional weapons. It is often understood that accidental, incidental, and correlative casualties are risked wherever force is applied, but non-lethal weapons try to minimise the risk as much as possible. Non-lethal weapons are used in combat situations to limit the escalation of c...

  16. NON-LETHAL WEAPONS AND THEIR CHARACTERISTICS

    OpenAIRE

    2015-01-01

    Non-lethal weapons, also called less-lethal weapons, less-than lethal weapons, non-deadly weapons, compliance weapons, or pain-inducing weapons are weapons intended to be less likely to kill a living target than conventional weapons. It is often understood that accidental, incidental, and correlative casualties are risked wherever force is applied, but non-lethal weapons try to minimise the risk as much as possible. Non-lethal weapons are used in combat situations to limit the escalation of c...

  17. Determination of filter pore size for use in HB line phase II production of plutonium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shehee, T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Crowder, M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rudisill, T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    H-Canyon and HB-Line are tasked with the production of plutonium oxide (PuO2) from a feed of plutonium (Pu) metal. The PuO2 will provide feed material for the Mixed Oxide (MOX) Fuel Fabrication Facility. After dissolution of the Pu metal in H-Canyon, plans are to transfer the solution to HB-Line for purification by anion exchange. Anion exchange will be followed by plutonium(IV) oxalate precipitation, filtration, and calcination to form PuO2. The filtrate solutions, remaining after precipitation, contain low levels of Pu ions, oxalate ions, and may include solids. These solutions are transferred to H-Canyon for disposition. To mitigate the criticality concern of Pu solids in a Canyon tank, past processes have used oxalate destruction or have pre-filled the Canyon tank with a neutron poison. The installation of a filter on the process lines from the HB-Line filtrate tanks to H-Canyon Tank 9.6 is proposed to remove plutonium oxalate solids. This report describes SRNL’s efforts to determine the appropriate pore size for the filters needed to perform this function. Information provided in this report aids in developing the control strategies for solids in the process.

  18. The plutonium: a fascinating material; Le plutonium: un materiau fascinant

    Energy Technology Data Exchange (ETDEWEB)

    Boivineau, M. [CEA Valduc, Dept. Recherche sur les Materiaux Nucleaires, 21 - Is-sur-Tille (France)

    2007-12-15

    The actinide family is characterized by the progressive filling of the 5f electron shell. The outstanding properties of the plutonium is due to its position at the center of this family that divides the actinides into 2 sub-families with very different properties. The main properties of the plutonium are the following: -) 8 types of allotropic crystal structures (the highest number in the whole periodic table); -) a very dense ({rho} = 19.86) alpha monoclinic phase; -) a negative dilatation coefficient for the volumes of phases {delta} and {delta}' and a volume contraction for the phase transformation: {delta} - {delta}' and {delta}' - {epsilon}; -) the lowest fusion point (T{sub f} = 640 C degrees) of the actinides; -) a volume contraction at the fusion; and -) a low value for the latent heat of fusion. (A.C.)

  19. Plutonium rock-like fuel LWR nuclear characteristics and transient behavior in accidents

    Energy Technology Data Exchange (ETDEWEB)

    Akie, Hiroshi; Anoda, Yoshinari; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yamaguchi, Chouichi; Sugo, Yukihiro

    1998-03-01

    For the disposition of excess plutonium, rock-like oxide (ROX) fuel systems based on zirconia (ZrO{sub 2}) or thoria (ThO{sub 2}) have been studied. Safety analysis of ROX fueled PWR showed it is necessary to increase Doppler reactivity coefficient and to reduce power peaking factor of zirconia type ROX (Zr-ROX) fueled core. For these improvements, Zr-ROX fuel composition was modified by considering additives of ThO{sub 2}, UO{sub 2} or Er{sub 2}O{sub 3}, and reducing Gd{sub 2}O{sub 3} content. As a result of the modification, comparable, transient behavior to UO{sub 2} fuel PWR was obtained with UO{sub 2}-Er{sub 2}O{sub 3} added Zr-ROX fuel, while the plutonium transmutation capability is slightly reduced. (author)

  20. Bibliography on plutonium and its compounds; Bibliographie sur le plutonium et ses composes

    Energy Technology Data Exchange (ETDEWEB)

    Dirian, J.; Choquet, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Collection of bibliographical references on plutonium and its principal compounds from 1942 to end of 1957. (author) [French] Compilation de references bibliographiques sur le plutonium et ses principaux composes de 1942 a fin 1957. (auteur)

  1. Bioterrorism: pathogens as weapons.

    Science.gov (United States)

    Anderson, Peter D; Bokor, Gyula

    2012-10-01

    Biowarfare has been used for centuries. The use of biological weapons in terrorism remains a threat. Biological weapons include infectious agents (pathogens) and toxins. The most devastating bioterrorism scenario would be the airborne dispersal of pathogens over a concentrated population area. Characteristics that make a specific pathogen a high-risk for bioterrorism include a low infective dose, ability to be aerosolized, high contagiousness, and survival in a variety of environmental conditions. The most dangerous potential bioterrorism agents include the microorganisms that produce anthrax, plague, tularemia, and smallpox. Other diseases of interest to bioterrorism include brucellosis, glanders, melioidosis, Q fever, and viral encephalitis. Food safety and water safety threats are another area of concern.

  2. Illegal Weapons Exports?

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Amnesty International, a human rights organization, released a report on June 11 accusing China of facilitating regional conflicts and human rights violations by exporting a large quantity of weapons to Sudan, Nepal, Myanmar and the Great Lakes countries of Africa. Responding to such charges, Teng Jianqun, a researcher with the China Arms Control and Disarmament Association, told the official Xinhua News Agency that China has always put its limited arms exports under strict control and surveillance, deno...

  3. Counterproliferation of Nuclear Weapons

    Science.gov (United States)

    2010-04-01

    an occurrence. In his book, Atomic Tragedy, Sean Malloy writes that Henry Stimson, the United States Secretary of War, warned in April, 1945 that...Ibid., 380. 41 Ibid. 42 Sean L. Malloy , Atomic Tragedy: Henry L. Stimson and the Decision to use the Bomb Against Japan (Ithaca, New York...Weapons of Mass Destruction in the Middle East, 96-97. 45 Robert M. Gates, National Defense Strategy (Washington, DC: US Government Printing Office

  4. Surprising coordination for plutonium in the first plutonium(III) borate.

    Science.gov (United States)

    Wang, Shuao; Alekseev, Evgeny V; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2011-03-21

    The first plutonium(III) borate, Pu(2)[B(12)O(18)(OH)(4)Br(2)(H(2)O)(3)]·0.5H(2)O, has been prepared by reacting plutonium(III) with molten boric acid under strictly anaerobic conditions. This compound contains a three-dimensional polyborate network with triangular holes that house the plutonium(III) sites. The plutonium sites in this compound are 9- and 10-coordinate and display atypical geometries.

  5. Biokinetics of Plutonium in Nonhuman Primates.

    Science.gov (United States)

    Poudel, Deepesh; Guilmette, Raymond A; Gesell, Thomas F; Harris, Jason T; Brey, Richard R

    2016-10-01

    A major source of data on metabolism, excretion and retention of plutonium comes from experimental animal studies. Although old world monkeys are one of the closest living relatives to humans, certain physiological differences do exist between these nonhuman primates and humans. The objective of this paper was to describe the metabolism of plutonium in nonhuman primates using the bioassay and retention data obtained from macaque monkeys injected with plutonium citrate. A biokinetic model for nonhuman primates was developed by adapting the basic model structure and adapting the transfer rates described for metabolism of plutonium in adult humans. Significant changes to the parameters were necessary to explain the shorter retention of plutonium in liver and skeleton of the nonhuman primates, differences in liver to bone partitioning ratio, and significantly higher excretion of plutonium in feces compared to that in humans.

  6. Effects Influencing Plutonium-Absorber Interactions and Distributions in Routine and Upset Waste Treatment Plant Operations

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinkov, Sergey I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-01

    This report is the third in a series of analyses written in support of a plan to revise the Hanford Waste Treatment and Immobilization Plant (WTP) Preliminary Criticality Safety Evaluation Report (CSER) that is being implemented at the request of the U.S. Department of Energy (DOE) Criticality Safety Group. A report on the chemical disposition of plutonium in Hanford tank wastes was prepared as Phase 1 of this plan (Delegard and Jones 2015). Phase 2 is the provision of a chemistry report to describe the potential impacts on criticality safety of waste processing operations within the WTP (Freer 2014). In accordance with the request from the Environmental and Nuclear Safety Department of the WTP (Miles and Losey 2012), the Phase 2 report assessed the potential for WTP process conditions within and outside the range of normal control parameters to change the ratio of fissile material to neutron-absorbing material in the waste as it is processed with an eye towards potential implications for criticality safety. The Phase 2 study also considered the implications should WTP processes take place within the credible range of chemistry upset conditions. In the present Phase 3 report, the 28 phenomena described in the Phase 2 report were considered with respect to the disposition of plutonium and various absorber elements. The phenomena identified in the Phase 2 report are evaluated in light of the Phase 1 report and other resources to determine the impacts these phenomena might have to alter the plutonium/absorber dispositions and ratios. The outcomes of the Phase 3 evaluations then can be used to inform subsequent engineering decisions and provide reasonable paths forward to mitigate or overcome real or potential criticality concern in plant operations.

  7. Oxidation-state distribution of plutonium in surface and subsurface waters at Thule, northwest Greenland

    DEFF Research Database (Denmark)

    McMahon, C.A.; Vintró, L.L.; Mitchell, P.I.

    2000-01-01

    chemical form) is present as fully dissolved species. Most of this plutonium would seem to be of weapons fallout origin, as the mean Pu-238/Pu-239,Pu-240 activity ratio in the water column (dissolved phase) at Thule (0.06 +/- 0.02; n = 10) is similar to the global fallout ratio at this latitude......The speciation of plutonium in Arctic waters sampled on the northwest Greenland shelf in August 1997 is discussed in this paper. Specifically, we report the results of analyses carried out on seawater sampled (a) close to the Thule air base where, in 1968, a US military aircraft carrying four......(V, VI) (mean, 68 +/- 6%; n = 6), with little if any distinction apparent between surface and bottom waters. Further, the oxidation state distribution at stations close to the accident site is similar to that measured at Upernavik, remote from this site. It is also similar to the distribution observed...

  8. Plutonium Immobilization Project Baseline Formulation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.

    1999-02-01

    A key milestone for the Immobilization Project (AOP Milestone 3.2a) in Fiscal Year 1998 (FY98) is the definition of the baseline composition or formulation for the plutonium ceramic form. The baseline formulation for the plutonium ceramic product must be finalized before the repository- and plant-related process specifications can be determined. The baseline formulation that is currently specified is given in Table 1.1. In addition to the baseline formulation specification, this report provides specifications for two alternative formulations, related compositional specifications (e.g., precursor compositions and mixing recipes), and other preliminary form and process specifications that are linked to the baseline formulation. The preliminary specifications, when finalized, are not expected to vary tremendously from the preliminary values given.

  9. 78 FR 37925 - Continuation of the National Emergency With Respect to the Disposition of Russian Highly Enriched...

    Science.gov (United States)

    2013-06-24

    ... Register and transmitted to the Congress. (Presidential Sig.) THE WHITE HOUSE, June 20, 2013. [FR Doc. 2013... Disposition of Russian Highly Enriched Uranium On June 25, 2012, by Executive Order 13617, I declared a... volume of weapons-usable fissile material in the territory of the Russian Federation. Full...

  10. METHOD OF REDUCING PLUTONIUM WITH FERROUS IONS

    Science.gov (United States)

    Dreher, J.L.; Koshland, D.E.; Thompson, S.G.; Willard, J.E.

    1959-10-01

    A process is presented for separating hexavalent plutonium from fission product values. To a nitric acid solution containing the values, ferrous ions are added and the solution is heated and held at elevated temperature to convert the plutonium to the tetravalent state via the trivalent state and the plutonium is then selectively precipitated on a BiPO/sub 4/ or LaF/sub 3/ carrier. The tetravalent plutonium formed is optionally complexed with fluoride, oxalate, or phosphate anion prior to carrier precipitation.

  11. Zone refining of plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Michael S. [Univ. of Idaho, Moscow, ID (United States)

    1994-08-01

    The zone refining process was applied to Pu metal containing known amounts of impurities. Rod specimens of plutonium metal were melted into and contained in tantalum boats, each of which was passed horizontally through a three-turn, high-frequency coil in such a manner as to cause a narrow molten zone to pass through the Pu metal rod 10 times. The impurity elements Co, Cr, Fe, Ni, Np, U were found to move in the same direction as the molten zone as predicted by binary phase diagrams. The elements Al, Am, and Ga moved in the opposite direction of the molten zone as predicted by binary phase diagrams. As the impurity alloy was zone refined, {delta}-phase plutonium metal crystals were produced. The first few zone refining passes were more effective than each later pass because an oxide layer formed on the rod surface. There was no clear evidence of better impurity movement at the slower zone refining speed. Also, constant or variable coil power appeared to have no effect on impurity movement during a single run (10 passes). This experiment was the first step to developing a zone refining process for plutonium metal.

  12. The morality of weapons research.

    Science.gov (United States)

    Forge, John

    2004-07-01

    I ask whether weapons research is ever justified. Weapons research is identified as the business of the engineer. It is argued that the engineer has responsibility for the uses to which the tools that he designs can be put, and that responsibility extends to the use of weapons. It is maintained that there are no inherently defensive weapons, and hence there is no such thing as 'defensive' weapons research. The issue then is what responsibilities as a professional the engineer has in regard to such research. An account is given to ground the injunction not to provide the means to harm as a duty for the engineers. This account is not, however, absolutist, and as such it allows justifiable exceptions. The answer to my question is thus not that weapons research is never justified but there must be a strong assurance that the results will only be used as a just means in a just cause.

  13. 32 CFR 234.10 - Weapons.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Weapons. 234.10 Section 234.10 National Defense... PENTAGON RESERVATION § 234.10 Weapons. (a) Except as otherwise authorized under this section, the following are prohibited: (1) Possessing a weapon. (2) Carrying a weapon. (3) Using a weapon. (b) This section...

  14. Handheld ultrasound concealed weapons detector

    Science.gov (United States)

    Felber, Franklin S.; Wild, Norbert C.; Nunan, Scott C.; Breuner, Dennis; Doft, Frank

    1998-12-01

    A handheld, battery-operated prototype of a remove concealed weapons detector has been built and tested. The concealed weapons detector will enable law enforcement and security officers to detect metallic and nonmetallic weapons concealed beneath clothing remotely from beyond arm's length to about 20 feet. These detectors may be used to: (1) allow hands-off, stand-off frisking of suspects for metallic and nonmetallic weapons; and (2) search for metallic and nonmetallic weapons on cooperative subjects at courthouse entrances and other monitored security portals. We have demonstrated that we image weapons concealed under heavy clothing, not just detect them, at ranges up to 15 feet using the same ultrasound frequency (40 kHz) used by commercial rangefinders. The concealed weapons detector operates much as a rangefinder, but at higher peak fluxes and pulse repetition frequencies. The detector alerts the user to concealed weapons audibly and visibly by detecting ultrasound glints above a body/clothing baseline, and by compensating for changing range and attenuation. The detector locates concealed weapons within a 6-inch illuminated spot at 10 feet. The signal processor eliminates any signal from behind the target.

  15. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  16. Determination of plutonium isotopes in waters and environmental solids: A review

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Miró, Manuel;

    2009-01-01

    accidents, and the discharge of nuclear waste. This article summarizes and critically compares recently reported methods for determination of Pu isotopes in waters and environmental solid substrates, in which sample pre-treatment is imperative for separation of the target species from matrix ingredients and......A number of analytical methods have been developed in the past few years for environmental monitoring of plutonium (Pu) isotopes around nuclear facilities within protocols for emergency preparedness as well as for risk assessment of contaminated areas resulting from nuclear weapon tests, nuclear...

  17. 25 CFR 11.1011 - Dispositional hearing.

    Science.gov (United States)

    2010-04-01

    ... ORDER CODE Juvenile Offender Procedure § 11.1011 Dispositional hearing. (a) A dispositional hearing... prepared by the minor and his or her attorney, if any. (e) The dispositional order constitutes a final...

  18. An independent evaluation of plutonium body burdens in populations near Los Alamos Laboratory using human autopsy data.

    Science.gov (United States)

    Gaffney, Shannon H; Donovan, Ellen P; Shonka, Joseph J; Le, Matthew H; Widner, Thomas E

    2013-06-01

    In the mid-1940s, the United States began producing atomic weapon components at the Los Alamos National Laboratory (LANL). In an attempt to better understand historical exposure to nearby residents, this study evaluates plutonium activity in human tissue relative to residential location and length of time at residence. Data on plutonium activity in the lung, vertebrae, and liver of nearby residents were obtained during autopsies as a part of the Los Alamos Tissue Program. Participant residential histories and the distance from each residence to the primary plutonium processing buildings at LANL were evaluated in the analysis. Summary statistics, including Student t-tests and simple regressions, were calculated. Because the biological half-life of plutonium can vary significantly by organ, data were analyzed separately by tissue type (lung, liver, vertebrae). The ratios of plutonium activity (vertebrae:liver; liver:lung) were also analyzed in order to evaluate the importance of timing of exposure. Tissue data were available for 236 participants who lived in a total of 809 locations, of which 677 were verified postal addresses. Residents of Los Alamos were found to have higher plutonium activities in the lung than non-residents. Further, those who moved to Los Alamos before 1955 had higher lung activities than those who moved there later. These trends were not observed with the liver, vertebrae, or vertebrae:liver and liver:lung ratio data, however, and should be interpreted with caution. Although there are many limitations to this study, including the amount of available data and the analytical methods used to analyze the tissue, the overall results indicate that residence (defined as the year that the individual moved to Los Alamos) may have had a strong correlation to plutonium activity in human tissue. This study is the first to present the results of Los Alamos Autopsy Program in relation to residential status and location in Los Alamos.

  19. Insulin as a weapon.

    Science.gov (United States)

    Robinson, Samuel D; Safavi-Hemami, Helena

    2016-12-01

    The discovery of insulin and its use for the treatment of diabetes is undoubtedly one of the true successes of modern medicine. Injectable insulin would prove the first effective treatment for a previously incurable and usually fatal disease. Soon after however, the powerful effects of insulin overdose would be reported, and subsequently exploited for dubious medical and sometimes nefarious purposes. In this article we describe the discovery that certain venomous marine snails of the genus Conus also exploit the powerful effects of insulin overdose, employing it as a weapon for prey capture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Naval Weapons Station Earle Reassessment

    Science.gov (United States)

    2013-12-01

    surveys for their Section 110 compliance: Architectural Resources Survey, Naval Weapons Station Earle, Monmouth County, New Jersey (Louis Berger 1999...text within brackets. Berger Report 1999 Architectural Resources Survey, Naval Weapons Station Earle, Monmouth County, New Jersey (Louis Berger... architectural treatment of buildings at NWS Earle: a traditional vernacular theme with minimal decorative detailing. This so-called minimal traditional

  1. Proportionality and Autonomous Weapons Systems

    NARCIS (Netherlands)

    van den Boogaard, J.

    2015-01-01

    Given the swift technologic development, it may be expected that the availability of the first truly autonomous weapons systems is fast approaching. Once they are deployed, these weapons will use artificial intelligence to select and attack targets without further human intervention. Autonomous

  2. Proportionality and Autonomous Weapons Systems

    NARCIS (Netherlands)

    van den Boogaard, J.

    2015-01-01

    Given the swift technologic development, it may be expected that the availability of the first truly autonomous weapons systems is fast approaching. Once they are deployed, these weapons will use artificial intelligence to select and attack targets without further human intervention. Autonomous weap

  3. Remediation of plutonium-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Amos, S.; Coudace, I.; Voss, J

    2005-07-15

    The effectiveness of paramagnetic separation to remove plutonium from soils from the Aldermaston (UK) site has been investigated and reported to the commissioners of the project, AWE plc, and also subsequently at the WM'05 Conference (Tucson, AZ). The results showed that plutonium can be effectively concentrated in soils using magnetic separation and size fractionation. The work also investigated other methods to enhance the separation process. These approaches were: the use of sodium hexametaphosphate (ca. 1% by weight soil) to disperse the clay minerals; roasting to remove organic matter and to oxidise any organically-compIexed plutonium; ultrasonic vibration to break physical bonds between any plutonium oxide and soil particles; leaching of the <75mm fractions with selected reagents to extract plutonium. As a result of this work, engineering concepts are being developed which will enable more than 95% of some of the AWE contaminated soils to be rated for free release. (author)

  4. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    Energy Technology Data Exchange (ETDEWEB)

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  5. Musculoskeletal colloquialisms based on weapons.

    Science.gov (United States)

    Agrawal, Anuj

    2017-01-01

    Eponyms and colloquialisms are commonly used in orthopaedic literature and convey a great deal of information in a concise fashion. Several orthopaedic conditions have characteristic clinical or radiologic appearances, mimicking the appearance of certain arms or weapons. Most of these are easy to memorise and recognise, provided the orthopaedic surgeon is aware of the colloquialism and familiar with the appearance of the weapon on which it is based. Unfortunately, many such colloquialisms are based on traditional weapons no longer in current use, and their appearances are not familiar to most orthopaedists, creating confusion and difficulty in understanding them. In this paper, we have reviewed the musculoskeletal colloquialisms based on weapons, including a brief description of the weapon with illustrations, highlighting the importance of the colloquialism in diagnosis or treatment of musculoskeletal conditions.

  6. Nuclear weapon reliability evaluation methodology

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D.L. [Sandia National Labs., Albuquerque, NM (United States)

    1993-06-01

    This document provides an overview of those activities that are normally performed by Sandia National Laboratories to provide nuclear weapon reliability evaluations for the Department of Energy. These reliability evaluations are first provided as a prediction of the attainable stockpile reliability of a proposed weapon design. Stockpile reliability assessments are provided for each weapon type as the weapon is fielded and are continuously updated throughout the weapon stockpile life. The reliability predictions and assessments depend heavily on data from both laboratory simulation and actual flight tests. An important part of the methodology are the opportunities for review that occur throughout the entire process that assure a consistent approach and appropriate use of the data for reliability evaluation purposes.

  7. REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Kerry A. [Savannah River National Laboratory; Bellamy, J. Steve [Savannah River National Laboratory; Chandler, Greg T. [Savannah River National Laboratory; Iyer, Natraj C. [U.S. Department of Energy, National Nuclear Security Administration, Office of; Koenig, Rich E.; Leduc, D. [Savannah River National Laboratory; Hackney, B. [Savannah River National Laboratory; Leduc, Dan R. [Savannah River National Laboratory

    2013-08-18

    U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States was the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.

  8. THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, S.L.

    2006-02-01

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent

  9. Ceramification: A plutonium immobilization process

    Energy Technology Data Exchange (ETDEWEB)

    Rask, W.C. [Dept. of Energy, Golden, CO (United States); Phillips, A.G. [Rocky Flats Environmental Technology Site, Golden, CO (United States)

    1996-05-01

    This paper describes a low temperature technique for stabilizing and immobilizing actinide compounds using a combination process/storage vessel of stainless steel, in which measured amounts of actinide nitrate solutions and actinide oxides (and/or residues) are systematically treated to yield a solid article. The chemical ceramic process is based on a coating technology that produces rare earth oxide coatings for defense applications involving plutonium. The final product of this application is a solid, coherent actinide oxide with process-generated encapsulation that has long-term environmental stability. Actinide compounds can be stabilized as pure materials for ease of re-use or as intimate mixtures with additives such as rare earth oxides to increase their degree of proliferation resistance. Starting materials for the process can include nitrate solutions, powders, aggregates, sludges, incinerator ashes, and others. Agents such as cerium oxide or zirconium oxide may be added as powders or precursors to enhance the properties of the resulting solid product. Additives may be included to produce a final product suitable for use in nuclear fuel pellet production. The process is simple and reduces the time and expense for stabilizing plutonium compounds. It requires a very low equipment expenditure and can be readily implemented into existing gloveboxes. The process is easily conducted with less associated risk than proposed alternative technologies.

  10. 10 CFR 140.107 - Appendix G-Form of indemnity agreement with licensees processing plutonium for use in plutonium...

    Science.gov (United States)

    2010-01-01

    ... processing plutonium for use in plutonium processing and fuel fabrication plants and furnishing insurance... § 140.107 Appendix G—Form of indemnity agreement with licensees processing plutonium for use in plutonium processing and fuel fabrication plants and furnishing insurance policies as proof of...

  11. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Science.gov (United States)

    2010-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  12. Subchronic inhalation of carbon tetrachloride alters the tissue retention of acutely inhaled plutonium-239 nitrate in F344 rats and syrian golden hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Barr, E.B.; Lundgren, D.L. [and others

    1995-12-01

    Carbon tetrachloride (CCl{sub 4}) has been used extensively in the nuclear weapons industry, so it is likely that nuclear plant workers have been exposed to both CCl{sub 4} and plutonium compounds. Future exposures may occur during {open_quotes}cleanup{close_quotes} operations at weapons productions sites such as the Hanford, Washington, and Rocky Flats, Colorado, facilities. Inhalation of 20 and 100 ppm CCl{sub 4} by hamsters reduces uptake of {sup 239}Pu solubilized from lung, shunting the {sup 239}Pu to the skeleton.

