WorldWideScience

Sample records for weapon grade plutonium

  1. Burning weapons-grade plutonium in reactors

    International Nuclear Information System (INIS)

    Newman, D.F.

    1993-06-01

    As a result of massive reductions in deployed nuclear warheads, and their subsequent dismantlement, large quantities of surplus weapons- grade plutonium will be stored until its ultimate disposition is achieved in both the US and Russia. Ultimate disposition has the following minimum requirements: (1) preclude return of plutonium to the US and Russian stockpiles, (2) prevent environmental damage by precluding release of plutonium contamination, and (3) prevent proliferation by precluding plutonium diversion to sub-national groups or nonweapons states. The most efficient and effective way to dispose of surplus weapons-grade plutonium is to fabricate it into fuel and use it for generation of electrical energy in commercial nuclear power plants. Weapons-grade plutonium can be used as fuel in existing commercial nuclear power plants, such as those in the US and Russia. This recovers energy and economic value from weapons-grade plutonium, which otherwise represents a large cost liability to maintain in safeguarded and secure storage. The plutonium remaining in spent MOX fuel is reactor-grade, essentially the same as that being discharged in spent UO 2 fuels. MOX fuels are well developed and are currently used in a number of LWRs in Europe. Plutonium-bearing fuels without uranium (non-fertile fuels) would require some development. However, such non-fertile fuels are attractive from a nonproliferation perspective because they avoid the insitu production of additional plutonium and enhance the annihilation of the plutonium inventory on a once-through fuel cycle

  2. Strategies for denaturing the weapons-grade plutonium stockpile

    International Nuclear Information System (INIS)

    Buckner, M.R.; Parks, P.B.

    1992-10-01

    In the next few years, approximately 50 metric tons of weapons-grade plutonium and 150 metric tons of highly-enriched uranium (HEU) may be removed from nuclear weapons in the US and declared excess. These materials represent a significant energy resource that could substantially contribute to our national energy requirements. HEU can be used as fuel in naval reactors, or diluted with depleted uranium for use as fuel in commercial reactors. This paper proposes to use the weapons-grade plutonium as fuel in light water reactors. The first such reactor would demonstrate the dual objectives of producing electrical power and denaturing the plutonium to prevent use in nuclear weapons

  3. From Russian weapons grade plutonium to MOX fuel

    International Nuclear Information System (INIS)

    Braehler, G.; Kudriavtsev, E.G.; Seyve, C.

    1997-01-01

    The April 1996, G7 Moscow Summit on nuclear matters provided a political framework for one of the most current significant challenges: ensuring a consistent answer to the weapons grade fissile material disposition issue resulting from the disarmament effort engaged by both the USA and Russia. International technical assessments have showed that the transformation of Weapons grade Plutonium in MOX fuel is a very efficient, safe, non proliferant and economically effective solution. In this regard, COGEMA and SIEMENS, have set up a consistent technical program properly addressing incineration of weapons grade plutonium in MOX fuels. The leading point of this program would be the construction of a Weapons grade Plutonium dedicated MOX fabrication plant in Russia. Such a plant would be based on the COGEMA-SIEMENS industrial capabilities and experience. This facility would be operated by MINATOM which is the partner for COGEMA-SIEMENS. MINATOM is in charge of coordination of the activity of the Russian research and construction institutes. The project take in account international standards for non-proliferation, safety and waste management. France and Germany officials reasserted this position during their last bilateral summits held in Fribourg in February and in Dijon in June 1996. MINATOM and the whole Russian nuclear community have already expressed their interest to cooperate with COGEMA-SIEMENS in the MOX field. This follows governmental-level agreements signed in 1992 by French, German and Russian officials. For years, Russia has been dealing with research and development on MOX fabrication and utilization. So, the COGEMA-SIEMENS MOX proposal gives a realistic answer to the management of weapons grade plutonium with regard to the technical, industrial, cost and schedule factors. (author)

  4. Weapons-grade plutonium dispositioning. Volume 1: Executive summary

    International Nuclear Information System (INIS)

    Parks, D.L.; Sauerbrun, T.J.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate dispositioning options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) assisted NAS in this evaluation by investigating the technical aspects of the dispositioning options and their capability for achieving plutonium annihilation levels greater than 90%. Additionally, the INEL investigated the feasibility of using plutonium fuels (without uranium) for disposal in existing light water reactors and provided a preconceptual analysis for a reactor specifically designed for destruction of weapons-grade plutonium. This four-volume report was prepared for NAS to document the findings of these studies. Volume 2 evaluates 12 plutonium dispositioning options. Volume 3 considers a concept for a low-temperature, low-pressure, low-power-density, low-coolant-flow-rate light water reactor that quickly destroys plutonium without using uranium or thorium. This reactor concept does not produce electricity and has no other mission than the destruction of plutonium. Volume 4 addresses neutronic performance, fabrication technology, and fuel performance and compatibility issues for zirconium-plutonium oxide fuels and aluminum-plutonium metallic fuels. This volumes gives summaries of Volumes 2--4

  5. Disposal of Surplus Weapons Grade Plutonium

    International Nuclear Information System (INIS)

    Alsaed, H.; Gottlieb, P.

    2000-01-01

    The Office of Fissile Materials Disposition is responsible for disposing of inventories of surplus US weapons-usable plutonium and highly enriched uranium as well as providing, technical support for, and ultimate implementation of, efforts to obtain reciprocal disposition of surplus Russian plutonium. On January 4, 2000, the Department of Energy issued a Record of Decision to dispose of up to 50 metric tons of surplus weapons-grade plutonium using two methods. Up to 17 metric tons of surplus plutonium will be immobilized in a ceramic form, placed in cans and embedded in large canisters containing high-level vitrified waste for ultimate disposal in a geologic repository. Approximately 33 metric tons of surplus plutonium will be used to fabricate MOX fuel (mixed oxide fuel, having less than 5% plutonium-239 as the primary fissile material in a uranium-235 carrier matrix). The MOX fuel will be used to produce electricity in existing domestic commercial nuclear reactors. This paper reports the major waste-package-related, long-term disposal impacts of the two waste forms that would be used to accomplish this mission. Particular emphasis is placed on the possibility of criticality. These results are taken from a summary report published earlier this year

  6. Disposition of weapons-grade plutonium in Westinghouse reactors

    International Nuclear Information System (INIS)

    Alsaed, A.A.; Adams, M.

    1998-03-01

    The authors have studied the feasibility of using weapons-grade plutonium in the form of mixed-oxide (MOX) fuel in existing Westinghouse reactors. They have designed three transition Cycles from an all LEU core to a partial MOX core. They found that four-loop Westinghouse reactors such as the Vogtle power plant are capable of handling up to 45 percent weapons-grade MOX loading without any modifications. The authors have also designed two kinds of weapons-grade MOX assemblies with three enrichments per assembly and four total enrichments. Wet annular burnable absorber (WABA) rods were used in all the MOX feed assemblies, some burned MOX assemblies, and some LEU feed assemblies. Integral fuel burnable absorber (IFBA) was used in the rest of the LEU feed assemblies. The average discharge burnup of MOX assemblies was over 47,000 MWD/MTM, which is more than enough to meet the open-quotes spent fuel standard.close quotes One unit is capable of consuming 0.462 MT of weapons-grade plutonium per year. Preliminary analyses showed that important reactor physics parameters for the three transitions cycles are comparable to those of LEU cores including boron levels, reactivity coefficients, peaking factors, and shutdown margins. Further transient analyses will need to be performed

  7. CANDU physics considerations for the disposition of weapons-grade plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Pitre, J; Chan, P; Dastur, A [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    At the request of the US Department of Energy AECL has examined the feasibility of using CANDU for the disposition of weapons grade plutonium. Utilizing existing CANDU technology, the feasibility of using MOX (mixed oxide) fuel in an existing CANDU reactor was studied. The results of this study indicate that the target disposition for disposal of weapons grade plutonium can be met without the requirement of any major modifications to existing plant design. (author). 3 refs., 4 tabs., 5 figs.

  8. CANDU physics considerations for the disposition of weapons-grade plutonium

    International Nuclear Information System (INIS)

    Pitre, J.; Chan, P.; Dastur, A.

    1995-01-01

    At the request of the US Department of Energy AECL has examined the feasibility of using CANDU for the disposition of weapons grade plutonium. Utilizing existing CANDU technology, the feasibility of using MOX (mixed oxide) fuel in an existing CANDU reactor was studied. The results of this study indicate that the target disposition for disposal of weapons grade plutonium can be met without the requirement of any major modifications to existing plant design. (author). 3 refs., 4 tabs., 5 figs

  9. Weapons grade plutonium disposition in PWR, CANDU and FR

    International Nuclear Information System (INIS)

    Deplech, M.; Tommasi, J.; Zaetta, A.

    2000-01-01

    In the frame work of the AIDA/MOX phase I/I/ program (1994-1997) between France and Russia, the disposition of plutonium in reactors was studied. The LWR (Light Water Reactor), FR (Fast reactors), CANDU (Heavy Water Reactors), HTR (High Temperature Reactors) options for using excess dismantled weapons plutonium for peaceful commercial nuclear power generating purposes offer some advantages over the remaining options (storage). The AIDA/MOX phase 1 program covers different topics, among which are the neutronic aspects of loading reactors with weapons-grade plutonium. The conclusions are that the weapon plutonium consumption is similar in the different type of reactors. However, the use of inert matrices allows to increase the mass balance for a same denaturing level. The use of Thorium as a matrix or special isotopes to increase the proliferation resistance prove to be insufficient. (author)

  10. Neutronics benchmark of a MOX assembly with near-weapons-grade plutonium

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Fisher, S.E.

    1998-01-01

    One of the proposed ways to dispose of surplus weapons-grade plutonium (Pu) is to irradiate the high-fissile material in light-water reactors in order to reduce the Pu enrichment to the level of spent fuels from commercial reactors. Considerable experience has been accumulated about the behavior of mixed-oxide (MOX) uranium and plutonium fuels for plutonium recycling in commercial reactors, but the experience is related to Pu enrichments typical of spent fuels quite below the values of weapons-grade plutonium. Important decisions related to the kind of reactors to be used for the disposition of the plutonium are going to be based on calculations, so the validation of computational algorithms related to all aspects of the fuel cycle (power distributions, isotopics as function of the burnup, etc.), for weapons-grade isotopics is very important. Analysis of public domain data reveals that the cycle-2 irradiation in the Quad cities boiling-water reactor (BWR) is the most recent US destructive examination. This effort involved the irradiation of five MOX assemblies using 80 and 90% fissile plutonium. These benchmark data were gathered by General Electric under the sponsorship of the Electric Power Research Institute. It is emphasized, however, that global parameters are not the focus of this benchmark, since the five bundles containing MOX fuels did not significantly affect the overall core performance. However, since the primary objective of this work is to compare against measured post-irradiation assembly data, the term benchmark is applied here. One important reason for performing the benchmark on Quad Cities irradiation is that the fissile blends (up to 90%) are higher than reactor-grade and, quite close to, weapons-grade isotopics

  11. Some aspects of a technology of processing weapons grade plutonium to nuclear fuel

    International Nuclear Information System (INIS)

    Bibilashvili, Y.; Glagovsky, E.M.; Zakharkin, B.S.; Orlov, V.K.; Reshetnikov, F.G.; Rogozkin, B.G.; Soloni-N, M.I.

    2000-01-01

    The concept by Russia to use fissile weapons-grade materials, which are being recovered from nuclear pits in the process of disarmament, is based on an assessment of weapons-grade plutonium as an important energy source intended for use in nuclear power plants. However, in the path of involving plutonium excessive from the purposes of national safety into industrial power engineering there are a lot of problems, from which effectiveness and terms of its disposition are being dependent upon. Those problems have political, economical, financial and environmental character. This report outlines several technology problems of processing weapons-grade metallic plutonium into MOX-fuel for reactors based on thermal and fast neutrons, in particular, the issue of conversion of the metal into dioxide from the viewpoint of fabrication of pelletized MOX-fuel. The processing of metallic weapons-grade plutonium into nuclear fuel is a rather complicated and multi-stage process, every stage of which is its own production. Some of the stages are absent in production of MOX-fuel, for instance the stage of the conversion, i.e. transferring of metallic plutonium into dioxide of the ceramic quality. At this stage of plutonium utilization some tasks must be resolved as follows: I. As a result of the conversion, a material purified from ballast and radiogenic admixtures has to be obtained. This one will be applied to fabricate pelletized MOX-fuel going from morphological, physico-mechanical and technological properties. II. It is well known that metallic gallium, which is used as an alloying addition in weapons-grade plutonium, actively reacts with multiple metals. Therefore, an important issue is to study the effect of gallium on the technology of MOX-fuel production, quality of the pellets, as well as the interaction of gallium oxide with zirconium and steel shells of fuel elements depending upon the content of gallium in the fuel. The rate of the interaction of gallium oxide

  12. Weapons-grade plutonium dispositioning. Volume 3: A new reactor concept without uranium or thorium for burning weapons-grade plutonium

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Schnitzler, B.G.; Fletcher, C.D.

    1993-06-01

    The National Academy of Sciences (NAS) requested that the Idaho National Engineering Laboratory (INEL) examine concepts that focus only on the destruction of 50,000 kg of weapons-grade plutonium. A concept has been developed by the INEL for a low-temperature, low-pressure, low-power density, low-coolant-flow-rate light water reactor that destroys plutonium quickly without using uranium or thorium. This concept is very safe and could be designed, constructed, and operated in a reasonable time frame. This concept does not produce electricity. Not considering other missions frees the design from the paradigms and constraints used by proponents of other dispositioning concepts. The plutonium destruction design goal is most easily achievable with a large, moderate power reactor that operates at a significantly lower thermal power density than is appropriate for reactors with multiple design goals. This volume presents the assumptions and requirements, a reactor concept overview, and a list of recommendations. The appendices contain detailed discussions on plutonium dispositioning, self-protection, fuel types, neutronics, thermal hydraulics, off-site radiation releases, and economics

  13. The export of weapons grade plutonium to the USA

    International Nuclear Information System (INIS)

    Kollerstrom, N.

    1986-01-01

    Reprocessed spent Magnox fuel from British nuclear power plants has led, it is claimed, to the production of plutonium, some of weapons grade. Some of this has been exported to the USA where, it is assumed, it is used for military purposes. The route and agreements which make this possible and the quantities involved are reported. Inspection by IAEA is insufficient to check the Central Electricity Generating Board's (CEGB) claim that no CEGB plutonium has been used for a military purpose. The CEGB case, presented at the Sizewell Inquiry is discussed. In the United States it is not clear whether plutonium from Britain, at present in a civil stockpile, will be transferred to military use or not. (U.K.)

  14. Disposition of excess weapon grade plutonium: Status of the Russian program

    Energy Technology Data Exchange (ETDEWEB)

    Diyakov, Anatoly [Center for Arms Control, Energy and Environmental Studies, Moscow (Russian Federation)

    2015-07-01

    During the Cold War, the Soviet Union and United States produced huge quantities of plutonium for weapons. Substantial cuts in their nuclear arsenals released of huge amounts of weapon grade nuclear materials. This put into the agenda the problem what to do with the excess weapon materials. In 2000 Russia and the United States concluded a Plutonium Management and Disposition Agreement (PMDA), committing each to eliminate 34 tons of excess weapon plutonium. It was expected that the implementation of the PMDA Agreement will start in the second half of the year 2009 and the disposition programs finalized in 2025. But from the very beginning the practical implementation of the PMDA agreement met with substantial difficulties. After the consultations held in 2006-2007 the PMDA Agreement was modified. In compliance with the modified Agreement each side pledged to start the disposition of 34 tons of excess plutonium (25 tons in the form of metal and 9 tons in dioxide) in 2018 and to finalize the process in 15 years. Both sides were supposed to use the same disposition method through use in the MOX fuel and its subsequent irradiation in civil nuclear reactors: in light reactors for the USA and in fast neutron reactors for Russia. The presentation is going to provide the current status of the disposition program.

  15. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    International Nuclear Information System (INIS)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition

  16. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    Energy Technology Data Exchange (ETDEWEB)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S. [and others

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  17. Western Option - Disarmament of Russian Weapon Plutonium

    International Nuclear Information System (INIS)

    Tveiten, B.; Petroll, M.R.

    2002-01-01

    The Western Option concept describes an approach to the conversion of weapon-grade plutonium from Russian nuclear warheads under the special aspects of meeting the criteria of irreversible utilization. Putting this concept of plutonium conversion into non-weapon-grade material into effect would make a major contribution to improving security worldwide. This study is based on an agreement between the Russian Federation and the United States of America concluded in September 2000. It provides for the conversion of 34 t of weapon-grade plutonium in each of the two states. This goal is also supported by other G8 countries. While the United States performs its part of the agreement under its sole national responsibility, the Russian program needs financial support by Western states. Expert groups have pointed out several options as a so-called basic scenario. The funds of approx. US Dollar 2 billion required to put them into effect have not so far been raised. The Western Option approach described in this contribution combines results of the basic scenario with other existing experience and with technical solutions available for plutonium conversion. One of the attractions of the Western Option lies in its financial advantages, which are estimated to amount to approx. US Dollar 1 billion. (orig.) [de

  18. The disposition of weapon grade plutonium: costs and tradeoffs

    International Nuclear Information System (INIS)

    Weida, W.J.

    1996-01-01

    This paper explores some of the economic issues surrounding a major area of expenditures now facing the nuclear powers: the disposition of weapon-grade plutonium either through 'burning' in nuclear reactors for power generation or by other means. Under the current budgeting philosophy in the United States, programs managed by the Department of Energy (DOE) tend to compete with one another for the total funds assigned to that agency. For example, in the FY1995 DOE budget a tradeoff was made between increased funding for nuclear weapons and reduced funding for site cleanup. No matter which disposition alternative is chosen, if disposition funds are controlled by the DOE in the US or by a government agency in any other country, disposition is likely to compete directly or indirectly with other alternatives for energy funding. And if they are subsidized by any government, research into plutonium as reactor fuel or the operations associated with such use are likely to consume funds that might otherwise be available to support sustainable energy alternatives. When all costs are considered, final waste disposal costs will be incurred whatever disposal option is taken. These costs could potentially be offset by doing something profitable with the plutonium prior to final storage, but this paper has shown that finding a profitable use for plutonium is unlikely. Thus, the more probable case is one where the costs of basic waste storage are increased by whatever costs are associated with the disposition option chosen. The factors most likely to significantly increase costs appear to arise from four areas: (1) The level of subsidization in the 'profitable' parts of the disposition program. (2) Those items (such as reprocessing) that increase the volume of waste and thus, the cost of waste disposal. (3) The cost of security and its direct relationship to the number of times plutonium is handled or moved. (4) The cost of research and development of new and unproven methods of

  19. Peaceful uses of nuclear weapon plutonium

    International Nuclear Information System (INIS)

    Burtak, F.

    1996-01-01

    In 1993, the U.S.A. and the CIS signed Start 2 (the Strategic Arms Reduction Treaty) in which they committed themselves the reduce their nuclear weapon arsenals to a fraction of that of 1991. For forty-five years the antagonism between the superpowers had been a dominating factor in world history, determining large areas of social life. When Start 2 will have been completed in 2003, some 200 t of weapon grade plutonium and some 2000 t of highly enriched uranium (Heu) will arise from dismantling nuclear weapons. In the absence of the ideological ballast of the debate about Communism versus Capitalism of the past few decades there is a chance of the grave worldwide problem of safe disposal and utilization of this former nuclear weapon material being solved. Under the heading of 'swords turned into plowshares', plutonium and uranium could be used for peaceful electricity generation. (orig.) [de

  20. Weapons-grade nuclear material - open questions of a safe disposal

    International Nuclear Information System (INIS)

    Closs, K.D.; Giraud, J.P.; Grill, K.D.; Hensing, I.; Hippel, F. von; Holik, J.; Pellaud, B.

    1995-01-01

    There are suitable technologies available for destruction of weapons-grade uranium and plutonium. Weapons-grade uranium, consisting to 90% of the isotope U-235, can be diluted with the uranium isotope U-238 to make it non-weapons-grade, but it will then still be a material that can be used as a fuel in civil nuclear reactors. For safe plutonium disposal, several options are under debate. There is for instance a process called ''reverse reprocessing'', with the plutonium being blended with high-level radioactive fission products and then being put into a waste form accepted for direct ultimate disposal. The other option is to convert weapons-grade plutonium into MOX nuclear fuel elements and then ''burn'' them in civil nuclear power reactors. This is an option favoured by many experts. Such fuel elements should stay for a long time in the reactor core in order to achieve high burnups, and should then be ready for ultimate disposal. This disposal pathway offers essential advantages: the plutonium is used up or depleted as a component of reactor fuel, and thus is no longer available for illegal activities, and it serves as an energy source for power generation. (orig./HP) [de

  1. A strategy for weapons-grade plutonium disposition

    International Nuclear Information System (INIS)

    Sylvester, K.W.B.

    1994-09-01

    A political as well as technical analysis was performed to determine the feasibility of glassification (vitrification) for weapons grade plutonium (WGPu) disposition. The political analysis provided the criteria necessary to compare alternative storage forms. The technical areas of weapon useability and environmental safety were then computationally and experimentally explored and a vitrification implementation strategy postulated. The Monte Carlo Neutron Photon (MCNP) computer code was used to model the effect of blending WGPu with reactor grade Pu (RGPu). A mixture of 30% RGPu and 70% WGPu more than doubled the surface flux from a bare sphere of the mixture which assumedly correlates to a significantly increased predetonation probability. Rare earth diluents were also examined (using MCNP) for their ability to increase the compressed critical mass of the WGPu mixture. The rare earths (notably Eu) were effective in this regard. As Pu-239 has a 24,100 year half life, reactivity control in the long term is an environmental safety issue. Rare earths were investigated as criticality controllers due to their neutron absorption capabilities and insolubility in aqueous environments. Thorium (a Pu surrogate) and the rare earths Eu, Gd, and Sm were added to two standard frits (ARM-1 and SRL-165) and formed into glass. Aqueous leach tests were performed (using MCC-1P guidelines) to measure rare earth leaching and determine the added elements' effects on glass durability. Europium was much more leach resistant than boron in the glasses tested. The elements had no negative effect on the environmental durability of the glasses tested at 90 C and minimal effect at room temperature. No fission product releases were detected in the ARM-1 compositions (which contained numerous simulated fission products)

  2. A strategy for weapons-grade plutonium disposition

    Energy Technology Data Exchange (ETDEWEB)

    Sylvester, K.W.B. [Iowa State Univ., Ames, IA (United States)

    1994-09-01

    A political as well as technical analysis was performed to determine the feasibility of glassification (vitrification) for weapons grade plutonium (WGPu) disposition. The political analysis provided the criteria necessary to compare alternative storage forms. The technical areas of weapon useability and environmental safety were then computationally and experimentally explored and a vitrification implementation strategy postulated. The Monte Carlo Neutron Photon (MCNP) computer code was used to model the effect of blending WGPu with reactor grade Pu (RGPu). A mixture of 30% RGPu and 70% WGPu more than doubled the surface flux from a bare sphere of the mixture which assumedly correlates to a significantly increased predetonation probability. Rare earth diluents were also examined (using MCNP) for their ability to increase the compressed critical mass of the WGPu mixture. The rare earths (notably Eu) were effective in this regard. As Pu-239 has a 24,100 year half life, reactivity control in the long term is an environmental safety issue. Rare earths were investigated as criticality controllers due to their neutron absorption capabilities and insolubility in aqueous environments. Thorium (a Pu surrogate) and the rare earths Eu, Gd, and Sm were added to two standard frits (ARM-1 and SRL-165) and formed into glass. Aqueous leach tests were performed (using MCC-1P guidelines) to measure rare earth leaching and determine the added elements` effects on glass durability. Europium was much more leach resistant than boron in the glasses tested. The elements had no negative effect on the environmental durability of the glasses tested at 90 C and minimal effect at room temperature. No fission product releases were detected in the ARM-1 compositions (which contained numerous simulated fission products).

  3. Weapon plutonium in accelerator driven power system

    International Nuclear Information System (INIS)

    Shvedov, O.V.; Murin, B.P.; Kochurov, B.P.; Shubin, Yu.M.; Volk, V.I.; Bogdanov, P.V.

    1997-01-01

    Accelerator Driven Systems are planned to be developed for the use (or destruction) of dozens of tons of weapon-grade Plutonium (W-Pu) resulted from the reducing of nuclear weapons. In the paper are compared the parameters of various types of accelerators, the physical properties of various types of targets and blankets, and the results of fuel cycle simulation. Some economical aspects are also discussed

  4. Surplus weapons-grade plutonium: a resource for exploring and terraforming Mars

    International Nuclear Information System (INIS)

    Muscatello, A.C.; Houts, M.G.

    1996-01-01

    With the end of the Cold War, greater than 100 metric tons (MT) of weapons-grade plutonium (WGPu) have become surplus to defense needs in the United States and the Former Soviet Union. This paper is a proposal for an option for WGPu disposition, i.e., use of the plutonium as a fuel for nuclear reactors for Mars exploration and eventual terraforming. WGPu was used in nuclear weapons because it has a much smaller critical mass than highly enriched uranium, allowing lighter weapons with consequent longer ranges. Similarly, WGPu reactors would also require smaller amounts of fuel to attain a critical mass, making the reactor much lighter overall and resulting in large savings in launch costs. The greater than 100 MT of WGPu would generate about 1000 billion kilowatt hours of heat energy, much of which could be converted into electricity. The waste heat would also be useful to a Martian outpost or colony. A potential way of getting the WGPu reactors into space is a large gas gun like that being developed at the Lawrence Livermore National Laboratory to orbit materials by achieving high velocity at the surface, greatly reducing launch costs and enhancing reliability. Reactor components would be launched on conventional rockets or space shuttles, the reactor fuel rods would be injected into orbit using the gas gun, and the reactor would be assembled in space. Implementation of this proposal would allow disposition of a serious, expensive problem on earth by removing the WGPu from the planet and simultaneously provide a very large energy resource for Mars exploration and terraforming

  5. Surplus weapons-grade plutonium: a resource for exploring and terraforming Mars

    Energy Technology Data Exchange (ETDEWEB)

    Muscatello, A.C.; Houts, M.G.

    1996-12-31

    With the end of the Cold War, greater than 100 metric tons (MT) of weapons-grade plutonium (WGPu) have become surplus to defense needs in the United States and the Former Soviet Union. This paper is a proposal for an option for WGPu disposition, i.e., use of the plutonium as a fuel for nuclear reactors for Mars exploration and eventual terraforming. WGPu was used in nuclear weapons because it has a much smaller critical mass than highly enriched uranium, allowing lighter weapons with consequent longer ranges. Similarly, WGPu reactors would also require smaller amounts of fuel to attain a critical mass, making the reactor much lighter overall and resulting in large savings in launch costs. The greater than 100 MT of WGPu would generate about 1000 billion kilowatt hours of heat energy, much of which could be converted into electricity. The waste heat would also be useful to a Martian outpost or colony. A potential way of getting the WGPu reactors into space is a large gas gun like that being developed at the Lawrence Livermore National Laboratory to orbit materials by achieving high velocity at the surface, greatly reducing launch costs and enhancing reliability. Reactor components would be launched on conventional rockets or space shuttles, the reactor fuel rods would be injected into orbit using the gas gun, and the reactor would be assembled in space. Implementation of this proposal would allow disposition of a serious, expensive problem on earth by removing the WGPu from the planet and simultaneously provide a very large energy resource for Mars exploration and terraforming.

  6. IFR starts to burn up weapons-grade material

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    With funding from different parts of the federal government, the Integral Fast Reactor (IFR) project has survived into fiscal year 1994 and is now embarking on a demonstration of how this type of liquid-metal-cooled reactor (LMR) can be used to burn fuel derived from weapons-grade plutonium. This month, an assembly made from weapons-grade material is to be loaded into Experimental Breeder Reactor-II in Idaho, which is serving as the prototype for the IFR concept. Although FY 1994 work is being funded by the DOE, this particular examination of plutonium burnup is backed by the Department of Defense

  7. A new concept of fast reactors, the potentialities of burning in them of actinoid and weapon-grade plutonium

    International Nuclear Information System (INIS)

    Murogov, V.M.; Troyanov, M.F.; Ilyunin, V.G.; Rudneva, V.Ya.

    1992-01-01

    The approach to a possible solution of the problem of peaceful utilization of weapon-grade plutonium released in the result of nuclear disarmament in Russia is given in the repot. As the most safe, ecologically acceptable and economically effective way of the plutonium utilization is the usage of such plutonium as a fuel for atomic power station. It is proposed to decide the problem on the basis of BN-600 and BN-800 reactors. In the approach, thorium could be used as a fertile material. The secondary nuclear fuel U-233 is expedient to use in light-water reactors of new generation. (author)

  8. An assessment of the use of diluents in the vitrification of weapons-grade plutonium

    International Nuclear Information System (INIS)

    Sylvester, K.W.B.; Simonson, S.A.

    1996-01-01

    A technical analysis was performed to determine the feasibility and utility of vitrifying weapons-grade plutonium (WGPu) with various diluents. The diluents considered were reactor-grade plutonium (RGPu) and several rare earths. The use of these diluents could affect both the useability of the material for weapons and long-term environmental safety. Blending RGPu with WGPu would increase the compressed critical mass of the WGPu mixture only slightly; but the blending would increase pre-detonation probabilities. Blends with the rare earths (notably Eu) would be highly effective in increasing the compressed critical mass. In addition to their effectiveness in increasing critical mass, the rare earths were investigated as criticality controllers due to their neutron absorption capabilities and insolubility in aqueous environments. Thorium (assumed as a Pu surrogate) and the rare earths Eu, Gd, and Sm were added to two standard frits (ARM-1 and SRL-165) and melted into glass. Aqueous leach tests were performed to measure rare earth leaching and determine the added elements' effects on glass durability. Europium was much more leach resistant than boron in the glasses tested. The added elements had no negative effect on the environmental durability of the glasses tested at 90 degrees C. No fission product releases were detected in the ARM-1 compositions (which contained numerous simulated fission products)

  9. Non-proliferation issues with weapons-usable plutonium

    International Nuclear Information System (INIS)

    Gray, L.W.

    2000-01-01

    In this paper author deals with the plutonium produced in power reactors and with their using. Excess plutonium, mineralized in a ceramic matrix and incised in HLW glass, is a less attractive target for terrorist groups than either aged, irradiated weapons grade MOX fuel, or aged, U oxide spent fuel. This is especially true after the Russian and United States' Pu Disposition Programs have been completed, until the material (spent MOX fuel or the immobilized form) is stored in a sealed, repository. (authors)

  10. Cooperative Studies in the Utilization and Storage of Excess Weapons-Grade Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Bolyatko, V. V. [Moscow Engineering Physics Institute (Russia)

    1998-01-29

    This technical report is a tangible and verifiable deliverable associated with the Nuclear Group subproject “Cooperative Studies in the Utilization and Storage of Excess Weapons-grade Plutonium.” This report is an assessment ofthe work performed by the Russian party from 1 October 1995 through 30 September 1996 regarding milestones defined in the contract between the Moscow Engineering Physics Institute (MEPhI) and the Texas Engineering Experiment Station (TEES). In these interactions, TEES serves as agent of the Amarillo National Resource Center for Plutonium (ANRCP) in the capacity oflead institution for the Nuclear Group of the ANRCP. The official Statement ofWork dated 8 April 1996 enumerates specific milestones and deliverables. In its present form, this report is an edited version ofthe translation submitted to TEES by MEPhI on 7 October 1996. The principal investigators for this subproject are Dr. Paul Nelson of TEES and Dr. Victor Bolyatko of the Moscow Engineering Physics Institute.

  11. The 'overlooked trio' of hypothetical terrorist nuclear weapons - reactor grade plutonium, neptunium-237 and tritium

    International Nuclear Information System (INIS)

    Sholly, S.

    2002-01-01

    Full text: Considerations revolving around physical protection of nuclear material are quite commonly and naturally focused on protecting weapons-grade plutonium (WGPu) and highly enriched uranium (HEU) from theft and diversion. These two materials are the center of attention because of their well-known (and demonstrated) potential for use in first-generation nuclear explosive devices of which potential terrorists are widely thought to be capable. They are also the center of attention because of retirements of these materials from military use as the Russian Federation and the United States reduce the number of nuclear weapons in their arsenals. Three other materials - an 'overlooked trio' - must also be borne in mind within this context: (1) reactor-grade plutonium (RGPu); (2) neptunium-237 (Np-237); and (3) tritium (H-3). Although there are still some authorities who either contend that RGPu cannot be used in a nuclear explosive or that there are (for a terrorist) insurmountable difficulties in doing so, the knowledgeable scientific and technical community, recognizes the potential utility of RGPu for hypothetical terrorist nuclear devices. A much smaller community of experts recognizes the usefulness of Np-237 for nuclear devices, but Np-237 is as straight-forwardly and easily usable as HEU and similarly abundant (but not often in separated form). Tritium can be used (with a modest increase in design sophistication) in a conventional first-generation nuclear device with any of the weapons-usable materials (WGPu, HEU, RGPu or Np-237) to increase the yield and/or increase the reliability of a non-fizzle yield. Given the presence of RGPu and Np-237 in abundant quantities in spent commercial reactor fuel, widely available knowledge of how to separate these materials, and a world-wide total of more than 400 nuclear power plants, spent reactor fuel also requires stringent controls. This is especially true of old spent fuel which has far less radiation dose

  12. A vitrification strategy for weapons-grade plutonium disposition

    International Nuclear Information System (INIS)

    Sylvester, K.B.; Simonson, S.A.

    1995-01-01

    Excess weapons-grade plutonium (WGPu) presents a complex but welcome challenge to decision makers. High security is a clear priority but a host of concerns will impact US actions. Making disposition decisions based on a rigid set of criteria designed to identify an 'optimum' technology given immediate objectives and available technologies may delay Russian processing and unnecessarily limit US options. Attention should be given to near-term, verifiable options that may not provide an acceptable level of security in the long-term but nonetheless provide a material barrier to direct theft and immediate use, buying time to evaluate potential disposition technologies. Vitrification of WGPu in borosilicate glass was examined as one such alternative. Rare earth diluents were examined (using MCNP) for their ability to increase the compressed critical mass of the mixture. Increased critical mass complicates weapon design and increases the quantity of material necessarily diverted. Europium was effective in this regard. As Pu-239 has a 24,000 yr half-life, reactivity control in the long-term could be an environmental safety issue should the glass be placed in a repository. Rare earths were investigated as criticality controllers due to their neutron absorption capabilities and insolubility in aqueous environments. Thorium (assumed as a Pu surrogate) and the rare earths Eu, Gd, and Sm were added to a standard frit (SRL-165) and formed into glass. Aqueous leach tests were performed (using MCC-1P guidelines) to measure rare earth leaching and determine the added element's effects on glass durability

  13. Peaceful uses of nuclear weapon plutonium; Friedliche Verwertung von Plutonium aus Kernwaffen

    Energy Technology Data Exchange (ETDEWEB)

    Burtak, F. [Siemens AG Bereich Energieerzeugung (KWU), Erlangen (Germany)

    1996-06-01

    In 1993, the U.S.A. and the CIS signed Start 2 (the Strategic Arms Reduction Treaty) in which they committed themselves the reduce their nuclear weapon arsenals to a fraction of that of 1991. For forty-five years the antagonism between the superpowers had been a dominating factor in world history, determining large areas of social life. When Start 2 will have been completed in 2003, some 200 t of weapon grade plutonium and some 2000 t of highly enriched uranium (Heu) will arise from dismantling nuclear weapons. In the absence of the ideological ballast of the debate about Communism versus Capitalism of the past few decades there is a chance of the grave worldwide problem of safe disposal and utilization of this former nuclear weapon material being solved. Under the heading of `swords turned into plowshares`, plutonium and uranium could be used for peaceful electricity generation. (orig.) [Deutsch] 1993 unterzeichneten die USA und GUS das Start-2-Abkommen (Strategic Arms Reduction Treaty), in dem sie sich zur Verringerung der Anzahl ihrer Nuklearwaffen auf einen Bruchteil des Bestandes von 1991 verpflichten. 45 Jahre lang stellte die Auseinandersetzung der Supermaechte einen dominierenden Faktor der Weltpolitik dar und bestimmte weite Teile des gesellschaftlichen Lebens. Mit der geplanten Erfuellung von Start 2 im Jahr 2003 werden ca. 200 t waffengraediges Plutonium und ca. 2000 t highly enriched uranium (Heu) aus der Demontage der Kernwaffen anfallen. Ohne den ideologischen Ballast der vergangenen jahrezehntelangen Auseinandersetzung zwischen `Kommunismus` und `Kapitalismus` besteht die Chance, das gravierende weltweite Problem der sicheren Entsorgung und Verwertung dieses ehemaligen Kernwaffenmaterials zu loesen. Unter dem Motto `Schwerter zu Pflugscharen` koennte das Plutonium und Uran zur friedlichen Elektrizitaetserzeugung genutzt werden. (orig.)

  14. Utilization of Cs137 to generate a radiation barrier for weapons grade plutonium immobilized in borosilicate glass canisters. Revision 1

    International Nuclear Information System (INIS)

    Jardine, L.J.; Armantrout, G.A.; Collins, L.F.

    1995-01-01

    One of the ways recommended by a recent National Academy of Sciences study to dispose of excess weapons-grade plutonium is to encapsulate the plutonium in a glass in combination with high-level radioactive wastes (HLW) to generate an intense radiation dose rate field. The objective is to render the plutonium as difficult to access as the plutonium contained in existing US commercial spent light-water reactor (LWR) fuel until it can be disposed of in a permanent geological repository. A radiation dose rate from a sealed canister of 1,000 rem/h (10 Sv/h) at 1 meter for at least 30 years after fabrication was assumed in this paper to be a radiation dose comparable to spent LWR fuel. This can be achieved by encapsulating the plutonium in a borosilicate glass with an adequate amount of a single fission product in the HLWS, namely radioactive Cs 137 . One hundred thousand curies of Cs 137 will generate a dose rate of 1,000 rem/h (10 Sv/h) at 1 meter for at least 30 years when imbedded into canisters of the size proposed for the Savannah River Site's vitrified high-level wastes. The United States has a current inventory of 54 MCi of CS 137 that has been separated from defense HLWs and is in sealed capsules. This single curie inventory is sufficient to spike 50 metric tons of excess weapons-grade plutonium if plutonium can be loaded at 5.5 wt% in glass, or 540 canisters. Additional CS 137 inventories exist in the United States' HLWs from past reprocessing operations, should additional curies be required. Using only one fission product, CS 137 , rather than the multiple chemical elements and compounds in HLWs to generate a high radiation dose rate from a glass canister greatly simplifies the processing engineering retirement for encapsulating plutonium in a borosilicate glass

  15. Disposition of plutonium from dismantled nuclear weapons: Fission options and comparisons

    International Nuclear Information System (INIS)

    Omberg, R.P.; Walter, C.E.

    1993-01-01

    Over the next decade, the United States expects to recover about 50 Mg of excess weapon plutonium and the Republic of Russia expects to recover a similar amount. Ensuring that these large quantities of high-grade material are not reused in nuclear weapons has drawn considerable attention. In response to this problem, the US Department of Energy (DOE) chartered the Plutonium Disposition Task Force (PDTF), in the summer of 1992, to assess a range of practical means for disposition of excess US plutonium. This report summarizes and compares the ''Fission Options'' provided to the Fission Working Group Review Committee (the committee) of the PDTF. The review by the committee was based on preliminary information received as of December 4, 1992, and as such the results summarized in this report should also be considered preliminary. The committee concluded that irradiation of excess weapon plutonium in fission reactors in conjunction with the generation of electricity and storing the spent fuel is a fast, cost-effective, and environmentally acceptable method of addressing the safeguards (diversion) issue. When applied appropriately, this method is consistent with current nonproliferation policy. The principal effect of implementing the fission options is at most a moderate addition of plutonium to that existing in commercial spent fuel. The amount of plutonium in commercial spent fuel by the year 2000 is estimated to be 300 Mg. The addition of 50 Mg of excess weapon plutonium, in this context, is not a determining factor, moreover, several of the fission options achieve substantial annihilation of plutonium

  16. An Opportunity to Immobilize 1.6 MT or More of Weapons-Grade Plutonium at the Mayak and Krasnoyarsk-26 Sites

    International Nuclear Information System (INIS)

    Jardine, L J; Borisov, G B; Rovny, S I; Kudinov, K G; Shvedov, A A

    2001-01-01

    The Mayak Production Association (PA Mayak), an industrial site in Russia, will be assigned multiple new plutonium disposition missions in order to implement the ''Agreement Between The Government Of The United States Of America And The Government Of Russian Federation Concerning The Management And Disposition Of Plutonium Designated As No Longer Required For Defense Purposes And Related Cooperation'' signed September 1, 2000, by Gore and Kasyanov, In addition, the mission of industrial-scale mixed-oxide (MOX) fabrication will be assigned to either the Mining Chemical Combine (MCC) industrial site at Krasnoyarsk-26 (K-26) or PA Mayak. Over the next decades, these new missions will generate radioactive wastes containing weapons-grade plutonium. The existing Mayak and K-26 onsite facilities and infrastructures cannot currently treat and immobilize these Pu-containing wastes for storage and disposal. However, the wastes generated under the Agreement must be properly immobilized, treated, and managed. New waste treatment and immobilization missions at Mayak may include operating facilities for plutonium metal-to-oxide conversion processes, industrial-scale MOX fuel fabrication, BN-600 PAKET hybrid core MOX fuel fabrication, and a plutonium conversion demonstration process. The MCC K-26 site, if assigned the industrial-scale MOX fuel fabrication mission, would also need to add facilities to treat and immobilize the Pu-containing wastes. This paper explores the approach and cost of treatment and immobilization facilities at both Mayak and K-26. The current work to date at Mayak and MCC K-26 indicates that the direct immobilization of 1.6 MT of weapons-grade plutonium is a viable and cost-effective alternative

  17. Physicochemical characterization of discrete weapons grade plutonium metal particles originating from the 1960 BOMARC incident

    Science.gov (United States)

    Bowen, James M.

    The goal of this research was to investigate the physicochemical properties of weapons grade plutonium particles originating from the 1960 BOMARC incident for the purpose of predicting their fate in the environment and to address radiation protection and nuclear security concerns. Methods were developed to locate and isolate the particles in order to characterize them. Physical, chemical, and radiological characterization was performed using a variety of techniques. And finally, the particles were subjected to a sequential extraction procedure, a series of increasingly aggressive reagents, to simulate an accelerated environmental exposure. A link between the morphology of the particles and their partitioning amongst environmental mechanisms was established.

  18. Disposition of weapons-grade plutonium in LWRs - a utility perspective

    International Nuclear Information System (INIS)

    Naughton, W.F.

    1996-01-01

    The optimal alternative for the disposition of weapons-grade plutonium (WPu) is to burn it in currently operating light water reactors (LWRs). There are three key aspects associated with the reactor burn option that lead to this conclusion. They are timeliness, acceptable solution, and equity or resource recovery. The National Academy of Sciences report on this subject has thoroughly covered the first two aspects by indicating that there is open-quotes a clear and present dangerclose quotes associated with WPu - the timeliness issue. Also, the report indicates that the spent-fuel standard is the acceptable long-term solution. Both of these aspects are met by the reactor burn option as it exists today; i.e., the reactor option is both timely and obviously meets the spent-fuel standard. The equity or resource recovery aspect is based on the fact that the resources for the development and use of this material as a nuclear deterrent for the past 50 yr was supplied by, in the U.S.'s case, the taxpayers. Only the reactor burn option offers an opportunity for the partial recovery of those resources in the form of electrical energy

  19. Code Analyses Supporting PIE of Weapons-Grade MOX Fuel

    International Nuclear Information System (INIS)

    Ott, Larry J.; Bevard, Bruce Balkcom; Spellman, Donald J.; McCoy, Kevin

    2010-01-01

    The U.S. Department of energy has decided to dispose of a portion of the nation's surplus weapons-grade plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating the fuel in commercial power reactors. Four lead test assemblies (LTAs) were manufactured with weapons-grade mixed oxide (WG-MOX) fuel and irradiated in the Catawba Nuclear Station Unit 1, to a maximum fuel rod burnup of ∼47.3 GWd/MTHM. As part of the fuel qualification process, five rods with varying burnups and initial plutonium contents were selected from one assembly and shipped to the Oak Ridge National Laboratory (ORNL) for hot cell examination. ORNL has provided analytical support for the post-irradiation examination (PIE) of these rods via extensive fuel performance modeling which has aided in instrument settings and PIE data interpretation. The results of these fuel performance simulations are compared in this paper with available PIE data.

  20. Plutonium: key issue in nuclear disarmament and non-proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    Yoshisaki, M.B.

    1993-01-01

    The technical report is a 1993 update on weapons-grade plutonium, a key issue in nuclear disarmament. Its vital significance would again be discussed during the fifth and the last Review Conference on the Non-Proliferation Treaty (NPT) for Nuclear Weapons which would end in 1995. Member States shall decide whether an indefinite or conditional extension of NPT is necessary for world peace and international security. Two Non-NPT States, Russia and U.S.A. are in the forefront working for the reduction of nuclear weapons through nuclear disarmament. Their major effort is focused on the implementation of the Strategic Arms Reduction Treaty I and II or START I and II for world peace. The eventual implementation of START I and II would lead to the dismantling of plutonium from nuclear warheads proposed to be eliminated by both countries. This report gives three technical options to be derived from nuclear disarmament issues for the non-proliferation of nuclear weapons: (a) indefinite storage - there is no guarantee that these will not be used in the future (b) disposal as wastes - possible only in principle, because of lack of experience in mixing plutonium with high level wastes, and (c) source of energy - best option in managing stored weapons materials, because it satisfies non-proliferation objectives. It means fuel for energy in Light Water Reactors (LWR) or Fast Breeder Reactors (FBR). (author). 8 refs

  1. Weapons-grade plutonium dispositioning. Volume 4

    International Nuclear Information System (INIS)

    Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

    1993-06-01

    This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO 2 -ZrO 2 -CaO) with the addition of thorium oxide (ThO 2 ) or a burnable poison such as erbium oxide (Er 2 O 3 ) or europium oxide (Eu 2 O 3 ) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl 4 -Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams

  2. Combining a gas turbine modular helium reactor and an accelerator and for near total destruction of weapons grade plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, A.M.; Lane, R.K.; Sherman, R. [General Atomics, San Diego, CA (United States)

    1995-10-01

    Fissioning surplus weapons-grade plutonium (WG-Pu) in a reactor is an effective means of rendering this stockpile non-weapons useable. In addition the enormous energy content of the plutonium is released by the fission process and can be captured to produce valuable electric power. While no fission option has been identified that can accomplish the destruction of more than about 70% of the WG-Pu without repeated reprocessing and recycling, which presents additional opportunities for diversion, the gas turbine modular helium-cooled reactor (GT-MHR), using an annular graphite core and graphite inner and outer reflectors combines the maximum plutonium destruction and highest electrical production efficiency and economics in an inherently safe system. Accelerator driven sub-critical assemblies have also been proposed for WG-Pu destruction. These systems offer almost complete WG-Pu destruction, but achieve this goal by using circulating aqueous or molten salt solutions of the fuel, with potential safety implications. By combining the GT-MHR with an accelerator-driven sub-critical MHR assembly, the best features of both systems can be merged to achieve the near total destruction of WG-Pu in an inherently safe, diversion-proof system in which the discharged fuel elements are suitable for long term high level waste storage without the need for further processing. More than 90% total plutonium destruction, and more than 99.9% Pu-239 destruction, could be achieved. The modular concept minimizes the size of each unit so that both the GT-MHR and the accelerator would be straightforward extensions of current technology.

  3. Overview of surplus weapons plutonium disposition

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, G.

    1996-05-01

    The safe disposition of surplus weapons useable plutonium is a very important and urgent task. While the functions of long term storage and disposition directly relate to the Department`s weapons program and the environmental management program, the focus of this effort is particularly national security and nonproliferation.

  4. US and Russia face urgent decisions on weapons plutonium

    International Nuclear Information System (INIS)

    Hileman, B.

    1994-01-01

    Surplus plutonium poses a ''clear and present danger to national and international security,'' warns a National Academy of Sciences (NAS) study released in January, titled ''The Management and Disposition of Excess Weapons Plutonium.'' Over the past few years, many different methods of disposing of plutonium have been proposed. They range from shooting it into the Sun with missiles, to deep-seabed disposal, to fissioning it within a new generation of nuclear reactors. The NAS report rejects most of the methods suggested so far, but does recommend pursuing two of the options. One is to incorporate the plutonium in mixed-oxide fuel, a mixture of plutonium and uranium oxides, and use it to fuel commercial nuclear reactors. The other is to mix the plutonium with high-level waste and molten glass and mold the resulting material into large glass logs for eventual geologic disposal. Both are discussed here. The panel that wrote the NAS study is a standing committee called the Committee on International Security ampersand Arms Control. It suggests steps that should be taken now to guard supplies of plutonium removed from weapons. One step is bilateral US-Russian monitoring of warhead dismantlement. Others include setting up secure interim storage for the fissile materials and establishing an international monitoring system to verify the stockpiles and ensure that materials are not withdrawn for use in new weapons. The panel also urges Russia to stop producing fissile weapons materials and both countries to commit a very large fraction of their plutonium and highly enriched uranium from dismantled weapons to nonaggressive uses. The US and Russia have already made initial moves to accomplish these goals but have not fully implemented any of them

  5. Optimal management of weapons plutonium through MOX recycling

    International Nuclear Information System (INIS)

    McMurphy, M.A.; Bastard, G. le

    1995-01-01

    Beyond the satisfaction of witnessing the end of the nuclear arms race, the availability of large quantities of plutonium from the dismantlement of nuclear weapons in Russia and the US can be perceived as a challenge and an opportunity. A challenge because poor management of this material would maintain a problematic situation in terms of proliferation; an opportunity because such plutonium represents a high value energy source that the civilian industry is capable of using efficiently, actually turning it from swords to plowshares. The object of this paper is to describe the main characteristics of the use of weapons plutonium in the civilian cycle to produce electricity through the use of mixed uranium-plutonium oxide (MOX), or moxification. A comparison with the main alternate solution--plutonium vitrification--is offered, in particular with regard to industrial availability, energy resource management, economy, environment and proliferation

  6. Excess Weapons Plutonium Immobilization in Russia

    International Nuclear Information System (INIS)

    Jardine, L.; Borisov, G.B.

    2000-01-01

    The joint goal of the Russian work is to establish a full-scale plutonium immobilization facility at a Russian industrial site by 2005. To achieve this requires that the necessary engineering and technical basis be developed in these Russian projects and the needed Russian approvals be obtained to conduct industrial-scale immobilization of plutonium-containing materials at a Russian industrial site by the 2005 date. This meeting and future work will provide the basis for joint decisions. Supporting R and D projects are being carried out at Russian Institutes that directly support the technical needs of Russian industrial sites to immobilize plutonium-containing materials. Special R and D on plutonium materials is also being carried out to support excess weapons disposition in Russia and the US, including nonproliferation studies of plutonium recovery from immobilization forms and accelerated radiation damage studies of the US-specified plutonium ceramic for immobilizing plutonium. This intriguing and extraordinary cooperation on certain aspects of the weapons plutonium problem is now progressing well and much work with plutonium has been completed in the past two years. Because much excellent and unique scientific and engineering technical work has now been completed in Russia in many aspects of plutonium immobilization, this meeting in St. Petersburg was both timely and necessary to summarize, review, and discuss these efforts among those who performed the actual work. The results of this meeting will help the US and Russia jointly define the future direction of the Russian plutonium immobilization program, and make it an even stronger and more integrated Russian program. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing the work into one place for four days to review and discuss their work with each other; and (2) Publish a meeting summary and a proceedings to compile reports of all the

  7. Recovery of weapon plutonium as feed material for reactor fuel

    International Nuclear Information System (INIS)

    Armantrout, G.A.; Bronson, M.A.; Choi, Jor-Shan

    1994-01-01

    This report presents preliminary considerations for recovering and converting weapon plutonium from various US weapon forms into feed material for fabrication of reactor fuel elements. An ongoing DOE study addresses the disposition of excess weapon plutonium through its use as fuel for nuclear power reactors and subsequent disposal as spent fuel. The spent fuel would have characteristics similar to those of commercial power spent fuel and could be similarly disposed of in a geologic repository

  8. Assessment and reduction of proliferation risk of reactor-grade plutonium regarding construction of ‘fizzle bombs’ by terrorists

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.; Mulder, Eben J.; Reitsma, Frederik

    2014-01-01

    The approximately 23.7 wt% 240 Pu in reactor-grade plutonium denatures the 239 Pu to the extent that it cannot fuel high yield nuclear weapons. 240 Pu has a high spontaneous fission rate, which increases the spontaneous neutron flux within the fuel. When such a nuclear weapon is triggered, these neutrons cause the nuclear fission chain reaction to pre-detonate which blows the imploding fuel shell apart before the designed level of compression and reactivity could be attained, thereby greatly reducing the average energy yield of such “fizzle” bombs. Therefore reactor-grade plutonium is normally viewed as highly proliferation resistant. In this article the literature on the proliferation resistance of reactor-grade plutonium and on the mechanism and effect of fizzle bombs is reviewed in order to test this view. It is shown that even very low yield fizzle bombs, exploded in urban areas, would still cause serious blast damage as well as radioactive contamination. Combined with the high levels of induced terror, fizzle bombs might thus be attractive psychological weapons for terrorists. Therefore reactor-grade plutonium may not be sufficiently proliferation resistant against nuclear terrorism. However, denaturisation with more than 9% 238 Pu produces high levels of decay heat which will melt or explode the high explosives around uncooled implosion type weapons, rendering them useless. Unfortunately, reactor-grade Pu contains only 2.7% 238 Pu and is thus not sufficiently proliferation resistant in this respect. It is also shown that the associated neptunium poses a substantial proliferation risk. In the present study strong improvement of the proliferation resistance was demonstrated by simulation of incineration of reactor-grade plutonium in the 400 MW th Pebble Bed Modular Reactor Demonstration Power Plant. Results for modified fuel cycles, aimed at transmutating 237 Np to 238 Pu are also reported. However, these modifications increased the disloaded heavy metal

  9. U.S. weapons-usable plutonium disposition policy: Implementation of the MOX fuel option

    Energy Technology Data Exchange (ETDEWEB)

    Woods, A.L. [ed.] [Amarillo National Resource Center for Plutonium, TX (United States); Gonzalez, V.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Political Science

    1998-10-01

    A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective.

  10. U.S. weapons-useable plutonium disposition policy: Implementation of the MOX fuel option

    International Nuclear Information System (INIS)

    Woods, A.L.; Gonzalez, V.L.

    1998-10-01

    A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective

  11. The Minatom concept of surplus weapons plutonium utilization in Russia

    International Nuclear Information System (INIS)

    Yegorov, N.N.; Bogdan, V.V.; Kagramanian, V.S.

    1996-01-01

    The fuel cycle industry in Russia has necessary basis and experience to begin solving problems of ensuring safe utilisation of weapons plutonium. Russian concept of plutonium management (both civil and military) is based on the fuel cycle closing in the nuclear power industry to increase the efficiency of the fuel use and decrease the activity of the long lived waste. Short term program of plutonium management in Russia includes safe and reliable storage of weapons and separated civil plutonium until they are used in reactors. Further studies are needed concerning optimal use of MOX fuel in fast BN reactors as well as in WWER type reactors having in mind non-proliferation aspects, nuclear radiation safety, economics and ecology

  12. Long-term retrievability and safeguards for immobilized weapons plutonium in geologic storage

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    If plutonium is not ultimately used as an energy source, the quantity of excess weapons plutonium (w-Pu) that would go into a US repository will be small compared to the quantity of plutonium contained in the commercial spent fuel in the repository, and the US repository(ies) will likely be only one (or two) locations out of many around the world where commercial spent fuel will be stored. Therefore excess weapons plutonium creates a small perturbation to the long-term (over 200,000 yr) global safeguard requirements for spent fuel. There are details in the differences between spent fuel and immobilized w-Pu waste forms (i.e. chemical separation methods, utility for weapons, nuclear testing requirements), but these are sufficiently small to be unlikely to play a significant role in any US political decision to rebuild weapons inventories, or to change the long-term risks of theft by subnational groups.

  13. Long-term retrievability and safeguards for immobilized weapons plutonium in geologic storage

    International Nuclear Information System (INIS)

    Peterson, P.F.

    1996-01-01

    If plutonium is not ultimately used as an energy source, the quantity of excess weapons plutonium (w-Pu) that would go into a US repository will be small compared to the quantity of plutonium contained in the commercial spent fuel in the repository, and the US repository(ies) will likely be only one (or two) locations out of many around the world where commercial spent fuel will be stored. Therefore excess weapons plutonium creates a small perturbation to the long-term (over 200,000 yr) global safeguard requirements for spent fuel. There are details in the differences between spent fuel and immobilized w-Pu waste forms (i.e. chemical separation methods, utility for weapons, nuclear testing requirements), but these are sufficiently small to be unlikely to play a significant role in any US political decision to rebuild weapons inventories, or to change the long-term risks of theft by subnational groups

  14. Assessment and reduction of proliferation risk of reactor-grade plutonium regarding construction of ‘fizzle bombs’ by terrorists

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [School for Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001 (Internal Post Box 360), Potchefstroom 2520 (South Africa); Mulder, Eben J. [School for Mechanical and Nuclear Engineering, North West University (South Africa); Reitsma, Frederik [Calvera Consultants (South Africa)

    2014-05-01

    The approximately 23.7 wt% {sup 240}Pu in reactor-grade plutonium denatures the {sup 239}Pu to the extent that it cannot fuel high yield nuclear weapons. {sup 240}Pu has a high spontaneous fission rate, which increases the spontaneous neutron flux within the fuel. When such a nuclear weapon is triggered, these neutrons cause the nuclear fission chain reaction to pre-detonate which blows the imploding fuel shell apart before the designed level of compression and reactivity could be attained, thereby greatly reducing the average energy yield of such “fizzle” bombs. Therefore reactor-grade plutonium is normally viewed as highly proliferation resistant. In this article the literature on the proliferation resistance of reactor-grade plutonium and on the mechanism and effect of fizzle bombs is reviewed in order to test this view. It is shown that even very low yield fizzle bombs, exploded in urban areas, would still cause serious blast damage as well as radioactive contamination. Combined with the high levels of induced terror, fizzle bombs might thus be attractive psychological weapons for terrorists. Therefore reactor-grade plutonium may not be sufficiently proliferation resistant against nuclear terrorism. However, denaturisation with more than 9% {sup 238}Pu produces high levels of decay heat which will melt or explode the high explosives around uncooled implosion type weapons, rendering them useless. Unfortunately, reactor-grade Pu contains only 2.7% {sup 238}Pu and is thus not sufficiently proliferation resistant in this respect. It is also shown that the associated neptunium poses a substantial proliferation risk. In the present study strong improvement of the proliferation resistance was demonstrated by simulation of incineration of reactor-grade plutonium in the 400 MW{sub th} Pebble Bed Modular Reactor Demonstration Power Plant. Results for modified fuel cycles, aimed at transmutating {sup 237}Np to {sup 238}Pu are also reported. However, these

  15. Technical challenges in support of the plutonium materials conversion program in Russia

    International Nuclear Information System (INIS)

    Mason, C.F.V.; Zygmunt, S.J.; Hahn, W.K.; James, C.A.; Costa, D.A.; Smith, W.H.; Yarbro, S.L.

    2000-01-01

    The Department of Energy's Plutonium Materials Conversion Program for Russia is designed to assist Russia in defining a path for the destruction of weapons grade plutonium. A similar program is currently defining a program for destruction of US weapons grade plutonium. These two sister programs arose from the September 1998 meeting between President Yeltsin and President Clinton, after which they issued a 'Joint statement of principles for management and disposition of plutonium designated as no longer required for defense purposes'. The US and Russia have each committed to convert 50 metric tons of plutonium from nuclear weapons programs to forms which are unusable for weapons

  16. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    International Nuclear Information System (INIS)

    Ewing, R.C.; Lutze, W.; Weber, W.J.

    1995-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ''logs''; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium

  17. The US plutonium materials conversion program in Russia

    International Nuclear Information System (INIS)

    Zygmunt, S.J.; Mason, C.F.V.; Hahn, W.K.

