WorldWideScience

Sample records for weakly singular volterra

  1. Aitken extrapolation and epsilon algorithm for an accelerated solution of weakly singular nonlinear Volterra integral equations

    International Nuclear Information System (INIS)

    Mesgarani, H; Parmour, P; Aghazadeh, N

    2010-01-01

    In this paper, we apply Aitken extrapolation and epsilon algorithm as acceleration technique for the solution of a weakly singular nonlinear Volterra integral equation of the second kind. In this paper, based on Tao and Yong (2006 J. Math. Anal. Appl. 324 225-37.) the integral equation is solved by Navot's quadrature formula. Also, Tao and Yong (2006) for the first time applied Richardson extrapolation to accelerating convergence for the weakly singular nonlinear Volterra integral equations of the second kind. To our knowledge, this paper may be the first attempt to apply Aitken extrapolation and epsilon algorithm for the weakly singular nonlinear Volterra integral equations of the second kind.

  2. Convergence Analysis of Generalized Jacobi-Galerkin Methods for Second Kind Volterra Integral Equations with Weakly Singular Kernels

    Directory of Open Access Journals (Sweden)

    Haotao Cai

    2017-01-01

    Full Text Available We develop a generalized Jacobi-Galerkin method for second kind Volterra integral equations with weakly singular kernels. In this method, we first introduce some known singular nonpolynomial functions in the approximation space of the conventional Jacobi-Galerkin method. Secondly, we use the Gauss-Jacobi quadrature rules to approximate the integral term in the resulting equation so as to obtain high-order accuracy for the approximation. Then, we establish that the approximate equation has a unique solution and the approximate solution arrives at an optimal convergence order. One numerical example is presented to demonstrate the effectiveness of the proposed method.

  3. On Weakly Singular Versions of Discrete Nonlinear Inequalities and Applications

    Directory of Open Access Journals (Sweden)

    Kelong Cheng

    2014-01-01

    Full Text Available Some new weakly singular versions of discrete nonlinear inequalities are established, which generalize some existing weakly singular inequalities and can be used in the analysis of nonlinear Volterra type difference equations with weakly singular kernels. A few applications to the upper bound and the uniqueness of solutions of nonlinear difference equations are also involved.

  4. Singularly perturbed volterra integro-differential equations | Bijura ...

    African Journals Online (AJOL)

    Several investigations have been made on singularly perturbed integral equations. This paper aims at presenting an algorithm for the construction of asymptotic solutions and then provide a proof asymptotic correctness to singularly perturbed systems of Volterra integro-differential equations. Mathematics Subject

  5. Transcendental smallness in singularly perturbed equations of volterra type

    International Nuclear Information System (INIS)

    Bijura, Angelina M.

    2003-11-01

    The application of different limit processes to a physical problem is an important tool in layer type techniques. Hence the study of initial layer correction functions is of central importance for understanding layer-type problems. It is shown that for singularly perturbed problems of Volterra type, the concept of transcendental smallness is an asymptotic one. Transcendentally small terms may be numerically important. (author)

  6. Plane waves with weak singularities

    International Nuclear Information System (INIS)

    David, Justin R.

    2003-03-01

    We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)

  7. On solutions of neutral stochastic delay Volterra equations with singular kernels

    Directory of Open Access Journals (Sweden)

    Xiaotai Wu

    2012-08-01

    Full Text Available In this paper, existence, uniqueness and continuity of the adapted solutions for neutral stochastic delay Volterra equations with singular kernels are discussed. In addition, continuous dependence on the initial date is also investigated. Finally, stochastic Volterra equation with the kernel of fractional Brownian motion is studied to illustrate the effectiveness of our results.