  13. Plutonium speciation affected by environmental bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Neu, M.P.; Icopini, G.A.; Boukhalfa, H. [Chemistry Div., C-SIC, Los Alamos National Lab., Los Alamos, NM (United States)

    2005-07-01

    Plutonium has no known biological utility, yet it has the potential to interact with bacterial cellular and extracellular structures that contain metal-binding groups, to interfere with the uptake and utilization of essential elements, and to alter cell metabolism. These interactions can transform plutonium from its most common forms, solid, mineral-adsorbed, or colloidal Pu(IV), to a variety of biogeochemical species that have much different physico-chemical properties. Organic acids that are extruded products of cell metabolism can solubilize plutonium and then enhance its environmental mobility, or in some cases facilitate plutonium transfer into cells. Phosphate- and carboxylate-rich polymers associated with cell walls can bind plutonium to form mobile biocolloids or Pu-laden biofilm/mineral solids. Bacterial membranes, proteins or redox agents can produce strongly reducing electrochemical zones and generate molecular Pu(III/IV) species or oxide particles. Alternatively, they can oxidize plutonium to form soluble Pu(V) or Pu(VI) complexes. This paper reviews research on plutonium-bacteria interactions and closely related studies on the biotransformation of uranium and other metals. (orig.)

  14. Assessment and reduction of proliferation risk of reactor-grade plutonium regarding construction of ‘fizzle bombs’ by terrorists

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [School for Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001 (Internal Post Box 360), Potchefstroom 2520 (South Africa); Mulder, Eben J. [School for Mechanical and Nuclear Engineering, North West University (South Africa); Reitsma, Frederik [Calvera Consultants (South Africa)

    2014-05-01

    The approximately 23.7 wt% {sup 240}Pu in reactor-grade plutonium denatures the {sup 239}Pu to the extent that it cannot fuel high yield nuclear weapons. {sup 240}Pu has a high spontaneous fission rate, which increases the spontaneous neutron flux within the fuel. When such a nuclear weapon is triggered, these neutrons cause the nuclear fission chain reaction to pre-detonate which blows the imploding fuel shell apart before the designed level of compression and reactivity could be attained, thereby greatly reducing the average energy yield of such “fizzle” bombs. Therefore reactor-grade plutonium is normally viewed as highly proliferation resistant. In this article the literature on the proliferation resistance of reactor-grade plutonium and on the mechanism and effect of fizzle bombs is reviewed in order to test this view. It is shown that even very low yield fizzle bombs, exploded in urban areas, would still cause serious blast damage as well as radioactive contamination. Combined with the high levels of induced terror, fizzle bombs might thus be attractive psychological weapons for terrorists. Therefore reactor-grade plutonium may not be sufficiently proliferation resistant against nuclear terrorism. However, denaturisation with more than 9% {sup 238}Pu produces high levels of decay heat which will melt or explode the high explosives around uncooled implosion type weapons, rendering them useless. Unfortunately, reactor-grade Pu contains only 2.7% {sup 238}Pu and is thus not sufficiently proliferation resistant in this respect. It is also shown that the associated neptunium poses a substantial proliferation risk. In the present study strong improvement of the proliferation resistance was demonstrated by simulation of incineration of reactor-grade plutonium in the 400 MW{sub th} Pebble Bed Modular Reactor Demonstration Power Plant. Results for modified fuel cycles, aimed at transmutating {sup 237}Np to {sup 238}Pu are also reported. However, these

  15. 24 CFR 290.15 - Disposition plan.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Disposition plan. 290.15 Section... MORTGAGES Disposition of Multifamily Projects § 290.15 Disposition plan. (a) In general. Before disposing of a HUD-owned multifamily housing project, HUD will develop an initial and a final disposition...

  16. Ultra-Small Plutonium Oxide Nanocrystals: An Innovative Material in Plutonium Science

    OpenAIRE

    HUDRY DAMIEN; Griveau, Jean-Christophe; Apostolidis, Christos; WALTER OLAF; Janssen, Arne; Manara, Dario; Colineau, Eric; VITOVA T.; Wang, Di; KUEBEL Christian; MEYER D.j.m.

    2013-01-01

    Apart from its sensitive technological importance, plutonium (Pu) is also one of the most intriguing elements because of its non-conventional physical properties and fascinating chemistry. Those fundamental aspects are particularly interesting when dealing with the challenging study of plutonium-based nanomaterials. Here we show that ultra-small (3.2  0.9 nm) and highly crystalline plutonium oxide (PuO2) nanocrystals (NCs) can be synthesized by the thermal decomposition of plutonyl nitrate (...

  17. Youths Carrying a Weapon or Using a Weapon in a Fight: What Makes the Difference?

    Science.gov (United States)

    Thurnherr, Judit; Michaud, Pierre-Andre; Berchtold, Andre; Akre, Christina; Suris, Joan-Carles

    2009-01-01

    The objective of this study was to characterize weapon-carrying adolescents and to assess whether weapon carriers differ from weapon users. Data were drawn from a cross-sectional school-based survey of 7548 adolescents aged 16-20 years in Switzerland. Youths carrying a weapon were compared with those who do not. Subsequently, weapon carriers were…

  18. Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Janeen Denise [Univ. of New Mexico, Albuquerque, NM (United States)

    1999-02-01

    In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

  19. Risk in the Weapons Stockpile

    Energy Technology Data Exchange (ETDEWEB)

    Noone, Bailey C [Los Alamos National Laboratory

    2012-08-14

    When it comes to the nuclear weapons stockpile, risk must be as low as possible. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk.

  20. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department`s plutonium storage. Volume II, Appendix B, Part 9: Oak Ridge site site team report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This report provides the input to and results of the Department of Energy (DOE) - Oak Ridge Operations (ORO) DOE Plutonium Environment, Safety and Health (ES & H) Vulnerability Assessment (VA) self-assessment performed by the Site Assessment Team (SAT) for the Oak Ridge National Laboratory (ORNL or X-10) and the Oak Ridge Y-12 Plant (Y-12) sites that are managed by Martin Marietta Energy Systems, Inc. (MMES). As initiated (March 15, 1994) by the Secretary of Energy, the objective of the VA is to identify and rank-order DOE-ES&H vulnerabilities associated for the purpose of decision making on the interim safe management and ultimate disposition of fissile materials. This assessment is directed at plutonium and other co-located transuranics in various forms.

  1. Banach spaces of universal disposition

    CERN Document Server

    Aviles, Antonio; Castillo, Jesus M F; Gonzalez, Manuel; Moreno, Yolanda

    2011-01-01

    In this paper we present a method to obtain Banach spaces of universal and almost-universal disposition with respect to a given class $\\mathfrak M$ of normed spaces. The method produces, among other, the Gurari\\u{\\i} space $\\mathcal G$ (the only separable Banach space of almost-universal disposition with respect to the class $\\mathfrak F$ of finite dimensional spaces), or the Kubis space $\\mathcal K$ (under {\\sf CH}, the only Banach space with the density character the continuum which is of universal disposition with respect to the class $\\mathfrak S$ of separable spaces). We moreover show that $\\mathcal K$ is not isomorphic to a subspace of any $C(K)$-space -- which provides a partial answer to the injective space problem-- and that --under {\\sf CH}-- it is isomorphic to an ultrapower of the Gurari\\u{\\i} space. We study further properties of spaces of universal disposition: separable injectivity, partially automorphic character and uniqueness properties.

  2. The Weaponization of Social Media

    Science.gov (United States)

    2016-06-10

    media efforts will be compared to similar Western business and civic social media centric marketing efforts from both a technical and theoretical...THE WEAPONIZATION OF SOCIAL MEDIA A thesis presented to the Faculty of the U.S. Army Command and General Staff College in...The Weaponization of Social Media 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jack B. Irby III, MAJ 5d

  3. Interaction between stainless steel and plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Dunwoody, John T [Los Alamos National Laboratory; Mason, Richard E [Los Alamos National Laboratory; Freibert, Franz J [Los Alamos National Laboratory; Willson, Stephen P [Los Alamos National Laboratory; Veirs, Douglas K [Los Alamos National Laboratory; Worl, Laura A [Los Alamos National Laboratory; Archuleta, Alonso [Los Alamos National Laboratory; Conger, Donald J [Los Alamos National Laboratory

    2010-01-01

    Long-term storage of excess plutonium is of great concern in the U.S. as well as abroad. The current accepted configuration involves intimate contact between the stored material and an iron-bearing container such as stainless steel. While many safety scenario studies have been conducted and used in the acceptance of stainless steel containers, little information is available on the physical interaction at elevated temperatures between certain forms of stored material and the container itself. The bulk of the safety studies has focused on the ability of a package to keep the primary stainless steel containment below the plutonium-iron eutectic temperature of approximately 410 C. However, the interactions of plutonium metal with stainless steel have been of continuing interest. This paper reports on a scoping study investigating the interaction between stainless steel and plutonium metal in a pseudo diffusion couple at temperatures above the eutectic melt-point.

  4. Laboratory Building for Accurate Determination of Plutonium

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The accurate determination of plutonium is one of the most important assay techniques of nuclear fuel, also the key of the chemical measurement transfer and the base of the nuclear material balance. An

  5. Plutonium focus area: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this approach, EM developed a management structure and principles that led to creation of specific focus areas. These organizations were designed to focus scientific and technical talent throughout DOE and the national scientific community on major environmental restoration and waste management problems facing DOE. The focus area approach provides the framework for inter-site cooperation and leveraging of resources on common problems. After the original establishment of five major focus areas within the Office of Technology Development (EM-50), the Nuclear Materials Stabilization Task Group (NMSTG, EM-66) followed EM-50`s structure and chartered the Plutonium Focus Area (PFA). NMSTG`s charter to the PFA, described in detail later in this book, plays a major role in meeting the EM-66 commitments to the Defense Nuclear Facilities Safety Board (DNFSB). The PFA is a new program for FY96 and as such, the primary focus of revision 0 of this Technology Summary is an introduction to the Focus Area; its history, development, and management structure, including summaries of selected technologies being developed. Revision 1 to the Plutonium Focus Area Technology Summary is slated to include details on all technologies being developed, and is currently planned for release in August 1996. The following report outlines the scope and mission of the Office of Environmental Management, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  6. 不同级钚材料的衰变放热功率计算分析%Analysis of decay heat power generation for plutonium with various grades

    Institute of Scientific and Technical Information of China (English)

    左应红; 朱金辉

    2016-01-01

    Background: Radioactive nuclides contained in plutonium material will continually decay and release energy, which will change the temperature of plutonium materials and the surrounding components. Purpose:This study aims to analyze the releasing heat power of various grades plutonium materials in the process of bulk storage and transportation of plutonium. Methods:According to the isotopic quality composition of various grades plutonium, the time evolutions of decay heat power of each radioactive nuclide contained in weapons grade plutonium, reactor grade plutonium, and mixed oxide grade plutonium are obtained. And the total decay heat power of various grades plutonium as a function of time is also calculated, on the basis of the analysis of radionuclide decay cascade regulation, with the energy branching ratios during decay in the physical model taken into consideration. Results:The calculation results showed that the decay heat power varied with the grades of plutonium material. For 1-kg different grades plutonium material, the maximum decay heat power quantity is released by mixed oxide grade plutonium, while the weapons grade plutonium releases the least decay heat power quantity. The heat power released by weapons grade plutonium is mainly from 239Pu, while the main heat power is from 241Pu and 238Pu for the reactor and mixed oxide grade plutonium material. The decay heat power released by 242Pu is few compared with other nuclides for the three grades of plutonium materials. Conclusion: The releasing decay heat power of plutonium materials can be calculated more accurately by considering the energy branching ratios.%钚材料中放射性核素会不断衰变并释放能量,改变钚材料及周围部件的温度。为研究不同级钚材料在其整装存储及运输过程中衰变放热功率随时间的变化规律,依据不同级钚材料的放射性核素组分,在分析核素级联衰变规律的基础上,并在物理模型中考虑衰变时的

  7. ITER: The International Thermonuclear Experimental Reactor and the nuclear weapons proliferation implications of thermonuclear-fusion energy

    CERN Document Server

    Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

    2004-01-01

    This paper contains two parts: (I) A list of "points" highlighting the strategic-political and military-technical reasons and implications of the very probable siting of ITER (the International Thermonuclear Experimental Reactor) in Japan, which should be confirmed sometimes in early 2004. (II) A technical analysis of the nuclear weapons proliferation implications of inertial- and magnetic-confinement fusion systems substantiating the technical points highlighted in the first part, and showing that while full access to the physics of thermonuclear weapons is the main implication of ICF, full access to large-scale tritium technology is the main proliferation impact of MCF. The conclusion of the paper is that siting ITER in a country such as Japan, which already has a large separated-plutonium stockpile, and an ambitious laser-driven ICF program (comparable in size and quality to those of the United States or France) will considerably increase its latent (or virtual) nuclear weapons proliferation status, and fo...

  8. OIL AS POLITICAL WEAPON

    Directory of Open Access Journals (Sweden)

    Mariana, BUICAN

    2013-12-01

    Full Text Available Oil (called by some black gold has not always been as coveted and used, but only in the last hundred years has established itself as a highly sought after as an indispensable proper functioning of modern economic activity that an important factor in international politics. International oil regime has changed in the last decades. In 1960, oil regime was a private oligopol which had links with governments main consuming countries. By then the price of a barrel of oil was two U.S. dollars and seven major transnational oil companies decided the amount of oil that will be produced. Meanwhile the world region with the largest oil exports were more strongly expressed nationalism and decolonization. Result, it was so in the late 60s in the region occur independent states. They have created an organization aim of this resource to their advantage - OPEC (Organization of Petroleum Exporting Countries. Thus since 1973 there have been changes in the international regime governing oil field, namely producing countries were fixed production rate and price. After this time the oil weapon has become increasingly important in the management of international relations. Oil influenced the great powers to Middle East conflicts that occurred in the last century, but their attitude about the emergence of new sources of oil outside OPEC. In the late 90's, Russia has become a major supplier of oil to the West.

  9. Characterization of Representative Materials in Support of Safe, Long Term Storage of Surplus Plutonium in DOE-STD-3013 Containers

    Energy Technology Data Exchange (ETDEWEB)

    Narlesky, Joshua E. [Los Alamos National Laboratory; Stroud, Mary Ann [Los Alamos National Laboratory; Smith, Paul Herrick [Los Alamos National Laboratory; Wayne, David M. [Los Alamos National Laboratory; Mason, Richard E. [MET-1: ACTINIDE PROCESSING SUPPORT; Worl, Laura A. [Los Alamos National Laboratory

    2013-02-15

    The Surveillance and Monitoring Program is a joint Los Alamos National Laboratory/Savannah River Site effort funded by the Department of Energy-Environmental Management to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5,000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metal and oxide to very impure oxide. The performance of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on 54 samples of plutonium, with 53 chosen to represent the broader population of materials in storage. This paper summarizes the characterization data, moisture analysis, particle size, surface area, density, wattage, actinide composition, trace element impurity analysis, and shelf life surveillance data and includes origin and process history information. Limited characterization data on fourteen nonrepresentative samples is also presented.

  10. Plutonium Finishing Plant safety evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

  11. A vision for environmentally conscious plutonium processing

    Energy Technology Data Exchange (ETDEWEB)

    Avens, L.R.; Eller, P.G.; Christensen, D.C. [Los Alamos National Lab., NM (United States). Nuclear Materials Technology Div.; Miller, W.L. [Univ. of Florida, Gainesville, FL (United States). Dept. of Environmental Engineering Sciences

    1998-12-31

    Regardless of individual technical and political opinions about the uses of plutonium, it is virtually certain that plutonium processing will continue on a significant global scale for many decades for the purposes of national defense, nuclear power and remediation. An unavoidable aspect of plutonium processing is that radioactive contaminated gas, liquid, and solid streams are generated. These streams need to be handled in a manner that is not only in full compliance with today`s laws,but also will be considered environmentally and economically responsible now and in the future. In this regard, it is indeed ironic that the multibillion dollar and multidecade radioactive cleanup mortgage that the US Department of Energy (and its Russian counterpart) now owns resulted from waste management practices that were at the time in full legal compliance. The theme of this paper is that recent dramatic advances in actinide science and technology now make it possible to drastically minimize or even eliminate the problematic waste streams of traditional plutonium processing operations. Advanced technology thereby provides the means to avoid passing on to our children and grandchildren significant environmental and economic legacies that traditional processing inevitably produces. This paper will describe such a vision for plutonium processing that could be implemented fully within five years at a facility such as the Los Alamos Plutonium Facility (TA55). As a significant bonus, even on this short time scale, the initial technology investment is handsomely returned in avoided waste management costs.

  12. A DGT technique for plutonium bioavailability measurements.

    Science.gov (United States)

    Cusnir, Ruslan; Steinmann, Philipp; Bochud, François; Froidevaux, Pascal

    2014-09-16

    The toxicity of heavy metals in natural waters is strongly dependent on the local chemical environment. Assessing the bioavailability of radionuclides predicts the toxic effects to aquatic biota. The technique of diffusive gradients in thin films (DGT) is largely exploited for bioavailability measurements of trace metals in waters. However, it has not been applied for plutonium speciation measurements yet. This study investigates the use of DGT technique for plutonium bioavailability measurements in chemically different environments. We used a diffusion cell to determine the diffusion coefficients (D) of plutonium in polyacrylamide (PAM) gel and found D in the range of 2.06-2.29 × 10(-6) cm(2) s(-1). It ranged between 1.10 and 2.03 × 10(-6) cm(2) s(-1) in the presence of fulvic acid and in natural waters with low DOM. In the presence of 20 ppm of humic acid of an organic-rich soil, plutonium diffusion was hindered by a factor of 5, with a diffusion coefficient of 0.50 × 10(-6) cm(2) s(-1). We also tested commercially available DGT devices with Chelex resin for plutonium bioavailability measurements in laboratory conditions and the diffusion coefficients agreed with those from the diffusion cell experiments. These findings show that the DGT methodology can be used to investigate the bioaccumulation of the labile plutonium fraction in aquatic biota.

  13. SHIELDING AND DETECTOR RESPONSE CALCULATIONS PERTAINING TO CATEGORY 1 QUANTITIES OF PLUTONIUM AND HAND-HELD PLASTIC SCINTILLATORS

    Energy Technology Data Exchange (ETDEWEB)

    Couture, A.

    2013-06-07

    Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-, medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.

  14. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J. [Los Alamos Technical Associates, Inc., NM (US); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (US)

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

  15. Effect of compositional variation in plutonium on process shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.H.

    1997-11-01

    Radiation dose rate from plutonium with high {sup 239}Pu content varies with initial nuclidic content, radioactive decay time, and impurity elemental content. The two idealized states of old plutonium and clean plutonium, whose initial compositions are given, provide approximate upper and lower bounds on dose rate variation. Whole-body dose rates were calculated for the two composition states, using unshielded and shielded plutonium spheres of varying density. The dose rates from these variable density spheres are similar to those from expanded plutonium configurations encountered during processing. The dose location of 40 cm from the sphere center is representative of operator standoff for direct handling of plutonium inside a glove box. The results have shielding implications for glove boxes with only structurally inherent shielding, especially for processing of old plutonium in an expanded configuration. Further reduction in total dose rate by using lead to reduce photon dose rate is shown for two density cases representing compact and expanded plutonium configurations.

  16. The Effects of Nuclear Weapons

    Energy Technology Data Exchange (ETDEWEB)

    Glasstone, Samuel

    1964-02-01

    This book is a revision of "The Effects of Nuclear Weapons" which was issued in 1957. It was prepared by the Defense Atomic Support Agency of the Department of Defense in coordination with other cognizant governmental agencies and was published by the U.S. Atomc Energy Commission. Although the complex nature of nuclear weapons effects does not always allow exact evaluation, the conclusions reached herein represent the combined judgment of a number of the most competent scientists working the problem. There is a need for widespread public understanding of the best information available on the effects of nuclear weapons. The purpose of this book is to present as accurately as possible, within the limits of national security, a comprehensive summary of this information.

  17. Plutonium Chemistry in the UREX+ Separation Processes

    Energy Technology Data Exchange (ETDEWEB)

    ALena Paulenova; George F. Vandegrift, III; Kenneth R. Czerwinski

    2009-10-01

    The project "Plutonium Chemistry in the UREX+ Separation Processes” is led by Dr. Alena Paulenova of Oregon State University under collaboration with Dr. George Vandegrift of ANL and Dr. Ken Czerwinski of the University of Nevada at Las Vegas. The objective of the project is to examine the chemical speciation of plutonium in UREX+ (uranium/tributylphosphate) extraction processes for advanced fuel technology. Researchers will analyze the change in speciation using existing thermodynamics and kinetic computer codes to examine the speciation of plutonium in aqueous and organic phases. They will examine the different oxidation states of plutonium to find the relative distribution between the aqueous and organic phases under various conditions such as different concentrations of nitric acid, total nitrates, or actinide ions. They will also utilize techniques such as X-ray absorbance spectroscopy and small-angle neutron scattering for determining plutonium and uranium speciation in all separation stages. The project started in April 2005 and is scheduled for completion in March 2008.

  18. The Effects of Nuclear Weapons

    Energy Technology Data Exchange (ETDEWEB)

    Glasstone, Samuel

    1957-06-01

    This handbook prepared by the Armed Forces Special Weapons Project of the Department of Defense in coordination with other cognizant government agencies and published by the United States Atomic Energy Commission, is a comprehensive summary of current knowledge on the effects of nuclear weapons. The effects information contained herein is calculated for yields up to 20 megatons and the scaling laws for hypothetically extending the calculations beyond this limit are given. The figure of 20 megatons however is not be taken as an indication of capabilities or developments.

  19. Computation of Weapons Systems Effectiveness

    Science.gov (United States)

    2013-09-01

    Aircraft Dive Angle : Initial Weapon Release Velocity at x-axis VOx VOz x: x-axis z: z-axis : Initial Weapon Release Velocity at z...altitude Impact Velocity (x− axis), Vix = VOx (3.4) Impact Velocity (z− axis), Viz = VOz + (g ∗ TOF) (3.5) Impact Velocity, Vi = �Vix2 + Viz2 (3.6...compute the ballistic partials to examine the effects that varying h, VOx and VOz have on RB using the following equations: ∂RB ∂h = New RB−Old RB

  20. Standard test method for plutonium assay by plutonium (III) diode array spectrophotometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method describes the determination of total plutonium as plutonium(III) in nitrate and chloride solutions. The technique is applicable to solutions of plutonium dioxide powders and pellets (Test Methods C 697), nuclear grade mixed oxides (Test Methods C 698), plutonium metal (Test Methods C 758), and plutonium nitrate solutions (Test Methods C 759). Solid samples are dissolved using the appropriate dissolution techniques described in Practice C 1168. The use of this technique for other plutonium-bearing materials has been reported (1-5), but final determination of applicability must be made by the user. The applicable concentration range for plutonium sample solutions is 10–200 g Pu/L. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropria...

  1. Fused salt processing of impure plutonium dioxide to high-purity plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, L.J.; Christensen, D.C.; Babcock, B.R.

    1982-01-01

    A process for converting impure plutonium dioxide (approx. 96% pure) to high-purity plutonium metal (>99.9%) was developed. The process consists of reducing the oxide to an impure plutonium metal intermediate with calcium metal in molten calcium chloride. The impure intermediate metal is cast into an anode and electrorefined to produce high-purity plutonium metal. The oxide reduction step is being done now on a 0.6-kg scale with the resulting yield being >99.5%. The electrorefining is being done on a 4.0-kg scale with the resulting yield being 80 to 85%. The purity of the product, which averages 99.98%, is essentially insensitive to the purity of the feed metal. The yield, however, is directly dependent on the chemical composition of the feed. To date, approximately 250 kg of impure oxide has been converted to pure metal by this processing sequence. The availability of impure plutonium dioxide, together with the need for pure plutonium metal, makes this sequence a valuable plutonium processing tool.

  2. Aqueous Chloride Operations Overview: Plutonium and Americium Purification/Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, David Bryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Skidmore, Bradley Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-22

    Acqueous Chloride mission is to recover plutonium and americium from pyrochemical residues (undesirable form for utilization and storage) and generate plutonium oxide and americium oxide. Plutonium oxide is recycled into Pu metal production flowsheet. It is suitable for storage. Americium oxide is a valuable product, sold through the DOE-OS isotope sales program.

  3. Preparation of a glovebox for casting enriched plutonium.

    Energy Technology Data Exchange (ETDEWEB)

    Ronquillo, R. D. (Richard D.); Trujillo, C. M. (Chris M.); Trujillo, C. C. (Claudette C.)

    2002-01-01

    Objectives: Prepare existing glovebox for casting, heat treating and storing enriched plutonium, Upgrade seismic systems to reduce dispersion hazard, Upgrade atmospheric systems to reduce oxidation of plutonium, Upgrade vacuum system to prevent oxidation, InstalI/upgrade induction heating systems to melt plutonium and heat mold

  4. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  5. Happiness, Dispositions and the Self

    DEFF Research Database (Denmark)

    Klausen, Søren Harnow

    2016-01-01

    I argue that happiness is an exclusively categorical mental state. Daniel Haybron’s inclusion of dispositions into his emotional state theory rests of a confusion of constituents of happiness in the narrow psychological sense with objects of prudential concern, to which obviously belong “mood...... propensities” and other dispositional states. I further argue that while it is probably correct to require of a constituent of happiness that it must in some sense be “deep” and belong to, or directly impact on, a persons’ self, the importance of depth may be overrated by the emotional state theory, which also...

  6. Social Justice and Dispositions for Adult Education

    Science.gov (United States)

    Holst, John D.