    2000-01-01

    Progress has been made in Russia towards the conversion of weapons-grade plutonium (w-Pu) into plutonium oxide (PuO 2 ) suitable for further manufacture into mixed oxide (MOX) fuels. This program was started in 1998 in response to US proliferation concerns and the acknowledged international need to decrease the available weapons-grade Pu. A similar agenda is being followed in the US to address disposition of US surplus weapons-grade Pu. In Russia a conversion process has been selected and a site proposed. This paper discusses the present state of the program in support of this future operating facility that will process up to 5 metric tons of plutonium a year. (authors)

  18. Beating plutonium swords into electrical plowshares

    International Nuclear Information System (INIS)

    Ofte, D.

    1993-01-01

    After decades of producing large quantities of weapons-grade plutonium, the United States and the Confederation of Independent States are faced with an unanticipated dilemma of a growing surplus of that material. This circumstance could not have been anticipated just a few years ago after living with a weapons program that from its inception in the United States was characterized by a chronic tight supply situation. The rapid drawdown of the nuclear weapons stockpile presents a near-term problem of storage capacity in the system until the United States makes a disposition decision for what may be in excess of 50 tonnes of weapons-grade plutonium

  19. Chinese strategic weapons and the plutonium option (U)

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, John W.; Xui Litai

    1988-04-01

    In their article "Chinese Strategic Weapons and the Plutonium Option," John W. Lewis and Xue Litai of the Center for International Security and Arms Control at Stanford University's International Strategic Institute present an unclassified look at plutonium processing in the PRC. The article draws heavily on unclassified PRC sources for its short look at this important subject. Interested readers will find more detailed information in the recently available works referenced in the article.

  20. Non-fertile fuels for burning weapons plutonium in thermal fission reactors

    International Nuclear Information System (INIS)

    Lombardi, C.; Mazzola, A.; Vettraino, F.

    1996-01-01

    In the last few years, the excess plutonium disposition has become ever more a topical and critical issue. As a matter of fact, more than 200 MT of plutonium coming from spent fuel reprocessing have been already stockpiled and over the next decade, under the already ratified agreements, another about 200 MT of weapon-grade plutonium are expected to be available from nuclear weapons dismantlement. On this basis, an ever growing plutonium production is no longer the goal and the already stored quantities should be burnt in power reactors by taking care that no new plutonium is generated under irradiation. This new outlook in considering plutonium has led many designers to reassess the Fast Breeder Reactors (FBR) role and shifting from breeder to burner machines perspective. Several solutions for burning plutonium have been so far proposed and discussed from the safeguards, proliferation resistance, environmental safety, technological background, economy and time schedule standpoint. A proposal for plutonium burning in commercial Pressurized Water Reactors (PWR) by using a non-fertile oxide-type fuel consisting of PuO 2 diluted in an inert matrix is reported hereafter. This solution appears to receive an ever growing interest in the nuclear community. In order not to produce new plutonium during irradiation an innovative U-free fuel is being researched, based on an inert matrix which will consist in a mixed compound of inert oxides, such as ZrO 2 , Al2O 3 , MgO, CeO 2 where the plutonium oxide is dispersed in. The matrix will fulfill the following requirements: good chemical compatibility, acceptable thermal conductivity, good nuclear properties, good stability under irradiation, good dissolution resistance. The plutonium relative content will be comparable to that used in MOX fuel. The fuel is expected to be characterized by a high chemical stability (rock-like fuel), so that after discharge from reactor and adequate cooling time, it can be considered a High Level

  1. Physics studies of weapons plutonium disposition in the IFR closed fuel cycle

    International Nuclear Information System (INIS)

    Hill, R.N.; Wade, D.C.; Liaw, J.R.; Fujita, E.K.

    1994-01-01

    The core performance impact of weapons plutonium introduction into the IFR closed fuel cycle is investigated by comparing three disposition scenarios: a power production mode, a moderate destruction mode, and a maximum destruction mode all at a constant heat rating of 840 MWt. For each scenario, two fuel cycle models are evaluated: cores using weapons material as the sole source of transuranics in a once-through mode, and recycle corns using weapons material only as required for a make-up feed. Calculated results include mass flows, detailed isotopic distributions, neutronic performance characteristics, and reactivity feedback coefficients. In general, it is shown that weapons plutonium feed does not have an adverse impact on IFR core performance characteristics

  2. Multi-generational stewardship of plutonium

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1997-01-01

    The post-cold war era has greatly enhanced the interest in the long-term stewardship of plutonium. The management of excess plutonium from proposed nuclear weapons dismantlement has been the subject of numerous intellectual discussions during the past several years. In this context, issues relevant to long-term management of all plutonium as a valuable energy resource are also being examined. While there are differing views about the future role of plutonium in the economy, there is a recognition of the environmental and health related problems and proliferation potentials of weapons-grade plutonium. The long-term management of plutonium as an energy resource will require a new strategy to maintain stewardship for many generations to come

  3. Modernization of RTC for fabrication of MOX fuel, Vibropac fuel pins and BN-600 FA with weapon grade plutonium

    International Nuclear Information System (INIS)

    Grachyov, A.F.; Kalygin, V.V.; Skiba, O.V.; Mayorshin, A. A.; Bychkov, A.V.; Kisly, V.A.; Ovsyannikov, Y.F.; Bobrov, D.A.; Mamontov, S.I.; Tsyganov, A.N.; Churutkin, E.I.; Davydov, P.I.; Samosenko, E.A; Shalak, A.R.; Ojima, Hisao

    2004-01-01

    to provide the BN-600 hybrid core with vibro-pac MOX fuel produced from weapon-grade plutonium excess for defense needs

  4. Plutonium Proliferation: The Achilles Heel of Disarmament

    International Nuclear Information System (INIS)

    Leventhal, Paul

    2001-01-01

    Plutonium is a byproduct of nuclear fission, and it is produced at the rate of about 70 metric tons a year in the world's nuclear power reactors. Concerns about civilian plutonium ran high in the 1970s and prompted enactment of the Nuclear Non-Proliferation Act of 1978 to give the United States a veto over separating plutonium from U.S.-supplied uranium fuel. Over the years, however, so-called reactor-grade plutonium has become the orphan issue of nuclear non-proliferation, largely as a consequence of pressures from plutonium-separating countries. The demise of the fast breeder reactor and the reluctance of utilities to introduce plutonium fuel in light-water reactors have resulted in large surpluses of civilian, weapons-usable plutonium, which now approach in size the 250 tons of military plutonium in the world. Yet reprocessing of spent fuel for recovery and use of plutonium proceeds apace outside the United States and threatens to overwhelm safeguards and security measures for keeping this material out of the hands of nations and terrorists for weapons. A number of historical and current developments are reviewed to demonstrate that plutonium commerce is undercutting efforts both to stop the spread of nuclear weapons and to work toward eliminating existing nuclear arsenals. These developments include the breakdown of U.S. anti-plutonium policy, the production of nuclear weapons by India with Atoms-for-Peace plutonium, the U.S.-Russian plan to introduce excess military plutonium as fuel in civilian power reactors, the failure to include civilian plutonium and bomb-grade uranium in the proposed Fissile Material Cutoff Treaty, and the perception of emerging proliferation threats as the rationale for development of a ballistic missile defense system. Finally, immobilization of separated plutonium in high-level waste is explored as a proliferation-resistant and disarmament-friendly solution for eliminating excess stocks of civilian and military plutonium.

  5. Accelerator-based conversion (ABC) of reactor and weapons plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R.J.; Trapp, T.J.; Arthur, E.D.; Bowman, C.D.; Davidson, J.W.; Linford, R.K.

    1993-06-01

    An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper.

  6. Accelerator-based conversion (ABC) of reactor and weapons plutonium

    International Nuclear Information System (INIS)

    Jensen, R.J.; Trapp, T.J.; Arthur, E.D.; Bowman, C.D.; Davidson, J.W.; Linford, R.K.

    1993-01-01

    An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper

  7. Multi-attribute evaluation and choice of alternatives for surplus weapons-usable plutonium disposition at uncertainty

    International Nuclear Information System (INIS)

    Kosterev, V.V.; Bolyatko, V.V.; Khajretdinov, S.I.; Averkin, A.N.

    2014-01-01

    The problem of surplus weapons-usable plutonium disposition is formalized as a multi-attribute problem of a choice of alternatives from a set of possible alternatives under fuzzy conditions. Evaluation and ordering of alternatives for the surplus weapons-usable plutonium disposition and sensitivity analysis are carried out at uncertainty [ru

  8. Possibility of plutonium burning out and minor actinides transmutation in CANDU type reactor

    International Nuclear Information System (INIS)

    Gerasimov, A.S.; Kiselev, G.V.; Myrtsymova, L.A.

    2000-01-01

    The possibility of power or weapon-grade plutonium use as nuclear fuel in CANDU type reactor with simultaneous minor actinides burn-out is studied. Total thermal power is 1900 MW. The fuel lifetime makes 0.24 years, neutron flux density 10 14 neutr/cm 2 s. About 40-45 % of plutonium is incinerated during fuel lifetime. If weapon-grade plutonium is used in fuel channels instead of power one, its consumption is 40% lower. (author)

  9. Could weapon-grade plutonium be an asset for managing Pu inventories?

    International Nuclear Information System (INIS)

    Bairiot, H.; Bemden, E. van den

    1997-01-01

    Due to the temporary shortage of MOX fuel fabrication facilities, the stockpile of separated civilian grade Pu (CPu) is predicted to increase up to the turn of the century. An additional quantity of weapon grade Pu (WPu) will be progressively isolated at the same period. Both CPu and WPu surpluses require disposition as soon as feasible. Although non-proliferation concerns, established national policies, public acceptance problems and other considerations largely complicate the aspect of the use of WPu, it is worth examining the advantages which could result from a synergetic management of: LWR grade Pu to which AGR grade Pu might be associated; WPu; GCR grade Pu which should be considered as a Pu variety situated between the two first ones as far as their physical and neutronic characteristics are concerned. Two scenarios of integrated managements of the CPu varieties and WPu are being considered. They indicate several technical and economical advantages but also important problems to be resolved, mainly from the non-proliferation point of view. In that respect, it is concluded that, although no reasonable perspective exists to resolve these problems easily (or at all), the advantages justify an effort of the international community to consider how it could be implemented. (author). 24 refs, 2 figs, 5 tabs

  10. Evaluation of alternatives for the disposition of surplus weapons-usable plutonium

    International Nuclear Information System (INIS)

    Dyer, J.S.; Butler, J.C.; Edmunds, T.

    1997-01-01

    The Department of Energy Record of Decision (ROD) selected alternatives for disposition of surplus, weapons grade plutonium. A major objective of this decision was to prevent the proliferation of nuclear weapons. Other concerns addressed included economic, technical, institutional, schedule, environmental, and health and safety issues. The analysis reported here was conducted in parallel with technical, environmental, and nonproliferation analyses; it uses multiattribute utility theory to combine these considerations in order to facilitate an integrated evaluation of alternatives. This analysis is intended to provide additional insight regarding alternative evaluation and to assist in understanding the rationale for the choice of alternatives recommended in the ROD. Value functions were developed for objectives of disposition, and used to rank alternatives. Sensitivity analyses indicated that the ranking of alternatives for the base case was relatively insensitive to changes in assumptions over reasonable ranges. The analyses support the recommendation of the ROD to pursue parallel development of the vitrification immobilization alternative and the use of existing light water reactors alternative. 27 refs., 109 figs., 20 tabs

  11. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    Energy Technology Data Exchange (ETDEWEB)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

  12. Nuclear legacy. Democracy in a plutonium economy

    International Nuclear Information System (INIS)

    Barnaby, F.

    1997-01-01

    There have already been a few hundred known incidents of nuclear smuggling, mostly of small quantities not close to weapons grade material - but one gram of plutonium is more than sufficient to cause significant harm and to pose a substantial threat. The potential for further thefts is growing as the world produces ever more quantities of plutonium, not only from the dismantling of nuclear weapons but also from the separation out of plutonium from spent uranium nuclear reactor fuel elements. Trying to prevent the theft of gram quantities of plutonium would require levels of protection and surveillance unacceptably high in a democratic society. It is unlikely, therefore, that democracy could survive in a plutonium economy

  13. Accelerator-driven assembly for plutonium transformation (ADAPT)

    Science.gov (United States)

    Tuyle, Greorgy J. Van; Todosow, Michael; Powell, James; Schweitzer, Donald

    1995-01-01

    A particle accelerator-driven spallation target and corresponding blanket region are proposed for the ultimate disposition of weapons-grade plutonium being retired from excess nuclear weapons in the U.S. and Russia. The highly fissle plutonium is contained within .25 to .5 cm diameter silicon-carbide coated graphite beads, which are cooled by helium, within the slightly subcritical blanket region. Major advantages include very high one-pass burnup (over 90%), a high integrity waste form (the coated beads), and operation in a subcritical mode, thereby minimizing the vulnerability to the positive reativity feedbacks often associated with plutonium fuel.

  14. The plutonium challenge for the future

    International Nuclear Information System (INIS)

    Gray, L.W.

    2000-01-01

    In this paper author deal with the weapons-usable plutonium and with the possibilities of their managing. Russia has not disclosed the amount of plutonium produced, but various estimates indicate that the production was about 130 tonnes. Production has been curtailed in Russia; three dual-purpose reactors still produce weapons-grade plutonium - two at Tomsk-7 (renamed Seversk) and one at Krasnoyarsk-26 (renamed Zheleznogorsk Mining and Chemical Combine). In a 1994 United States-Russian agreement that has yet to enter into force, Russia agreed to close the remaining operating reactors by the year 2000. Treaties between the United States and Russia have already cut the number of nuclear warheads from more than 10,000 to about 6,000 under START 1, which has been ratified, and to about 3,500 under START 2, which still awaits approval. If Russia and the United States conclude START 3, that number could drop to between 2,000 and 2,500. On September 2, 1998, the Presidents of the United States and Russia signed the 'Joint statement of principles for Management and Disposition of Plutonium, Designated as No Longer Required for Defense Purposes.' In this joint statement the Presidents affirm the intention of each country to remove by stages approximately 50 metric tons of plutonium and to convert the nuclear weapons programs, and to convert this material so that it can never be used in nuclear weapons. These 100 tonne of plutonium must be managed in proper way such that it becomes neither a proliferation for an environmental risk. The United States has proposed that it manage it's 50 tonnes by a dual approach-once through MOX burning of a portion of the plutonium and immobilization in a ceramic matrix followed by en- casement in high level waste glass. Russia has proposed that it manage its full 50 tonnes by burning in a reactor. The MOX program in the United States would bum the cleaner plutonium metal and residues. Weapons components would be converted to plutonium oxide

  15. Optimisation of deep burn incineration of reactor waste plutonium in a PBMR DPP-400 core

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.; Mulder, Eben J.; Reitsma, Frederik

    2014-01-01

    In this article an original set of coupled neutronics and thermo-hydraulic simulation results for the VSOP 99/05 diffusion code are presented for advanced fuel cycles for the incineration of weapons-grade plutonium, reactor-grade plutonium and reactor-grade plutonium with its associated Minor Actinides in the 400 MW th Pebble Bed Modular Reactor Demonstration Power Plant. These results are also compared to those of the standard 9.6 wt% enriched 9 g/fuel sphere U/Pu fuel cycle. The weapons-grade and reactor-grade plutonium fuel cycles produced good burn-ups. However, the addition of the Minor Actinides to the reactor-grade plutonium caused a large decrease in the burn-up and thus an unacceptable increase in the heavy metal (HM) content in the spent fuel, which was intended for direct disposal in a deep geological repository, without chemical reprocessing. All the plutonium fuel cycles failed the adopted safety limits used in the PBMR400 in that either the maximum fuel temperature of 1130 °C during normal operation, or the maximum power density of 4.5 kW/sphere was exceeded. All the plutonium fuel cycles also produced positive uniform temperature reactivity coefficients, i.e. the reactivity coefficient where the temperatures of the fuel and the graphite moderator in the fuel spheres were varied together. These unacceptable positive coefficients were experienced at low temperatures, typically below 700 °C. This was due to the influence of the thermal fission cross-section resonances of 239 Pu and 241 Pu. Weapons-grade plutonium produced the worst safety performance. The safety performance of the reactor-grade plutonium also deteriorated when the HM loading was reduced from 3 g/sphere to 2 g or 1 g

  16. Optimisation of deep burn incineration of reactor waste plutonium in a PBMR DPP-400 core

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [School for Mechanical and Nuclear Engineering, North West University, PUK-Campus, Private Bag X6001, Internal Post Box 360, Potchefstroom 2520 (South Africa); Mulder, Eben J. [School for Mechanical and Nuclear Engineering, North West University (South Africa); Reitsma, Frederik [Calvera Consultants (South Africa)

    2014-05-01

    In this article an original set of coupled neutronics and thermo-hydraulic simulation results for the VSOP 99/05 diffusion code are presented for advanced fuel cycles for the incineration of weapons-grade plutonium, reactor-grade plutonium and reactor-grade plutonium with its associated Minor Actinides in the 400 MW{sub th} Pebble Bed Modular Reactor Demonstration Power Plant. These results are also compared to those of the standard 9.6 wt% enriched 9 g/fuel sphere U/Pu fuel cycle. The weapons-grade and reactor-grade plutonium fuel cycles produced good burn-ups. However, the addition of the Minor Actinides to the reactor-grade plutonium caused a large decrease in the burn-up and thus an unacceptable increase in the heavy metal (HM) content in the spent fuel, which was intended for direct disposal in a deep geological repository, without chemical reprocessing. All the plutonium fuel cycles failed the adopted safety limits used in the PBMR400 in that either the maximum fuel temperature of 1130 °C during normal operation, or the maximum power density of 4.5 kW/sphere was exceeded. All the plutonium fuel cycles also produced positive uniform temperature reactivity coefficients, i.e. the reactivity coefficient where the temperatures of the fuel and the graphite moderator in the fuel spheres were varied together. These unacceptable positive coefficients were experienced at low temperatures, typically below 700 °C. This was due to the influence of the thermal fission cross-section resonances of {sup 239}Pu and {sup 241}Pu. Weapons-grade plutonium produced the worst safety performance. The safety performance of the reactor-grade plutonium also deteriorated when the HM loading was reduced from 3 g/sphere to 2 g or 1 g.

  17. DOE plutonium disposition study: Analysis of existing ABB-CE Light Water Reactors for the disposition of weapons-grade plutonium

    International Nuclear Information System (INIS)

    1994-01-01

    Core reactivity and basic fuel management calculations were conducted on the selected reactors (with emphasis on the System 80 units as being the most desirable choice). Methods used were identical to those reported in the Evolutionary Reactor Report. From these calculations, the basic mission capability was assessed. The selected reactors were studied for modification, such as the addition of control rod nozzles to increase rod worth, and internals and control system modifications that might also be needed. Other system modifications studied included the use of enriched boric acid as soluble poison, and examination of the fuel pool capacities. The basic geometry and mechanical characteristics, materials and fabrication techniques of the fuel assemblies for the selected existing reactors are the same as for System 80+. There will be some differences in plutonium loading, according to the ability of the reactors to load MOX fuel. These differences are not expected to affect licensability or EPA requirements. Therefore, the fuel technology and fuel qualification sections provided in the Evolutionary Reactor Report apply to the existing reactors. An additional factor, in that the existing reactor availability presupposes the use of that reactor for the irradiation of Lead Test Assemblies, is discussed. The reactor operating and facility licenses for the operating plants were reviewed. Licensing strategies for each selected reactor were identified. The spent fuel pool for the selected reactors (Palo Verde) was reviewed for capacity and upgrade requirements. Reactor waste streams were identified and assessed in comparison to uranium fuel operations. Cost assessments and schedules for converting to plutonium disposition were estimated for some of the major modification items. Economic factors (incremental costs associated with using weapons plutonium) were listed and where possible under the scope of work, estimates were made

  18. History of the US weapons-usable plutonium disposition program leading to DOE's record of decision

    International Nuclear Information System (INIS)

    Spellman, D.J.; Thomas, J.F.; Bugos, R.G.

    1997-04-01

    This report highlights important events and studies concerning surplus weapons-usable plutonium disposition in the United States. Included are major events that led to the creation of the U.S. Department of Energy (DOE) Office of Fissile Materials Disposition in 1994 and to that DOE office issuing the January 1997 Record of Decision for the Storage and Disposition of Weapons-Useable Fissile Materials Final Programmatic Environmental Impact Statement. Emphasis has been given to reactor-based plutonium disposition alternatives

  19. DOE plutonium disposition study: Pu consumption in ALWRs

    International Nuclear Information System (INIS)

    1993-01-01

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE's System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE's Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document Volume 2, provides a discussion of: Plutonium Fuel Cycle; Technology Needs; Regulatory Considerations; Cost and Schedule Estimates; and Deployment Strategy

  20. Neutronic design of a plutonium-thorium burner small nuclear reactor

    International Nuclear Information System (INIS)

    Hartanto, Donny

    2010-02-01

    A small nuclear reactor using thorium and plutonium fuel has been designed from the neutronic point of view. The thermal power of the reactor is 150 MWth and it is proposed to be used to supply electricity in an island in Indonesia. Thorium and plutonium fuel was chosen because in recent years the thorium fuel cycle is one of the promising ways to deal with the increasing number of plutonium stockpiles, either from the utilization of uranium fuel cycle or from nuclear weapon dismantling. A mixed fuel of thorium and plutonium will not generate the second generation of plutonium which will be a better way to incinerate the excess plutonium compared with the MOX fuel. Three kinds of plutonium grades which are the reactor grade (RG), weapon grade (WG), and spent fuel grade (SFG) plutonium, were evaluated as the thorium fuel mixture in the 17x17 Westinghouse PWR Fuel assembly. The evaluated parameters were the multiplication factor, plutonium depletion, fissile buildup, neutron spectrum, and temperature reactivity feedback. An optimization was also done to increase the plutonium depletion by changing the Moderator to Fuel Ratio (MFR). The computer codes TRITON (coupled NEWT and ORIGEN-S) in SCALE version 6 were used as the calculation tool for this assembly level. From the evaluation and optimization of the fuel assembly, the whole core was designed. The core was consisted of 2 types of thorium fuel with different plutonium grade and it followed the checkerboard loading pattern. A new concept of enriched burnable poison was also introduced to the core. The core life is 6.4 EFPY or 75 GWd/MTHM. It can burn up to 58% of its total mass of initial plutonium. VENTURE was used as the calculation tool for the core level

  1. Physics studies of weapons plutonium disposition in the Integral Fast Reactor closed fuel cycle

    International Nuclear Information System (INIS)

    Hill, R.N.; Wade, D.C.; Liaw, J.R.; Fujita, E.K.

    1995-01-01

    The core performance impact of weapons plutonium introduction into the Integral Fast Reactor (IFR) closed fuel cycle is investigated by comparing three disposition scenarios: a power production mode, a moderate destruction mode, and a maximum destruction mode, all at a constant heat rating of 840 MW(thermal). For each scenario, two fuel cycle models are evaluated: cores using weapons material as the sole source of transuranics in a once-through mode and recycle cores using weapons material only as required for a makeup feed. In addition, the impact of alternative feeds (recycled light water reactor or liquid-metal reactor transuranics) on burner core performance is assessed. Calculated results include mass flows, detailed isotopic distributions, neutronic performance characteristics, and reactivity feedback coefficients. In general, it is shown that weapons plutonium does not have an adverse effect on IFR core performance characteristics; also, favorable performance can be maintained for a wide variety of feed materials and fuel cycle strategies

  2. Reactor-Based Plutonium Disposition: Opportunities, Options, and Issues

    International Nuclear Information System (INIS)

    Greene, S.R.

    1999-01-01

    The end of the Cold War has created a legacy of surplus fissile materials (plutonium and highly enriched uranium) in the United States (U.S.) and the former Soviet Union. These materials pose a danger to national and international security. During the past few years, the U.S. and Russia have engaged in an ongoing dialog concerning the safe storage and disposition of surplus fissile material stockpiles. In January 1997, the Department of Energy (DOE) announced the U. S. would pursue a dual track approach to rendering approximately 50 metric tons of plutonium inaccessible for use in nuclear weapons. One track involves immobilizing the plutonium by combining it with high-level radioactive waste in glass or ceramic ''logs''. The other method, referred to as reactor-based disposition, converts plutonium into mixed oxide (MOX) fuel for nuclear reactors. The U.S. and Russia are moving ahead rapidly to develop and demonstrate the technology required to implement the MOX option in their respective countries. U.S. MOX fuel research and development activities were started in the 1950s, with irradiation of MOX fuel rods in commercial light water reactors (LWR) from the 1960s--1980s. In all, a few thousand MOX fuel rods were successfully irradiated. Though much of this work was performed with weapons-grade or ''near'' weapons-grade plutonium--and favorable fuel performance was observed--the applicability of this data for licensing and use of weapons-grade MOX fuel manufactured with modern fuel fabrication processes is somewhat limited. The U.S. and Russia are currently engaged in an intensive research, development, and demonstration program to support implementation of the MOX option in our two countries. This paper focuses on work performed in the U.S. and provides a brief summary of joint U.S./Russian work currently underway

  3. Reactor-based plutonium disposition: Opportunities, options, and issues

    International Nuclear Information System (INIS)

    Greene, S.

    2000-01-01

    The end of the Cold War has created a legacy of surplus fissile materials (plutonium and highly enriched uranium) in the United States (U.S.) and the former Soviet Union. These materials pose a danger to national and international security. During the past few years, the U.S. and Russia have engaged in an ongoing dialog concerning the safe storage and disposition of surplus fissile material stockpiles. In January 1997, the Department of Energy (DOE) announced the U.S. would pursue a dual track approach to rendering approximately 50 metric tons of plutonium inaccessible for use in nuclear weapons. One track involves immobilizing the plutonium by combining it with high-level radioactive waste in glass or ceramic ''logs''. The other method, referred to as reactor-based disposition, converts plutonium into mixed oxide (MOX) fuel for nuclear reactors. The U.S. and Russia are moving ahead rapidly to develop and demonstrate the technology required to implement the MOX option in their respective countries. U.S. MOX fuel research and development activities were started in the 1950s with irradiation of MOX fuel rods in commercial light water reactors (LWR) from the 1960s-1980s. In all, a few thousand MOX fuel rods were successfully irradiated. Though much of this work was performed with weapons-grade or ''near'' weapons-grade plutonium - and favorable fuel performance was observed - the applicability of this data for licensing and use of weapons-grade MOX fuel manufactured with modem fuel fabrication processes is somewhat limited. The U.S. and Russia are currently engaged in an intensive research, development, and demonstration program to support implementation of the MOX option in our two countries. This paper focuses on work performed in the U.S. and provides a brief summary of joint U.S./Russian work currently underway. (author)

  4. Fuel qualification issues and strategies for reactor-based surplus plutonium disposition

    International Nuclear Information System (INIS)

    Cowell, B.S.; Copeland, G.L.; Moses, D.L.

    1997-08-01

    The Department of Energy (DOE) has proposed irradiation of mixed-oxide (MOX) fuel in existing commercial reactors as a disposition method for surplus plutonium from the weapons program. The burning of MOX fuel in reactors is supported by an extensive technology base; however, the infrastructure required to implement reactor-based plutonium disposition does not exist domestically. This report identifies and examines the actions required to qualify and license weapons-grade (WG) plutonium-based MOX fuels for use in domestic commercial light-water reactors (LWRs)

  5. Fabrication of mixed oxide fuel using plutonium from dismantled weapons

    International Nuclear Information System (INIS)

    Blair, H.T.; Chidester, K.; Ramsey, K.B.

    1996-01-01

    A very brief summary is presented of experimental studies performed to support the use of plutonium from dismantled weapons in fabricating mixed oxide (MOX) fuel for commercial power reactors. Thermal treatment tests were performed on plutonium dioxide powder to determine if an effective dry gallium removal process could be devised. Fabrication tests were performed to determine the effects of various processing parameters on pellet quality. Thermal tests results showed that the final gallium content is highly dependent on the treatment temperature. Fabrication tests showed that the milling process, sintering parameters, and uranium feed did effect pellet properties. 1 ref., 1 tab

  6. Transportation requirements for the disposition of excess weapon plutonium by burning in fission reactors

    International Nuclear Information System (INIS)

    Hovingh, J.; Walter, C.E.

    1996-01-01

    Both the US and Russia are planning to dispose of about 50 Mg of excess weapon plutonium over a 25-year period. One option is to transfer the plutonium to Advanced Light Water (power) Reactors (ALWRs) for use as fuel. Subsequent disposal would then be considered commercial spent fuel. This disposition option, like others, involves the transportation of plutonium in various material forms as it proceeds through various points in the recovery operation. This paper examines both the disposition option and the issues surrounding the transportation of 50 Mg of excess plutonium within the US under current regulatory and infrastructure constraints. Transportation issues include criticality control, shielding, and containment of the contents. Allowable limits on each of these issues are specified by the applicable (or selected) regulation. The composition and form of the radioactive materials to be transported will determine, in part, the applicable portions of the regulations as well as the packaging design. The regulations and the packaging design, along with safeguard and security issues, will determine the quantity of plutonium or fuel assemblies per package as well as the number of packages per shipment and the type of highway carrier. For the disposition of 50 Mg of weapon plutonium using ALWRs in a 25-year campaign, the annual shipment rates are determined for the various types of carriers

  7. Disposition of excess weapons plutonium from dismantled weapons

    International Nuclear Information System (INIS)

    Jardine, L.J.

    1997-01-01

    With the end of the Cold War and the implementation of various nuclear arms reduction agreements, US and Russia have been actively dismantling tens of thousands of nuclear weapons. As a result,large quantities of fissile materials, including more than 100 (tonnes?) of weapons-grade Pu, have become excess to both countries' military needs. To meet nonproliferation goals and to ensure the irreversibility of nuclear arms reductions, this excess weapons Pu must be placed in secure storage and then, in timely manner, either used in nuclear reactors as fuel or discarded in geologic repositories as solid waste. This disposition in US and Russia must be accomplished in a safe, secure manner and as quickly as practical. Storage of this Pu is a prerequisite to any disposition process, but the length of storage time is unknown. Whether by use as fuel or discard as solid waste, disposition of that amount of Pu will require decades--and perhaps longer, if disposition operations encounter delays. Neither US nor Russia believes that long-term secure storage is a substitute for timely disposition of excess Pu, but long-term, safe, secure storage is a critical element of all excess Pu disposition activities

  8. DOE Plutonium Disposition Study: Pu consumption in ALWRs

    International Nuclear Information System (INIS)

    1993-01-01

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE's System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE's Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document, Volume 1, presents a technical description of the various elements of the System 80 + Standard Plant Design upon which the Plutonium Disposition Study was based. The System 80 + Standard Design is fully developed and directly suited to meeting the mission objectives for plutonium disposal. The bass U0 2 plant design is discussed here

  9. DOE plutonium disposition study: Analysis of existing ABB-CE Light Water Reactors for the disposition of weapons-grade plutonium. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Core reactivity and basic fuel management calculations were conducted on the selected reactors (with emphasis on the System 80 units as being the most desirable choice). Methods used were identical to those reported in the Evolutionary Reactor Report. From these calculations, the basic mission capability was assessed. The selected reactors were studied for modification, such as the addition of control rod nozzles to increase rod worth, and internals and control system modifications that might also be needed. Other system modifications studied included the use of enriched boric acid as soluble poison, and examination of the fuel pool capacities. The basic geometry and mechanical characteristics, materials and fabrication techniques of the fuel assemblies for the selected existing reactors are the same as for System 80+. There will be some differences in plutonium loading, according to the ability of the reactors to load MOX fuel. These differences are not expected to affect licensability or EPA requirements. Therefore, the fuel technology and fuel qualification sections provided in the Evolutionary Reactor Report apply to the existing reactors. An additional factor, in that the existing reactor availability presupposes the use of that reactor for the irradiation of Lead Test Assemblies, is discussed. The reactor operating and facility licenses for the operating plants were reviewed. Licensing strategies for each selected reactor were identified. The spent fuel pool for the selected reactors (Palo Verde) was reviewed for capacity and upgrade requirements. Reactor waste streams were identified and assessed in comparison to uranium fuel operations. Cost assessments and schedules for converting to plutonium disposition were estimated for some of the major modification items. Economic factors (incremental costs associated with using weapons plutonium) were listed and where possible under the scope of work, estimates were made.

  10. Storage of plutonium and nuclear power plant actinide waste in the form of critical-mass-free ceramics containing neutron poisons

    Energy Technology Data Exchange (ETDEWEB)

    Nadykto, B.A. [RFNC-VNIIEF, Nizhni Novgorod Region (Russian Federation)

    2001-07-01

    The nuclear weapons production has resulted in accumulation of a large quantity of plutonium and uranium highly enriched with uranium-235 isotope (many tons). The work under ISTC Project 332B-97 treated the issues of safe plutonium storage through making critical-mass-free plutonium oxide compositions with neutron poisons. This completely excludes immediate utilization (without chemical reprocessing) of retained plutonium in nuclear devices. It is therewith possible to locate plutonium most compactly in the storage facility, which would allow reduction in required storage areas and costs. The issues of the surplus weapon-grade plutonium management and utilization have been comprehensively studied in the recent decade. The issues are treated in multiple scientific publications, conferences, and seminars. At the same time, issues of nuclear power engineering actinide waste storage are studied no less extensively. The general issues are material radioactivity and energy release and nuclear accident hazards due to critical mass generation. Plutonium accumulated in nuclear power plant spent fuel is more accessible than weapon-grade plutonium and can become of higher and higher interest with time as its activity reduces, including as material for nuclear devices. The urgency of plutonium management is presently related not only to accumulation of surplus weapon-grade plutonium, but also to the fact that it is high time to decide what has to be done regarding reactor plutonium. Presently, the possibility of actinide separation from NPP spent nuclear fuel and compact underground burial separately from other (mainly fragment) activity is being considered. Actinide and neutron poison base critical-mass-free ceramic materials (similar to plutonium ceramics) may be useful for this burial method. (author)

  11. Storage of plutonium and nuclear power plant actinide waste in the form of critical-mass-free ceramics containing neutron poisons

    International Nuclear Information System (INIS)

    Nadykto, B.A.

    2001-01-01

    The nuclear weapons production has resulted in accumulation of a large quantity of plutonium and uranium highly enriched with uranium-235 isotope (many tons). The work under ISTC Project 332B-97 treated the issues of safe plutonium storage through making critical-mass-free plutonium oxide compositions with neutron poisons. This completely excludes immediate utilization (without chemical reprocessing) of retained plutonium in nuclear devices. It is therewith possible to locate plutonium most compactly in the storage facility, which would allow reduction in required storage areas and costs. The issues of the surplus weapon-grade plutonium management and utilization have been comprehensively studied in the recent decade. The issues are treated in multiple scientific publications, conferences, and seminars. At the same time, issues of nuclear power engineering actinide waste storage are studied no less extensively. The general issues are material radioactivity and energy release and nuclear accident hazards due to critical mass generation. Plutonium accumulated in nuclear power plant spent fuel is more accessible than weapon-grade plutonium and can become of higher and higher interest with time as its activity reduces, including as material for nuclear devices. The urgency of plutonium management is presently related not only to accumulation of surplus weapon-grade plutonium, but also to the fact that it is high time to decide what has to be done regarding reactor plutonium. Presently, the possibility of actinide separation from NPP spent nuclear fuel and compact underground burial separately from other (mainly fragment) activity is being considered. Actinide and neutron poison base critical-mass-free ceramic materials (similar to plutonium ceramics) may be useful for this burial method. (author)

  12. Study on material attractiveness aspect of spent nuclear fuel of LWR and FBR cycles based on isotopic plutonium production

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Saito, Masaki; Novitrian,; Waris, Abdul; Suud, Zaki

    2013-01-01

    Highlights: • The paper analyzes the plutonium production of recycling nuclear fuel option. • To evaluate material attractiveness based on intrinsic feature of material barrier. • Evaluation based on isotopic plutonium composition of spent fuel LWR and FBR. • Even mass number of plutonium gives a significant contribution to material barrier, in particular Pu-238 and Pu-240. • Doping MA in FBR blanket is effective to increase material barrier from weapon grade plutonium to more than MOX fuel grade. - Abstract: Recycling minor actinide (MA) as well as used uranium and plutonium can be considered to reduce nuclear waste production as well as to increase the intrinsic aspect of nuclear nonproliferation as doping material. Plutonium production as a significant aspect of recycling nuclear fuel option, gives some advantages and challenges, such as fissile material utilization of plutonium as well as production of some even mass number plutonium. The study intends to evaluate the material attractiveness based on the intrinsic feature of material barrier such as plutonium composition, decay heat and spontaneous fission neutron components from spent fuel (SF) light water reactor (LWR) and fast breeder reactor (FBR) cycles. A significant contribution has been shown by decay heat (DH) and spontaneous fission neutron (SFN) of even mass number of plutonium isotopes to the total DH and SFN of plutonium element, in particular from isotopic plutonium Pu-238 and Pu-240 contributions. Longer decay cooling time and higher burnup are effective to increase the material barrier (DH and SFN) level from reactor grade plutonium level to MOX grade plutonium level. Material barrier of plutonium element from spent fuel (SF) FBR in the core regions has similarity to the material barrier profile of SF LWR which can be categorized as MOX fuel grade plutonium. Plutonium compositions, DH and SFN components are categorized as weapon grade plutonium level for FBR blanket regions with no

  13. Does nuclear power lead to nuclear weapons

    International Nuclear Information System (INIS)

    Prawitz, J.

    1977-01-01

    It is pointed out that 'reactor grade' plutonium usually contains about 30 % Pu240 and is unsuitable for weapons. While it is possible to obtain an explosion, it is more difficult to initiate one and its effect, which will be considerably less than with bomb grade plutonium, is difficult to predict. The critical mass will be larger and more cooling required. The proliferation problem is then discussed and the four aspects, vertical, horizontal, sub-national and revolutionary, mentioned. In connection with nuclear power it is the second and third aspects which are of interest. In discussing the possibility of terrorist groups obtaining plutonium, a study by the Swedish Defence Research Institute is quoted as estimating that 10-20 qualified specialists and several years secret preparation would be necessary to make a nuclear weapon. Other authors, e.g. Ted Taylor, have maintained that it would be much easier, but examples of 'student designs' are primitive and unlikely to detonate. Even so, it is emphasised that safeguards and physical security are necessary. Horizontal proliferation is a more real problem and the NPT and IAEA safeguards are discussed in this connection. In conclusion the question of whether the proliferation of nuclear weapons via nuclear power can be prevented cannot be answered with a clear yes or no. Certain states may use nuclear weapon potential as a bargaining factor. However the decision to acquire nuclear weapons is political and while a nuclear power industry would be of help, it would not be decisively so. (JIW)

  14. Collector for recovering gallium from weapons plutonium

    International Nuclear Information System (INIS)

    Philip, C.V.; Anthony, R.G.; Chokkaram, S.

    1998-09-01

    Currently, the separation of gallium from weapons plutonium involves the use of aqueous processing using either solvent extraction of ion exchange. However, this process generates significant quantities of liquid radioactive wastes. A Thermally Induced Gallium Removal process, or TIGR, developed by researchers at Los Alamos National Laboratories, is a simpler alternative to aqueous processing. This research examined this process, and the behavior of gallium suboxide, a vapor that is swept away by passing hydrogen/argon over gallium trioxide/plutonium oxide heated at 1100 C during the TIGR process. Through experimental procedures, efforts were made to prevent the deposition of corrosive gallium onto furnace and vent surfaces. Experimental procedures included three options for gallium removal and collection: (1) collection of gallium suboxide through use of a cold finger; (2) collection by in situ air oxidation; and (3) collection of gallium on copper. Results conclude all three collection mechanisms are feasible. In addition, gallium trioxide exists in three crystalline forms, and each form was encountered during each experiment, and that each form will have a different reactivity

  15. PRISM reactor. An option for plutonium disposition?

    Energy Technology Data Exchange (ETDEWEB)

    Fehlinger, Sebastian; Friess, Friederike; Kuett, Moritz [IANUS, Technische Universitaet Darmstadt (Germany)

    2015-07-01

    The Power Reactor Innovative Small Module (PRISM) is sodium cooled fast reactor model. The energy output depends on the core configuration, however with an energy output of approximately 300 MWe, the PRISM reactor belongs to the class of small modular reactors. Beside using the reactor as a breeder reactor or for the transmutation of nuclear waste, it might also be used as a burner reactor for separated plutonium. This includes for example U.S.-American excess weapon-grade plutonium as well as separated reactor-grade plutonium. Recently, there has been an ongoing discussion in GB to use the PRISM reactor to dispose their excess civilian plutonium. Depending on the task, the core configuration varies slightly. We will present different layouts and the matching MCNP models, these models can then be used to conduct depletion calculations. From these results, analysis of the change in the plutonium isotopics in the spent fuel, the amount of fissioned plutonium, and the possible annual plutonium throughputs is possible.

  16. Laboratory directed research and development on disposal of plutonium recovered from weapons. FY1994 final report

    International Nuclear Information System (INIS)

    Pitts, J.H.; Choi, J.S.

    1994-01-01

    This research project was conceived as a multi-year plan to study the use of mixed plutonium oxide-uranium oxide (MOX) fuel in existing nuclear reactors. Four areas of investigation were originally proposed: (1) study reactor physics including evaluation of control rod worth and power distribution during normal operation and transients; (2) evaluate accidents focusing upon the reduced control rod worth and reduced physical properties of PuO 2 ; (3) assess the safeguards required during fabrication and use of plutonium bearing fuel assemblies; and (4) study public acceptance issues associated with using material recovered from weapons to fuel a nuclear reactor. First year accomplishments are described. Appendices contain 2 reports entitled: development and validation of advanced computational capability for MOX fueled ALWR assembly designs; and long-term criticality safety concerns associated with weapons plutonium disposition

  17. Long-term plutonium storage: Design concepts

    International Nuclear Information System (INIS)

    Wilkey, D.D.; Wood, W.T.; Guenther, C.D.

    1994-01-01

    An important part of the Department of Energy (DOE) Weapons Complex Reconfiguration (WCR) Program is the development of facilities for long-term storage of plutonium. The WCR design goals are to provide storage for metals, oxides, pits, and fuel-grade plutonium, including material being held as part of the Strategic Reserve and excess material. Major activities associated with plutonium storage are sorting the plutonium inventory, material handling and storage support, shipping and receiving, and surveillance of material in storage for both safety evaluations and safeguards and security. A variety of methods for plutonium storage have been used, both within the DOE weapons complex and by external organizations. This paper discusses the advantages and disadvantages of proposed storage concepts based upon functional criteria. The concepts discussed include floor wells, vertical and horizontal sleeves, warehouse storage on vertical racks, and modular storage units. Issues/factors considered in determining a preferred design include operational efficiency, maintenance and repair, environmental impact, radiation and criticality safety, safeguards and security, heat removal, waste minimization, international inspection requirements, and construction and operational costs

  18. DOE plutonium disposition study: Pu consumption in ALWRs. Volume 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-15

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document Volume 2, provides a discussion of: Plutonium Fuel Cycle; Technology Needs; Regulatory Considerations; Cost and Schedule Estimates; and Deployment Strategy.

  19. Nuclear weapons research in Sweden. The co-operation between civilian and military research, 1947 - 1972

    International Nuclear Information System (INIS)

    Jonter, Thomas

    2002-05-01

    The Swedish nuclear weapons research began as early as 1945, shortly after the first atomic bombs fell over Japan. The assignment to look into the new weapon of mass destruction went to the Swedish National Defence Research Establishment (FOA). Admittedly, the main aim of the research initiated at that time was to find out how Sweden could best protect itself against a nuclear weapon attack. However, from the outset FOA was interested in investigating the possibilities of manufacturing what was then called an atomic bomb. A co-operation between FOA and AB Atomenergi (AE), which was created in 1947 in order to be responsible for the industrial development of civilian nuclear energy, was initiated. AE made several technical investigations within this co-operation regarding choice of reactors and preconditions for a production of weapons-grade plutonium. The first purpose of this report is therefore to investigate how this co-operation emerged and what consequences it had for the project to produce basic information for the Swedish manufacture of nuclear weapons. In general terms, the finding of this report is that FOA was responsible for the overall nuclear weapons research. For this reason, FOA was in charge of the construction of the nuclear device and the studies of its effects. Additionally, AE should deliver basic information of a possible production of weapons-grade plutonium and investigate the possibilities of a production or a procurement of inspection-free heavy water (i.e. without inspections by the supplying country). AE should also build a reprocessing plant and manufacture fuel elements to be used in the reactors for a production of weapons-grade plutonium. Furthermore, it is important to emphasise that both FOA and AE conducted plutonium research. The reason why FOA conducted this research was that the plutonium had to be in metallic form in order to be used in a nuclear weapons device. Therefore, FOA carried out research with the purpose of producing

  20. Complementary technologies for verification of excess plutonium

    International Nuclear Information System (INIS)

    Langner, D.G.; Nicholas, N.J.; Ensslin, N.; Fearey, B.L.; Mitchell, D.J.; Marlow, K.W.; Luke, S.J.; Gosnell, T.B.

    1998-01-01

    Three complementary measurement technologies have been identified as candidates for use in the verification of excess plutonium of weapons origin. These technologies: high-resolution gamma-ray spectroscopy, neutron multiplicity counting, and low-resolution gamma-ray spectroscopy, are mature, robust technologies. The high-resolution gamma-ray system, Pu-600, uses the 630--670 keV region of the emitted gamma-ray spectrum to determine the ratio of 240 Pu to 239 Pu. It is useful in verifying the presence of plutonium and the presence of weapons-grade plutonium. Neutron multiplicity counting is well suited for verifying that the plutonium is of a safeguardable quantity and is weapons-quality material, as opposed to residue or waste. In addition, multiplicity counting can independently verify the presence of plutonium by virtue of a measured neutron self-multiplication and can detect the presence of non-plutonium neutron sources. The low-resolution gamma-ray spectroscopic technique is a template method that can provide continuity of knowledge that an item that enters the a verification regime remains under the regime. In the initial verification of an item, multiple regions of the measured low-resolution spectrum form a unique, gamma-radiation-based template for the item that can be used for comparison in subsequent verifications. In this paper the authors discuss these technologies as they relate to the different attributes that could be used in a verification regime

  1. A U.S. utility view of using former weapons material

    International Nuclear Information System (INIS)

    Larkin, D.L.

    1995-01-01

    In the next several years, it is anticipated that the President will declare approximately 50 metric tons of weapons-grade plutonium surplus to national security requirements. The Department of Energy is examining alternatives for the disposal of this material and is scheduled to issue their decision in August of 1996. One option would be to burn this material as fuel in commercial reactors. Last year the Supply System announced its intention to explore the possibility of fueling two of its nuclear power plants with mixed oxide (MOX) fuel. This fuel would be comprised of a mixture of uranium and surplus weapons-grade plutonium. Sales of generated electricity would help off-set the costs of destroying the plutonium. The Supply System proposal has a number of virtually unique features that make it quite attractive to the federal government, including the plants location on the restricted access Hanford Reservation. While there is a significant amount of experience with island design MOX fuel from recycled plutonium, disposing of the weapons-grade plutonium on an accelerated schedule would require full MOX reload designs. To resolve any issues involved, the Supply System is proposing that DOE sponsor a lead fuel program of four MOX fuel assemblies for operation in WNP-2. A decision to proceed by October 1995 could lead to loading the fuel in the spring of 1997. The objective of the program would be to resolve any technical issues with the use of gadolinia and gallium in mixed-oxide rods. The lead fuel would also be used to validate the application of current fuel and core design computer codes to MOX in modern designs to extended burnups

  2. The U.S.-Russian joint studies on using power reactors to disposition surplus weapons plutonium as spent fuel

    International Nuclear Information System (INIS)

    Chebeskov, A.; Kalashnikov, A.; Pavlovichev, A.

    1997-09-01

    In 1996, the US and the Russian Federation completed an initial joint study of the candidate options for the disposition of surplus weapons plutonium in both countries. The options included long term storage, immobilization of the plutonium in glass or ceramic for geologic disposal, and the conversion of weapons plutonium to spent fuel in power reactors. For the latter option, the US is only considering the use of existing light water reactors (LWRs) with no new reactor construction for plutonium disposition, or the use of Canadian deuterium uranium (CANDU) heavy water reactors. While Russia advocates building new reactors, the cost is high, and the continuing joint study of the Russian options is considering only the use of existing VVER-1000 LWRs in Russia and possibly Ukraine, the existing BN-60O fast neutron reactor at the Beloyarsk Nuclear Power Plant in Russia, or the use of the Canadian CANDU reactors. Six of the seven existing VVER-1000 reactors in Russia and the eleven VVER-1000 reactors in Ukraine are all of recent vintage and can be converted to use partial MOX cores. These existing VVER-1000 reactors are capable of converting almost 300 kg of surplus weapons plutonium to spent fuel each year with minimum nuclear power plant modifications. Higher core loads may be achievable in future years

  3. Plutonium immobilization program - Cold pour Phase 1 test results

    International Nuclear Information System (INIS)

    Hamilton, L.

    2000-01-01

    The Plutonium Immobilization Project will disposition excess weapons grade plutonium. It uses the can-in-canister approach that involves placing plutonium-ceramic pucks in sealed cans that are then placed into Defense Waste Processing Facility canisters. These canisters are subsequently filled with high-level radioactive waste glass. This process puts the plutonium in a stable form and makes it unattractive for reuse. A cold (non-radioactive) glass pour program was performed to develop and verify the baseline design for the canister and internal hardware. This paper describes the Phase 1 scoping test results

  4. Plutonium Immobilization Program - Cold pour Phase 1 test results

    International Nuclear Information System (INIS)

    Hamilton, L.

    2000-01-01

    The Plutonium Immobilization Project will disposition excess weapons grade plutonium. It uses the can-in-canister approach that involves placing plutonium-ceramic pucks in sealed cans that are then placed into Defense Waste Processing Facility canisters. These canisters are subsequently filled with high-level radioactive waste glass. This process puts the plutonium in a stable form and makes it unattractive for reuse. A cold (non-radioactive) glass pour program was performed to develop and verify the baseline design for the canister and internal hardware. This paper describes the Phase 1 scoping test results

  5. Plutonium in the marine environment at Thule, NW-Greenland after a nuclear weapons accident

    DEFF Research Database (Denmark)

    Dahlgaard, H.; Eriksson, M.; Ilus, E.

    2001-01-01

    was revisited in August 1997, 29 years after the accident. Water and brown algae data indicate that plutonium is not transported from the contaminated sediments into the surface waters in significant quantities. Sediment core data only indicate minor translocation of plutonium from the accident to the area...... outside Bylot Sound. The present data support an earlier quantification of the sedimentation rate as 2-4 mm per year, i.e. 5-12 cm during the 29 years since the accident. Biological activity has mixed accident plutonium much deeper down, to 20-30 cm, and the 5-12 cm new sediment has been efficiently mixed...... than in sediments. Some biota groups show a somewhat higher uptake of americium than of plutonium. Sediment samples with weapons plutonium from the accident show a significant variation in Pu-240/Pu-239 atom ratios in the range 0.027-0.057. This supports the hypothesis that the Thule plutonium...

  6. Nuclear weapons research in Sweden. The co-operation between civilian and military research, 1947 - 1972

    Energy Technology Data Exchange (ETDEWEB)

    Jonter, Thomas [Uppsala Univ. (Sweden). Dept. of History

    2002-05-01

    The Swedish nuclear weapons research began as early as 1945, shortly after the first atomic bombs fell over Japan. The assignment to look into the new weapon of mass destruction went to the Swedish National Defence Research Establishment (FOA). Admittedly, the main aim of the research initiated at that time was to find out how Sweden could best protect itself against a nuclear weapon attack. However, from the outset FOA was interested in investigating the possibilities of manufacturing what was then called an atomic bomb. A co-operation between FOA and AB Atomenergi (AE), which was created in 1947 in order to be responsible for the industrial development of civilian nuclear energy, was initiated. AE made several technical investigations within this co-operation regarding choice of reactors and preconditions for a production of weapons-grade plutonium. The first purpose of this report is therefore to investigate how this co-operation emerged and what consequences it had for the project to produce basic information for the Swedish manufacture of nuclear weapons. In general terms, the finding of this report is that FOA was responsible for the overall nuclear weapons research. For this reason, FOA was in charge of the construction of the nuclear device and the studies of its effects. Additionally, AE should deliver basic information of a possible production of weapons-grade plutonium and investigate the possibilities of a production or a procurement of inspection-free heavy water (i.e. without inspections by the supplying country). AE should also build a reprocessing plant and manufacture fuel elements to be used in the reactors for a production of weapons-grade plutonium. Furthermore, it is important to emphasise that both FOA and AE conducted plutonium research. The reason why FOA conducted this research was that the plutonium had to be in metallic form in order to be used in a nuclear weapons device. Therefore, FOA carried out research with the purpose of producing

  7. Safe disposal of surplus plutonium

    Science.gov (United States)

    Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.

    2001-06-01

    About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.

  8. A Mixed-Oxide Assembly Design for Rapid Disposition of Weapons Plutonium in Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Adams, Marvin L.

    2002-01-01

    We have created a new mixed-oxide (MOX) fuel assembly design for standard pressurized water reactors (PWRs). Design goals were to maximize the plutonium throughput while introducing the lowest perturbation possible to the control and safety systems of the reactor. Our assembly design, which we call MIX-33, offers some advantages for the disposition of weapons-grade plutonium; it increases the disposition rate by 8% while increasing the worth of control material, compared to a previous Westinghouse design. The MIX-33 design is based upon two ideas: the use of both uranium and plutonium fuel pins in the same assembly, and the addition of water holes in the assembly. The main result of this paper is that both of these ideas are effective at increasing Pu throughput and increasing the worth of control material. With this new design, according to our analyses, we can transition smoothly from a full low-enriched-uranium (LEU) core to a full MIX-33 core while meeting the operational and safety requirements of a standard PWR. Given an interruption of the MOX supply, we can transition smoothly back to full LEU while meeting safety margins and using standard LEU assemblies with uniform pinwise enrichment distribution. If the MOX supply is interrupted for only one cycle, the transition back to a full MIX-33 core is not as smooth; high peaking could cause power to be derated by a few percent for a few weeks at the beginning of one transition cycle

  9. Safeguards and security requirements for weapons plutonium disposition in light water reactors

    International Nuclear Information System (INIS)

    Thomas, L.L.; Strait, R.S.

    1994-10-01

    This paper explores the issues surrounding the safeguarding of the plutonium disposition process in support of the United States nuclear weapons dismantlement program. It focuses on the disposition of the plutonium by burning mixed oxide fuel in light water reactors (LWR) and addresses physical protection, material control and accountability, personnel security and international safeguards. The S and S system needs to meet the requirements of the DOE Orders, NRC Regulations and international safeguards agreements. Experience has shown that incorporating S and S measures into early facility designs and integrating them into operations provides S and S that is more effective, more economical, and less intrusive. The plutonium disposition safeguards requirements with which the US has the least experience are the implementation of international safeguards on plutonium metal; the large scale commercialization of the mixed oxide fuel fabrication; and the transportation to and loading in the LWRs of fresh mixed oxide fuel. It is in these areas where the effort needs to be concentrated if the US is to develop safeguards and security systems that are effective and efficient

  10. Possibilities for recycling of weapon-grade uranium and plutonium and its peaceful use as reactor fuel

    International Nuclear Information System (INIS)

    Floeter, W.

    2000-01-01

    At present 90% of the energy production is based on fossil fuels. Since March 1999, however, the peaceful use of weapon-grade uranium as reactor fuel is being discussed politically. Partners of this discussion is a group of some private western companies on one side and a state-owned company of the Russian Federation (GUS) on the other. Main topic of the deal besides the winning of electrical energy is the useful disposal of the surplus on weapon-grade material of both leading nations. According to the deal, about 160,000 t of Russian uranium, expressed as natural uranium U 3 O 8 , would be processed during the next 15 years. Proven processes would be applied. Those methods are being already used in Russian facilities at low capacity rates. There are shortages in the production of low enriched uranium (LEU), because of the low capacity rates in the old facilities. The capacity should be increased by a factor of ten, but there is not enough money available in Russia for financing the remodeling of the plants. Financing should therefore probably be provided by the western clients of this deal. The limited amount of uranium produced could be furnised to the uranium market without major difficulties for the present suppliers of natural uranium. The discussions regarding the security of the details of the deal - however - are not yet finalized. (orig.) [de

  11. The radiological hazard of plutonium isotopes and specific plutonium mixtures

    International Nuclear Information System (INIS)

    Heindel, G.; Clow, J.; Inkret, W.; Miller, G.

    1995-11-01

    The US Department of Energy defines the hazard categories of its nuclear facilities based upon the potential for accidents to have significant effects on specific populations and the environment. In this report, the authors consider the time dependence of hazard category 2 (significant on-site effects) for facilities with inventories of plutonium isotopes and specific weapons-grade and heat-source mixtures of plutonium isotopes. The authors also define relative hazard as the reciprocal of the hazard category 2 threshold value and determine its time dependence. The time dependence of both hazard category 2 thresholds and relative hazards are determined and plotted for 10,000 years to provide useful information for planning long-term storage or disposal facilities

  12. Profileration-proof uranium/plutonium and thorium/uranium fuel cycles. Safeguards and non-profileration. 2. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, G.

    2017-07-01

    A brief outline of the historical development of the proliferation problem is followed by a description of the uranium-plutonium nuclear fuel cycle with uranium enrichment, fuel fabrication, the light-water reactors mainly in operation, and the breeder reactors still under development. The next item discussed is reprocessing of spent fuel with plutonium recycling and the future possibility to incinerate plutonium and the minor actinides: neptunium, americium, and curium. Much attention is devoted to the technical and scientific treatment of the IAEA surveillance concept of the uranium-plutonium fuel cycle. In this context, especially the physically possible accuracy of measuring U/Pu flow in the fuel cycle, and the criticism expressed of the accuracy in measuring the plutonium balance in large reprocessing plants of non-nuclear weapon states are analyzed. The second part of the book initially examines the assertion that reactor-grade plutonium could be used to build nuclear weapons whose explosive yield cannot be predicted accurately, but whose minimum explosive yield is still far above that of chemical explosive charges. Methods employed in reactor physics are used to show that such hypothetical nuclear explosive devices (HNEDs) would attain too high temperatures in the required implosion lenses as a result of the heat generated by the Pu-238 isotope always present in reactor plutonium of current light-water reactors. These lenses would either melt or tend to undergo chemical auto-explosion. Limits to the content of the Pu-238 isotope are determined above which such hypothetical nuclear weapons are not feasible on technical grounds. This situation is analyzed for various possibilities of the technical state of the art of making implosion lenses and various ways of cooling up to the use of liquid helium. The outcome is that, depending on the existing state of the art, reactor-grade plutonium from spent fuel elements of light-water reactors with a burnup of 35 to 58

  13. A survey of the Maralinga atomic weapons testing range for residual plutonium contamination

    International Nuclear Information System (INIS)

    Ellis, W.R.

    1979-06-01

    Residual plutonium levels in soil, flora, fauna and the air of the Maralinga (South Australia) Atomic Weapons Testing Range are presented and discussed. It is shown that only on rare occasions (and possibly never) would the plutonium concentration in air from wind resuspended dust exceed the maximum allowable concentration for continuous exposure of the general public. In the case of artificially resuspended dust, this maximum concentration could be exceeded for short periods, but the accompanying dust level would be such that working conditions would be uncomfortable, if not intolerable. Potential hazards from other possible exposure routes are so low that they are of no consequence

  14. Mimas, a mature and flexible process to convert the stockpiles of separated civil and weapon grade plutonium into MOX fuel for use in LWR's

    International Nuclear Information System (INIS)

    Vandergheynst, A.; Vanderborck, Y.

    2001-01-01

    The BELGONUCLEAIRE Dessel MOX fabrication plant started operation in 1973. The first ten years have laid down the bases for all the modifications and improvements in the field of fuel fabrication and quality control process and technology, waste management, safety and safeguards. In 1984, BELGONUCLEAIRE developed the MIMAS fabrication process and has used it on industrial scale to make MOX fuel complying with the most stringent fuel vendor specifications. From 1986 to 2000, more than 25 t Pu have been processed into more than 450 tHM of MIMAS fuel delivered in five countries. The MOX fuel produced has been demonstrated to reach at least the same performance as the UO 2 fuel used simultaneously in the same reactors. The BELGONUCLEAIRE MIMAS MOX fuel fabrication process was selected by COGEMA in the late 80(tm)s for its MELOX and its Cadarache plants. In 1999, the MIMAS process was chosen by the US DOE for the new MOX fabrication plant to be built in Savannah (SC-USA) to ''demilitarize'' 25,6 tons of weapon grade plutonium originating from nuclear war- heads. Recently MIMAS was selected by Japan for its domestic MOX plant to be built in Rokkasho-mura. (author)

  15. Using an induction melter with a cold crucible for the immobilization of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Kushnikov, V.V.; Matiunin, Yu.I.; Smelova, T.V. [A.A. Bochvara All Russian Scientific Research Institute of Non-Organic Materials, Moscow (Russian Federation)

    1996-05-01

    This report evaluates the possibilities for immobilizing weapons-grade plutonium in glass-type materials that satisfy requirements for eventual burial in deep geologic repositories and correspond to the standards set for spent fuel.