    2010-01-01

    The article identifies dispositions from a thematic investigation of the pedagogical practice of Ernesto Che Guevara and various social movements in the United States. The article outlines and places these dispositions within the context of debates over social justice and dispositions for education program accreditation in the United States that…

  7. Teaching Thinking Dispositions: From Transmission to Enculturation.

    Science.gov (United States)

    Tishman, Shari; And Others

    1993-01-01

    Describes a dispositional conception of thinking, presenting a view of what good thinking dispositions look like and what they are made of. The article compares different models of teaching (teaching as transmission and as enculturation) and examines the extent to which they provide adequate guidelines for teaching thinking dispositions. (SM)

  8. Teaching Dispositions: Shared Understanding for Teacher Preparation

    Science.gov (United States)

    DeMuth, Lynn

    2012-01-01

    This qualitative phenomenological study explored the perceptions of 16 high-performing teachers related to teaching dispositions, effects of dispositions on teaching and learning, and recommendations for assessment of teaching dispositions during teacher preparation. Participants' perceptions were gathered using six guided interview questions…

  9. Radioactive waste management and plutonium recovery within the context of the development of nuclear energy in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Kushnikov, V. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    1996-05-01

    The Russian strategy for radioactive waste and plutonium management is based on the concept of the closed fuel cycle that has been adopted in Russia, and, to a great degree, falls under the jurisdiction of the existing Russian nuclear energy structures. From its very beginning, Russian atomic energy policy was based on finding the most effective method of developing the new fuel direction with the maximum possible utilization of the energy potential from the fission of heavy atoms and the achievement of fuel self-sufficiency through the recycling of secondary fuel. Although there can be no doubt about the importance of economic considerations (for the future), concerns for the safety of the environment are currently of the utmost importance. In this context, spent NPP fuel can be viewed as a waste to be buried only if there is persuasive evidence that such an approach is both economically and environmentally sound. The production of I GW of energy per year is accompanied by the accumulation of up to 800-1000 kg of highly radioactive fission products and approximately 250 kg of plutonium. Currently, spent fuel from the VVER 100 and the RBNK reactors contains approximately 25 tons of plutonium. There is an additional 30 tons of fuel-grade plutonium in the form of purified oxide, separated from spent fuels used in VVER440 reactors and other power production facilities, as well as approximately 100 tons of weapons-grade plutonium from dismantled warheads. The spent fuel accumulates significant amounts of small actinoids - neptunium americium, and curium. Science and technology have not yet found technical solutions for safe and secure burial of non-reprocessed spent fuel with such a broad range of products, which are typically highly radioactive and will continue to pose a threat for hundreds of thousands of years.

  10. Use of plutonium in PWR-type reactors; Utilisation du plutonium dans les REP

    Energy Technology Data Exchange (ETDEWEB)

    Berthet, A. [Electricite de France (EDF), 75 - Paris (France). Direction de l' Equipement

    1999-04-01

    The plutonium is used, as fuel, in the pressurized water reactors. It does not exist in nature; butit is fabricated in the reactor by neutrons capture. The MOX (Mixed Oxides) is its usual name. A part is consumed by the fission, the remainder is found in the used fuel released from the reactor. The paper deals with the plutonium specificities, the research and development programs about this fuel. The technical specifications of the PWR recycling the plutonium are also included (radiation protection, reactor fueling). (A.L.B.)

  11. Alternating layers of plutonium and lead or indium as surrogate for plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, Sven P, E-mail: srudin@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-03-15

    Elemental plutonium (Pu) assumes more crystal structures than other elements, plausibly due to bonding f electrons becoming non-bonding. Complex geometries hamper understanding of the transition in Pu, but calculations predict this transition in a system with simpler geometry: alternating layers either of plutonium and lead or of plutonium and indium. Here the transition occurs via a pairing-up of atoms within Pu layers. Calculations stepping through this pairing-up reveal valuable details of the transition, for example that the transition from bonding to non-bonding proceeds smoothly.

  12. Alternating layers of plutonium and lead or indium as surrogate for plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, Sven Peter [Los Alamos National Laboratory

    2009-01-01

    Elemental plutonium (Pu) assumes more crystal structures than other elements, plausibly due to bonding f electrons becoming non-bonding. Complex geometries hamper understanding of the transition in Pu, but calculations predict this transition in a system with simpler geometry: alternating layers either of plutonium and lead or of plutonium and indium. Here the transition occurs via a pairing-up of atoms within Pu layers. Calculations stepping through this pairing-up reveal valuable details of the transition, for example that the transition from bonding to non-bonding proceeds smoothly.

  13. 32 CFR 1903.10 - Weapons.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Weapons. 1903.10 Section 1903.10 National... INSTALLATIONS § 1903.10 Weapons. (a) Except as provided in paragraph (c) of this section, knowingly possessing or causing to be present a weapon on an Agency installation, or attempting to do so is prohibited. (b...

  14. 48 CFR 25.301-3 - Weapons.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Weapons. 25.301-3 Section... FOREIGN ACQUISITION Contracts Performed Outside the United States 25.301-3 Weapons. The contracting officer shall follow agency procedures and the weapons policy established by the combatant commander or...

  15. REVIEW OF PLUTONIUM OXIDATION LITERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.

    2009-11-12

    A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles (<15 {micro}m), moderately sized particles (15 < x < 250 {micro}m) and large particles (> 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for

  16. Handheld Concealed Weapons Detector Development

    Science.gov (United States)

    2003-03-01

    Enforcement, Edward M. Carapezza, Donald Spector, Eds., Proc. SPIE 2938, 110 - 119 (1997). 3. Franklin Felber, Norbert Wild, Scott Nunan , Dennis Breuner... Nunan , D. Breuner, and F. Doft, "Handheld Ultrasound Concealed-Weapons Detector," in Enforcement and Security Technologies, A. Trent DePersia, J. J

  17. Waste measurements at a plutonium facility

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, J.R.

    1992-01-01

    Solid plutonium contaminated wastes are often highly heterogeneous, span a wide range of chemical compositions and matrix types, and are packaged in a variety of container sizes. NDA analysis of this waste depends on operator knowledge of these parameters so that proper segregation, instrument selection, quality assurance, and uncertainty estimation can take place. This report describes current waste measurement practices and uncertainty estimates at a US plutonium scrap recovery facility and presents a program for determining reproducibility and bias in NDA measurements. Following this, an operator's perspective on desirable NDA upgrades is offered.

  18. Diffusion in the uranium - plutonium system and self-diffusion of plutonium in epsilon phase; Diffusion dans le systeme uranium-plutonium et autodiffusion du plutonium epsilon

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, M. [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    A survey of uranium-plutonium phase diagram leads to confirm anglo-saxon results about the plutonium solubility in {alpha} uranium (15 per cent at 565 C) and the uranium one in {zeta} phase (74 per cent at 565 C). Interdiffusion coefficients, for concentration lower than 15 per cent had been determined in a temperature range from 410 C to 640 C. They vary between 0.2 and 6 10{sup 12} cm{sup 2} s{sup -1}, and the activation energy between 13 and 20 kcal/mole. Grain boundary, diffusion of plutonium in a uranium had been pointed out by micrography, X-ray microanalysis and {alpha} autoradiography. Self-diffusion of plutonium in {epsilon} phase (bcc) obeys Arrhenius law: D = 2. 10{sup -2} exp -(18500)/RT. But this activation energy does not follow empirical laws generally accepted for other metals. It has analogies with 'anomalous' bcc metals ({beta}Zr, {beta}Ti, {beta}Hf, U{sub {gamma}}). (author) [French] Une etude du diagramme d'equilibre uranium-plutonium conduit a confirmer les resultats anglo-saxons relatifs a la solubilite du plutonium dans l'uranium {alpha} (15 pour cent a 565 C) et de l'uranium dans la phase {zeta} (74 pour cent a 565 C). Les coefficients de diffusion chimique, pour des concentrations inferieures a 15 pour cent ont ete determines a des temperatures comprises entre 410 et 640 C. Ils se situent entre 0.2 et 6. 10{sup 12} cm{sup 2} s{sup -1}. L'energie d'activation varie entre 13 et 20 kcal/mole. La diffusion intergranulaire du plutonium dans l'uranium a a ete mise en evidence par micrographie, microanalyse X et autoradiographie {alpha}. L' autodiffusion du plutonium {beta} cubique centree obeit a la loi d'Arrhenius D = 2. 10{sup -2} exp - (18500)/RT. Son energie d'activation n'obeit pas aux lois empiriques generalement admises pour les autres metaux. Elle possede des analogies avec les cubiques centres ''anormaux'' (Zr{beta}, Ti{beta}, Hf{beta}, U{gamma}). (auteur)

  19. Measurement of Plutonium Isotopic Composition - MGA

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc Ta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-21

    In this module, we will use the Canberra InSpector-2000 Multichannel Analyzer with a high-purity germanium detector (HPGe) and the MGA isotopic anlysis software to assay a variety of plutonium samples. The module provides an understanding of the MGA method, its attributes and limitations. You will assess the system performance by measuring a range of materials similar to those you may assay in your work. During the final verification exercise, the results from MGA will be combined with the 240Pueff results from neutron coincidence or multiplicity counters so that measurements of the plutonium mass can be compared with the operator-declared (certified) values.

  20. A disposition of interpolation techniques

    NARCIS (Netherlands)

    Knotters, M.; Heuvelink, G.B.M.

    2010-01-01

    A large collection of interpolation techniques is available for application in environmental research. To help environmental scientists in choosing an appropriate technique a disposition is made, based on 1) applicability in space, time and space-time, 2) quantification of accuracy of interpolated v

  1. A disposition of interpolation techniques

    NARCIS (Netherlands)

    Knotters, M.; Heuvelink, G.B.M.

    2010-01-01

    A large collection of interpolation techniques is available for application in environmental research. To help environmental scientists in choosing an appropriate technique a disposition is made, based on 1) applicability in space, time and space-time, 2) quantification of accuracy of interpolated v

  2. Signs, dispositions, and semiotic scaffolding.

    Science.gov (United States)

    Fernández, Eliseo

    2015-12-01

    In theoretical work we distinguish living beings from inanimate objects on the basis of some paramount attributes, such as agency and autonomy. These abstract features are not directly accessible to our scrutiny, but we surmise their nature through observation of the purpose-oriented behavior of organisms. I intend to show that organismal purposefulness springs from the intrinsic, constitutive kind of finality that is the hallmark of all semiotic transactions. To this aim I develop a dispositionalist account of organismal causation based on a distinction between two kinds of causal dispositions: fixed (efficient) dispositions and traveling dispositions. Fixed dispositions are rigidly attached to physical structures and processes; these are the dispositions regularly invoked in current discussions of causal explanation. Traveling dispositions are able to move freely from one location to another by becoming embodied into suitable supporting media. I introduce these notions to articulate a view of semiosis I deem best suited to the life sciences, and contend that sign tokens are vehicles of traveling dispositions. This account places the origin of purposive behavior at the interaction of physical and semiotic causation. To properly motivate the discussion I briefly review some recent developments in the philosophy of science concerning various forms of causation invoked by scientists across disciplines to frame explanations and make predictions. The ensuing discussion gives particular prominence to mechanistic (as distinct from mechanicist) explanatory accounts of biological phenomena. This review is followed by a brief characterization of a "nomological machine," a comprehensive schema introduced and developed by Nancy Cartwright with the goal of explaining causal mechanisms in a general setting. By capitalizing on this model's heuristic virtues I seek to formulate a compelling view of the interactions between physical and semiotic causation at play in semiotic

  3. [Modern pneumatic weapons and injuries they cause].

    Science.gov (United States)

    Kozachenko, I N

    2013-01-01

    The data on the history of development and further improvement of pneumatic weapons are presented with special reference to specific features of different types and varieties of these weapons, cartridges for them, and the sphere of their application. Investigations into peculiarities of damages caused by high-capacity pneumatic weapons to the objects of forensic medical expertise affected from different distances are reviewed. Results of forensic medical expertise and clinical studies on the structure of body injuries inflicted by gunshots from pneumatic weapons to the human body are discussed. The author emphasizes the necessity of developing up-to-date terminology and classification of gunshot injuries caused by shooting from pneumatic weapons.

  4. Using magnetization measurements to detect small amounts of plutonium hydride formation in plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Wook [Rutgers Univ., New Brunswick, NJ (United States); Mielke, Charles H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zapf, Vivien [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baiardo, Joseph P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mitchell, Jeremy N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richmond, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schwartz, Daniel S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mun, Eun D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Alice Iulia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-20

    We report the formation of plutonium hydride in 2 at % Ga-stabilized δ-Pu, with 1 atomic % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here we use magnetization, X-ray and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuHx, largely on the surface of the sample with x ~ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with precipitates of ferromagnetic PuH1.9.

  5. Corrosion behavior of pyroclore-rich titanate ceramics for plutonium disposition ; impurity effects.

    Energy Technology Data Exchange (ETDEWEB)

    Bakel, A. J.

    1999-01-13

    The baseline ceramic contains Ti, U, Ca, Hf, Gd, and Ce, and is made up of only four phases, pyrochlore, zirconolite, rutile, and brannerite. The impurities present in the three other ceramics represent impurities expected in the feed, and result in different phase distributions. The results from 3 day, 90 C MCC-1 tests with impurity ceramics were significantly different than the results from tests with the baseline ceramic. Overall, the addition of impurities to these titanate ceramics alters the phase distributions, which in turn, affects the corrosion behavior.

  6. In-Drift Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    H.W> Stockman; S. LeStrange

    2000-09-28

    The objective of this calculation is to provide estimates of the amount of fissile material flowing out of the waste package (source term) and the accumulation of fissile elements (U and Pu) in a crushed-tuff invert. These calculations provide input for the analysis of repository impacts of the Pu-ceramic waste forms. In particular, the source term results are used as input to the far-field accumulation calculation reported in Ref. 51, and the in-drift accumulation results are used as inputs for the criticality calculations reported in Ref. 2. The results are also summarized and interpreted in Ref. 52. The scope of this calculation is the waste package (WP) Viability Assessment (VA) design, which consists of an outer corrosion-allowance material (CAM) and an inner corrosion-resistant material (CRM). This design is used in this calculation in order to be consistent with earlier Pu-ceramic degradation calculations (Ref. 15). The impact of the new Enhanced Design Alternative-I1 (EDA-11) design on the results will be addressed in a subsequent report. The design of the invert (a leveling foundation, which creates a level surface of the drift floor and supports the WP mounting structure) is consistent with the EDA-I1 design. The invert will be composed of crushed stone and a steel support structure (Ref. 17). The scope of this calculation is also defined by the nominal degradation scenario, which involves the breach of the WP (Section 10.5.1.2, Ref. 48), followed by the influx of water. Water in the WP may, in time, gradually leach the fissile components and neutron absorbers out of the ceramic waste forms. Thus, the water in the WP may become laden with dissolved actinides (e.g., Pu and U), and may eventually overflow or leak from the WP. Once the water leaves the WP, it may encounter the invert, in which the actinides may reprecipitate. Several factors could induce reprecipitation; these factors include: the high surface area of the crushed stone, and the presence of reactive components in the stone (such as calcium and silica); the contrasting chemistry of water trapped in the pores of the invert; and the possible presence of reducing materials in the support structure. This calculation estimates the amounts of Pu and U that may accumulate in the invert as a consequence of chemical precipitation. The degradation scenario is consistent with the overall degradation analysis methodology outlined in Section 3.1 of the Disposal Criticality Analysis Methodology Topical Report (Ref. 47). Specifically, the scenario NF-1 b of Figure 3-2a of that document prescribes the processes analyzed in this calculation. The only difference is that the present calculation extends the possibilities of in-drift interacting materials to include incompletely oxidized iron, which was not a major constituent of the drift at the time the Topical Report was written.

  7. Why Sexually Selected Weapons Are Not Ornaments.

    Science.gov (United States)

    McCullough, Erin L; Miller, Christine W; Emlen, Douglas J

    2016-10-01

    The elaboration and diversification of sexually selected weapons remain poorly understood. We argue that progress in this topic has been hindered by a strong bias in sexual selection research, and a tendency for weapons to be conflated with ornaments used in mate choice. Here, we outline how male-male competition and female choice are distinct mechanisms of sexual selection, and why weapons and ornaments are fundamentally different types of traits. We call for research on the factors contributing to weapon divergence, the potential for male-male competition to drive speciation, and the specific use of weapons in the context of direct fights versus displays. Given that weapons are first and foremost fighting structures, biomechanical approaches are an especially promising direction for understanding weapon design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Combined exposure of F344 rats to beryllium metal and plutonium-239 dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Finch, G.L.; Carlton, W.W.; Rebar, A.H. [Purdue Univ., Lafayette, IN (United States)] [and others

    1995-12-01

    Nuclear weapons industry workers have the potential for inhalation exposures to plutonium (Pu) and other agents, such as beryllium (Be) metal. The purpose of this ongoing study is to investigate potential interactions between Pu and Be in the production of lung tumors in rats exposed by inhalation to particles of {sup 239}PuO{sub 2}, Be metal, or these agents in combination. Inhaled Pu deposited in the lung delivers high-linear-energy transfer, alpha-particle radiation and is known to induce pulmonary cancer in laboratory animals. Although the epidemiological evidence implicating Be in the induction of human lung cancer is weak and controversial, various studies in laboratory animals have demonstrated the pulmonary carcinogenicity of Be. As a result, Be is classified as a suspect human carcinogen in the United STates and as a demonstrated human carcinogen by the International Agency for Research on Cancer. This study is in progress.

  9. Study of kinetics of gas generation from moistened plutonium dioxide powder

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, V.K.; Glagovsky, E.M.; Karnozov, A.A. [FSUE A. Bochvar Institute of Inorganic Materials (VNIINM), Moscow (Russian Federation)

    2004-07-01

    Our research used weapons-grade plutonium oxide fabricated by oxalate and ammonium precipitation procedures (PuO{sub 2} powder). The content of water adsorbed into the PuO{sub 2} powder was 1 and 3% wt. The process of gas accumulation was investigated by means of the P-V-T method. The pressure of gases in the reaction vessel at the start-up of experiments was less than 1 Torr ({proportional_to}0,02 psia). A glassy reaction vessel was equipped with a U-type mercury manometer. The volume of the reaction vessel was {proportional_to}200 cm{sup 3} (0.21). The experiments were carried out at temperatures of 30, 50 and 100 C during {proportional_to}110 days. (orig.)

  10. Plutonium Immobilization Can Loading Preliminary Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Kriikku, E.

    1998-11-25

    This report discusses the Plutonium Immobilization can loading preliminary equipment specifications and includes a process block diagram, process description, equipment list, preliminary equipment specifications, plan and elevation sketches, and some commercial catalogs. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.

  11. Electrochemically Modulated Separation for Plutonium Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Sandra H.; Breshears, Andrew T.; Arrigo, Leah M.; Schwantes, Jon M.; Duckworth, Douglas C.

    2013-12-31

    Accurate and timely analysis of plutonium in spent nuclear fuel is critical in nuclear safeguards for detection of both protracted and rapid plutonium diversions. Gamma spectroscopy is a viable method for accurate and timely measurements of plutonium provided that the plutonium is well separated from the interfering fission and activation products present in spent nuclear fuel. Electrochemically modulated separation (EMS) is a method that has been used successfully to isolate picogram amounts of Pu from nitric acid matrices. With EMS, Pu adsorption may be turned "on" and "off" depending on the applied voltage, allowing for collection and stripping of Pu without the addition of chemical reagents. In this work, we have scaled up the EMS process to isolate microgram quantities of Pu from matrices encountered in spent nuclear fuel during reprocessing. Several challenges have been addressed including surface area limitations, radiolysis effects, electrochemical cell performance stability, and chemical interferences. After these challenges were resolved, 6 µg Pu was deposited in the electrochemical cell with approximately an 800-fold reduction of fission and activation product levels from a spent nuclear fuel sample. Modeling showed that these levels of Pu collection and interference reduction may not be sufficient for Pu detection by gamma spectroscopy. The main remaining challenges are to achieve a more complete Pu isolation and to deposit larger quantities of Pu for successful gamma analysis of Pu. If gamma analyses of Pu are successful, EMS will allow for accurate and timely on-site analysis for enhanced Pu safeguards.

  12. Electrochemical studies on plutonium in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Bourges, G. [CEA-Centre d' etudes de Valduc, 21 120 Is sur Tille (France)], E-mail: gilles.bourges@cea.fr; Lambertin, D.; Rochefort, S. [CEA-Centre d' etudes de Valduc, 21 120 Is sur Tille (France); Delpech, S.; Picard, G. [Laboratoire d' Electrochimie et de Chimie Analytique (UMR7575, CNRS), ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris (France)

    2007-10-11

    Electrochemical studies on plutonium have been supporting the development of pyrochemical processes involving plutonium at CEA. The electrochemical properties of plutonium have been studied in molten salts - ternary eutectic mixture NaCl-KCl-BaCl{sub 2}, equimolar mixture NaCl-KCl and pure CaCl{sub 2} - and in liquid gallium at 1073 K. The formal, or apparent, standard potential of Pu(III)/Pu redox couple in eutectic mixture of NaCl-KCl-BaCl{sub 2} at 1073 K determined by potentiometry is equal to -2.56 V (versus Cl{sub 2}, 1 atm/Cl{sup -} reference electrode). In NaCl-KCl eutectic mixture and in pure CaCl{sub 2} the formal standard potentials deduced from cyclic voltammetry are respectively -2.54 V and -2.51 V. These potentials led to the calculation of the activity coefficients of Pu(III) in the molten salts. Chronoamperometry on plutonium in liquid gallium using molten chlorides - CaCl{sub 2} and equimolar NaCl/KCl - led to the determination of the activity coefficient of Pu in liquid Ga, log {gamma} = -7.3. This new data is a key parameter to assess the thermodynamic feasibility of a process using gallium as solvent metal. By comparing gallium with other solvent metals - cadmium, bismuth, aluminum - gallium appears to be, with aluminum, more favorable for the selectivity of the separation at 1073 K of plutonium from cerium. In fact, compared with a solid tungsten electrode, none of these solvent liquid metals is a real asset for the selectivity of the separation. The role of a solvent liquid metal is mainly to trap the elements.

  13. Vertical and horizontal fluxes of plutonium and americium in the western Mediterranean and the Strait of Gibraltar.

    Science.gov (United States)

    León Vintró, L; Mitchell, P I; Condren, O M; Downes, A B; Papucci, C; Delfanti, R

    1999-09-30

    New data on the vertical distributions of plutonium and americium in the waters of the western Mediterranean and the Strait of Gibraltar are examined in terms of the processes governing their delivery to, transport in and removal from the water column within the basin. Residence times for plutonium and americium in surface waters of approximately 15 and approximately 3 years, respectively, are deduced, and it is shown that by the mid 1990s only approximately 35% of the 239,240Pu and approximately 5% of the 241Am deposited as weapons fallout still resided in the water column. Present 239,240Pu inventories in the water column and the underlying sediments are estimated to be approximately 25 TBq and approximately 40 TBq, respectively, which reconcile well with the time-integrated fallout deposition in this zone, taken to be approximately 69 TBq. The data show that there are significant net outward fluxes of plutonium and americium from the basin through the Strait of Gibraltar at the present time. These appear to be compensated by net inward fluxes of similar magnitude through the Strait of Sicily. Thus, the time-integrated fallout deposition in the western basin can be accounted for satisfactorily in terms of present water column and sediment inventories. Enhanced scavenging on the continental shelves, as evidenced by the appreciably higher transuranic concentrations in shelf sediments, supports this contention.

  14. History of Laser Weapon Research

    Science.gov (United States)

    2012-01-01

    surgery/medicine, hair re- moval, presentation pointers, law enforcement, ranging and sighting devices, welding applications, and much more. Using...other laser technology develop- ments. The first chemical laser, hydrogen fluoride ( HF ), was built in 1965, producing 1 kW. It was then that DoD became...energy laser (HEL) weapons. In industry, the more powerful CO2 lasers are used for weld - ing, drilling, and cutting. There are many different types

  15. Deterrence and Cyber-Weapons

    Science.gov (United States)

    2013-03-01

    67, no. 4 (2012): 41. 4 Scott Shackelford , “Estonia Three Years Later,” Journal of Internet Law 8, no. 13 (2010): 25. 3 weapons were employed...effects of 134 Scott Shackelford , “From Nuclear War to Net War: Analogizing Cyber-Attacks in...International Law,” (unpublished paper, Stanford University), 5-6. 135 Shackelford , unpublished paper, 76. 136 Ibid., 73. 137 Mary Ellen O’Connell, “Cyber

  16. Independent verification of plutonium decontamination on Johnston Atoll (1992--1996)

    Energy Technology Data Exchange (ETDEWEB)

    Wilson-Nichols, M.J.; Wilson, J.E.; McDowell-Boyer, L.M.; Davidson, J.R.; Egidi, P.V.; Coleman, R.L.

    1998-05-01

    The Field Command, Defense Special Weapons Agency (FCDSWA) (formerly FCDNA) contracted Oak Ridge National Laboratory (ORNL) Environmental Technology Section (ETS) to conduct an independent verification (IV) of the Johnston Atoll (JA) Plutonium Decontamination Project by an interagency agreement with the US Department of Energy in 1992. The main island is contaminated with the transuranic elements plutonium and americium, and soil decontamination activities have been ongoing since 1984. FCDSWA has selected a remedy that employs a system of sorting contaminated particles from the coral/soil matrix, allowing uncontaminated soil to be reused. The objective of IV is to evaluate the effectiveness of remedial action. The IV contractor`s task is to determine whether the remedial action contractor has effectively reduced contamination to levels within established criteria and whether the supporting documentation describing the remedial action is adequate. ORNL conducted four interrelated tasks from 1992 through 1996 to accomplish the IV mission. This document is a compilation and summary of those activities, in addition to a comprehensive review of the history of the project.

  17. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  18. Preliminary Research on the Verification Task of North Korea's Plutonium Declaration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Chul; Park, Il Jin [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2009-10-15

    The denuclearization of North Korea seems challenging. North Korea has recognized itself as a nuclear weapon state by carrying out two nuclear tests while many other nations including South Korea have opposed North Korea's nuclear proliferation. As a result of longstanding negotiations, North Korea provided nearly 19,000 pages of operation history of three Yongbyon nuclear facilities on May 8, 2008 and a 60-page declaration of its nuclear activities and programs on June 26, 2008. However, one should notice that declaration documents are by themselves meaningless without their verification. To completely dismantle North Korea's nuclear programs, the verification task based on its declaration documents should be performed very thoroughly, considering the possibility of the presence of the undeclared nuclear materials and facilities. The verification task of North Korea's nuclear declaration consists of many broad themes to deal with, such as the review of declaration documents, the interview with facility operators, the sampling in the field, the laboratory analysis of the sample, data interpretation, and so on. One of the important themes is to verify North Korea's declared plutonium stockpile by comparing the declaration documents with measurement data which can be obtained from the sampling in the field and laboratory analysis. To prepare for the possible future verification of the declared plutonium stockpile, it is meaningful to give a thought on what data can be compared and what samples need to be taken and analyzed. In this study, we focus on the data to be compared and samples to be taken and analyzed for the plutonium accounting, as a preliminary research. To give a quantitative example, the nuclear material of the most recent North Korea's spent fuel rods discharged from the 5 MWe reactor is analyzed. On June 13, 2009, North Korea declared that more than one-third of the spent fuel rods had been reprocessed.

  19. North Korea's nuclear weapons development. Implications for future policy

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, J.D.

    2010-07-01

    This essay assesses North Korea's long-standing quest for nuclear weapons; alternative strategies for inhibiting Pyongyang's weapons development; and the potential implications for regional security and nonproliferation should the Democratic People's Republic of Korea (DPRK) retain and enhance its weapons programs. North Korea's pursuit of a nuclear weapons capability has long provoked heated debate among policy makers and research analysts about the purposes of engagement with the North, reflecting the repeated frustrations in efforts to negotiate Korean denuclearization. These debates reflect widely divergent views of the North Korean regime; its sustainability as an autonomous political, economic, and military system; and the potential consequences of continued nuclear development in this isolated, highly idiosyncratic state. These questions assume additional salience as North Korea approaches a leadership succession for only the second time in its six-decade history. The effort to inhibit North Korea's pursuit of nuclear weapons is among the longest running and least successful sagas in international security and non-proliferation policy of the past quarter century. In early 2010, Pyongyang claims a rudimentary nuclear capability by possession of weaponized plutonium, the conduct of two nuclear tests, and advances in the production of enriched uranium as an alternative means of fissile material production, though the latter step is nominally justified as a source for reactor fuel. North Korea defends its pursuit of a nuclear deterrent to counter what Pyongyang deems existential threats posed by the United States.Despite the resumption of high-level diplomatic contact between Washington and Pyongyang in late 2009, realization of a non-nuclear Korean Peninsula remains a very remote prospect. The DPRK insists that a peace agreement between the U.S. and North Korea and hence the cessation of 'hostile DPRK-U.S. relations' are

  20. Report on the control of the safety and security of nuclear facilities. Part 2: the reconversion of military plutonium stocks. The use of the helps given to central and eastern Europe countries and to the new independent states; Rapport sur le controle de la surete et de la securite des installations nucleaires. Deuxieme partie: la reconversion des stocks de plutonium militaire. L'utilisation des aides accordees aux pays d'Europe centrale et orientale et aux nouveaux etats independants

    Energy Technology Data Exchange (ETDEWEB)

    Birraux, C

    2002-07-01

    This report deals with two different aspects of the safety and security of nuclear facilities. The first aspect concerns the reconversion of weapon grade plutonium stocks: the plutonium in excess, plutonium hazards and nuclear fuel potentialities, the US program, the Russian program, the actions of European countries (France, Germany), the intervention of other countries, the unanswered questions (political aspects, uncertainties), the solutions of the future (improvement of reactors, the helium-cooled high temperature reactor technology (gas-turbine modular helium reactor: GT-MHR), the Carlo Rubbia's project). The second aspect concerns the actions carried out by the European Union in favor of the civil nuclear facilities of central and eastern Europe: the European Union competencies through the Euratom treaty, the conclusions of the European audit office about the PHARE and TACIS nuclear programs, the status of committed actions, the coming planned actions, and the critical analysis of the policy adopted so far. (J.S.)

  1. Analytic determination of plutonium in the environment; Determination analytique du plutonium dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Ballada, J. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    The work described in this report was undertaken with a view to determining the plutonium content in the fall-out from nuclear explosions. In the first part are described in turn the importance of the problems due to the plutonium, the physico-chemical properties of the radioelement and the biological dangers which it presents. A detailed and critical analysis is made of the radio-toxicological determination of the plutonium as reported in the literature prior to this report. The second part consists in the presentation of a judicious choice of techniques making it possible to determine plutonium in air, rain-water, soils and ash. After a detailed description of the measurement equipment and the operational techniques which have been developed, a justification of these techniques is given with particular reference to their sensitivity and specificity. After a brief conclusion concerning the preceding chapters, the results are presented. These are then discussed in the ease of each element in which the plutonium has been determined. This discussion is concluded by a consideration of the importance of the occurrence of fall-out plutonium on problems relating to public health. From a consideration of 200 analyses carried out, it is concluded that the contribution of plutonium to the exposure of populations is still very small compared to that of natural radiation and that due to such fission products as strontium 90. The report includes 63 literature references, 26 figures and 11 tables. (author) [French] Les travaux decrits dans ce memoire ont ete entrepris et eflectues dans le but de mettre en evidence le plutonium des retombees radioactives consecutives aux explosions nucleaires. Dans la premiere partie nous etudions successivement l'importance des problemes poses par le plutonium puis les proprietes physicochimiques du radioelement et les dangers qu'il presente du point de vue biologique. Nous effectuons une analyse detaillee et critique des techniques

  2. Advanced Analytic Cognition: Thinking Dispositions

    Science.gov (United States)

    2013-09-01

    System 1” and “System 2” processes, respectively. System 1 processes occur spontaneously and do not require or consume much attention. Recognizing...without being consumed by ego protection 69. A critical thinker exhibits the following dispositions or attitudes: (a) willingness to engage in and...view," and "to recognize one’s own egocentricity or ethnocentricity Taube Education Critical 1995 Paul & Nosich 92. The ideal critical thinker is

  3. Reference computations of public dose and cancer risk from airborne releases of plutonium. Nuclear safety technical report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, V.L.

    1993-12-23

    This report presents results of computations of doses and the associated health risks of postulated accidental atmospheric releases from the Rocky Flats Plant (RFP) of one gram of weapons-grade plutonium in a form that is respirable. These computations are intended to be reference computations that can be used to evaluate a variety of accident scenarios by scaling the dose and health risk results presented here according to the amount of plutonium postulated to be released, instead of repeating the computations for each scenario. The MACCS2 code has been used as the basis of these computations. The basis and capabilities of MACCS2 are summarized, the parameters used in the evaluations are discussed, and results are presented for the doses and health risks to the public, both the Maximum Offsite Individual (a maximally exposed individual at or beyond the plant boundaries) and the population within 50 miles of RFP. A number of different weather scenarios are evaluated, including constant weather conditions and observed weather for 1990, 1991, and 1992. The isotopic mix of weapons-grade plutonium will change as it ages, the {sup 241}Pu decaying into {sup 241}Am. The {sup 241}Am reaches a peak concentration after about 72 years. The doses to the bone surface, liver, and whole body will increase slightly but the dose to the lungs will decrease slightly. The overall cancer risk will show almost no change over this period. This change in cancer risk is much smaller than the year-to-year variations in cancer risk due to weather. Finally, x/Q values are also presented for other applications, such as for hazardous chemical releases. These include the x/Q values for the MOI, for a collocated worker at 100 meters downwind of an accident site, and the x/Q value integrated over the population out to 50 miles.

  4. Estimated discard limits for plutonium-238 recovery processing in the plutonium processing building

    Energy Technology Data Exchange (ETDEWEB)

    Luthy, D.F.; Bond, W.H.

    1975-03-26

    This manual is intended as a basis for plutonium-238 recovery costs and as a guide for removal of plutonium-bearing wastes from the gloveboxes to be safely and economically discarded. Waste materials contaminated with plutonium-238 are generated from in-house production, analytical, process development, recovery and receipts from off-site. The contaminated materials include paper, rags, alpha-box gloves, piping, valves, filters, etc. General categories for all types of plutonium waste have been established by the ERDA and are reflected in this manual. There are numerous processes used in plutonium recovery, such as dissolution, ultrasonic cleaning, ion exchange, etc. One or more of these processes are needed to extract the plutonium-238 from waste materials, purify it and convert it to an oxide acceptable for reuse. This manual is presented in two parts: Part I gives a breakdown and brief explanation of the direct costs for plutonium-238 I recovery, derived from budget data. Direct costs include direct labor (operating personnel), operational materials and supplies, health physics direct labor, calorimetry labor, analytical labor, and engineering direct labor (total costs for Method I). Budgeted costs for labor and material were used in the derivation of discard limits. The data presented is then used to calculate the cost per hour for recovery, as it applies to the three different methods of calculating discard limits referred to, in this manual, as Method I (calculation stated above), Method II and Method III. The cost for Method II is derived by adding to the cost of Method I, payroll related expenses. Method III is then calculated by adding over-head expenses to the total cost of Method II.

  5. FMCT after South Asia's tests. A view from a nuclear-weapon state

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, L.A. [Science Applications Int. Corp. (United States)

    1998-07-01

    Proposals to negotiate an international treaty to cutoff the production of plutonium and highly-enriched uranium for nuclear weapons have been on the international nuclear agenda for many decades. Hopes in the early 1990s that it would be possible finally to negotiate a FMCT, however, have not been borne out. Instead, a deadlock had ensued at the Geneva CD. It remains to be seen whether the recent nuclear tests by India and Pakistan will contribute to breaking that deadlock - or only to foreclosing any prospects for negotiating cutoff in the foreseeable future. The key lies in the attitudes of Delhi and Islamabad - influenced to the extent possible by the efforts of the international community to convince both countries' leaders to stop short of an escalating nuclear war in the region. Regardless, there are a variety of other initiatives aimed at heightening transparency and controls over the nuclear weapons materials in the five NPT nuclear weapon states that could be pursued as part of broader ongoing efforts to roll back the Cold War nuclear legacies.

  6. DISSOLUTION OF PLUTONIUM METAL USING NITRIC ACID SOLUTIONS CONTAINING POTASSIUM FLUORIDE

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.; Crowder, M.; Bronikowski, M.

    2007-10-15

    The deinventory and deactivation of the Savannah River Site's (SRS's) FB-Line facility required the disposition of approximately 2000 items from the facility's vaults. Plutonium (Pu) scraps and residues which do not meet criteria for conversion to a mixed oxide fuel will be dissolved and the solution stored for subsequent disposition. Some of the items scheduled for dissolution are composite materials containing Pu and tantalum (Ta) metals. The preferred approach for handling this material is to dissolve the Pu metal, rinse the Ta metal with water to remove residual acid, and burn the Ta metal. The use of a 4 M nitric acid (HNO{sub 3}) solution containing 0.2 M potassium fluoride (KF) was initially recommended for the dissolution of approximately 500 g of Pu metal. However, prior to the use of the flowsheet in the SRS facility, a new processing plan was proposed in which the feed to the dissolver could contain up to 1250 g of Pu metal. To evaluate the use of a larger batch size and subsequent issues associated with the precipitation of plutonium-containing solids from the dissolving solution, scaled experiments were performed using Pu metal and samples of the composite material. In the initial experiment, incomplete dissolution of a Pu metal sample demonstrated that a 1250 g batch size was not feasible in the HB-Line dissolver. Approximately 45% of the Pu was solubilized in 4 h. The remaining Pu metal was converted to plutonium oxide (PuO{sub 2}). Based on this work, the dissolution of 500 g of Pu metal using a 4-6 h cycle time was recommended for the HB-Line facility. Three dissolution experiments were subsequently performed using samples of the Pu/Ta composite material to demonstrate conditions which reduced the risk of precipitating a double fluoride salt containing Pu and K from the dissolving solution. In these experiments, the KF concentration was reduced from 0.2 M to either 0.15 or 0.175 M. With the use of 4 M HNO{sub 3} and a reduction in

  7. Dispositional affectivity and work outcomes of expatriates

    DEFF Research Database (Denmark)

    Selmer, Jan; Lauring, Jakob

    2013-01-01

    How the two components of dispositional affectivity, positive affectivity, representing the predisposition to respond positively to environmental stimuli, and negative affectivity, depicting the opposite reaction, influence work has been the focus of much research. Although dispositional affectiv......How the two components of dispositional affectivity, positive affectivity, representing the predisposition to respond positively to environmental stimuli, and negative affectivity, depicting the opposite reaction, influence work has been the focus of much research. Although dispositional...... affectivity appears to be a promising construct to explain and predict many attitudinal and behavioral outcomes in the workplace, few studies have empirically investigated dispositional affectivity and the work of expatriates. Hence, data from a net-based survey including 350 expatriates in Denmark were used...... to examine the relationship between dispositional affectivity and their work outcomes. Results showed consistent positive associations between positive affectivity and all the studied work outcomes and the opposite relationships for negative affectivity. Implications and suggestions for future research...

  8. Characterisation of the plutonium isotopic composition of a sediment core from Palomares, Spain, by low-energy AMS and alpha-spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chamizo, E., E-mail: elechacal@alum.us.e [Centro Nacional de Aceleradores (CNA), Isla de la Cartuja, 41092 Seville (Spain); Jimenez-Ramos, M.C.; Enamorado, S.M. [Centro Nacional de Aceleradores (CNA), Isla de la Cartuja, 41092 Seville (Spain); Garcia-Leon, M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, 41012 Sevilla (Spain); Garcia-Tenorio, R. [Departamento de Fisica Aplicada II, E.T.S.A, Universidad de Sevilla, 41012 Sevilla (Spain); Mas, J.L. [Departamento de Fisica Aplicada I, Universidad de Sevilla, 41012 Sevilla (Spain); Masque, P. [Institut de Ciencia i Tecnologia Ambientals, Department de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Merino, J. [Amphos 21, Pg. de Rubi 29-31, E-08197 Valldoreix (Spain); Sanchez-Cabeza, J.A. [Institut de Ciencia i Tecnologia Ambientals, Department de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); International Atomic Energy Agency, Marine Environment Laboratories, MC-98000 (Monaco)

    2010-04-15

    The measurement of plutonium isotopes, {sup 239}Pu and {sup 240}Pu, at 670 kV on the compact accelerator mass spectrometry (AMS) system at the Centro Nacional de Aceleradores (CNA) in Seville, Spain, is now a reality. In this work, we present first Pu AMS results for environmental samples: a sediment core collected in a submarine canyon in the Mediterranean coast of the Spanish region of Palomares, affected by a nuclear accident in 1966. From the study of the {sup 240}Pu/{sup 239}Pu atomic ratio profile, showing on average levels lower than 11%, we confirm that the weapon-grade plutonium released on land during the accident, with a characteristic {sup 240}Pu/{sup 239}Pu atomic ratio of 5.8%, has found its way into the marine environment. A two-plutonium sources mixture model (Palomares and fallout) is used to elucidate the percentage of the plutonium coming from the accident. As a validation exercise of the Pu AMS measuring technique and in order to obtain the {sup 238}Pu/{sup (239+240)}Pu activity ratios, samples were also studied by alpha-spectrometry (AS). The obtained AS {sup 239+240}Pu activity concentration results fit in with the AMS ones in a wide dynamic range, thus validating the AMS technique.

  9. 36 CFR 2.4 - Weapons, traps and nets.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Weapons, traps and nets. 2.4... PROTECTION, PUBLIC USE AND RECREATION § 2.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in... prohibited: (i) Possessing a weapon, trap or net (ii) Carrying a weapon, trap or net (iii) Using a weapon...

  10. Optimization of Aimpoints for Coordinate Seeking Weapons

    Science.gov (United States)

    2015-09-01

    process. The program works by first taking in the number of weapons used and arranging them in a fixed uniform spacing on a circle centered on the...MATLAB program is used as the coding tool for the development of this algorithm and the optimization process. The program works by first taking in the...number of weapons used and arranging them in a fixed uniform spacing on a circle centered on the assumed target location. Then, the weapon

  11. New weapons and the arms race

    Energy Technology Data Exchange (ETDEWEB)

    Tsipis, K.

    1983-01-01

    In speaking about technologies that could further animate the weapons competition between the US and the USSR, it is useful to distinguish between technologies that have already been incorporated into specific weapons systems, and new technologies that are of a generic nature, can be used in a variety of applications, and can best be described by the tasks that they can perform rather than any specific weapons' application. The author discusses these in reverse order.

  12. Determination of Trace Plutonium in Uranium Product by ID-ICP-MS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Plutonium is strictly limited in the uranium product of spent fuel reprocessing. The analysis of plutonium in uranium product is the key point of product quality control. Plutonium concentration is limited below

  13. Anthropogenic plutonium-244 in the environment: Insights into plutonium's longest-lived isotope.

    Science.gov (United States)

    Armstrong, Christopher R; Brant, Heather A; Nuessle, Patterson R; Hall, Gregory; Cadieux, James R

    2016-02-22

    Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., (244)Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic (244)Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken at SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Significant (244)Pu was measured in all of the years sampled with the highest amount observed in 2003. The (244)Pu content, in femtograms (fg = 10(-15) g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the (244)Pu/(239)Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively.

  14. Assessment of PWR plutonium burners for nuclear energy centers

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, A J; Shapiro, N L

    1976-06-01

    The purpose of the study was to explore the performance and safety characteristics of PWR plutonium burners, to identify modifications to current PWR designs to enhance plutonium utilization, to study the problems of deploying plutonium burners at Nuclear Energy Centers, and to assess current industrial capability of the design and licensing of such reactors. A plutonium burner is defined to be a reactor which utilizes plutonium as the sole fissile addition to the natural or depleted uranium which comprises the greater part of the fuel mass. The results of the study and the design analyses performed during the development of C-E's System 80 plant indicate that the use of suitably designed plutonium burners at Nuclear Energy Centers is technically feasible.

  15. A different kind of weapon focus: simulated training with ballistic weapons reduces change blindness

    OpenAIRE

    Taylor, J. Eric T.; Witt, Jessica K.; Pratt, Jay

    2017-01-01

    Attentional allocation is flexibly altered by action-related priorities. Given that tools – and specifically weapons – can affect attentional allocation, we asked whether training with a weapon or holding a weapon during search would affect change detection. In three experiments, participants searched for changes to agents, shootable objects, or environments in the popular flicker paradigm. Participants trained with a simulated weapon or watched a video from the same training perspective and ...

  16. The Difficulty of Teacher Dispositions: Considering Professional Dispositions for Preservice English Teachers

    Science.gov (United States)

    Shoffner, Melanie; Sedberry, Tiffany; Alsup, Janet; Johnson, Tara Star

    2014-01-01

    This article explores the place of teacher dispositions in English teacher preparation by contextualizing the issue of dispositions in English teacher preparation. This allows consideration for the importance of developing professional dispositions during English teacher preparation by recognizing that various stakeholders (teacher educators,…

  17. Plutonium isotopes and 241Am in the atmosphere of Lithuania: A comparison of different source terms

    Science.gov (United States)

    Lujanienė, G.; Valiulis, D.; Byčenkienė, S.; Šakalys, J.; Povinec, P. P.

    2012-12-01

    137Cs, 241Am and Pu isotopes collected in aerosol samples during 1994-2011 were analyzed with special emphasis on better understanding of Pu and Am behavior in the atmosphere. The results from long-term measurements of 240Pu/239Pu atom ratios showed a bimodal frequency distribution with median values of 0.195 and 0.253, indicating two main sources contributing to the Pu activities at the Vilnius sampling station. The low Pu atom ratio of 0.141 could be attributed to the weapon-grade plutonium derived from the nuclear weapon test sites. The frequency of air masses arriving from the North-West and North-East correlated with the Pu atom ratio indicating the input from the sources located in these regions (the Novaya Zemlya test site, Siberian nuclear plants), while no correlation with the Chernobyl region was observed. Measurements carried out during the Fukushima accident showed a negligible impact of this source with Pu activities by four orders of magnitude lower as compared to the Chernobyl accident. The activity concentration of actinides measured in the integrated sample collected in March-April, 2011 showed a small contribution of Pu with unusual activity and atom ratios indicating the presence of the spent fuel of different origin than that of the Chernobyl accident.

  18. Pyrochemical investigations into recovering plutonium from americium extraction salt residues

    Energy Technology Data Exchange (ETDEWEB)

    Fife, K.W.; West, M.H.

    1987-05-01

    Progress into developing a pyrochemical technique for separating and recovering plutonium from spent americium extraction waste salts has concentrated on selective chemical reduction with lanthanum metal and calcium metal and on the solvent extraction of americium with calcium metal. Both techniques are effective for recovering plutonium from the waste salt, although neither appears suitable as a separation technique for recycling a plutonium stream back to mainline purification processes. 17 refs., 13 figs., 2 tabs.

  19. Spectrophotometers for plutonium monitoring in HB-line

    Energy Technology Data Exchange (ETDEWEB)

    Lascola, R. J. [Savannah River Site (SRS), Aiken, SC (United States); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States); Kyser, E. A. [Savannah River Site (SRS), Aiken, SC (United States); Immel, D. M. [Savannah River Site (SRS), Aiken, SC (United States); Plummer, J. R. [Savannah River Site (SRS), Aiken, SC (United States); Evans, E. V. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-02-12

    This report describes the equipment, control software, calibrations for total plutonium and plutonium oxidation state, and qualification studies for the instrument. It also provides a detailed description of the uncertainty analysis, which includes source terms associated with plutonium calibration standards, instrument drift, and inter-instrument variability. Also included are work instructions for instrument, flow cell, and optical fiber setup, work instructions for routine maintenance, and drawings and schematic diagrams.

  20. Plutonium stabilization and handling (PuSH)

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, E.V.

    1997-01-23

    This Functional Design Criteria (FDC) addresses construction of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. The major sections of the project are: site preparation; SPS Procurement, Installation, and Testing; storage vault modification; and characterization equipment additions. The SPS will be procured as part of a Department of Energy nationwide common procurement. Specific design crit1460eria for the SPS have been extracted from that contract and are contained in an appendix to this document.

  1. CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    WITTEKIND WD

    2007-10-03

    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

  2. Concentration and purification of plutonium or thorium

    Science.gov (United States)

    Hayden, John A.; Plock, Carl E.

    1976-01-01

    In this invention a first solution obtained from such as a plutonium/thorium purification process or the like, containing plutonium (Pu) and/or thorium (Th) in such as a low nitric acid (HNO.sub.3) concentration may have the Pu and/or Th separated and concentrated by passing an electrical current from a first solution having disposed therein an anode to a second solution having disposed therein a cathode and separated from the first solution by a cation permeable membrane, the Pu or Th cation permeating the cation membrane and forming an anionic complex within the second solution, and electrical current passage affecting the complex formed to permeate an anion membrane separating the second solution from an adjoining third solution containing disposed therein an anode, thereby effecting separation and concentration of the Pu and/or Th in the third solution.

  3. Plutonium in Southern Hemisphere ocean Waters

    DEFF Research Database (Denmark)

    Hirose, K.; Aoyama, M.; Gastaud, J.

    2013-01-01

    Plutonium in seawater collected by the BEAGLE2003 cruise was determined using ICP- SF-MS and alpha spectrometry after Fe co-precipitation and radiochemical purification. Levels and distributions of dissolved plutonium activity concentrations in Southern Hemisphere ocean waters are summarized here......, including historical data. Pu-239 concentrations in surface water----of the central South Pacific (32.5 °S) in 2003 were around 1 mBq/m3. The 239Pu concentrations in the Indian Ocean surface waters (20°S) were similar to that in the South Pacific, whereas the 239Pu concentrations in the South Atlantic...... surface waters (30°S) were markedly lower than those in the South Pacific and Indian Oceans. The 239Pu vertical profile pattern was similar to that in the North Pacific subtropical gyre, although 239Pu concentrations in the deep South Pacific were significantly lower than those in the North Pacific. One...

  4. 76 FR 6087 - Draft Weapons Safety Assessment on the Use of Enhanced Weapons; Notice of Availability and...

    Science.gov (United States)

    2011-02-03

    ... Draft Weapons Safety Assessment on the Use of Enhanced Weapons; Notice of Availability and Request for... ``Weapons Safety Assessment'' (WSA). This guidance would be used by licensees and certificate holders applying to the NRC to obtain enhanced weapons under the NRC's proposed rule titled ``Enhanced Weapons...

  5. Dresden 1 plutonium recycle program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bresnick, S.D.

    1980-01-01

    This is the final report on the Dresden 1 Plutonium Recycle Demonstration Program. It covers the work performed from July 1, 1978 to completion, which includes in-pool inspection of two fuel assemblies, removal of two fuel rods, and post-irradiation examination (PIE) of six fuel rods. Appendix A describes the inspection and rod removal operations, and Appendix B describes the PIE work.

  6. Determination of plutonium temperature using the special trans functions theory

    Directory of Open Access Journals (Sweden)

    Perović Slavica M.

    2010-01-01

    Full Text Available The problem of estimating plutonium temperature by an iterative procedure based on the special trans functions theory has been studied in some detail. In theory, the differential linear plutonium temperature equation can be effectively reduced to a non-linear functional transcendental equation solvable by special trans functions theory. This approach is practically invariant under the starting plutonium temperature value. This is significant, because the said iterative special trans functions theory does not depend on the password data of the plutonium cargo. Obtained numerical results and graphical simulations confirm the applicability of such approach.

  7. Guide to good practices at plutonium facilities

    Energy Technology Data Exchange (ETDEWEB)

    Faust, L.G.; Brackenbush, L.W.; Carter, L.A.; Endres, G.W.R.; Glenn, R.D.; Jech, J.J.; Selby, J.M.; Smith, R.C.; Waite, D.A.; Walsh, W.P.

    1977-09-01

    This manual establishes guidelines and principles for use in setting up a sound radiation protection program for work with plutonium. The guidance presented is based on the experiences of Energy Research and Development Administration (ERDA) contractors and those portions of private industry concerned with the operation of plutonium facilities, specifically with the fabrication of mixed oxide reactor fuel. The manual is directed primarily to those facilities which have as their sole purpose the handling of large quantities of plutonium for military or industrial uses. It is not intended for use by facilities engaged in reactor or chemical separation operations nor for partial or occasional use by analytical laboratories; while these facilities would find the manual beneficial, it would be incomplete for their needs. The manual addresses good practices that should be observed by management, staff and designers, since the benefits of a good radiation protection program are the result of their joint efforts. Methods for the diagnostic evaluation of internally deposited Pu are included.