  16. Recycling of plutonium and uranium in water reactor fuel. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-05-01

    The Technical Committee Meeting on Recycling of Plutonium and Uranium in Water Reactor Fuel was recommended by the International Working Group on Fuel Performance and Technology (IWGFPT). Its aim was to obtain an overall picture of MOX fabrication capacity and technology, actual performance of this kind of fuel, and ways explored to dispose of the weapons grade plutonium. The subject of this meeting had been reviewed by the International Atomic Energy Agency every 5 to 6 years and for the first time the problem of weapons grade plutonium disposal was included. The papers presented provide a summary of experience on MOX fuel and ongoing research in this field in the participating countries. The meeting was hosted by British Nuclear Fuels plc, at Newby Bridge, United Kingdom, from 3 to 7 July 1995. Fifty-six participants from twelve countries or international organizations took part. Refs, figs, tabs

  17. Development of advanced mixed oxide fuels for plutonium management

    International Nuclear Information System (INIS)

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-01-01

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium. (author)

  18. Development of advanced mixed oxide fuels for plutonium management

    International Nuclear Information System (INIS)

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-06-01

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium

  19. progress on the U.S.-Russian excess weapons plutonium disposition program. Panel discussion

    International Nuclear Information System (INIS)

    Feinroth, Herb; Sicard, Bruno; Kudryavtsev, Evgeny; Sprankle, Kenneth A.; Nesbit, Steve; Gadsby, Robert; Aratani, Kiyonori

    2001-01-01

    Full text of publication follows: On September 1, 2000, the United States and Russia signed a historic agreement to each dispose of 34 tons of excess weapons plutonium by 2025, or sooner if possible. The agreement was conditional on international financing of the Russian program. The parties are now attempting to establish a specific program for disposition of the Russian plutonium and to secure commitments for international financing of the Russian program. In the United States, efforts are moving forward to design, license, and construct the necessary facilities for its disposition program. With the assistance of France and Germany, efforts are moving forward in Russia to plan and design appropriate reactor modifications as well as the needed facilities for plutonium conversion and mixed-oxide fabrication. Japan and Canada are also participants in the Russian disposition program. This panel session will review the status of actions taken to bring this agreement to fruition. (authors)

  20. Characterizing Surplus US Plutonium for Disposition - 13199

    Energy Technology Data Exchange (ETDEWEB)

    Allender, Jeffrey S. [Savannah River National Laboratory, Aiken SC 29808 (United States); Moore, Edwin N. [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)

    2013-07-01

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

  1. Plutonium

    International Nuclear Information System (INIS)

    Watson, G.M.

    1976-01-01

    Discovery of the neutron made it easy to create elements which do not exist in nature. One of these is plutonium, and its isotope with mass number 239 has nuclear properties which make it both a good fuel for nuclear power reactors and a good explosive for nuclear weapons. Since it was discovered during a war the latter characteristic was put to use, but it is now evident that use of plutonium in a particular kind of nuclear reactor, the fast breeder reactor, will allow the world's resources of uranium to last for millennia as a major source of energy. Plutonium is very radiotoxic, resembling radium in this respect. Therefore the widespread introduction of fast breeder reactors to meet energy demands can be contemplated only after assurances on two points; that adequate control of the radiological hazard resulting from the handling of very large amounts of plutonium can be guaranteed, and that diversion of plutonium to illicit use can be prevented. The problems exist to a lesser degree already, since all types of nuclear reactor produce some plutonium. Some plutonium has already been dispersed in the environment, the bulk of it from atmospheric tests of nuclear weapons. (author)

  2. Development of a fresh MOX fuel transport package for disposition of weapons plutonium

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D.; Chae, S.M.

    1998-01-01

    The US Department of Energy announced its Record of Decision on January 14, 1997, to embark on a dual-track approach for disposition of surplus weapons-usable plutonium using immobilization in glass or ceramics and burning plutonium as mixed-oxide (MOX) fuel in reactors. In support of the MOX fuel alternative, Oak Ridge National Laboratory initiated development of conceptual designs for a new package for transporting fresh (unirradiated) MOX fuel assemblies between the MOX fabrication facility and existing commercial light-water reactors in the US. This paper summarizes progress made in development of new MOX transport package conceptual designs. The development effort has included documentation of programmatic and technical requirements for the new package and development and analysis of conceptual designs that satisfy these requirements

  3. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  4. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    International Nuclear Information System (INIS)

    Cowell, B.S.; Fisher, S.E.

    1999-01-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option

  5. How much plutonium does North Korea really have?

    International Nuclear Information System (INIS)

    Dreicer, J.S.

    1997-01-01

    In a previous study, as part of the Global Nuclear Material Control Model effort, the author estimated the maximum quantity of plutonium that could be produced in thermal research reactors in the potential nuclear weapon states (including North Korea), based on their declared power level. D. Albright has estimated the amount of plutonium the North Koreans may have produced since 1986 in the 5-megawatt-electric power reactor at Yongbon. Albright provided an upper-bound estimate of 53 kilograms of weapon-grade plutonium produced cumulatively if the gas-graphite (magnox) reactor had achieved a load factor of 0.80. This cumulative estimate of 53 kilograms ignores the potential plutonium production in the 8-megawatt-thermal research reactor, IRT-DPRK. To better quantify the cumulative North Korean production, the author conducted a study to estimate the amount of plutonium that could have been produced in the IRT-DPRK research reactor operating at the declared power level during the entire period it has operated, including a period it was not safeguarded. The author estimates that, at most, an additional 6 to 33 kilograms of plutonium could have been produced cumulatively in the research reactor operating at the declared power level during the entire period it has operated, including a 12-year period it was not safeguarded, resulting in a total of 13 to 47 kilograms of plutonium possibly produced in both the research and power reactors

  6. TSUNAMI analysis of the applicability of proposed experiments to reactor-grade and weapons-grade mixed-oxide systems

    International Nuclear Information System (INIS)

    Rearden, Bradley T.; Hopper, Calvin M.; Elam, Karla R.

    2005-01-01

    The applicability of proposed critical experiments for the criticality code validation of a series of prototypic reactor-grade and weapons-grade mixed-oxide systems has been assessed with the TSUNAMI methodology from SCALE 5. The application systems were proposed by the Nuclear Energy Agency (NEA) Organization for Economic Cooperation and Development (OECD) Working Party on Nuclear Criticality Safety MOX Experimental Needs Working Group. Forty-eight application systems were conceived to envelope the range of conditions in processing and fabrication of reactor-grade and weapons-grade MOX fuel. The applicability of 303 existing critical benchmarks to each of the 48 applications was assessed, and validation coverage was found to be lacking for certain applications. Two series of proposed critical experiments were also considered in this analysis. The TSUNAMI analysis has revealed that both series of proposed experiments are applicable to numerous configurations of the reactor-grade and weapons-grade systems. A detailed assessment of which experiments were revealed by TSUNAMI to be most applicable to specific prototypic fuel processing systems has been performed. (author)

  7. Plutonium disposition via immobilization in ceramic or glass

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L.W.; Kan, T.; Shaw, H.F.; Armantrout, A.

    1997-03-05

    The management of surplus weapons plutonium is an important and urgent task with profound environmental, national, and international security implications. In the aftermath of the Cold War, Presidential Policy Directive 13, and various analyses by renown scientific, technical, and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths for the long term disposition of surplus weapons- usable plutonium. The central goal of this effort is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons as the much larger and growing stock of plutonium contained in spent fuel from civilian reactors. One disposition option being considered for surplus plutonium is immobilization, in which the plutonium would be incorporated into a glass or ceramic material that would ultimately be entombed permanently in a geologic repository for high-level waste.

  8. Safety and licensing of MOX versus UO2 for BWRs and PWRs: Aspects applicable for civilian and weapons grade Pu

    International Nuclear Information System (INIS)

    Goldstein, L.; Malone, J.

    2000-01-01

    This paper reviews the safety and licensing differences between MOX and UO 2 BWR and PWR cores. MOX produced from the normal recycle route and from weapons grade material are considered. Reload quantities of recycle MOX assemblies have been licensed and continue to operate safely in European LWRs. In general, the European MOX assemblies in a reload are 2 . These studies indicated that no important technical or safety related issues have evolved from these studies. The general specifications used by fuel vendors for recycled MOX fuel and core designs are as follows: MOX assemblies should be designed to minimize or eliminate local power peaking mismatches with co-resident and adjacently loaded UO 2 assemblies. Power peaking at the interfaces arises from different neutronic behavior between UO 2 and MOX assemblies. A MOX core (MOX and UO 2 or all-MOX assemblies) should provide cycle energy equivalent to that of an all-UO 2 core. This applies, in particular, to recycle MOX applications. An important consideration when burning weapons grade material is rapid disposition which may not necessarily allow for cycle energy equivalence. The reactivity coefficients, kinetics data, power peaking, and the worth of shutdown systems with MOX fuel and cores must be such to meet the design criteria and fulfill requirements for safe reactor operation. Both recycle and weapons grade plutonium are considered, and positive and negative impacts are given. The paper contrasts MOX versus UO 2 with respect to safety evaluations. The consequences of some transients/accidents are compared for both types of MOX and UO 2 fuel. (author)

  9. Plutonium disposition study phase 1b final report

    International Nuclear Information System (INIS)

    1993-01-01

    This report provides the results of the Westinghouse activities performed as part of the Plutonium Disposition Study Phase 1b. These activities, which took place from May 16, 1993 to September 15, 1993, build upon the work completed in Phase 1a, which concluded on May 15, 1993. In Phase 1a, three Plutonium Disposal Reactor (PDR) options were developed for the disposal of excess weapons grade plutonium from returned and dismantled nuclear weapons. This report documents the results of several tasks that were performed to further knowledge in specific areas leading up to Phase 2 of the PDR Study. The Westinghouse activities for Phase 1b are summarized as follows: (1) resolved technical issues concerning reactor physics including equilibrium cycle calculations, use of gadolinium, moderator temperature coefficient, and others as documented in Section 2.0; (2) analyzed large Westinghouse commercial plants for plutonium disposal; (3) reactor safety issues including the steam line break were resolved, and are included in Section 2.0; (4) several tasks related to the PDR Fuel Cycle were examined; (5) cost and deployment options were examined to determine optimal configuration for both plutonium disposal and tritium production; (6) response to questions from DOE and National Academy of Scientists (NAS) reviewers concerning the PDR Phase 1a report are included in Appendix A

  10. Plutonium research and related activities at the Amarillo National Resource Center for Plutonium

    International Nuclear Information System (INIS)

    Hartley, R.S.; Beard, C.A.; Barnes, D.L.

    1998-01-01

    With the end of the Cold War, the US and Russia are reducing their nuclear weapons stockpiles. What to do with the materials from thousands of excess nuclear weapons is an important international challenge. How to handle the remaining US stockpile to ensure safe storage and reliability, in light of the aging support infrastructure, is an important national challenge. To help address these challenges and related issues, the Amarillo National Resource Center for Plutonium is working on behalf of the State of Texas with the US Department of Energy (DOE). The center directs three major programs that address the key aspects of the plutonium management issue: (1) the Communications, Education, Training and Community Involvement Program, which focuses on informing the public about plutonium and providing technical education at all levels; (2) the Environmental, Safety, and Health (ES and H) Program, which investigates the key ES and H impacts of activities related to the DOE weapons complex in Texas; and (3) the Nuclear and Other Materials Program, which is aimed at minimizing safety and proliferation risks by helping to develop and advocate safe stewardship, storage, and disposition of nuclear weapons materials. This paper provides an overview of the center's nuclear activities described in four broad categories of international activities, materials safety, plutonium storage, and plutonium disposition

  11. Electron Microscopy Study of Stainless Steel Radiation Damage Due to Long-Term Irradation by Alpha Particles Emitted From Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Unlu, Kenan [Univ. of Texas, Austin, TX (United States); Rios-Martinez, Carlos [Univ. of Texas, Austin, TX (United States); Saglam, Mehmet [Univ. of Texas, Austin, TX (United States); Hart, Ron R. [Texas A & M Univ., College Station, TX (United States); Shipp, John D. [Texas A & M Univ., College Station, TX (United States); Rennie, John [Texas A & M Univ., College Station, TX (United States)

    1998-04-16

    Radiation damage and associated surface and microstructural changes produced in stainless steel encapsulation by high-fluence alpha particle irradiations from weapons-grade plutonium of 316-stainless steel are being investigated.

  12. Conversion of metal plutonium to plutonium dioxide by pyrochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Panov, A.V.; Subbotin, V.G. [Russian Federal Nuclear Center, ALL-Russian Science and Research Institute of Technical Physics, Snezhinsk (Russian Federation); Mashirev, V.P. [ALL-Russian Science and Research Institute of Chemical Technology, Moscow (Russian Federation)

    2000-07-01

    Report contains experimental results on metal plutonium of weapon origin samples conversion to plutonium dioxide by pyrochemical method. Circuits of processes are described. Their advantages and shortcomings are shown. Parameters of plutonium dioxide powders (phase and fraction compositions, poured density) manufactured by pyrochemical method in RFNC-VNIITF are shown as well. (authors)

  13. Plutonium Disposition Now exclamation point

    International Nuclear Information System (INIS)

    Buckner, M.R.

    1995-01-01

    A means for use of existing processing facilities and reactors for plutonium disposition is described which requires a minimum capital investment and allows rapid implementation. The scenario includes interim storage and processing under IAEA control, and fabrication into MOX fuel in existing or planned facilities in Europe for use in operating reactors in the two home countries. Conceptual studies indicate that existing Westinghouse four-loop designs can safety dispose of 0.94 MT of plutonium per calendar year. Thus, it would be possible to consume the expected US excess stockpile of about 50 MT in two to three units of this type, and it is highly likely that a comparable amount of the FSU excess plutonium could be deposed of in a few VVER-1000's. The only major capital project for this mode of plutonium disposition would be the weapons-grade plutonium processing which could be done in a dedicated international facility or using existing facilities in the US and FSU under IAEA control. This option offers the potential for quick implementation at a very low cost to the governments of the two countries

  14. A perspective on safeguarding and monitoring of excess military plutonium

    International Nuclear Information System (INIS)

    Sutcliffe, W.G.

    1994-01-01

    The purpose of this paper is to provide a perspective and framework for the development of safeguarding and monitoring procedures for the various stages of disposition of excess military plutonium. The paper briefly outlines and comments on some of the issues involved in safeguarding and monitoring excess military plutonium as it progresses from weapons through dismantlement, to fabrication as reactor fuel, to use in a reactor, and finally to storage and disposal as spent fuel. open-quotes Militaryclose quotes refers to ownership, and includes both reactor-grade and weapon-grade plutonium. open-quotes Excessclose quotes refers to plutonium (in any form) that a government decides is no longer needed for military use and can be irrevocably removed from military stockpiles. Many of the issues and proposals presented in this paper are based on, or are similar to, those mentioned in the National Academy of Sciences (NAS) report on excess military plutonium. Safeguards for plutonium disposition are discussed elsewhere in terms of requirements established by the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission (NRC), and the International Atomic Energy Agency (IAEA). Here, the discussion is less specific. The term open-quotes safeguardingclose quotes is used broadly to refer to materials control and accountancy (MC ampersand A), containment and surveillance (C ampersand S), and physical protection of nuclear materials by the state that possesses those materials. This is also referred to as material protection, control, and accountancy (MPCA). The term open-quotes safeguardingclose quotes was chosen for brevity and to distinguish MPCA considered in this paper from international or IAEA safeguards. open-quotes Monitoringclose quotes is used to refer to activities designed to assure another party (state or international organization) that the nuclear materials of the host state (the United States or Russia) are secure and not subject to unauthorized

  15. The plutonium danger

    International Nuclear Information System (INIS)

    Ruiter, W. de

    1983-01-01

    Nobody can ignore the fact that plutonium is potentially very dangerous and the greatest danger concerning it lies in the spreading of nuclear weapons via nuclear energy programmes. The following seven different attitudes towards this problem are presented and discussed: 1) There is no connection between peaceful and military applications; 2) The problem cannot be prevented; 3) A technical solution must be found; 4) plutonium must be totally inaccessible to countries involved in acquiring nuclear weapons; 5) The use of plutonium for energy production should only occur in one multinational centre; 6) Dogmas in the nuclear industry must be enfeebled; 7) All developments in this area should stop. (C.F.)

  16. Uncertainty assessment in gamma spectrometric measurements of plutonium isotope ratios and age

    Energy Technology Data Exchange (ETDEWEB)

    Ramebaeck, H., E-mail: henrik.ramebeck@foi.se [Swedish Defence Research Agency, FOI, Division of CBRN Defence and Security, SE-901 82 Umea (Sweden); Chalmers University of Technology, Department of Chemical and Biological Engineering, Nuclear Chemistry, SE-412 96 Goeteborg (Sweden); Nygren, U.; Tovedal, A. [Swedish Defence Research Agency, FOI, Division of CBRN Defence and Security, SE-901 82 Umea (Sweden); Ekberg, C.; Skarnemark, G. [Chalmers University of Technology, Department of Chemical and Biological Engineering, Nuclear Chemistry, SE-412 96 Goeteborg (Sweden)

    2012-09-15

    A method for the assessment of the combined uncertainty in gamma spectrometric measurements of plutonium composition and age was evaluated. Two materials were measured. Isotope dilution inductively coupled plasma sector field mass spectrometry (ID-ICP-SFMS) was used as a reference method for comparing the results obtained with the gamma spectrometric method for one of the materials. For this material (weapons grade plutonium) the measurement results were in agreement between the two methods for all measurands. Moreover, the combined uncertainty in all isotope ratios considered in this material (R{sub Pu238/Pu239}, R{sub Pu240/Pu239}, R{sub Pu241/Pu239}, and R{sub Am241/Pu241} for age determination) were limited by counting statistics. However, the combined uncertainty for the other material (fuel grade plutonium) were limited by the response fit, which shows that the uncertainty in the response function is important to include in the combined measurement uncertainty of gamma spectrometric measurements of plutonium.

  17. Disposition of plutonium-239 via production of fission molybdenum-99

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A., E-mail: muahtaq_a1953@hotmail.co [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2011-04-15

    A heritage of physical consequences of the U.S.-Soviet arms race has accumulated, the weapons-grade plutonium (WPu), which will become excess as a result of the dismantlement of the nuclear weapons under the arms reduction agreements. Disposition of Pu has been proposed by mixing WPu with high-level radioactive waste with subsequent vitrification into large, highly radioactive glass logs or fabrication into mixed oxide fuel with subsequent irradiation in existing light water reactors. A potential option may be the production of medical isotope molybdenum-99 by using Pu-239 targets.

  18. On weapons plutonium in the arctic environment (Thule, Greenland)

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, M

    2002-04-01

    This thesis concerns a nuclear accident that occurred in the Thule (Pituffik) area, NW Greenland in 1968, called the Thule accident.Results are based on different analytical techniques, i.e. gamma spectrometry, alpha spectrometry, ICP-MS, SEM with EDX and different sediment models, i.e. (CRS, CIC). The scope of the thesis is the study of hot particles. Studies on these have shown several interesting features, e.g. that they carry most of the activity dispersed from the accident, moreover, they have been very useful in the determination of the source term for the Thule accident debris. Paper I, is an overview of the results from the Thule-97 expedition. This paper concerns the marine environment, i.e. water, sediment and benthic animals in the Bylot Sound. The main conclusions are; that plutonium is not transported from the contaminated sediments into the surface water in this shelf sea, the debris has been efficiently buried in the sediment to great depth as a result of biological activity and transfer of plutonium to benthic biota is low. Paper II, concludes that the resuspension of accident debris on land has been limited and indications were, that americium has a faster transport mechanism from the catchment area to lakes than plutonium and radio lead. Paper III, is a method description of inventory calculation techniques in sediment with heterogeneous activity concentration, i.e. hot particles are present in the samples. It is concluded that earlier inventory estimates have been under estimated and that the new inventory is about 3.8 kg (10 TBq) of {sup 239,240}Pu. Paper IV, describes hot particle separation/identification techniques using real-time digital image systems. These techniques are much faster than conventionally used autoradiography and give the results in real time. Paper V, is a study of single isolated hot particles. The most interesting result is that the fission material in the weapons involved in the accident mostly consisted of {sup 235}U

  19. On weapons plutonium in the arctic environment (Thule, Greenland)

    International Nuclear Information System (INIS)

    Eriksson, M.

    2002-04-01

    This thesis concerns a nuclear accident that occurred in the Thule (Pituffik) area, NW Greenland in 1968, called the Thule accident.Results are based on different analytical techniques, i.e. gamma spectrometry, alpha spectrometry, ICP-MS, SEM with EDX and different sediment models, i.e. (CRS, CIC). The scope of the thesis is the study of hot particles. Studies on these have shown several interesting features, e.g. that they carry most of the activity dispersed from the accident, moreover, they have been very useful in the determination of the source term for the Thule accident debris. Paper I, is an overview of the results from the Thule-97 expedition. This paper concerns the marine environment, i.e. water, sediment and benthic animals in the Bylot Sound. The main conclusions are; that plutonium is not transported from the contaminated sediments into the surface water in this shelf sea, the debris has been efficiently buried in the sediment to great depth as a result of biological activity and transfer of plutonium to benthic biota is low. Paper II, concludes that the resuspension of accident debris on land has been limited and indications were, that americium has a faster transport mechanism from the catchment area to lakes than plutonium and radio lead. Paper III, is a method description of inventory calculation techniques in sediment with heterogeneous activity concentration, i.e. hot particles are present in the samples. It is concluded that earlier inventory estimates have been under estimated and that the new inventory is about 3.8 kg (10 TBq) of 239,240 Pu. Paper IV, describes hot particle separation/identification techniques using real-time digital image systems. These techniques are much faster than conventionally used autoradiography and give the results in real time. Paper V, is a study of single isolated hot particles. The most interesting result is that the fission material in the weapons involved in the accident mostly consisted of 235 U (about 4times

  20. A host phase for the disposal of weapons plutonium

    International Nuclear Information System (INIS)

    Lutze, Werner; Helean, K.B.; Gong, W.L.; Ewing, Rodney C.

    1999-01-01

    Research was conducted into the possible use of zircon (ZrSiO 4 ) as a host phase for storage or disposal of excess weapons plutonium. Zircon is one of the most chemically durable minerals. Its structure can accommodate a variety of elements, including plutonium and uranium. Natural zircon contains uranium and thorium together in different quantities, usually in the range of less than one weight percent up to several weight percent. Zircon occurs in nature as a crystalline or a partially to fully metamict mineral, depending on age and actinide element concentration, i.e., on radiation damage. These zircon samples have been studied extensively and the results are documented in the literature in terms of radiation damage to the crystal structure and related property changes, e.g., density, hardness, loss of uranium and lead, etc. Thus, a unique suite of natural analogues are available to describe the effect of decay of 239 Pu on zircon's structure and how zircon's physical and chemical properties will be affected over very long periods of time. Actually, the oldest zircon samples known are over 3 billion years old. This period covers the time for decay of 239 Pu (half-life 24,300 yr.) and most of its daughter 235 U (half-life 700 million yr.). Because of its chemical durability, even under extreme geological conditions, zircon is the most widely used mineral for geochronological dating (7,000 publications). It is the oldest dated mineral on earth and in the universe. Zircon has already been doped with about 10 weight percent of plutonium. Pure PuSiO 4 has also been synthesized and has the same crystal structure as zircon. However, use of zircon as a storage medium or waste form for plutonium requires further materials characterization. Experiments can either be conducted in laboratories where plutonium can be handled or plutonium can be simulated by other elements, and experiments can be done under less restricted conditions. The authors conducted work with zircon

  1. Feasibility and options for purchasing nuclear weapons, highly enriched uranium (HEU) and plutonium from the former Soviet Union (FSU)

    International Nuclear Information System (INIS)

    1994-01-01

    In response to a recent tasking from the National Security Council, this report seeks to analyze the possible options open to the US for purchasing, from the former Soviet Union (FSU) substantial quantities of plutonium and highly enriched uranium recovered from the accelerated weapons retirements and dismantlements that will soon be taking place. The purpose of this paper is to identify and assess the implications of some of the options that now appear to be open to the United States, it being recognized that several issues might have to be addressed in further detail if the US Government, on its own, or acting with others seeks to negotiate any such purchases on an early basis. As an outgrowth of the dissolution of the Soviet Union three of the C.I.S. republics now possessing nuclear weapons, namely the Ukraine, Belarus, and Kazakhstan, have stated that it is their goal, without undue delay, to become non-nuclear weapon states as defined in the Non-Proliferation Treaty. Of overriding US concern is the proliferation of nuclear weapons in the Third World, and the significant opportunity that the availability of such a large quantity of surplus weapons grade material might present in this regard, especially to a cash-starved FSU Republic. Additionally, the US, in its endeavor to drawdown its own arsenal, needs to assure itself that these materials are not being reconfigured into more modern weapons within the CIS in a manner which would be inconsistent with the stated intentions and publicized activities. The direct purchase of these valuable materials by the US government or by interested US private enterprises could alleviate these security concerns in a straightforward and very expeditious manner, while at the same time pumping vitally needed hard currency into the struggling CIS economy. Such a purchase would seem to be entirely consistent with the Congressional mandate indicated by the Soviet Nuclear Threat Reduction Act of 1991

  2. Excess plutonium disposition using ALWR technology

    International Nuclear Information System (INIS)

    Phillips, A.; Buckner, M.R.; Radder, J.A.; Angelos, J.G.; Inhaber, H.

    1993-02-01

    The Office of Nuclear Energy of the Department of Energy chartered the Plutonium Disposition Task Force in August 1992. The Task Force was created to assess the range of practicable means of disposition of excess weapons-grade plutonium. Within the Task Force, working groups were formed to consider: (1) storage, (2) disposal,and(3) fission options for this disposition,and a separate group to evaluate nonproliferation concerns of each of the alternatives. As a member of the Fission Working Group, the Savannah River Technology Center acted as a sponsor for light water reactor (LWR) technology. The information contained in this report details the submittal that was made to the Fission Working Group of the technical assessment of LWR technology for plutonium disposition. The following aspects were considered: (1) proliferation issues, (2) technical feasibility, (3) technical availability, (4) economics, (5) regulatory issues, and (6) political acceptance

  3. The AIDA-MOX 1 program: Results of the French-Russian study on peaceful use of plutonium from dismantled Russian Nuclear weapons

    International Nuclear Information System (INIS)

    Yegorov, N.N.; Kudriavtsev, E.; Poplavsky, V.; Polyakov, A.; Ouin, X.; Camarcat, N.; Sicard, B.; Bernard, H.

    1997-01-01

    The Intergovernmental Agreement signed on November 12, 1992, between the governments of France and the Russian Federation instituted cooperation between the two countries for the safe elimination of the excess Russian nuclear weapons. France has allocated 400 million francs to this program, covering transportation and dismantling of nuclear weapons, interim storage and subsequent commercial use of the nuclear materials from the dismantled weapons, nuclear materials accountancy and safeguards, and scientific research. The concept of loading commercial Russian reactors with fuel fabricated from the plutonium recovered from dismantled nuclear weapons of the former Soviet Union is gaining widespread acceptance, and is at the heart of the French-Russian AIDA/MOX project

  4. Kr-85 signatures for various plutonium production schemes

    Energy Technology Data Exchange (ETDEWEB)

    Stanoszek, Paul [Carl Friedrich von Weizsaecker-Centre for Science and Peace Research (Germany)

    2009-07-01

    Kr-85 is considered to be the best atmospheric indicator of unreported weapon-grade material production. This fact is based on the half-life of 10.76 years of Kr-85 and its chemical inactivity, which makes it even detectable after extended periods of cooling time. Kr-85 is produced as fission product during nuclear reactor operation and remains in the fuel until reprocessing starts. In order to determine the detectability of plutonium production the Kr-85 source term has to be assessed. The important issue of this presentation is the question on the minimum signal that an inspector can expect under the assumption that a proliferator minimizes his Kr-85 generation in order to circumvent a Kr-85 detection. A further assumption is that for nuclear weapon production a burn-up of typically around 2 MWd/kg is used. In addition, if clandestine plutonium production takes place, the source term might be used to estimate the amount of separated plutonium. The methodology of this study is based on a linkage between MCNPX and MATLAB. All results for actinide concentrations and Kr-85 are evaluated for different enrichments of U-235 and compared to known literature data. The Kr-85 source term per kilogram plutonium depends on the enrichments. As a result the lowest Kr-85 source term is found for depleted uranium.

  5. Screening study for evaluation of the potential for system 80+ to consume excess plutonium - Volume 1

    International Nuclear Information System (INIS)

    1994-01-01

    As part of the U.S. effort to evaluate technologies offering solutions for the safe disposal or utilization of surplus nuclear materials, the fiscal year 1993 Energy and Water Appropriations legislation provided the Department of Energy (DOE) the necessary funds to conduct multi-phased studies to determine the technical feasibility of using reactor technologies for the triple mission of burning weapons grade plutonium, producing tritium for the existing smaller weapons stockpile, and generating commercial electricity. DOE limited the studies to five advanced reactor designs. Among the technologies selected is the ABB-Combustion Engineering (ABB-CE) System 80+. The DOE study, currently in Phase ID, is proceeding with a more detailed evaluation of the design's capability for plutonium disposition

  6. Screening study for evaluation of the potential for system 80+ to consume excess plutonium - Volume 2

    International Nuclear Information System (INIS)

    1994-01-01

    As part of the U.S. effort to evaluate technologies offering solutions for the safe disposal or utilization of surplus nuclear materials, the fiscal year 1993 Energy and Water Appropriations legislation provided the Department of Energy (DOE) the necessary funds to conduct multi-phased studies to determine the technical feasibility of using reactor technologies for the triple mission of burning weapons grade plutonium, producing tritium for the existing smaller weapons stockpile, and generating commercial electricity. DOE limited the studies to five advanced reactor designs. Among the technologies selected is the ABB-Combustion Engineering (ABB-CE) System 80+. The DOE study, currently in Phase ID, is proceeding with a more detailed evaluation of the design's capability for plutonium disposition

  7. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  8. Fabrication of zircon for disposition of weapons plutonium

    International Nuclear Information System (INIS)

    Kim, K.C.; Huang, J.Y.; Serrano, P.L.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In an effort to address the problems of long term storage and nuclear waste minimization, zircon has been proposed as a host medium for plutonium and other actinides recovered from dismantled nuclear weapons. The objective of this work is to investigate the feasibility of large scale fabrication of Pu-bearing zircon. Since PuO 2 is thermodynamically less stable than ZrO 2 , it is expected that the process parameters determined for synthesizing ZrSiO 4 (zircon) would be applicable to those for PuSiO 4 (Pu-zircon). Furthermore, since the foremost concern in plutonium processing is the potential for contamination release, this work emphasizes the development of process parameters, using zircon first, to anticipate potential material problems in the containment system for reaction mixtures during processing. Stoichiometric mixtures of ZrO 2 and SiO 2 , in hundred-gram batches, have been subjected to hot isostatic pressing (HIP) at temperatures near 1,500 C and pressures approximately 10,000 psi. The product materials have been analyzed by x-ray powder diffraction, and are found to consist of zircon after approximately two hours of reaction time. From this work, it is clear that the fabrication of large quantities of Pu-zircon is feasible. The most notable result of this work is evidence for the existence of container problems. This result, in turn, suggests potential solutions to these problems. Experiments with the quartz inner container, the glass sealant, a sacrificial metal barrier, and a metal outer container are being investigated to mitigate these potential hazards

  9. What is plutonium stabilization, and what is safe storage of plutonium?

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1995-01-01

    The end of the cold war has resulted in the shutdown of nuclear weapons production and the start of dismantlement of significant numbers of nuclear weapons. This, in turn, is creating an inventory of plutonium requiring interim and long-term storage. A key question is, ''What is required for safe, multidecade, plutonium storage?'' The requirements for storage, in turn, define what is needed to stabilize the plutonium from its current condition into a form acceptable for interim and long-term storage. Storage requirements determine if research is required to (1) define required technical conditions for interim and long-term storage and (2) develop or improve current stabilization technologies. Storage requirements depend upon technical, policy, and economic factors. The technical issues are complicated by several factors. Plutonium in aerosol form is highly hazardous. Plutonium in water is hazardous. The plutonium inventory is in multiple chemical forms--some of which are chemically reactive. Also, some of the existing storage forms are clearly unsuitable for storage periods over a few years. Gas generation by plutonium compounds complicates storage: (1) all plutonium slowly decays creating gaseous helium and (2) the radiation from plutonium decay can initiate many chemical reactions-some of which generate significant quantities of gases. Gas generation can pressurize sealed storage packages. Last nuclear criticality must be avoided

  10. Oxidation-state distribution of plutonium in surface and subsurface waters at Thule, northwest Greenland

    International Nuclear Information System (INIS)

    McMahon, C.A.; Leon Vintro, L.; Mitchell, P.I.; Dahlgaard, H.

    2000-01-01

    The speciation of plutonium in Arctic waters sampled on the northwest Greenland shelf in August 1997 is discussed in this paper. Specifically, we report the results of analyses carried out on seawater sampled (a) close to the Thule air base where, in 1968, a US military aircraft carrying four nuclear weapons crashed on sea ice, releasing kilogram quantities of plutonium to the snow pack and underlying seabed sediments, and (b) at a reference station (Upernavik) located ∼400 km to the south. The data show that most of the plutonium in the dissolved phase at Thule is in the form of Pu(V, VI) (mean: 68±6%; n=6), with little if any distinction apparent between surface and bottom waters. Further, the oxidation state distribution at stations close to the accident site is similar to that measured at Upernavik, remote from this site. It is also similar to the distribution observed in shelf waters at mid-latitudes, suggesting that the underlying processes controlling plutonium speciation are insensitive to temperature over the range 0-25 deg. C. Measurements using tangential-flow ultrafiltration indicate that virtually all of the plutonium (including the fraction in a reduced chemical form) is present as fully dissolved species. Most of this plutonium would seem to be of weapons fallout origin, as the mean 238 Pu/ 239,240 Pu activity ratio in the water column (dissolved phase) at Thule (0.06±0.02; n=10) is similar to the global fallout ratio at this latitude (∼0.04). Thus, there is little evidence of weapons-grade plutonium in the water column at Thule at the present time

  11. Plutonium Immobilization Project - Robotic canister loading

    International Nuclear Information System (INIS)

    Hamilton, R.L.

    2000-01-01

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site (SRS), Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL). When operational in 2008, the PIP will fulfill the nation's nonproliferation commitment by placing surplus weapons-grade plutonium in a permanently stable ceramic form and making it unattractive for reuse. Since there are significant radiation and security concerns, the program team is developing novel and unique technology to remotely perform plutonium immobilization tasks. The remote task covered in this paper employs a jointed arm robot to load seven 3.5 inch diameter, 135-pound cylinders (magazines) through the 4 inch diameter neck of a stainless steel canister. Working through the narrow canister neck, the robot secures the magazines into a specially designed rack pre-installed in the canister. To provide the deterrent effect, the canisters are filled with a mixture of high-level waste and glass at the Defense Waste Processing Facility (DWPF)

  12. Management of Russian military plutonium

    International Nuclear Information System (INIS)

    Zaleski, C.P.

    1996-01-01

    The objective of this paper is to propose and discuss a solution which enables storing as quickly as possible all weapons-grade plutonium from Russian military program in a way which would prevent diversion. Two main conditions apply to this solution. First, it should be achieved in a manner acceptable to Russian government, notably by preserving plutonium for possible future energy production, and second, the economics of the total system should be good enough to ensure no charge or limited charge for the storage of plutonium. A proposal is made to store plutonium in a specially designed fast reactor or specially designed reactor core. This solution could be favorable in comparison to other solutions applying the above mentioned goal and conditions. Additionally the proposed solution would have the following side advantages: utilizing available personnel and installations of the Russian nuclear complex; providing possible basis for decommissioning of older and less safe Russian reactors; giving experience of construction and operation of a series of sodium-cooled fast reactors. The major problem however is the need for large capital investment with the risk of getting no adequate return on investment due to difficult political and economic situation in Russia

  13. Advanced PWR Core Design with Siemens High-Plutonium-Content MOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Dieter Porsch; Gerhard Schlosser; Hans-Dieter Berger

    2000-01-01

    The Siemens experience with plutonium recycling dates back to the late 1960s. Over the years, extensive research and development programs were performed for the qualification of mixed-oxide (MOX) technology and design methods. Today's typical reload enrichments for uranium and MOX fuel assemblies and modern core designs have become more demanding with respect to accuracy and reliability of design codes. This paper presents the status of plutonium recycling in operating high-burnup pressurized water reactor (PWR) cores. Based on actual examples, it describes the validation status of the design methods and stresses current and future needs for fuel assembly and core design including those related to the disposition of weapons-grade plutonium

  14. Drop-in capsule testing of plutonium-based fuels in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Chang, G.S.; Ryskamp, J.M.; Terry, W.K.; Ambrosek, R.G.; Palmer, A.J.; Roesener, R.A.

    1996-09-01

    The most attractive way to dispose of weapons-grade plutonium (WGPu) is to use it as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PuO[sub 2]) mixed with urania (UO[sub 2]). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. The proposed weapons-grade MOX fuel is unusual, even relative to ongoing foreign experience with reactor-grade MOX power reactor fuel. Some demonstration of the in- reactor thermal, mechanical, and fission gas release behavior of the prototype fuel will most likely be required in a limited number of test reactor irradiations. The application to license operation with MOX fuel must be amply supported by experimental data. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL) is capable of playing a key role in the irradiation, development, and licensing of these new fuel types. The ATR is a 250- MW (thermal) LWR designed to study the effects of intense radiation on reactor fuels and materials. For 25 years, the primary role of the ATR has been to serve in experimental investigations for the development of advanced nuclear fuels. Both large- and small-volume test positions in the ATR could be used for MOX fuel irradiation. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. Furthermore, these data can be obtained more quickly by using ATR instead of testing in a commercial LWR. Our previous work in this area has demonstrated that it is technically feasible to perform MOX fuel testing in the ATR. This report documents our analyses of sealed drop-in capsules containing plutonium-based test specimens placed in various ATR positions

  15. Screening study for evaluation of the potential for system 80+ to consume excess plutonium - Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-30

    As part of the U.S. effort to evaluate technologies offering solutions for the safe disposal or utilization of surplus nuclear materials, the fiscal year 1993 Energy and Water Appropriations legislation provided the Department of Energy (DOE) the necessary funds to conduct multi-phased studies to determine the technical feasibility of using reactor technologies for the triple mission of burning weapons grade plutonium, producing tritium for the existing smaller weapons stockpile, and generating commercial electricity. DOE limited the studies to five advanced reactor designs. Among the technologies selected is the ABB-Combustion Engineering (ABB-CE) System 80+. The DOE study, currently in Phase ID, is proceeding with a more detailed evaluation of the design`s capability for plutonium disposition.

  16. Screening study for evaluation of the potential for system 80+ to consume excess plutonium - Volume 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-30

    As part of the U.S. effort to evaluate technologies offering solutions for the safe disposal or utilization of surplus nuclear materials, the fiscal year 1993 Energy and Water Appropriations legislation provided the Department of Energy (DOE) the necessary funds to conduct multi-phased studies to determine the technical feasibility of using reactor technologies for the triple mission of burning weapons grade plutonium, producing tritium for the existing smaller weapons stockpile, and generating commercial electricity. DOE limited the studies to five advanced reactor designs. Among the technologies selected is the ABB-Combustion Engineering (ABB-CE) System 80+. The DOE study, currently in Phase ID, is proceeding with a more detailed evaluation of the design`s capability for plutonium disposition.

  17. Nuclear weapon relevant materials and preventive arms control. Uranium-free fuels for plutonium elimination and spallation neutron sources

    International Nuclear Information System (INIS)

    Liebert, Wolfgang; Englert, Matthias; Pistner, Christoph

    2009-01-01

    Today, the most significant barrier against the access to nuclear weapons is to take hold on sufficient amounts of nuclear weapon-relevant nuclear materials. It is mainly a matter of fissionable materials (like highly enriched uranium and plutonium) but also of fusionable tritium. These can be used as reactor fuel in civil nuclear programmes but also in nuclear weapon programmes. To stop or to hinder nuclear proliferation, in consequence, there is not only a need to analyse open or covered political objectives and intentions. In the long term, it might be more decisive to analyse the intrinsic civil-military ambivalence of nuclear materials and technologies, which are suitable for sensitive material production. A farsighted strategy to avoid proliferation dangers should take much more account to technical capabilities as it is done in the political debate on nuclear non-proliferation so far. If a technical option is at a state's disposal, it is extremely difficult and lengthy to revert that again. The dangers, which one has to react to, are stemming from already existing stocks of nuclear weapon-relevant materials - in the military as well as in the civil realm - and from existing or future technologies, which are suitable for the production of such materials (cf. info 1 and 2). Therefore, the overall approach of this research project is to strive for a drastic reduction of the access to nuclear weapon-relevant material and its production capabilities. Thus, on one hand the nuclear proliferation by state actors could be answered more effectively, on the other hand by that approach a decisive barrier against the access on nuclear weapons by sub-national groups and terrorists could also be erected. For this purpose, safeguards of the International Atomic Energy Agency (IAEA) and other measures of physical accountancy will remain indispensable elements of arms control. However, one has to consider that the goal of nuclear non-proliferation could not be achieved and

  18. Exploiting the plutonium stockpiles in PWRs by using inert matrix fuel

    International Nuclear Information System (INIS)

    Lombardi, C.; Mazzola, A.

    1996-01-01

    The plutonium coming from dismantled warheads and that already stockpiled coming from spent fuel reprocessing have raised many concerns related to proliferation resistance, environmental safety and economy. The option of disposing of plutonium by fission is one of the most widely discussed and many proposals for plutonium burning in a safe and economical manner have been put forward. Due to their diffusion, PWRs appear to be the main candidates for the reduction of the plutonium stockpiles. In order to achieve a high plutonium consumption rate, a uranium-free fuel may be conceived, based on the dilution of PuO 2 within a carrier matrix made of inert oxide. In this paper, a partial loading of inert matrix fuel in a current technology PWR was investigated with 3-D calculations. The results indicated that this solution has good plutonium elimination capabilities: commercial PWRs operating in a once-through cycle scheme can transmute more than 98% of the loaded Pu-239 and 73 or 81% of the overall initially loaded reactor grade or weapons grade plutonium, respectively. The plutonium still let in the spent fuel was of poor quality and then offered a better proliferation resistance. Power peaking problems could be faced with the adoption of burnable absorbers: IFBA seemed to be particularly suitable. In spite of a reduction of the overall plutonium loaded mass by a factor 3.7 or 5.4 depending on its quality, there was no evidence of an increase of the minor actinides radiotoxicity after a time period of about 25 years. (author)

  19. Pyrochemical processes for the recovery of weapons grade plutonium either as a metal or as PuO2 for use in mixed oxide reactor fuel pellets

    International Nuclear Information System (INIS)

    Colmenares, C.A.; Ebbinghaus, B.B.; Bronson, M.C.

    1995-01-01

    The authors have developed two processes for the recovery of weapons grade Pu, as either Pu metal or PuO 2 , that are strictly pyrochemical and do not produce any liquid waste. Large amounts of Pu metal (up to 4 kg.), in various geometric shapes, have been recovered by a hydride/dehydride/casting process (HYDEC) to produce metal ingots of any desired shape. The three processing steps are carried out in a single compact apparatus. The experimental technique and results obtained will be described. The authors have prepared PuO 2 powders from weapons grade Pu by a process that hydrides the Pu metal followed by the oxidation of the hydride (HYDOX process). Experimental details of the best way to carry out this process will be presented, as well as the characterization of both hydride and oxide powders produced

  20. Plutonium speciation and isotope ratios in Yenisey and Ob river and Yenisey estuary

    International Nuclear Information System (INIS)

    Skipperud, L.; Oughton, DH.; Fifield, K.; Lind, O.C.; Salbu, B.; Brown, J.

    2004-01-01

    Plutonium isotope ratios are known to vary with reactor type, nuclear fuel-burn up time, neutron flux, and energy, and for fallout from nuclear detonations, weapon type and yield. Weapons-grade plutonium is characterized by a low content of the 240 Pu isotope, with 240 Pu/ 239 Pu isotope ratio less than 0.05. In contrast, both global weapons fallout and spent nuclear fuel from civil reactors have higher 240 Pu/ 239 Pu isotope ratios (civil nuclear power reactors have 240 Pu/ 239 Pu atom ratios of between about 0.2-1). Thus, different sources often exhibit characteristic plutonium isotope ratios and these ratios can be used to identify the origin of contamination, calculate inventories, or follow the migration of contaminated sediments and waters. Together with activity measurements and isotope ratios, knowledge of plutonium speciation in the Ob and Yenisey rivers and processes controlling its behaviour in estuarine systems is a prerequisite for predicting the transfer and subsequent environmental impact to Arctic Seas. With this in mind, the study had two objectives: first to determine whether discharges from nuclear installations in the river catchment areas are having any influence on Pu levels in the estuaries; and, second, to investigate the transfer and mobility of plutonium in the Yenisey river and estuary. Plutonium 240/239 ratios were determined using accelerator mass spectrometry (AMS). The data indicated a clear influence from a low 240 Pu: 239 Pu source in surface sediments collected from the Yenisey Estuary, whereas plutonium in the Ob Estuary sediments are dominated by global fallout. The results also show an increase in plutonium concentration and a decrease in isotope ratio going upstream from the estuary. Sequential extractions of sediments indicate that up 70% of the Pu in the Yenisey river is easily mobilized with weak oxidizing agents, which indicates that the Pu is organically bound, while the Pu is more strongly irreversible bound further out

  1. Atomic energy policy of Japan, especially plutonium utilization policy

    International Nuclear Information System (INIS)

    Moriguchi, Y.

    1993-01-01

    The necessity of plutonium use in Japan is discussed. Basic policy regarding plutonium use and future plutonium utilization programme is described including such an aspect as management of plutonium from dismantled nuclear weapons

  2. Plutonium in the arctic marine environment--a short review.

    Science.gov (United States)

    Skipperud, Lindis

    2004-06-18

    Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which has resulted in a relatively uniform, underlying global distribution of plutonium. Previous studies of plutonium in the Kara Sea have shown that, at certain sites, other releases have given rise to enhanced local concentrations. Since different plutonium sources are characterised by distinctive plutonium-isotope ratios, evidence of a localised influence can be supported by clear perturbations in the plutonium-isotope ratio fingerprints as compared to the known ratio in global fallout. In Kara Sea sites, such perturbations have been observed as a result of underwater weapons tests at Chernaya Bay, dumped radioactive waste in Novaya Zemlya, and terrestrial runoff from the Ob and Yenisey Rivers. Measurement of the plutonium-isotope ratios offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers.

  3. International agreements on nuclear weapons

    International Nuclear Information System (INIS)

    Dombey, N.

    1982-01-01

    The satellite detection of a nuclear explosion in the South Atlantic and Israel's destruction of a research reactor in Iraq make it essential to strengthen existing monitoring and enforcement programs to prevent proliferation. While there was no reliable evidence that either South Africa or Iraq was violating non-proliferation agreements, worst case scenarios can demonstrate to unfriendly countries that South Africa had diverted fuel to test a nuclear weapon and that Iraq is intending to produce weapons-grade plutonium 239. The situation can be improved by formulating better terms and conditions for internationalizing access to materials. Nuclear suppliers need to agree on terms that will assure their customers that contracts for civil programs will be honored. The International Atomic Energy Agency (IAEA), which includes both nuclear suppliers and customers, could achieve stronger agreements that take into account recent technological advances that will expand enrichment and reprocessing activities. 23 references, 1 figure

  4. Protected Plutonium Production by Transmutation of Minor Actinides for Peace and Sustainable Prosperity [O1] - Fundamentals of P{sup 3} Mechanism and Methodology Development for Plutonium Categorization

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Masaki [Research Laboratory for Nuclear Reactor, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 1528550 (Japan)

    2009-06-15

    'Protected Plutonium Production (P{sup 3})' has been proposed to enhance the proliferation resistance of plutonium by the transmutation of Minor Actinides (MAs). Doping the small amount of MAs such as {sup 237}Np or {sup 241}Am with large neutron capture cross-section into the uranium fuel to enhance the production of {sup 238}Pu or {sup 242}Pu, which have high spontaneous fission neutron source or also high decay heat to makes the process of the nuclear weapon manufacture and maintenance technologically difficult, can be effective for improving the isotopic barrier of proliferation resistance of the plutonium in thermal reactors. Super weapon grade plutonium could be produced in the blanket of a conventional FBR. However, by increasing the {sup 238}Pu or {sup 242}Pu ratio in the total plutonium by MAs doping into the fresh blanket, the protected plutonium with high proliferation-resistance can be bred. A new evaluation function, 'attractiveness', defined as a ratio of potential of fission yield to the technological difficulties of nuclear explosive device, has been proposed to evaluate the proliferation resistance of Pu based on the nuclear material property for Plutonium Categorization. In the conference, the fundamentals of P{sup 3} mechanism by transmutation of MA, and the comparison of the 'attractiveness' of the Pu produced in advanced reactors based on P{sup 3} mechanism and in the conventional reactors will be presented. Instead of the geological disposal or just their burning of MAs by the fission reaction, they should be treated as valuable fertile materials to enhance the proliferation resistance of plutonium produced in the thermal and fast breeder reactors for peace and sustainable prosperity in future. Acknowledgement: Some parts of this work have been supported by the Ministry of Education, Culture, Sports, Science and Technology in Japan. (authors)

  5. Stabilization and immobilization of military plutonium: A non-proliferation perspective

    Energy Technology Data Exchange (ETDEWEB)

    Leventhal, P. [Nuclear Control Institute, Washington, DC (United States)

    1996-05-01

    The Nuclear Control Institute welcomes this DOE-sponsored technical workshop on stabilization and immobilization of weapons plutonium (W Pu) because of the significant contribution it can make toward the ultimate non-proliferation objective of eliminating weapons-usable nuclear material, plutonium and highly enriched uranium (HEU), from world commerce. The risk of theft or diversion of these materials warrants concern, as only a few kilograms in the hands of terrorists or threshold states would give them the capability to build nuclear weapons. Military plutonium disposition questions cannot be addressed in isolation from civilian plutonium issues. The National Academy of Sciences has urged that {open_quotes}further steps should be taken to reduce the proliferation risks posed by all of the world`s plutonium stocks, military and civilian, separated and unseparated...{close_quotes}. This report discusses vitrification and a mixed oxide fuels option, and the effects of disposition choices on civilian plutonium fuel cycles.

  6. Plutonium Immobilization Project - Can-In-Canister Hardware Development/Selection

    International Nuclear Information System (INIS)

    Hamilton, L.

    2001-01-01

    The Plutonium Immobilization Project (PIP) is a program funded by the U.S. Department of Energy to develop technology to disposition excess weapons grade plutonium. This program introduces the ''Can-in-Canister'' (CIC) technology that immobilizes the plutonium by encapsulating it in ceramic forms (or pucks) and ultimately surrounding it with high-level waste glass to provide a deterrent to recovery. Since there are significant radiation, contamination and security concerns, the project team is developing unique technologies to remotely perform plutonium immobilization tasks. This paper covers the design, development and testing of the magazines (cylinders containing cans of ceramic pucks) and the rack that holds them in place inside the waste glass canister. Several magazine and rack concepts were evaluated to produce a design that gives the optimal balance between resistance to thermal degradation and facilitation of remote handling. This paper also reviews the effort to develop a jointed arm robot that can remotely load seven magazines into defined locations inside a stationary canister working only through the 4 inch (102 mm) diameter canister throat

  7. Plutonium Immobilization Project - Can-In-Canister Hardware Development/Selection

    International Nuclear Information System (INIS)

    Hamilton, L.

    2001-01-01

    The Plutonium Immobilization Project (PIP) is a program funded by the U.S. Department of Energy to develop technology to disposition excess weapons grade plutonium. This program introduces the ''Can-in-Canister'' (CIC) technology that immobilizes the plutonium by encapsulating it in ceramic forms (or pucks) and ultimately surrounding it with high-level waste glass to provide a deterrent to recovery. Since there are significant radiation, contamination and security concerns, the project team is developing unique technologies to remotely perform plutonium immobilization tasks. This paper covers the design, development and testing of the magazines (cylinders containing cans of ceramic pucks) and the rack that holds them in place inside the waste glass canister. Several magazine and rack concepts were evaluated to produce a design that gives the optimal balance between resistance to thermal degradation and facilitation of remote handling. This paper also reviews the effort to develop a join ted arm robot that can remotely load seven magazines into defined locations inside a stationary canister working only through the 4 inch (102 mm) diameter canister throat

  8. Weapons material and the commercial fuel cycle

    International Nuclear Information System (INIS)

    Steyn, J.J.

    1993-01-01

    In 1991, the United States and the former USSR had arsenals of ∼18,000 and 27,200 nuclear weapons, respectively. Approximately 10,000 of the US and 13,000 of the former USSR weapons were in the strategic category, and the remainder were tactical weapons. The dramatic changes in the political climate between the United States and the republics of the former USSR have resulted in the signing of the Strategic Arms Reduction Treaty (START I and II), agreements to substantially reduce nuclear weapons arsenals. Tactical weapons have already been collected in Russia, and strategic weapons are to be collected by the end of 1994. The major issues in accomplishing the treaty reductions appear to be funding, transport safety, storage capacity, and political issues between Russia and Ukraine because the latter seems to be using its weapons for political leverage on other matters. Collectively, the US and former USSR warhead stockpiles contain tremendous inventories of high-enriched uranium and weapons-grade plutonium which if converted to light water reactor fuel would equate to an enormous economic supply of natural uranium, conversion services, and enrichment separative work. The potential for this material entering the light water reactor fuel marketplace was enhanced in July 1992, when the two US industrial companies, Nuclear Fuel Services and Allied-Signal, announced that they had reached a preliminary agreement with the Russian ministry, Minatom, and the Russian Academay of Sciences to convert Russian high-enriched uranium to low-enriched uranium

  9. The use of plutonium

    International Nuclear Information System (INIS)

    Marshall, W.

    1980-01-01

    The use of plutonium as a vital energy source producing maximum economic benefit with minimum proliferation risks is discussed. Having considered the production of plutonium, several possible plutonium fuel cycle options are identified and the economic value to be attached to plutonium for each examined. It is shown how the use of plutonium in fast reactors gives an opportunity for a non-proliferation policy not available when plutonium is used only in thermal reactors. From the technical considerations reviewed concerning plutonium and fast reactors it is shown that an economic regime involving international trade in spent thermal reactor fuel is possible which benefits equally those countries with fast reactors and those without and also assists in avoiding the proliferation of nuclear weapons. (U.K.)

  10. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume I: Summary

    International Nuclear Information System (INIS)

    1994-11-01

    At the conclusion of the Cold War, the Department of Energy (DOE) stopped plutonium processing for nuclear weapons production. Facilities used for that purpose now hold significant quantities of plutonium in various forms. Unless properly stored and handled, plutonium can present environment, safety and health (ES ampersand H) hazards. Improperly stored plutonium poses a variety of hazards. When containers or packaging fail to fully protect plutonium metal from exposure to air, oxidation can occur and cause packaging failures and personnel contamination. Contamination can also result when plutonium solutions leak from bottles, tanks or piping. Plutonium in the form of scrap or residues generated by weapons production are often very corrosive, chemically reactive and difficult to contain. Buildings and equipment that are aging, poorly maintained or of obsolete design contribute to the overall problem. Inadvertent accumulations of plutonium of any form in sufficient quantities within facilities can result in nuclear criticality events that could emit large amounts of radiation locally. Contamination events and precursors of criticality events are causing safety and health concerns for workers at the Department's plutonium facilities. Contamination events also potentially threaten the public and the surrounding environment

  11. Political influences in plutonium recycling

    International Nuclear Information System (INIS)

    Patak, H.N.

    1982-01-01

    The history of plutonium safeguards is one of political error and misunderstandings, as well as a lack of technical knowledge. Although there was widespread support for preventing the proliferation of nuclear explosives, with over 100 nations signing the Nonproliferation Treaty of 1969, India's 1974 nuclear test brought renewed political activity to prevent another such occurrence. Opposition has been directed only at how to pursue this goal, but the status of four major experiments aimed at minimizing weapons proliferation is one of failure, intensified by a weakening of the International Atomic Energy Agency (IAEA). If the link between plutonium power and weapons production can be broken through on-site reprocessing, the situation could improve. One course would be for the nuclear power industry to adopt its own system for safe guarding plutonium

  12. Plutonium in the Arctic Marine Environment — A Short Review

    Directory of Open Access Journals (Sweden)

    Lindis Skipperud

    2004-01-01

    Full Text Available Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which has resulted in a relatively uniform, underlying global distribution of plutonium. Previous studies of plutonium in the Kara Sea have shown that, at certain sites, other releases have given rise to enhanced local concentrations. Since different plutonium sources are characterised by distinctive plutonium-isotope ratios, evidence of a localised influence can be supported by clear perturbations in the plutonium-isotope ratio fingerprints as compared to the known ratio in global fallout. In Kara Sea sites, such perturbations have been observed as a result of underwater weapons tests at Chernaya Bay, dumped radioactive waste in Novaya Zemlya, and terrestrial runoff from the Ob and Yenisey Rivers. Measurement of the plutonium-isotope ratios offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers.

  13. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    International Nuclear Information System (INIS)

    Cowell, B.S.; Fontana, M.H.; Krakowski, R.A.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Sailor, W.C.; Williamson, M.A.

    1995-01-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R ampersand D plan for ABC are described on the bases of the ''strawman'' or ''point-of-departure'' plant layout that resulted from this study

  14. Reconversion of nuclear weapons

    CERN Document Server

    Kapitza, Sergei P

    1992-01-01

    The nuclear predicament or nuclear option. Synopsis of three lectures : 1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separration of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?

  15. Nuclear power and nuclear weapon proliferation

    International Nuclear Information System (INIS)

    Apold, A.

    1978-01-01

    The theme of Dr. Marshall's lecture was that it is, from the viewpoint of prevention of proliferation of nuclear weapons,preferable to use plutonium as a fuel in FBR reactors rather than store it in what, in effect, would be plutonium mines. The true threat of proliferation lies in uranium enrichment. The FBR reactor is misunderstood and the US policy is not against breeders as such. Safeguards against the misuse of plutonium by leaving a residue of radioactivity after reprocessing is quite feasible, despite certain practical problems and extra costs. Weapon proliferation is subject to political objectives and intentions. Definite proposals are, (a) a limited number of reprocessing centres, (b) an accelerated development of FBR reactors, (c) a new FBR fuel cycle, (d) stop storage of spent thermal reactor fuel, (e) reinforced safeguards. (JIW)

  16. Characteristics of plutonium and americium contamination at the former U.K. atomic weapons test ranges at Maralinga and Emu

    International Nuclear Information System (INIS)

    Burns, P.A.; Cooper, M.B.; Lokan, K.H.; Wilks, M.J.; Williams, G.A.