  8. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  9. Real-time monitoring of plutonium content in uranium-plutonium alloys

    Science.gov (United States)

    Li, Shelly Xiaowei; Westphal, Brian Robert; Herrmann, Steven Douglas

    2015-09-01

    A method and device for the real-time, in-situ monitoring of Plutonium content in U--Pu Alloys comprising providing a crucible. The crucible has an interior non-reactive to a metallic U--Pu alloy within said interior of said crucible. The U--Pu alloy comprises metallic uranium and plutonium. The U--Pu alloy is heated to a liquid in an inert or reducing atmosphere. The heated U--Pu alloy is then cooled to a solid in an inert or reducing atmosphere. As the U--Pu alloy is cooled, the temperature of the U--Pu alloy is monitored. A solidification temperature signature is determined from the monitored temperature of the U--Pu alloy during the step of cooling. The amount of Uranium and the amount of Plutonium in the U--Pu alloy is then determined from the determined solidification temperature signature.

  10. Study of the reaction of uranium and plutonium with bone char

    Energy Technology Data Exchange (ETDEWEB)

    Silver, G.L.; Koenst, J.W.

    1977-01-17

    A study of the reaction of plutonium with a commercial bone char indicates that this bone char has a high capacity for removing plutonium from aqueous wastes. The adsorption of plutonium by bone char is pH dependent, and for plutonium(IV) polymer appears to be maximized near pH 7.3 for plutonium concentrations typical of some waste streams. Adsorption is affected by dissolved salts, especially calcium and phosphate salts. Freundlich isotherms representing the adsorption of uranium and plutonium have been prepared. The low potential imposed upon aqueous solutions by commercial bone char is adequate for reduction of hexavalent plutonium to a lower plutonium oxidation state.

  11. Spectrographic analysis of plutonium (1960); L'analyse spectrographique du plutonium (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Artaud, J.; Chaput, M.; Robichet, J. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Various possibilities for the spectrographic determination of impurities in plutonium are considered. The application of the 'copper spark' method, of sparking on graphite and of fractional distillation in the arc are described and discussed in some detail (apparatus, accessories, results obtained). (author) [French] On examine diverses possibilites pour le dosage spectrographique des impuretes dans le plutonium. On decrit et discute plus particulierement de l'application des methodes 'copper spark', de l'etincelage sur graphite et de la distillation fractionnee dans l'arc (montages, accessoires, resultats obtenus). (auteur)

  12. Historical reconstruction of Plutonium contamination in the Swiss-Italian Alps

    Directory of Open Access Journals (Sweden)

    Gabrieli J.

    2013-04-01

    Full Text Available Plutonium is present in the environment as a consequence of atmospheric nuclear tests carried out in the 1960s, nuclear weapons production and releases by the nuclear industry over the past 50 years. Approximately 6 tons of 239Pu have been released into the environment as a result of 541 atmospheric weapon tests Nuclear Pu fallout has been studied in various environmental archives, such as sediments, soil and herbarium grass. Mid-latitude ice cores have been studied as well, on Mont Blanc, the Western Alps and on Belukha Glacier, Siberian Altai. We present a Pu record obtained by analyzing 52 discrete samples of an alpine firn/ice core from Colle Gnifetti (M. Rosa, 4450 m a.s.l., dating from 1945 to 1991. The 239Pu signal was recorded directly, without preliminary cleaning or preconcentration steps, using an high resolution inductively plasma mass spectrometer equipped with a desolvation system. The 239Pu profile reflects the three main periods of atmospheric nuclear weapons testing: the earliest peak lasted from 1954/55 to 1958 and was caused by the first testing period reaching a maximum in 1958. Despite a temporary halt of testing in 1959/60, the Pu concentration decreased only by half with respect to the 1958 peak due to long atmospheric residence times. In 1961/62 Pu concentrations rapidly increased reaching a maximum in 1963. After the signing of the “Limited Test Ban Treaty” between USA and USSR in 1964, Pu deposition decreased very sharply reaching a minimum in 1967. The third period (1967-1975 is characterized by irregular Pu concentrations with smaller peaks which might be related to the deposition of Saharan dust contaminated by the French nuclear tests of the 1960s.

  13. Disposition of fipronil in rats

    OpenAIRE

    Delous, Georges; Zalko, Daniel; Viguie, Catherine; Debrauwer, Laurent

    2013-01-01

    In the scientific literature, little attention has been paid to the disposition of fipronil, a phenyl pyrazole insecticide. In this study, the tissue distribution, the metabolic fate, and the elimination of fipronil was investigated in rats using radiolabeled fipronil. When a single oral dose of (14)C-fipronil (10 mg kg(-1) b.w.) was given to rats, the proportion of dose eliminated in urine and feces 72 h after dosing was ca 4% for each route. At the end of the experiment the highest levels o...

  14. Materials in Nuclear Waste Disposition

    Science.gov (United States)

    Rebak, Raul B.

    2014-03-01

    Commercial nuclear energy has been used for over 6 decades; however, to date, none of the 30+ countries with nuclear power has opened a repository for high-level waste (HLW). All countries with nuclear waste plan to dispose of it in metallic containers located in underground geologically stable repositories. Some countries also have liquid nuclear waste that needs to be reduced and vitrified before disposition. The five articles included in this topic offer a cross section of the importance of alloy selection to handle nuclear waste at the different stages of waste processing and disposal.

  15. 25 CFR 11.1012 - Dispositional alternatives.

    Science.gov (United States)

    2010-04-01

    ... LAW AND ORDER CODE Juvenile Offender Procedure § 11.1012 Dispositional alternatives. (a) If a minor has been adjudged a juvenile offender, the children's court may make the following disposition: (1) Place the minor on probation subject to conditions set by the children's court; (2) Place the minor in...

  16. Teacher Candidate Disposition: Moral Judgement or Regurgitation?

    Science.gov (United States)

    Johnson, Lisa E.

    2008-01-01

    Developing teacher candidates who are able to make moral judgements to equitably resolve classroom dilemmas, conduct student assessment and allocate resources is critical for today's diverse classrooms and should be part of fostering professional disposition. However, one challenge of incorporating dispositions in teacher education and a valid…

  17. Dispositions in Education: Nonentities Worth Talking about

    Science.gov (United States)

    Splitter, Laurance J.

    2010-01-01

    The concept of dispositions has commanded considerable attention in both philosophy and education. In this essay, Laurance Splitter draws on philosophy to take a fresh look at dispositions in education, specifically teacher education. Bypassing the pitfalls of both subjectivity and crude behaviorism, he proposes a conceptual framework in which…

  18. Dispositions in Education: Nonentities Worth Talking about

    Science.gov (United States)

    Splitter, Laurance J.

    2010-01-01

    The concept of dispositions has commanded considerable attention in both philosophy and education. In this essay, Laurance Splitter draws on philosophy to take a fresh look at dispositions in education, specifically teacher education. Bypassing the pitfalls of both subjectivity and crude behaviorism, he proposes a conceptual framework in which…

  19. Dispositional optimism and loneliness in older men

    NARCIS (Netherlands)

    Rius-Ottenheim, N.; Kromhout, D.; Mast, van der R.C.; Zitman, F.G.; Geleijnse, J.M.; Giltay, E.J.

    2012-01-01

    Background: Dispositional optimism, defined as a generalized tendency to positive outcome expectancies, is associated with well-being and successful aging. However, it remains unclear whether optimism is also correlated to less feelings of loneliness over time. We aimed to determine whether disposit

  20. Culturally Responsive Dispositions in Prospective Mathematics Teachers

    Science.gov (United States)

    Williams, Desha L.; Edwards, Belinda; Kuhel, Karen A.; Lim, Woong

    2016-01-01

    Sustaining teachers in culturally and linguistically diverse schools has been a prominent issue for years. This qualitative study focused on the impact of an enhanced preparation program on the cultural dispositions of five pre-service mathematics teachers. It is postulated that if positive cultural dispositions are developed in teacher…

  1. [Myocardial infarction after conduction electrical weapon shock].

    Science.gov (United States)

    Ben Ahmed, H; Bouzouita, K; Selmi, K; Chelli, M; Mokaddem, A; Ben Ameur, Y; Boujnah, M R

    2013-04-01

    Controversy persists over the safety of conducted electrical weapons, which are increasingly used by law enforcement agencies around the world. We report a case of 33-year-old man who had an acute inferior myocardial infarction after he was shot in the chest with an electrical weapon. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. Radioactive Fallout From Nuclear Weapons Testing ...

    Science.gov (United States)

    2017-08-07

    Detonating nuclear weapons above ground sends radioactive materials into the atmosphere from the ground level up to very high elevations. Overtime, these materials settle out of the atmosphere and fall to the ground. Fallout typically contains hundreds of different radionuclides. Since the end of aboveground nuclear weapons testing, radionuclides have largely decayed away.

  3. Color image fusion for concealed weapon detection

    NARCIS (Netherlands)

    Toet, A.

    2003-01-01

    Recent advances in passive and active imaging sensor technology offer the potential to detect weapons that are concealed underneath a person's clothing or carried along in bags. Although the concealed weapons can sometimes easily be detected, it can be difficult to perceive their context, due to the

  4. Weapons Acquisition. Processes of Selected Foreign Government.

    Science.gov (United States)

    1986-02-01

    period from 1977 to 1985: (1) 5.56mm calibre assault rifle. (2) Milan and Hot antitank weapon systems. (3) Roland ground-to-air weapon system. (4) AMX 30...and standardization edicts . Awards and penalties are laid on accordingly. (7/17, 13/20) The ministries stand apart from one another in the same way

  5. Nuclear weapons, nuclear effects, nuclear war

    Energy Technology Data Exchange (ETDEWEB)

    Bing, G.F.

    1991-08-20

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  6. Color image fusion for concealed weapon detection

    NARCIS (Netherlands)

    Toet, A.

    2003-01-01

    Recent advances in passive and active imaging sensor technology offer the potential to detect weapons that are concealed underneath a person's clothing or carried along in bags. Although the concealed weapons can sometimes easily be detected, it can be difficult to perceive their context, due to the

  7. Chemical species of plutonium in Hanford radioactive tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Barney, G.S.

    1997-10-22

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other

  8. Childhood maltreatment and threats with weapons.

    Science.gov (United States)

    Casiano, Hygiea; Mota, Natalie; Afifi, Tracie O; Enns, Murray W; Sareen, Jitender

    2009-11-01

    The relationship between childhood maltreatment and future threats with weapons is unknown. We examined data from the nationally representative National Comorbidity Survey Replication (n = 5692) and conducted multiple logistic regression analyses to determine the association between childhood maltreatment and lifetime behavior of threatening others with a gun or other weapon. After adjusting for sociodemographic variables, physical abuse, sexual abuse, and witnessing domestic violence were significantly associated with threats made with a gun (adjusted odds ratios [AOR] ranging between 3.38 and 4.07) and other weapons (AOR ranging between 2.16 and 2.83). The greater the number of types of maltreatment experienced, the stronger the association with lifetime threats made to others with guns and any weapons. Over 94% of respondents who experienced maltreatment and made threats reported that the maltreatment occurred prior to threatening others with weapons. Prevention efforts that reduce exposure to maltreatment may reduce violent behavior in later life.

  9. Weapon Control System for Airborne Application.

    Directory of Open Access Journals (Sweden)

    M. Sankar Kishore

    2000-07-01

    Full Text Available The integrated fire' control system (IFCS plays an important role in the present-day fighter aircraft and helicopters. Wecapons, such as missiles (active/passive, rockets and guns may be present on thelfighter aircraft or helicopter .IFCS monitors the status of the weapons present on the vehicle and passes the information to pilot/co-pilot. Depending upon the health/availability of the weapons, IFCS selects/fires the weapons. An attempt has been made to bring out the details of one such IFCS. As a I stepping stone, smaller version is developed and same philosophy can be used for integrating ftlore and I more weapons. Here, emphasis has been made on design and development of weapon control unit which is the heart f IFCS, both in hardware and software. The system has been developed using a 486 DX2 processor, and an elaborate software has been developed in PL/M.

  10. Weapon Involvement in the Victimization of Children.

    Science.gov (United States)

    Mitchell, Kimberly J; Hamby, Sherry L; Turner, Heather A; Shattuck, Anne; Jones, Lisa M

    2015-07-01

    To report the prevalence of weapons involved in the victimization of youth with particular emphasis on weapons with a "high lethality risk" and how such exposure fits into the broader victimization and life experiences of children and adolescents. Data were collected as part of the Second National Survey of Children's Exposure to Violence, a nationally representative telephone survey of youth ages 2 to 17 years and caregivers (N = 4114) conducted in 2011. Estimates from the Second National Survey of Children's Exposure to Violence indicate that almost 14 million youth, ages 2–17, in the United States have been exposed to violence involving a weapon in their lifetimes as witnesses or victims,or .1 in 5 children in this age group [corrected]. More than 2 million youth in the United States (1 in 33) have been directly assaulted in incidents where the high lethality risk weapons of guns and knives were used. Differences were noted between victimizations involving higher and lower lethality risk weapons as well as between any weapon involvement versus none. Poly-victims, youth with 7 or more victimization types, were particularly likely to experience victimization with any weapon, as well as victimization with a highly lethal weapon compared with nonpoly-victims. Findings add to the field's broadening conceptualization of youth victimization highlighting the potentially highly consequential risk factor of weapon exposure as a component of victimization experiences on the mental health of youth. Further work on improving gun safety practices and taking steps to reduce children's exposure to weapon-involved violence is warranted to reduce this problem. Copyright © 2015 by the American Academy of Pediatrics.

  11. Concealed weapons detection using electromagnetic resonances

    Science.gov (United States)

    Hunt, Allen R.; Hogg, R. Douglas; Foreman, William

    1998-12-01

    Concealed weapons pose a significant threat to both law enforcement and security agency personnel. The uncontrolled environments associated with peacekeeping and the move toward relaxation of concealed weapons laws here in the U.S. provide a strong motivation for developing weapons detection technologies which are noninvasive and can function noncooperatively. Existing weapons detection systems are primarily oriented to detecting metal and require the cooperation of the person being searched. The new generation of detectors under development that focuses primarily on imaging methods, faces problems associated with privacy issues. There remains a need for a weapons detector which is portable, detects weapons remotely, avoids the issues associated with privacy rights, can tell the difference between car keys and a knife, and is affordable enough that one can be issued to every peacekeeper and law enforcement officer. AKELA is developing a concealed weapons detector that uses wideband radar techniques to excite natural electromagnetic resonances that characterize the size, shape, and material composition of an object. Neural network processing is used to classify the difference between weapons and nuisance objects. We have constructed both time and frequency domain test systems and used them to gather experimental data on a variety of armed and unarmed individuals. These experiments have been performed in an environment similar to the operational environment. Preliminary results from these experiments show that it is possible to detect a weapon being carried by an individual from a distance of 10 to 15 feet, and to detect a weapon being concealed behind the back. The power required is about 100 milliwatts. A breadboard system is being fabricated and will be used by AKELA and our law enforcement partner to gather data in operationally realistic situations. While a laptop computer will control the breadboard system, the wideband radar electronics will fit in a box the

  12. Weapons barrel life cycle determination

    Directory of Open Access Journals (Sweden)

    Nebojša Pene Hristov

    2013-10-01

    Full Text Available This article describes the dynamic processes within the gun barrel during the firing process in exploitation. It generally defines the basic principles of constructing tube elements, and shows the distortion of the basic geometry of the tube interior due to wear as well as the impact it causes during exploitation. The article also defines basic empirical models as well as a model based on fracture mechanics for the calculation of a use-life of the barrel, and other elements essential for the safe use of the barrel as the basic weapon element. Erosion causes are analysed in order to control and reduce wear and prolong the lifetime of the gun barrel. It gives directions for the reparation of barrels with wasted resources. In conclusion, the most influential elements of tube wear are given as well as possible modifications of existing systems, primarily propellant charges, with a purpose of prolonging lifetime of gun barrels. The guidelines for a proper determination of the lifetime based on the barrel condition assessment are given as well. INTRODUCTION The barrel as the basic element of each weapon is described as well as the processes occurring during the firing that have impulsive character and are accompanied by large amounts of energy. The basic elements of barrel and itheir constructive characteristics are descibed. The relation between Internal ballistics, ie calculation of the propellant gas pressure in the firing process, and structural elements defined by the barrel material resistance is shown. In general, this part of the study explains the methodology of the gun barrel structural elements calculation, ie. barrel geometry, taking into account the degrees of safety in accordance with Military Standards.   TUBE WEAR AND DEFORMATIONS The weapon barrel gradually wears out during exploitation due to which it no longer satisfies the set requirements. It is considered that the barrel has experienced a lifetime when it fails to fulfill the

  13. Ultra-small plutonium oxide nanocrystals: an innovative material in plutonium science.

    Science.gov (United States)

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Janssen, Arne; Manara, Dario; Griveau, Jean-Christophe; Colineau, Eric; Vitova, Tonya; Prüssmann, Tim; Wang, Di; Kübel, Christian; Meyer, Daniel

    2014-08-11

    Apart from its technological importance, plutonium (Pu) is also one of the most intriguing elements because of its non-conventional physical properties and fascinating chemistry. Those fundamental aspects are particularly interesting when dealing with the challenging study of plutonium-based nanomaterials. Here we show that ultra-small (3.2±0.9 nm) and highly crystalline plutonium oxide (PuO2 ) nanocrystals (NCs) can be synthesized by the thermal decomposition of plutonyl nitrate ([PuO2 (NO3 )2 ]⋅3 H2 O) in a highly coordinating organic medium. This is the first example reporting on the preparation of significant quantities (several tens of milligrams) of PuO2 NCs, in a controllable and reproducible manner. The structure and magnetic properties of PuO2 NCs have been characterized by a wide variety of techniques (powder X-ray diffraction (PXRD), X-ray absorption fine structure (XAFS), X-ray absorption near edge structure (XANES), TEM, IR, Raman, UV/Vis spectroscopies, and superconducting quantum interference device (SQUID) magnetometry). The current PuO2 NCs constitute an innovative material for the study of challenging problems as diverse as the transport behavior of plutonium in the environment or size and shape effects on the physics of transuranium elements.

  14. Fifty years of plutonium exposure to the Mahattan Project plutonium workers: An update

    Energy Technology Data Exchange (ETDEWEB)

    Voelz, G.L.; Lawrence, J.N.P.; Johnson, E.R. [Los Alamos National Lab., TN (United States)

    1997-10-01

    Twenty-six white male workers who did the original plutonium research and development work at Los Alamos have been examined periodically over the past 50 y to identify possible health effects from internal plutonium depositions. Their effective doses range from 0.1 to 7.2 Sv with a median value of 1.25 Sv. As of the end of 1994, 7 individuals have died compared with an expected 16 deaths based on mortality rates of U.S. white males in the general population. The standardized mortality ratio (SMR) is 0.43. When compared with 876 unexposed Los Alamos workers of the same period, the plutonium worker`s mortality rate was also not elevated (SMR = 0.77). The 19 living persons have diseases and physical changes characteristic of a male population with a median age of 72 y (range = 69 to 86 y). Eight of the twenty-six workers have been diagnosed as having one or more cancers, which is within the expected range. The underlying cause of death in three of the seven deceased persons was from cancer, namely cancer of prostate, lung, and bone. Mortality from all cancers was not statistically elevated. The effective doses from plutonium to these individuals are compared with current radiation protection guidelines. 28 refs., 5 tabs.

  15. Recommended plutonium release fractions from postulated fires. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, V.; Schumacher, P.M.

    1993-12-01

    This report was written at the request of EG&G Rocky Flats, Inc. in support of joint emergency planning for the Rocky Flats Plant (RFP) by EG&G and the State of Colorado. The intent of the report is to provide the State of Colorado with an independent assessment of any respirable plutonium releases that might occur in the event of a severe fire at the plant. Fire releases of plutonium are of interest because they have been used by EG&G to determine the RFP emergency planning zones. These zones are based on the maximum credible accident (MCA) described in the RFP Final Environmental Impact Statement (FEIS) of 1980, that MCA is assumed to be a large airplane crashing into a RFP plutonium building.The objective of this report was first, to perform a worldwide literature review of relevant release experiments from 1960 to the present and to summarize those findings, and second, to provide recommendations for application of the experimental data to fire release analyses at Rocky Flats. The latter step requires translation between experimental and expected RFP accident parameters, or ``scaling.`` The parameters of particular concern are: quantities of material, environmental parameters such as the intensity of a fire, and the physico-chemical forms of the plutonium. The latter include plutonium metal, bulk plutonium oxide powder, combustible and noncombustible wastes contaminated with plutonium oxide powder, and residues from plutonium extraction processes.

  16. Plutonium finishing plant safety systems and equipment list

    Energy Technology Data Exchange (ETDEWEB)

    Bergquist, G.G.

    1995-01-06

    The Safety Equipment List (SEL) supports Analysis Report (FSAR), WHC-SD-CP-SAR-021 and the Plutonium Finishing Plant Operational Safety Requirements (OSRs), WHC-SD-CP-OSR-010. The SEL is a breakdown and classification of all Safety Class 1, 2, and 3 equipment, components, or system at the Plutonium Finishing Plant complex.

  17. Density of Plutonium Turnings Generated from Machining Activities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, John Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vigil, Duane M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jachimowski, Thomas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Archuleta, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Arellano, Gerald Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Melton, Vince Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-20

    The purpose of this project was to determine the density of plutonium (Pu) turnings generated from the range of machining activities, using both surrogate material and machined Pu turnings. Verify that 500 grams (g) of plutonium will fit in a one quart container using a surrogate equivalent volume and that 100 grams of Pu will fit in a one quart Savy container.

  18. 10 CFR 71.88 - Air transport of plutonium.

    Science.gov (United States)

    2010-01-01

    ... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any form... carrier, require compliance with 49 CFR 175.704, U.S. Department of Transportation regulations applicable... 10 Energy 2 2010-01-01 2010-01-01 false Air transport of plutonium. 71.88 Section 71.88...

  19. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    Science.gov (United States)

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  20. Taser and Conducted Energy Weapons.

    Science.gov (United States)

    LeClair, Thomas G; Meriano, Tony

    2015-01-01

    It is clear that CEWs are an increasingly prevalent law enforcement tool, adopted to address a complex and challenging problem. The potential for serious injury from a single deployment of a CEW is extremely low. The debate regarding the link between these electrical weapons and sudden in-custody death is likely to continue because their use is often in complex and volatile situations. Any consideration of injuries has to be put into that context. One must also consider what injuries to a subject would result if an alternative force method was used. Furthermore, the potential benefits of CEWs, including reduction in injuries to the public and law-enforcement officers, need to be considered.

  1. Air guns: toys or weapons?

    Science.gov (United States)

    Aslan, Sahin; Uzkeser, Mustafa; Katirci, Yavuz; Cakir, Zeynep; Bilir, Ozlem; Bilge, Fatih; Cakir, Murtaza

    2006-09-01

    Air guns and blank guns may appear relatively harmless at first glance, but they are, in fact, potentially destructive, even lethal, weapons. Approximately 2 to 2.5 million nonpowder firearms are sold annually, and again approximately 12.9 per 100,000 population are treated for such injuries in hospital emergency departments each year in the United States. Unfortunately, these guns are considered to be a toy for children. Therefore, incidents of air gun injuries are gradually increasing. Although such injuries may initially be considered trivial, it may signify severe internal tissue pathologies. These apparently trivial injuries may have catastrophic consequences if unnoticed. In this study, we report 4 cases with head injury due to a shot by these guns. The cases indicate that these people had used the guns belonging to their parents for the purpose of suicide. The cases also show that these machines are not innocent.

  2. Electronic eyebox for weapon sights

    Science.gov (United States)

    Szapiel, Stan; Greenhalgh, Catherine; Wagner, Kevin; Nobes, Ryan

    2016-05-01

    We expand the effective size of the eyebox of a magnified telescopic weapon sight by following the movements of the operator's eye to create a larger, `electronic eyebox'. The original eyebox of the telescope is dynamically relocated in space so that proper overlap between the pupil of the eye and the exit pupil of the device is maintained. Therefore, the operator will perceive the entire field of view of the instrument in a much bigger spatial region than the one defined by the original eyebox. Proof-of-the-concept results are presented with a more than 3.5X enlargement of the eyebox volume along with recommendations for the next phase of development.

  3. Uncertainties on lung doses from inhaled plutonium.

    Science.gov (United States)

    Puncher, Matthew; Birchall, Alan; Bull, Richard K

    2011-10-01

    In a recent epidemiological study, Bayesian uncertainties on lung doses have been calculated to determine lung cancer risk from occupational exposures to plutonium. These calculations used a revised version of the Human Respiratory Tract Model (HRTM) published by the ICRP. In addition to the Bayesian analyses, which give probability distributions of doses, point estimates of doses (single estimates without uncertainty) were also provided for that study using the existing HRTM as it is described in ICRP Publication 66; these are to be used in a preliminary analysis of risk. To infer the differences between the point estimates and Bayesian uncertainty analyses, this paper applies the methodology to former workers of the United Kingdom Atomic Energy Authority (UKAEA), who constituted a subset of the study cohort. The resulting probability distributions of lung doses are compared with the point estimates obtained for each worker. It is shown that mean posterior lung doses are around two- to fourfold higher than point estimates and that uncertainties on doses vary over a wide range, greater than two orders of magnitude for some lung tissues. In addition, we demonstrate that uncertainties on the parameter values, rather than the model structure, are largely responsible for these effects. Of these it appears to be the parameters describing absorption from the lungs to blood that have the greatest impact on estimates of lung doses from urine bioassay. Therefore, accurate determination of the chemical form of inhaled plutonium and the absorption parameter values for these materials is important for obtaining reliable estimates of lung doses and hence risk from occupational exposures to plutonium.