    1995-01-01

    Physico-chemical studies on environmental plutonium are described, which provide data integral to an assessment of dose for the inhalation of artificial actinides by Australian Aborigines living a semi-traditional lifestyle at Maralinga and Emu, sites of U.K. atomic weapons tests between 1953 and 1963. The most significant area, from a radiological perspective, is the area contaminated by plutonium in a series of ''one point'' safety trials in which large quantities of plutonium were dispersed explosively at a location known as Taranaki. The activity distribution of plutonium and americium with particle size is quite different from the mass distribution, as a considerably higher proportion of the activity is contained in the finer (inhalable) fraction than of the mass. Except in areas which were disturbed through ploughing during a cleanup in 1967, most the activity remains in the top 1 cm of the surface. Much of the activity is in particulate form, even at distances > 20 km from the firing sites, and discrete particles have been located even at distances beyond 100 km. Data are presented which permit the assessment of annual committed doses through the inhalation pathway, for Aborigines living a semi-traditional lifestyle in the areas affected by the Taranaki firings in particular. (author)

  17. CANDU reactors with reactor grade plutonium/thorium carbide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Suemer [Atilim Univ., Ankara (Turkey). Faculty of Engineering; Khan, Mohammed Javed; Ahmed, Rizwan [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); Gazi Univ., Ankara (Turkey). Faculty of Technology

    2011-08-15

    Reactor grade (RG) plutonium, accumulated as nuclear waste of commercial reactors can be re-utilized in CANDU reactors. TRISO type fuel can withstand very high fuel burn ups. On the other hand, carbide fuel would have higher neutronic and thermal performance than oxide fuel. In the present work, RG-PuC/ThC TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 60%. The fuel compacts conform to the dimensions of sintered CANDU fuel compacts are inserted in 37 zircolay rods to build the fuel zone of a bundle. Investigations have been conducted on a conventional CANDU reactor based on GENTILLYII design with 380 fuel bundles in the core. Three mixed fuel composition have been selected for numerical calculation; (1) 10% RG-PuC + 90% ThC; (2) 30% RG-PuC + 70% ThC; (3) 50% RG-PuC + 50% ThC. Initial reactor criticality values for the modes (1), (2) and (3) are calculated as k{sub {infinity}}{sub ,0} = 1.4848, 1.5756 and 1.627, respectively. Corresponding operation lifetimes are {proportional_to} 2.7, 8.4, and 15 years and with burn ups of {proportional_to} 72 000, 222 000 and 366 000 MW.d/tonne, respectively. Higher initial plutonium charge leads to higher burn ups and longer operation periods. In the course of reactor operation, most of the plutonium will be incinerated. At the end of life, remnants of plutonium isotopes would survive; and few amounts of uranium, americium and curium isotopes would be produced. (orig.)

  18. Association of plutonium with sediments from the Ob and Yenisey Rivers and Estuaries

    International Nuclear Information System (INIS)

    Skipperud, Lindis; Brown, Justin; Fifield, L. Keith; Oughton, Deborah H.; Salbu, Brit

    2009-01-01

    The present study applied sequential extraction techniques to investigate the binding and mobility of plutonium (Pu) in sediments from the rivers and estuaries of the Ob and Yenisey. As a study site, the Ob and Yenisey are particularly interesting as both rivers have weapons-grade Pu sources in their catchment areas, including the Russian Pu production and reprocessing plants at Mayak, Tomsk-7 and Krashnoyarsk, and the Semipalantinsk nuclear weapons testing site in Kazakhstan. Plutonium activity and 240 Pu/ 239 Pu ratios were determined using accelerator mass spectrometry (AMS). Sequential extractions showed that between 47 and 80% of the Pu in Yenisey River sediments and 35-53% of the Pu in soils around the Techa River are mobilized with weak oxidising agents, which can indicate that Pu is bound to organic material. In contrast, Pu in Ob and Yenisey Estuarine sediments was more strongly bound, with 60-100% being found in the HNO 3 -extractable fraction. This change in speciation could reflect either that Pu bound to organic material in the Techa and Yenisey River sediments becomes more fixed to the sediments with time, or that organic-bound Pu is mobilized and released to the water when the sediments encounter the more saline water of the Ob and Yenisey estuaries. In general, 240 Pu/ 239 Pu ratios were relatively consistent between different extraction fractions, although, in whole sediments, an increase in ratio was observed with distance from the source. This reflects the increased influence of weapon fallout from catchment runoff within the river systems, as compared to the weapons-grade sources close to the production and reprocessing plants. Knowledge of Pu speciation in the Ob and Yenisey Rivers, and the processes controlling its behaviour in estuarine systems, can improve predictions of its transfer and subsequent environmental impact to Arctic Seas

  19. 75 FR 41850 - Amended Notice of Intent to Modify the Scope of the Surplus Plutonium Disposition Supplemental...

    Science.gov (United States)

    2010-07-19

    ... and packaging capabilities, including direct metal oxidation, to fulfill plutonium storage..., disassemble nuclear weapons pits (a weapons component) and convert the plutonium metal to an oxide form for fabrication into mixed uranium-plutonium oxide (MOX) reactor fuel in the Mixed Oxide Fuel Fabrication Facility...

  20. Plutonium contents of field crops in the southeastern US

    International Nuclear Information System (INIS)

    Adriano, D.C.; Corey, J.C.; Dahlman, R.C.

    1980-01-01

    Agricultural crops were grown at the US Department of Energy Savannah River Plant (SRP) and at Oak Ridge National Laboratory (ORNL) on soils at field sites containing plutonium concentrations above background levels from nuclear weapon tests. Major US grain crops were grown adjacent to a reprocessing facility at SRP, which releases low chronic levels of plutonium through an emission stack. Major vegetable crops were grown at the ORNL White Oak Creek floodplain, which received plutonium effluent wastes in 1944 from the Manhattan Project weapon development. In general, the concentration ratios of vegetative parts of crops at SRP were approximately one order of magnitude higher than those at ORNL, which indicates the influence of aerial deposition of plutonium at the SRP site

  1. Surplus plutonium disposition draft environmental impact statement. Volume 1, Part A

    International Nuclear Information System (INIS)

    1998-07-01

    On May 22, 1997, DOE published a Notice of Intent (NOI) in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS). DOE's disposition strategy allows for both the immobilization of surplus plutonium and its use as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of the immobilized plutonium and MOX fuel (as spent nuclear fuel) in a geologic repository. The Surplus Plutonium Disposition Environmental Impact Statement analyzes alternatives that would use the immobilization approach (for some of the surplus plutonium) and the MOX fuel approach (for some of the surplus plutonium); alternatives that would immobilize all of the surplus plutonium; and the No Action Alternative. The alternatives include three disposition facilities that would be designed so that they could collectively accomplish disposition of up to 50 metric tons (55 tons) of surplus plutonium over their operating lives: (1) the pit disassembly and conversion facility would disassemble pits (a weapons component) and convert the recovered plutonium, as well as plutonium metal from other sources, into plutonium dioxide suitable for disposition; (2) the immobilization facility would include a collocated capability for converting nonpit plutonium materials into plutonium dioxide suitable for immobilization and would be located at either Hanford or SRS. DOE has identified SRS as the preferred site for an immobilization facility; (3) the MOX fuel fabrication facility would fabricate plutonium dioxide into MOX fuel. This volume includes background information; purpose of and need for the proposed action; alternatives for disposition of surplus weapons useable plutonium; and

  2. Preliminary study on weapon grade uranium utilization in molten salt reactor miniFUJI

    International Nuclear Information System (INIS)

    Aji, Indarta Kuncoro; Waris, A.

    2014-01-01

    Preliminary study on weapon grade uranium utilization in 25MWth and 50MWth of miniFUJI MSR (molten salt reactor) has been carried out. In this study, a very high enriched uranium that we called weapon grade uranium has been employed in UF 4 composition. The 235 U enrichment is 90 - 95 %. The results show that the 25MWth miniFUJI MSR can get its criticality condition for 1.56 %, 1.76%, and 1.96% of UF 4 with 235 U enrichment of at least 93%, 90%, and 90%, respectively. In contrast, the 50 MWth miniFUJI reactor can be critical for 1.96% of UF 4 with 235 U enrichment of at smallest amount 95%. The neutron spectra are almost similar for each power output

  3. Plutonium Vulnerability Management Plan

    International Nuclear Information System (INIS)

    1995-03-01

    This Plutonium Vulnerability Management Plan describes the Department of Energy's response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department's Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B

  4. Joint U.S./Russian plutonium disposition study: Nonproliferation issues

    International Nuclear Information System (INIS)

    Jaeger, C.; Erkkila, B.; Fearey, B.; Ehinger, M.; McAllister, S.; Chitaykin, V.; Ptashny, V.

    1996-01-01

    In an effort to establish joint activities in the disposition of fissile materials from nuclear materials, the US and Russia agreed to conduct joint work to develop consistent comparisons of various alternatives for the disposition of weapons-grade plutonium. Joint working groups were established for the analysis of alternatives for plutonium management for water reactors, fast reactors, storage, geological formations, immobilization and stabilization of solutions and other forms. In addition cross-cutting working groups were established for economic analysis and nonproliferation (NP). This paper reviews the activities of the NP working group in support of these studies. The NP working group provided integrated support in the area of nuclear NP to the other US/Russian Study teams. It involved both domestic safeguards and security and international safeguards. The analysis of NP involved consideration of the resistance to theft or diversion and resistance to retrieval, extraction or reuse

  5. Disposition of plutonium as non-fertile fuel for water reactors

    International Nuclear Information System (INIS)

    Chidester, K.; Eaton, S.L.; Ramsey, K.B.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The original intent of this project was to investigate the possible use of a new fuel form as a means of dispositioning the declared surplus inventory of weapons-grade plutonium. The focus soon changed, however, to managing the larger and rapidly growing inventories of plutonium arising in commercial spent nuclear fuel through implementation of a new fuel form in existing nuclear reactors. LANL embarked on a parallel path effort to study fuel performance using advanced physics codes, while also demonstrating the ability to fabricate a new fuel form using standard processes in LANL's Plutonium Facility. An evolutionary fuel form was also examined which could provide enhanced performance over standard fuel forms, but which could be implemented in a much shorter time frame than a completely new fuel form. Recent efforts have focused on implementation of results into global energy models and development of follow-on funding to continue this research

  6. Preliminary study on weapon grade uranium utilization in molten salt reactor miniFUJI

    Energy Technology Data Exchange (ETDEWEB)

    Aji, Indarta Kuncoro [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia); Waris, A., E-mail: awaris@fi.itb.ac.id [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa No. 10 Bandung 40132 (Indonesia)

    2014-09-30

    Preliminary study on weapon grade uranium utilization in 25MWth and 50MWth of miniFUJI MSR (molten salt reactor) has been carried out. In this study, a very high enriched uranium that we called weapon grade uranium has been employed in UF{sub 4} composition. The {sup 235}U enrichment is 90 - 95 %. The results show that the 25MWth miniFUJI MSR can get its criticality condition for 1.56 %, 1.76%, and 1.96% of UF{sub 4} with {sup 235}U enrichment of at least 93%, 90%, and 90%, respectively. In contrast, the 50 MWth miniFUJI reactor can be critical for 1.96% of UF{sub 4} with {sup 235}U enrichment of at smallest amount 95%. The neutron spectra are almost similar for each power output.

  7. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  8. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    International Nuclear Information System (INIS)

    1994-01-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ''Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs

  9. Surplus plutonium disposition draft environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1998-07-01

    On May 22, 1997, DOE published a Notice of Intent (NOI) in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS). DOE's disposition strategy allows for both the immobilization of surplus plutonium and its use as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of the immobilized plutonium and MOX fuel (as spent nuclear fuel) in a geologic repository. The Surplus Plutonium Disposition Environmental Impact Statement analyzes alternatives that would use the immobilization approach (for some of the surplus plutonium) and the MOX fuel approach (for some of the surplus plutonium); alternatives that would immobilize all of the surplus plutonium; and the No Action Alternative. The alternatives include three disposition facilities that would be designed so that they could collectively accomplish disposition of up to 50 metric tons (55 tons) of surplus plutonium over their operating lives: (1) the pit disassembly and conversion facility would disassemble pits (a weapons component) and convert the recovered plutonium, as well as plutonium metal from other sources, into plutonium dioxide suitable for disposition; (2) the immobilization facility would include a collocated capability for converting nonpit plutonium materials into plutonium dioxide suitable for immobilization and would be located at either Hanford or SRS. DOE has identified SRS as the preferred site for an immobilization facility; (3) the MOX fuel fabrication facility would fabricate plutonium dioxide into MOX fuel

  10. Metal plutonium conversion to components of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Subbotin, V.G.; Panov, A.V.; Mashirev, V.P.

    2000-01-01

    Capabilities of different technologies for plutonium conversion to the fuel components of nuclear reactors are studied. Advantages and shortcomings of aqueous and nonaqueous methods of plutonium treatment are shown. Proposals to combine and coordinate efforts of world scientific and technological community in solving problems concerning plutonium of energetic and weapon origin treatment were put forward. (authors)

  11. Metal plutonium conversion to components of nuclear reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, V.G.; Panov, A.V. [Russian Federal Nuclear Center, ALL-Russian Science and Research, Institute of Technical Physics, Snezhinsk (Russian Federation); Mashirev, V.P. [ALL-Russian Science and Research Institute of Chemical Technology, Moscow (Russian Federation)

    2000-07-01

    Capabilities of different technologies for plutonium conversion to the fuel components of nuclear reactors are studied. Advantages and shortcomings of aqueous and nonaqueous methods of plutonium treatment are shown. Proposals to combine and coordinate efforts of world scientific and technological community in solving problems concerning plutonium of energetic and weapon origin treatment were put forward. (authors)

  12. Thorium-Based Fuel Cycles in the Modular High Temperature Reactor

    Institute of Scientific and Technical Information of China (English)

    CHANG Hong; YANG Yongwei; JING Xingqing; XU Yunlin

    2006-01-01

    Large stockpiles of civil-grade as well as weapons-grade plutonium have been accumulated in the world from nuclear power or other programs of different countries. One alternative for the management of the plutonium is to incinerate it in the high temperature reactor (HTR). The thorium-based fuel cycle was studied in the modular HTR to reduce weapons-grade plutonium stockpiles, while producing no additional plutonium or other transuranic elements. Three thorium-uranium fuel cycles were also investigated. The thorium absorption cross sections of the resolved and unresolved resonances were generated using the ZUT-DGL code based on existing resonance data. The equilibrium core of the modular HTR was calculated and analyzed by means of the code VSOP'94. The results show that the modular HTR can incinerate most of the initially loaded plutonium amounting to about 95.3% net 239Pu for weapons-grade plutonium and can effectively utilize the uranium and thorium in the thorium-uranium fuel cycles.

  13. A preliminary analysis of the reactor-based plutonium disposition alternative deployment schedules

    International Nuclear Information System (INIS)

    Zurn, R.M.

    1997-09-01

    This paper discusses the preliminary analysis of the implementation schedules of the reactor-based plutonium disposition alternatives. These schedule analyses are a part of a larger process to examine the nine decision criteria used to determine the most appropriate method of disposing of U.S. surplus weapons plutonium. The preliminary analysis indicates that the mission durations for the reactor-based alternatives range from eleven years to eighteen years and the initial mission fuel assemblies containing surplus weapons-usable plutonium could be loaded into the reactors between nine and fourteen years after the Record of Decision

  14. Innovative inert matrix-thoria fuels for in-reactor plutonium disposition

    International Nuclear Information System (INIS)

    Vettraino, F.; Padovani, E.; Luzzi, L.; Lombardi, C.; Thoresen, H.; Oberlander, B.; Iversen, G.; Espeland, M.

    1999-01-01

    The present leading option for plutonium disposition, either civilian or weapons Pu, is to burn it in LWRs after having converted it to MOX fuel. However, among the possible types of fuel which can be envisaged to burn plutonium in LWRs, innovative U-free fuels such as inert matrix and thoria fuel are novel concept in view of a more effective and ultimate solution from both security and safety standpoint. Inert matrix fuel is an non-fertile oxide fuel consisting of PuO 2 , either weapon-grade or reactor-grade, diluted in inert oxides such as for ex. stabilized ZrO 2 or MgAl 2 O 4 , its primary advantage consisting in no-production of new plutonium during irradiation, because it does not contain uranium (U-free fuel) whose U-238 isotope is the departure nuclide for breeding Pu-239. Some thoria addition in the matrix (thoria-doped fuel) may be required for coping with reactivity feedback needs. The full thoria-plutonia fuel though still a U-free variant cannot be defined non-fertile any more because the U-233 generation. The advantage of such a fuel option consisting basically on a remarkable already existing technological background and a potential acceleration in getting rid of the Pu stocks. All U-free fuels are envisaged to be operated under a once-through cycle scheme being the spent fuel outlooked to be sent directly to the final disposal in deep geological formations without requiring any further reprocessing treatment, thanks to the quality-poor residual Pu and a very high chemical stability under the current fuel reprocessing techniques. Besides, inert matrix-thoria fuel technology is suitable for in-reactor MAs transmutation. An additional interest in Th containing fuel refers to applicability in ADS, the innovative accelerated driven subcritical systems, specifically aimed at plutonium, minor actnides and long lived fission products transmutation in a Th-fuel cycle scheme which enables to avoid generations of new TRUs. A first common irradiation experiment

  15. Plutonium Consumption Program, CANDU Reactor Project final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-31

    DOE is investigating methods for long term dispositioning of weapons grade plutonium. One such method would be to utilize the plutonium in Mixed OXide (MOX) fuel assemblies in existing CANDU reactors. CANDU (Canadian Deuterium Uranium) reactors are designed, licensed, built, and supported by Atomic Energy of Canada Limited (AECL), and currently use natural uranium oxide as fuel. The MOX spent fuel assemblies removed from the reactor would be similar to the spent fuel currently produced using natural uranium fuel, thus rendering the plutonium as unattractive as that in the stockpiles of commercial spent fuel. This report presents the results of a study sponsored by the DOE for dispositioning the plutonium using CANDU technology. Ontario Hydro`s Bruce A was used as reference. The fuel design study defined the optimum parameters to disposition 50 tons of Pu in 25 years (or 100 tons). Two alternate fuel designs were studied. Safeguards, security, environment, safety, health, economics, etc. were considered. Options for complete destruction of the Pu were also studied briefly; CANDU has a superior ability for this. Alternative deployment options were explored and the potential impact on Pu dispositioning in the former Soviet Union was studied. An integrated system can be ready to begin Pu consumption in 4 years, with no changes required to the reactors other than for safe, secure storage of new fuel.

  16. Plutonium Consumption Program, CANDU Reactor Project final report

    International Nuclear Information System (INIS)

    1994-01-01

    DOE is investigating methods for long term dispositioning of weapons grade plutonium. One such method would be to utilize the plutonium in Mixed OXide (MOX) fuel assemblies in existing CANDU reactors. CANDU (Canadian Deuterium Uranium) reactors are designed, licensed, built, and supported by Atomic Energy of Canada Limited (AECL), and currently use natural uranium oxide as fuel. The MOX spent fuel assemblies removed from the reactor would be similar to the spent fuel currently produced using natural uranium fuel, thus rendering the plutonium as unattractive as that in the stockpiles of commercial spent fuel. This report presents the results of a study sponsored by the DOE for dispositioning the plutonium using CANDU technology. Ontario Hydro's Bruce A was used as reference. The fuel design study defined the optimum parameters to disposition 50 tons of Pu in 25 years (or 100 tons). Two alternate fuel designs were studied. Safeguards, security, environment, safety, health, economics, etc. were considered. Options for complete destruction of the Pu were also studied briefly; CANDU has a superior ability for this. Alternative deployment options were explored and the potential impact on Pu dispositioning in the former Soviet Union was studied. An integrated system can be ready to begin Pu consumption in 4 years, with no changes required to the reactors other than for safe, secure storage of new fuel

  17. Prospective studies of HTR fuel cycles involving plutonium

    International Nuclear Information System (INIS)

    Bonin, B.; Greneche, D.; Carre, F.; Damian, F.; Doriath, J.Y.

    2002-01-01

    High Temperature Gas Cooled reactors (HTRs) are able to accommodate a wide variety of mixtures of fissile and fertile materials without any significant modification of the core design. This flexibility is due to an uncoupling between the parameters of cooling geometry, and the parameters which characterize neutronic optimisation (moderation ratio or heavy nuclide concentration and distribution). Among other advantageous features, an HTR core has a better neutron economy than a LWR because there is much less parasitic capture in the moderator (capture cross section of graphite is 100 times less than the one of water) and in internal structures. Moreover, thanks to the high resistance of the coated particles, HTR fuels are able to reach very high burn-ups, far beyond the possibilities offered by other fuels (except the special case of molten salt reactors). These features make HTRs especially interesting for closing the nuclear fuel cycle and stabilizing the plutonium inventory. A large number of fuel cycle studies are already available today, on 3 main categories of fuel cycles involving HTRs : i) High enriched uranium cycle, based on thorium utilization as a fertile material and HEU as a fissile material; ii) Low enriched uranium cycle, where only LEU is used (from 5% to 12%); iii) Plutonium cycle based on the utilization of plutonium only as a fissile material, with (or without) fertile materials. Plutonium consumption at high burnups in HTRs has already been tested with encouraging results under the DRAGON project and at Peach Bottom. To maximize plutonium consumption, recent core studies have also been performed on plutonium HTR cores, with special emphasis on weapon-grade plutonium consumption. In the following, we complete the picture by a core study for a HTR burning reactor-grade plutonium. Limits in burnup due to core neutronics are investigated for this type of fuel. With these limits in mind, we study in some detail the Pu cycle in the special case of a

  18. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade plutonium dioxide powders and pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade plutonium dioxide powders and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Plutonium Sample Handling 8 to 10 Plutonium by Controlled-Potential Coulometry Plutonium by Ceric Sulfate Titration Plutonium by Amperometric Titration with Iron(II) Plutonium by Diode Array Spectrophotometry Nitrogen by Distillation Spectrophotometry Using Nessler Reagent 11 to 18 Carbon (Total) by Direct Combustion–Thermal Conductivity 19 to 30 Total Chlorine and Fluorine by Pyrohydrolysis 31 to 38 Sulfur by Distillation Spectrophotometry 39 to 47 Plutonium Isotopic Analysis by Mass Spectrometry Rare Earth Elements by Spectroscopy 48 to 55 Trace Elements by Carrier–Distillation Spectroscopy 56 to 63 Impurities by ICP-AES Impurity Elements by Spark-Source Mass Spectrography 64 to 70 Moisture by the Coulomet...

  19. Flexible plutonium management with IFR technology

    International Nuclear Information System (INIS)

    Hannum, W.H.; Lineberry, M.J.

    1993-01-01

    From the earliest days of the development of peaceful nuclear power, it has been recognized that efficient utilization of nuclear fuel resources requires a closed fuel cycle (recycle). With a closed cycle, essentially all the energy content of mined uranium can be used, whereas a once-through light water reactor (LWR) cycle uses only ∼0.5%. Since weapons programs have used the PUREX process to extract plutonium, it has further been assumed that this is the appropriate technology for closing the uranium fuel cycle. In the United States, these assumptions were put into question by concerns over commerce in separated plutonium and the threat of diversion of this material for weapons use

  20. Plutonium helps probe protein, superconductor

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Scientists are finding that plutonium can be a useful research tool that may help them answer important questions in fields as diverse as biochemistry and solid-state physics. This paper reports that U.S. research involving plutonium is confined to the Department of Energy's national laboratories and centers around nuclear weapons technology, waste cleanup and disposal, and health effects. But at Los Alamos National Laboratory, scientists also are using plutonium to probe the biochemical behavior of calmodulin, a key calcium-binding protein that mediates calcium-regulated processes in biological systems. At Argonne National Laboratory, another team is trying to learn how a superconductor's properties are affected by the 5f electrons of an actinide like plutonium

  1. Surplus plutonium disposition environmental impact statement. Public scoping meeting: Comment summary report

    International Nuclear Information System (INIS)

    1997-09-01

    The Department of Energy (DOE) issued a Record of Decision for the Storage and Disposition of Weapons-Usable Fissile Materials Programmatic Environmental Impact Statement (S ampersand D PEIS) (DOE/EIS-0229) on January 14, 1997. In that Record of Decision, DOE stated its decision to pursue a strategy for plutonium disposition that allows for immobilization of surplus weapons plutonium in glass or ceramic forms and irradiating the surplus plutonium as mixed oxide (MOX) fuel in existing reactors, while reserving the option to immobilize all the surplus weapons plutonium. The Department also decided that the extent to which either or both of these disposition approaches would ultimately be deployed would depend in part upon future National Environmental Policy Act (NEPA) review for surplus weapons plutonium disposition. On May 22, 1997, DOE published in the Federal Register (62 FR 28013) a Notice of Intent to prepare an environmental impact statement (tiered from the S ampersand D PEIS) on the disposition of United States' surplus weapons-usable plutonium. The purpose of the Notice of Intent was to describe DOE's proposed action, to solicit public input, and to announce the schedule for the public scoping meetings. During the public scoping period (May 22 - July 22, 1997), the public was invited to submit written comments by U.S. mail, fax, or through the Office of Fissile Materials Disposition's Website, as well as to provide oral comments by voicemail or by participating in public scoping meetings. Written and oral comments on the scope of the SPD EIS that were submitted during the formal comment period have been uniquely identified and have become part of the official record. This is the case whether the comments were submitted via U.S. mail, fax, website, toll-free telephone number, or through participation at a public scoping meeting

  2. Plutonium safe handling

    International Nuclear Information System (INIS)

    Tvehlov, Yu.

    2000-01-01

    The abstract, prepared on the basis of materials of the IAEA new leadership on the plutonium safe handling and its storage (the publication no. 9 in the Safety Reports Series), aimed at presenting internationally acknowledged criteria on the radiation danger evaluation and summarizing the experience in the safe management of great quantities of plutonium, accumulated in the nuclear states, is presented. The data on the weapon-class and civil plutonium, the degree of its danger, the measures for provision of its safety, including the data on accident radiation consequences with the fission number 10 18 , are presented. The recommendations, making it possible to eliminate the super- criticality danger, as well as ignition and explosion, to maintain the tightness of the facility, aimed at excluding the radioactive contamination and the possibility of internal irradiation, to provide for the plutonium security, physical protection and to reduce irradiation are given [ru

  3. Influence of cow urine in the bioavailability of plutonium oxide particles in Palomares soils

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, A.; Aragon, A.; De La Cruz, B.; Gutierrez, J. [CIEMAT, DIAE, Madrid (Spain)

    2004-07-01

    The nuclear accident that occurred in Palomares in 1966 caused the release of plutonium weapon grade particles into a Mediterranean ecosystem, and consequently, urban and farming areas were contaminated with this material. Several studies focussed on the characterization and behaviour of trans-uranides have been carried out in the area. In this work, the solubility evolution of plutonium is analysed for a period of more than 30 years, as well as the influence that the incorporation of cow urine into organic fertilizers has on the solubility of the mentioned element. The average value of the plutonium solubility in water determined in five samples was 0.008% in 1986. However, determinations carried out in samples taken in 1999 and 2000 indicated an increase of the plutonium solubility of 22 to 96 times higher. In order to check the influence of organic fertilizers on the solubility of plutonium, a solubility test was carried out using cow urine as extracting solution. The results show that the solubility of plutonium can reach a value equal to 14%, which is similar to the one obtained with sodium pyrophosphate acting as extracting solution. Thus, these results are a clear warning of what might happen if organic fertilizers are used in transuranic-contaminated soils. (author)

  4. Influence of cow urine in the bioavailability of plutonium oxide particles in Palomares soils

    International Nuclear Information System (INIS)

    Espinosa, A.; Aragon, A.; De La Cruz, B.; Gutierrez, J.

    2004-01-01

    The nuclear accident that occurred in Palomares in 1966 caused the release of plutonium weapon grade particles into a Mediterranean ecosystem, and consequently, urban and farming areas were contaminated with this material. Several studies focussed on the characterization and behaviour of trans-uranides have been carried out in the area. In this work, the solubility evolution of plutonium is analysed for a period of more than 30 years, as well as the influence that the incorporation of cow urine into organic fertilizers has on the solubility of the mentioned element. The average value of the plutonium solubility in water determined in five samples was 0.008% in 1986. However, determinations carried out in samples taken in 1999 and 2000 indicated an increase of the plutonium solubility of 22 to 96 times higher. In order to check the influence of organic fertilizers on the solubility of plutonium, a solubility test was carried out using cow urine as extracting solution. The results show that the solubility of plutonium can reach a value equal to 14%, which is similar to the one obtained with sodium pyrophosphate acting as extracting solution. Thus, these results are a clear warning of what might happen if organic fertilizers are used in transuranic-contaminated soils. (author)

  5. MOX fuel: a contribution to disarmament. U.S. utilities' response to DOE's plutonium disposition decision

    International Nuclear Information System (INIS)

    Wallace, M.

    1997-01-01

    The author is chairman of the Nuclear Energy Institute Plutonium Disposition Working Group, which includes 11 nuclear utilities, including Ontario Hydro, and all the European fabricators of mixed oxide (MOX) fuel. A feasibility study is going on, to see if Russian or other weapons grade plutonium made into MOX fuel can be used in US, Canadian, or other power reactors. The US nuclear power industry is going through a period of change, and its primary responsibility must be the safe, reliable and economic operation of its plants. There is no current US MOX capacity, but the Europeans have have manufactured and burned over 400 tons of MOX fuel since 1963. Canada may be involved, initially through a pilot-scale experiment in NRU reactor

  6. Safeguarding nuclear weapon: Usable materials in Russia

    International Nuclear Information System (INIS)

    Cochran, T.

    1998-01-01

    Both the United States and Russia are retaining as strategic reserves more plutonium and HEU for potential reuse as weapons, than is legitimately needed. Both have engaged in discussions and have programs in various stages of development to dispose of excess plutonium and HEU. These fissile material disposition programs will take decades to complete. In the interim there will be, as there is now, hundreds of tons of separated weapon-usable fissile material stored in tens of thousands of transportable canisters, each containing from a few to several tons of kgs of weapon-usable fissile material. This material must be secured against theft and unauthorized use. To have high confidence that the material is secure, one must establish criteria against which the adequacy of the protective systems can be judged. For example, one finds such criteria in US Nuclear Regulatory Commission (USNRC) regulations for the protection of special nuclear materials

  7. Report by a special panel of the American Nuclear Society: Protection and management of plutonium

    International Nuclear Information System (INIS)

    Bengelsdorf, H.

    1996-01-01

    The American Nuclear Society (ANS) established an independent and prestigious panel several months ago to take the matter up where the US National Academy of Science (NAS) left off. The challenge was to look at the broader issue of what to do with civil plutonium, as well as excess weapons material. In terms of approach, the report focused on several short- and long-term issues. The short-term focus was on the disposition of excess weapons plutonium, while the longer-range issue concerned the disposition of the plutonium being produced in the civil nuclear fuel cycle. For the short term, the ANS panel strongly endorsed the concept that all plutonium scheduled for release from the US and Russian weapons stocks should be converted to a form that is intensively radioactive in order to protect the plutonium from theft of seizure (the spent fuel standard). However, since the conversion will at best take several years to complete, the panel has concluded that immediate emphasis should be placed on the assurance that all unconverted materials are protected as securely as when they were part of the active weapon stockpiles. More importantly, the panel also recommended prompt implementation of the so-called reactor option for disposing of surplus US and Russian weapons plutonium. The longer-term issues covered by the panel were those posed by the growing stocks of both separated plutonium and spent fuel generated in the world's civil nuclear power programs. These issues included what fuel cycle policies should be prudently pursued in light of proliferation risks and likely future energy needs, what steps should be taken in regard to the increase in the demand for nuclear power in the future, and how civil plutonium in its various forms should be protected and managed to minimize proliferation. Overall, the panel concluded that plutonium is an energy resource that should be used and not a waste material to be disposed of

  8. Fuel Cycle Impacts of Uranium-Plutonium Co-extraction

    International Nuclear Information System (INIS)

    Taiwo, Temitope; Szakaly, Frank; Kim, Taek-Kyum; Hill, Robert

    2008-01-01

    A systematic investigation of the impacts of uranium and plutonium co-extraction during fuel separations on reactor performance and fuel cycle has been performed. Proliferation indicators, critical mass and radiation source levels of the separation products or fabricated fuel, were also evaluated. Using LWR-spent-uranium-based MOX fuel instead of natural-uranium-based fuel in a PWR MOX core requires a higher initial plutonium content (∼1%), and results in higher Np-237 content (factor of 5) in the spent fuel, and less consumption of Pu-238 (20%) and Am-241 (14%), indicating a reduction in the effective repository space utilization. Additionally, minor actinides continue to accumulate in the fuel cycle, and thus a separate solution is required for them. Differences were found to be quite smaller (∼0.4% in initial transuranics) between the equilibrium cycles of advanced fast reactor cores using spent and depleted uranium for make-up, in additional to transuranics. The critical masses of the co-extraction products were found to be higher than for weapons-grade plutonium (WG-Pu) and the decay heat and radiation sources of the materials (products) were also found to be generally higher than for WG-Pu in the transuranics content range of 10% to 100% in the heavy-metal. (authors)

  9. Tracing discharges of plutonium and technetium from nuclear processing plants by ultra-sensitive accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Fifield, L.K.; Hausladen, P.A.; Cresswell, R.G.; Di Tada, M.L.; Day, J.P.; Carling, R.S.; Oughton, D.H.

    1999-01-01

    Historical discharges of plutonium from the Russian nuclear processing plant at Mayak in the Urals have been traced in sediments, soils and river water using ultra-sensitive detection of plutonium isotopes by accelerator mass spectrometry (AMS). Significant advantages of AMS over other techniques are its very high sensitivity. which is presently ∼10 6 atoms (1 μBq), and its ability to determine the 240 Pu/ 239 Pu ratio. The latter is a sensitive indicator of the source of the plutonium, being very low (1-2%) for weapons grade plutonium, and higher (∼ 20%) for plutonium from civil reactors or fallout from nuclear weapons testing. Since this ratio has changed significantly over the years of discharges from Mayak, a measurement can provide important information about the source of plutonium at a particular location. Similar measurements have been performed on samples from the Kara Sea which contains a graveyard of nuclear submarines from the former Soviet Union. AMS techniques have also been developed for detection of 99 Tc down to levels of a few femtograms. This isotope is one of the most prolific fission products and has a very long half-life of 220 ka. Hundreds of kg have been discharged from the nuclear reprocessing plant at Sellafield in the UK. While there may be public health issues associated with these discharges which can be addressed with AMS, these discharges may also constitute a valuable oceanographic tracer experiment in this climatically-important region of the world's oceans. Applications to date have included a human uptake study to assess long-term retention of 99 Tc in the body, and a survey of seaweeds from northern Europe to establish a baseline for a future oceanographic study

  10. Repository and deep borehole disposition of plutonium

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1996-02-01

    Control and disposition of excess weapons plutonium is a growing issue as both the US and Russia retire a large number of nuclear weapons> A variety of options are under consideration to ultimately dispose of this material. Permanent disposition includes tow broad categories: direct Pu disposal where the material is considered waste and disposed of, and Pu utilization, where the potential energy content of the material is exploited via fissioning. The primary alternative to a high-level radioactive waste repository for the ultimate disposal of plutonium is development of a custom geologic facility. A variety of geologic facility types have been considered, but the concept currently being assessed is the deep borehole

  11. Plutonium again (smuggling and movements)

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A link is discounted between nuclear proliferation and the recently discovered smuggled plutonium from the former Soviet Union at Munich airport and other places in Germany. It is argued that governments wishing to obtain nuclear materials to develop a weapons programme would not arrange to have it smuggled in a suitcase. Instead, it is speculated that a link exists between the plutonium smuggling incidents and the desire to promote the production of mixed oxide (MOX) fuel. Such incidents, by further raising public anxiety, may be intended to turn public opinion in favour of MOX fuel production as a sensible way of getting rid of surplus plutonium. (UK)

  12. The solution of the LEU and MOX WWER-1000 calculation benchmark with the CARATE - multicell code

    International Nuclear Information System (INIS)

    Hordosy, G.; Maraczy, Cs.

    2000-01-01

    Preparations for disposition of weapons grade plutonium in WWER-1000 reactors are in progress. Benchmark: Defined by the Kurchatov Institute (S. Bychkov, M. Kalugin, A. Lazarenko) to assess the applicability of computer codes for weapons grade MOX assembly calculations. Framework: 'Task force on reactor-based plutonium disposition' of OECD Nuclear Energy Agency. (Authors)

  13. A open-quotes Newclose quotes regime for nuclear weapons and materials

    International Nuclear Information System (INIS)

    Sutcliffe, W.G.

    1994-01-01

    In this paper, I discuss the principal ideas that I covered in my presentation on December 8, 1993, at the Future of Foreign Nuclear Materials Symposium held by the Naval Postgraduate School in Monterey, California. I was asked to discuss issues related to military inventories of plutonium, and I took this opportunity to describe a possible declaratory regime that could encompass military as well as civilian inventories of plutonium. The open-quote newclose quotes in the title does not imply that the regime discussed here is an original idea. Rather, the regime will be open-quotes new,close quotes when it is adopted. The regime proposed here and in other works is one in which all stocks of nuclear weapons and materials are declared. Originally, declarations were proposed as a traditional arms control measure. Here, declarations are proposed to support the prevention of misuse of nuclear weapons and materials, including support for the nonproliferation regime. In the following, I discuss: (1) Worldwide inventories of nuclear weapons and materials, including the fact that military plutonium must be viewed as part of that worldwide inventory. (2) Life cycles of nuclear weapons and materials, including the various stages from the creation of nuclear materials for weapons through deployment and retirement of weapons to the final disposition of the materials. (3) Mechanisms for making declarations. (4) Risks and benefits to be derived from declarations. (5) Possibilities for supporting evidence or verification

  14. Nuclear weapons complex

    International Nuclear Information System (INIS)

    Rezendes, V.S.

    1991-03-01

    In this book, GAO characterizes DOE's January 1991 Nuclear Weapons Complex Reconfiguration Study as a starting point for reaching agreement on solutions to many of the complex's safety and environmental problems. Key decisions still need to be made about the size of the complex, where to relocate plutonium operations, what technologies to use for new tritium production, and what to do with excess plutonium. The total cost for reconfiguring and modernizing the complex is still uncertain, and some management issues remain unresolved. Congress faces a difficult task in making test decisions given the conflicting demands for scarce resources in a time of growing budget deficits and war in the Persian Gulf

  15. Safety aspects with regard to plutonium vitrification techniques

    International Nuclear Information System (INIS)

    Gray, L.W.; Kan, T.

    1995-01-01

    Substantial inventories of excess plutonium are expected to result from dismantling US and Russian nuclear weapons. Disposition of this material should be a high priority in both countries. Various disposition options are under consideration. One option is to vitrify the plutonium with the addition of 137 Cs or high-level waste to act as a deterrent to proliferation. The primary safety problem associated with vitrification of plutonium is to avoid criticality in form fabrication and in the final repository over geologic time. Recovery should be as difficult (costly) as the recovery of plutonium from spent fuel

  16. Plutonium in the ocean environment. Its distributions and behavior

    International Nuclear Information System (INIS)

    Hirose, Katsumi

    2009-01-01

    Marine environments have been extensively contaminated by plutonium as a result of global fallout due to atmospheric nuclear-weapons testing. Knowledge of the levels and behavior of plutonium in marine environments is necessary to assess the radiological and ecological effects of plutonium. Such analytical techniques as radiochemical analysis, α-spectrometry, and mass spectrometry have been developed to analyze the plutonium in seawater over the past five decades. Because of complex chemical properties (e.g. high reactivity to particles), plutonium in the ocean exhibits more complicated behavior than other long-lived anthropogenic radionuclides, such as 137 Cs. In the present study. In reviewed the research history of plutonium in the ocean, including spatial and temporal changes of plutonium levels and distributions, and its oceanographic behavior. (author)

  17. Experience and activities in the field of plutonium recycling in civilian nuclear power plants in the European Union

    International Nuclear Information System (INIS)

    Decressin, A.; Gambier, D.J.; Lehmann, J.-P.; Nietzold, D.E.

    1996-01-01

    The European Union industry has established a world-wide leadership position in manufacturing and exploiting plutonium bearing fuel (MOX). About 15 to 20 tons of plutonium have been manufactured in the MOX fuel fabrication plants of E.U. companies. The current capacity of about 60 tons of MOX fuel per year is being upgraded to reach 400 tons/year by the year 2000. As a result, the excess amounts of separated plutonium, presently stored in the European Union, should no longer raise but should steadily decrease to converge to zero. Studies by the European Commission have indicated that the best use at present of weapons-grade and reactor-grade plutonium is to burn it in operating and future planned nuclear reactors. Disposing of plutonium by blending it with fission products or immobilising it into synthetic matrices appears to be far from being an industrially viable option. Following this path would mean to continue storing the excess plutonium of both military and civilian origin for an unknown, but very long period of time. For these and other reasons, the European Commission is striving to foster international cooperation between the European Union companies, having a long industrial experience accumulated in the field of recycling plutonium, and, so far, the Russian Federation and the Newly Independent States. This cooperation is aiming at supporting projects that could be mutually beneficial to all parties involved. To meet this objective, several programmes have been established either bilaterally or multilaterally, in particular within the framework of the International Science and Technology Centre (I.S.T.C.) in Moscow. Some examples of such collaborations will be described. (author)

  18. A World made of Plutonium?

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    This lecture by Engelbert Broda was written for the 26th Pugwash Conference in Mühlhausen, Germany, 26 – 31 August 1976: Public doubts about nuclear energy are generally directed at the problems of routine emissions of radionuclides, of catastrophic accidents, and of terminal waste disposal. Curiously, the most important problem is not being given sufficient attention: The use of plutonium from civilian reactors fpr weapons production. According to current ideas about a nuclear future, 5000 tons (order of magnitude) of plutonium are to be made annually by year 2000, and about 10 000 tons will all the time be in circulation (transport, reprocessing, reproduction of fuel elements, etc.). It is a misconception that plutonium from power reactors is unsuitable as a nuclear explosive. 5000 tons are enough for several hundred thousand (!) of bombs, Nagasaki type. By the year 2000 maybe 40 – 50 countries will have home-made plutonium. Plutonium production and proliferation are the most serious problems in a nuclear world. (author)

  19. Surplus plutonium disposition draft environmental impact statement. Volume 2

    International Nuclear Information System (INIS)

    1998-07-01

    On May 22, 1997, DOE published a Notice of Intent (NOI) in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS). DOE's disposition strategy allows for both the immobilization of surplus plutonium and its use as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of the immobilized plutonium and MOX fuel (as spent nuclear fuel) in a geologic repository. The Surplus Plutonium Disposition Environmental Impact Statement analyzes alternatives that would use the immobilization approach (for some of the surplus plutonium) and the MOX fuel approach (for some of the surplus plutonium); alternatives that would immobilize all of the surplus plutonium; and the No Action Alternative. The alternatives include three disposition facilities that would be designed so that they could collectively accomplish disposition of up to 50 metric tons (55 tons) of surplus plutonium over their operating lives: (1) the pit disassembly and conversion facility would disassemble pits (a weapons component) and convert the recovered plutonium, as well as plutonium metal from other sources, into plutonium dioxide suitable for disposition; (2) the immobilization facility would include a collocated capability for converting nonpit plutonium materials into plutonium dioxide suitable for immobilization and would be located at either Hanford or SRS. DOE has identified SRS as the preferred site for an immobilization facility; (3) the MOX fuel fabrication facility would fabricate plutonium dioxide into MOX fuel. Volume 2 contains the appendices to the report and describe the following: Federal Register notices; contractor nondisclosure statement; adjunct melter

  20. Plutonium dispositioning in CANDU

    International Nuclear Information System (INIS)

    Boczar, P.G.; Feinroth, H.; Luxat, J.C.

    1995-07-01

    Recently, the U.S. Department of Energy (DOE) sponsored Atomic Energy of Canada Limited (AECL) to evaluate salient technical, strategic, schedule, and cost-related parameters of using CANDU reactors for dispositioning of weapons-grade plutonium in the form of Mixed OXide (MOX) fuel. A study team, consisting of key staff from the CANDU reactor designers and researchers (AECL), operators (Ontario Hydro) and fuel suppliers, analyzed all significant factors involved in such application, with the objective of identifying an arrangement that would permit the burning of MOX in CANDU at the earliest date. One of Ontario Hydro's multi-unit stations, Bruce A nuclear generating station (4x769 MW(e)), was chosen as the reference for the study. The assessment showed that no significant modifications of reactor or process systems are necessary to operate with a full MOX core. Plant modifications would be limited to fuel handling and modifications necessary to accommodate enhanced security and safeguards requirements. No safety limitations were identified

  1. Evolutionary/advanced light water reactor data report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-09

    The US DOE Office of Fissile Material Disposition is examining options for placing fissile materials that were produced for fabrication of weapons, and now are deemed to be surplus, into a condition that is substantially irreversible and makes its use in weapons inherently more difficult. The principal fissile materials subject to this disposition activity are plutonium and uranium containing substantial fractions of plutonium-239 uranium-235. The data in this report, prepared as technical input to the fissile material disposition Programmatic Environmental Impact Statement (PEIS) deal only with the disposition of plutonium that contains well over 80% plutonium-239. In fact, the data were developed on the basis of weapon-grade plutonium which contains, typically, 93.6% plutonium-239 and 5.9% plutonium-240 as the principal isotopes. One of the options for disposition of weapon-grade plutonium being considered is the power reactor alternative. Plutonium would be fabricated into mixed oxide (MOX) fuel and fissioned (``burned``) in a reactor to produce electric power. The MOX fuel will contain dioxides of uranium and plutonium with less than 7% weapon-grade plutonium and uranium that has about 0.2% uranium-235. The disposition mission could, for example, be carried out in existing power reactors, of which there are over 100 in the United States. Alternatively, new LWRs could be constructed especially for disposition of plutonium. These would be of the latest US design(s) incorporating numerous design simplifications and safety enhancements. These ``evolutionary`` or ``advanced`` designs would offer not only technological advances, but also flexibility in siting and the option of either government or private (e.g., utility) ownership. The new reactor designs can accommodate somewhat higher plutonium throughputs. This data report deals solely with the ``evolutionary`` LWR alternative.

  2. Evolutionary/advanced light water reactor data report

    International Nuclear Information System (INIS)

    1996-01-01

    The US DOE Office of Fissile Material Disposition is examining options for placing fissile materials that were produced for fabrication of weapons, and now are deemed to be surplus, into a condition that is substantially irreversible and makes its use in weapons inherently more difficult. The principal fissile materials subject to this disposition activity are plutonium and uranium containing substantial fractions of plutonium-239 uranium-235. The data in this report, prepared as technical input to the fissile material disposition Programmatic Environmental Impact Statement (PEIS) deal only with the disposition of plutonium that contains well over 80% plutonium-239. In fact, the data were developed on the basis of weapon-grade plutonium which contains, typically, 93.6% plutonium-239 and 5.9% plutonium-240 as the principal isotopes. One of the options for disposition of weapon-grade plutonium being considered is the power reactor alternative. Plutonium would be fabricated into mixed oxide (MOX) fuel and fissioned (''burned'') in a reactor to produce electric power. The MOX fuel will contain dioxides of uranium and plutonium with less than 7% weapon-grade plutonium and uranium that has about 0.2% uranium-235. The disposition mission could, for example, be carried out in existing power reactors, of which there are over 100 in the United States. Alternatively, new LWRs could be constructed especially for disposition of plutonium. These would be of the latest US design(s) incorporating numerous design simplifications and safety enhancements. These ''evolutionary'' or ''advanced'' designs would offer not only technological advances, but also flexibility in siting and the option of either government or private (e.g., utility) ownership. The new reactor designs can accommodate somewhat higher plutonium throughputs. This data report deals solely with the ''evolutionary'' LWR alternative

  3. Nuclear weapons proliferation problem: can we lead without leadership

    International Nuclear Information System (INIS)

    Stathakis, G.J.

    1977-01-01

    The immediate problem facing us with respect to proliferation and nuclear power involves reprocessing and the availability of plutonium from reprocessing plants. One solution supported by the Atomic Industrial Forum is that reprocessing centers be restricted to locations in those industrial nations already having weapons capability and that the energy of the reprocessed plutonium be returned to the user nation in the form of low enriched uranium. Thus, the plutonium would remain where it would not add to problems of proliferation

  4. Nuclear weapons complex

    International Nuclear Information System (INIS)

    Peach, J.D.

    1991-02-01

    In this paper, GAO provides its views on DOE's January 1991 Nuclear Weapons Complex Reconfiguration Study. GAO believes that DOE's new reconfiguration study provides a starting point for reaching agreement on solutions to many of the complex's problems. Key decisions still need to be made about the size of the complex, where to relocate plutonium operations, what technologies should be used for new tritium production, and what to do with excess plutonium. The total cost for reconfiguring and modernizing is still uncertain and some management issues remain unresolved. Congress faces a difficult task in making these decisions given the conflicting demands for scare resources in a time of growing budget deficits and war in the Persian Gulf

  5. Disposing of the world's excess plutonium

    International Nuclear Information System (INIS)

    McCormick, J.M.; Bullen, D.B.

    1998-01-01

    The authors undertake three key objectives in addressing the issue of plutonium disposition at the end of the Cold War. First, the authors estimate the total global inventory of plutonium both from weapons dismantlement and civil nuclear power reactors. Second, they review past and current policy toward handling this metal by the US, Russia, and other key countries. Third, they evaluate the feasibility of several options (but especially the vitrification and mixed oxide fuel options announced by the Clinton administration) for disposing of the increasing amounts of plutonium available today. To undertake this analysis, the authors consider both the political and scientific problems confronting policymakers in dealing with this global plutonium issue. Interview data with political and technical officials in Washington and at the International Atomic Energy Agency in Vienna, Austria, and empirical inventory data on plutonium from a variety of sources form the basis of their analysis

  6. Surplus plutonium disposition draft environmental impact statement. Volume 1, Part B

    International Nuclear Information System (INIS)

    1998-07-01

    On May 22, 1997, DOE published a Notice of Intent (NOI) in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS). DOE's disposition strategy allows for both the immobilization of surplus plutonium and its use as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of the immobilized plutonium and MOX fuel (as spent nuclear fuel) in a geologic repository. The Surplus Plutonium Disposition Environmental Impact Statement analyzes alternatives that would use the immobilization approach (for some of the surplus plutonium) and the MOX fuel approach (for some of the surplus plutonium); alternatives that would immobilize all of the surplus plutonium; and the No Action Alternative. The alternatives include three disposition facilities that would be designed so that they could collectively accomplish disposition of up to 50 metric tons (55 tons) of surplus plutonium over their operating lives: (1) the pit disassembly and conversion facility would disassemble pits (a weapons component) and convert the recovered plutonium, as well as plutonium metal from other sources, into plutonium dioxide suitable for disposition; (2) the immobilization facility would include a collocated capability for converting nonpit plutonium materials into plutonium dioxide suitable for immobilization and would be located at either Hanford or SRS. DOE has identified SRS as the preferred site for an immobilization facility; (3) the MOX fuel fabrication facility would fabricate plutonium dioxide into MOX fuel. This volume has chapters on environmental consequences; environmental regulations, permits, and consultations; a glossary; list of preparers; distribution list

  7. Plutonium concentrations in airborne soil at Rocky Flats and Hanford determined during resuspension experiments

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1978-01-01

    Plutonium resuspension results are summarized for experiments conducted by the author at Rocky Flats, onsite on the Hanford reservation, and for winds blowing from offsite onto the Hanford reservation near the Prosser barricade boundary. In each case, plutonium resuspension was shown by increased airborne plutonium concentrations as a function of either wind speed or as compared to fallout levels. All measured airborne concentrations were far below maximum permissible concentrations (MPC). Both plutonium and cesium concentrations on airborne soil were normalized by the quantity of airborne soil sampled. Airborne radionuclide concentrations in μCi/g were related to published values for radionuclide concentrations on surface soils. For this ratio of radionuclide concentration per gram on airborne soil divided by that for ground surface soil, there are eight orders of magnitude uncertainty from 10 -4 to 10 4 . This uncertainty in the equality between plutonium concentrations per gram on airborne and surface soils is caused by only a fraction of the collected airborne soil being transported from offsite rather than all being resuspended from each study site and also by the great variabilities in surface contamination. Horizontal plutonium fluxes on airborne nonrespirable soils at all three sites were bracketed within the same four orders of magnitude from 10 -7 to 10 -3 μCi/(m 2 day) for 239 Pu and 10 -8 to 10 -5 μCi/(m 2 day) for 238 Pu. Airborne respirable 239 Pu concentrations increased with wind speed for a southwest wind direction coming from offsite near the Hanford reservation Prosser barricade. Airborne plutonium fluxes on nonrespirable particles had isotopic ratios, 240 Pu/ 239 240 Pu, similar to weapons grade plutonium rather than fallout plutonium

  8. Assessment of Startup Fuel Options for a Test or Demonstration Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, Jon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Walters, L. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO2 and UO2-PuO2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availability are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.

  9. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO 2 and UO 2 ), typically containing 95% or more UO 2 . DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement

  10. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

  11. Reference computations of public dose and cancer risk from airborne releases of plutonium. Nuclear safety technical report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, V.L.

    1993-12-23

    This report presents results of computations of doses and the associated health risks of postulated accidental atmospheric releases from the Rocky Flats Plant (RFP) of one gram of weapons-grade plutonium in a form that is respirable. These computations are intended to be reference computations that can be used to evaluate a variety of accident scenarios by scaling the dose and health risk results presented here according to the amount of plutonium postulated to be released, instead of repeating the computations for each scenario. The MACCS2 code has been used as the basis of these computations. The basis and capabilities of MACCS2 are summarized, the parameters used in the evaluations are discussed, and results are presented for the doses and health risks to the public, both the Maximum Offsite Individual (a maximally exposed individual at or beyond the plant boundaries) and the population within 50 miles of RFP. A number of different weather scenarios are evaluated, including constant weather conditions and observed weather for 1990, 1991, and 1992. The isotopic mix of weapons-grade plutonium will change as it ages, the {sup 241}Pu decaying into {sup 241}Am. The {sup 241}Am reaches a peak concentration after about 72 years. The doses to the bone surface, liver, and whole body will increase slightly but the dose to the lungs will decrease slightly. The overall cancer risk will show almost no change over this period. This change in cancer risk is much smaller than the year-to-year variations in cancer risk due to weather. Finally, x/Q values are also presented for other applications, such as for hazardous chemical releases. These include the x/Q values for the MOI, for a collocated worker at 100 meters downwind of an accident site, and the x/Q value integrated over the population out to 50 miles.

  12. Waste minimization at a plutonium processing facility

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1995-01-01

    As part of Los Alamos National Laboratory's (LANL) mission to reduce the nuclear danger throughout the world, the plutonium processing facility at LANL maintains expertise and skills in nuclear weapons technologies as well as leadership in all peaceful applications of plutonium technologies, including fuel fabrication for terrestrial and space reactors and heat sources and thermoelectric generators for space missions. Another near-term challenge resulted from two safety assessments performed by the Defense Nuclear Facilities Safety Board and the U.S. Department of Energy during the past two years. These assessments have necessitated the processing and stabilization of plutonium contained in tons of residues so that they can be stored safely for an indefinite period. This report describes waste streams and approaches to waste reduction of plutonium management

  13. Global plutonium management: A security option

    International Nuclear Information System (INIS)

    Sylvester, K.W.B.

    1998-01-01

    The US surplus plutonium disposition program was created to reduce the proliferation risk posed by the fissile material from thousands of retired nuclear weapons. The Department of Energy has decided to process its Put into a form as secure as Pu in civilian spent fuel. While implementation issues have been considered, a major one (Russian reciprocity) remains unresolved. Russia has made disposition action conditional on extracting the fuel value of its Pu but lacks the infrastructure to do so. Assistance in the construction of the required facilities would conflict with official US policy opposing the development of a Pu fuel cycle. The resulting stagnation provides impetus for a reevaluation of US nonproliferation objectives and Pu disposition options. A strategy for satisfying Russian fuel value concerns and reducing the proliferation risk posed by surplus weapons-grade plutonium (WGPu) is proposed. The effectiveness of material alteration (e.g., isotopic, chemical, etc.hor-ellipsis) at reducing the desire, ability and opportunity for proliferation is assessed. Virtually all the security benefits attainable by material processing can be obtained by immobilizing Pu in large unit size/mass monoliths without a radiation barrier. Russia would be allowed to extract the Pu at a future date for use as fuel in a verifiable manner. Remote tracking capability, if proven feasible, would further improve safeguarding capability. As an alternate approach, the US could compensate Russia for its Pu, allowing it to be disposed of or processed elsewhere. A market based method for pricing Pu is proposed. Surplus Pu could represent access to nuclear fuel at a fixed price at a future date. This position can be replicated in the uranium market and priced using derivative theory. The proposed strategy attempts to meet nonproliferation objectives by recognizing technical limitations and satisfying political constraints

  14. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Plutonium by Controlled-Potential Coulometry Plutonium by Amperometric Titration with Iron(II) Plutonium by Diode Array Spectrophotometry Free Acid by Titration in an Oxalate Solution 8 to 15 Free Acid by Iodate Precipitation-Potentiometric Titration Test Method 16 to 22 Uranium by Arsenazo I Spectrophotometric Test Method 23 to 33 Thorium by Thorin Spectrophotometric Test Method 34 to 42 Iron by 1,10-Phenanthroline Spectrophotometric Test Method 43 to 50 Impurities by ICP-AES Chloride by Thiocyanate Spectrophotometric Test Method 51 to 58 Fluoride by Distillation-Spectrophotometric Test Method 59 to 66 Sulfate by Barium Sulfate Turbidimetric Test Method 67 to 74 Isotopic Composition by Mass Spectrom...

  15. Characterization of plutonium-containing materials and storage canisters

    International Nuclear Information System (INIS)

    Mason, R.E.

    1997-01-01

    Throughout the weapons complex, plutonium materials are stored in various containers. Some plutonium has been stored for 20 yr or more. The physical and chemical properties of the plutonium material and the containers that hold it are often not well characterized. The U.S. Department of Energy (DOE) 3013 standard sets criteria to which stored material must conform. The 3013 standard regulates materials that hold 50% or greater plutonium, and the other 50% is not specified and is usually unknown. The Materials Identification and Surveillance project is tasked to characterize representative materials and begin to characterize the other 50% and to show that materials can be brought into 3013 criteria conformance through thermal treatments

  16. Geomorphology of plutonium in the Northern Rio Grande

    Energy Technology Data Exchange (ETDEWEB)

    Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography

    1993-03-01

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

  17. Geomorphology of plutonium in the Northern Rio Grande

    International Nuclear Information System (INIS)

    Graf, W.L.

    1993-03-01

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi

  18. Estimating plutonium production fron long-lived radionuclides in permanent structural components of production reactor cores

    International Nuclear Information System (INIS)

    Fetter, S.

    1992-01-01

    This paper reports that the United States and the Soviet Union face critical decisions about the future of plutonium production for nuclear weapons. Both countries could eliminate the economic burden of rebuilding their production complexes by agreeing to ban the production of plutonium for weapons. Such an agreement could also provide important national-security benefits by reinforcing the Non-Proliferation Treaty and by diminishing the ability of both nations to break out of nuclear-arms reduction agreements at a later time - especially if the plutonium in the warheads eliminated by the arms reduction agreements is put under safeguards. A production cutoff would be verifiable

  19. Status of plutonium ceramic immobilization processes and immobilization forms

    International Nuclear Information System (INIS)

    Ebbinghaus, B.B.; Van Konynenburg, R.A.; Vance, E.R.; Jostsons, A.

    1996-01-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R ampersand D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi 2 O 7 ), the desired actinide host phase, with lesser amounts of hollandite (BaAl 2 Ti 6 O 16 ) and rutile (TiO 2 ). Alternative actinide host phases are also being considered. These include pyrochlore (Gd 2 Ti 2 O 7 ), zircon (ZrSiO 4 ), and monazite (CePO 4 ), to name a few of the most promising. R ampersand D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO 2 powder, cold press and sinter fabrication methods, and immobilization form formulation issues

  20. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  1. CANDU - a versatile reactor for plutonium disposition or actinide burning

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Gagnon, M.J.N.; Boczar, P.G.; Ellis, R.J.; Verrall, R.A.

    1997-10-01

    High neutron economy, on-line refuelling, and a simple fuel-bundle design result in a high degree of versatility in the use of the CANDU reactor for the disposition of weapons-derived plutonium and for the annihilation of long-lived radioactive actinides, such as plutonium, neptunium, and americium isotopes, created in civilian nuclear power reactors. Inherent safety features are incorporated into the design of the bundles carrying the plutonium and actinide fuels. This approach enables existing CANDU reactors to operate with various plutonium-based fuel cycles without requiring major changes to the current reactor design. (author)

  2. Los Alamos DP West Plutonium Facility decontamination project

    International Nuclear Information System (INIS)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-01-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico, was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  3. Regulatory issues for deep borehole plutonium disposition

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1995-03-01

    As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. Issues of concern include the regulatory, statutory and policy status of such a facility, the availability of sites with desirable characteristics and the technologies required for drilling deep holes, characterizing them, emplacing excess plutonium and sealing the holes. This white paper discusses the regulatory issues. Regulatory issues concerning construction, operation and decommissioning of the surface facility do not appear to be controversial, with existing regulations providing adequate coverage. It is in the areas of siting, licensing and long term environmental protection that current regulations may be inappropriate. This is because many current regulations are by intent or by default specific to waste forms, facilities or missions significantly different from deep borehole disposition of excess weapons usable fissile material. It is expected that custom regulations can be evolved in the context of this mission

  4. Future role of plutonium technology in society

    International Nuclear Information System (INIS)

    Christensen, D.C.; Matthews, R.B.; Trapp, T.J.