  4. Thermal Stability Studies of Candidate Decontamination Agents for Hanford’s Plutonium Finishing Plant Plutonium-Contaminated Gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Cooper, Thurman D.; Jones, Susan A.; Ewalt, John R.; Compton, James A.; Trent, Donald S.; Edwards, Matthew K.; Kozelisky, Anne E.; Scott, Paul A.; Minette, Michael J.

    2005-09-29

    This report provides the results of PNNL's and Fluor's studies of the thermal stabilities of potential wastes arising from decontamination of Hanford's Plutonium Finishing Plant's plutonium contaminated gloveboxes. The candidate wastes arising from the decontamination technologies ceric nitrate/nitric acid, RadPro, Glygel, and Aspigel.

  5. Toward a nuclear weapons free world?

    Energy Technology Data Exchange (ETDEWEB)

    Maaranen, S.A. [Los Alamos National Lab., NM (United States). Center for International Security Affairs

    1996-09-01

    Doubts about the wisdom of relying on nuclear weapons are as old as nuclear weapons themselves. But despite this questioning, nuclear weapons came to be seen as the indispensable element of American (indeed Western) security during the Cold War. By the 1970s and 1980s, however, discontent was growing about the intense US-Soviet nuclear arms competition, as it failed to provide any enduring improvement in security; rather, it was seen as creating ever greater risks and dangers. Arms control negotiations and limitations, adopted as a means to regulate the technical competition, may also have relieved some of the political pressures and dangers. But the balance of terror, and the fears of it, continued. The Strategic Defense Initiative (SDI) under President Reagan was a very different approach to escaping from the precarious protection of nuclear weapons, in that it sought a way to continue to defend the US and the West, but without the catastrophic risks of mutual deterrence. As such, SDI connoted unhappiness with the precarious nuclear balance and, for many, with nuclear weapons in general. The disappearance of the Warsaw Pact, the disintegration of the Soviet Union, and the sudden end of the Cold War seemed to offer a unique opportunity to fashion a new, more peaceful world order that might allow for fading away of nuclear weapons. Scholars have foreseen two different paths to a nuclear free world. The first is a fundamental improvement in the relationships between states such that nuclear weapons are no longer needed. The second path is through technological development, e.g., missile defenses which could provide effective protection against nuclear attacks. The paper discusses nuclear weapon policy in the US, views of other nuclear states, the future of nuclear weapons, and issues in a less-nuclear world.

  6. Weapon container catalog. Volumes 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.A.; Higuera, M.C.

    1998-02-01

    The Weapon Container Catalog describes H-gear (shipping and storage containers, bomb hand trucks and the ancillary equipment required for loading) used for weapon programs and for special use containers. When completed, the catalog will contain five volumes. Volume 1 for enduring stockpile programs (B53, B61, B83, W62, W76, W78, W80, W84, W87, and W88) and Volume 2, Special Use Containers, are being released. The catalog is intended as a source of information for weapon program engineers and also provides historical information. The catalog also will be published on the SNL Internal Web and will undergo periodic updates.

  7. [New challenges in the biological weapons convention].

    Science.gov (United States)

    Sissonen, Susanna; Raijas, Tiina; Haikala, Olli; Hietala, Heikki; Virri, Markku; Nikkari, Simo

    2012-01-01

    Microbes and their toxins are biological weapons that can cause disease in humans, animals or plants, and which can be used with hostile intent in warfare and terrorism. Biological agents can be used as weapons of mass destruction and therefore, immense human and social and major economical damage can be caused. Rapid development of life sciences and technologies during the recent decades has posed new challenges to the Biological Weapons Convention. The Convention states that the States Parties to the BWC strive to ensure that the Convention remains relevant and effective, despite changes in science, technology or politics.

  8. The Spear: An Effective Weapon Since Antiquity

    OpenAIRE

    Robert E. Dohrenwend

    2012-01-01

    The spear is perhaps man’s oldest weapon, and may even be his oldest tool. Over the hundreds of thousands of years of the weapon’s existence, it evolved from a pointed stick into an efficient hunting missile, and then became the most effective hand-held bladed weapon humans ever devised. The spear and its use is the only martial art originally devised for use against species other than our own, and more than any other weapon, the spear emphasizes the relationship between hunting and warfare. ...

  9. The Importance of Designating Cyberspace Weapon Systems

    Science.gov (United States)

    2013-10-01

    PerspectiveSpace Focus Cyberspace Vulnerability Assessment / Hunter Weapon System The Air Force Cyberspace Vulnerability Assessment ( CVA ) / Hunter  weapon...system can perform defensive sorties worldwide via remote or on-site access. The  CVA /Hunter weapon sys- tem is operated by one active duty unit, the...support all of the mission crews. Developed by the for- mer Air Force Information Operations Center, the  CVA /Hunter  weapon system was fielded to the 688th

  10. Plutonium isotopes in the ocean off Japan after Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Buesseler, K.; Black, E.; Pike, S. [Woods Hole Oceanographic Institution (United States); Kenna, T. [Lamont-Doherty Earth Observatory (United States); Masque, P. [Universitat Autonoma de Barcelona (Spain)

    2014-07-01

    The Fukushima Dai-ichi nuclear power plants (NPPs) are known to be an unprecedented accidental source of {sup 137}Cs, {sup 134}Cs and other volatile radionuclides to the ocean. Much less is known however about the extent of input of refractory radionuclides such as plutonium to the environment. Limited available data from land soils and vegetation, suggest at least some atmospheric delivery of particulate Pu but at very low levels relative to pre-existing fallout sources. To resolve Fukushima derived Pu from weapons testing derived Pu, information regarding the Pu isotopic composition is needed. The {sup 240}Pu/{sup 239}Pu atom ratio determined by mass spectrometric techniques, and the {sup 238}Pu/{sup 239,240}Pu activity ratio as measured by alpha counting are diagnostic with respect to Pu source. We review and present new data on the Pu isotopic ratios and concentrations in the oceans, combining several data sets on dissolved (from bottle sampling), suspended particulates (from filtration), sinking particles (from sediment traps) and seafloor sediments (from cores) to look for the Fukushima Pu signal. In most samples, the {sup 240}Pu/{sup 239}Pu ratios are in the range of 0.20-0.23, characteristic of Pu ocean signal which is a combination of global fallout with a characteristic ratio of 0.18 and local fallout from the Pacific Proving Grounds with ratios higher than 0.24, and known from prior studies to influence the ocean off Japan. In 2011, in surface ocean waters, we found ratios {sup 240}Pu/{sup 239}Pu >0.3, which implies a component of Fukushima Pu had been delivered to the ocean, given NPP derived end-member ratios of 0.35-0.45. Fukushima derived Pu was not found deeper in the water column or even at all stations, consistent with its rapid removal from the ocean and the high background of pre-existing Pu in the waters and sediments, masking the new Fukushima sources. With this data a mass balance will be made between Pu from global fallout, local fallout and

  11. Solvent extraction system for plutonium colloids and other oxide nano-particles

    Science.gov (United States)

    Soderholm, Lynda; Wilson, Richard E; Chiarizia, Renato; Skanthakumar, Suntharalingam

    2014-06-03

    The invention provides a method for extracting plutonium from spent nuclear fuel, the method comprising supplying plutonium in a first aqueous phase; contacting the plutonium aqueous phase with a mixture of a dielectric and a moiety having a first acidity so as to allow the plutonium to substantially extract into the mixture; and contacting the extracted plutonium with second a aqueous phase, wherein the second aqueous phase has a second acidity higher than the first acidity, so as to allow the extracted plutonium to extract into the second aqueous phase. The invented method facilitates isolation of plutonium polymer without the formation of crud or unwanted emulsions.

  12. 48 CFR 217.173 - Multiyear contracts for weapon systems.

    Science.gov (United States)

    2010-10-01

    ... weapon systems. 217.173 Section 217.173 Federal Acquisition Regulations System DEFENSE ACQUISITION... Mulityear Contracting 217.173 Multiyear contracts for weapon systems. As authorized by 10 U.S.C. 2306b(h... contract for— (a) A weapon system and associated items, services, and logistics support for a weapon system...

  13. Application of a Dynamic Programming Algorithm for Weapon Target Assignment

    Science.gov (United States)

    2016-02-01

    UNCLASSIFIED UNCLASSIFIED Application of a Dynamic Programming Algorithm for Weapon Target Assignment Lloyd Hammond Weapons and...Combat Systems Division Defence Science and Technology Group DST Group-TR-3221 ABSTRACT Threat evaluation and weapon assignment...dynamic programming algorithm for Weapon Target Assignment which, after more rigorous testing, could be used as a concept demonstrator and as an auxiliary

  14. 36 CFR 1002.4 - Weapons, traps and nets.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Weapons, traps and nets. 1002... AND RECREATION § 1002.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in this section, the following are prohibited: (i) Possessing a weapon, trap or net. (ii) Carrying a weapon, trap or...

  15. 43 CFR 15.11 - Explosives and dangerous weapons.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Explosives and dangerous weapons. 15.11... § 15.11 Explosives and dangerous weapons. No person shall carry, use or possess within the Preserve... other kind of weapon potentially harmful to the reef structure. The use of such weapons from beyond the...

  16. A different kind of weapon focus: simulated training with ballistic weapons reduces change blindness.

    Science.gov (United States)

    Taylor, J Eric T; Witt, Jessica K; Pratt, Jay

    2017-01-01

    Attentional allocation is flexibly altered by action-related priorities. Given that tools - and specifically weapons - can affect attentional allocation, we asked whether training with a weapon or holding a weapon during search would affect change detection. In three experiments, participants searched for changes to agents, shootable objects, or environments in the popular flicker paradigm. Participants trained with a simulated weapon or watched a video from the same training perspective and then searched for changes while holding a weapon or a control object. Results show an effect of training, highlighting the importance of sensorimotor experience for the action-relevant allocation of attention, and a possible interaction between training and the object held during search. Simulated training with ballistic weapons reduces change blindness. This result has implications for the interaction between tool use and attentional allocation.

  17. AMS of the Minor Plutonium Isotopes.

    Science.gov (United States)

    Steier, P; Hrnecek, E; Priller, A; Quinto, F; Srncik, M; Wallner, A; Wallner, G; Winkler, S

    2013-01-01

    VERA, the Vienna Environmental Research Accelerator, is especially equipped for the measurement of actinides, and performs a growing number of measurements on environmental samples. While AMS is not the optimum method for each particular plutonium isotope, the possibility to measure (239)Pu, (240)Pu, (241)Pu, (242)Pu and (244)Pu on the same AMS sputter target is a great simplification. We have obtained a first result on the global fallout value of (244)Pu/(239)Pu = (5.7 ± 1.0) × 10(-5) based on soil samples from Salzburg prefecture, Austria. Furthermore, we suggest using the (242)Pu/(240)Pu ratio as an estimate of the initial (241)Pu/(239)Pu ratio, which allows dating of the time of irradiation based solely on Pu isotopes. We have checked the validity of this estimate using literature data, simulations, and environmental samples from soil from the Salzburg prefecture (Austria), from the shut down Garigliano Nuclear Power Plant (Sessa Aurunca, Italy) and from the Irish Sea near the Sellafield nuclear facility. The maximum deviation of the estimated dates from the expected ages is 6 years, while relative dating of material from the same source seems to be possible with a precision of less than 2 years. Additional information carried by the minor plutonium isotopes may allow further improvements of the precision of the method.

  18. Expected radiation effects in plutonium immobilization ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A., LLNL

    1997-09-01

    The current formulation of the candidate ceramic for plutonium immobilization consists primarily of pyrochlore, with smaller amounts of hafnium-zirconolite, rutile, and brannerite or perovskite. At a plutonium loading of 10.5 weight %, this ceramic would be made metamict (amorphous) by radiation damage resulting from alpha decay in a time much less than 10,000 years, the actual time depending on the repository temperature as a function of time. Based on previous experimental radiation damage work by others, it seems clear that this process would also result in a bulk volume increase (swelling) of about 6% for ceramic that was mechanically unconfined. For the candidate ceramic, which is made by cold pressing and sintering and has porosity amounting to somewhat more than this amount, it seems likely that this swelling would be accommodated by filling in the porosity, if the material were tightly confined mechanically by the waste package. Some ceramics have been observed to undergo microcracking as a result of radiation-induced anisotropic or differential swelling. It is unlikely that the candidate ceramic will microcrack extensively, for three reasons: (1) its phase composition is dominated by a single matrix mineral phase, pyrochlore, which has a cubic crystal structure and is thus not subject to anisotropic swelling; (2) the proportion of minor phases is small, minimizing potential cracking due to differential swelling; and (3) there is some flexibility in sintering process parameters that will allow limitation of the grain size, which can further limit stresses resulting from either cause.

  19. THE CREATIVE APPLICATION OF SCIENCE TECHNOLOGY & WORK FORCE INNOVATIONS TO THE D&D OF PLUTONIUM FINISHING PLANT (PFP) AT THE HANFORD NUCLEAR RESERVATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, S.L.

    2006-02-01

    The Plutonium Finishing Plant (PFP) consists of a number of process and support buildings for handling plutonium. Building construction began in the late 1940's to meet national priorities and became operational in 1950 producing refined plutonium salts and metal for the United States nuclear weapons program. The primary mission of the PFP was to provide plutonium used as special nuclear material for fabrication into a nuclear device for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race. PFP has now completed its mission and is fully engaged in deactivation, decontamination and decommissioning (D&D). At this time the PFP buildings are planned to be reduced to ground level (slab-on-grade) and the site remediated to satisfy national, Department of Energy (DOE) and Washington state requirements. The D&D of a highly contaminated plutonium processing facility presents a plethora of challenges. PFP personnel approached the D&D mission with a can-do attitude. They went into D&D knowing they were facing a lot of challenges and unknowns. There were concerns about the configuration control associated with drawings of these old process facilities. There were unknowns regarding the location of electrical lines and process piping containing chemical residues such as strong acids and caustics. The gloveboxes were highly contaminated with plutonium and chemical residues. Most of the glovebox windows were opaque with splashed process chemicals that coated the windows or etched them, reducing visibility to near zero. Visibility into the glovebox was a serious worker concern. Additionally, all the gloves in the gloveboxes were degraded and unusable. Replacing gloves in gloveboxes was necessary to even begin glovebox cleanout. The sheer volume of breathing air needed was also an issue. These and other challenges and PFP's approach to overcome these

  20. Determination of plutonium oxidation states in dilute nitric acid by complementary tristimulus colorimetry.

    Science.gov (United States)

    Silver, G L

    1967-06-01

    The preparation of reference standards for use in complementary tristimulus colorimetry for plutonium is described. Plutonium(III) and (VI) are prepared by hydrazine reduction and silver(II) oxidation, respectively, of plutonium(IV). Plutonium(V) is prepared by reduction of plutonium(VI) with ascorbic or sulphurous acid. A method for computerizing tristimulus colorimetry is presented, and the technique is extended to three dimensions ("quadristimulus colorimetry").

  1. Plutonium immobilization plant using glass in existing facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    DiSabatino, A., LLNL

    1998-06-01

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a glass immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors.

  2. Colloid-Facilitated Plutonium Transport in Fractured Tuffaceous Rock.

    Science.gov (United States)

    Wolfsberg, Andrew; Dai, Zhenxue; Zhu, Lin; Reimus, Paul; Xiao, Ting; Ware, Doug

    2017-05-16

    Colloids have the potential to enhance the mobility of strongly sorbing radionuclide contaminants in groundwater at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium transport in fractured porous media to identify plutonium reactive transport processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling by minimizing the least-squares objective function of multicomponent concentration data from multiple transport experiments with the shuffled complex evolution metropolis algorithm. Capitalizing on an unplanned experimental artifact that led to colloid formation, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures were clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in groundwater aquifers.

  3. Computational Challenges in Nuclear Weapons Simulation

    Energy Technology Data Exchange (ETDEWEB)

    McMillain, C F; Adams, T F; McCoy, M G; Christensen, R B; Pudliner, B S; Zika, M R; Brantley, P S; Vetter, J S; May, J M

    2003-08-29

    After a decade of experience, the Stockpile Stewardship Program continues to ensure the safety, security and reliability of the nation's nuclear weapons. The Advanced Simulation and Computing (ASCI) program was established to provide leading edge, high-end simulation capabilities needed to meet the program's assessment and certification requirements. The great challenge of this program lies in developing the tools and resources necessary for the complex, highly coupled, multi-physics calculations required to simulate nuclear weapons. This paper describes the hardware and software environment we have applied to fulfill our nuclear weapons responsibilities. It also presents the characteristics of our algorithms and codes, especially as they relate to supercomputing resource capabilities and requirements. It then addresses impediments to the development and application of nuclear weapon simulation software and hardware and concludes with a summary of observations and recommendations on an approach for working with industry and government agencies to address these impediments.

  4. ADS's Based on the 660 MeV Proton Phasotron of JINR for Research on Utilization of Plutonium

    CERN Document Server

    Barashenkov, V S; Puzynin, I V

    2000-01-01

    The operating in JINR (Dubna) 660 MeV phasotron with the proton beam intensity of 3.2 muA provides a way for building a safe ADS with the coefficient of neutron multiplication K_{eff}<0.95 and the heat power of 10-30 kW which is sufficient for experimental research on electronuclear technology. Such a simple and cheap set-up allows one to check up the basic ideas of the widely discussed new method of energy production and provides information which is important for designers of more powerful industrial ADSs. Two types of subcritical assemblies are considered: with weapon grade metallic plutonium rods and with standard MOX fuel rods (25 % PuO_2 + 75 % natural UO_2). A reflector with ^{9}Be allows one to decrease significantly the used amount of fuel.

  5. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 4 TANK 21H QUALIFICATION SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Fink, S.

    2011-06-22

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H to qualify them for use in the Integrated Salt Disposition Program (ISDP) Batch 4 processing. All sample results agree with expectations based on prior analyses where available. No issues with the projected Salt Batch 4 strategy are identified. This revision includes additional data points that were not available in the original issue of the document, such as additional plutonium results, the results of the monosodium titanate (MST) sorption test and the extraction, scrub strip (ESS) test. This report covers the revision to the Tank 21H qualification sample results for Macrobatch (Salt Batch) 4 of the Integrated Salt Disposition Program (ISDP). A previous document covers initial characterization which includes results for a number of non-radiological analytes. These results were used to perform aluminum solubility modeling to determine the hydroxide needs for Salt Batch 4 to prevent the precipitation of solids. Sodium hydroxide was then added to Tank 21 and additional samples were pulled for the analyses discussed in this report. This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP).

  6. Europium-155 in Debris from Nuclear Weapons

    DEFF Research Database (Denmark)

    Aarkrog, Asker; Lippert, Jørgen Emil

    1967-01-01

    The lithium-drifted germanium detector enables determination of europium-155 on a routine basis in environmental samples contaminated with debris from nuclear weapons. From measurements of europium-155, cesium-144, and strontium-90 in air filters collected between 1961 and 1966, the yield...... of europium-155 from weapons was estimated at 1400 atoms per 10$^{6}$ fissions, which is close to the yield of europium-155 from fast fission of uranium-238....

  7. Disposition and Metabolism of Investigational New Drugs.

    Science.gov (United States)

    1982-09-01

    UNCLASSIFIED N EL MDISPOSITION AND METABOLISM OF INVESTIGATIONAL NEW DRUGS rN4 MRI PROJECT NO. 4266-B FINAL REPORT By Thomas E. Shellenberger September 1982...documents. Ii I DISPOSITION AND METABOLISM OF INVESTIGATIONAL NEW DRUGS [RI PROJECT NO. 4266-B [FINAL REPORT BY Thomas E. Shellenberger September 1982...the Army, Contract No. DAMD-17-76-C-6059, MRI Project No. 4266-B, "Disposition and Metabolism of Investigational New Drugs ." The work was supported by

  8. Overall View of Chemical and Biochemical Weapons

    Science.gov (United States)

    Pitschmann, Vladimír

    2014-01-01

    This article describes a brief history of chemical warfare, which culminated in the signing of the Chemical Weapons Convention. It describes the current level of chemical weapons and the risk of using them. Furthermore, some traditional technology for the development of chemical weapons, such as increasing toxicity, methods of overcoming chemical protection, research on natural toxins or the introduction of binary technology, has been described. In accordance with many parameters, chemical weapons based on traditional technologies have achieved the limit of their development. There is, however, a big potential of their further development based on the most recent knowledge of modern scientific and technical disciplines, particularly at the boundary of chemistry and biology. The risk is even higher due to the fact that already, today, there is a general acceptance of the development of non-lethal chemical weapons at a technologically higher level. In the future, the chemical arsenal will be based on the accumulation of important information from the fields of chemical, biological and toxin weapons. Data banks obtained in this way will be hardly accessible and the risk of their materialization will persist. PMID:24902078

  9. Overall view of chemical and biochemical weapons.

    Science.gov (United States)

    Pitschmann, Vladimír

    2014-06-04

    This article describes a brief history of chemical warfare, which culminated in the signing of the Chemical Weapons Convention. It describes the current level of chemical weapons and the risk of using them. Furthermore, some traditional technology for the development of chemical weapons, such as increasing toxicity, methods of overcoming chemical protection, research on natural toxins or the introduction of binary technology, has been described. In accordance with many parameters, chemical weapons based on traditional technologies have achieved the limit of their development. There is, however, a big potential of their further development based on the most recent knowledge of modern scientific and technical disciplines, particularly at the boundary of chemistry and biology. The risk is even higher due to the fact that already, today, there is a general acceptance of the development of non-lethal chemical weapons at a technologically higher level. In the future, the chemical arsenal will be based on the accumulation of important information from the fields of chemical, biological and toxin weapons. Data banks obtained in this way will be hardly accessible and the risk of their materialization will persist.

  10. Overall View of Chemical and Biochemical Weapons

    Directory of Open Access Journals (Sweden)

    Vladimír Pitschmann

    2014-06-01

    Full Text Available This article describes a brief history of chemical warfare, which culminated in the signing of the Chemical Weapons Convention. It describes the current level of chemical weapons and the risk of using them. Furthermore, some traditional technology for the development of chemical weapons, such as increasing toxicity, methods of overcoming chemical protection, research on natural toxins or the introduction of binary technology, has been described. In accordance with many parameters, chemical weapons based on traditional technologies have achieved the limit of their development. There is, however, a big potential of their further development based on the most recent knowledge of modern scientific and technical disciplines, particularly at the boundary of chemistry and biology. The risk is even higher due to the fact that already, today, there is a general acceptance of the development of non-lethal chemical weapons at a technologically higher level. In the future, the chemical arsenal will be based on the accumulation of important information from the fields of chemical, biological and toxin weapons. Data banks obtained in this way will be hardly accessible and the risk of their materialization will persist.

  11. Development of first ever scanning probe microscopy capabilities for plutonium

    Science.gov (United States)

    Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; Vodnik, Douglas R.; Ramos, Michael; Richmond, Scott; Moore, David P.; Venhaus, Thomas J.; Joyce, Stephen A.; Usov, Igor O.

    2017-04-01

    Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. These first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.

  12. Fluorine and chlorine determination in mixed uranium-plutonium oxide fuel and plutonium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Elinson, S.V.; Zemlyanukhina, N.A.; Pavlova, I.V.; Filatkina, V.P.; Tsvetkova, V.T.

    1981-01-01

    A technique of fluorine and chlorine determination in the mixed uranium-plutonium oxide fuel and plutonium dioxide, based on their simultaneous separation by means of pyrohydrolysis, is developed. Subsequently, fluorine is determined by photometry with alizarincomplexonate of lanthanum or according to the weakening of zirconium colouring with zylenol orange. Chlorine is determined using the photonephelometric method according to the reaction of chloride-ion interaction with silver nitrate or by spectrophotometric method according to the reaction with mercury rhodanide. The lower limit of fluorine determination is -6x10/sup -5/ %, of chlorine- 1x10/sup -4/% in the sample of 1g. The relative mean quadratic deviation of the determination result (Ssub(r)), depends on the character of the material analyzed and at the content of nx10/sup -4/ - nx10/sup -3/ mass % is equal to from 0.05 to 0.32 for fluorine and from 0.11 to 0.35 for chlorine.

  13. Imitators of plutonium and americium in a mixed uranium- plutonium nitride fuel

    Science.gov (United States)

    Nikitin, S. N.; Shornikov, D. P.; Tarasov, B. A.; Baranov, V. G.; Burlakova, M. A.

    2016-04-01

    Uranium nitride and mix uranium nitride (U-Pu)N is most popular nuclear fuel for Russian Fast Breeder Reactor. The works in hot cells associated with the radiation exposure of personnel and methodological difficulties. To know the main physical-chemical properties of uranium-plutonium nitride it necessary research to hot cells. In this paper, based on an assessment of physicochemical and thermodynamic properties of selected simulators Pu and Am. Analogues of Pu is are Ce and Y, and analogues Am - Dy. The technique of obtaining a model nitride fuel based on lanthanides nitrides and UN. Hydrogenation-dehydrogenation- nitration method of derived powders nitrides uranium, cerium, yttrium and dysprosium, held their mixing, pressing and sintering, the samples obtained model nitride fuel with plutonium and americium imitation. According to the results of structural studies have shown that all the samples are solid solution nitrides rare earth (REE) elements in UN.

  14. A causal dispositional account of fitness.

    Science.gov (United States)

    Triviño, Vanessa; Nuño de la Rosa, Laura

    2016-09-01

    The notion of fitness is usually equated to reproductive success. However, this actualist approach presents some difficulties, mainly the explanatory circularity problem, which have lead philosophers of biology to offer alternative definitions in which fitness and reproductive success are distinguished. In this paper, we argue  that none of these alternatives is satisfactory and, inspired by Mumford and Anjum's dispositional theory of causation, we offer a definition of fitness as a causal dispositional property. We argue that, under this framework, the distinctiveness that biologists usually attribute to fitness-namely, the fact that fitness is something different from both the physical traits of an organism and the number of offspring it leaves-can be explained, and the main problems associated with the concept of fitness can be solved. Firstly, we introduce Mumford and Anjum's dispositional theory of causation and present our definition of fitness as a causal disposition. We explain in detail each of the elements involved in our definition, namely: the relationship between fitness and the functional dispositions that compose it, the emergent character of fitness, and the context-sensitivity of fitness. Finally, we explain how fitness and realized fitness, as well as expected and realized fitness are distinguished in our approach to fitness as a causal disposition.

  15. ENVIRONMENTAL CONTAMINATION FROM WEAPON TESTS

    Energy Technology Data Exchange (ETDEWEB)

    none

    1958-10-01

    The program of the Atomic Energy Commission on environmental contamination from weapons tests is designed for the overall evaluation of the hazard to humans from test operations. It is limited to studies of the deposition of activity at long range rather than the problems associated with immediate, close-in fallout. The program has largely been a study of Sr{sup 90}, since considerations based on experience and measurement indicate that it is the isotope of greatest potential hazard. Data are presented pertinent to the monitoring of long-range fallout, particularly Sr{sup 90} and Cs{sup 137}. Values are tabulated for the fallout deposition, air concentrations, water concentrations, and the amounts in foods and human bone. In addition, results are given for some experimental investigations. The report of these results is not interpretative although certain papers that do attempt to interpret the present situation with respect to Sr{sup 90} in particular are reprinted. Bibliographies are presented covering the period since the 1957 hearings before the Joint Committee on Atomic Energy concerning the nature of radioactive fallout and its effects on man. A document list of submissions to the United Nations Scientific Committee on the Effects of Atomic Radiation is given to illustrate the work done in other countries. Several papers on the subject, which have not been generally available, are reprinted.

  16. Lung cancer after internal alpha-exposure of the lung from incorporated plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail, S.

    2004-07-01

    Several epidemiological studies among workers of first Russian nuclear complex Mayak which produced weapon-grade plutonium showed significant increase of lung cancer mortality. The estimated shape of the dose-response was linear with both alpha and gamma dose but risk coefficients for gamma-exposure are on the edge of the significance level. This study was performed in the cohort of male Mayak nuclear workers initially hired in 1948-1958 with known levels of plutonium exposure. Number of observed lung cancer cases available for analyses in this cohort was 217. The relative risk of death from lung cancer among smokers was 10.7 (5.5-25.2) comparatively to non-smokers. This is in good correspondence with results of other studies. The excess relative risk per one Gray was 63. (4.1-9.7) for internal alpha-exposure and 0.18 (0.01-0.5) for external gamma-exposure. According to a model this gives 16:112:60:29 cases of lung cancer attributed to background, smoking, internal alpha-and external gamma-exposure, correspondingly. The relative risks of death from lung cancer were also estimated in a nested case-control study with lung cancer deaths as cases. Controls were selected from the cohort and matched for birth year to account for trend in lung cancer mortality with time. The analyses with nested case-control approach gave relative risks for smoking 14.7 (6.8-38.9). Relative risk of lung cancer among non-smokers after accumulating 0.34 Gy of alpha-exposure to lung was 3.7 (1.7-9.0). It should be emphasized that in fact after accumulation 0.3-0.4 Gy of absorbed dose 3-4 fold increase in lung cancer mortality was observed. This dose is very close to the dose which would be produced after intake of plutonium in quantities which are permissible today. (Author)

  17. A fast semi-quantitative method for Plutonium determination in an alpine firn/ice core

    Science.gov (United States)

    Gabrieli, J.; Cozzi, G.; Vallelonga, P.; Schwikowski, M.; Sigl, M.; Boutron, C.; Barbante, C.

    2009-04-01

    Plutonium is present in the environment as a consequence of atmospheric nuclear tests carried out in the 1960s, nuclear weapons production and releases by the nuclear industry over the past 50 years. Plutonium, unlike uranium, is essentially anthropogenic and it was first produced and isolated in 1940 by deuteron bombardment of uranium in the cyclotron of Berkeley University. It exists in five main isotopes, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, derived from civilian and military sources (weapons production and detonation, nuclear reactors, nuclear accidents). In the environment, 239Pu is the most abundant isotope. Approximately 6 tons of 239Pu have been released into the environment as a result of 541 atmospheric weapon tests Nuclear Pu fallout has been studied in various environmental archives, such as sediments, soil and herbarium grass. Mid-latitude ice cores have been studied as well, on Mont Blanc, the Western Alps and on Belukha Glacier, Siberian Altai. We present a Pu record obtained by analyzing 52 discrete samples of an alpine firn/ice core from Colle Gnifetti (M. Rosa, 4450 m a.s.l.), dating from 1945 to 1991. The239Pu signal was recorded directly, without preliminary cleaning or preconcentration steps, using an ICP-SFMS (Thermo Element2) equipped with a desolvation system (APEX). 238UH+ interferences were negligible for U concentrations lower than 50 ppt as verified both in spiked fresh snow and pre-1940 ice samples. The shape of 239Pu profile reflects the three main periods of atmospheric nuclear weapons testing: the earliest peak starts in 1954/55 to 1958 and includes the first testing period which reached a maximum in 1958. Despite a temporary halt in testing in 1959/60, the Pu concentration decreased only by half with respect to the 1958 peak. In 1961/62 Pu concentrations rapidly increased reaching a maximum in 1963, which was about 40% more intense than the 1958 peak. After the sign of the "Limited Test Ban Treaty" between USA and URSS in 1964, Pu

  18. Modern weapons and military equipment for issue no. 3-2015

    OpenAIRE

    ЙЕВТИЧ МИЛОШ М.

    2015-01-01

    Optimal features for concealed carry weapons. The specificity of jobs and tasks that require concealed carrying of weapons by officials require specific criteria when choosing personal weapons specialist.

  19. MODERN WEAPONS AND MILITARY EQUIPMENT FOR ISSUE NO. 3-2015

    OpenAIRE

    2015-01-01

    Optimal features for concealed carry weapons. The specificity of jobs and tasks that require concealed carrying of weapons by officials require specific criteria when choosing personal weapons specialist.

  20. A Dispositional Framework in Religious Education: Learning Dispositions and Early Years' Religious Education in Catholic Schools

    Science.gov (United States)

    Hyde, Brendan

    2010-01-01

    Early childhood educators have for some time now questioned approaches to education that focus solely on the development of thinking and rational cogitation, and have begun to favour dispositional frameworks in preference to learning frameworks. However, there is little evidence to suggest that dispositional frameworks have been utilised in…

  1. Critical mass studies of plutonium solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kruesi, F.E.; Erkman, J.O.; Lanning, D.D.

    1952-05-19

    The chain reacting conditions for plutonium nitrate in water solution have been examined experimentally for a variety of sizes of spheres and cylinders. The effects on the critical mass of the displacement of hydrogen and the addition of poisons to the fuel were measured in water tamped and bare reactors. In this report the data obtained in the investigation is presented graphically and in tables. Some preliminary analysis has been made yielding the results: (i) the absorption cross-section of Pu{sup 240} is 925 {plus_minus} 200 barns and (ii) the minimum critical mass of Pu{sup 239} in water is 510 grams at concentration of about 33 grams per liter.

  2. Thermophysical properties of coexistent phases of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Freibert, Franz J [Los Alamos National Laboratory; Mitchell, Jeremy N [Los Alamos National Laboratory; Saleh, Tarik A [Los Alamos National Laboratory; Schwartz, Dan S [Los Alamos National Laboratory

    2009-01-01

    Plutonium is the element with the greatest number of allotropic phases. Thermally induced transformations between these phases are typically characterized by thermal hysteresis and incomplete phase reversion. With Ga substitutal in the lattice, low symmetry phases are replaced by a higher symmetry phase. However, the low temperature Martensitic phase transformation ({delta} {yields} {alpha}{prime}) in Ga stabilized {delta}-phase Pu is characterized by a region of thermal hysteresis which can reach 200 C in extent. These regions of thermal hysteresis offer a unique opportunity to study thermodynamics in inhomogeneous systems of coexistent phases. The results of thermophysical properties measured for samples of inhomogeneous unalloyed and Ga alloyed Pu will be discussed and compared with similar measurements of their single phase constituents.

  3. Thermophysical properties of coexistent phases of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Freibert, F J; Mitchell, J N; Saleh, T A; Schwartz, D S, E-mail: freibert@lanl.gov, E-mail: jeremy@lanl.gov, E-mail: tsaleh@lanl.gov, E-mail: dschwartz@lanl.gov [Nuclear Materials Science Group, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-03-15

    Plutonium is the element with the greatest number of allotropic phases. Thermally induced transformations between these phases are typically characterized by thermal hysteresis and incomplete phase reversion. With Ga substitutional in the lattice, low symmetry phases are replaced by a higher symmetry phase. However, the low temperature martensitic phase transformation ({delta}{yields}{alpha}') in Ga stabilized {delta}-phase Pu is characterized by a region of thermal hysteresis which can reach 200 deg. C in extent. These regions of thermal hysteresis offer a unique opportunity to study thermodynamics in inhomogeneous systems of coexistent phases. The results of thermophysical properties measured for samples of inhomogeneous unalloyed and Ga alloyed Pu will be discussed and compared with similar measurements of their single phase constituents.

  4. Accelerator mass spectrometry (AMS) in plutonium analysis.

    Science.gov (United States)

    Strumińska-Parulska, Dagmara I

    The paper summarizes the results of the (240)Pu/(239)Pu atomic ratio studies in atmospheric fallout samples collected in 1986 over Gdynia (Poland) as well as three Baltic fish species collected in 1997 using the accelerator mass spectrometry. A new generation of AMS has been developed during last years and this method is an efficient and good technique to measure long-lived radioisotopes in the environment and provides the most accurate determination of the atomic ratios between (240)Pu and (239)Pu. The nuclide compositions of plutonium in filter samples correspond to their means of production. AMS measurements of atmospheric fallout collected in April showed sufficient increase of the (240)Pu/(239)Pu atomic ratio from 0.28 from March to 0.47. Also such high increase of (240)Pu/(239)Pu atomic ratio, close to reactor core (240)Pu/(239)Pu atomic ratio, was observed in September and equaled 0.47.

  5. Measurement and interpretation of plutonium spectra

    Energy Technology Data Exchange (ETDEWEB)

    Blaise, J.; Fred, M.S.; Carnall, W.T.; Crosswhite, H.M.; Crosswhite, H.

    1982-01-01

    The atomic spectroscopic data available for plutonium are among the rickest of any in the periodic system. They include high-resolution grating and Fourier-transform spectra as well as extensive Zeeman and isotope-shift studies. We summarize the present status of the term analysis and cite the configurations that have been identified. A least-squares adjustment of a parametric Hamiltonian for configurations of both Pu I and Pu II has shown that almost all of the expected low levels are now known. The use of a model Hamiltonian applicable to both lanthanide and actinide atomic species has been applied to the low configurations of Pu I and Pu II making use of trends predicted by ab initio calculations. This same model has been used to describe the energy levels of Pu/sup 3 +/ in LaCl/sub 3/, and an extension has permitted preliminary calculations of the spectra of other valence states.

  6. CORROSION MONITORING OF PLUTONIUM OXIDE AND SNF

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, D.G.; Haas, C.M.; Smith, C.M.; Ohl, P.C.

    2003-02-27

    While developing a method to measure pressure in totally sealed stainless steel containers holding spent nuclear fuel at the U.S. DOE Hanford Site, Vista Engineering Technologies, LLC (Vista Engineering) personnel adapted the central concept to corrosion monitoring techniques for the same containers. The ability to monitor corrosion within vessels containing spent nuclear fuel, plutonium and other hazardous materials is imperative for safe storage. Vista Engineering personnel have devised a way to monitor corrosion in a totally sealed stainless steel container using a Magnetically Coupled Corrosion Gauge (MCCG) Patent Pending. The MCCG can be used to detect corrosion as well as measure corrosion rate and does not require any penetration of the containment vessel, which minimizes pressure boundary surface area and sensitive weld materials in the vessels.

  7. Peculiar dynamical properties of plutonium hydrides

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the present work, the structure and spectra of PuH and PuH2 are defined by B3LYP/SDD method, from which the analytic potential energy function of PuH2 is derived. The analysis of quasi-classical molecular reaction dynamics is performed to study the state-state process of pu(7Fg) + H2(X1∑+g ). It is found that the reaction pu(7Fg) + H2(X1∑+g )→PuH2(X7B1) has no threshold. The simultaneous hydrogenation process of plutonium with the main product of PuH2 is theoretically proved for the first time.

  8. Development of the Direct Fabrication Process for Plutonium Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Congdon, J.W.

    2001-07-10

    The current baseline process for fabricating pucks for the Plutonium Immobilization Program includes granulation of the milled feed prior to compaction. A direct fabrication process was demonstrated that eliminates the need for granulation.

  9. Detecting low concentrations of plutonium hydride with magnetization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Wook; Mun, E. D.; Baiardo, J. P.; Zapf, V. S.; Mielke, C. H. [National High Magnetic Field Laboratory, MPA-CMMS, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545 (United States); Smith, A. I.; Richmond, S.; Mitchell, J.; Schwartz, D. [Nuclear Material Science Group, MST-16, LANL, Los Alamos, New Mexico 87545 (United States)

    2015-02-07

    We report the formation of plutonium hydride in 2 at. % Ga-stabilized δ-Pu, with 1 at. % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here, we use magnetization, X-ray, and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuH{sub x} on the surface of the sample with x ∼ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with ferromagnetic PuH{sub 1.9}.

  10. The metabolic properties of plutonium and allied materials

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, J.G.

    1949-11-16

    This report summarizes radioautographic, tracer, decontamination, and bone metabolism studies done in 1949 on rats using plutonium and allied materials: Iodine 131; zirconium 95; niobium 95; cerium 144; samarium 153; selenium 75; rhodium 105. 4 figs., 9 tabs.

  11. Plutonium Finishing Plant (PFP) Dangerous Waste Training Plan

    Energy Technology Data Exchange (ETDEWEB)

    ENTROP, G.E.

    1999-12-03

    This training plan describes general requirements, worker categories, and provides course descriptions for operation of the plutonium finishing plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas.

  12. PRESSURIZATION OF CONTAINMENT VESSELS FROM PLUTONIUM OXIDE CONTENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hensel, S.

    2012-03-27

    Transportation and storage of plutonium oxide is typically done using a convenience container to hold the oxide powder which is then placed inside a containment vessel. Intermediate containers which act as uncredited confinement barriers may also be used. The containment vessel is subject to an internal pressure due to several sources including; (1) plutonium oxide provides a heat source which raises the temperature of the gas space, (2) helium generation due to alpha decay of the plutonium, (3) hydrogen generation due to radiolysis of the water which has been adsorbed onto the plutonium oxide, and (4) degradation of plastic bags which may be used to bag out the convenience can from a glove box. The contributions of these sources are evaluated in a reasonably conservative manner.

  13. Plutonium and Americium Geochemistry at Hanford: A Site Wide Review

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Felmy, Andrew R.

    2012-08-23

    This report was produced to provide a systematic review of the state-of-knowledge of plutonium and americium geochemistry at the Hanford Site. The report integrates existing knowledge of the subsurface migration behavior of plutonium and americium at the Hanford Site with available information in the scientific literature regarding the geochemistry of plutonium and americium in systems that are environmentally relevant to the Hanford Site. As a part of the report, key research needs are identified and prioritized, with the ultimate goal of developing a science-based capability to quantitatively assess risk at sites contaminated with plutonium and americium at the Hanford Site and the impact of remediation technologies and closure strategies.

  14. Ultra-sensitive detection of plutonium by accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, L.K.; Cresswell, R.G.; Ophel, T.R.; Ditada, M. [Australian National Univ., Canberra, ACT (Australia). Dept. of Nuclear Physics; Day, J.P.; Clacher, A. [Manchester Univ. (United Kingdom). Dept. of Chemistry; Priest, N.D. [AEA Technology, Harwell (United Kingdom)

    1996-12-31

    On the bases of the measurements performed to date, a sensitivity of 10{sup 6} atoms is achievable with accelerator mass spectroscopy (AMS) for each of the plutonium isotopes. Not only does this open the way to the sort of study outlined, but it also makes possible other novel applications, of which two examples are given: (i)the ration of {sup 240}Pu to {sup 239}Pu as a sensitive indicator of the source of the plutonium; (ii) the biochemistry of plutonium in humans. The ultra-sensitive atom counting capability of AMS will make it possible to use the very long-lived {sup 244}Pu (8x10{sup 7}a) in human volunteer studies without any significant increase in radiation body burden. This paper will describe the AMS technique as applied to plutonium using the ANU`s 14UD accelerator, will present the results obtained to date, and will discuss the prospects for the future.

  15. ARRAYS OF BOTTLES OF PLUTONIUM NITRATE SOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2012-09-01

    In October and November of 1981 thirteen approaches-to-critical were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas® reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L of Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were sponsored by Rockwell Hanford Operations because of the lack of experimental data on the criticality of arrays of bottles of Pu solution such as might be found in storage and handling at the Purex Facility at Hanford. The results of these experiments were used “to provide benchmark data to validate calculational codes used in criticality safety assessments of [the] plant configurations” (Ref. 1). Data for this evaluation were collected from the published report (Ref. 1), the approach to critical logbook, the experimenter’s logbook, and communication with the primary experimenter, B. Michael Durst. Of the 13 experiments preformed 10 were evaluated. One of the experiments was not evaluated because it had been thrown out by the experimenter, one was not evaluated because it was a repeat of another experiment and the third was not evaluated because it reported the critical number of bottles as being greater than 25. Seven of the thirteen evaluated experiments were determined to be acceptable benchmark experiments. A similar experiment using uranyl nitrate was benchmarked as U233-SOL-THERM-014.

  16. Color image fusion for concealed weapon detection

    Science.gov (United States)

    Toet, Alexander

    2003-09-01

    Recent advances in passive and active imaging sensor technology offer the potential to detect weapons that are concealed underneath a person's clothing or carried along in bags. Although the concealed weapons can sometimes easily be detected, it can be difficult to perceive their context, due to the non-literal nature of these images. Especially for dynamic crowd surveillance purposes it may be impossible to rapidly asses with certainty which individual in the crowd is the one carrying the observed weapon. Sensor fusion is an enabling technology that may be used to solve this problem. Through fusion the signal of the sensor that depicts the weapon can be displayed in the context provided by a sensor of a different modality. We propose an image fusion scheme in which non-literal imagery can be fused with standard color images such that the result clearly displays the observed weapons in the context of the original color image. The procedure is such that the relevant contrast details from the non-literal image are transferred to the color image without altering the original color distribution of this image. The result is a natural looking color image that fluently combines all details from both input sources. When an observer who performs a dynamic crowd surveillance task, detects a weapon in the scene, he will also be able to quickly determine which person in the crowd is actually carrying the observed weapon (e.g. "the man with the red T-shirt and blue jeans"). The method is illustrated by the fusion of thermal 8-12 μm imagery with standard RGB color images.

  17. Occurrence of plutonium in the terrestrial environment at Thule, Greenland

    DEFF Research Database (Denmark)

    Roos, Per; Jernström, Jussi; Nielsen, Sven Poul

    2011-01-01

    to several hundred kBq per m2 of Pu. Although concentrations in surface soil can be very high the concentration in analysed air filter samples and passive aerosol collectors are very low. Exposure to plutonium due to inhalation of airborne plutonium particles in the area is of little importance according...... to this study. To further assess the risk of inhaling resuspended material particles isolated from the different hot areas have been subject to investigation on stability and leaching behaviour....

  18. Aqueous Chloride Operations Overview: Plutonium and Americium Purification/Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Kyle Shelton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kimball, David Bryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Skidmore, Bradley Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-28

    These are a set of slides intended for an information session as part of recruiting activities at Brigham Young University. It gives an overview of aqueous chloride operations, specifically on plutonium and americium purification/recovery. This presentation details the steps taken perform these processes, from plutonium size reduction, dissolution, solvent extraction, oxalate precipitation, to calcination. For americium recovery, it details the CLEAR (chloride extraction and actinide recovery) Line, oxalate precipitation and calcination.

  19. Preparation of Plutonium Counting Source Using Solid Phase Extraction Disk

    Institute of Scientific and Technical Information of China (English)

    SUN; Hong-qing; YANG; Su-liang; DING; You-qian; YANG; Jin-ling; MAO; Guo-shu

    2013-01-01

    For the determination of trace amount of plutonium,Pu(Ⅳ)may be extracted from dilute nitric acid by TTA-xylene,and stripped by concentrated nitric acid.But the small volume of strip solution used in traditional counting source preparation by direct evaporation could lead to a rather high detection limit.Plutonium in strip solution may all be absorbed on the surface of an anion exchange resin disk.And

  20. Wastes from plutonium conversion and scrap recovery operations

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, D.C.; Bowersox, D.F.; McKerley, B.J.; Nance, R.L.

    1988-03-01

    This report deals with the handling of defense-related wastes associated with plutonium processing. It first defines the different waste categories along with the techniques used to assess waste content. It then discusses the various treatment approaches used in recovering plutonium from scrap. Next, it addresses the various waste management approaches necessary to handle all wastes. Finally, there is a discussion of some future areas for processing with emphasis on waste reduction. 91 refs., 25 figs., 4 tabs.

  1. Wastes from plutonium conversion and scrap recovery operations

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, D.C.; Bowersox, D.F.; McKerley, B.J.; Nance, R.L.

    1988-03-01

    This report deals with the handling of defense-related wastes associated with plutonium processing. It first defines the different waste categories along with the techniques used to assess waste content. It then discusses the various treatment approaches used in recovering plutonium from scrap. Next, it addresses the various waste management approaches necessary to handle all wastes. Finally, there is a discussion of some future areas for processing with emphasis on waste reduction. 91 refs., 25 figs., 4 tabs.

  2. Environmental Behaviour of Plutonium Accidentally Released at Thule, Greenland

    DEFF Research Database (Denmark)

    Aarkrog, Asker

    1977-01-01

    The environmental contamination resulting from the B-52 accident in 1968 at Thule was studied by scientific expeditions in 1968, 1970 and 1974. The contamination was mainly confined to the marine environment, where plutonium was preferentially located in the sediments and the benthic fauna...... such as fish, seabirds and marine mammals have shown no tendency to increasing plutonium levels since the accident. (C)1977Health Physics Society...

  3. Distribution and Solubility of Radionuclides and Neutron Absorbers in Waste Forms for Disposition of Plutonium Ash and Scraps, Excess Plutonium, and Miscellaneous Spent Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Denis M. Strachan; Dr. David K. Shuh; Dr. Rodney C. Ewing; Dr. Eric R. Vance

    2002-09-23

    The initial goal of this project was to investigate the solubility of radionuclides in glass and other potential waste forms for the purpose of increasing the waste loading in glass and ceramic waste forms. About one year into the project, the project decided to focus on two potential waste forms - glass at PNNL and itianate ceramics at the Australian Nuclear Science and Technology Organisation (ANSTO).

  4. Supercritical Fluid Extraction of Plutonium and Americium from Soil

    Energy Technology Data Exchange (ETDEWEB)

    Fox, R.V.; Mincher, B.J.

    2002-05-23

    Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65 C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% {+-} 6.0 extraction of americium and 69% {+-} 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% {+-} 3.0 extraction of americium and 83% {+-} 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95 C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil.

  5. The relative physiological and toxicological properties of americium and plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.E.; Busch, E.; Johnson, O. [and others

    1951-11-15

    The relative physiological and toxicological properties of americium and plutonium have been studied following their intravenous administration to rats. The urinary and fecal excretion of americium was similar to that of plutonium administered as Pu(N0{sub 3}){sub 4}. The deposition of americium the tissues and organs of the rat was also similar to that observed for plutonium. The liver and the skeleton were the major sites of deposition. Zirconium citrate administered 15 minutes after injection of americium increased the urinary excretion of americium and decreased the amount found in the liver and the skeleton at 4 and 16 days. LD{sub 30}{sup 50} studies showed americium was slightly less toxic when given in the acute toxic range than was plutonium. The difference was, however, too slight to be important in establishing a larger tolerance does for americium. Survival studies, hematological observations, bone marrow observations, comparison of tumor incidence and the incidence of skeletal abnormalities indicated that americium and plutonium have essentially the same chronic toxicity when given on an equal {mu}c. basis. These studies support the conclusion that the tolerance values for americium should be essentially the same as those for Plutonium.

  6. Survey of glass plutonium contents and poison selection

    Energy Technology Data Exchange (ETDEWEB)

    Plodinec, M.J.; Ramsey, W.G. [Westinghouse Savannah River Company, Aiken, SC (United States); Ellison, A.J.G.; Shaw, H. [Lawrence Livermore National Laboratory, CA (United States)

    1996-05-01

    If plutonium and other actinides are to be immobilized in glass, then achieving high concentrations in the glass is desirable. This will lead to reduced costs and more rapid immobilization. However, glasses with high actinide concentrations also bring with them undersirable characteristics, especially a greater concern about nuclear criticality, particularly in a geologic repository. The key to achieving a high concentration of actinide elements in a glass is to formulate the glass so that the solubility of actinides is high. At the same time, the glass must be formulated so that the glass also contains neutron poisons, which will prevent criticality during processing and in a geologic repository. In this paper, the solubility of actinides, particularly plutonium, in three types of glasses are discussed. Plutonium solubilities are in the 2-4 wt% range for borosilicate high-level waste (HLW) glasses of the type which will be produced in the US. This type of glass is generally melted at relatively low temperatures, ca. 1150{degrees}C. For this melting temperature, the glass can be reformulated to achieve plutonium solubilities of at least 7 wt%. This low melting temperature is desirable if one must retain volatile cesium-137 in the glass. If one is not concerned about cesium volatility, then glasses can be formulated which can contain much larger amounts of plutonium and other actinides. Plutonium concentrations of at least 15 wt% have been achieved. Thus, there is confidence that high ({ge}5 wt%) concentrations of actinides can be achieved under a variety of conditions.