    1995-01-01

    Until the fall of the Berlin Wall, there was a very clear programmatic use of plutonium: supporting the nuclear deterrent. Since the breakup of the Soviet Union, bilateral agreements concerning the cessation of nuclear testing and the dismantlement of large portions of the nuclear weapon stockpiles by the United States and the states of the former Soviet Union have resulted in new requirements concerning the management and disposition of nuclear materials. This report describes current issues pertaining to the requirements for plutonium management

  5. Plutonium concentrations in airborne soil at Rocky Flats and Hanford determined during resuspension experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sehmel, G.A.

    1978-01-01

    Plutonium resuspension results are summarized for experiments conducted by the author at Rocky Flats, onsite on the Hanford reservation, and for winds blowing from offsite onto the Hanford reservation near the Prosser barricade boundary. In each case, plutonium resuspension was shown by increased airborne plutonium concentrations as a function of either wind speed or as compared to fallout levels. All measured airborne concentrations were far below maximum permissible concentrations (MPC). Both plutonium and cesium concentrations on airborne soil were normalized by the quantity of airborne soil sampled. Airborne radionuclide concentrations in ..mu..Ci/g were related to published values for radionuclide concentrations on surface soils. For this ratio of radionuclide concentration per gram on airborne soil divided by that for ground surface soil, there are eight orders of magnitude uncertainty from 10/sup -4/ to 10/sup 4/. This uncertainty in the equality between plutonium concentrations per gram on airborne and surface soils is caused by only a fraction of the collected airborne soil being transported from offsite rather than all being resuspended from each study site and also by the great variabilities in surface contamination. Horizontal plutonium fluxes on airborne nonrespirable soils at all three sites were bracketed within the same four orders of magnitude from 10/sup -7/ to 10/sup -3/ ..mu..Ci/(m/sup 2/ day) for /sup 239/Pu and 10/sup -8/ to 10/sup -5/ ..mu..Ci/(m/sup 2/ day) for /sup 238/Pu. Airborne respirable /sup 239/Pu concentrations increased with wind speed for a southwest wind direction coming from offsite near the Hanford reservation Prosser barricade. Airborne plutonium fluxes on nonrespirable particles had isotopic ratios, /sup 240/Pu//sup 239/ /sup 240/Pu, similar to weapons grade plutonium rather than fallout plutonium.

  6. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    International Nuclear Information System (INIS)

    Kudinov, K. G.; Tretyakov, A. A.; Sorokin, Yu. P.; Bondin, V. V.; Manakova, L. F.; Jardine, L. J.

    2002-01-01

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on a production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration in Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is

  7. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, K. G.; Tretyakov, A. A.; Sorokin, Yu. P.; Bondin, V. V.; Manakova, L. F.; Jardine, L. J.

    2002-02-26

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on a production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration in Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment

  8. Plutonium Finishing Plant (PFP) Safety Class and Safety Significant Commercial Grade Items (CGI) Critical Characteristic

    International Nuclear Information System (INIS)

    THOMAS, R.J.

    2000-01-01

    This document specifies the critical characteristics for Commercial Grade Items (CGI) procured for use in the Plutonium Finishing Plant as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics of any one item

  9. Nukem's plutonium hitches a ride

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The European repercussions of a scandal involving the illegal movement of plutonium and cobalt 60 in canisters in which it was claimed there was only low-level radioactive waste, from West Germany to the reprocessing centre at Mol, Belgium are considered. Large bribes were paid to employees of the nuclear industry and government inspectors to allow this illicit transport to carry on over a number of years. It is not yet clear where the plutonium came from or where it was going. The suggestion that it may have been sold to Libya or Pakistan for nuclear weapons is very damaging to the nuclear safety argument. Even if the plutonium was being disposed of because it could not be accounted for, the safeguard procedures do not give confidence to the European public more aware of nuclear safety than ever. (UK)

  10. Amarillo National Resource Center for Plutonium 1999 plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-30

    The purpose of the Amarillo National Resource Center for Plutonium is to serve the Texas Panhandle, the State of Texas and the US Department of Energy by: conducting scientific and technical research; advising decision makers; and providing information on nuclear weapons materials and related environment, safety, health, and nonproliferation issues while building academic excellence in science and technology. This paper describes the electronic resource library which provides the national archives of technical, policy, historical, and educational information on plutonium. Research projects related to the following topics are described: Environmental restoration and protection; Safety and health; Waste management; Education; Training; Instrumentation development; Materials science; Plutonium processing and handling; and Storage.

  11. Amarillo National Resource Center for Plutonium 1999 plan

    International Nuclear Information System (INIS)

    1999-01-01

    The purpose of the Amarillo National Resource Center for Plutonium is to serve the Texas Panhandle, the State of Texas and the US Department of Energy by: conducting scientific and technical research; advising decision makers; and providing information on nuclear weapons materials and related environment, safety, health, and nonproliferation issues while building academic excellence in science and technology. This paper describes the electronic resource library which provides the national archives of technical, policy, historical, and educational information on plutonium. Research projects related to the following topics are described: Environmental restoration and protection; Safety and health; Waste management; Education; Training; Instrumentation development; Materials science; Plutonium processing and handling; and Storage

  12. A perspective on the proliferation risks of plutonium mines

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, E.S. [Nuclear Control Institute, Washington, DC (United States)

    1996-05-01

    The program of geologic disposal of spent fuel and other plutonium-containing materials is increasingly becoming the target of criticism by individuals who argue that in the future, repositories may become low-cost sources of fissile material for nuclear weapons. This paper attempts to outline a consistent framework for analyzing the proliferation risks of these so-called {open_quotes}plutonium mines{close_quotes} and putting them into perspective. First, it is emphasized that the attractiveness of plutonium in a repository as a source of weapons material depends on its accessibility relative to other sources of fissile material. Then, the notion of a {open_quotes}material production standard{close_quotes} (MPS) is proposed: namely, that the proliferation risks posed by geologic disposal will be acceptable if one can demonstrate, under a number of reasonable scenarios, that the recovery of plutonium from a repository is likely to be as difficult as new production of fissile material. A preliminary analysis suggests that the range of circumstances under which current mined repository concepts would fail to meet this standard is fairly narrow. Nevertheless, a broad application of the MPS may impose severe restrictions on repository design. In this context, the relationship of repository design parameters to easy of recovery is discussed.

  13. A perspective on the proliferation risks of plutonium mines

    International Nuclear Information System (INIS)

    Lyman, E.S.

    1996-01-01

    The program of geologic disposal of spent fuel and other plutonium-containing materials is increasingly becoming the target of criticism by individuals who argue that in the future, repositories may become low-cost sources of fissile material for nuclear weapons. This paper attempts to outline a consistent framework for analyzing the proliferation risks of these so-called open-quotes plutonium minesclose quotes and putting them into perspective. First, it is emphasized that the attractiveness of plutonium in a repository as a source of weapons material depends on its accessibility relative to other sources of fissile material. Then, the notion of a open-quotes material production standardclose quotes (MPS) is proposed: namely, that the proliferation risks posed by geologic disposal will be acceptable if one can demonstrate, under a number of reasonable scenarios, that the recovery of plutonium from a repository is likely to be as difficult as new production of fissile material. A preliminary analysis suggests that the range of circumstances under which current mined repository concepts would fail to meet this standard is fairly narrow. Nevertheless, a broad application of the MPS may impose severe restrictions on repository design. In this context, the relationship of repository design parameters to easy of recovery is discussed

  14. Decision model for evaluating reactor disposition of excess plutonium

    International Nuclear Information System (INIS)

    Edmunds, T.

    1995-02-01

    The US Department of Energy is currently considering a range of technologies for disposition of excess weapon plutonium. Use of plutonium fuel in fission reactors to generate spent fuel is one class of technology options. This report describes the inputs and results of decision analyses conducted to evaluate four evolutionary/advanced and three existing fission reactor designs for plutonium disposition. The evaluation incorporates multiple objectives or decision criteria, and accounts for uncertainty. The purpose of the study is to identify important and discriminating decision criteria, and to identify combinations of value judgments and assumptions that tend to favor one reactor design over another

  15. PLUTONIUM FINISHING PLANT (PFP) SUB-GRADE EE/CA EVALUATION OF ALTERNATIVES: A NEW MODEL

    International Nuclear Information System (INIS)

    HOPKINS, A.M.

    2007-01-01

    An engineering evaluation/cost analysis (EE/CA) was performed at the Hanford Site's Plutonium Finishing Plant (PFP). The purpose of the EVCA was to identify the sub-grade items to be evaluated; determine the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) hazardous substances through process history and available data; evaluate these hazards; and as necessary, identify the available alternatives to reduce the risk associated with the contaminants. The sub-grade EWCA considered four alternatives for an interim removal action: (1) No Action; (2) Surveillance and Maintenance (S and M); (3) Stabilize and Leave in Place (Stabilization); and (4) Remove, Treat and Dispose (RTD). Each alternative was evaluated against the CERCLA criteria for effectiveness, implementability, and cost

  16. In search of plutonium: A nonproliferation journey

    Science.gov (United States)

    Hecker, Siegfried

    2010-02-01

    In February 1992, I landed in the formerly secret city of Sarov, the Russian Los Alamos, followed a few days later by a visit to Snezhinsk, their Livermore. The briefings we received of the Russian nuclear weapons program and tours of their plutonium, reactor, explosives, and laser facilities were mind boggling considering the Soviet Union was dissolved only two months earlier. This visit began a 17-year, 41 journey relationship with the Russian nuclear complex dedicated to working with them in partnership to protect and safeguard their weapons and fissile materials, while addressing the plight of their scientists and engineers. In the process, we solved a forty-year disagreement about the plutonium-gallium phase diagram and began a series of fundamental plutonium science workshops that are now in their tenth year. At the Yonbyon reprocessing facility in January 2004, my North Korean hosts had hoped to convince me that they have a nuclear deterrent. When I expressed skepticism, they asked if I wanted to see their ``product.'' I asked if they meant the plutonium; they replied, ``Well, yes.'' Thus, I wound up holding 200 grams of North Korean plutonium (in a sealed glass jar) to make sure it was heavy and warm. So began the first of my six journeys to North Korea to provide technical input to the continuing North Korean nuclear puzzle. In Trombay and Kalpakkam a few years later I visited the Indian nuclear research centers to try to understand how India's ambitious plans for nuclear power expansion can be accomplished safely and securely. I will describe these and other attempts to deal with the nonproliferation legacy of the cold war and the new challenges ahead. )

  17. Application of ICP-MS and AMS for determination of Pu- and U-isotope ratios for source identification

    Energy Technology Data Exchange (ETDEWEB)

    Skipperud, L. (Norwegian Univ. of Life Sciences, Isotope Lab.. Dept. of Plant and Environmental Sciences, AAs (Norway))

    2010-03-15

    Full text: Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which have resulted in a relatively uniform, underlying global distribution of plutonium. Plutonium isotope ratios are known to vary with reactor type, nuclear fuel-burn up time, neutron flux, and energy, and for fallout from nuclear detonations, weapon type and yield. Weapons-grade plutonium is characterized by a low content of the 240Pu isotope, with 240Pu/239Pu isotope ratio less than 0.05. In contrast, both global weapons fallout and spent nuclear fuel from civil reactors have higher 240Pu/239Pu isotope ratios (civil nuclear power reactors have 240Pu/239Pu atom ratios of between about 0.2-1). Thus, different sources often exhibit characteristic plutonium isotope ratios and these ratios can be used to identify the origin of contamination, calculate inventories, or follow the migration of contaminated sediments and waters. The measurement of the plutonium-isotope ratios in these studies offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers. The present paper presents results from determination of plutonium concentrations and isotope ratios in sediment samples collected during various expeditions to the Kara Sea, the Ob and Yenisey estuaries and their river systems and also Pu isotope ratios in the near area of Mayak PA. Weapons-grade plutonium is characterized by a low content of the Pu-240 isotope, with Pu-240/Pu-239 isotope ratio less than 0.05. In contrast, both global weapons fallout and spent nuclear fuel from civil reactors have higher Pu-240/Pu-239 isotope ratios, and

  18. Status of plutonium ceramic immobilization processes and immobilization forms

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.; Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (United States); Vance, E.R.; Jostsons, A. [Australian Nuclear Science and Technology Organization, Menai (Australia)] [and others

    1996-05-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R&D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi{sub 2}O{sub 7}), the desired actinide host phase, with lesser amounts of hollandite (BaAl{sub 2}Ti{sub 6}O{sub 16}) and rutile (TiO{sub 2}). Alternative actinide host phases are also being considered. These include pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}), zircon (ZrSiO{sub 4}), and monazite (CePO{sub 4}), to name a few of the most promising. R&D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO{sub 2} powder, cold press and sinter fabrication methods, and immobilization form formulation issues.

  19. Radioactive waste management and plutonium recovery within the context of the development of nuclear energy in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Kushnikov, V. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    1996-05-01

    The Russian strategy for radioactive waste and plutonium management is based on the concept of the closed fuel cycle that has been adopted in Russia, and, to a great degree, falls under the jurisdiction of the existing Russian nuclear energy structures. From its very beginning, Russian atomic energy policy was based on finding the most effective method of developing the new fuel direction with the maximum possible utilization of the energy potential from the fission of heavy atoms and the achievement of fuel self-sufficiency through the recycling of secondary fuel. Although there can be no doubt about the importance of economic considerations (for the future), concerns for the safety of the environment are currently of the utmost importance. In this context, spent NPP fuel can be viewed as a waste to be buried only if there is persuasive evidence that such an approach is both economically and environmentally sound. The production of I GW of energy per year is accompanied by the accumulation of up to 800-1000 kg of highly radioactive fission products and approximately 250 kg of plutonium. Currently, spent fuel from the VVER 100 and the RBNK reactors contains approximately 25 tons of plutonium. There is an additional 30 tons of fuel-grade plutonium in the form of purified oxide, separated from spent fuels used in VVER440 reactors and other power production facilities, as well as approximately 100 tons of weapons-grade plutonium from dismantled warheads. The spent fuel accumulates significant amounts of small actinoids - neptunium americium, and curium. Science and technology have not yet found technical solutions for safe and secure burial of non-reprocessed spent fuel with such a broad range of products, which are typically highly radioactive and will continue to pose a threat for hundreds of thousands of years.

  20. Utilization of excess weapon plutonium: scientific and technological aspects of the conversion of military capacities for civilian use and sustainable development

    International Nuclear Information System (INIS)

    Winkelmann, H.-P.

    1996-01-01

    The scientific and technological aspects of the conversion of military capacities for civilian use and sustainable development concerning the utilisation of excess weapon plutonium consist of the following main issues: The new understanding of 'security'; industrial restructuring for sustainable development; human resources issues; cleaning up of the world legacy; developing timely alternate use plans for military facilities. The issues and problems of nuclear disarmament management are linked to sustainable development and are related to safe and environmentally sound management of radioactive wastes, meaning also safe transport, storage and disposal with a view to protect human health and the environment. Special emphasis is laid on the international and regional cooperation as the main basis for action

  1. National Plutonium Workers' Study: considerations and preliminary results

    International Nuclear Information System (INIS)

    Acquavella, J.F.; Wilkinson, G.S.

    1983-03-01

    The National Plutonium Workers' Study developed from the clinical follow-up of workers with body burdens in excess of 10 nCi. The importance of plutonium to energy and weapons development and the uncertainty about its biological effects motivated the formation of an epidemiologic study of more than 125,000 workers at six Department of Energy facilities. This report reviews recent results from The National Plutonium Workers' Study, including an analysis of cancer mortality among workers at the Rocky Flats Plant and a study of malignant melanoma among employees at Los Alamos National Laboratory. The problems inherent in large-scale epidemiologic studies, as well as the future directions for the study, are discussed

  2. Japan`s civil use of foreign military plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, A. [Tokyo Univ. (Japan). Dept. of Quantum Engineering and Systems Sciences

    1995-12-31

    This paper is intended to propose one of the MOX options of international cooperation for safer and more secured management of excess military plutonium. The proposal was made with special reference to the Japanese public`s view. Owing to the domestic plutonium shortage anticipated soon after the 200 in Japan, some specific reactors will be available to get rid of foreign excess weapon plutonium. According to the Japan AEC`s new long-term programme, the shortage will be approximately 0.5 tonne of plutonium per annum, which is a sort of the least amount that Japan can buy from a certain external source. With international requests for a more positive Japanese contribution, however, the amount of Japanese purchase would be increased. It follows from the preliminary estimate shown in this paper that roughly 2 tonnes of plutonium can be burned annually in the reactors without any major modifications concerning safe reactor operation. (author) 10 refs.

  3. Plutonium Immobilization Program cold pour tests

    International Nuclear Information System (INIS)

    Hovis, G.L.; Stokes, M.W.; Smith, M.E.; Wong, J.W.

    1999-01-01

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site, Lawrence Livermore National Laboratory, Argonne National Laboratory, and Pacific Northwest National Laboratory to carry out the disposition of excess weapons-grade plutonium. This program uses the can-in-canister (CIC) approach. CIC involves encapsulating plutonium in ceramic forms (or pucks), placing the pucks in sealed stainless steel cans, placing the cans in long cylindrical magazines, latching the magazines to racks inside Defense Waste Processing Facility (DWPF) canisters, and filling the DWPF canisters with high-level waste glass. This process puts the plutonium in a stable form and makes it attractive for reuse. At present, the DWPF pours glass into empty canisters. In the CIC approach, the addition of a stainless steel rack, magazines, cans, and ceramic pucks to the canisters introduces a new set of design and operational challenges: All of the hardware installed in the canisters must maintain structural integrity at elevated (molten-glass) temperatures. This suggests that a robust design is needed. However, the amount of material added to the DWPF canister must be minimized to prevent premature glass cooling and excessive voiding caused by a large internal thermal mass. High metal temperatures, minimizing thermal mass, and glass flow paths are examples of the types of technical considerations of the equipment design process. To determine the effectiveness of the design in terms of structural integrity and glass-flow characteristics, full-scale testing will be conducted. A cold (nonradioactive) pour test program is planned to assist in the development and verification of a baseline design for the immobilization canister to be used in the PIP process. The baseline design resulting from the cold pour test program and CIC equipment development program will provide input to Title 1 design for second-stage immobilization. The cold pour tests will be conducted in two

  4. Los Alamos DP West Plutonium Facility decontamination project, 1978-1981

    International Nuclear Information System (INIS)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-09-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  5. Plutonium chemistry of the ocean

    International Nuclear Information System (INIS)

    Folsom, T.R.

    1972-01-01

    Plutonium is a man-made element whose behavior in the marine environment is inadequately known at present. It has been studied intensively in connection with production of weapons and power sources and has been characterized as an extremely toxic substance. Nevertheless, only a few dozen measurements have been made of concentrations in seawater and in the associated organisms and sediments. The first of these were as recent as 1964. There are reasons to believe its chemical behavior in the ocean is different from what has been observed on land, and that it will be difficult to predict how plutonium will distribute itself in the ocean. The consequences of increased environmental concentrations of Pu are discussed

  6. Reactor based plutonium disposition - physics and fuel behaviour benchmark studies of an OECD/NEA experts group

    International Nuclear Information System (INIS)

    D'Hondt, P.; Gehin, J.; Na, B.C.; Sartori, E.; Wiesenack, W.

    2001-01-01

    One of the options envisaged for disposing of weapons grade plutonium, declared surplus for national defence in the Russian Federation and Usa, is to burn it in nuclear power reactors. The scientific/technical know-how accumulated in the use of MOX as a fuel for electricity generation is of great relevance for the plutonium disposition programmes. An Expert Group of the OECD/Nea is carrying out a series of benchmarks with the aim of facilitating the use of this know-how for meeting this objective. This paper describes the background that led to establishing the Expert Group, and the present status of results from these benchmarks. The benchmark studies cover a theoretical reactor physics benchmark on a VVER-1000 core loaded with MOX, two experimental benchmarks on MOX lattices and a benchmark concerned with MOX fuel behaviour for both solid and hollow pellets. First conclusions are outlined as well as future work. (author)

  7. Standard test method for plutonium assay by plutonium (III) diode array spectrophotometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method describes the determination of total plutonium as plutonium(III) in nitrate and chloride solutions. The technique is applicable to solutions of plutonium dioxide powders and pellets (Test Methods C 697), nuclear grade mixed oxides (Test Methods C 698), plutonium metal (Test Methods C 758), and plutonium nitrate solutions (Test Methods C 759). Solid samples are dissolved using the appropriate dissolution techniques described in Practice C 1168. The use of this technique for other plutonium-bearing materials has been reported (1-5), but final determination of applicability must be made by the user. The applicable concentration range for plutonium sample solutions is 10–200 g Pu/L. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropria...

  8. Beating swords into plowshares. [Surplus plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    With the end of the Cold War and the consequent dismantling of United States and Russian nuclear weapons, comes the problem of what to do with the plutonium and highly enriched uranium thus produced. This surplus fissile material could pose a national and international security hazard and recent studies have stresses the need for mutual and cooperative monitoring of fissile material stocks. Long term proposals for disposal, such as burning the plutonium in nuclear plants, vitrifying it into high-level waste glass logs and burying it in deep boreholes in the Earth's surface are all considered with respect to safety and economic viability. (UK).

  9. Preconceptual design for separation of plutonium and gallium by ion exchange

    International Nuclear Information System (INIS)

    DeMuth, S.F.

    1997-01-01

    The disposition of plutonium from decommissioned nuclear weapons, by incorporation into commercial UO 2 -based nuclear reactor fuel, is a viable means to reduce the potential for theft of excess plutonium. This fuel, which would be a combination of plutonium oxide and uranium oxide, is referred to as a mixed oxide (MOX). Following power generation in commercial reactors with this fuel, the remaining plutonium would become mixed with highly radioactive fission products in a spent fuel assembly. The radioactivity, complex chemical composition, and large size of this spent fuel assembly, would make theft difficult with elaborate chemical processing required for plutonium recovery. In fabricating the MOX fuel, it is important to maintain current commercial fuel purity specifications. While impurities from the weapons plutonium may or may not have a detrimental affect on the fuel fabrication or fuel/cladding performance, certifying the effect as insignificant could be more costly than purification. Two primary concerns have been raised with regard to the gallium impurity: (1) gallium vaporization during fuel sintering may adversely affect the MOX fuel fabrication process, and (2) gallium vaporization during reactor operation may adversely affect the fuel cladding performance. Consequently, processes for the separation of plutonium from gallium are currently being developed and/or designed. In particular, two separation processes are being considered: (1) a developmental, potentially lower cost and lower waste, thermal vaporization process following PuO 2 powder preparation, and (2) an off-the-shelf, potentially higher cost and higher waste, aqueous-based ion exchange (IX) process. While it is planned to use the thermal vaporization process should its development prove successful, IX has been recommended as a backup process. This report presents a preconceptual design with material balances for separation of plutonium from gallium by IX

  10. Polyethylene-reflected plutonium metal sphere : subcritical neutron and gamma measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Mattingly, John K.

    2009-11-01

    Numerous benchmark measurements have been performed to enable developers of neutron transport models and codes to evaluate the accuracy of their calculations. In particular, for criticality safety applications, the International Criticality Safety Benchmark Experiment Program (ICSBEP) annually publishes a handbook of critical and subcritical benchmarks. Relatively fewer benchmark measurements have been performed to validate photon transport models and codes, and unlike the ICSBEP, there is no program dedicated to the evaluation and publication of photon benchmarks. Even fewer coupled neutron-photon benchmarks have been performed. This report documents a coupled neutron-photon benchmark for plutonium metal reflected by polyethylene. A 4.5-kg sphere of ?-phase, weapons-grade plutonium metal was measured in six reflected configurations: (1) Bare; (2) Reflected by 0.5 inch of high density polyethylene (HDPE); (3) Reflected by 1.0 inch of HDPE; (4) Reflected by 1.5 inches of HDPE; (5) Reflected by 3.0 inches of HDPE; and (6) Reflected by 6.0 inches of HDPE. Neutron and photon emissions from the plutonium sphere were measured using three instruments: (1) A gross neutron counter; (2) A neutron multiplicity counter; and (3) A high-resolution gamma spectrometer. This report documents the experimental conditions and results in detail sufficient to permit developers of radiation transport models and codes to construct models of the experiments and to compare their calculations to the measurements. All of the data acquired during this series of experiments are available upon request.

  11. Polyethylene-reflected plutonium metal sphere: subcritical neutron and gamma measurements

    International Nuclear Information System (INIS)

    Mattingly, John K.

    2009-01-01

    Numerous benchmark measurements have been performed to enable developers of neutron transport models and codes to evaluate the accuracy of their calculations. In particular, for criticality safety applications, the International Criticality Safety Benchmark Experiment Program (ICSBEP) annually publishes a handbook of critical and subcritical benchmarks. Relatively fewer benchmark measurements have been performed to validate photon transport models and codes, and unlike the ICSBEP, there is no program dedicated to the evaluation and publication of photon benchmarks. Even fewer coupled neutron-photon benchmarks have been performed. This report documents a coupled neutron-photon benchmark for plutonium metal reflected by polyethylene. A 4.5-kg sphere of ?-phase, weapons-grade plutonium metal was measured in six reflected configurations: (1) Bare; (2) Reflected by 0.5 inch of high density polyethylene (HDPE); (3) Reflected by 1.0 inch of HDPE; (4) Reflected by 1.5 inches of HDPE; (5) Reflected by 3.0 inches of HDPE; and (6) Reflected by 6.0 inches of HDPE. Neutron and photon emissions from the plutonium sphere were measured using three instruments: (1) A gross neutron counter; (2) A neutron multiplicity counter; and (3) A high-resolution gamma spectrometer. This report documents the experimental conditions and results in detail sufficient to permit developers of radiation transport models and codes to construct models of the experiments and to compare their calculations to the measurements. All of the data acquired during this series of experiments are available upon request.

  12. Utilization of thorium in a Gas Turbine – Modular Helium Reactor

    International Nuclear Information System (INIS)

    Şahin, Hacı Mehmet; Erol, Özgür; Acır, Adem

    2012-01-01

    Highlights: ► Performance parameters for the original fuel in GT-MHR depending on time were found. ► A proper plutonium–thorium mixture ratio was found using the original fuel results. ► Performance comparison of plutonium mixture and original fuel was made. ► Comparison showed that weapons grade plutonium mixture can be used in the reactor. - Abstract: Gas Turbine-Modular Helium Reactor (GT-MHR) is one of the new types of the reactors with high efficiency and increased safety features. The usage of different kinds of fissile material in this reactor can increase the life of it. Weapons-grade plutonium (WGrPu), which can be acquired from the old dismantled nuclear weapons, can be an option in a GT-MHR. In order to increase the sustainability of the WGrPu resources this fuel can be mixed with thorium, which is a fertile material that can be found in the nature and has resources three times more than uranium. In this study, possibility of utilization of the weapons-grade plutonium–thorium mixture was investigated and an optimum mixture ratio was determined. The behavior of this mixture and the original fuel was studied by using MCNP5 1.4, Monteburns 2.0 and Origen 2.2 tools. Calculations showed that, a GT-MHR type reactor, which is using the original TRISO fuel particle mixture of 20% enriched uranium + natural uranium (original fuel) has an effective multiplication factor (k eff ) of 1.270. Corresponding to this k eff value the weapons grade plutonium/thorium oxide mixture was found 19%/81%. By using Monteburns Code, the operation time, which describes the time passed until the reactor reaches a k eff value of 1.02, was found as 515 days for the original fuel and 1175 days for the weapons grade plutonium mixture. Furthermore, the burn-up values for the original fuel and WGrPu fuels were found as 47.69 and 119.27 GWd/MTU, respectively.

  13. Plutonium contamination in soils and sediments at Mayak PA, Russia.

    Science.gov (United States)

    Skipperud, Lindis; Salbu, Brit; Oughton, Deborah H; Drozcho, Eugeny; Mokrov, Yuri; Strand, Per

    2005-09-01

    The Mayak Production Association (Mayak PA) was established in the late 1940's to produce plutonium for the Soviet Nuclear Weapons Programme. In total, seven reactors and two reprocessing plants have been in operation. Today, the area comprises both military and civilian reactors as well as reprocessing and metallurgical plants. Authorized and accidental releases of radioactive waste have caused severe contamination to the surrounding areas. In the present study, [alpha]-spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS) have been used to determine plutonium activities and isotope ratios in soil and sediment samples collected from reservoirs of the Techa River at the Mayak area and downstream Techa River. The objective of the study was to determine the total inventory of plutonium in the reservoirs and to identify the different sources contributing to the plutonium contamination. Results based on [alpha]-spectrometry and ICP-MS measurements show the presence of different sources and confirmed recent reports of civilian reprocessing at Mayak. Determination of activity levels and isotope ratios in soil and sediment samples from the Techa River support the hypothesis that most of the plutonium, like other radionuclides in the Techa River, originated from the very early waste discharges to the Techa River between 1949 and 1951. Analysis of reservoir sediment samples suggest that about 75% of the plutonium isotopes could have been released to Reservoir 10 during the early weapons production operation of the plant, and that the majority of plutonium in Reservoir 10 originates from discharges from power production or reprocessing. Enhanced 240Pu/239Pu atom ratios in river sediment upper layers (0-2 cm) between 50 and 250 km downstream from the plant indicate a contribution from other, non-fallout sources.

  14. Plutonium and latent nuclear proliferation

    International Nuclear Information System (INIS)

    Quester, G.H.

    1992-01-01

    A country producing nuclear electric power acquires an ability to produce atomic bombs quite easily and without taking many steps beyond that which would be perfectly normal for civilian purposes. The role of plutonium in the three fold list of the gains that must be sought in arms control formulated by Schelling and Halpevin are discussed. On the first, that we should seek to reduce the likelihood of war, it can be argued that plutonium reduces the likelihood in some cases. The second, that we should seek to reduce the destruction in war, is made worse by plutonium. On the third criterion, that we should seek to reduce the burdens in peacetime of everyone's being prepared for war, the situation is confusing and depends on the prospects for nuclear electrical power. It is concluded that latent capability to produce nuclear weapons may be sufficient without the need for actual detonations and deployment of bombs. (UK)

  15. Using existing European MOX fabrication plants for the disposal of plutonium from dismantled Russian warheads

    International Nuclear Information System (INIS)

    Schaper, A.

    1995-01-01

    One of the disposition options for excess weapons plutonium which is favored by the study of the American National Academy of Sciences is the fabrication and use as fuel, without reprocessing, in existing or modified nuclear reactors. An important criterion for reducing the proliferation risks is minimizing the time during which the plutonium is stored in forms readily usable for nuclear weapons. The study recommends to either modify an almost completed facility for experimental fast reactors or to construct a new fuel fabrication capability. The estimated time for siting, building, and licensing is a decade or more

  16. Erosional losses of fallout plutonium

    International Nuclear Information System (INIS)

    Foster, G.R.; Hakonson, T.E.

    1987-01-01

    Plutonium from fallout after atmospheric explosion of nuclear weapons in the 1950's and 1960s is being redistributed over the landscape by soil erosion and carried on sediment by streams to oceans. Erosion rates computed with the Universal Soil Loss Equation for more than 200,000 sample points on nonfederal land across the US were used to estimate plutonium removal rates by soil erosion. On the average, only about 4% of the eroded sediment reaches the outlet of a major river. The remaining sediment is deposited en route, and because deposition is a selective process, the sediment is enriched in fine particles having the highest concentration of plutonium because of the element's strong association with clay and silt-sized sediment. Estimated enrichment ratios, sediment delivery ratios, and erosion rates were used to estimate annual delivery of fallout plutonium. These estimates ranged from 0.002% of the initial fallout plutonium inventory for the Savannah River basin to 0.01% for the Columbia River basin, to 0.02% for the Hudson and Rio Grande River basins, to 0.08% for the Mississippi River basin. If the deposition of plutonium had been uniformly 1 mCi/km 2 , the estimated plutonium activity on suspended sediment would range from about 7 fCi/g of sediment of the Savannah River basin, to 9 fCi/g for the Mississippi River basin, to 12 fCi/g for the Hudson River basin, to 14 fCi/g for the Columbia and Rio Grande River basins. 45 references, 2 figures, 17 tables

  17. Applications of acoustic reasonance spectroscopy as a safeguards-and-security technology in plutonium management

    International Nuclear Information System (INIS)

    Baiardo, J.P.; Wright, P.V.; Heiple, C.R.

    1995-01-01

    Recent negotiations between the United States and the former Soviet Union have resulted in agreements to aggressively reduce our respective nuclear weapon stockpiles. This is a very long-term activity that involves dismantlement, interim storage, and processing of a variety of components and materials. In addition, the end of the Cold War followed by the abrupt shutdown of a significant portion of the weapons complex in the United States has left tons of excess plutonium in various forms in storage for extended periods of time with resulting serious safety concerns. While long-term storage of plutonium in any form requires monitoring to mitigate safety, security, and nonproliferation concerns, the weapon dismantlement phase also requires monitoring for identification and verification without revealing design information. Clearly, the need for sensitive, noninvasive, and rapid monitoring techniques is highly desirable. Acoustic resonance spectroscopy (ARS) may emerge as one such technique; indeed, ARS has already been proven in a number of applications to date including Chemical Weapons Treaty verification and determination of waste drum pressurization and it is being investigated as a method to detect changes in sealed weapon component containers

  18. PFP Commercial Grade Food Pack Cans for Plutonium Handling and Storage Critical Characteristics

    International Nuclear Information System (INIS)

    BONADIE, E.P.

    1999-01-01

    This document specifies the critical characteristics for Commercial Grade Items (CGI) procured for PFP's Vault Operations system as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to perform its safety function. The changes in these specifications have no detrimental effect on the descriptions and parameters related to handling plutonium solids in the authorization basis. Because no parameters or sequences exceed the limits described in the authorization bases, no accident or abnormal conditions are affected. The specifications prescribed in this critical characteristics document do not represent an unreviewed safety question

  19. Using the Integral Fast Reactor (IFR) to dispose of excess weapons plutonium

    International Nuclear Information System (INIS)

    Hannum, W.H.; Wade, D.C.

    1997-01-01

    Plutonium is a man-made radioactive element with a long half-life. The only way to dispose of plutonium permanently is by causing it to fission. The fission process is efficient only in a fast neutron spectrum, and multiple recycle with a minimal loss is required to approach complete destruction. To be consistent with nonproliferation objectives, the process should be compatible with rigorous safeguards, and should not involve handling separated plutonium; The Integral Fast Reactor (IFR) meets all of these requirements. In addition, several near-term denaturing options are available that are fully compatible with complete destruction. When coupled with electrical generation, ample revenues would be available to cover all handling, operating and safeguards costs, with a substantial residual net return on the investment. (author)

  20. Critical experiments with mixed oxide fuel

    International Nuclear Information System (INIS)

    Harris, D.R.

    1997-01-01

    This paper very briefly outlines technical considerations in performing critical experiments on weapons-grade plutonium mixed oxide fuel assemblies. The experiments proposed would use weapons-grade plutonium and Er 2 O 3 at various dissolved boron levels, and for specific fuel assemblies such as the ABBCE fuel assembly with five large water holes. Technical considerations described include the core, the measurements, safety, security, radiological matters, and licensing. It is concluded that the experiments are feasible at the Rensselaer Polytechnic Institute Reactor Critical Facility. 9 refs

  1. Method of immobilizing weapons plutonium to provide a durable, disposable waste product

    Science.gov (United States)

    Ewing, Rodney C.; Lutze, Werner; Weber, William J.

    1996-01-01

    A method of atomic scale fixation and immobilization of plutonium to provide a durable waste product. Plutonium is provided in the form of either PuO.sub.2 or Pu(NO.sub.3).sub.4 and is mixed with and SiO.sub.2. The resulting mixture is cold pressed and then heated under pressure to form (Zr,Pu)SiO.sub.4 as the waste product.

  2. The mysterious world of plutonium metallurgy: Past and future

    International Nuclear Information System (INIS)

    Hecker, S.S.; Hammel, E.F.

    1998-01-01

    The first atomic bomb detonated at the Trinity Site in New Mexico on July 16, 1945, used plutonium, a man-made element discovered < 5 yr earlier. The story of how Manhattan Project scientists and engineers tackled the mysteries of this element and fabricated it into the first atomic bomb is one of the most fascinating in the history of metallurgy and materials. The authors are currently trying to generate renewed interest in plutonium metallurgy because of the challenge posed by President Clinton, i.e., to keep the nuclear stockpile of weapons safe and reliable without nuclear testing. The stockpile stewardship challenge requires either a lifetime extension of the plutonium components or a remanufacture--neither of which can be verified by testing. In turn, this requires that one achieve a better fundamental understanding of plutonium. Of special interest is the effect of self-irradiation on the properties and on the long-term stability of plutonium and its alloys. Additional challenges arise from long-term concerns about disposing of plutonium and dealing with its environmental legacy. It is imperative to interest the next generation of students in these plutonium challenges

  3. Managing plutonium in Britain. Current options[Mixed oxide nuclear fuels; Nuclear weapons

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the report of a two day meeting to discuss issues arising from the reprocessing of plutonium and production of mixed oxide nuclear fuels in Britain. It was held at Charney Manor, near Oxford, on June 25 and 26, 1998, and was attended by 35 participants, including government officials, scientists, policy analysts, representatives of interested NGO's, journalists, a Member of Parliament, and visiting representatives from the US and Irish governments. The topic of managing plutonium has been a consistent thread within ORG's work, and was the subject of one of our previous reports, CDR 12. This particular seminar arose out of discussions earlier in the year between Dr. Frank Barnaby and the Rt. Hon. Michael Meacher MP, Minister for the Environment. With important decisions about the management of plutonium in Britain pending, ORG undertook to hold a seminar at which all aspects of the subject could be aired. A number of on-going events formed the background to this initiative. The first was British Nuclear Fuels' [BNFL] application to the Environment Agency to commission a mixed oxide fuel [MOX] plant at Sellafield. The second was BNFL's application to vary radioactive discharge limits at Sellafield. Thirdly, a House of Lords Select Committee was in process of taking evidence, on the disposal of radioactive waste. Fourthly, the Royal Society, in a recent report entitled Management of Separated Plutonium, recommended that 'the Government should commission a comprehensive review... of the options for the management of plutonium'. Four formal presentations were made to the meeting, on the subjects of Britain's plutonium policy, commercial prospects for plutonium use, problems of plutonium accountancy, and the danger of nuclear terrorism, by experts from outside the nuclear industry. It was hoped that the industry's viewpoint would also be heard, and BNFL were invited to present a paper, but declined on the grounds that they

  4. Methodology for calculating guideline concentrations for safety shot sites

    International Nuclear Information System (INIS)

    1997-06-01

    Residual plutonium (Pu), with trace quantities of depleted uranium (DU) or weapons grade uranium (WU), exists in surficial soils at the Nevada Test Site (NTS), Nellis Air Force Range (NAFR), and the Tonopah Test Range (TTR) as the result of the above-ground testing of nuclear weapons and special experiments involving the detonation of plutonium-bearing devices. The special experiments (referred to as safety shots) involving plutonium-bearing devices were conducted to study the behavior of Pu as it was being explosively compressed; ensure that the accidental detonation of the chemical explosive in a production weapon would not result in criticality; evaluate the ability of personnel to manage large-scale Pu dispersal accidents; and develop criteria for transportation and storage of nuclear weapons. These sites do not pose a health threat to either workers or the general public because they are under active institutional control. The DOE is committed to remediating the safety shot sites so that radiation exposure to the public, both now and in the future, will be maintained within the established limits and be as low as reasonably achievable. Remediation requires calculation of a guideline concentration for the Pu, U, and their decay products that are present in the surface soil. This document presents the methodology for calculating guideline concentrations of weapons grade plutonium, weapons grade uranium, and depleted uranium in surface soils at the safety shot sites. Emphasis is placed on obtaining site-specific data for use in calculating dose to potential residents from the residual soil contamination

  5. Methodology for calculating guideline concentrations for safety shot sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Residual plutonium (Pu), with trace quantities of depleted uranium (DU) or weapons grade uranium (WU), exists in surficial soils at the Nevada Test Site (NTS), Nellis Air Force Range (NAFR), and the Tonopah Test Range (TTR) as the result of the above-ground testing of nuclear weapons and special experiments involving the detonation of plutonium-bearing devices. The special experiments (referred to as safety shots) involving plutonium-bearing devices were conducted to study the behavior of Pu as it was being explosively compressed; ensure that the accidental detonation of the chemical explosive in a production weapon would not result in criticality; evaluate the ability of personnel to manage large-scale Pu dispersal accidents; and develop criteria for transportation and storage of nuclear weapons. These sites do not pose a health threat to either workers or the general public because they are under active institutional control. The DOE is committed to remediating the safety shot sites so that radiation exposure to the public, both now and in the future, will be maintained within the established limits and be as low as reasonably achievable. Remediation requires calculation of a guideline concentration for the Pu, U, and their decay products that are present in the surface soil. This document presents the methodology for calculating guideline concentrations of weapons grade plutonium, weapons grade uranium, and depleted uranium in surface soils at the safety shot sites. Emphasis is placed on obtaining site-specific data for use in calculating dose to potential residents from the residual soil contamination.

  6. Nuclear weapons complex

    International Nuclear Information System (INIS)

    Rezendes, V.S.

    1992-04-01

    In addition to long-standing safety and environmental problems plaguing the nuclear weapons complex, this paper reports that the Department of Energy (DOE) faces a major new challenge-how to reconfigure the weapons complex to meet the nation's defense needs in the 21st century. Key decisions still need to be made about the size of the complex; where, if necessary, to relocate various operations; what technologies to use for new tritium production; and what to do with excess weapons-grade material. The choices confronting DOE and Congress are difficult given the conflicting demands for limited resources

  7. Aerosol generation by oxidation and combustion of plutonium and its compounds: literature survey

    International Nuclear Information System (INIS)

    Ballereau, P.

    1987-09-01

    Generation of aerosols by oxidation or combustion is one of the greatest risks due to plutonium. A review is made of the most interesting documents available on this topic. Following a brief study of plutonium oxydation conditions, characteristics of aerosols generated by accidents of fires involving metallic Pu and some of its compounds are assessed. Nuclear weapons are not included in this review [fr

  8. TRU waste from the Superblock

    International Nuclear Information System (INIS)

    Coburn, T.T.

    1997-01-01

    This data analysis is to show that weapons grade plutonium is of uniform composition to the standards set by the Waste-Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (TRUW Characterization QAPP, Rev. 2, DOE, Carlsbad Area Office, November 15, 1996). The major portion of Superblock transuranic (TRU) waste is glove-box trash contaminated with weapons grade plutonium. This waste originates in the Building 332 (B332) radioactive-materials area (RMA). Because each plutonium batch brought into the B332 RMA is well characterized with regard to nature and quantity of transuranic nuclides present, waste also will be well characterized without further analytical work, provided the batches are quite similar. A sample data set was created by examining the 41 incoming samples analyzed by Ken Raschke (using a γ-ray spectrometer) for isotopic distribution and by Ted Midtaune (using a calorimeter) for mass of radionuclides. The 41 samples were from separate batches analyzed May 1993 through January 1997. All available weapons grade plutonium data in Midtaune's files were used. Alloys having greater than 50% transuranic material were included. The intention of this study is to use this sample data set to judge ''similarity.''

  9. Plutonium recycling and the problem of nuclear proliferation

    International Nuclear Information System (INIS)

    Albright, D.; Feiveson, H.S.

    1988-01-01

    A typical 1-gigawatt light water reactor (LWR), the dominant commercial power reactor type today, operating at 70% capacity factor, generates approximately 250 kilograms of plutonium annually. This plutonium, which is produced in the reactor through neutron capture by uranium-238, is then discharged from the reactor along with the other constituents of the spent fuel. About 70% of the plutonium, or 175 kilograms, consists of fissile (odd-numbered) plutonium isotopes. As long as the plutonium discharged from the reactor is left intermixed with the highly radioactive fission products also contained in the spent fuel, it cannot readily be used for power or for weapons. However, upon chemical separation from the radioactive fission products and other components of the spent reactor fuel, the plutonium produced each year in a gigawatt reactor could be used, either in recycled fuel (to replace about 175 kilograms of U-235 in a power reactor) or to provide the fissile material for more than 25 nuclear warheads. Commercial separation of plutonium and the introduction of nuclear fuel cycles using recycled plutonium, which are now impending in several countries, force one to balance the probable increased risks of nuclear proliferation due to these activities against various economic and other motives that have been forwarded in their defense. The authors undertake an assessment of this balancing in this article

  10. A performance indicator for reduction in vulnerability through stabilization of plutonium

    International Nuclear Information System (INIS)

    Marchese, A.R.; Neogy, P.; Azarm, M.A.

    1997-01-01

    The US Department of Energy (DOE) is currently storing several metric tons of plutonium in various forms in a variety of facilities throughout the DOE complex. Since the cessation of weapons production in 1990, many of these facilities with plutonium in storage have not operated. Since the shutdown was regarded as temporary, little attempt was made at that time to empty the process lines of plutonium, or to place the plutonium in containers or packages that would provide safe storage for extended periods of time. As a result, the packages and containers providing interim storage are vulnerable to failure through leakage, rupture and other modes, and pose potential hazards to facility workers, the public and the environment. Here, an approach to measuring and tracking the reduction in vulnerabilities resulting from stabilizing and repackaging plutonium is developed and presented. The approach utilizes results obtained by the DOE Working Group on the vulnerabilities associated with plutonium storage

  11. THE DEACTIVATION, DECONTAMINATION AND DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT, A FORMER PLUTONIUM PROCESSING FACILITY AT DOE'S HANFORD SITE

    International Nuclear Information System (INIS)

    CHARBONEAU, S.L.

    2006-01-01

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington,; DC--and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (DandD) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP DandD effort includes descriptions of negotiations with the State of Washington concerning consent

  12. Technical considerations and policy requirements for plutonium management

    International Nuclear Information System (INIS)

    Christensen, D.C.; Dinehart, S.M.; Yarbro, S.L.

    1995-01-01

    The goals for plutonium management have changed dramatically over the past few years. Today, the challenge is focused on isolating plutonium from the environment and preparing it for permanent disposition. In parallel, the requirements for managing plutonium are rapidly changing. For example, there is a significant increase in public awareness on how facilities operate, increased attention to environmental safety and health (ES and H) concerns, greater interest in minimizing waste, more emphasis on protecting material from theft, providing materials for international inspection, and a resurgence of interest in using plutonium as an energy source. Of highest concern, in the immediate future, is protecting plutonium from theft or diversion, while the national policy on disposition is debated. These expanded requirements are causing a broadening of responsibilities within the Department of Energy (DOE) to include at least seven organizations. An unavoidable consequence is the divergence in approach and short-term goals for managing similar materials within each organization. The technology base does exist, properly, safely, and cost effectively to extract plutonium from excess weapons, residues, waste, and contaminated equipment and facilities, and to properly stabilize it. Extracting the plutonium enables it to be easily inventoried, packaged, and managed to minimize the risk of theft and diversion. Discarding excess plutonium does not sufficiently reduce the risk of diversion, and as a result, long-term containment of plutonium from the environment may not be able to be proven to the satisfaction of the public

  13. Technical considerations and policy requirements for plutonium management

    International Nuclear Information System (INIS)

    Christensen, D.C.; Dinehart, S.M.; Yarbro, S.L.

    1996-01-01

    The goals for plutonium management have changed dramatically over the past few years. Today, the challenge is focused on isolating plutonium from the environment and preparing it for permanent disposition. In parallel, the requirements for managing plutonium are rapidly changing. For example, there is a significant increase in public awareness on how facilities operate, increased attention to environmental safety and health (ES and H) concerns, greater interest in minimizing waste, more emphasis on protecting material from theft, providing materials for international inspection, and a resurgence of interest in using plutonium as an energy source. Of highest concern, in the immediate future, is protecting plutonium from theft or diversion, while the national policy on disposition is debated. These expanded requirements are causing a broadening of responsibilities within the Department of Energy (DOE) to include at least seven organizations. An unavoidable consequence is the divergence in approach and short-term goals for managing similar materials within each organization. The technology base does exist, properly, safely, and cost effectively to extract plutonium from excess weapons, residues, waste, and contaminated equipment and facilities, and to properly stabilize it. Extracting the plutonium enables it to be easily inventoried, packaged, and managed to minimize the risk of theft and diversion. Discarding excess plutonium does not sufficient reduce the risk of diversion, and as a result, long-term containment of plutonium from the environment may not be able to be proven to the satisfaction of the public

  14. Design-Only Conceptual Design Report: Plutonium Immobilization Plant

    International Nuclear Information System (INIS)

    DiSabatino, A.; Loftus, D.

    1999-01-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The siting for the Plutonium Immobilization Plant will be determined pursuant to the site-specific Surplus Plutonium Disposition Environmental Impact Statement in a Plutonium Deposition Record of Decision in early 1999. This document reflects a new facility using the preferred technology (ceramic immobilization using the can-in-canister approach) and the preferred site (at Savannah River). The Plutonium Immobilization Plant accepts plutonium from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors and must be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses: (1) A new building, the Plutonium Immobilization Plant, which will convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize plutonium in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister; (2) The existing Defense Waste Processing Facility for the pouring of high-level waste glass into the canisters; and (3) The Actinide Packaging and Storage Facility to receive and store feed materials. The Plutonium Immobilization Plant uses existing Savannah River Site infra-structure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. The Plutonium Immobilization Plant

  15. Assessment of plutonium in the Savannah River Site environment. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-12-31

    Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports.

  16. Siting criteria based on the prevention of deterministic effects from plutonium inhalation exposures

    International Nuclear Information System (INIS)

    Sorensen, S.A.; Low, J.O.

    1998-01-01

    Siting criteria are established by regulatory authorities to evaluate potential accident scenarios associated with proposed nuclear facilities. The 0.25 Sv (25 rem) siting criteria adopted in the United States has been historically based on the prevention of deterministic effects from acute, whole-body exposures. The Department of Energy has extended the applicability of this criterion to radionuclides that deliver chronic, organ-specific irradiation through the specification of a 0.25 Sv (25 rem) committed effective dose equivalent siting criterion. A methodology is developed to determine siting criteria based on the prevention of deterministic effects from inhalation intakes of radionuclides which deliver chronic, organ-specific irradiation. Revised siting criteria, expressed in terms of committed effective dose equivalent, are proposed for nuclear facilities that handle primarily plutonium compounds. The analysis determined that a siting criterion of 1.2 Sv (120 rem) committed effective dose equivalent for inhalation exposures to weapons-grade plutonium meets the historical goal of preventing deterministic effects during a facility accident scenario. The criterion also meets the Nuclear Regulatory Commission and Department of Energy Nuclear Safety Goals provided that the frequency of the accident is sufficiently low

  17. Study on Utilization of Super Grade Plutonium in Molten Salt Reactor FUJI-U3 using CITATION Code

    Science.gov (United States)

    Wulandari, Cici; Waris, Abdul; Pramuditya, Syeilendra; Asril, Pramutadi AM; Novitrian

    2017-07-01

    FUJI-U3 type of Molten Salt Reactor (MSR) has a unique design since it consists of three core regions in order to avoid the replacement of graphite as moderator. MSR uses floride as a nuclear fuel salt with the most popular chemical composition is LiF-BeF2-ThF4-233UF4. ThF4 and 233UF4 are the fertile and fissile materials, respectively. On the other hand, LiF and BeF2 working as both fuel and heat transfer medium. In this study, the super grade plutonium will be utilized as substitution of 233U since plutonium is easier to be obtained compared to 233U as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2002 code with JENDL 3.2 as nuclear data library.

  18. Analysis of india and Pakistan's nuclear capacity

    International Nuclear Information System (INIS)

    Li Zhimin

    1999-07-01

    The development and capacity of both India and Pakistan's nuclear weapons are described in production of weapon-grade materials, nuclear testing, weaponization engineering and delivery systems. India is capable of designing and manufacturing both small yield tactic nuclear weapons and big yield strategic ones and also possesses the technique to design and manufacture H-bombs. Weapon-grade plutonium constitutes the primary fission material for India's nuclear weapon and it has plutonium enough to make 70 to 100 nuclear weapons. India can also produce some tritium. India has already possessed delivery systems but it has not yet mounted nuclear warheads on its ballistic missiles even though its missiles, which India has already owned or is under development, have the ability to carry nuclear warheads. Pakistan also has the ability to make both tactic nuclear weapons and strategic ones. With its weapon-grade uranium, 20 to 30 nuclear weapons can be made. Besides the uranium production facility. Pakistan also has the facility to produce tritium. It is supposed that Pakistan has the ability to carry nuclear weapons with airplane, but it has a long way to go if it wants to mount nuclear weapon, especially bit yield ones, on its own missile. As a whole, India's nuclear force is stronger than Pakistan's, and its development far more advanced than Pakistan's

  19. The 871 keV gamma ray from 17O and the identification of plutonium oxide

    International Nuclear Information System (INIS)

    Peurrung, Anthony; Arthur, Richard; Elovich, Robert; Geelhood, Bruce; Kouzes, Richard; Pratt, Sharon; Scheele, Randy; Sell, Richard

    2001-01-01

    Disarmament agreements and discussions between the United States and the Russian Federation for reducing the number of stockpiled nuclear weapons require verification of the origin of materials as having come from disassembled weapons. This has resulted in the identification of measurable 'attributes' that characterize such materials. It has been proposed that the 871 keV gamma ray of 17 O can be observed as an indicator of the unexpected presence of plutonium oxide, as opposed to plutonium metal, in such materials. We have shown that the observation of the 871 keV gamma ray is not a specific indicator of the presence of the oxide, but rather indicates the presence of nitrogen

  20. Review of John W. Gofman's reports on health hazards from inhaled plutonium

    International Nuclear Information System (INIS)

    Richmond, C.R.

    1976-02-01

    This document is a review of two reports prepared in 1975 by John W. Gofman on the subject of plutonium toxicity. Because Gofman's estimates of the calculated health effects from inhaled plutonium are significantly higher than those obtained from other analyses (including the risk estimates calculated by the National Academy of Science's Advisory Committee on the Biological Effects of Ionizing Radiation), it was decided to critically review Gofman's papers and supporting arguments. This review concludes that Gofman's predictions of large numbers of plutonium-induced lung cancers from nuclear weapons testing are derived mainly from his incorrect assumptions about the effects of cigarette smoking on the retention of plutonium particulates in the tracheobronchial region of the lungs. It appears that Gofman's assumptions are considerably overstated and cannot be substantiated by currently available information. Also, Gofman's attempt to equate a given number of lung cancer deaths to a pound of plutonium tends to obfuscate rather than clarify attempts to derive risk estimates for inhaled plutonium

  1. Criticality characteristics of mixtures of plutonium, silicon dioxide, Nevada tuff, and water

    International Nuclear Information System (INIS)

    Sanchez, R.; Myers, W.; Hayes, D.

    1997-01-01

    The nuclear criticality characteristics of mixtures of plutonium, silicon dioxide, and water (Part A) or plutonium, silicon dioxide, Nevada Yucca Mountain tuff, and water (Part B) have become of interest because of the appearance of recent papers on the subject. These papers postulate that if excess weapons plutonium is vitrified into a silicate log and buried underground, a self-sustaining neutron chain reaction may develop given sufficient time and interaction with the burial medium. Moreover, given specific geologic actions resulting in postulated configurations, the referenced papers state that nuclear explosions could occur with multi-kiloton yields or yields equivalent to hundreds of tons of TNT

  2. Continuation application for the Amarillo National Resource Center for Plutonium, a higher education consortium consisting of Texas A and M University, Texas Tech University, and the University of Texas at Austin

    International Nuclear Information System (INIS)

    1995-01-01

    This report describes the 5 tasks to be covered under this project and compiles budget information. Task 1 is to establish a Plutonium Information Resource, which has been established in Amarillo, Texas. Task 2, Advisory Functions, coordinates studies and activities relating to the disposition of excess weapons-grade plutonium. Task 3, Environmental, Public Health, and Safety, supports soil remediation activities. Task 4, Education and Outreach, is supporting four programs: K--12 education improvement in science and math courses; Academic intervention to identify and encourage high ability high school and middle school students with potential to become scientists and engineers; Graduate education evaluation; and Public outreach programs. Task 5, Plutonium and other Materials Studies, is currently funding two projects for the disposition of high explosives: a feasibility study of burning a mixture of high explosives and other materials in a commercial coal-fired power plant and synthesis of diamond by shock compression of bucky ball with explosives

  3. Continuation application for the Amarillo National Resource Center for Plutonium, a higher education consortium consisting of Texas A and M University, Texas Tech University, and the University of Texas at Austin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-29

    This report describes the 5 tasks to be covered under this project and compiles budget information. Task 1 is to establish a Plutonium Information Resource, which has been established in Amarillo, Texas. Task 2, Advisory Functions, coordinates studies and activities relating to the disposition of excess weapons-grade plutonium. Task 3, Environmental, Public Health, and Safety, supports soil remediation activities. Task 4, Education and Outreach, is supporting four programs: K--12 education improvement in science and math courses; Academic intervention to identify and encourage high ability high school and middle school students with potential to become scientists and engineers; Graduate education evaluation; and Public outreach programs. Task 5, Plutonium and other Materials Studies, is currently funding two projects for the disposition of high explosives: a feasibility study of burning a mixture of high explosives and other materials in a commercial coal-fired power plant and synthesis of diamond by shock compression of bucky ball with explosives.

  4. Plutonium Disposition by Immobilization

    International Nuclear Information System (INIS)

    Gould, T.; DiSabatino, A.; Mitchell, M.

    2000-01-01

    The ultimate goal of the Department of Energy (DOE) Immobilization Project is to develop, construct, and operate facilities that will immobilize between 17 to 50 tonnes (MT) of U.S. surplus weapons-usable plutonium materials in waste forms that meet the ''spent fuel'' standard and are acceptable for disposal in a geologic repository. Using the ceramic can-in-canister technology selected for immobilization, surplus plutonium materials will be chemically combined into ceramic forms which will be encapsulated within large canisters of high level waste (HLW) glass. Deployment of the immobilization capability should occur by 2008 and be completed within 10 years. In support of this goal, the DOE Office of Fissile Materials Disposition (MD) is conducting development and testing (D and T) activities at four DOE laboratories under the technical leadership of Lawrence Livermore National Laboratory (LLNL). The Savannah River Site has been selected as the site for the planned Plutonium Immobilization Plant (PIP). The D and T effort, now in its third year, will establish the technical bases for the design, construction, and operation of the U. S. capability to immobilize surplus plutonium in a suitable and cost-effective manner. Based on the D and T effort and on the development of a conceptual design of the PIP, automation is expected to play a key role in the design and operation of the Immobilization Plant. Automation and remote handling are needed to achieve required dose reduction and to enhance operational efficiency

  5. Cogema and the recycling of nuclear military materials

    International Nuclear Information System (INIS)

    1999-04-01

    The signature of the Start 1 and Start 2 treaties in 1991 and 1993 has marked the start-up of nuclear disarmament. This process covers two aspects: the destruction of vectors (missiles, planes..) and the dismantling of warheads carrying weapon grade radioactive materials (uranium and plutonium). This dossier explains the political and technical choices made by Russia and the USA for the management of their weapon grade plutonium: fabrication of MOX fuels (cooperation between Minatom (Russia), Siemens and Cogema for the building of conversion and fabrication plants, collaboration between Cogema, Duke Engineering and Stone and Webster (DCS) for the building of a MOX fabrication plant and for the irradiation of MOX fuels in US reactors), disposal of hardly convertible plutonium. (J.S.)

  6. Excess plutonium disposition: The deep borehole option

    International Nuclear Information System (INIS)

    Ferguson, K.L.

    1994-01-01

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified

  7. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    International Nuclear Information System (INIS)

    Kudinov, K.G.; Tretyakov, A.A.; Sorokin, Y.P.; Bondin, V.V.; Manakova, L.F.; Jardine, L.J.