  7. Detecting necessary and sufficient parts for assembling a functional weapon

    Science.gov (United States)

    Hempelmann, Christian F.; Solomon, Divya; Arslan, Abdullah N.; Attardo, Salvatore; Blount, Grady P.; Adkins, Tracy; Sirakov, Nikolay M.

    2017-05-01

    Continuing our previous research to visually extract and visually and conceptually match weapons, this study develops a method to determine whether a set of weapon parts visually extracted from images taken from different scenes can be assembled as a firing weapon. This new approach identifies potential weapons in the ontology via tracing detected necessary and sufficient parts through their meronymic relation to the whole weapon. A fast algorithm for identifying potential weapons that can be assembled from a given set of detected parts is presented.

  8. Absorption Behavior of Anion Exchange Resin to Minimal Plutonium in 3 to 4 mol/L Nitric Acid Medium

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The acidity of liquor in the process of plutonium purification using extraction method is 3 to 4 mol/L and liquor contains minimal plutonium of certain concentration, the reclamation of plutonium is usually

  9. Nuclear Weapons: NNSA Needs to Establish a Cost and Schedule Baseline for Manufacturing a Critical Nuclear Weapon Component

    Science.gov (United States)

    2008-05-01

    MOX mixed-oxide NNSA National Nuclear Security Administration PF-4 Plutonium Facility-4 building RRW Reliable Replacement Warhead TA-50...disassembles legacy pits and removes and oxidizes the plutonium, which can be used as a feed metal for the mixed-oxide ( MOX ) fuel polishing activities...Facility at the Savannah River Site. MOX fuel polishing This program purifies plutonium from the ARIES project to specifications that would allow direct

  10. Sonochemical Digestion of High-Fired Plutonium Dioxide Samples

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergei I.; Lumetta, Gregg J.

    2006-10-12

    This work was performed as part of a broader effort to automate analytical methods for determining plutonium and other radioisotopes in environmental samples. The work described here represented a screening study to evaluate the effect of applying ultrasonic irradiation to dissolve high-fired plutonium oxide. The major findings of this work can be summarized as follows: (1) High-fired plutonium oxide does not undergo measurable dissolution when sonicated in nitric acid solutions, even at a high concentration range of nitric acid where the calculated thermodynamic solubility of plutonium oxide exceeds the ?g/mL level. (2) Applying organic complexants (nitrilotriacetic acid) and reductants (hydroxyurea) in 1.5 M nitric acid does not significantly increase the dissolution compared with digestion in nitric acid alone. Nearly all (99.5%) of the plutonium oxide remains undissolved under these conditions. (3) The action of a strong inorganic reductant, titanium trichloride in 25 wt% HCl, results in 40% dissolution of the plutonium oxide when the titanium trichloride concentration is ?1 wt% under sonication. (4) Oxidative treatment of plutonium oxide by freshly dissolved AgO ({approx}20 mg/mL) in 1.5 M nitric acid with sonication resulted in 95% plutonium oxide dissolution. However, the same treatment of plutonium oxide mechanically mixed with 50 mg of Columbia River sediment (CRS) results in a significant decrease of dissolution yield of plutonium oxide (<20% dissolved at the same AgO loading) because of parasitic consumption of AG(II) by oxidizable components of the CRS. (5) Digesting plutonium oxide in HF resulted in dissolution yields slightly higher than 80% for HF concentration from 6 M to 14 M. Sonication did not result in any improvement in dissolution efficiency in HF. (6) Mixed nitric acid/HF solutions result in a higher dissolution yield of plutonium oxide compared with digestion in HF alone (at the same HF concentrations). Practically quantitative dissolution

  11. NRC comprehensive records disposition schedule. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    Title 44 US Code, ``Public Printing and Documents,`` regulations issued by the General Service Administration (GSA) in 41 CFR Chapter 101, Subchapter B, ``Management and Use of Information and Records,`` and regulations issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter 12, Subchapter B, ``Records Management,`` require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA`s General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 3, contains ``NRC`s Comprehensive Records Disposition Schedule,`` and the original authorized approved citation numbers issued by NARA. Rev. 3 incorporates NARA approved changes and additions to the NRC schedules that have been implemented since the last revision dated March, 1992, reflects recent organizational changes implemented at the NRC, and includes the latest version of NARA`s General Records Schedule (dated August 1995).

  12. Investigation of Plutonium and Uranium Precipitation Behavior with Gadolinium as a Neutron Poison

    CERN Document Server

    Visser, A E

    2003-01-01

    The caustic precipitation of plutonium (Pu)-containing solutions has been investigated to determine whether the presence of 3:1 uranium (U):Pu in solutions stored in the H-Canyon Facility at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) would adversely impact the use of gadolinium nitrate (Gd(NO3)3) as a neutron poison. In the past, this disposition strategy has been successfully used to discard solutions containing approximately 100 kg of Pu to the SRS high level waste (HLW) system. In the current experiments, gadolinium (as Gd(NO3)3) was added to samples of a 3:1 U:Pu solution, a surrogate 3 g/L U solution, and a surrogate 3 g/L U with 1 g/L Pu solution. A series of experiments was then performed to observe and characterize the precipitate at selected pH values. Solids formed at pH 4.5 and were found to contain at least 50 percent of the U and 94 percent of the Pu, but only 6 percent of the Gd. As the pH of the solution increased (e.g., pH greater than 14 with 1.2 or 3.6 M sodium hydroxide...

  13. Glass-Ceramic Waste Forms for Uranium and Plutonium Residues Wastes - 13164

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Martin W.A.; Moricca, Sam A.; Zhang, Yingjie; Day, R. Arthur; Begg, Bruce D. [Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Scales, Charlie R.; Maddrell, Ewan R. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, UK, CA20 1PG (United Kingdom); Hobbs, Jeff [Sellafield Limited, Sellafield, Seascale, Cumbria, UK, CA20 1PG (United Kingdom)

    2013-07-01

    A program of work has been undertaken to treat plutonium-residues wastes at Sellafield. These have arisen from past fuel development work and are highly variable in both physical and chemical composition. The principal radiological elements present are U and Pu, with small amounts of Th. The waste packages contain Pu in amounts that are too low to be economically recycled as fuel and too high to be disposed of as lower level Pu contaminated material. NNL and ANSTO have developed full-ceramic and glass-ceramic waste forms in which hot-isostatic pressing is used as the consolidation step to safely immobilize the waste into a form suitable for long-term disposition. We discuss development work on the glass-ceramic developed for impure waste streams, in particular the effect of variations in the waste feed chemistry glass-ceramic. The waste chemistry was categorized into actinides, impurity cations, glass formers and anions. Variations of the relative amounts of these on the properties and chemistry of the waste form were investigated and the waste form was found to be largely unaffected by these changes. This work mainly discusses the initial trials with Th and U. Later trials with larger variations and work with Pu-doped samples further confirmed the flexibility of the glass-ceramic. (authors)

  14. Examination of the effect of alpha radiolysis on plutonium(V) sorption to quartz using multiple plutonium isotopes.

    Science.gov (United States)

    Hixon, Amy E; Arai, Yuji; Powell, Brian A

    2013-08-01

    The objective of this research was to determine if radiolysis at the mineral surface was a plausible mechanism for surface-mediated reduction of plutonium. Batch sorption experiments were used to monitor the amount of plutonium sorbed to high-purity quartz as a function of time, pH, and total alpha radioactivity. Three systems were prepared using both (238)Pu and (242)Pu in order to increase the total alpha radioactivity of the mineral suspensions while maintaining a constant plutonium concentration. The fraction of sorbed plutonium increased with increasing time and pH regardless of the total alpha radioactivity of the system. Increasing the total alpha radioactivity of the solution had a negligible effect on the sorption rate. This indicated that surface-mediated reduction of Pu(V) in these systems was not due to radiolysis. Additionally, literature values for the Pu(V) disproportionation rate constant did not describe the experimental results. Therefore, Pu(V) disproportionation was also not a main driver for surface-mediated reduction of plutonium. Batch desorption experiments and X-ray absorption near edge structure spectroscopy were used to show that Pu(IV) was the dominant oxidation state of sorbed plutonium. Thus, it appears that the observed surface-mediated reduction of Pu(V) in the presence of high-purity quartz was based on the thermodynamic favorability of a Pu(IV) surface complex.

  15. Prions: the danger of biochemical weapons

    Directory of Open Access Journals (Sweden)

    Eric Almeida Xavier

    2014-09-01

    Full Text Available The knowledge of biotechnology increases the risk of using biochemical weapons for mass destruction. Prions are unprecedented infectious pathogens that cause a group of fatal neurodegenerative diseases by a novel mechanism. They are transmissible particles that are devoid of nucleic acid. Due to their singular characteristics, Prions emerge as potential danger since they can be used in the development of such weapons. Prions cause fatal infectious diseases, and to date there is no therapeutic or prophylactic approach against these diseases. Furthermore, Prions are resistant to food-preparation treatments such as high heat and can find their way from the digestive system into the nervous system; recombinant Prions are infectious either bound to soil particles or in aerosols. Therefore, lethal Prions can be developed by malicious researchers who could use it to attack political enemies since such weapons cause diseases that could be above suspicion.

  16. The Drivers of Indias Nuclear Weapons Program

    Science.gov (United States)

    2014-06-01

    is also building a prototype fast-breeder reactor near Kalpakkam.46 Fast-breeder reactors use nuclear fission to turn regular uranium into plutonium... nuclear reactor finally went critical in 2013,57 which marked a major milestone for this vessel in reaching operational status. Once underway, the...collections/peace_agreements/ ip_lahore19990221. pdf . 165 Ganguly and Biringer, “ Nuclear Crisis Stability,” 914. 166 Ministry of External Affairs, New

  17. Baseline Caesium-137 and Plutonium-239+240 inventory assessment for Central Europe

    Science.gov (United States)

    Meusburger, Katrin; Borelli, Pasquale; Evrard, Olivier; Ketterer, Michael; Mabit, Lionel; van Oost, Kristof; Alewell, Christine; Panagos, Panos

    2017-04-01

    Artificial fallout radionuclides (FRNs) such as Caesium-137 and Plutonium-239+240 released as products of the thermonuclear weapons testing that took place from the mid-1950s to the early 1980s and from nuclear power plant accidents (e.g. Chernobyl) are useful tools to quantify soil redistribution. In combination with geostatistics, FRNs may have the potential to bridge the gap between small scale process oriented studies and modelling that simplifies processes and effects over large spatial scales. An essential requirement for the application of FRNs as soil erosion tracers is the establishment of the baseline fallout at undisturbed sites before its comparison to those inventories found at sites undergoing erosion/accumulation. For this purpose, undisturbed topsoil (0-20cm) samples collected in 2009 within the framework of the Land Use/Cover Area frame Survey (LUCAS) have been measured by gamma-spectrometry and ICP-MS to determine 137Cs (n=145) and 239+240Pu (n=108) activities. To restrict the analysis to undisturbed reference sites a geospatial database query selecting only sites having a slope angle soil redistribution for a comparable time-frame (1953-2009) following a harmonised methodological protocol across national boundaries.

  18. Site restoration: Estimation of attributable costs from plutonium-dispersal accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chanin, D.I.; Murfin, W.B. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States)

    1996-05-01

    A nuclear weapons accident is an extremely unlikely event due to the extensive care taken in operations. However, under some hypothetical accident conditions, plutonium might be dispersed to the environment. This would result in costs being incurred by the government to remediate the site and compensate for losses. This study is a multi-disciplinary evaluation of the potential scope of the post-accident response that includes technical factors, current and proposed legal requirements and constraints, as well as social/political factors that could influence decision making. The study provides parameters that can be used to assess economic costs for accidents postulated to occur in urban areas, Midwest farmland, Western rangeland, and forest. Per-area remediation costs have been estimated, using industry-standard methods, for both expedited and extended remediation. Expedited remediation costs have been evaluated for highways, airports, and urban areas. Extended remediation costs have been evaluated for all land uses except highways and airports. The inclusion of cost estimates in risk assessments, together with the conventional estimation of doses and health effects, allows a fuller understanding of the post-accident environment. The insights obtained can be used to minimize economic risks by evaluation of operational and design alternatives, and through development of improved capabilities for accident response.

  19. Plutonium contamination issues in Hanford soils and sediments: Discharges from the Z-Plant (PFP) complex

    Science.gov (United States)

    Felmy, Andrew R.; Cantrell, Kirk J.; Conradson, Steven D.

    Beginning in 1945, weapons production activities at the Hanford Nuclear Reservation resulted in the discharge of large quantities of Pu and other transuranic elements to the subsurface. The vast majority of the transuranics was disposed in the Hanford central plateau (200 areas) predominately associated with activities at the Z-Plant (Plutonium Finishing Plant) complex. In the past Pu and Am migrated deep into the subsurface at certain locations, although Pu and other transuranics are not currently being detected in significant concentration in any associated groundwaters. Evaluation of the chemical form of the transuranics in the subsurface along with determining the mechanism(s) of the past subsurface migration is important in establishing strategies for long-term site management practices. Unfortunately, the chemical form of the transuranics in the deep subsurface sediments and the past mechanism of vertical migration remain largely unknown. However, initial studies performed as part of this research indicate that the chemical form of Pu can vary from disposal site to disposal site depending upon the waste type and the chemical form can also differ between surface sediments and deep subsurface sediments at the same site. This paper present a summary of the different waste types and locations where transuranics were disposed, the factors that could have lead to subsurface migration via different transport vectors, the information currently available on the chemical form of Pu in the subsurface, and a summary of current research needs.

  20. Plutonium Contamination Issues in Hanford Soils and Sediments: Discharges from the Z-Plant (PFP) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Felmy, Andrew R.; Cantrell, Kirk J.; Conradson, Steven D.

    2010-08-23

    Beginning in 1945, weapons production activities at the Hanford Nuclear Reservation resulted in the discharge of large quantities of Pu and other transuranic elements to the subsurface. The vast majority of the transuranics were disposed in the Hanford central plateau (200 areas) predominately associated with activities at the Z-Plant (Plutonium Finishing Plant) complex. In the past the Pu and Am migrated deep into the subsurface at certain locations, although the Pu and other transuranics are not currently being detected in significant concentration in any associated groundwaters. Evaluation of the chemical form of the transuranics in the subsurface along with determining the mechanism(s) of the past subsurface migration is important in establishing strategies for long-term site management practices. Unfortunately, the chemical form of the transuranics in the deep subsurface sediments and the past mechanism of vertical migration remain largely unknown. This paper present a summary of the different waste types and locations where transuranics were disposed, the factors that could have lead to subsurface migration via different transport vectors, the information currently available on the chemical form of Pu in the subsurface, and a summary of current research needs.

  1. Accumulation of plutonium in mammalian wildlife tissues following dispersal by accidental-release tests.

    Science.gov (United States)

    Johansen, M P; Child, D P; Caffrey, E A; Davis, E; Harrison, J J; Hotchkis, M A C; Payne, T E; Ikeda-Ohno, A; Thiruvoth, S; Twining, J R; Beresford, N A

    2016-01-01

    We examined the distribution of plutonium (Pu) in the tissues of mammalian wildlife inhabiting the relatively undisturbed, semi-arid former Taranaki weapons test site, Maralinga, Australia. The accumulation of absorbed Pu was highest in the skeleton (83% ± 6%), followed by muscle (10% ± 9%), liver (6% ± 6%), kidneys (0.6% ± 0.4%), and blood (0.2%). Pu activity concentrations in lung tissues were elevated relative to the body average. Foetal transfer was higher in the wildlife data than in previous laboratory studies. The amount of Pu in the gastrointestinal tract was highly elevated relative to that absorbed within the body, potentially increasing transfer of Pu to wildlife and human consumers that may ingest gastrointestinal tract organs. The Pu distribution in the Maralinga mammalian wildlife generally aligns with previous studies related to environmental exposure (e.g. Pu in humans from worldwide fallout), but contrasts with the partitioning models that have traditionally been used for human worker-protection purposes (approximately equal deposition in bone and liver) which appear to under-predict the skeletal accumulation in environmental exposure conditions.

  2. Task Analyses of Three Selected Weapons Systems.

    Science.gov (United States)

    1976-10-01

    using weapons is a joint function of the specific weapon system, the goals (missions) of the system, and the environment in which it is used. The first...Identification of fire mission profiles which state general job functions for each type of typical mission. Documentary sources such as Field Manuals...nd Arin,,, Ui, Guni i A,!i" tant uuPnrr No. I Can; n , r Grup - ( nile. .rs and Prir Diff,-ront S, tm: -inch L,,t.’r _, Fort Hood l::t Cavall, I

  3. #TheWeaponizationOfSocialMedia

    DEFF Research Database (Denmark)

    Nissen, Thomas Elkjer

    In today’s conflict environment, transformed by information technology and of who can communicate and how, states, non-state actors, ad hoc activist networks and individuals create effect(s) in and through social network media in support of their objectives. #TheWeaponizationOfSocialMedia develops...... a framework for understanding how social network media shapes global politics and contemporary conflicts by examining their role as a platform for conduction intelligence collection, targeting, cyber-operations, psychological warfare and command and control activities. Through these, the weaponization...

  4. The Disposition-Based Fraud Cycle

    OpenAIRE

    Vasant Raval

    2013-01-01

    This paper reviews the disposition-based fraud cycle (DFC) primarily from the perspective of financial frauds. It suggests that fraud as a human act represents an interaction between organism’s disposition and the circumstances he faces. The DFC model which maps financial fraud as a cycle driven by desire-belief connection is contrasted with the widely accepted paradigm called the Fraud Triangle (FT). A purpose of the analysis is to identify unique fraud-risk factors visible in the DFC mode...

  5. 12 CFR 34.83 - Disposition of real estate.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Disposition of real estate. 34.83 Section 34.83 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY REAL ESTATE LENDING AND APPRAISALS Other Real Estate Owned § 34.83 Disposition of real estate. (a) Disposition. A national bank may...

  6. 50 CFR 30.2 - Disposition of surplus range animals.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Disposition of surplus range animals. 30.2... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM RANGE AND FERAL ANIMAL MANAGEMENT Range Animals § 30.2 Disposition of surplus range animals. Disposition shall be made only during regularly scheduled...

  7. Classroom Environments That Foster a Disposition for Critical Thinking

    Science.gov (United States)

    Mathews, Samuel R.; Lowe, Katie

    2011-01-01

    In this article, we examine the disposition for critical thinking (CT) from three perspectives and analyse the underlying constructs of the disposition for CT, such as one's ability, sensitivity and inclination to engage in critical, mindful thought. Environmental factors that enhance or inhibit the development of a generalisable disposition for…

  8. 47 CFR 76.804 - Disposition of home run wiring.

    Science.gov (United States)

    2010-10-01

    ... in service to subscribers to the extent possible. (b) Unit-by-unit disposition of home run wiring: (1... 47 Telecommunication 4 2010-10-01 2010-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring....

  9. Dispositions and Preservice Teachers of the Millennial Generation

    Science.gov (United States)

    Austin, Kenneth R.

    2009-01-01

    In this article, I argue that teacher preparation programs must address the dispositions that lead to successful patterns of professional conduct and attitudes. I situate the thesis within the discussion on dispositions and the focus on preparing teachers of the millennial generation. I further examine the dispositions that the millennial students…

  10. PLUTONIUM SOLUBILITY IN SIMULATED SAVANNAH RIVER SITE WASTE SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.; Hobbs, D.; Edwards, T.

    2010-09-27

    To address the accelerated disposition of the supernate and salt portions of Savannah River Site (SRS) high level waste (HLW), solubility experiments were performed to develop a predictive capability for plutonium (Pu) solubility. A statistically designed experiment was used to measure the solubility of Pu in simulated solutions with salt concentrations and temperatures which bounded those observed in SRS HLW solutions. Constituents of the simulated waste solutions included: hydroxide (OH{sup -}), aluminate (Al(OH){sub 4}{sup -}), sulfate (SO{sub 4}{sup 2-}), carbonate (CO{sub 3}{sup 2-}), nitrate (NO{sub 3}{sup -}), and nitrite (NO{sub 2}{sup -}) anions. Each anion was added to the waste solution in the sodium form. The solubilities were measured at 25 and 80 C. Five sets of samples were analyzed over a six month period and a partial sample set was analyzed after nominally fifteen months of equilibration. No discernable time dependence of the measured Pu concentrations was observed except for two salt solutions equilibrated at 80 C which contained OH{sup -} concentrations >5 mol/L. In these solutions, the Pu solubility increased with time. This observation was attributed to the air oxidation of a portion of the Pu from Pu(IV) to the more soluble Pu(V) or Pu(VI) valence states. A data driven approach was subsequently used to develop a modified response surface model for Pu solubility. Solubility data from this study and historical data from the literature were used to fit the model. The model predicted the Pu solubility of the solutions from this study within the 95% confidence interval for individual predictions and the analysis of variance indicated no statistically significant lack of fit. The Savannah River National Laboratory (SRNL) model was compared with predicted values from the Aqueous Electrolyte (AQ) model developed by OLI Systems, Inc. and a solubility prediction equation developed by Delegard and Gallagher for Hanford tank waste. The agreement between

  11. Implementing the chemical weapons convention

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, B.; Tanzman, E. A.

    1999-12-07

    In 1993, as the CWC ratification process was beginning, concerns arose that the complexity of integrating the CWC with national law could cause each nation to implement the Convention without regard to what other nations were doing, thereby causing inconsistencies among States as to how the CWC would be carried out. As a result, the author's colleagues and the author prepared the Manual for National Implementation of the Chemical Weapons Convention and presented it to each national delegation at the December 1993 meeting of the Preparatory Commission in The Hague. During its preparation, the Committee of CWC Legal Experts, a group of distinguished international jurists, law professors, legally-trained diplomats, government officials, and Parliamentarians from every region of the world, including Central Europe, reviewed the Manual. In February 1998, they finished the second edition of the Manual in order to update it in light of developments since the CWC entered into force on 29 April 1997. The Manual tries to increase understanding of the Convention by identifying its obligations and suggesting methods of meeting them. Education about CWC obligations and available alternatives to comply with these requirements can facilitate national response that are consistent among States Parties. Thus, the Manual offers options that can strengthen international realization of the Convention's goals if States Parties act compatibly in implementing them. Equally important, it is intended to build confidence that the legal issues raised by the Convention are finite and addressable. They are now nearing competition of an internet version of this document so that interested persons can access it electronically and can view the full text of all of the national implementing legislation it cites. The internet address, or URL, for the internet version of the Manual is http: //www.cwc.ard.gov. This paper draws from the Manual. It comparatively addresses approximately thirty

  12. Plutonium in an enduring fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S.

    1998-05-01

    Nuclear fuel cycles evolved over the past five decades have allowed many nations of the world to enjoy the benefits of nuclear energy, while contributing to the sustainable consumption of the world`s energy resources. The nuclear fuel cycle for energy production suffered many traumas since the 1970s because of perceived risks of proliferation of nuclear weapons. However, the experience of the past five decades has shown that the world community is committed to safeguarding all fissile materials and continuing the use of nuclear energy resources. Decisions of a few nations to discard spent nuclear fuels in geologic formations are contrary to the goals of an enduring nuclear fuel cycle and sustainable development being pursued by the world community. The maintenance of an enduring nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including spent fuels.

  13. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, February 1, 1998--April 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    Activities from the Amarillo National Resource Center for Plutonium are described. Areas of work include materials science of nuclear and explosive materials, plutonium processing and handling, robotics, and storage.

  14. Determination of Uranium and Plutonium Concentration in 1AF by Isotopic Dilution Mass Spectrometry Methods

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>It is important data to measure uranium and plutonium concentration for the reprocessing plant control analysis. The determination of uranium and plutonium concentration in 1AF by isotopic dilution mass

  15. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1, 1997--July 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Progress summaries are provided from the Amarillo National Center for Plutonium. Programs include the plutonium information resource center, environment, public health, and safety, education and training, nuclear and other material studies.

  16. 10 CFR Appendix H to Part 73 - Weapons Qualification Criteria

    Science.gov (United States)

    2010-01-01

    ... position, then fire 2 rounds and reholster 2 15 yards 2 5 seconds Standing, draw weapon, move to kneeling...) Standing, draw weapon, fire 2 rounds, move to kneeling position and fire 2 rounds, reload and reholster Minimum qualifying = 70%. 4 15 yards 2 5 seconds Draw weapon and fire 2 rounds standing, come to low...

  17. 25 CFR 11.444 - Carrying concealed weapons.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Carrying concealed weapons. 11.444 Section 11.444 Indians... ORDER CODE Criminal Offenses § 11.444 Carrying concealed weapons. A person who goes about in public places armed with a dangerous weapon concealed upon his or her person is guilty of a misdemeanor unless...

  18. Someone at School Has a Weapon. What Should I Do?

    Science.gov (United States)

    ... for You Shyness Someone at School Has a Weapon. What Should I Do? KidsHealth > For Teens > Someone at School Has a Weapon. What Should I Do? Print A A A ... Why do students bring guns, knives, or other weapons to school? Some are just showing off, others ...

  19. 76 FR 1136 - Electroshock Weapons Test and Measurement Workshop

    Science.gov (United States)

    2011-01-07

    ... National Institute of Standards and Technology Electroshock Weapons Test and Measurement Workshop AGENCY..., academia, military, test instrument manufacturers, etc.) of electroshock weapons that provide stand-off... requirements for electroshock weapons, the Law Enforcement Standards Office (OLES) at NIST has developed...

  20. 46 CFR 386.23 - Weapons and explosives.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Weapons and explosives. 386.23 Section 386.23 Shipping... AND GROUNDS AT THE UNITED STATES MERCHANT MARINE ACADEMY § 386.23 Weapons and explosives. No person shall carry or possess firearms, other dangerous or deadly weapons or parts thereof, explosives or items...