    2001-01-01

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is incineration

  8. AN APPROACH TO CHARACTERIZING and EVALUATING ALTERNATIVES FOR THE DECOMMISSIONING OF SUB-GRADE STRUCTURES AT THE PLUTONIUM FINISHING PLANT

    International Nuclear Information System (INIS)

    HOPKINS, A.M.; KLOS, D.B.

    2007-01-01

    In 2002, the Richland Operations Office (RL) of the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) developed milestones for transitioning the Plutonium Finishing Plant (PFP) facility to a clean slab-on-grade configuration. These milestones required developing an engineering evaluation/cost analysis (EF/CA) for the facility's sub-grade structures and installations as part of a series of evaluations intended to provide for the transition of the facility to a clean slab-on-grade configuration. In addition to supporting decisions for interim actions, the analyses of sub-grade structures and installations performed through this EE/CA will contribute to the remedial investigation feasibility study(ies) and subsequently to the final records of decision for the relevant operable units responsible for site closure in the 200 West Area of the Hanford Site

  9. Development of the plutonium oxide vitrification system

    International Nuclear Information System (INIS)

    Marshall, K.M.; Marra, J.C.; Coughlin, J.T.; Calloway, T.B.; Schumacher, R.F.; Zamecnik, J.R.; Pareizs, J.M.

    1998-01-01

    Repository disposal of plutonium in a suitable, immobilized form is being considered as one option for the disposition of surplus weapons-usable plutonium. Accelerated development efforts were completed in 1997 on two potential immobilization forms to facilitate downselection to one form for continued development. The two forms studied were a crystalline ceramic based on Synroc technology and a lanthanide borosilicate (LaBS) glass. As part of the glass development program, melter design activities and component testing were completed to demonstrate the feasibility of using glass as an immobilization medium. A prototypical melter was designed and built in 1997. The melter vessel and drain tube were constructed of a Pt/Rh alloy. Separate induction systems were used to heat the vessel and drain tube. A Pt/Rh stirrer was incorporated into the design to facilitate homogenization of the melt. Integrated powder feeding and off-gas systems completed the overall design. Concurrent with the design efforts, testing was conducted using a plutonium surrogate LaBS composition in an existing (near-scale) melter to demonstrate the feasibility of processing the LaBS glass on a production scale. Additionally, the drain tube configuration was successfully tested using a plutonium surrogate LaBS glass

  10. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department's plutonium storage. Volume II, part 10: Sandia National Laboratories - New Mexico working group assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    The Secretary of Energy's memorandum of March 15, 1994, established an initiative for a Department-wide assessment of the vulnerabilities of the inventory of plutonium in storage. Plutonium in intact nuclear weapons and spent fuel were excluded from this study. The DOE Plutonium Vulnerability Working Group, which was formed for this purpose and produced the Project and Assessment Plans, will also manage the open-quote snap-shot close-quote assessments and produce a final report for the Secretary by September 30, 1994. The Project Plan and Assessment Plan to accomplish this study, and which established responsibilities for personnel essential to the study, were issued on April 25, 1994

  11. Fuel cycles using adulterated plutonium

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; Bigelow, J.E.; Campbell, D.O.; Kitts, F.G.; Lindauer, R.B.

    1978-01-01

    Adjustments in the U-Pu fuel cycle necessitated by decisions made to improve the nonproliferation objectives of the US are examined. The uranium-based fuel cycle, using bred plutonium to provide the fissile enrichment, is the fuel system with the highest degree of commercial development at the present time. However, because purified plutonium can be used in weapons, this fuel cycle is potentially vulnerable to diversion of that plutonium. It does appear that there are technologically sound ways in which the plutonium might be adulterated by admixture with 238 U and/or radioisotopes, and maintained in that state throughout the fuel cycle, so that the likelihood of a successful diversion is small. Adulteration of the plutonium in this manner would have relatively little effect on the operations of existing or planned reactors. Studies now in progress should show within a year or two whether the less expensive coprocessing scheme would provide adequate protection (coupled perhaps with elaborate conventional safeguards procedures) or if the more expensive spiked fuel cycle is needed as in the proposed civex pocess. If the latter is the case, it will be further necessary to determine the optimum spiking level, which could vary as much as a factor of a billion. A very basic question hangs on these determinations: What is to be the nature of the recycle fuel fabrication facilities. If the hot, fully remote fuel fabrication is required, then a great deal of further development work will be required to make the full cycle fully commercial

  12. Integrated development and testing plan for the plutonium immobilization project

    International Nuclear Information System (INIS)

    Kan, T.

    1998-01-01

    This integrated plan for the DOE Office of Fissile Materials Disposition (MD) describes the technology development and major project activities necessary to support the deployment of the immobilization approach for disposition of surplus weapons-usable plutonium. The plan describes details of the development and testing (D and T) tasks needed to provide technical data for design and operation of a plutonium immobilization plant based on the ceramic can-in-canister technology (''Immobilization Fissile Material Disposition Program Final Immobilization Form Assessment and Recommendation'', UCRL-ID-128705, October 3, 1997). The plan also presents tasks for characterization and performance testing of the immobilization form to support a repository licensing application and to develop the basis for repository acceptance of the plutonium form. Essential elements of the plant project (design, construction, facility activation, etc.) are described, but not developed in detail, to indicate how the D and T results tie into the overall plant project. Given the importance of repository acceptance, specific activities to be conducted by the Office of Civilian Radioactive Waste Management (RW) to incorporate the plutonium form in the repository licensing application are provided in this document, together with a summary of how immobilization D and T activities provide input to the license activity. The ultimate goal of the Immobilization Project is to develop, construct, and operate facilities that will immobilize from about 18 to 50 tonnes (MT) of U.S. surplus weapons usable plutonium materials in a manner that meets the ''spent fuel'' standard (Fissile Materials Storage and Disposition Programmatic Environmental Impact Statement Record of Decision, ''Storage and Disposition Final PEIS'', issued January 14, 1997, 62 Federal Register 3014) and is acceptable for disposal in a geologic repository. In the can-in-canister technology, this is accomplished by encapsulating the

  13. Control of civilian plutonium inventories using burning in a non-fertile fuel

    Energy Technology Data Exchange (ETDEWEB)

    Oversby, V.M. [Lawrence Livermore National Lab., CA (United States); McPheeters, C.C. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States); Degueldre, C. [Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Paratte, J.M. [Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland)

    1997-05-01

    The increasing inventories of plutonium generated by commercial nuclear power production represent a potential source for proliferation of nuclear weapons. To address this threat we propose separating the plutonium from the other constituents of commercial reactor spent fuel and burning it in a non-fertile fuel based on a zirconium dioxide matrix. The separation can be performed by the Purex process currently in use, but we recommend development of a more compact separation technology that would produce less secondary waste than currently used technology and would allow for more stringent accounting of plutonium inventories. The non-fertile fuel is designed for use in conventional light water power reactors and does not require development of new reactor technology. (orig.).

  14. Control of civilian plutonium inventories using burning in a non-fertile fuel

    Science.gov (United States)

    Oversby, V. M.; McPheeters, C. C.; Degueldre, C.; Paratte, J. M.

    1997-05-01

    The increasing inventories of plutonium generated by commercial nuclear power production represent a potential source for proliferation of nuclear weapons. To address this threat we propose separating the plutonium from the other constituents of commercial reactor spent fuel and burning it in a non-fertile fuel based on a zirconium dioxide matrix. The separation can be performed by the Purex process currently in use, but we recommend development of a more compact separation technology that would produce less secondary waste than currently used technology and would allow for more stringent accounting of plutonium inventories. The non-fertile fuel is designed for use in conventional light water power reactors and does not require development of new reactor technology.

  15. Generalized Rate Theory for Void and Bubble Swelling and its Application to Delta-Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wall, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolfer, W. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-04

    A rate theory for void and bubble swelling is derived that allows both vacancies and self-interstitial atoms to be generated by thermal activation at all sinks. In addition, they can also be produced by displacement damage from external and internal radiation. This generalized rate theory (GRT) is applied to swelling of gallium-stabilized δ-plutonium in which α-decay causes the displacement damage. Since the helium atoms produced also become trapped in vacancies, a distinction is made between empty and occupied vacancies. The growth of helium bubbles observed by transmission electron microscopy (TEM) in weapons-grade and in material enriched with Pu238 is analyzed, using different values for the formation energy of self-interstitial atoms (SIA) and two different sets of relaxation volumes for the vacancy and for the SIA. One set allows preferential capture of SIA at dislocations, while the other set gives equal preference to both vacancy and SIA. It is found that the helium bubble diameters observed are in better agreement with GRT predictions if no preferential capture occurs at dislocations. Therefore, helium bubbles in δ-plutonium will not evolve into voids. The helium density within the bubbles remains sufficiently high to cause thermal emission of SIA. Based on a helium density between two to three helium atoms per vacant site, the sum of formation and migration energies must be around 2.0 eV for SIA in δ-plutonium.

  16. ARIES pit disassembly-safeguards issues for transparency

    International Nuclear Information System (INIS)

    Fearey, B.L.; Cremers, T.L.

    1995-01-01

    Historic changes are now occurring in U.S. nonproliferation and arms control policy. The quantity of nuclear weapons required to provide a deterrence has decreased (especially with the end of the Cold War). Further, various bilateral and multilateral treaties now require the removal of numerous nuclear weapons from the U.S. stockpile. Although the removal of such weapons appears straightforward, the final disposition of the surplus weapons-grade nuclear material must be carefully considered. Domestically, several plutonium disposition plans are now under consideration concerning long-term safety, materials accounting, environmental impact, accessibility, and long-term containment. The Automated Retirement and Integrated Extraction System (ARIES) currently under development at Los Alamos National Laboratory is one such disposition method for the disassembly of plutonium weapons components (pits). The ARIES system integrates and automates several features: disassembly of pits, consolidation of the plutonium material, on-line measurement of final products, waste streams, and long-term packaging. Clearly, in any plutonium disposition plan, the safeguards aspects of materials control and accounting and the security aspects must be carefully considered and evaluated

  17. Crystalline matrices for the immobilization of plutonium and actinides

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E.B.; Burakov, E.E.; Galkin, Ya.B.; Starchenko, V.A.; Vasiliev, V.G. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    1996-05-01

    The management of weapon plutonium, disengaged as a result of conversion, is considered together with the problem of the actinide fraction of long-lived high level radioactive wastes. It is proposed to use polymineral ceramics based on crystalline host-phases: zircon ZrSiO{sub 4} and zirconium dioxide ZrO{sub 2}, for various variants of the management of plutonium and actinides (including the purposes of long-term safe storage or final disposal from the human activity sphere). It is shown that plutonium and actinides are able to form with these phases on ZrSiO{sub 4} and ZrO{sub 2} was done on laboratory level by the hot pressing method, using the plasmochemical calcination technology. To incorporate simulators of plutonium into the structure of ZrSiO{sub 4} and ZrO{sub 2} in the course of synthesis, an original method developed by the authors as a result of studying the high-uranium zircon (Zr,U) SiO{sub 4} form Chernobyl {open_quotes}lavas{close_quotes} was used.

  18. Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, David M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-13

    The ARIES Program at the Los Alamos National Laboratory removes plutonium metal from decommissioned nuclear weapons, and converts it to plutonium dioxide in a specially-designed Direct Metal Oxidation furnace. The plutonium dioxide is analyzed for specific surface area, particle size distribution, and moisture content. The purpose of these analyses is to certify that the plutonium dioxide powder meets or exceeds the specifications of the end-user, and the specifications for the packaging and transport of nuclear materials. Analytical results from plutonium dioxide from ARIES development activities, from ARIES production activities, from muffle furnace oxidation of metal, and from metal that was oxidized over a lengthy time interval in air at room temperature, are presented. The processes studied produce plutonium dioxide powder with distinct differences in measured properties, indicating the significant influence of oxidation conditions on physical properties.

  19. Getting the plutonium disposition job done: the concept of a joint-venture disposition enterprise financed by additional sales of highly enriched uranium

    International Nuclear Information System (INIS)

    Bunn, M.

    1996-01-01

    The paper gives an outline of a concept which has the potential to provide both substantial financing needed for disposition of plutonium from excess nuclear weapons and the long-term management structure required to implement this effort. The three most important issues were underlined. First, it is urgent to modernize security and accounting systems for all weapon-usable nuclear materials, particularly from former Soviet Union. Second, excess plutonium and Highly Enriched Uranium (HEU) must be brought under international monitoring to ensure irreversibility of nuclear arms reduction. Third, quick move should be done towards actual disposition of excess plutonium and HEU. Technology already exists, but the key issues are how to get finance and manage this operation, particularly given its immense scope and controversial nature. An international joint venture 'Enterprise for nuclear Security' that would build and operate plutonium disposition facilities under stringent non-proliferation controls, financed through additional sales of HEU is a potentially promising approach to addressing the most difficult issues facing the disposition problem

  20. Low enrichment of uranium in the light of the nuclear weapon problem

    International Nuclear Information System (INIS)

    Barstad, G.

    1979-09-01

    A difficult problem in the immediate future will be to direct civil nuclear technology in such a way that the ability to produce nuclear weapons by additional countries is prevented. There are two main problems. First, enrichment plants can be used to produce high enriched uranium, which can be used in nuclear weapons, as well as low enriched reactor fuel. Second, plutonium produced during reactor operation can be used as nuclear weapon material, as well as for nuclear fuel. The problem discussed here is particularly the development of an enrichment process which is economic for low enriched reactor fuel, but which may not easily be adapted to produce high enriched uranium. (JIW)

  1. Report on the control of the safety and security of nuclear facilities. Part 2: the reconversion of military plutonium stocks. The use of the helps given to central and eastern Europe countries and to the new independent states; Rapport sur le controle de la surete et de la securite des installations nucleaires. Deuxieme partie: la reconversion des stocks de plutonium militaire. L'utilisation des aides accordees aux pays d'Europe centrale et orientale et aux nouveaux etats independants

    Energy Technology Data Exchange (ETDEWEB)

    Birraux, C

    2002-07-01

    This report deals with two different aspects of the safety and security of nuclear facilities. The first aspect concerns the reconversion of weapon grade plutonium stocks: the plutonium in excess, plutonium hazards and nuclear fuel potentialities, the US program, the Russian program, the actions of European countries (France, Germany), the intervention of other countries, the unanswered questions (political aspects, uncertainties), the solutions of the future (improvement of reactors, the helium-cooled high temperature reactor technology (gas-turbine modular helium reactor: GT-MHR), the Carlo Rubbia's project). The second aspect concerns the actions carried out by the European Union in favor of the civil nuclear facilities of central and eastern Europe: the European Union competencies through the Euratom treaty, the conclusions of the European audit office about the PHARE and TACIS nuclear programs, the status of committed actions, the coming planned actions, and the critical analysis of the policy adopted so far. (J.S.)

  2. The plutonium mountain: preventing diversion

    International Nuclear Information System (INIS)

    Pohling-Brown, Pamela.

    1997-01-01

    With continued arms-reduction between the USA and the former Soviet Union, surplus nuclear materials, from dismantled weapons, requires handling. A number of risks are identified including occupational safety for workers involved with handling nuclear materials, and environmental protection. Perhaps the most sinister is the extra security needed to ensure that these materials are not diverted to rogue states or terrorist groups, as materials are handled in a larger number of countries. In particular, the author addresses the problem of plutonium reserves, and discusses the role of reprocessing in preventing diversion. (UK)

  3. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO 2 and UO 2 ), typically containing 95% or more UO 2 . DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO 2 powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO 2 powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required

  4. Comparative safety assessment of surface versus submarine plutonium shipments

    International Nuclear Information System (INIS)

    Knepper, D.S.; Feltus, M.A.

    1993-01-01

    The recent shipment of plutonium from France to Japan aboard the freighter Akatsuki Maru touched off protests from environmental and antinuclear organizations. These protests arose from the fear of an accidental sinking of the vessel that would release its cargo to the sea, as well as the threat of a terrorist nation highjacking the ship for its cargo to produce atomic weapons. The sinking of a merchant ship is not uncommon, as illustrated by the famous losses of the tankers Amoco Cadiz and Exxon Valdez. The highjacking of a lightly armed freighter such as the Akatsuki Maru is possible and would not be unduly difficult for a well-equipped terrorist nation. The combined threats of weapons proliferation and environmental damage arising from the diversion or destruction of a sea vessel carrying plutonium will continue to abound as the reprocessing of spent nuclear fuel increases. An alternate method for the transportation with reduced risks of both diversion and destruction needs to be developed. The shipment aboard the Akatsuki Maru was originally proposed to be flown from France to Japan over the continental United States. This proposal was rejected by the Reagan administration in 1988. A third alternative to the current ideas of air transport and surface transport is subsurface transport. This research project investigates the transportation of plutonium by submarine and compares it to the current method of transportation by freighter. This analysis involves a study of the military threat to a submarine by a terrorist nation and comparable threat to a surface vessel. To study the nonmilitary aspects of plutonium shipping, a fault-tree evaluation is performed for transportation by submarine and compared with the current risk analysis performed for surface vessels

  5. Examination of the potential for diversion or clandestine dual use of a pebble-bed reactor to produce plutonium

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Terry, W.K.; Gougar, H.D.

    2002-01-01

    This paper explores the susceptibility of Pebble-Bed Reactors (PBRs) to be used overtly or covertly for the production of plutonium for nuclear weapons. The basic assumption made for the consideration of overt production is that a country would purchase a PBR with the ostensible motive of producing electric power; then, after the power plant was built, the country would divert the facility entirely to the production of weapons material. It is assumed that the country would then have to manufacture production pebbles from natural uranium. The basic assumption made for covert production is that the country would obtain and use a PBR for power production, but that it would clandestinely feed plutonium production pebbles through the reactor in such small numbers that the perturbation on power plant operation would be very difficult to detect. This paper shows the potential rate of plutonium production under such constraints. It is demonstrated that the PBR is a very poor choice for either form of proliferation-intent use. (author)

  6. Technical considerations in decisions on plutonium use

    International Nuclear Information System (INIS)

    Till, C.E.

    1980-01-01

    Present-day reactors use uranium inefficiently. Really substantial increases in efficiency of uranium utilization require reprocessing. Reprocessing activities give rise to concern about their possible use in fission weapons acquisition. The basic properties of nuclides severely limit both the number of alternative ways that fuel utilization can be improved and the amount of the improvement that is possible from any of the alternatives. By far the greatest improvement comes from plutonium use in a fast reactor. The properties that allow this are peculiar to plutonium. There are basically only two fuel cycles that can be considered as alternatives to the plutonium-238/uranium fuel cycle. One is a uranium-233/thorium fuel cycle, a cycle that is very similar in requirements, including reprocessing, to the plutonium-238/uranium cycle. The other is continuation and refinement of the current once-through cycle. A small number of technical measures to increase proliferation-resistance have been proposed. Improvements of an institutional nature are of two types. The first are improvements in international safeguards - most importantly, nuclear materials accountancy - essentially strengthening or augmenting current IAEA procedures. The second involves agreements between nations to limit distribution of sensitive technologies and to multinationalize or internationalize sensitive elements of the fuel cycle

  7. Interim storage of dismantled nuclear weapon components at the U.S. Department of Energy Pantex Plant

    International Nuclear Information System (INIS)

    Guidice, S.J.; Inlow, R.O.

    1995-01-01

    Following the events of 1989 and the subsequent cessation of production of new nuclear weapons by the US, the mission of the Department of Energy (DOE) Nuclear Weapons Complex has shifted from production to dismantlement of retired weapons. The sole site in the US for accomplishing the dismantlement mission is the DOE Pantex Plant near Amarillo, Texas. Pending a national decision on the ultimate storage and disposition of nuclear components form the dismantled weapons, the storage magazines within the Pantex Plant are serving as the interim storage site for pits--the weapon plutonium-bearing component. The DOE has stipulated that Pantex will provide storage for up to 12,000 pits pending a Record of Decision on a comprehensive site-wide Environmental Impact Statement in November 1996

  8. Plutonium dioxide storage: Conditions for preparation and handling

    International Nuclear Information System (INIS)

    Haschke, J.M.; Ricketts, T.E.

    1995-08-01

    Desorption and adsorption of plutonium dioxide are derived from production-scale experiments that demonstrate techniques of preparing weapons-grade material for extended storage. In combination with data from literature, results define conditions for preparing and certifying PuO 2 and provide essential information for developing and implementing a repackaging process compliant with DOE standards for safe storage of plutonium. As demonstrated by loss-on-ignition (LOI) analysis, adsorbates are effectively removed by heating the oxide in air at 950 C for two hours. After oxides are fired at this temperature, specific surface areas are consistently less than 5 m 2 /g. Due to this low surface area, water adsorption by fired oxide is limited to a maximum of 0.2 mass % at 50% relative humidity. Kinetic data for the adsorption process show that water is accommodated on the oxide surface by a sequence of distinct first-order steps comprising five types of adsorbate interaction and accumulating ten molecular layers of H 2 0 at 100% humidity. An equation defining the humidity dependence of the adsorption rate during the first step is applied in estimating time periods that a fired oxide may remain in given configurations without detrimental adsorption. Particle size measurements show that the source terms for environmental dispersal of oxides prepared by hydride-catalyzed reaction of metal and by oxalate calcination are approximately 20 and 0.1 mass %, respectively, and that the values are reduced by firing. Evidence for a chemical reaction between dioxide and water is discussed and practical applications of the results to oxide stabilization and LOI analysis are presented

  9. Options for converting excess plutonium to feed for the MOX fuel fabrication facility

    Energy Technology Data Exchange (ETDEWEB)

    Watts, Joe A [Los Alamos National Laboratory; Smith, Paul H [Los Alamos National Laboratory; Psaras, John D [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory; Joyce, Jr., Edward L [Los Alamos National Laboratory

    2009-01-01

    The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

  10. Report on the control of the safety and security of nuclear facilities. Part 2: the reconversion of military plutonium stocks. The use of the helps given to central and eastern Europe countries and to the new independent states; Rapport sur le controle de la surete et de la securite des installations nucleaires. Deuxieme partie: la reconversion des stocks de plutonium militaire. L'utilisation des aides accordees aux pays d'Europe centrale et orientale et aux nouveaux etats independants

    Energy Technology Data Exchange (ETDEWEB)

    Birraux, C

    2002-07-01

    This report deals with two different aspects of the safety and security of nuclear facilities. The first aspect concerns the reconversion of weapon grade plutonium stocks: the plutonium in excess, plutonium hazards and nuclear fuel potentialities, the US program, the Russian program, the actions of European countries (France, Germany), the intervention of other countries, the unanswered questions (political aspects, uncertainties), the solutions of the future (improvement of reactors, the helium-cooled high temperature reactor technology (gas-turbine modular helium reactor: GT-MHR), the Carlo Rubbia's project). The second aspect concerns the actions carried out by the European Union in favor of the civil nuclear facilities of central and eastern Europe: the European Union competencies through the Euratom treaty, the conclusions of the European audit office about the PHARE and TACIS nuclear programs, the status of committed actions, the coming planned actions, and the critical analysis of the policy adopted so far. (J.S.)

  11. Report on the control of the safety and security of nuclear facilities. Part 2: the reconversion of military plutonium stocks. The use of the helps given to central and eastern Europe countries and to the new independent states

    International Nuclear Information System (INIS)

    Birraux, C.

    2002-01-01

    This report deals with two different aspects of the safety and security of nuclear facilities. The first aspect concerns the reconversion of weapon grade plutonium stocks: the plutonium in excess, plutonium hazards and nuclear fuel potentialities, the US program, the Russian program, the actions of European countries (France, Germany), the intervention of other countries, the unanswered questions (political aspects, uncertainties), the solutions of the future (improvement of reactors, the helium-cooled high temperature reactor technology (gas-turbine modular helium reactor: GT-MHR), the Carlo Rubbia's project). The second aspect concerns the actions carried out by the European Union in favor of the civil nuclear facilities of central and eastern Europe: the European Union competencies through the Euratom treaty, the conclusions of the European audit office about the PHARE and TACIS nuclear programs, the status of committed actions, the coming planned actions, and the critical analysis of the policy adopted so far. (J.S.)

  12. Plutonium release from Fukushima Daiichi fosters the need for more detailed investigations

    Science.gov (United States)

    Schneider, Stephanie; Walther, Clemens; Bister, Stefan; Schauer, Viktoria; Christl, Marcus; Synal, Hans-Arno; Shozugawa, Katsumi; Steinhauser, Georg

    2013-10-01

    The contamination of Japan after the Fukushima accident has been investigated mainly for volatile fission products, but only sparsely for actinides such as plutonium. Only small releases of actinides were estimated in Fukushima. Plutonium is still omnipresent in the environment from previous atmospheric nuclear weapons tests. We investigated soil and plants sampled at different hot spots in Japan, searching for reactor-borne plutonium using its isotopic ratio 240Pu/239Pu. By using accelerator mass spectrometry, we clearly demonstrated the release of Pu from the Fukushima Daiichi power plant: While most samples contained only the radionuclide signature of fallout plutonium, there is at least one vegetation sample whose isotope ratio (0.381 +/- 0.046) evidences that the Pu originates from a nuclear reactor (239+240Pu activity concentration 0.49 Bq/kg). Plutonium content and isotope ratios differ considerably even for very close sampling locations, e.g. the soil and the plants growing on it. This strong localization indicates a particulate Pu release, which is of high radiological risk if incorporated.

  13. Characterization of plutonium-bearing wastes by chemical analysis and analytical electron microscopy

    International Nuclear Information System (INIS)

    Behrens, R.G.; Buck, E.C.; Dietz, N.L.; Bates, J.K.; Van Deventer, E.; Chaiko, D.J.

    1995-09-01

    This report summarizes the results of characterization studies of plutonium-bearing wastes produced at the US Department of Energy weapons production facilities. Several different solid wastes were characterized, including incinerator ash and ash heels from Rocky Flats Plant and Los Alamos National Laboratory; sand, stag, and crucible waste from Hanford; and LECO crucibles from the Savannah River Site. These materials were characterized by chemical analysis and analytical electron microscopy. The results showed the presence of discrete PuO 2 PuO 2-x , and Pu 4 O 7 phases, of about 1μm or less in size, in all of the samples examined. In addition, a number of amorphous phases were present that contained plutonium. In all the ash and ash heel samples examined, plutonium phases were found that were completely surrounded by silicate matrices. Consequently, to achieve optimum plutonium recovery in any chemical extraction process, extraction would have to be coupled with ultrafine grinding to average particle sizes of less than 1 μm to liberate the plutonium from the surrounding inert matrix

  14. Plutonium in an arctic marine environment 29 years after the Thule accident

    International Nuclear Information System (INIS)

    Dahlgaard, H.; Nielsen, S.P.; Eriksson, M.; Ilus, E.; McMahon, C.A.

    1999-01-01

    The nuclear weapons contaminated benthic marine environment in the 180-230 m deep Bylot Sound of Thule Airbase, NW Greenland, was revisited August 1997. Data on water and on brown algae indicates that plutonium from the contaminated sediments is not transported into the surface waters in significant quantities. Sediment core data only indicate minor translocation of plutonium from the accident to the area outside Bylot sound. The present data support an ealier quantification of the sedimentation rate as 3-4 mm per year, i.e. 8-12 cm during the 29 years since the accident. Biological activity has mixed accident plutonium much deeper, down to 20-30 cm, and the 8-12 cm new sediment have been efficiently mixed into the contaminated layer. In addition to the classical bioturbation efficiently mixing the upper ≅ 5 cm, the plutonium data indicates the existence of a deeper bioturbation gradualy decreasing with depth. Transfer of plutonium to benthic biota is low leading to lower concentrations in biota than in sediments. (au)

  15. Radioactive contamination of aquatic organisms of the Yenisei river in the area affected by the activity of a Russian plutonium complex

    International Nuclear Information System (INIS)

    Bolsunovsky, A.; Sukovaty, A.

    2005-01-01

    The Yenisei River, one of the world's largest rivers, is contaminated with artificial radionuclides released by a Russian facility producing weapons-grade plutonium, which has been in operation for many years. The aim of the study conducted between 1997 and 2003 was to investigate accumulation of artificial radionuclides by aquatic organisms of the Yenisei River and to estimate the exposure dose rates to organisms from various sources. The aquatic plants sampled were of three species: Potamogeton lucens, Fontinalis antipyretica, and Ceratophyllum demersum. The gamma-spectrometric and radiochemical analysis of the samples of aquatic plants for artificial radionuclides has revealed more than 20 long-lived and short-lived radionuclides, including plutonium isotopes. The aquatic animal Phylolimnogammarus viridis and diatoms also contain artificial radionuclides. For most aquatic organisms under study, the dose received from the artificial irradiation is an order of magnitude higher than the dose received from natural irradiation. As Fontinalis antipyretica features the highest capacity to accumulate artificial radionuclides, it accumulates the largest artificial exposure does among the study aquatic organisms (up to 39 μGy/day)

  16. Airborne plutonium transported during southwesterly winds near the Hanford Prosser Barricade

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1980-01-01

    Airborne plutonium could result from resuspension of nuclear-weapons-testing stratospheric fallout deposition. To determine this possible resuspension at the Hanford site, two field experiments between April 12 to june 29, 1976 and August 12, 1976 to January 11, 1977 were conducted near the Prosser Barricade in the Hanford area about 19 to 22 km southeast (140 0 to 160 0 ) of the fuel-processing areas. The primary objective of these experimentss was to determine if stratospheric fallout resuspension was reflected by airborne plutonium concentrations increasing with increasing wind speed. A secondary objective was to confirm the source of the airborne plutonium by determining the plutonium-240 isotopic content or the plutonium-240/plutonium-239-mass ratio. Stratospheric fallout can be identified by the ratio of 240 Pu to other plutonium isotopes in surface soils. Plutonium was transported during southwesterly winds during the two study periods at the Prosser Barricade. Airborne 239 240 Pu concentrations varied as powers of wind speed (U):U -0 2 to U 7 8 . The airborne solids content ranged from 6 x 10 -8 to 1.7 x 10 -6 μCi/g. The 240 Pu isotopic content ranged from 5.6 to 8.1 atom percent and the 240 Pu/ 239 Pu mass ratio ranged from 0.065 to 0.089. The estimated fraction of stratospheric fallout plutonium in these samples was less than 0.24. The remaining airborne plutonium was probably of Hanford origin. Airborne plutonium probably represents resuspension of plutonium from undetermined sites by mechanisms and events not clear at present. An increasing airborne plutonium concentration with increasing wind speed might be expected for an upwind resuspension source(s). However, the geographical source(s) location was not investigated in this study

  17. History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S., Fluor Daniel Hanford

    1997-02-18

    The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

  18. Guide of good practices for occupational radiological protection in plutonium facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TS replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.

  19. Comparison of simulated to actual plutonium deposition at the Savannah River Plant

    International Nuclear Information System (INIS)

    Carlson, D.C.; Garrett, A.J.; Gay, D.D.; Murphy, C.E.; Pinder, J.E. III.

    1982-01-01

    Minute amounts of plutonium are released from the Savannah River Plant (SRP) separations facilities and deposited in the surrounding environs. Long-term deposition measurements show that contributions to offsite environmental plutonium by the SRP are negligible compared to fallout from weapons tests. The Savannah River Laboratory (SRL) recently developed a deposition model and compared its predictions to the observed plutonium deposition pattern. The model reproduced the observed range of deposition rates when full and truncated lognormal distributions of particle sizes were used to represent the emissions. Model predictions of total deposition out to 30 km were low by about a factor of two relative to estimates based on integrations of the empirical deposition curves. More measurements are planned, which should reduce uncertainties about model assumptions and the observed deposition rates

  20. Export control guide: Spent nuclear fuel reprocessing and preparation of plutonium metal

    International Nuclear Information System (INIS)

    1993-10-01

    The international Treaty on the Non-Proliferation of Nuclear Weapons, also referred to as the Non-Proliferation Treaty (NPT), states in Article III, paragraph 2(b) that open-quotes Each State Party to the Treaty undertakes not to provide . . . equipment or material especially designed or prepared for the processing, use or production of special fissionable material to any non-nuclear-weapon State for peaceful purposes, unless the source or special fissionable material shall be subject to the safeguards required by this Article.close quotes This guide was prepared to assist export control officials in the interpretation, understanding, and implementation of export laws and controls relating to the international Trigger List for irradiated nuclear fuel reprocessing equipment, components, and materials. The guide also contains information related to the production of plutonium metal. Reprocessing and its place in the nuclear fuel cycle are described briefly; the standard procedure to prepare metallic plutonium is discussed; steps used to prepare Trigger List controls are cited; descriptions of controlled items are given; and special materials of construction are noted. This is followed by a comprehensive description of especially designed or prepared equipment, materials, and components of reprocessing and plutonium metal processes and includes photographs and/or pictorial representations. The nomenclature of the Trigger List has been retained in the numbered sections of this document for clarity

  1. Hitlers' bomb. The secret story of Germanys' nuclear weapon tests

    International Nuclear Information System (INIS)

    Karlsch, R.

    2005-01-01

    This book reveals a sensation: Under supervision of the SS German scientists tested 1944/45 nuclear bombs on Ruegen and in Thuringia. During this period several hundred prisoners of war and prisoners died. Besides proofs for nuclear weapon testing the author also found a draft for a patent on plutonium bombs and discovered the first functioning German atom reactor in the environs of Berlin. (GL) [de

  2. Standard test method for plutonium by Iron (II)/Chromium (VI) amperometric titration

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the determination of plutonium in unirradiated nuclear-grade plutonium dioxide, uranium-plutonium mixed oxides with uranium (U)/plutonium (Pu) ratios up to 21, plutonium metal, and plutonium nitrate solutions. Optimum quantities of plutonium to measure are 7 to 15 mg. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. International conference on military conversion and science. Utilization/disposal of the excess fissile weapon materials: scientific, technological and socio-economic aspects

    International Nuclear Information System (INIS)

    Kouzminov, V.; Martellini, M.

    1996-01-01

    The Proceedings of the Conference includes the papers presented by the eminent specialists in the field of utilisation and/or disposal of excess fissile materials, each with a separate abstract, as well as the Conference opening and introduction speeches. According to the concerned subjects presentations were divided into following five sessions: perspectives of nuclear research and development; Technical problems and possibilities of civilian utilization of Highly enriched uranium (HEU) and plutonium including alternate strategies (application of MOX fuel) and operational and safety problems; Comparison of different options for weapon-grade Pu utilization connected to present programme for recycling of civilian Pu; Socio-economic aspects including cost of Pu conversion and fabrication of MOX fuel; Effects of different strategies of waste disposal including environmental and safety related issues

  4. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  5. Materials control and accountability challenges associated with plutonium inventories

    International Nuclear Information System (INIS)

    Crawford, D.W.

    1996-01-01

    There are currently many initiatives underway within the Department of Energy (DOE) to safely and securely manage large plutonium inventories arising from weapons dismantlement, changing missions and facility operations. Plutonium inventory information is increasingly accessible to the public as a result of the secretary of energy's openness initiative. As a result, knowledge of these inventories and levels to which the department has accounted for and controlled these inventories, will be under increased scrutiny from a variety of interest groups. The quality of this accountability data and what this data means will greatly influence the public's perception of how the US is protecting its plutonium inventories. In addition, the department's safeguards program provides an essential basis for the application of International Atomic Energy Agency (IAEA) safeguards that, in addition to possibly other international control regimes, will be in place over a large portion of these future inventories. The capability and functionality of the department's nuclear safeguards program will be important contributors to the success of US programs for the responsible stewardship of these vast plutonium inventories. This paper discusses some of the challenges, in terms of specific issues relating to one part of the department's safeguards program--materials control and accountability (MC and A)--to meet the growing domestic and international requirements and expectations associated with these plutonium inventories

  6. Materials control and accountability challenges associated with plutonium inventories

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.W. [USDOE Office of Safeguards and Security, Washington, DC (United States)

    1996-07-01

    There are currently many initiatives underway within the Department of Energy (DOE) to safely and securely manage large plutonium inventories arising from weapons dismantlement, changing missions and facility operations. Plutonium inventory information is increasingly accessible to the public as a result of the secretary of energy`s openness initiative. As a result, knowledge of these inventories and levels to which the department has accounted for and controlled these inventories, will be under increased scrutiny from a variety of interest groups. The quality of this accountability data and what this data means will greatly influence the public`s perception of how the US is protecting its plutonium inventories. In addition, the department`s safeguards program provides an essential basis for the application of International Atomic Energy Agency (IAEA) safeguards that, in addition to possibly other international control regimes, will be in place over a large portion of these future inventories. The capability and functionality of the department`s nuclear safeguards program will be important contributors to the success of US programs for the responsible stewardship of these vast plutonium inventories. This paper discusses some of the challenges, in terms of specific issues relating to one part of the department`s safeguards program--materials control and accountability (MC and A)--to meet the growing domestic and international requirements and expectations associated with these plutonium inventories.

  7. The role of accelerator-based systems for optimal elimination of plutonium to minimize global proliferation risks

    International Nuclear Information System (INIS)

    Liebert, W.; Glaser, A.; Pistner, C.

    1997-01-01

    The new proliferation dangers associated with plutonium coming out of the dismantlement of nuclear warheads and the fact that nearly all mixtures of plutonium isotopes are weapon-usable highlight the need for a sustainable disposition option. This paper gives an overview on existing military as well as civilian plutonium stocks worldwide and estimates their future development. An assessment of pros and cons of disposition options discussed so far shows that only the capability of an accelerator-based system to eliminate the plutonium virtually completely makes it attractive from the non-proliferator's point of view. We propose a set of criteria to guide the development of an appropriate system. Special attention is directed on overall proliferation resistance and safety aspects without being compromised by power generation. 17 refs., 1 fig., 1 tab

  8. Nuclear power and nuclear weapons proliferation

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    An appropriate non-proliferation treaty should not discriminate among the non-weapon states, but should seek a cooperative approach with all countries seeking nuclear power and willing to accept international safeguards. Near-term proliferation problems, represented by nations already on the threshold of weapon capability, should not be confused with the long-term problem of world-wide nuclear development. The first can be handled with incentives and disincentives imposed on specific countries, while the latter involves the distribution of plutonium on the basis of alternative fuel cycles. To retain world leadership, U.S. efforts along these lines should be to encourage a dialogue between suppliers and recipients and to coordinate the economic and security issues of its own non-proliferation and foreign policies. One option is a U.S. commitment to a multinational fuel storage and reprocessing facility. Technical evaluation and demonstration of alternative fuel cycles to reach an international consensus would be a parallel activity

  9. Plutonium fires; Incendies de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Mestre, E.

    1959-06-23

    The author reports an information survey on accidents which occurred when handling plutonium. He first addresses accidents reported in documents. He indicates the circumstances and consequences of these accidents (explosion in glove boxes, fires of plutonium chips, plutonium fire followed by filter destruction, explosion during plutonium chip dissolution followed by chip fire). He describes hazards associated with plutonium fires: atmosphere and surface contamination, criticality. The author gives some advices to avoid plutonium fires. These advices concern electric installations, the use of flammable solvents, general cautions associated with plutonium handling, venting and filtration. He finally describes how to fight plutonium fires, and measures to be taken after the fire (staff contamination control, atmosphere control)

  10. Estimation of environmental transfer of plutonium and the dose to man

    International Nuclear Information System (INIS)

    1981-09-01

    The need to examine the behaviour of individual radionuclides in the environment is stressed. Sometimes unique pathways of exposure exist and more specialized methods of dose estimation could be considered. The toxicity of the alpha emitting plutonium isotopes is of concern and their long half-lives lead to persistence in the environment and long-term potential for exposing man. Some formulas are therefore presented for making preliminary estimates of environmental transfer and dose for the radioisotopes of the element plutonium. Exposure of man to plutonium in the environment may occur by inhalation or ingestion - the inhalation and ingestion intake rates for which specific pathways have been considered are listed. The primary pathway to man is the inhalation intake; the most important ingestion intake is the consumption of plant foods due to the greater concentration achieved and the higher consumption rates of these foods. Also discussed is plutonium in the nuclear fuel cycle, the release of plutonium from current nuclear installations, the occurrence of plutonium from weapons fallout, airborne releases of plutonium (concentration in the air, deposition rate, resuspension, transfer to plants - foliar and root uptake - transfer to milk, etc.), liquid release (concentration in water, transfer to drinking water, to fish, to plants by irrigation, to milk, to meat). The importance of the release situation and local environment conditions including land and water utilization, population factors and habits for any further investigation is pointed out

  11. Fissile material management, an international approach of the future of plutonium

    International Nuclear Information System (INIS)

    Michel, A.; Schryvers, V.; Vanderborck, Y.

    2000-01-01

    Plutonium management is a crucial issue in any discussion on the future of nuclear energy: plutonium is indeed a normal by-product of nuclear electricity generation. As a result of long-term reprocessing strategies and recent decisions on the dismantling of nuclear weapons, separated plutonium stockpiles are increasing. Observing this situation, the Belgian Nuclear Society decided that the turn of the century was the right time to invite all the parties involved in decision making on this question to confront their decisions or the absence of it. As an international program committee was created, interested companies and institutions delegated high level experts to it and a comprehensive program was put together. This program covers: - Prospects for nuclear energy; - Public perception of plutonium; - The civil plutonium cycle; - The management of surplus military plutonium; - Non-proliferation and safeguards; - The reasons to improve the plutonium fuels performance. The conference is not scientific but strategic. It does not cover too many technical aspects but looks at the managerial questions. It is devoted to the reasons why things are done much more than how things are done. It allows to confront opinions with a mind open to all and a desire to make strategies transparent, even to the least informed public. The present paper has been written before the conference takes place in early October 2000 and describes the orientations prepared by the Programme committee. The oral presentation to Atalante 2000 will report in full over the Pu 2000 conference. (authors)

  12. Stop plutonium; Stop plutonium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    This press document aims to inform the public on the hazards bound to the plutonium exploitation in France and especially the plutonium transport. The first part is a technical presentation of the plutonium and the MOX (Mixed Oxide Fuel). The second part presents the installation of the plutonium industry in France. The third part is devoted to the plutonium convoys safety. The highlight is done on the problem of the leak of ''secret'' of such transports. (A.L.B.)

  13. Nuclear power and atomic weapons. Chapter 7

    International Nuclear Information System (INIS)

    1978-01-01

    Following a brief historical introduction the concept of proliferation, vertical horizontal and subnational, is presented, and its relationship to nuclear power discussed. The risk of nuclear weapon proliferation, based on political decision, motivation and costs, is related to access to enriched uranium, plutonium and uranium 233. The possibilities for diversion and theft from nuclear facilities are discussed. International measures to prevent proliferation, the Non-Proliferation Treaty (NPT)and the IAEA safeguards system, are described and discussed. Measures which may be enacted against countries which break the NPT are discussed. Restrictions on international nuclear trude, both multilateral and unilateral, are also discussed, especially those at present, or shortly to be, enforced by USA, Canada and Australia. The International Nuclear Feel Cycle Evaluation (INFCE) is briefly presented. The physical protection of nuclear materials is also discussed. Finally the basc principles of nuclear weapons are briefly presented. (JIW)

  14. Nuclear power and atomic weapons. Chapter 7

    International Nuclear Information System (INIS)

    1978-01-01

    Following a brief historical introduction the concept of proliferation, vertical and horizontal and subnational, is presented, and its relationship to nuclear power discussed. The risk of nuclear weapon proliferation, based on political decision motivation and costs, is related to access to enriched uranium, plutonium and uranium 233. The possibilities for diversion and theft from nuclear facilities are discussed. International measures to prevent proliferation, the Non-Proliferation Treaty (NPT) and the IAEA safeguards system, are described and discussed. Measures which may be enacted against countries which break the NPT are discussed. Restrictions on international nuclear trade, both multilateral and unilateral, are also discussed, especially those at present, or shortly to be, enforced by USA, Canada and Australia. The International Nuclear Fuel Cycle Evaluation (INFCE) is briefly presented. The physical protection of nuclear materials is also discussed. Finally the basic principles of nuclear weapons are briefly presented. (JIW)

  15. Reactor-grade plutonium inventory taking in the RT-1 storage production association Mayak site

    International Nuclear Information System (INIS)

    Zatorskij, Yu.M.

    1999-01-01

    General characterization of plutonium physical inventory taking (PIT) system at the RT-1 plant is given in the paper. The proposed PIT procedure is based on measuring indirect parameters of inventory plutonium, the so called attributes of items - containers with plutonium. The method how to assess quality of item attribute measurements is proposed. If any defect is detected, the container is sent back to the place where it been filed and packed in order to perform direct measurements of plutonium mass. Taking into account the above-mentioned techniques and the availability of several access control means it is proposed the period between two PIT procedures be equal to 12 months [ru

  16. Remote material handling in the Plutonium Immobilization Project. Revision 1

    International Nuclear Information System (INIS)

    Brault, J.R.

    2000-01-01

    With the downsizing of the US and Russian nuclear stockpiles, large quantities of weapons-usable plutonium in the US are being declared excess and will be disposed of by the Department of Energy Fissile Materials Disposition Program. To implement this program, DOE has selected the Savannah River Site (SRS) for the construction and operation of three new facilities: pit disassembly and conversion; mixed oxide fuel fabrication; and plutonium immobilization. The Plutonium Immobilization Project (PIP) will immobilize a portion of the excess plutonium in a hybrid ceramic and glass form containing high level waste for eventual disposal in a geologic repository. The PIP is divided into three distinct operating areas: Plutonium Conversion, First Stage Immobilization, and Second Stage Immobilization. Processing technology for the PIP is being developed jointly by the Lawrence Livermore National Laboratory and Westinghouse Savannah River Company. This paper will discuss development of the automated unpacking and sorting operations in the conversion area, and the automated puck and tray handling operations in the first stage immobilization area. Due to the high radiation levels and toxicity of the materials to be disposed of, the PIP will utilize automated equipment in a contained (glovebox) facility. Most operations involving plutonium-bearing materials will be performed remotely, separating personnel from the radiation source. Source term materials will be removed from the operations during maintenance. Maintenance will then be performed hands on within the containment using glove ports

  17. Reassessment of safeguards parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Richter, J.L.; Mullen, M.F.

    1994-07-01

    The International Atomic Energy Agency is reassessing the timeliness and goal quantity parameters that are used in defining safeguards approaches. This study reviews technology developments since the parameters were established in the 1970s and concludes that there is no reason to relax goal quantity or conversion time for reactor-grade plutonium relative to weapons-grade plutonium. For low-enriched uranium, especially in countries with advanced enrichment capability there may be an incentive to shorten the detection time.

  18. Lung cancer after internal alpha-exposure of the lung from incorporated plutonium

    International Nuclear Information System (INIS)

    Mikhail, S.

    2004-01-01

    Several epidemiological studies among workers of first Russian nuclear complex Mayak which produced weapon-grade plutonium showed significant increase of lung cancer mortality. The estimated shape of the dose-response was linear with both alpha and gamma dose but risk coefficients for gamma-exposure are on the edge of the significance level. This study was performed in the cohort of male Mayak nuclear workers initially hired in 1948-1958 with known levels of plutonium exposure. Number of observed lung cancer cases available for analyses in this cohort was 217. The relative risk of death from lung cancer among smokers was 10.7 (5.5-25.2) comparatively to non-smokers. This is in good correspondence with results of other studies. The excess relative risk per one Gray was 63. (4.1-9.7) for internal alpha-exposure and 0.18 (0.01-0.5) for external gamma-exposure. According to a model this gives 16:112:60:29 cases of lung cancer attributed to background, smoking, internal alpha-and external gamma-exposure, correspondingly. The relative risks of death from lung cancer were also estimated in a nested case-control study with lung cancer deaths as cases. Controls were selected from the cohort and matched for birth year to account for trend in lung cancer mortality with time. The analyses with nested case-control approach gave relative risks for smoking 14.7 (6.8-38.9). Relative risk of lung cancer among non-smokers after accumulating 0.34 Gy of alpha-exposure to lung was 3.7 (1.7-9.0). It should be emphasized that in fact after accumulation 0.3-0.4 Gy of absorbed dose 3-4 fold increase in lung cancer mortality was observed. This dose is very close to the dose which would be produced after intake of plutonium in quantities which are permissible today. (Author)

  19. Plutonium isotopes/137Cs activity ratios for soil in Montenegro

    International Nuclear Information System (INIS)

    Antovic, N. M.; Vukotic, P.; Svrkota, N.; Andrukhovich, S.K.

    2011-01-01

    Plutonium isotopes/ 137 Cs activity ratios were determined for six soil samples from Montenegro, using the results of alpha-spectrometric measurements of 239+240 Pu and 238 Pu, as well as gamma-spectrometric cesium measurements. An average 239+240 Pu/ 137 Cs activity ratio is found to be 0.02, as the 238 Pu/ 137 Cs and 238 Pu/ 239+240 Pu one - 0.0006 and 0.03, respectively. It follows from the results that the source of plutonium in Montenegro soil is nuclear weapon testing during the fifties and sixties of the twentieth century. On the other hand, there is a contribution of the accident at the Chernobyl nuclear power plant to the soil contamination with 137 Cs isotope. [sr

  20. Variations of uranium and plutonium coprocessing as proliferation-resistant alternatives to the classical purex process

    International Nuclear Information System (INIS)

    Buckham, J.A.; Sumner, W.B.

    1979-08-01

    Evaluation of these alternatives for processing LWR fuel has led to the following conclusions: (1) None of the alternaives provide a pure, technical solution which completely eliminates the potential for proliferation of nuclear weapons by utilizing plutonium from the light water reactors. (2) The heat spike alternative appears feasible and provides the most effective method of rendering the LWR plutonim unattractive for weapons use. (3) The low-DF process alternate would require demonstration to: (a) determine the reliability of the in-cell recycle streams which are used to prevent reversion of the process for purification of plutonium, and (b) verify the fission product decontamination factors. (4) The alternates evaluated have no significant impacts on the design of waste treatment facilities, although the required capacities of high-level solid waste processing and high-level liquid waste storage can be significantly altered. (5) The impact of these alternate processes on fuel fabrication and other aspects of the fuel cycle requires additional evaluation

  1. Waste forms for plutonium disposition

    International Nuclear Information System (INIS)

    Johnson, S.G.; O'Holleran, T.P.; Frank, S.M.; Meyer, M.K.; Hanson, M.; Staples, B.A.; Knecht, D.A.; Kong, P.C.

    1997-01-01

    The field of plutonium disposition is varied and of much importance, since the Department of Energy has decided on the hybrid option for disposing of the weapons materials. This consists of either placing the Pu into mixed oxide fuel for reactors or placing the material into a stable waste form such as glass. The waste form used for Pu disposition should exhibit certain qualities: (1) provide for a suitable deterrent to guard against proliferation; (2) be of minimal volume, i.e., maximize the loading; and (3) be reasonably durable under repository-like conditions. This paper will discuss several Pu waste forms that display promising characteristics

  2. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department's plutonium storage. Volume II, part 12: Working group assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    The Secretary of Energy's memorandum of March 15, 1994, established an initiative for a Department-wide assessment of the ES ampersand H vulnerabilities of the inventory of plutonium (Pu) in storage. Pu in intact nuclear weapons, spent fuel and transuranic (TRU) waste not colocated with other Pu was excluded from this assessment. The DOE Plutonium Vulnerability Working Group, which was formed for this purpose and produced the Project and Assessment Plans, will also manage the overall DOE complex assessments and produce a final report for the Secretary of Energy by September 30, 1994. The Project Plan and Assessment Plan for this assessment, and which established responsibilities for personnel essential to the study, were issued on April 25, 1994. This report contains the assessment of the Pantex Plant

  3. International collaborations about fuel studies for reactor recycling of military quality plutonium

    International Nuclear Information System (INIS)

    Bernard, H.; Chaudat, J.P.

    1997-01-01

    In November 1992, an agreement was signed between the French and Russian governments to use in Russia and for pacific purposes the plutonium recovered from the Russian nuclear weapons dismantling. This plutonium will be transformed into mixed oxide fuels (MOX) for nuclear power production. The French Direction of Military Applications (DAM) of the CEA is the operator of the French-Russian AIDA program. The CEA Direction of Fuel Cycle (DCC) and Direction of Nuclear Reactors (DRN) are involved in the transformation of metallic plutonium into sinterable oxide powder for MOX fuel manufacturing. The Russian TOMOX (Treatment of MOX powder Metallic Objects) and DEMOX (MOX Demonstration) plants will produce the MOX fuel assemblies for the 4 VVER 1000 reactors of Balakovo and the fast BN 600 reactor. The second part of the program will involve the German Siemens and GRS companies for the safety studies of the reactors and fuel cycle plants. The paper gives also a brief analysis of the US policy concerning the military plutonium recycling. (J.S.)

  4. The long-term nuclear explosives predicament

    International Nuclear Information System (INIS)

    Swahn, J.

    1992-01-01

    A scenario is described, where the production of new military fissile materials is halted and where civil nuclear power is phased out in a 'no-new orders' case. It is found that approximately 1100 tonnes of weapons-grade uranium, 233 tonnes of weapons-grade plutonium and 3795 tonnes of reactor-grade plutonium have to be finally disposed of as nuclear waste. This material could be used for the construction of over 1 million nuclear explosives. Reactor-grade plutonium is found to be easier to extract from spent nuclear fuel with time and some physical characteristics important for the construction of nuclear explosives are improved. Alternative methods for disposal of the fissile material that will avoid the long-term nuclear explosives predicament are examined. Among these methods are dilution, denaturing or transmutation of the fissile material and options for practicably irrecoverable disposal in deep boreholes, on the sea-bed, and in space. It is found that the deep boreholes method for disposal should be the primary alternative to be examined further. This method can be combined with an effort to 'forget' where the material was put. Included in the thesis is also an evaluation of the possibilities of controlling the limited civil nuclear activities in a post-nuclear world. Some surveillance technologies for a post-nuclear world are described, including satellite surveillance. In a review part of the thesis, methods for the production of fissile material for nuclear explosives are described, the technological basis for the construction of nuclear weapons is examined, including use of reactor-grade plutonium for such purposes; also plans for the disposal of spent fuel from civil nuclear power reactors and for the handling of the fissile material from dismantled warheads is described. The Swedish plan for the handling and disposal of spent nuclear fuel is described in detail. (490 refs., 66 figs., 27 tabs.)

  5. Analysis of the matrix structure of the Nuclear Weapons Complex waste minimization and hazard reduction program

    International Nuclear Information System (INIS)

    Churnetski, S.R.

    1991-01-01

    Two of the primary goals of this program in waste minimization that the major waste problems facing the Nuclear Weapons Complex (NWC) are being addressed systematically and to prevent duplication of effort by forming an integrated approach across the complex. Production, disposal, and the hazards of both the wastes and the in-process chemicals used were to be studied. The eight waste streams chosen (electroplating, miscellaneous, mixed, plutonium, polymers, solvents, tritium, and uranium) were deemed to be the most serious problems facing the Nuclear Weapons Complex

  6. Development of analytical methods for the separation of plutonium, americium, curium and neptunium from environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, S.

    2009-07-01

    In this work, separation methods have been developed for the analysis of anthropogenic transuranium elements plutonium, americium, curium and neptunium from environmental samples contaminated by global nuclear weapons testing and the Chernobyl accident. The analytical methods utilized in this study are based on extraction chromatography. Highly varying atmospheric plutonium isotope concentrations and activity ratios were found at both Kurchatov (Kazakhstan), near the former Semipalatinsk test site, and Sodankylae (Finland). The origin of plutonium is almost impossible to identify at Kurchatov, since hundreds of nuclear tests were performed at the Semipalatinsk test site. In Sodankylae, plutonium in the surface air originated from nuclear weapons testing, conducted mostly by USSR and USA before the sampling year 1963. The variation in americium, curium and neptunium concentrations was great as well in peat samples collected in southern and central Finland in 1986 immediately after the Chernobyl accident. The main source of transuranium contamination in peats was from global nuclear test fallout, although there are wide regional differences in the fraction of Chernobyl-originated activity (of the total activity) for americium, curium and neptunium. The separation methods developed in this study yielded good chemical recovery for the elements investigated and adequately pure fractions for radiometric activity determination. The extraction chromatographic methods were faster compared to older methods based on ion exchange chromatography. In addition, extraction chromatography is a more environmentally friendly separation method than ion exchange, because less acidic waste solutions are produced during the analytical procedures. (orig.)

  7. Exploding the myths about the fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.

    1979-01-01

    This paper discusses the facts and figures about the effects of conservation policies, the benefits of the Clinch River Breeder Reactor demonstration plant, the feasibility of nuclear weapons manufacture from reactor-grade plutonium, diversion of plutonium from nuclear plants, radioactive waste disposal, and the toxicity of plutonium. The paper concludes that the U.S. is not proceeding with a high confidence strategy for breeder development because of a variety of false assumptions.

  8. Ultratrace analysis of plutonium in environmental samples by resonance ionization mass spectrometry (RIMS)

    International Nuclear Information System (INIS)

    Trautmann, N.; Erdmann, N.; Gruening, C.; Kratz, J. V.; Waldek, A.; Huber, G.; Nunnemann, M.; Passler, G.

    2000-01-01

    Plutonium is present in the environment mainly as a result of global fallout from nuclear weapons tests, satellite and reactor accidents as well as releases from nuclear facilities. Sensitive and fast detection methods are required for risk assessment, low-level surveillance of the environment, personnel dose monitoring, studies of biological effects and investigations of the migration behavior of plutonium. Furthermore, the isotopic composition is of interest to get information from what source the plutonium contamination originated. Alpha-spectroscopy is most frequently used for the determination of trace amounts of plutonium in the environment with the disadvantage that the detection sensitivity depends on the half-life of the isotope to be measured and that there are limitations in the isotopic resolution. Conventional mass spectrometry may suffer from isobaric interferences. Therefore, in the last years resonant laser ionization mass spectrometry (RIMS) has been explored as an alternative for ultratrace analysis of plutonium. This method provides a high element and isotope selectivity and a good overall efficiency, resulting in a detection limit of ∼10 6 atoms (∼0.4 fg). RIMS meets also the requirements of a low background and a short measuring time (1-2 h)

  9. The US program for disposition of excess weapons plutonium

    International Nuclear Information System (INIS)

    Bunn, M.

    1997-01-01

    After an exhaustive interagency study, the United States has declared that 52.7 tons of plutonium, over half of its stockpile, is excess to its military needs, and has decided to pursue a dual-track approach to eliminating this excess stockpile, burning some of it once-through as power-reactor fuel, and immobilizing the remainder with intensely radioactive fission products. This effort represents a significant step toward increasing the irreversibility of nuclear arms reductions and reducing the risk of nuclear proliferation. The United States expects to complete disposition of this material over the next 2-3 decades, at a net discounted present cost of approximately $1.5 billion. Intemational verification and stringent security and accounting for the material are planned for the entire program

  10. ABC Technology Development Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: 'Provide a weapon's grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon's grade plutonium to be disposed on in [20] years.' This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments

  11. In situ remediation of plutonium from glovebox exhaust ducts at the Department of Energy's Rocky Flats Plant

    International Nuclear Information System (INIS)

    Dugdale, J.S.; Humiston, T.J.; Omer, G.E.

    1993-01-01

    Plutonium and other miscellaneous hold-up materials have been accumulating in the glovebox exhaust ducts at the Rocky Flats Plant over the 40 years of weapons production at the site. The Duct Remediation Project was undertaken to assess the safety impacts of this material, and to remove it from the ductwork. The project necessitated the development of specialized tools, equipment and methods to remediate the material from continuously operating ventilation systems. Special engineered access locations were also required to provide access to the ductwork, and to ensure that safety and system operability were not degraded as a result of the remediation efforts. Operations personnel underwent significant training and development, and became an important asset to the success of the project. In total, the project succeeded in removing over 40 kilograms of plutonium-bearing material from one of the major weapons production buildings at the plant

  12. Neutronic analysis of the PBMR-400 full core using thorium fuel mixed with plutonium or minor actinides

    International Nuclear Information System (INIS)

    Acır, Adem; Coşkun, Hasan

    2012-01-01

    Highlights: ► Neutronic calculations for PBMR 400 were conducted with the computer codes MCNP and MONTEBURNS 2.0. ► The criticality and burnup were investigated for reactor grade plutonium and minor actinides. ► We found that the use of these new fuels in PBMRs would reduce the nuclear waste repository significantly. -- Abstract: Time evolution of criticality and burnup grades of the PBMR were investigated for reactor grade plutonium and minor actinides in the spent fuel of light water reactors (LWRs) mixed with thoria. The calculations were performed by employing the computer codes MCNP and MONTEBURNS 2.0 and using the ENDF/B-V nuclear data library. Firstly, the plutonium–thorium and minor actinides–thorium ratio was determined by using the initial k eff value of the original uranium fuel design. After the selection of the plutonium/minor actinides–thorium mixture ratio, the time-dependent neutronic behavior of the reactor grade plutonium and minor actinides and original fuels in a PBMR-400 reactor was calculated by using the MCNP code. Finally, k eff , burnup and operation time values of the fuels were compared. The core effective multiplication factor (k eff ) for the original fuel which has 9.6 wt.% enriched uranium was computed as 1.2395. Corresponding to this k eff value the reactor grade plutonium/thorium and minor actinide/thorium oxide mixtures were found to be 30%/70% and 50%/50%, respectively. The core lives for the original, the reactor grade plutonium/thorium and the minor actinide/thorium fuels were calculated as ∼3.2, ∼6.5 and ∼5.5 years, whereas, the corresponding burnups came out to be 99,000, ∼190,000 and ∼166,000 MWD/T, respectively, for an end of life k eff set equal to 1.02.

  13. Civil nuclear energy and the proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    1990-04-01

    The issue of whether civil nuclear programmes contribute to the risk of proliferation of nuclear weapons has been discussed since civil programmes were first considered, and has always complicated public attitudes to civil nuclear energy. This paper seeks to define the extent to which there is such 'linkage'. Linkage concerns arise primarily over the possibility of their being used to produce highly enriched uranium or plutonium for use in weapons. Linkage may also arise through the relevant experience of the trained workforce. Such linkage is, however, limited by institutional, technical and economic factors. First important institutional constraints on using a civil programme for military purposes exist in the form of a network of bilateral agreements and international treaties - most particularly the Nuclear Non-Proliferation Treaty - and the international safeguards inspections. Secondly, without access to the technologies of enrichment or reprocessing, the fissile material needed for an explosive cannot be obtained from any plant or process used to produce electricity. Even enrichment and reprocessing, as normally used in electricity programmes, do not give rise to the materials used in weapons. Finally, establishing a civil programme - with equipment whose design is optimized for electricity production - in order to develop weapons is an expensive route compared to specialized facilities. (Author)

  14. Quantities of transuranic elements in the environment from operations relating to nuclear weapons

    International Nuclear Information System (INIS)

    Facer, G.

    1980-01-01

    Only nuclear explosions near or above the earth's surface or under water have contributed substantial amounts of transuranic materials to the world bioenvironment. The amounts of transuranics placed in the environment through underground test ventings, accidents involving US nuclear weapons, and releases during weapon production operations have been negligible in comparison with those from atmospheric testing of nuclear explosives. On the order of 10 5 Ci of plutonium has been dispersed within our environment from about 400 nuclear explosive tests, including those by the US, Great Britain, and Russia, between 1945 and 1963, plus more recent nuclear explosive tests in the atmosphere by China, India, and France

  15. Public distrust and hazard management success at the Rocky Flats nuclear weapons plant

    International Nuclear Information System (INIS)

    Hohenemser, C.

    1987-01-01

    Based on experience gained while serving a public oversight commission appointed by the governor of Colorado, hazard management at the Department of Energy's Rocky Flats nuclear weapons plant is reviewed. Specific reference is made to the plant's history of controversy, its defense-in-depth strategy of hazard control, occupational health issues, public exposure to plutonium, and the assessment of low-probability, high-consequence risks. This leads to the conclusion that Rocky flats is, by any objective standard, a hazard management success. It follows that public distrust of Rocky Flats arises as much from fear and loathing of nuclear weapons themselves as from the manufacturing process by which they are made

  16. Improving Efficiency with 3-D Imaging: Technology Essential in Removing Plutonium Processing Equipment from Plutonium Finishing Plant Gloveboxes

    International Nuclear Information System (INIS)

    Crow, Stephen H.; Kyle, Richard N.; Minette, Michael J.

    2008-01-01

    The Plutonium Finishing Plant at Hanford, Washington began operations in 1949 to process plutonium and plutonium products. Its primary mission was to produce plutonium metal, fabricate weapons parts, and stabilize reactive materials. These operations, and subsequent activities, were performed in remote production lines, consisting primarily of hundreds of gloveboxes. Over the years these gloveboxes and processes have been continuously modified. The plant is currently inactive and Fluor Hanford has been tasked to clean out contaminated equipment and gloveboxes from the facility so it can be demolished in the near future. Approximately 100 gloveboxes at PFP have been cleaned out in the past four years and about 90 gloveboxes remain to be cleaned out. Because specific commitment dates for this work have been established with the State of Washington and other entities, it is important to adopt work practices that increase the safety and speed of this effort. The most recent work practice to be adopted by Fluor Hanford D and D workers is the use of 3-D models to improve the efficiency of cleaning out radioactive gloveboxes at the plant. The use of 3-D models has significantly improved the work planning process by providing workers with a clear image of glovebox construction and composition, which is then used to determine cleanout methods and work sequences. The 3-D visual products enhance safety by enabling workers to more easily identify hazards and implement controls. In addition, the ability to identify and target the removal of radiological materials early in the D and D process provides substantial dose reduction for the workers

  17. Preventive arms control. Case study: plutonium disposition. Final report

    International Nuclear Information System (INIS)

    Liebert, W.

    2001-01-01

    Plutonium stored in separated form poses a severe threat of nuclear weapons proliferation. While options for the disposition of military plutonium stockpiles have been studied for several years, similar work has hardly been undertaken for plutonium stockpiles in the civilian sector. In the framework of this project, the various options to dispose of stockpiles of separated plutonium in the civilian sector were to be investigated. The project was embedded in the FONAS-project network on Preventive Arms Control, and the findings of this study were to be considered for the development of a concept of Preventive Arms Control. As a first step, the internationally available information on different options for plutonium disposition (MOX-use, immobilization together with radioactive wastes, elimination) were collected and compiled to allow further assessment of the different options. For some of the options, technical questions were examined in more detail. For this purpose, neutron transport and fuel burnup calculations were performed. In particular, the analysis focused on concepts for the elimination of plutonium by the use of uranium-free fuel in existing light-water reactors, since they are particularly attractive from the point of view of non-proliferation. The calculations were performed for a reference fuel based on yttrium-stabilized zirconia, with parameters like the initial plutonium content or the use of burnable neutron poisons varying. A systematic and complete analysis of the performed calculations, however, could not be undertaken due to project time restrictions. On the basis of assessment criteria for Preventive Arms Control developed by the project network, a specific set of criteria for the assessment of the pros and cons of different plutonium disposition methods has been defined. These criteria may then be used as part of a concept of prospective technology assessment. The project findings present a starting base for a comprehensive assessment of the

  18. Review of nuclear fuel cycle alternatives including certain features pertaining to weapon proliferation

    International Nuclear Information System (INIS)

    Williams, D.C.; Rosenstroch, B.

    1978-01-01

    Largely as a result of concerns over nuclear weapon proliferation, the U.S. program to develop and commercialize the plutonium-fueled breeder reactor has been slowed down; interest in alternative fuel cycles has increased. The report offers an informal review of the various nuclear fuel cycle options including some aspects relevant to weapon proliferation, although no complete review of the latter subject is attempted. Basic principles governing breeding, reactor safety, and efficient utilization of fission energy resources (thorium and uranium) are discussed. The controversial problems of weapon proliferation and its relation to fuel reprocessing (which is essential for efficient fuel cycles) are reviewed and a number of proposed approaches to reducing proliferation risks are noted. Some representative specific reactor concepts are described, with emphasis on their development status, their potentials for resource utilization, and their implications for proliferation

  19. Economic assumptions for evaluating reactor-related options for managing plutonium

    International Nuclear Information System (INIS)

    Rothwell, G.

    1996-01-01

    This paper discusses the economic assumptions in the U.S. National Academy of Sciences' report, Management and Disposition of Excess Weapons Plutonium: Reactor-Related Options (1995). It reviews the Net Present Value approach for discounting and comparing the costs and benefits of reactor-related options. It argues that because risks associated with the returns to plutonium management are unlikely to be constant over time, it is preferable to use a real risk-free rate to discount cash flows and explicitly describe the probability distributions for costs and benefits, allowing decision makers to determine the risk premium of each option. As a baseline for comparison, it assumes that one economic benefit of changing the current plutonium management system is a reduction in on-going Surveillance and Maintenance (S and M) costs. This reduction in the present value of S and M costs can be compared with the discounted costs of each option. These costs include direct construction costs, indirect costs, operating costs minus revenues, and decontamination and decommissioning expenses. The paper also discusses how to conduct an uncertainty analysis. It finishes by summarizing conclusions and recommendations and discusses how these recommendations might apply to the evaluation of Russian plutonium management options. (author)

  20. Nuclear weapons complex: What went wrong?

    International Nuclear Information System (INIS)

    Martin, J.E.

    1991-01-01

    The nuclear weapons complex has generated significant volumes of radioactive wastes dating back to the 1940s. Such wastes included transuranic radioisotopes-for example, plutonium-generated as byproducts of the operations. Most of these wastes at the major disposal site were not classified in the same way nuclear wastes are classified today; the definitions of high- and low-level wastes have changed over time, and, in the case of the latter, different classes have been established that determine methods for disposal and handling. Waste disposal was not a high priority during World War II. After the war, however; resources were not committed to either waste-disposal research or the development of a national waste management policy. AEC's failure to develop a national policy on radioactive waste disposal is easier to understand than to excuse. The disposal problem parallels the chemical waste disposal situation, where there were no federal and few state laws regulating chemical waste disposal until 1976, following publicity about Love Canal. This same story has been repeated for radioactive and mixed wastes and facility safety at the nation's nuclear weapon sites

  1. Summary report of the screening process to determine reasonable alternatives for long-term storage and disposition of weapons-usable fissile materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-29

    Significant quantities of weapons-usable fissile materials (primarily plutonium and highly enriched uranium) have become surplus to national defense needs both in the US and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety and health consequences if surplus fissile materials are not properly managed. As announced in the Notice of Intent (NOI) to prepare a Programmatic Environmental Impact Statement (PEIS), the Department of Energy is currently conducting an evaluation process for disposition of surplus weapons-usable fissile materials determined surplus to National Security needs, and long-term storage of national security and programmatic inventories, and surplus weapons-usable fissile materials that are not able to go directly from interim storage to disposition. An extensive set of long-term storage and disposition options was compiled. Five broad long-term storage options were identified; thirty-seven options were considered for plutonium disposition; nine options were considered for HEU disposition; and eight options were identified for Uranium-233 disposition. Section 2 discusses the criteria used in the screening process. Section 3 describes the options considered, and Section 4 provides a detailed summary discussions of the screening results.

  2. Summary report of the screening process to determine reasonable alternatives for long-term storage and disposition of weapons-usable fissile materials

    International Nuclear Information System (INIS)

    1995-01-01

    Significant quantities of weapons-usable fissile materials (primarily plutonium and highly enriched uranium) have become surplus to national defense needs both in the US and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety and health consequences if surplus fissile materials are not properly managed. As announced in the Notice of Intent (NOI) to prepare a Programmatic Environmental Impact Statement (PEIS), the Department of Energy is currently conducting an evaluation process for disposition of surplus weapons-usable fissile materials determined surplus to National Security needs, and long-term storage of national security and programmatic inventories, and surplus weapons-usable fissile materials that are not able to go directly from interim storage to disposition. An extensive set of long-term storage and disposition options was compiled. Five broad long-term storage options were identified; thirty-seven options were considered for plutonium disposition; nine options were considered for HEU disposition; and eight options were identified for Uranium-233 disposition. Section 2 discusses the criteria used in the screening process. Section 3 describes the options considered, and Section 4 provides a detailed summary discussions of the screening results

  3. Transmutation of plutonium in pebble bed type high temperature reactors

    International Nuclear Information System (INIS)

    Bende, E.E.

    1997-01-01

    The pebble bed type High Temperature Reactor (HTR) has been studied as a uranium-free burner of reactor grade plutonium. In a parametric study, the plutonium loading per pebble as well as the type and size of the coated particles (CPs) have been varied to determine the plutonium consumption, the final plutonium burnup, the k ∞ and the temperature coefficients as a function of burnup. The plutonium loading per pebble is bounded between 1 and 3 gr Pu per pebble. The upper limit is imposed by the maximal allowable fast fluence for the CPs. A higher plutonium loading requires a longer irradiation time to reach a desired burnup, so that the CPs are exposed to a higher fast fluence. The lower limit is determined by the temperature coefficients, which become less negative with increasing moderator-actinide ratio. A burnup of about 600 MWd/kgHM can be reached. With the HTR's high efficiency of 40%, a plutonium supply of 1520 kg/GW e a is achieved. The discharges of plutonium and minor actinides are then 450 and 110 kg/GW e a, respectively. (author)

  4. Reprocessing of nuclear fuels at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gray, L.W.

    1986-01-01

    For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets

  5. Civil nuclear energy and the proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    1990-04-01

    The issue of whether civil nuclear programmes contribute to the risk of proliferation of nuclear weapons has been discussed since civil programmes were first considered, and has always complicated public attitudes to civil nuclear energy. This paper seeks to define the extent to which there is such ''linkage''. It does not deal with the linkages that exist between nuclear weapons and other industries and activities - for example, those involved in weapons delivery systems -since these are not within the Uranium Institute's area of competence. Linkage concerns regarding civil nuclear programmes arise primarily over the possibility of their being used to produce highly enriched uranium or plutonium for use in weapons. The technologies which can give rise directly to these materials are therefore ''sensitive'' in proliferation terms. Linkage may also arise through the relevant experience of the trained workforce. Such linkage is, however, limited by institutional, technical and economic factors. First, important institutional constraints on using a civil programme for military purposes exist in the form of a network of bilateral agreements and international treaties - most particularly the Nuclear Non-Proliferation Treaty - and the international safeguards inspections. Secondly, without access to the technologies of enrichment or reprocessing, the fissile material needed for an explosive cannot be obtained from any plant or process used to produce electricity. Finally, establishing a civil programme - with equipment whose design is optimized for electricity production - in order to develop weapons is an expensive route compared to specialized facilities. (author)

  6. Dry sample storage system for an analytical laboratory supporting plutonium processing

    International Nuclear Information System (INIS)

    Treibs, H.A.; Hartenstein, S.D.; Griebenow, B.L.; Wade, M.A.

    1990-01-01

    The Special Isotope Separation (SIS) plant is designed to provide removal of undesirable isotopes in fuel grade plutonium by the atomic vapor laser isotope separation (AVLIS) process. The AVLIS process involves evaporation of plutonium metal, and passage of an intense beam of light from a laser through the plutonium vapor. The laser beam consists of several discrete wavelengths, tuned to the precise wavelength required to ionize the undesired isotopes. These ions are attracted to charged plates, leaving the bulk of the plutonium vapor enriched in the desired isotopes to be collected on a cold plate. Major portions of the process consist of pyrochemical processes, including direct reduction of the plutonium oxide feed material with calcium metal, and aqueous processes for purification of plutonium in residues. The analytical laboratory for the plant is called the Material and Process Control Laboratory (MPCL), and provides for the analysis of solid and liquid process samples

  7. CONVERSION OF PLUTONIUM TRIFLUORIDE TO PLUTONIUM TETRAFLUORIDE

    Science.gov (United States)

    Fried, S.; Davidson, N.R.

    1957-09-10

    A large proportion of the trifluoride of plutonium can be converted, in the absence of hydrogen fluoride, to the tetrafiuoride of plutonium. This is done by heating plutonium trifluoride with oxygen at temperatures between 250 and 900 deg C. The trifiuoride of plutonium reacts with oxygen to form plutonium tetrafluoride and plutonium oxide, in a ratio of about 3 to 1. In the presence of moisture, plutonium tetrafluoride tends to hydrolyze at elevated temperatures and therefore it is desirable to have the process take place under anhydrous conditions.

  8. Plutonium-contaminated fragments at the Taranaki site at Maralinga

    International Nuclear Information System (INIS)

    Burns, P.A.; Cooper, M.B.; Duggleby, J.C.; Mika, J.F.; Williams, G.A.

    1986-07-01

    A detailed assessment is presented of the distribution of plutonium-contaminated fragments and sub-millimetre particles in the vicinity of the Taranaki site at the former U.K. Atomic Weapons Test Range at Maralinga in South Australia. The area which is contaminated with fragments has been divided into three general regions with the designations 'heavily contaminated', 'moderately contaminated' and 'plumes'. The average surface density, activity and estimated total number of fragments are presented for each region. Average surface densities of all fragments with americium-241 activities greater than 2 kBq are estimated to be 33, 7 and 2 m -2 for the 'heavily contaminated', 'moderately contaminated' and 'plumes' regions respectively. The total number of such fragments is estimated to be in excess of three million which accounts for a total plutonium activity of approximately 0.8 TBq. The implications of these results for a rehabilitation program are discussed

  9. 78 FR 23983 - Endangered and Threatened Wildlife and Plants; Threatened Status for Eriogonum codium

    Science.gov (United States)

    2013-04-23

    ... in the eastern half of Washington State. The Cascade Range also serves as a source of cold air, which.... Government in 1943 as a national security area for the production of weapons grade plutonium and purification...

  10. Oxidation-state distribution of plutonium in surface and subsurface waters at Thule, northwest Greenland

    DEFF Research Database (Denmark)

    McMahon, C.A.; Vintró, L.L.; Mitchell, P.I.

    2000-01-01

    (V, VI) (mean, 68 +/- 6%; n = 6), with little if any distinction apparent between surface and bottom waters. Further, the oxidation state distribution at stations close to the accident site is similar to that measured at Upernavik, remote from this site. It is also similar to the distribution observed...... in shelf waters at midlatitudes, suggesting that the underlying processes controlling plutonium speciation are insensitive to temperature over the range 0-25 degrees C. Measurements using tangential-flow ultrafiltration indicate that virtually all of the plutonium (including the fraction in a reduced...... chemical form) is present as fully dissolved species. Most of this plutonium would seem to be of weapons fallout origin, as the mean Pu-238/Pu-239,Pu-240 activity ratio in the water column (dissolved phase) at Thule (0.06 +/- 0.02; n = 10) is similar to the global fallout ratio at this latitude...

  11. Waste minimization and the goal of an environmentally benign plutonium processing facility: A strategic plan

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1994-02-01

    To maintain capabilities in nuclear weapons technologies, the Department of Energy (DOE) has to maintain a plutonium processing facility that meets all the current and emerging standards of environmental regulations. A strategic goal to transform the Plutonium Processing Facility at Los Alamos into an environmentally benign operation is identified. A variety of technologies and systems necessary to meet this goal are identified. Two initiatives now in early stages of implementation are described in some detail. A highly motivated and trained work force and a systems approach to waste minimization and pollution prevention are necessary to maintain technical capabilities, to comply with regulations, and to meet the strategic goal

  12. Plutonium contamination in the Maralinga Tjarutja lands

    International Nuclear Information System (INIS)

    Johnston, P.N.; Lokan, K.H.; Richardson, C.K.; Williams, G.A.

    1989-08-01

    Nuclear weapons trials conducted at Maralinga from 1960 to 1963 resulted in contamination of large areas of land with low levels of plutonium. Ground and aerial surveys and soil sampling conducted between 1984 and 1987 showed that this contamination extended beyond the boundaries of the area still controlled by the Commonwealth Government into the Maralinga Tjarutja lands. Levels of contamination beyond the boundaries of the former test range were found to be low, and were generally undetectable for all but the most sensitive measurement techniques. Soil sampling combined with long laboratory counting was initially used to define the trace levels but the contamination was found to be particulate with a surface density of particles too low for this to be a generally useful technique. The results are presented of in-situ gamma-ray spectrometry using a portable germanium (Ge) detector to measure contamination levels of plutonium to well below 1 kBq m -2 in the Maralinga Tjarutja lands to the north and north-west of the Maralinga test site. 8 refs., 10 figs., 10 tabs

  13. North Korea's nuclear weapons development. Implications for future policy

    International Nuclear Information System (INIS)

    Pollack, J.D.

    2010-01-01

    This essay assesses North Korea's long-standing quest for nuclear weapons; alternative strategies for inhibiting Pyongyang's weapons development; and the potential implications for regional security and nonproliferation should the Democratic People's Republic of Korea (DPRK) retain and enhance its weapons programs. North Korea's pursuit of a nuclear weapons capability has long provoked heated debate among policy makers and research analysts about the purposes of engagement with the North, reflecting the repeated frustrations in efforts to negotiate Korean denuclearization. These debates reflect widely divergent views of the North Korean regime; its sustainability as an autonomous political, economic, and military system; and the potential consequences of continued nuclear development in this isolated, highly idiosyncratic state. These questions assume additional salience as North Korea approaches a leadership succession for only the second time in its six-decade history. The effort to inhibit North Korea's pursuit of nuclear weapons is among the longest running and least successful sagas in international security and non-proliferation policy of the past quarter century. In early 2010, Pyongyang claims a rudimentary nuclear capability by possession of weaponized plutonium, the conduct of two nuclear tests, and advances in the production of enriched uranium as an alternative means of fissile material production, though the latter step is nominally justified as a source for reactor fuel. North Korea defends its pursuit of a nuclear deterrent to counter what Pyongyang deems existential threats posed by the United States.Despite the resumption of high-level diplomatic contact between Washington and Pyongyang in late 2009, realization of a non-nuclear Korean Peninsula remains a very remote prospect. The DPRK insists that a peace agreement between the U.S. and North Korea and hence the cessation of 'hostile DPRK-U.S. relations' are necessary before any consideration of

  14. Life-span studies of inhaled plutonium in beagle dogs

    International Nuclear Information System (INIS)

    Bair, W.J.

    1990-04-01

    In 1970 a life-span study with over 300 beagle dogs was begun to gain an understanding of long-term health effects resulting from respiratory tract intakes of plutonium and to derive risk estimates that might be applied to plutonium and other transuranic elements. Groups of beagle dogs were given single exposures to 239 PuO 2 , 238 PuO 2 , or 239 Pu(NO 3 ) 4 to obtain graded levels of initial lung burdens ranging from 1 to 1800 Bq lung. The objective of this paper is to give you a progress report on the current life-span studies of inhaled plutonium in beagle dogs at the Pacific Northwest Laboratory. I will describe the biokinetics of inhaled plutonium in dogs and the resulting health effects. I will also mention some studies directed towards understanding the mechanism leading to these effects. Finally, I will discuss the current risk estimates derived from these studies and how they might relate to plutonium exposures in humans. 5 refs., 13 figs., 4 tabs

  15. Optimization and implementation study of plutonium disposition using existing CANDU Reactors. Final report

    International Nuclear Information System (INIS)

    1996-09-01

    Since early 1994, the Department of Energy has been sponsoring studies aimed at evaluating the merits of disposing of surplus US weapons plutonium as Mixed Oxide (MOX) fuel in existing commercial Canadian Pressurized Heavy Water reactors, known as CANDU's. The first report, submitted to DOE in July, 1994 (the 1994 Executive Summary is attached), identified practical and safe options for the consumption of 50 to 100 tons of plutonium in 25 years in some of the existing CANDU reactors operating the Bruce A generating station, on Lake Huron, about 300 km north east of Detroit. By designing the fuel and nuclear performance to operate within existing experience and operating/performance envelope, and by utilizing existing fuel fabrication and transportation facilities and methods, a low cost, low risk method for long term plutonium disposition was developed. In December, 1995, in response to evolving Mission Requirements, the DOE requested a further study of the CANDU option with emphasis on more rapid disposition of the plutonium, and retaining the early start and low risk features of the earlier work. This report is the result of that additional work

  16. Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Janeen Denise [Univ. of New Mexico, Albuquerque, NM (United States)

    1999-02-01

    In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

  17. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Tingey, Joel M.; Jones, Susan A.

    2005-01-01

    PFP. Samples varied in appearance depending on the original source of material. Rocky Flats items were mostly dark olive green with clumps that crushed easily with a mortar and pestle. PRF/RMC items showed more variability. These items were mostly rust colored. One sample contained white particles that were difficult to crush, and another sample was a dark grey with a mixture of fines and large, hard fragments. The appearance and feel of the fragments indicated they might be an alloy. The color of the solution samples was indicative of the impurities in the sample. The double-pass filtrate solution was a brown color indicative of the iron impurities in the sample. The other solution sample was light gray in color. Radiochemical analyses, including thermal ionization mass spectrometry (TIMS), alpha and gamma energy analysis (AEA and GEA), and kinetic phosphorescence analysis (KPA), indicate that these materials are all weapons-grade plutonium with consistent plutonium isotopics. A small amount of uranium (<0.14 wt%) is also present in these samples. The isotopic composition of the uranium varied widely but was consistent among each category of material. The primary water-soluble anions in these samples were Cl-, NO3-, SO42-, and PO43-. The only major anion observed in the Rocky Flats materials was Cl-, but the PRF/RMC samples had significant quantities of all of the primary anions observed. Prompt gamma measurements provide a representative analysis of the Cl- concentration in the bulk material. The primary anions observed in the solution samples were NO3-, and PO43-. The concentration of these anions did not exceed the mixed oxide (MOX) specification limits. Cations that exceeded the MOX specification limits included Cr, Fe, Ni, Al, Cu, and Si. All of the samples exceeded at least the 75% specification limit in one element

  18. The conversion of military science and technology: Former Soviet Union case

    International Nuclear Information System (INIS)

    Martellini, M.

    1998-01-01

    The end of the Cold War which has brought deep changes in the very concept of defence, requires fundamental changes in the defence strategies of all nations, the new international situation is encouraging the conversion of the military sector for the benefit of the civilian economy. This process involves many companies that have previously worked mostly or exclusively on the basis of military orders. In particular, from the nuclear non-proliferation point of view and environmental safety standpoint, some urgent problems arise: civilian management of military nuclear technologies, management and storage of weapon-grade materials, namely plutonium and highly enriched uranium from dismantled nuclear warheads, cleaning and reusing large areas which have been taken up for the production of weapon-grade plutonium and uranium enrichment (in Soviet Union so called 'atomic sites'), retraining scientific personnel and engineers in the nuclear military industry

  19. System Definition Document: Reactor Data Necessary for Modeling Plutonium Disposition in Catawba Nuclear Station Units 1 and 2

    International Nuclear Information System (INIS)

    Ellis, R.J.

    2000-01-01

    The US Department of Energy (USDOE) has contracted with Duke Engineering and Services, Cogema, Inc., and Stone and Webster (DCS) to provide mixed-oxide (MOX) fuel fabrication and reactor irradiation services in support of USDOE's mission to dispose of surplus weapons-grade plutonium. The nuclear station units currently identified as mission reactors for this project are Catawba Units 1 and 2 and McGuire Units 1 and 2. This report is specific to Catawba Nuclear Station Units 1 and 2, but the details and materials for the McGuire reactors are very similar. The purpose of this document is to present a complete set of data about the reactor materials and components to be used in modeling the Catawba reactors to predict reactor physics parameters for the Catawba site. Except where noted, Duke Power Company or DCS documents are the sources of these data. These data are being used with the ORNL computer code models of the DCS Catawba (and McGuire) pressurized-water reactors

  20. Light water reactor mixed-oxide fuel irradiation experiment

    International Nuclear Information System (INIS)

    Hodge, S.A.; Cowell, B.S.; Chang, G.S.; Ryskamp, J.M.

    1998-01-01

    The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding

  1. Fabrication, inspection, and test plan for the Advanced Test Reactor (ATR) Mixed-Oxide (MOX) fuel irradiation project

    International Nuclear Information System (INIS)

    Wachs, G.W.

    1997-11-01

    The Department of Energy (DOE) Fissile Materials Disposition Materials Disposition Program (FMDP) has announced that reactor irradiation of MOX fuel is one of the preferred alternatives for disposal of surplus weapons-usable plutonium (Pu). MOX fuel has been utilized domestically in test reactors and on an experimental basis in a number of Commercial Light Water Reactors (CLWRs). Most of this experience has been with Pu derived from spent low enriched uranium (LEU) fuel, known as reactor grade (RG) Pu. The MOX fuel test will be irradiated in the ATR to provide preliminary data to demonstrate that the unique properties of surplus weapons-derived or weapons-grade (WG) plutonium (Pu) do not compromise the applicability of this MOX experience base. In addition, the test will contribute experience with irradiation of gallium-containing fuel to the data base required for resolution of generic CLWR fuel design issues (ORNL/MD/LTR-76). This Fabrication, Inspection, and Test Plan (FITP) is a level 2 document as defined in the FMDP LWR MOX Fuel Irradiation Test Project Plan (ORNL/MD/LTR-78)

  2. Plutonium in nature; Le plutonium dans la nature

    Energy Technology Data Exchange (ETDEWEB)

    Madic, C.

    1994-12-31

    Plutonium in nature comes from natural sources and anthropogenic ones. Plutonium at the earth surface comes principally from anthropogenic sources. It is easily detectable in environment. The plutonium behaviour in environment is complex. It seems necessary for the future to reduce releases in environment, to improve predictive models of plutonium behaviour in geosphere, to precise biological impact of anthropogenic plutonium releases.

  3. IAEA symposium on international safeguards. Extended synopses

    International Nuclear Information System (INIS)

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials

  4. Disposition of already separated plutonium in Russia: Consideration of short- and long-term options

    International Nuclear Information System (INIS)

    Diakov, A.S.

    1995-01-01

    The plutonium stockpile presents a serious risk to national and international security. However, the utilization of already separated plutonium involves a complex set of political, technical, economical, and environmental problems. How Russia can best deal with all the problems associated with plutonium stockpiles is the subject of this paper. The official Russian concept of plutonium utilization views it as a valuable energy source. This concept entails the following two measures: (1) storage of both surplus weapons and civil plutonium; (2) fabrication of MOX fuel for future use in a different type of reactor: light-water reactors and fast-neutron reactors. To implement this concept, building four 800-Megawatt fast-neutron reactors and completing the construction of MOX plant is proposed. Technical and economical evaluations are being conducted on plutonium utilization in VVER-1000 reactors. When operating, these reactors (four BN-800 and seven VVER-1000) could dispose of about 9 tons of plutonium per year. But given Russia's current chaotic political and economic conditions, it seems unlikely that these plans will be carried out any time soon. Furthermore, the comparative economic analysis conducted for the different types of fuel cycles shows that due to several factors there is no economic motivation for Russia to use plutonium for fuel fabrication in the near future. These observations indicate that the real question that needs to be answered is what priority needs to be placed on short-, medium-, and long-term to identify and choose between different disposition options? This question is easily answered when one considers the currently turbulent political and economic situation in Russia. The priority that makes the most sense is to concentrate efforts on short-term options

  5. Improving aircraft accident forecasting for an integrated plutonium storage facility

    International Nuclear Information System (INIS)

    Rock, J.C.; Kiffe, J.; McNerney, M.T.; Turen, T.A.

    1998-06-01

    Aircraft accidents pose a quantifiable threat to facilities used to store and process surplus weapon-grade plutonium. The Department of Energy (DOE) recently published its first aircraft accident analysis guidelines: Accident Analysis for Aircraft Crash into Hazardous Facilities. This document establishes a hierarchy of procedures for estimating the small annual frequency for aircraft accidents that impact Pantex facilities and the even smaller frequency of hazardous material released to the environment. The standard establishes a screening threshold of 10 -6 impacts per year; if the initial estimate of impact frequency for a facility is below this level, no further analysis is required. The Pantex Site-Wide Environmental Impact Statement (SWEIS) calculates the aircraft impact frequency to be above this screening level. The DOE Standard encourages more detailed analyses in such cases. This report presents three refinements, namely, removing retired small military aircraft from the accident rate database, correcting the conversion factor from military accident rates (accidents per 100,000 hours) to the rates used in the DOE model (accidents per flight phase), and adjusting the conditional probability of impact for general aviation to more accurately reflect pilot training and local conditions. This report documents a halving of the predicted frequency of an aircraft impact at Pantex and points toward further reductions

  6. Iran's nuclear program - for power generation or nuclear weapons?

    International Nuclear Information System (INIS)

    Kippe, Halvor

    2008-11-01

    This report addresses the development of a nuclear infrastructure in Iran, and assessments are made on the near-term potential this infrastructure might yield of either nuclear power or nuclear arms production. The most significant facilities are treated in a more elaborate fashion, as these are assumed to have key roles in either a true civilian programme, or in the prospect of weapons-grade fissile material production. The future potential capacity for the latter is calculated under certain presumptions, both in the case that Iran focuses its efforts on uranium-based nuclear weapons, and in the case that it should choose the plutonium path to nuclear weapons. All the conclusions and findings in this report are based on technological considerations. This means that social or political assessments have not prevailed, rather the picture of Iran's nuclear programme is drawn through descriptions and assessments of facilities and systems, and their role in the bigger context. Definite conclusions have not been made as to whether Iran's nuclear programme currently is aimed towards nuclear arms or nuclear power. The secrecy surrounding some of the most prominent nuclear sites together with more or less credible allegations of purely weapons-related activities in the past, make it hard not to conclude that Iran until the disclosures in 2002 made as great an effort as it could on its way on developing nuclear weapons covertly. The scope of today's nuclear programme seems, on the other hand, most likely to be in part to help relieve the ever-increasing need for energy, although considerable deficits to this strategy are identified, at the same time as the Iranian people are united in a giant, high-prestige project in defiance of massive international pressure. Adding to this is a much-feared ability to rapidly being able to redirect their nuclear efforts, and develop nuclear arms in perhaps as little as one year. This so-called break-out scenario, where Iran presumably

  7. Comparative study of plutonium and americium bioaccumulation from two marine sediments contaminated in the natural environment

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, T.F.; Smith, J.D. (Melbourne Univ., Parkville (Australia). Dept. of Inorganic Chemistry); Fowler, S.W.; LaRosa, J.; Holm, E. (International Atomic Energy Agency, Monaco-Ville (Monaco). Lab. of Marine Radioactivity); Aarkrog, A.; Dahlgaard, H. (Risoe National Lab., Roskilde (Denmark))

    1991-01-01

    Plutonium and americium sediment-animal transfer was studied under controlled laboratory conditions by exposure of the benthic polychaete Nereis diversicolor (O. F. Mueller) to marine sediments contaminated by a nuclear bomb accident (near Thule, Greenland) and nuclear weapons testing (Enewetak Atoll). In both sediment regimes, the bioavailability of plutonium and {sup 241}Am was low, with specific activity in the tissues <1% (dry wt) than in the sediments. Over the first three months, a slight preference in transfer of plutonium over {sup 241}Am occurred and {sup 241}Am uptake from the Thule sediment was enhanced compared to that from lagoon sediments of Enewetak Atoll. Autoradiography studies indicated the presence of hot particles of plutonium in the sediments. The results highlight the importance of purging animals of their gut contents in order to obtain accurate estimates of transuranic transfer from ingested sediments into tissue. It is further suggested that enhanced transuranic uptake by some benthic species could arise from ingestion of highly activity particles and organic-rich detritus present in the sediments. (author).

  8. Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives

    International Nuclear Information System (INIS)

    1997-01-01

    This report has been prepared by the Department of Energy's Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration

  9. The plutonium ban

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    'Nuclear Power Issues and Choices' is the title of a recent report which has been performed by a study group sponsored by the Ford Foundation and administered by the MITRE Corporation. The main concern of this study is to prevent the proliferation of nuclear weapons. Since the reprocessing of spent fuel elements yields among others plutonium of bomb quality, the report of the Ford Foundation comes to the conclusion that the USA should defer the closing of the fuel cycle, defer the reprocessing of spent nuclear fuel, deposit the spent fuel elemenets as a whole, and defer the breeder which can not run without fuel reprocessing. The German attitude however is that we can not relinquish on reprocessing and recycling of nuclear fuel because we are lacking such rich resources of coal, oil and uranium as the USA have. Furthermore, the deposition of spent fuel elements may be more dangerous than the deposition of the radioactive waste from reprocessing plants. (orig.) [de

  10. The Feed Materials Program of the Manhattan Project: A Foundational Component of the Nuclear Weapons Complex

    Science.gov (United States)

    Reed, B. Cameron

    2014-12-01

    The feed materials program of the Manhattan Project was responsible for procuring uranium-bearing ores and materials and processing them into forms suitable for use as source materials for the Project's uranium-enrichment factories and plutonium-producing reactors. This aspect of the Manhattan Project has tended to be overlooked in comparison with the Project's more dramatic accomplishments, but was absolutely vital to the success of those endeavors: without appropriate raw materials and the means to process them, nuclear weapons and much of the subsequent cold war would never have come to pass. Drawing from information available in Manhattan Engineer District Documents, this paper examines the sources and processing of uranium-bearing materials used in making the first nuclear weapons and how the feed materials program became a central foundational component of the postwar nuclear weapons complex.

  11. Breeding and plutonium characterization analysis on actinides closed water-cooled thorium reactor

    International Nuclear Information System (INIS)

    Permana, Sidik; Sekimoto, Hiroshi; Takaki, Naoyuki

    2009-01-01

    Higher difficulties (barrier) or more complex design of nuclear weapon, material fabrication and handling and isotopic enrichment can be achieved by a higher isotopic barrier. The isotopic material barrier includes critical mass, heat-generation rate, spontaneous neutron generation and radiation. Those isotopic barriers in case of plutonium isotope is strongly depend on the even mass number of plutonium isotope such as 238 Pu, 240 Pu and 242 Pu and for 233 U of thorium cycle depends on 232 U. In this present study, fuel sustainability as fuel breeding capability and plutonium characterization as main focus of proliferation resistance analysis have been analyzed. Minor actinide (MA) is used as doping material to be loaded into the reactors with thorium fuel. Basic design parameters are based on actinide closed-cycle reactor cooled by heavy water. The evaluation use equilibrium burnup analysis coupled with cell calculation of SRAC and nuclear data library is JENDL.32. Parametrical survey has been done to analyze the effect of MA doping rate, different moderation ratio for several equilibrium burnup cases. Plutonium characterization which based on plutonium isotope composition is strongly depending on MA doping concentration and different moderation conditions. Breeding condition can be achieved and high proliferation resistance level can be obtained by the present reactor systems. Higher isotopic plutonium composition of Pu-238 (more than 40%) can be obtained compared with other plutonium isotopes. In addition, higher moderation ratio gives the isotope composition of 238 Pu increases, however, it obtains lower composition when MA doping is increased and it slightly lower composition for higher burnup. Meanwhile, higher 240 Pu composition can be achieved by higher MA doping rate as well as for obtaining higher breeding capability. (author)

  12. FMCT after South Asia's tests. A view from a nuclear-weapon state

    International Nuclear Information System (INIS)

    Dunn, L.A.

    1998-01-01

    Proposals to negotiate an international treaty to cutoff the production of plutonium and highly-enriched uranium for nuclear weapons have been on the international nuclear agenda for many decades. Hopes in the early 1990s that it would be possible finally to negotiate a FMCT, however, have not been borne out. Instead, a deadlock had ensued at the Geneva CD. It remains to be seen whether the recent nuclear tests by India and Pakistan will contribute to breaking that deadlock - or only to foreclosing any prospects for negotiating cutoff in the foreseeable future. The key lies in the attitudes of Delhi and Islamabad - influenced to the extent possible by the efforts of the international community to convince both countries' leaders to stop short of an escalating nuclear war in the region. Regardless, there are a variety of other initiatives aimed at heightening transparency and controls over the nuclear weapons materials in the five NPT nuclear weapon states that could be pursued as part of broader ongoing efforts to roll back the Cold War nuclear legacies

  13. Comparative study of plutonium and americium bioaccumulation from two marine sediments contaminated in the natural environment

    International Nuclear Information System (INIS)

    Hamilton, T.F.; Smith, J.D.

    1991-01-01

    Plutonium and americium sediment-animal transfer was studied under controlled laboratory conditions by exposure of the benthic polychaete Nereis diversicolor (O. F. Mueller) to marine sediments contaminated by a nuclear bomb accident (near Thule, Greenland) and nuclear weapons testing (Enewetak Atoll). In both sediment regimes, the bioavailability of plutonium and 241 Am was low, with specific activity in the tissues 241 Am occurred and 241 Am uptake from the Thule sediment was enhanced compared to that from lagoon sediments of Enewetak Atoll. Autoradiography studies indicated the presence of hot particles of plutonium in the sediments. The results highlight the importance of purging animals of their gut contents in order to obtain accurate estimates of transuranic transfer from ingested sediments into tissue. It is further suggested that enhanced transuranic uptake by some benthic species could arise from ingestion of highly activity particles and organic-rich detritus present in the sediments. (author)

  14. Summary of recent studies of soil plutonium in the Los Alamos and Trinity Site environs

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Hakonson, T.E.

    1976-01-01

    The first plutonium was sent to the Los Alamos Scientific Laboratory (LASL) in 1944 from the Oak Ridge and Hanford reactors for use in synthesizing the first atomic bomb, which was subsequently detonated at Trinity Site in New Mexico. During the last 32 years the LASL has developed an outstanding capability in many scientific fields required to support research in weapons technology and in other uses of nuclear energy. The fabrication and experimental activities required for this effort have resulted in additions of plutonium in industrial effluents to Los Alamos soils, just as the Trinity soils received fallout plutonium after the 1945 Trinity detonation. Formal radioecology-soils studies relative to soil-actinide relationships has been mainly field-oriented and complements transuranic research dealing with the biota of several study areas. The current soil actinide research performed within three liquid effluent-receiving areas at Los Alamos and along the fallout pathway of Trinity, the first nuclear detonation, are summarized

  15. Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

  16. Determination of plutonium isotopes in waters and environmental solids: A review

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Miró, Manuel

    2009-01-01

    A number of analytical methods have been developed in the past few years for environmental monitoring of plutonium (Pu) isotopes around nuclear facilities within protocols for emergency preparedness as well as for risk assessment of contaminated areas resulting from nuclear weapon tests, nuclear...... accidents, and the discharge of nuclear waste. This article summarizes and critically compares recently reported methods for determination of Pu isotopes in waters and environmental solid substrates, in which sample pre-treatment is imperative for separation of the target species from matrix ingredients and...

  17. Investigation of environmental samples from Fukushima with respect to uranium and plutonium by AMS; Untersuchung von Umweltproben aus Fukushima in Bezug auf Plutonium und Uran mittels AMS

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Stephanie

    2017-02-01

    In March 2011, the nuclear power plant Fukushima Dai-ichi was seriously damaged by a tsunami caused by an earthquake. During the accident large quantities of radionuclides, mainly of the volatile elements cesium and iodine, were released to the environment. In small amounts refractory elements such as plutonium and uranium have also been released. Plutonium and the uraniumisotope {sup 236}U have primarily been delivered by human activities in the environment. Large amounts were released during the atmospheric nuclear weapons tests. Additional sources are accidents in nuclear facilities, like Chernobyl. Every source has its own characteristic isotopic composition. It is therefore possible to determine the origin of the contamination by measuring the isotopic ratios of {sup 240}Pu/{sup 239}Pu and {sup 236}U/{sup 238}U. These ratios can be determined by using accelerator mass spectrometry. Due to its high sensitivity, it is possible to measure even small amounts of plutonium and especially of {sup 236}U. These measurements were performed using the compact 500 kV facility ''TANDY'' of ETH Zurich. In 2013 and 2015 vegetation, litter and soil drill core samples were taken in the contaminated area in Fukushima prefecture. In 2015 samples were taken as close to the sampling locations of the 2013 campaign as possible. After isolation of plutonium and uranium by chemical extraction, separate targets were prepared for the measurement. The {sup 240}Pu/{sup 239}Pu ratios indicate global fallout as the plutonium source for most samples. The plutonium of the reactors of Fukushima Dai-ichi is located in the upper layers like in vegetation or litter. From the uranium ratios alone the reactors could not unambigously be identified as the source of {sup 236}U. However, this is plausible in the cases were reactor plutonium was detected. None of the samples contained higher plutonium activity concentrations than in the rest of Japan, caused by global fallout. This

  18. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume II, part 3: Los Alamos National Laboratory working group assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    The Los Alamos National Laboratory (LANL) was established in 1943 with its sole mission to develop a fission bomb. Since that time, the mission of the Laboratory has expanded to include not only the primary one of nuclear weapon stockpile stewardship, but also one that supports energy, biomedical, environmental, and physical research. As part of the Laboratory's primary and diverse missions, many forms of plutonium materials are used and stored. Over the years of production and use of plutonium at Department of Energy (DOE) sites, some events have occurred that were unexpected and that have resulted in environmental, safety, and/or health concerns. Some of these events have led to improvements that will preclude these concerns from arising again. However, the end of the cold war and the expansion of the Laboratory mission have introduced the possibility of new vulnerabilities

  19. Design safety features of containments used for handling plutonium in Reprocessing Plants

    International Nuclear Information System (INIS)

    Aherwal, P.; Achuthan, P.V.

    2016-01-01

    The plutonium present in spent fuel is separated from the associated uranium and fission products using solvent extraction cycles in process cells. Product plutonium nitrate solution containing trace concentrations of uranium and fission products is treated in the reconversion facility through a precipitation-calcination route and converted to sinterable grade plutonium oxide (PuO 2 ). All chemical operations involving materials with high plutonium content, both in solid and solution forms are carried out in glove boxes. Glove box provides an effective isolation from radioactive materials handled and acts as a barrier between the operator and the source of radiation. These glove boxes are interconnected for sequential operations and the interconnected glove box trains are installed within secondary enclosures called double skin which provides double barrier protection to operators

  20. IAEA symposium on international safeguards. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials Refs, figs, tabs

  1. Subchronic inhalation of carbon tetrachloride alters the tissue retention of acutely inhaled plutonium-239 nitrate in F344 rats and syrian golden hamsters

    International Nuclear Information System (INIS)

    Benson, J.M.; Barr, E.B.; Lundgren, D.L.

    1995-01-01

    Carbon tetrachloride (CCl 4 ) has been used extensively in the nuclear weapons industry, so it is likely that nuclear plant workers have been exposed to both CCl 4 and plutonium compounds. Future exposures may occur during open-quotes cleanupclose quotes operations at weapons productions sites such as the Hanford, Washington, and Rocky Flats, Colorado, facilities. Inhalation of 20 and 100 ppm CCl 4 by hamsters reduces uptake of 239 Pu solubilized from lung, shunting the 239 Pu to the skeleton

  2. Vver-1000 Mox core computational benchmark

    International Nuclear Information System (INIS)

    2006-01-01

    The NEA Nuclear Science Committee has established an Expert Group that deals with the status and trends of reactor physics, fuel performance and fuel cycle issues related to disposing of weapons-grade plutonium in mixed-oxide fuel. The objectives of the group are to provide NEA member countries with up-to-date information on, and to develop consensus regarding, core and fuel cycle issues associated with burning weapons-grade plutonium in thermal water reactors (PWR, BWR, VVER-1000, CANDU) and fast reactors (BN-600). These issues concern core physics, fuel performance and reliability, and the capability and flexibility of thermal water reactors and fast reactors to dispose of weapons-grade plutonium in standard fuel cycles. The activities of the NEA Expert Group on Reactor-based Plutonium Disposition are carried out in close co-operation (jointly, in most cases) with the NEA Working Party on Scientific Issues in Reactor Systems (WPRS). A prominent part of these activities include benchmark studies. At the time of preparation of this report, the following benchmarks were completed or in progress: VENUS-2 MOX Core Benchmarks: carried out jointly with the WPRS (formerly the WPPR) (completed); VVER-1000 LEU and MOX Benchmark (completed); KRITZ-2 Benchmarks: carried out jointly with the WPRS (formerly the WPPR) (completed); Hollow and Solid MOX Fuel Behaviour Benchmark (completed); PRIMO MOX Fuel Performance Benchmark (ongoing); VENUS-2 MOX-fuelled Reactor Dosimetry Calculation (ongoing); VVER-1000 In-core Self-powered Neutron Detector Calculational Benchmark (started); MOX Fuel Rod Behaviour in Fast Power Pulse Conditions (started); Benchmark on the VENUS Plutonium Recycling Experiments Configuration 7 (started). This report describes the detailed results of the benchmark investigating the physics of a whole VVER-1000 reactor core using two-thirds low-enriched uranium (LEU) and one-third MOX fuel. It contributes to the computer code certification process and to the

  3. Chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    These analytical procedures are designed to show whether a given material meets the purchaser's specifications as to plutonium content, effective fissile content, and impurity content. The following procedures are described in detail: plutonium by controlled-potential coulometry; plutonium by amperometric titration with iron(II); free acid by titration in an oxalate solution; free acid by iodate precipitation-potentiometric titration method; uranium by Arsenazo I spectrophotometric method; thorium by thorin spectrophotometric method; iron by 1,10-phenanthroline spectrophotometric method; chloride by thiocyanate spectrophotometric method; fluoride by distillation-spectrophotometric method; sulfate by barium sulfate turbidimetric method; isotopic composition by mass spectrometry; americium-241 by extraction and gamma counting; americium-241 by gamma counting; gamma-emitting fission products, uranium, and thorium by gamma-ray spectroscopy; rare earths by copper spark spectrochemical method; tungsten, niobium (columbium), and tantalum by spectrochemical method; simple preparation by spectrographic analysis for general impurities

  4. The PEACE PIPE: Recycling nuclear weapons into a TRU storage/shipping container

    International Nuclear Information System (INIS)

    Floyd, D.; Edstrom, C.; Biddle, K.; Orlowski, R.; Geinitz, R.; Keenan, K.; Rivera, M.

    1997-01-01

    This paper describes results of a contract undertaken by the National Conversion Pilot Project (NCPP) at the Rocky Flats Environmental Technology Site (RFETS) to fabricate stainless steel ''pipe'' containers for use in certification testing at Sandia National Lab, Albuquerque to qualify the container for both storage of transuranic (TRU) waste at RFETS and other DOE sites and shipping of the waste to the Waste Isolation Pilot Project (WIPP). The paper includes a description of the nearly ten-fold increase in the amount of contained plutonium enabled by the product design, the preparation and use of former nuclear weapons facilities to fabricate the components, and the rigorous quality assurance and test procedures that were employed. It also describes how stainless steel nuclear weapons components can be converted into these pipe containers, a true ''swords into plowshare'' success story

  5. Non proliferation of nuclear weapons?

    International Nuclear Information System (INIS)

    Le Guelte, Georges

    2015-10-01

    After having evoked the behaviour of nuclear countries regarding the development of nuclear weapons and uranium procurement, or nuclear programmes after the Second World War until nowadays, the author presents the non proliferation Treaty (NPT) as a construction at the service of super-powers. He comments and discusses the role of the IAEA control system and its evolutions: a control limited to declared installations, an export control with the spectre of plutonium, a control system thwarted by some technological innovations, information systems coming in, and an additional protocol related to the application of guarantees. He comments the evolution of the context from a bipolar world to a world without pole which raises the issue of how to have commitments respected: description of the role and practice of non proliferation during the Cold War, after the Cold War, and in a world without governance

  6. The Creative Application of Science, Technology and Work Force Innovations to the Decontamination and Decommissioning of the Plutonium Finishing Plant at the Hanford Nuclear Reservation

    International Nuclear Information System (INIS)

    Charboneau, S.; Klos, B.; Heineman, R.; Skeels, B.; Hopkins, A.

    2006-01-01

    The Plutonium Finishing Plant (PFP) consists of a number of process and support buildings for handling plutonium. Building construction began in the late 1940's to meet national priorities and became operational in 1950 producing refined plutonium salts and metal for the United States nuclear weapons program The primary mission of the PFP was to provide plutonium used as special nuclear material for fabrication into a nuclear device for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race. PFP has now completed its mission and is fully engaged in deactivation, decontamination and decommissioning (D and D). At this time the PFP buildings are planned to be reduced to ground level (slab-on-grade) and the site remediated to satisfy national, Department of Energy (DOE) and Washington state requirements. The D and D of a highly contaminated plutonium processing facility presents a plethora of challenges. PFP personnel approached the D and D mission with a can-do attitude. They went into D and D knowing they were facing a lot of challenges and unknowns. There were concerns about the configuration control associated with drawings of these old process facilities. There were unknowns regarding the location of electrical lines and the condition and contents of process piping containing chemical residues such as strong acids and caustics. The gloveboxes were highly contaminated with plutonium and chemical residues. Most of the glovebox windows were opaque with splashed process chemicals that coated the windows or etched them, reducing visibility to near zero. Visibility into the glovebox was a serious worker concern. Additionally, all the gloves in the gloveboxes were degraded and unusable. Replacing gloves in gloveboxes was necessary to even begin glovebox clean-out. The sheer volume of breathing air needed was also an issue. These and other challenges and PFP

  7. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J. [Pacific Northwest Lab., Richland, WA (United States); Nass, R. [Nuclear Fuel Services, Inc. (United States)

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  8. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    International Nuclear Information System (INIS)

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J.; Nass, R.

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage

  9. A nuclear-weapon-free world. Report on working group 1

    International Nuclear Information System (INIS)

    1998-01-01

    The stages of nuclear material management are reviewed in respect to dismantlement of nuclear weapons, disposal of weapon-grade fissile materials and cut-off of their production as well as START I and II reduction which are underway. Separate chapters are dealing with the comprehensive test ban treaty, verification, control and regulation in this matter, and the advisory opinion of the International Court of Justice, Canberra Commission, the ABM USA-Soviet Treaty

  10. Stop plutonium

    International Nuclear Information System (INIS)

    2003-02-01

    This press document aims to inform the public on the hazards bound to the plutonium exploitation in France and especially the plutonium transport. The first part is a technical presentation of the plutonium and the MOX (Mixed Oxide Fuel). The second part presents the installation of the plutonium industry in France. The third part is devoted to the plutonium convoys safety. The highlight is done on the problem of the leak of ''secret'' of such transports. (A.L.B.)

  11. Statistical analysis of a LASL study of plutonium in US autopsy tissue

    International Nuclear Information System (INIS)

    Fox, T.; Tietjen, G.L.; McInroy, J.F.

    1979-01-01

    The Autopsy Tissue Program was begun in 1960. To date, tissues on 900 or more persons in 7 geographic regions have been collected and analyzed for plutonium content. The tissues generally consist of lung, liver, kidney, lymph, bone, and gonadal tissues for each individual. The original objective of the program was to determine the level of plutonium in human tissues due solely to fallout from weapons testing. The baseline thus established was to be used to evaluate future changes. From the first, this program was beset with chemical and statistical difficulties. Many factors whose effects were not recognized and not planned for were found later to be important. Privacy and ethical considerations hindered the gathering of adequate data. Since the chemists were looking for amounts of plutonium very close to background, possible contamination was a very real problem. Widely used chemical techniques introduced a host of statistical problems. The difficulties encountered touch on areas common to large data sets, unusual outlier detection methods minimum detection limits, problems with aliquot sizes, and time-trends in the data. The conclusions point out areas to which the biologists will have to devote much more careful attention than was believed

  12. Lessons Learned and Present Day Challenges of Addressing 20th Century Radiation Legacies of Russia and the United States

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.

    2000-01-01

    The decommissioning of nuclear submarines, disposal of highly-enriched uranium and weapons-grade plutonium, and processing of high-level radioactive wastes represent the most challenging issues facing the cleanup of 20th century radiation legacy wastes and facilities. The US and Russia are the two primary countries dealing with these challenges, because most of the world's fissile inventory is being processed and stored at multiple industrial sites and nuclear weapons production facilities in these countries

  13. The PRISM reactor as a possible option to deal with the british civilian plutonium stockpile

    Energy Technology Data Exchange (ETDEWEB)

    Fichtlscherer, Christopher [IANUS, TU Darmstadt (Germany); Friess, Friederike [IANUS, TU Darmstadt (Germany); ISR, Universitaet fuer Bodenkultur Wien (Boku) (Austria)

    2017-07-01

    Dealing with stocks of separated weapon-usable plutonium is a big challenge for our modern society. This work focuses on the British civil plutonium stockpiles, which amount to 103.3 tons. One option is seen in irradiating the plutonium in a fast reactor under development, namely the GE PRISM reactor. The PRISM reactor is a small modular, fast reactor which has a thermal power of 840 MW and an electrical output of 311 MW. It is intended to use MOX fuel and proponents claim, that it thus would be possible to produce clean energy, while making the plutonium proliferation resistant. A MCNP model of the reactor is built and depletion calculations with different target burnups of the fuel were conducted to check whether the burned material would fulfil the Spent-Fuel Standard. Particularly it was checked whether the spent fuel is self protecting, meaning that the dose rate does not fall below a limit of 1 Sv/h in 1 meter distance after a cooling period of 30 years. Based on the reactor model calculations the irradiation time to fulfill this limit for the spent fuel is calculated. Based on the needed target burnup, it can be verified, whether it is possible for the PRISM reactor to render the civil plutonium proliferation resistant in only 20 years as is is claimed by its proponents.

  14. Subchronic inhalation of carbon tetrachloride alters the tissue retention of acutely inhaled plutonium-239 nitrate in F344 rats and syrian golden hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Barr, E.B.; Lundgren, D.L. [and others

    1995-12-01

    Carbon tetrachloride (CCl{sub 4}) has been used extensively in the nuclear weapons industry, so it is likely that nuclear plant workers have been exposed to both CCl{sub 4} and plutonium compounds. Future exposures may occur during {open_quotes}cleanup{close_quotes} operations at weapons productions sites such as the Hanford, Washington, and Rocky Flats, Colorado, facilities. Inhalation of 20 and 100 ppm CCl{sub 4} by hamsters reduces uptake of {sup 239}Pu solubilized from lung, shunting the {sup 239}Pu to the skeleton.

  15. Low-Level Plutonium Bioassay Measurements at the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, T; Brown, T; Hickman, D; Marchetti, A; Williams, R; Kehl, S

    2007-06-18

    Plutonium-239 ({sup 239}Pu) and plutonium-240 ({sup 240}Pu) are important alpha emitting radionuclides contained in radioactive debris from nuclear weapons testing. {sup 239}Pu and {sup 240}Pu are long-lived radionuclides with half-lives of 24,400 years and 6580 years, respectively. Concerns over human exposure to plutonium stem from knowledge about the persistence of plutonium isotopes in the environment and the high relative effectiveness of alpha-radiation to cause potential harm to cells once incorporated into the human body. In vitro bioassay tests have been developed to assess uptakes of plutonium based on measured urinary excretion patterns and modeled metabolic behaviors of the absorbed radionuclides. Systemic plutonium absorbed by the deep lung or from the gastrointestinal tract after ingestion is either excreted or distributed to other organs, primarily to the liver and skeleton, where it is retained for biological half-times of around 20 and 50 years, respectively. Dose assessment and atoll rehabilitation programs in the Marshall Islands have historically given special consideration to residual concentrations of plutonium in the environment even though the predicted dose from inhalation and/or ingestion of plutonium accounts for less than 5% of the annual effective dose from exposure to fallout contamination. Scientists from the Lawrence Livermore National Laboratory (LLNL) have developed a state-of-the-art bioassay test to assess urinary excretion rates of plutonium from Marshallese populations. This new heavy-isotope measurement system is based on Accelerator Mass Spectrometry (AMS). The AMS system at LLNL far exceeds the standard measurement requirements established under the latest United States Department of Energy (DOE) regulation, 10CFR 835, for occupational monitoring of plutonium, and offers several advantages over classical as well as competing new technologies for low-level detection and measurement of plutonium isotopes. The United States

  16. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department's plutonium storage. Volume II, Appendix B, Part 10: Sandia National Laboratories - New Mexico site assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    On March 15, 1994, Secretary O'Leary directed the Office of Environment, Safety and Health to conduct an environment, safety and health (ES ampersand H) vulnerability study of plutonium at DOE sites. This report presents Sandia National Laboratories'/New Mexico (SNL/NM) response to that request. Sandia National Laboratories (SNL) is a multi-program laboratory operated for United States Department of Energy(DOE) by Martin Marietta Corporation. The primary mission of Sandia is research and development of nuclear weapons systems for concept to retirement. The laboratory also has extensive programs in nuclear reactor safety, nuclear safeguards, energy research, and microelectronics. The facilities addressed in the SNL/NM Site Assessment include the Hot Cell Facility (HCF), the Annular Core Research Reactor (ACRR), and dedicated on-site nuclear material storage facilities. Also included in the assessment were sealed radiation sources that contain plutonium

  17. A Roadmap and Discussion of Issues for Physics Analyses Required to Support Plutonium Disposition in VVER-1000 Reactors

    International Nuclear Information System (INIS)

    Primm, R.T.; Drischler, J.D.; Pavlovichev, A.M.; Styrine, Y.A.

    2000-01-01

    The purpose of this report is to document the physics analyses that must be performed to successfully disposition weapons-usable plutonium in VVER-1000 reactors in the Russian Federation. The report is a document to support programmatic and financial planning. It does not include documentation of the technical procedures by which physics analyses are performed, nor are the results of any analyses included

  18. A Roadmap and Discussion of Issues for Physics Analyses Required to Support Plutonium Disposition in VVER-1000 Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T.; Drischler, J.D.; Pavlovichev, A.M. Styrine, Y.A.

    2000-06-01

    The purpose of this report is to document the physics analyses that must be performed to successfully disposition weapons-usable plutonium in VVER-1000 reactors in the Russian Federation. The report is a document to support programmatic and financial planning. It does not include documentation of the technical procedures by which physics analyses are performed, nor are the results of any analyses included.

  19. Sets of Reports and Articles Regarding Cement Wastes Forms Containing Alpha Emitters that are Potentially Useful for Development of Russian Federation Waste Treatment Processes for Solidification of Weapons Plutonium MOX Fuel Fabrication Wastes for

    International Nuclear Information System (INIS)

    Jardine, L J

    2003-01-01

    This is a set of nine reports and articles that were kindly provided by Dr. Christine A. Langton from the Savannah River Site (SRS) to L. J. Jardine LLNL in June 2003. The reports discuss cement waste forms and primarily focus on gas generation in cement waste forms from alpha particle decays. However other items such as various cement compositions, cement product performance test results and some cement process parameters are also included. This set of documents was put into this Lawrence Livermore National Laboratory (LLNL) releasable report for the sole purpose to provide a set of documents to Russian technical experts now beginning to study cement waste treatment processes for wastes from an excess weapons plutonium MOX fuel fabrication facility. The intent is to provide these reports for use at a US RF Experts Technical Meeting on: the Management of Wastes from MOX Fuel Fabrication Facilities, in Moscow July 9-11, 2003. The Russian experts should find these reports to be very useful for their technical and economic feasibility studies and the supporting R and D activities required to develop acceptable waste treatment processes for use in Russia as part of the ongoing Joint US RF Plutonium Disposition Activities

  20. Denaturing of plutonium by transmutation of minor-actinides for enhancement of proliferation resistance

    International Nuclear Information System (INIS)

    Sagara, Hiroshi; Saito, Masaki; Peryoga, Yoga; Ezoubtchenko, Alexey; Takivayev, Alan

    2005-01-01

    Feasibility study for the plutonium denaturing by utilizing minor-actinide transmutation in light water reactors has been performed. And the intrinsic feature of proliferation resistance of plutonium has been discussed based on IAEA's publication and Kessler's proposal. The analytical results show that not only 238 Pu but also other plutonium isotopes with even-mass-number have very important role for denaturing of plutonium due to their relatively large critical mass and noticeably high spontaneous fission neutron generation. With the change of the minor-actinide doping ratio in U-Pu mix oxide fuel and moderator to fuel ratio, it is found that the reactor-grade plutonium from conventional light water reactors can be denatured to satisfy the proliferation resistance criterion based on the Kessler's proposal but not to be sufficient for the criterion based on IAEA's publication. It has been also confirmed that all the safety coefficients take negative value throughout the irradiation. (author)

  1. Determination of plutonium in pure plutonium nitrate solutions - Gravimetric method

    International Nuclear Information System (INIS)

    1987-01-01

    This International Standard specifies a precise and accurate gravimetric method for determining the concentration of plutonium in pure plutonium nitrate solutions and reference solutions, containing between 100 and 300 g of plutonium per litre, in a nitric acid medium. The weighed portion of the plutonium nitrate is treated with sulfuric acid and evaporated to dryness. The plutonium sulfate is decomposed and formed to oxide by heating in air. The oxide is ignited in air at 1200 to 1250 deg. C and weighed as stoichiometric plutonium dioxide, which is stable and non-hygroscopic

  2. Precipitation of plutonium (III) oxalate and calcination to plutonium oxide

    International Nuclear Information System (INIS)

    Esteban, A.; Orosco, E.H.; Cassaniti, P.; Greco, L.; Adelfang, P.

    1989-01-01

    The plutonium based fuel fabrication requires the conversion of the plutonium nitrate solution from nuclear fuel reprocessing into pure PuO2. The conversion method based on the precipitation of plutonium (III) oxalate and subsequent calcination has been studied in detail. In this procedure, plutonium (III) oxalate is precipitated, at room temperature, by the slow addition of 1M oxalic acid to the feed solution, containing from 5-100 g/l of plutonium in 1M nitric acid. Before precipitation, the plutonium is adjusted to trivalent state by addition of 1M ascorbic acid in the presence of an oxidation inhibitor such as hydrazine. Finally, the precipitate is calcinated at 700 deg C to obtain PuO2. A flowsheet is proposed in this paper including: a) A study about the conditions to adjust the plutonium valence. b) Solubility data of plutonium (III) oxalate and measurements of plutonium losses to the filtrate and wash solution. c) Characterization of the obtained products. Plutonium (III) oxalate has several potential advantages over similar conversion processes. These include: 1) Formation of small particle sizes powder with good pellets fabrication characteristics. 2) The process is rather insensitive to most process variables, except nitric acid concentration. 3) Ambient temperature operations. 4) The losses of plutonium to the filtrate are less than in other conversion processes. (Author) [es

  3. AWRE: Atomic Weapons Research Establishment

    International Nuclear Information System (INIS)

    1983-01-01

    This reviews the work of AWRE at Aldermaston and Foulness. The main programme is nuclear and is concerned with the design and development of warheads for strategic and tactical nuclear weapons for the British nuclear deterrent, including those for the Royal Navy's missile carrying submarine fleet. The work is described grouped as design physics, development and materials. Services to these groups and to the whole establishment are provided by Engineering, Safety and Administration. The work ranges from long-term fundamental research, the development of technology, design, prototype development to the environmental testing of engineered products. In materials research the emphasis is on plutonium, uranium and beryllium, on high explosives and a wide range of inorganic and organic materials. The physics of the earth's crust is studied to aid detection of underground nuclear explosions. Reactor research facilities include the two reactors, Herald and Viper. (U.K.)

  4. FMCT after South Asia's tests. A view from a nuclear-weapon state

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, L.A. [Science Applications Int. Corp. (United States)

    1998-07-01

    Proposals to negotiate an international treaty to cutoff the production of plutonium and highly-enriched uranium for nuclear weapons have been on the international nuclear agenda for many decades. Hopes in the early 1990s that it would be possible finally to negotiate a FMCT, however, have not been borne out. Instead, a deadlock had ensued at the Geneva CD. It remains to be seen whether the recent nuclear tests by India and Pakistan will contribute to breaking that deadlock - or only to foreclosing any prospects for negotiating cutoff in the foreseeable future. The key lies in the attitudes of Delhi and Islamabad - influenced to the extent possible by the efforts of the international community to convince both countries' leaders to stop short of an escalating nuclear war in the region. Regardless, there are a variety of other initiatives aimed at heightening transparency and controls over the nuclear weapons materials in the five NPT nuclear weapon states that could be pursued as part of broader ongoing efforts to roll back the Cold War nuclear legacies.

  5. Equipping a glovebox for waste form testing and characterization of plutonium bearing materials

    International Nuclear Information System (INIS)

    Noy, M.; Johnson, S.G.; Moschetti, T.L.

    1997-01-01

    The recent decision by the Department of Energy to pursue a hybrid option for the disposition of weapons plutonium has created the need for additional facilities that can examine and characterize waste forms that contain Pu. This hybrid option consists of the placement of plutonium into stable waste forms and also into mixed oxide fuel for commercial reactors. Glass and glass-ceramic waste forms have a long history of being effective hosts for containing radionuclides, including plutonium. The types of tests necessary to characterize the performance of candidate waste forms include: static leaching experiments on both monolithic and crushed waste forms, microscopic examination, and density determination. Frequently, the respective candidate waste forms must first be produced using elevated temperatures and/or high pressures. The desired operations in the glovebox include, but are not limited to the following: (1) production of vitrified/sintered samples, (2) sampling of glass from crucibles or other vessels, (3) preparing samples for microscopic inspection and monolithic and crushed static leach tests, and (4) performing and analyzing leach tests in situ. This paper will describe the essential equipment and modifications that are necessary to successfully accomplish the goal of outfitting a glovebox for these functions

  6. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J. N.; Chin, M. R.; Sjoden, G. E. [Nuclear and Radiological Engineering Program, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State St, Atlanta, GA 30332-0745 (United States)

    2013-07-01

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reaction rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)

  7. Plutonium-236 traces determination in plutonium-238 by α spectrometry

    International Nuclear Information System (INIS)

    Acena, M.L.; Pottier, R.; Berger, R.

    1969-01-01

    Two methods are described in this report for the determination of plutonium-236 traces in plutonium-238 by a spectrometry using semi-conductor detectors. The first method involves a direct comparison of the areas under the peaks of the α spectra of plutonium-236 and plutonium-238. The electrolytic preparation of the sources is carried out after preliminary purification of the plutonium. The second method makes it possible to determine the 236 Pu/ 238 Pu ratio by comparing the areas of the α peaks of uranium-232 and uranium-234, which are the decay products of the two plutonium isotopes respectively. The uranium in the source, also deposited by electrolysis, is separated from a 1 mg amount of plutonium either by a T.L.A. extraction, or by the use of ion-exchange resins. The report ends with a discussion of the results obtained with plutonium of two different origins. (authors) [fr

  8. Plutonium controversy

    International Nuclear Information System (INIS)

    Gofman, J.W.

    1976-01-01

    If the world chooses to seek a solution to the energy dilemma through nuclear energy, the element plutonium will become an article of commerce to be handled in quantities of thousands of tonnes annually. Plutonium is a uniquely potent inhalation carcinogen, the potential induction of lung cancer dwarfing other possible toxic effects. For reasons to be presented here, it is the author's opinion that plutonium's carcinogenicity has been very seriously underestimated. If one couples the corrected carcinogenicity with the probable degree of industrial containment of the plutonium, it appears that the commercialization of a plutonium-based energy economy is not an acceptable option for society. Sagan's statement that ''the experience of 30 years supports the contention that plutonium can be used safely'' is manifestly indefensible. No meaningful epidemiological study of plutonium-exposed workers for that 30-year period has ever been done. Since thousands of those possibly exposed have left the industry and are not even available to follow-up, it is doubtful that any meaningful study of ''the experience of 30 years'' will ever be accomplished

  9. Preparation of hexavalent plutonium and its determination in the presence of tetravalent plutonium; Preparation de plutonium hexavalent et dosage en presence de plutonium tetravalent

    Energy Technology Data Exchange (ETDEWEB)

    Corpel, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Corpel, J [Institut du Radium, 75 - Paris (France)

    1958-07-01

    In order to study the eventual reduction of plutonium from the VI-valent state to the IV-valent state, in sulphuric medium, under the influence of its own {alpha} radiation or of the {gamma}-rays from a cobalt-60 source, we have developed a method for preparing pure hexavalent plutonium and two methods for determining solutions containing tetravalent and hexavalent plutonium simultaneously. Hexavalent plutonium was prepared by anodic oxidation at a platinum electrode. Study of the oxidation yield as a function of various factors has made it possible to define experimental conditions giving complete oxidation. For concentrations in total plutonium greater than 1.5 x 10{sup -3} M, determination of the two valencies IV and VI was carried out by spectrophotometry at two wavelengths. For lower concentrations, the determination was done by counting, after separation of the tetravalent plutonium in the form of fluoride in the presence of a carrier. (author) [French] Afin d'etudier l'eventuelle reduction du plutonium de l'etat de valence VI a l'etat de valence IV, en milieu sulfurique sous l'influence de son propre rayonnement {alpha} ou des rayons {gamma} d'une source de cobalt-60, nous avons mis au point une methode de preparation de plutonium hexavalent pur et deux methodes de dosage des solutions contenant simultanement du plutonium tetravalent et du plutonium hexavalent. Nous avons prepare le plutonium hexavalent par oxydation anodique au contact d'une electrode de platine. L'etude de rendement de l'oxydation en fonction des divers facteurs nous a permis de definir des conditions experimentales donnant une oxydation complete. Pour des concentrations en plutonium total superieures a 1,5.10{sup -3} M, le dosage des deux valences IV et VI a ete realise par spectrophotometrie a deux longueurs d'onde. Pour des concentrations inferieures, le dosage a ete effectue par comptage apres separation du plutonium tetravalent sous la forme du fluorure en presence d'un entraineur

  10. Plutonium in nature

    International Nuclear Information System (INIS)

    Madic, C.

    1994-01-01

    Plutonium in nature comes from natural sources and anthropogenic ones. Plutonium at the earth surface comes principally from anthropogenic sources. It is easily detectable in environment. The plutonium behaviour in environment is complex. It seems necessary for the future to reduce releases in environment, to improve predictive models of plutonium behaviour in geosphere, to precise biological impact of anthropogenic plutonium releases

  11. Nuclear weapons proliferation as a world order problem

    International Nuclear Information System (INIS)

    Falk, R.

    1977-01-01

    World-order concerns have intensified recently in light of mounting evidence that a weapons capability will soon be within easy reach of more and more governments and of certain nongovernmental groupings as well. One reliable source estimates that by 1985 as many as fifty countries could ''produce enough plutonium each year for at least several dozen nuclear explosives.'' In an even more immediate sense, ''economic competition among nuclear suppliers today could soon lead to a world in which twenty or more nations are but a few months from a nuclear weapons force.'' Three developments have created this ''world order'' sense of concern: (1) increased pace of civilian nuclear power deployment globally as a consequence of rising oil prices, unreliability of oil supplies, and reality of dwindling oil reserves in any case; (2) actuality of India's nuclear explosion in May 1974 which demonstrated vividly how any state that pursues a ''civilian'' program can also develop its own weapons capability; and (3) the intensification of competition for international nuclear sales which makes it increasingly evident that nonproliferation goals are no longer compatible with the pursuit of national commercial advantage; essentially, this reality has emerged from a break in the American monopoly over civilian nuclear technology and the willingness of French and German suppliers to provide all elements of the nuclear fuel cycle, including enrichment and reprocessing facilities,to any nation that feels it can afford to buy them; the German-Brazilian deal (worth at least $4 billion) has proven to be the equivalent in the commercial realm of India's ''peaceful'' nuclear explosion. Such developments disclose the alarming prospect that easier access to nuclear technology will make it relatively simple and thus more likely for a beleaguered government or a desperate political actor of any sort to acquire and possibly use nuclear weapons

  12. Multiparameter analysis of fall-out plutonium burdens in human liver

    International Nuclear Information System (INIS)

    Griffith, W.C.; Guilmette, R.A.

    1991-01-01

    The effect of multiple factors on Pu liver burdens is estimated for a group of 310 people who were selected to have relative uniform exposure to fall-out plutonium ( 239 Pu plus 240 Pu), based on age in 1952, the start of atmospheric testing of thermonuclear weapons, and based on residence history in eastern Colorado, where they died between 1975 and 1979. The data were analysed using multiple linear regression of the logarithm of the total liver plutonium burden on other available covariates. The results of the regression indicated that the liver burden was increased by 34% in very heavy smokers (100 pack year history) compared to non-smokers, decreased by 27% in females compared to males, decreased by 24% in people with a neoplasm in the liver compared to those without a neoplasm, and decreased by 64% in people with cirrhosis compared to those without cirrhosis. However, all of those parameters accounted for only 26% of the variability in liver burdens observed among these people, indicating that there remains a large unexplained variation. (author)

  13. Independent verification of plutonium decontamination on Johnston Atoll (1992--1996)

    International Nuclear Information System (INIS)

    Wilson-Nichols, M.J.; Wilson, J.E.; McDowell-Boyer, L.M.; Davidson, J.R.; Egidi, P.V.; Coleman, R.L.

    1998-05-01

    The Field Command, Defense Special Weapons Agency (FCDSWA) (formerly FCDNA) contracted Oak Ridge National Laboratory (ORNL) Environmental Technology Section (ETS) to conduct an independent verification (IV) of the Johnston Atoll (JA) Plutonium Decontamination Project by an interagency agreement with the US Department of Energy in 1992. The main island is contaminated with the transuranic elements plutonium and americium, and soil decontamination activities have been ongoing since 1984. FCDSWA has selected a remedy that employs a system of sorting contaminated particles from the coral/soil matrix, allowing uncontaminated soil to be reused. The objective of IV is to evaluate the effectiveness of remedial action. The IV contractor's task is to determine whether the remedial action contractor has effectively reduced contamination to levels within established criteria and whether the supporting documentation describing the remedial action is adequate. ORNL conducted four interrelated tasks from 1992 through 1996 to accomplish the IV mission. This document is a compilation and summary of those activities, in addition to a comprehensive review of the history of the project

  14. Direct vitrification of plutonium-containing materials (PCM`s) with the glass material oxidation and dissolution system (GMODS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W. Beahm, E.C.; Parker, G.W.; Rudolph, J.C.; Haas, P.A.; Malling, G.F.; Elam, K.; Ott, L.

    1995-10-30

    The end of the cold war has resulted in excess PCMs from nuclear weapons and associated production facilities. Consequently, the US government has undertaken studies to determine how best to manage and dispose of this excess material. The issues include (a) ensurance of domestic health, environment, and safety in handling, storage, and disposition, (b) international arms control agreements with Russia and other countries, and (c) economics. One major set of options is to convert the PCMs into glass for storage or disposal. The chemically inert characteristics of glasses make them a desirable chemical form for storage or disposal of radioactive materials. A glass may contain only plutonium, or it may contain plutonium along with other radioactive materials and nonradioactive materials. GMODS is a new process for the direct conversion of PCMs (i.e., plutonium metal, scrap, and residues) to glass. The plutonium content of these materials varies from a fraction of a percent to pure plutonium. GMODS has the capability to also convert other metals, ceramics, and amorphous solids to glass, destroy organics, and convert chloride-containing materials into a low-chloride glass and a secondary clean chloride salt strewn. This report is the initial study of GMODS for vitrification of PCMs as input to ongoing studies of plutonium management options. Several tasks were completed: initial analysis of process thermodynamics, initial flowsheet analysis, identification of equipment options, proof-of-principle experiments, and identification of uncertainties.

  15. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    International Nuclear Information System (INIS)

    Chodak, P. III

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO 2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239 Pu and ≥90% total Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products

  16. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, III, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239Pu and ≥90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  17. A high temperature reactor could be used to eliminate the Russian military plutonium

    International Nuclear Information System (INIS)

    Foucher, N.

    1999-01-01

    The GT-MHR reactor (Gas Turbine Modular Helium Reactor) aims the double objective to eliminate the Russian plutonium coming from weapons, ( until 3 tons by year) and to produce a competitive energy from a small-scale power reactor with a nuclear fuel that can be of different type (plutonium or uranium). This reactor has several advantages: a high yield (47%) as every high temperature reactor and to be used in combined cycle, a high level of safety because of its ability to evacuate the residual power in a totally passive way and because of the nature of its fuel that is made of ceramics with a very high melting point that is to say no possibility of core melt. The fission products are contained in the ceramics so that reactor cannot disseminate radioactivity in its structure and consequently does not induce irradiation for the personnel. (N.C.)

  18. SEPARATION OF PLUTONIUM

    Science.gov (United States)

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  19. Applying Agile MethodstoWeapon/Weapon-Related Software

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D; Armendariz, M; Blackledge, M; Campbell, F; Cloninger, M; Cox, L; Davis, J; Elliott, M; Granger, K; Hans, S; Kuhn, C; Lackner, M; Loo, P; Matthews, S; Morrell, K; Owens, C; Peercy, D; Pope, G; Quirk, R; Schilling, D; Stewart, A; Tran, A; Ward, R; Williamson, M

    2007-05-02

    This white paper provides information and guidance to the Department of Energy (DOE) sites on Agile software development methods and the impact of their application on weapon/weapon-related software development. The purpose of this white paper is to provide an overview of Agile methods, examine the accepted interpretations/uses/practices of these methodologies, and discuss the applicability of Agile methods with respect to Nuclear Weapons Complex (NWC) Technical Business Practices (TBPs). It also provides recommendations on the application of Agile methods to the development of weapon/weapon-related software.

  20. Plutonium management for the future

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1996-01-01

    Managment of excess nuclear materials from US weapons dismantlement has been the subject of numerous intellectual discussions during the past 5 years. Although there has been some objective recommendations, there is still much controversy surrounding the procsses that could lead to a national decision on Pu management. Two immediate needs are to secure the inventories of all Pu in safe configurations and to develop strategies for reducing proliferation risks. Specific suggestions discussed here are to (a) accept the deterrence value of Pu, (b) reappraise its potential as an energy resource, (c) recognize limitations to influence the future of Pu use world-wide, (d) isolate recoverable weapons-grade Pu and store it in stable configurations under international safeguards, and (e) manage Pu in spent fuels so that the valuable resources are not lost to a future generation

  1. Methodology development for plutonium categorization and enhancement of proliferation resistance by P3 mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M.; Kimura, Y.; Sagara, H.; Han, C. Y. [Tokyo Institute of Technology, Tokyo (Japan); Koyama, S. [Japan Atomic Energy Agency, Ibaraki (Japan)

    2012-03-15

    'Protected Plutonium Production (P3)' has been proposed to enhance the proliferation resistance of plutonium by the transmutation of Minor Actinides (MA). For example, adding the small amount of Minor Actinides such as {sup 237}Np or {sup 241}Am with large neutron capture cross-section to the uranium fuel to enhance the production of {sup 238}Pu, which has high spontaneous fission neutron rate do deteriorate the quality of the nuclear weapon manufacture and maintenance technologically difficult, is very effective for improving the isotopic barrier for the proliferation of plutonium. To demonstrate the P3 mechanism experimentally, U samples with 2, 5 and 10% {sup 237}Np doping were irradiated in Advanced Thermal Reactor (ATR) of INL. The fuel test samples were removed from the core at 100, 200 and 300 effective full power days (EFPD), and then post irradiation examination was completed at Chemical Lab. in Idaho National Laboratory(INL). The theoretical results of P3 mechanism predict the experimental ones quite well. The evaluation function, 'Attractiveness', was introduced as the ratio of function of Rossi-alpha to the 'Technical Difficulties for Fission Explosive Device Use. 'Rossi-alpha defined as the ratio of super-criticality to prompt neutron lifetime is the meaningful feature of the explosive yield. The Technical Difficulties for Fission Explosive Device Use can be expressed by the function of specific decay heat , spontaneous fission neutron rate and radiation of plutonium metal. Original methodology to evaluate Attractiveness of Plutonium has been improved by considering the effect of the compression of Plutonium isotope and also pre-detonation probability due to spontaneous fission neutron ate, which was applied for the categorization of the plutonium from the conventional reactors and the innovative reactors based on P3 mechanism. In the present paper, the fundamentals of P3 mechanism, the experimental demonstration of P3

  2. Methodology development for plutonium categorization and enhancement of proliferation resistance by P3 mechanism

    International Nuclear Information System (INIS)

    Saito, M.; Kimura, Y.; Sagara, H.; Han, C. Y.; Koyama, S.

    2012-01-01

    'Protected Plutonium Production (P3)' has been proposed to enhance the proliferation resistance of plutonium by the transmutation of Minor Actinides (MA). For example, adding the small amount of Minor Actinides such as 237 Np or 241 Am with large neutron capture cross-section to the uranium fuel to enhance the production of 238 Pu, which has high spontaneous fission neutron rate do deteriorate the quality of the nuclear weapon manufacture and maintenance technologically difficult, is very effective for improving the isotopic barrier for the proliferation of plutonium. To demonstrate the P3 mechanism experimentally, U samples with 2, 5 and 10% 237 Np doping were irradiated in Advanced Thermal Reactor (ATR) of INL. The fuel test samples were removed from the core at 100, 200 and 300 effective full power days (EFPD), and then post irradiation examination was completed at Chemical Lab. in Idaho National Laboratory(INL). The theoretical results of P3 mechanism predict the experimental ones quite well. The evaluation function, 'Attractiveness', was introduced as the ratio of function of Rossi-alpha to the 'Technical Difficulties for Fission Explosive Device Use. 'Rossi-alpha defined as the ratio of super-criticality to prompt neutron lifetime is the meaningful feature of the explosive yield. The Technical Difficulties for Fission Explosive Device Use can be expressed by the function of specific decay heat , spontaneous fission neutron rate and radiation of plutonium metal. Original methodology to evaluate Attractiveness of Plutonium has been improved by considering the effect of the compression of Plutonium isotope and also pre-detonation probability due to spontaneous fission neutron ate, which was applied for the categorization of the plutonium from the conventional reactors and the innovative reactors based on P3 mechanism. In the present paper, the fundamentals of P3 mechanism, the experimental demonstration of P3 mechanism in ATR of INL and the methodology

  3. Nuclear weapons and nuclear power stations: what is the connection

    International Nuclear Information System (INIS)

    Spencer, K.

    1985-01-01

    From the start of the nuclear age with the dropping of two atom bombs on Japan in 1945 it has been known that this new source of primary energy could be exploited for weapons or for replacing coal or oil in electricity-generating stations. Nuclear energy is made from two elements: naturally occurring uranium and man-made plutonium. Their processing differs according to the intended end-use. Great efforts have been and still are made to disguise the close connection between nuclear energy for war and for power stations. Two reasons are suggested for this: political conveniences in avoiding additional informed protests against nuclear weapon production and industrial convenience in carrying on without public protest what has become a very profitable industry. It is argued that medical doctors, because of their professional prestige, can speak and be listened to on the risks of continuing to exploit this newly discovered form of energy. Furthermore, this industry is uniquely hazardous to the health of its workers, to the public generally and possibly to the procreation and genetic health of future generations. (author)

  4. Integrated safeguards and security for the INEL Special Isotope Separation Plant

    International Nuclear Information System (INIS)

    Warner, G.F.; Zack, N.R.

    1990-01-01

    This paper describes the development of the safeguards and security system that was to be used for the Special Isotope Separation (SIS) Production Plant. The US Department of Energy has postponed the construction of the SIS Plant that was to be built at the Idaho National Engineering Laboratory (INEL) site near Idaho Falls, Idaho. The Plant was designed to produce weapons grade plutonium from DOE owned fuel grade plutonium by converting off-spec. plutonium dioxide into metal buttons that would meet required chemical and isotopic specifications. Because this was to be a completely new facility there was a unique opportunity to provide an in-depth, ''state-of-the- art'' safeguards and security system without attempting to overlay upon an existing, older system. This facility was being designed to be in complete compliance with the new DOE Orders by integrating safeguards and security into the plant operating system and by providing graded protection to the areas of varying sensitivity within the plant

  5. The G8 global partnership against proliferation

    International Nuclear Information System (INIS)

    Devaux, O.

    2003-01-01

    Launched in 2002, the G8 global partnership against the proliferation of massive destruction weapons will contribute up to 20 billion dollars to the dismantling of the nuclear and chemical weapons of the former USSR (20000 nuclear warheads stored in 123 sites, 1350 tons of weapon grade plutonium and enriched uranium, 40000 tons of chemical agents, 190 decommissioned nuclear submarines etc..). This partnership, which has entered its realization phase, inaugurates a new cooperation with the Russian Federation. I could be used tomorrow in other regions of the world and become an instrument of the international community for the fight against proliferation. (J.S.)

  6. Plutonium metal exchange program : current status and statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, L. (Lav); Eglin, J. L. (Judith Lynn); Michalak, S. E. (Sarah E.); Picard, R. R.; Temer, D. J. (Donald J.)

    2004-01-01

    The Rocky Flats Plutonium (Pu) Metal Sample Exchange program was conducted to insure the quality and intercomparability of measurements such as Pu assay, Pu isotopics, and impurity analyses. The Rocky Flats program was discontinued in 1989 after more than 30 years. In 2001, Los Alamos National Laboratory (LANL) reestablished the Pu Metal Exchange program. In addition to the Atomic Weapons Establishment (AWE) at Aldermaston, six Department of Energy (DOE) facilities Argonne East, Argonne West, Livermore, Los Alamos, New Brunswick Laboratory, and Savannah River are currently participating in the program. Plutonium metal samples are prepared and distributed to the sites for destructive measurements to determine elemental concentration, isotopic abundance, and both metallic and nonmetallic impurity levels. The program provides independent verification of analytical measurement capabilies for each participating facility and allows problems in analytical methods to be identified. The current status of the program will be discussed with emphasis on the unique statistical analysis and modeling of the data developed for the program. The discussion includes the definition of the consensus values for each analyte (in the presence and absence of anomalous values and/or censored values), and interesting features of the data and the results.

  7. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  8. A Program to Stabilize Nuclear Materials as Managed by the Plutonium Focus Area

    International Nuclear Information System (INIS)

    Kenley, B.; Scott, B.; Seidel, B.; Knecht, D.; Southworth, F.; Osborne, K.; Chipman, N.; Creque, T.

    1999-01-01

    This paper describes the program to stabilize nuclear materials, consistent with the Department of Energy Office of Environmental Management (EM) plan, Accelerating Cleanup: Paths to Closure. The program is managed by the Plutonium Stabilization and Disposition Focus Area, which defines and manages technology development programs to stabilize nuclear materials and assure their subsequent safe storage and final disposition. The scope of the Plutonium Stabilization and Disposition Focus Area (PFA) activities includes non-weapons plutonium materials, special isotopes, and other fissile materials. The PFA provides solutions to site-specific and complex wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. Our paper describes an important programmatic function of the Department of Energy nuclear materials stabilization program, including the tie-in of policy to research needs and funding for the nuclear materials disposition area. The PFA uses a rigorous systems engineering determination of technology needs and gaps, under the guidance of a Technical Advisory Panel, consisting of complex-wide experts. The Research and Development planning provides an example for other waste areas and should be of interest to Research and Development managers. The materials disposition maps developed by the PFA and described in this paper provide an evaluation of research needs, data gaps and subsequent guidance for the development of technologies for nuclear materials disposition. This paper also addresses the PFA prioritization methodology and its ability to forecast actual time to implementation

  9. Technology for down-blending weapons grade uranium into commercial reactor-usable uranium

    International Nuclear Information System (INIS)

    Arbital, J.G.; Snider, J.D.

    1996-01-01

    The US Department of Energy (DOE) is evaluating options for rendering surplus inventories of highly enriched uranium (HEU) incapable of being used in nuclear weapons. Weapons-capable HEU was earlier produced by enriching the uranium isotope 235 U from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by permanently diluting the concentration of the 235 U isotope, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope re-enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended, low-enriched uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel. The DOE has evaluated three candidate processes for down blending surplus HEU. These candidate processes are: (1) uranium hexafluoride blending; (2) molten uranium metal blending; and (3) uranyl nitrate solution blending. This paper describes each of these candidate processes. It also compares the relative advantages and disadvantages of each process with respect to: (1) the various forms and compounds of HEU comprising the surplus inventory, (2) the use of down-blended product as commercial reactor fuel, or (3) its disposal as waste

  10. Disposal of fissionable material from dismantled nuclear weapons

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1991-01-01

    The reduction in tensions between the United States and the Soviet Union has improved the prospects for nuclear disarmament, making it more likely that significant numbers of nuclear warheads will be dismantled by the United States and USSR in the foreseeable future. Thus, the question becomes more urgent as to the disposition of the weapons materials, highly enriched uranium and plutonium. It is timely, therefore, to develop specific plans for such disposal. The overall process for disposal of weapons materials by the burnup option involves the following steps: (1) removing the weapons material from the warheads, (2) converting the material to a fuel form suitable for power reactors, (3) burning it up as a power reactor fuel, and (4) removing the spent fuel and placing it in a permanent repository. This paper examines these four steps with the purpose of answering the following questions. What facilities would be appropriate for the disposal process? Do they need to be dedicated facilities, or could industrial facilities be used? What is the present projection of the economics of the burnup process, both the capital investment and the operating costs? How does one assure that fissionable materials will not be diverted to military use during the disposal process? Is the spent fuel remaining from the burnup process proliferation resistant? Would the disposal of spent fuel add an additional burden to the spent fuel permanent repository? The suggested answers are those of the author and do not represent a position by the Electric Power Research Institute

  11. Life cycle costs for the domestic reactor-based plutonium disposition option

    International Nuclear Information System (INIS)

    Williams, K.A.

    1999-01-01

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission

  12. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  13. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    International Nuclear Information System (INIS)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-01

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility

  14. SRS vitrification studies in support of the U.S. program for disposition of excess plutonium

    International Nuclear Information System (INIS)

    Wicks, G.G.; McKibben, J.M.; Plodinec, M.J.; Ramsey, W.G.

    1995-01-01

    Many thousands of nuclear weapons are being retired in the U.S. and Russian as a result of nuclear disarmament activities. These efforts are expected to produce a surplus of about 50 MT of weapons grade plutonium (Pu) in each country. In addition to this inventory, the U.S. Department of Energy (DOE) has more than 20 MT of Pu scrap, residue, etc., and Russian is also believed to have at least as much of this type of material. The entire surplus Pu inventories in the U.S. and Russian present a clear and immediate danger to national and international security. It is important that a solution be found to secure and manage this material effectively and that such an effort be implemented as quickly as possible. One option under consideration is vitrification of Pu into a safe, durable, accountable and proliferation-resistant form. As a result of decades to experience within the DOE community involving vitrification of a variety of hazardous and radioactive wastes, this existing technology can now be expanded to include mobilization of large amounts of Pu. This technology can then be implemented rapidly using the many existing resources currently available. An overall strategy to vitrify many different types of Pu will be already developed throughout the waste management community can be used in a staged Pu vitrification effort. This approach uses the flexible vitrification technology already available and can even be made portable so that it may be brought to the source and ultimately, used to produce a consistent and common borosilicate glass composition for the vitrified Pu. The final composition of this product can be made similar to nationally and internationally accepted HLW glasses

  15. Plutonium

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Plutonium, which was obtained and identified for the first time in 1941 by chemist Glenn Seaborg - through neutron irradiation of uranium 238 - is closely related to the history of nuclear energy. From the very beginning, because of the high radiotoxicity of plutonium, a tremendous amount of research work has been devoted to the study of the biological effects and the consequences on the environment. It can be said that plutonium is presently one of the elements, whose nuclear and physico-chemical characteristics are the best known. The first part of this issue is a survey of the knowledge acquired on the subject, which emphasizes the sanitary effects and transfer into the environment. Then the properties of plutonium related to energy generation are dealt with. Fissionable, like uranium 235, plutonium has proved a high-performance nuclear fuel. Originally used in breeder reactors, it is now being more and more widely recycled in light water reactors, in MOX fuel. Reprocessing, recycling and manufacturing of these new types of fuel, bound of become more and more widespread, are now part of a self-consistent series of operations, whose technical, economical, industrial and strategical aspects are reviewed. (author)

  16. Learning more about plutonium

    International Nuclear Information System (INIS)

    2005-01-01

    This document offers chemical, metallurgical and economical information on the plutonium, a hard white radioelement. It deals also on the plutonium formation in the earth, the plutonium use in the nuclear industry, the plutonium in the environment and the plutonium toxicity. (A.L.B.)

  17. Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway.

    Science.gov (United States)

    Wendel, Cato Christian; Fifield, L Keith; Oughton, Deborah H; Lind, Ole Christian; Skipperud, Lindis; Bartnicki, Jerzy; Tims, Stephen G; Høibråten, Steinar; Salbu, Brit

    2013-09-01

    A combination of state-of-the-art isotopic fingerprinting techniques and atmospheric transport modelling using real-time historical meteorological data has been used to demonstrate direct tropospheric transport of radioactive debris from specific nuclear detonations at the Semipalatinsk test site in Kazakhstan to Norway via large areas of Europe. A selection of archived air filters collected at ground level at 9 stations in Norway during the most intensive atmospheric nuclear weapon testing periods (1957-1958 and 1961-1962) has been screened for radioactive particles and analysed with respect to the concentrations and atom ratios of plutonium (Pu) and uranium (U) using accelerator mass spectrometry (AMS). Digital autoradiography screening demonstrated the presence of radioactive particles in the filters. Concentrations of (236)U (0.17-23nBqm(-3)) and (239+240)Pu (1.3-782μBqm(-3)) as well as the atom ratios (240)Pu/(239)Pu (0.0517-0.237) and (236)U/(239)Pu (0.0188-0.7) varied widely indicating several different sources. Filter samples from autumn and winter tended to have lower atom ratios than those sampled in spring and summer, and this likely reflects a tropospheric influence in months with little stratospheric fallout. Very high (236)U, (239+240)Pu and gross beta activity concentrations as well as low (240)Pu/(239)Pu (0.0517-0.077), (241)Pu/(239)Pu (0.00025-0.00062) and (236)U/(239)Pu (0.0188-0.046) atom ratios, characteristic of close-in and tropospheric fallout, were observed in filters collected at all stations in Nov 1962, 7-12days after three low-yield detonations at Semipalatinsk (Kazakhstan). Atmospheric transport modelling (NOAA HYSPLIT_4) using real-time meteorological data confirmed that long range transport of radionuclides, and possibly radioactive particles, from Semipalatinsk to Norway during this period was plausible. The present work shows that direct tropospheric transport of fallout from atmospheric nuclear detonations periodically may have

  18. Terror weapons. Ridding the world of nuclear, biological and chemical weapons - Commission on mass destruction weapons

    International Nuclear Information System (INIS)

    Blix, H.; Journe, V.

    2010-01-01

    This book approaches in 8 chapters the ambitious challenge of ridding the world of all mass destruction weapons: 1 - re-launching disarmament; 2 - terror weapons: nature of threats and answers (weakness of traditional answers, counter-proliferation); 3 - nuclear weapons: preventing proliferation and terrorism, reducing threat and nuclear weapons number, from regulation to banning); 4 - biological or toxin weapons; 5 - chemical weapons; 6 - vectors, anti-missile defenses and space weapons; 7 - exports control, international assistance and non-governmental actors; 8 - respect, verification, enforcement and role of the United Nations. The recommendations and works of the Commission are presented in appendix together with the declaration adopted on April 30, 2009. (J.S.)

  19. Microwave calcination for plutonium immobilization and residue stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Harris, M.J.; Rising, T.L.; Roushey, W.J.; Sprenger, G.S. [Kaiser-Hill Co., Golden, CO (United States)

    1995-12-01

    In the late 1980`s development was begun on a process using microwave energy to vitrify low level mixed waste sludge and transuranic mixed waste sludge generated in Building 374 at Rocky Flats. This process was shown to produce a dense, highly durable waste form. With the cessation of weapons production at Rocky Flats, the emphasis has changed from treatment of low level and TRU wastes to stabilizaiton of plutonium oxide and residues. This equipment is versatile and can be used as a heat source to calcine, react or vitrify many types of residues and oxides. It has natural economies in that it heats only the material to be treated, significantly reducing cycle times over conventional furnaces. It is inexpensive to operate in that most of the working components remain outside of any necessary contamination enclosure and therefore can easily be maintained. Limited testing has been successfully performed on cerium oxide (as a surrogate for plutonium oxide), surrogate electrorefining salts, surrogate residue sludge and residue ash. Future plans also include tests on ion exchange resins. In an attempt to further the usefullness of this technology, a mobile, self-contained microwave melting system is currently under development and expected to be operational at Rocky Flats Enviromental Technology Site by the 4th quarter of FY96.

  20. Microwave calcination for plutonium immobilization and residue stabilization

    International Nuclear Information System (INIS)

    Harris, M.J.; Rising, T.L.; Roushey, W.J.; Sprenger, G.S.

    1995-01-01

    In the late 1980's development was begun on a process using microwave energy to vitrify low level mixed waste sludge and transuranic mixed waste sludge generated in Building 374 at Rocky Flats. This process was shown to produce a dense, highly durable waste form. With the cessation of weapons production at Rocky Flats, the emphasis has changed from treatment of low level and TRU wastes to stabilizaiton of plutonium oxide and residues. This equipment is versatile and can be used as a heat source to calcine, react or vitrify many types of residues and oxides. It has natural economies in that it heats only the material to be treated, significantly reducing cycle times over conventional furnaces. It is inexpensive to operate in that most of the working components remain outside of any necessary contamination enclosure and therefore can easily be maintained. Limited testing has been successfully performed on cerium oxide (as a surrogate for plutonium oxide), surrogate electrorefining salts, surrogate residue sludge and residue ash. Future plans also include tests on ion exchange resins. In an attempt to further the usefullness of this technology, a mobile, self-contained microwave melting system is currently under development and expected to be operational at Rocky Flats Enviromental Technology Site by the 4th quarter of FY96

  1. Management of super-grade plutonium in spent nuclear fuel

    International Nuclear Information System (INIS)

    McFarlane, H. F.; Benedict, R. W.

    2000-01-01

    This paper examines the security and safeguards implications of potential management options for DOE's sodium-bonded blanket fuel from the EBR-II and the Fermi-1 fast reactors. The EBR-II fuel appears to be unsuitable for the packaging alternative because of DOE's current safeguards requirements for plutonium. Emerging DOE requirements, National Academy of Sciences recommendations, draft waste acceptance requirements for Yucca Mountain and IAEA requirements for similar fuel also emphasize the importance of safeguards in spent fuel management. Electrometallurgical treatment would be acceptable for both fuel types. Meeting the known requirements for safeguards and security could potentially add more than $200M in cost to the packaging option for the EBR-II fuel

  2. Transport and deposition of plutonium-contaminated sediments by fluvial processes, Los Alamos Canyon, New Mexico

    International Nuclear Information System (INIS)

    Graf, W.L.

    1996-01-01

    Between 1945 and 1952 the development of nuclear weapons at Los Alamos National Laboratory, New Mexico, resulted in the disposal of plutonium into the alluvium of nearby Acid and (to a lesser degree) DP Canyons. The purpose of this paper is to explore the connection between the disposal sites and the main river, a 20 km link formed by the fluvial system of Acid, Pueblo, DP, and Los Alamos Canyons. Empirical data from 15 yr of annual sediment sampling throughout the canyon system has produced 458 observations of plutonium concentration in fluvial sediments. These data show that, overall, mean plutonium concentrations in fluvial sediment decline from 10,000 fCi/g near the disposal area to 100 fCi/g at the confluence of the canyon system and the Rio Grande. Simulations using a computer model for water, sediment, and plutonium routing in the canyon system show that discharges as large as the 25 yr event would fail to develop enough transport capacity to completely remove the contaminated sediments from Pueblo Canyon. Lesser flows would move some materials to the Rio Grande by remobilization of stored sediments. The simulations also show that the deposits and their contaminants have a predictable geography because they occur where stream power is low, hydraulic resistance is high, and the geologic and/or geomorphic conditions provide enough space for storage. 38 refs., 13 figs., 1 tab

  3. Initial data report in response to the surplus plutonium disposition environmental impact statement data call for the UO2 supply. Revision 1

    International Nuclear Information System (INIS)

    White, V.S.; Cash, J.M.; Michelhaugh, R.D.

    1997-11-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft Surplus Plutonium Disposition Environmental Impact Statement. This is one of several responses to data calls generated to provide background information on activities associated with the operation of the Mixed-Oxide (MOX) Fuel Fabrication Facility. Urania feed for the MOX Fuel Fabrication Facility may be either natural or depleted. Natural uranium typically contains 0.0057 wt% 234 U, 0.711 wt% 235 U, and the majority as 238 U. The fissile isotope is 235 U, and uranium is considered depleted if the total 235 U content is less than 0.711 wt% as found in nature. The average composition of 235 U in DOE's total depleted urania inventory is 0.20 wt%. The depleted uranium assay range proposed for use in this program is 0.2500--0.2509 wt%. Approximately 30% more natural uranium would be required than depleted uranium based on the importance of maintaining a specific fissile portion in the MOX fuel blend. If the uranium component constitutes a larger quantity of fissile material, less plutonium can be dispositioned on an annual basis. The percentage composition, referred to as assay, of low-enriched uranium necessary for controlled fission in commercial light-water nuclear power reactors is 1.8--5.0 wt% 235 U. This data report provides information on the schedule, acquisition, impacts, and conversion process for using uranium, derived from depleted uranium hexafluoride (UF 6 ), as the diluent for the weapons-grade plutonium declared as surplus. The case analyzed is use of depleted UF 6 in storage at the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio, being transported to a representative UF 6 to uranium dioxide conversion facility (GE Nuclear Energy) for processing, and subsequently transported to the MOX Fuel Fabrication Facility

  4. Interim Storage of Plutonium in Existing Facilities

    International Nuclear Information System (INIS)

    Woodsmall, T.D.

    1999-01-01

    'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has been chosen as the final storage location, and the Actinide Packaging and Storage Facility (APSF) is currently under construction for this purpose. With the ability of APSF to receive Rocky Flats material an estimated ten years away, DOE has decided to use the existing reactor building in K-Area of SRS as temporary storage to accelerate the removal of plutonium from Rocky Flats. There are enormous cost savings to the government that serve as incentive to start this removal as soon as possible, and the KAMS project is scheduled to receive the first shipment of plutonium in January 2000. The reactor building in K-Area was chosen for its hardened structure and upgraded seismic qualification, both resulting from an effort to restart the reactor in 1991. The KAMS project has faced unique challenges from Authorization Basis and Safety Analysis perspectives. Although modifying a reactor building from a production facility to a storage shelter is not technically difficult, the nature of plutonium has caused design and safety analysis engineers to make certain that the design of systems, structures and components included will protect the public, SRS workers, and the environment. A basic overview of the KAMS project follows. Plutonium will be measured and loaded into DOT Type-B shipping packages at Rocky Flats. The packages are 35-gallon stainless steel drums with multiple internal containment boundaries. DOE transportation vehicles will be used to ship the drums to the KAMS facility at SRS. They will then be unloaded, stacked and stored in specific locations throughout the

  5. An assessment of the validity of cerium oxide as a surrogate for plutonium oxide gallium removal studies

    International Nuclear Information System (INIS)

    Kolman, D.G.; Park, Y.; Stan, M.; Hanrahan, R.J. Jr.; Butt, D.P.

    1999-01-01

    Methods for purifying plutonium metal have long been established. These methods use acid solutions to dissolve and concentrate the metal. However, these methods can produce significant mixed waste, that is, waste containing both radioactive and chemical hazards. The volume of waste produced from the aqueous purification of thousands of weapons would be expensive to treat and dispose. Therefore, a dry method of purification is highly desirable. Recently, a dry gallium removal research program commenced. Based on initial calculations, it appeared that a particular form of gallium (gallium suboxide, Ga 2 O) could be evaporated from plutonium oxide in the presence of a reducing agent, such as small amounts of hydrogen dry gas within an inert environment. Initial tests using ceria-based material (as a surrogate for PuO 2 ) showed that thermally-induced gallium removal (TIGR) from small samples (on the order of one gram) was indeed viable. Because of the expense and difficulty of optimizing TIGR from plutonium dioxide, TIGR optimization tests using ceria have continued. This document details the relationship between the ceria surrogate tests and those conducted using plutonia

  6. Civil plutonium management

    International Nuclear Information System (INIS)

    Sicard, B.; Zaetta, A.

    2004-01-01

    During 1960 and 1970 the researches on the plutonium recycling in fast neutrons reactors were stimulated by the fear of uranium reserves diminishing. At the beginning of 1980, the plutonium mono-recycling for water cooled reactors is implementing. After 1990 the public opinion concerning the radioactive wastes management and the consequences of the disarmament agreements between Russia and United States, modified the context. This paper presents the today situation and technology associated to the different options and strategical solutions of the plutonium management: the plutonium use in the world, the neutronic characteristics, the plutonium effect on the reactors characteristics, the MOX behavior in the reactors, the MOX fabrication and treatment, the possible improvements to the plutonium use, the concepts performance in a nuclear park. (A.L.B.)

  7. Subcritical tests - nuclear weapon testing under the Comprehensive Test Ban Treaty

    International Nuclear Information System (INIS)

    Hoeibraaten, S.

    1998-10-01

    The report discusses possible nuclear weapons related experiments and whether these are permitted under the 1996 Comprehensive Test Ban Treaty (CTBT). The term ''subcritical experiments'' as used in the United States includes experiments in which one studies fissile materials (so far only plutonium) under extreme conditions generated by conventional high explosives, and in which a self-sustained chain reaction never develops in the fissile material. The known facts about the American subcritical experiments are presented. There is very little reason to doubt that these experiments were indeed subcritical and therefore permitted under the CTBT. Little is known about the Russian efforts that are being made on subcritical experiments

  8. Potential effects of gallium on cladding materials

    International Nuclear Information System (INIS)

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented

  9. The plutonium society

    International Nuclear Information System (INIS)

    Mez, L.; Richter, M.

    1981-01-01

    The lectures of an institute are reported on, which took place between 25th and 27th January 1980 in Berlin. The subsequent public panel discussion with representations from the political parties is then documentated in a few press-reports. The themes of the 8 lectures are: views and facts on plutonium, plutonium as an energy resource, military aspects of the production of plutonium, economic aspects of the plutonium economy, the position of the trade unions on the industrial reconversion, the alleged inevitability of a plutonium society and the socio-political alternatives and perspectives of nuclear waste disposal. (UA) [de

  10. Detecting nuclear warheads

    International Nuclear Information System (INIS)

    Fetter, S.; Frolov, V.A.; Prilutsky, O.F.; Rodionov, S.N.; Sagdeev, R.Z.; Miller, M.

    1992-01-01

    To the best of our knowledge, all nuclear weapons contain at least several kilograms of fissile material - material that can sustain a chain reaction. Such material provides the energy for fission explosives such as those that destroyed Hiroshima and Nagasaki; it is also used in the fission trigger modern thermonuclear weapons. The two fissile materials used in US and Soviet warheads are weapon grade uranium (WgU) and weapon-grade plutonium (WgPu). Fissile materials are radioactive; they are very dense and absorb certain radiations very well; and they can be fissioned. This paper reports on the two basic ways to detect fissile material: passive detection of the radiation emitted by its radioactive decay, or active detection involving either radiographing (x-raying) an object with neutrons or high-energy photons and detecting particles emitted by the resulting induced fissions. Passive detection is the preferred technique for verification purposes because of its simplicity and safety

  11. Microdistribution and Long-Term Retention of 239Pu (NO3)4 in the Respiratory Tracts of an Acutely Exposed Plutonium Worker and Experimental Beagle Dogs

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Christopher E.; Wilson, Dulaney A.; Brooks, Antone L.; McCord, Stacey; Dagle, Gerald E.; James, Anthony C.; Tolmachev, Sergei Y.; Thrall, Brian D.; Morgan, William F.

    2012-11-01

    The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [239Pu (NO3)4] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histological lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a non-uniform distribution of plutonium throughout the lung tissue. Fibrotic scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma. Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the sub-pleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential increase in cancer risk.

  12. Developments in plutonium waste assay at AWE

    International Nuclear Information System (INIS)

    Miller, T J

    2009-01-01

    In 2002 a paper was presented at the 43rd Annual Meeting of the Institute of Nuclear Materials Management (INMM) on the assay of low level plutonium (Pu) in soft drummed waste (Miller 2002 INMM Ann. Meeting (Orlando, FL, 23-27 July 2002)). The technique described enabled the Atomic Weapons Establishment (AWE), at Aldermaston in the UK, to meet the stringent Low Level Waste Repository at Drigg (LLWRD) conditions for acceptance for the first time. However, it was initially applied to only low density waste streams because it relied on measuring the relatively low energy (60 keV) photon yield from Am-241 during growth. This paper reviews the results achieved when using the technique to assay over 10 000 waste packages and presents the case for extending the range of application to denser waste streams.

  13. The isotopic signature of fallout plutonium in the North Pacific

    International Nuclear Information System (INIS)

    Buesseler, K.O.

    1997-01-01

    Plutonium analyses of a dated coral record from the French Frigate Shoals in the central North Pacific indicate that there are two major sources of Pu in this basin: close-in (tropospheric) fallout from nuclear weapons testing at the Pacific Proving Grounds in the Marshall Islands in the 1950s and global (stratospheric) fallout which peaked in 1962. Furthermore, the 240 Pu/ 239 Pu atom ratio of fallout from the Pacific Proving Grounds is characteristically higher (0.24) than that of global fallout Pu (0.18-0.19). Seawater and sediment samples from the North Pacific exhibit a wide range of 240 Pu/ 239 Pu values (0.19-0.34), with a trend towards higher ratios in the subsurface waters and sediment. Deep water 240 Pu/ 239 Pu ratios are higher in the vicinity of the Marshall Islands relative to stations further from this close-in fallout source. These preliminary data suggest that fallout Pu from the Pacific Proving Grounds is more rapidly removed from the surface waters than is global fallout Pu. Plutonium geochemistry appears to be related to the physical/chemical form of Pu-bearing particles generated by different fallout sources. (author)

  14. Unconventional options for plutonium disposition. Proceedings of a technical committee meeting held in Obninsk, Russian Federation, 7-11 November 1994

    International Nuclear Information System (INIS)

    1995-11-01

    This publication summarizes discussions and presents selected papers from a Technical Committee meeting that the IAEA convened in Obninsk, near Moscow, Russia, 7-11 November 1994 at the invitation of the Ministry of the Russian Federation on Atomic Energy, and which was hosted by the Institute of Physics and Power Engineering. The meeting focused on the disposition of plutonium produced from the operation of nuclear power plants in areas related to the nuclear fuel cycle. Plutonium is formed in all existing nuclear power plants and the unconsumed part remaining in spent fuel is a generic by-product of nuclear power generation. Over the next 15 to 20 years, a significant amount of plutonium will be produced in nuclear power stations worldwide, adding to amounts already in storage. Additionally, the world's plutonium stocks are being affected by decisions concerning the management and utilization of plutonium recovered from nuclear weapons which are being dismantled. In this context, national strategies are directed at reducing the stockpiles of separated plutonium worldwide, and in further developing technologies capable of safely and securely using and handling plutonium. The purpose of the IAEA's Technical Committee meeting was to consider unconventional approaches for plutonium disposition, both from the points of view of the fuel cycle as a whole and the specific types of nuclear fuel being used. The aims were to obtain technical descriptions of these approaches, engineering judgements on their technological status and development, and reports on national experience in this field. The meeting's results and conclusions are providing valuable guidance for future activities in this subject area. Refs, figs and tabs

  15. Unconventional options for plutonium disposition. Proceedings of a technical committee meeting held in Obninsk, Russian Federation, 7-11 November 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This publication summarizes discussions and presents selected papers from a Technical Committee meeting that the IAEA convened in Obninsk, near Moscow, Russia, 7-11 November 1994 at the invitation of the Ministry of the Russian Federation on Atomic Energy, and which was hosted by the Institute of Physics and Power Engineering. The meeting focused on the disposition of plutonium produced from the operation of nuclear power plants in areas related to the nuclear fuel cycle. Plutonium is formed in all existing nuclear power plants and the unconsumed part remaining in spent fuel is a generic by-product of nuclear power generation. Over the next 15 to 20 years, a significant amount of plutonium will be produced in nuclear power stations worldwide, adding to amounts already in storage. Additionally, the world`s plutonium stocks are being affected by decisions concerning the management and utilization of plutonium recovered from nuclear weapons which are being dismantled. In this context, national strategies are directed at reducing the stockpiles of separated plutonium worldwide, and in further developing technologies capable of safely and securely using and handling plutonium. The purpose of the IAEA`s Technical Committee meeting was to consider unconventional approaches for plutonium disposition, both from the points of view of the fuel cycle as a whole and the specific types of nuclear fuel being used. The aims were to obtain technical descriptions of these approaches, engineering judgements on their technological status and development, and reports on national experience in this field. The meeting`s results and conclusions are providing valuable guidance for future activities in this subject area. Refs, figs and tabs.

  16. O/M ratio measurement in pure and mixed oxide fuels - where are we now?

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.; Chidester, K.; Thompson, M. [Los Alamos National Lab., NM (United States)

    2001-07-01

    The scale-down in the US and Russian nuclear weapons stockpiles has produced a surplus of weapons grade plutonium and highly enriched uranium. The incorporation into mixed-oxide fuel (MOX) is one of the currently favored routes for surplus weapons-grade plutonium. The use of MOX as a nuclear reactor fuel is well established, particularly in Europe and Japan but not in the US. The primary purpose of this investigation was to evaluate existing analytical techniques for their applicability to O/M (oxygen-to-metal ratio) measurements of MOX derived from excess weapons plutonium. The second objective of this investigation was to bring up-to-date the literature on O/M measurement methods, which has not been undertaken in over 20 years. There are several classification schemes that can be used to organize O/M measurement methods. The most popular schemes are based on (a) whether the analysis is performed in solution (wet chemical) or on solid material (dry), and (b) whether the concentration of major constituents are analyzed directly (direct) or are inferred (indirect). Solid state coulometric titration is currently used extensively in studies of phase equilibria, defect chemistry, thermochemical measurement of oxides, including ferrites. Regardless of which indirect method is used (solid state coulometric titration or thermogravimetry), a primary, direct method will also be required for the establishment of the MO{sub 2} reference state, determination of method bias, and periodic calibration. It was recommended that the following direct method be adapted for this purpose: oxygen measurement by inert gas fusion/carbon reduction, and total U, Pu by controlled potential coulometry. In a table are listed the experimental values of accuracy for about 30 O/M methods. (A.C.)

  17. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department's plutonium storage. Volume II, Appendix B, Part 6: Lawrence Livermore National Laboratory site assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    The Lawrence Livermore National Laboratory Main Site is located about 40 miles east of San Francisco at the southeast end of the Livermore Valley in southern Alameda County, California. The initial mission of LLNL, operated by the University of California, was to do the research, development, and testing necessary to support the design of nuclear weapons. Over the years, this mission has been broadened to encompass such areas as strategic defense, energy, the environment, biomedicine, the economy, and education.This report presents results from an environment, safety, and health assessment report concerned with the storage of plutonium

  18. Plutonium solubilities

    International Nuclear Information System (INIS)

    Puigdomnech, I.; Bruno, J.

    1991-02-01

    Thermochemical data has been selected for plutonium oxide, hydroxide, carbonate and phosphate equilibria. Equilibrium constants have been evaluated in the temperature range 0 to 300 degrees C at a pressure of 1 bar to T≤100 degrees C and at the steam saturated pressure at higher temperatures. Measured solubilities of plutonium that are reported in the literature for laboratory experiments have been collected. Solubility data on oxides, hydroxides, carbonates and phosphates have been selected. No solubility data were found at temperatures higher than 60 degrees C. The literature solubility data have been compared with plutonium solubilities calculated with the EQ3/6 geochemical modelling programs, using the selected thermodynamic data for plutonium. (authors)

  19. Plutonium in uranium deposits

    International Nuclear Information System (INIS)

    Curtis, D.; Fabryka-Martin, J.; Aguilar, R.; Attrep, M. Jr.; Roensch, F.

    1992-01-01

    Plutonium-239 (t 1/2 , 24,100 yr) is one of the most persistent radioactive constituents of high-level wastes from nuclear fission power reactors. Effective containment of such a long-lived constituent will rely heavily upon its containment by the geologic environment of a repository. Uranium ore deposits offer a means to evaluate the geochemical properties of plutonium under natural conditions. In this paper, analyses of natural plutonium in several ores are compared to calculated plutonium production rates in order to evaluate the degree of retention of plutonium by the ore. The authors find that current methods for estimating production rates are neither sufficiently accurate nor precise to provide unambiguous measures of plutonium retention. However, alternative methods for evaluating plutonium mobility are being investigated, including its measurement in natural ground waters. Preliminary results are reported and establish the foundation for a comprehensive characterization of plutonium geochemistry in other natural environments

  20. Properties of plutonium

    International Nuclear Information System (INIS)

    Ahn, Jin Su; Yoon, Hwan Ki; Min, Kyung Sik; Kim, Hyun Tae; Ahn, Jong Sung; Kwag, Eon Ho; Ryu, Keon Joong

    1996-03-01

    Plutonium has unique chemical and physical properties. Its uniqueness in use has led to rare publications, in Korea. This report covers physical aspects of phase change of metal plutonium, mechanical properties, thermal conductivity, etc, chemical aspects of corrosion, oxidation, how to produce plutonium from spent fuels by describing various chemical treatment methods, which are currently used and were used in the past. It also contains characteristics of the purex reprocessing process which is the most widely used nowadays. And show processes to purify and metalize from recovered plutonium solution. Detection and analysis methods are introduced with key pints for handling, critical safety, toxicity, and effects on peoples. This report gives not only a general idea on what plutonium is, rather than deep technical description, but also basic knowledge on plutonium production and safeguards diversion from the view point of nonproliferation. 18 refs. (Author) .new