  8. Competitive or weak cooperative stochastic Lotka-Volterra systems conditioned on non-extinction.

    Science.gov (United States)

    Cattiaux, Patrick; Méléard, Sylvie

    2010-06-01

    We are interested in the long time behavior of a two-type density-dependent biological population conditioned on non-extinction, in both cases of competition or weak cooperation between the two species. This population is described by a stochastic Lotka-Volterra system, obtained as limit of renormalized interacting birth and death processes. The weak cooperation assumption allows the system not to blow up. We study the existence and uniqueness of a quasi-stationary distribution, that is convergence to equilibrium conditioned on non-extinction. To this aim we generalize in two-dimensions spectral tools developed for one-dimensional generalized Feller diffusion processes. The existence proof of a quasi-stationary distribution is reduced to the one for a d-dimensional Kolmogorov diffusion process under a symmetry assumption. The symmetry we need is satisfied under a local balance condition relying the ecological rates. A novelty is the outlined relation between the uniqueness of the quasi-stationary distribution and the ultracontractivity of the killed semi-group. By a comparison between the killing rates for the populations of each type and the one of the global population, we show that the quasi-stationary distribution can be either supported by individuals of one (the strongest one) type or supported by individuals of the two types. We thus highlight two different long time behaviors depending on the parameters of the model: either the model exhibits an intermediary time scale for which only one type (the dominant trait) is surviving, or there is a positive probability to have coexistence of the two species.

  9. Algorithms for singularities and real structures of weak Del Pezzo surfaces

    KAUST Repository

    Lubbes, Niels

    2014-01-01

    . Wall, Real forms of smooth del Pezzo surfaces, J. Reine Angew. Math. 1987(375/376) (1987) 47-66, ISSN 0075-4102] of weak Del Pezzo surfaces from an algorithmic point of view. It is well-known that the singularities of weak Del Pezzo surfaces correspond

  10. Algorithms for singularities and real structures of weak Del Pezzo surfaces

    KAUST Repository

    Lubbes, Niels

    2014-08-01

    In this paper, we consider the classification of singularities [P. Du Val, On isolated singularities of surfaces which do not affect the conditions of adjunction. I, II, III, Proc. Camb. Philos. Soc. 30 (1934) 453-491] and real structures [C. T. C. Wall, Real forms of smooth del Pezzo surfaces, J. Reine Angew. Math. 1987(375/376) (1987) 47-66, ISSN 0075-4102] of weak Del Pezzo surfaces from an algorithmic point of view. It is well-known that the singularities of weak Del Pezzo surfaces correspond to root subsystems. We present an algorithm which computes the classification of these root subsystems. We represent equivalence classes of root subsystems by unique labels. These labels allow us to construct examples of weak Del Pezzo surfaces with the corresponding singularity configuration. Equivalence classes of real structures of weak Del Pezzo surfaces are also represented by root subsystems. We present an algorithm which computes the classification of real structures. This leads to an alternative proof of the known classification for Del Pezzo surfaces and extends this classification to singular weak Del Pezzo surfaces. As an application we classify families of real conics on cyclides. © World Scientific Publishing Company.

  11. Existence of weak solutions to a nonlinear reaction-diffusion system with singular sources

    Directory of Open Access Journals (Sweden)

    Ida de Bonis

    2017-09-01

    Full Text Available We discuss the existence of a class of weak solutions to a nonlinear parabolic system of reaction-diffusion type endowed with singular production terms by reaction. The singularity is due to a potential occurrence of quenching localized to the domain boundary. The kind of quenching we have in mind is due to a twofold contribution: (i the choice of boundary conditions, modeling in our case the contact with an infinite reservoir filled with ready-to-react chemicals and (ii the use of a particular nonlinear, non-Lipschitz structure of the reaction kinetics. Our working techniques use fine energy estimates for approximating non-singular problems and uniform control on the set where singularities are localizing.

  12. Holder continuity of bounded weak solutions to generalized parabolic p-Laplacian equations II: singular case

    Directory of Open Access Journals (Sweden)

    Sukjung Hwang

    2015-11-01

    Full Text Available Here we generalize quasilinear parabolic p-Laplacian type equations to obtain the prototype equation $$ u_t - \\hbox{div} \\Big(\\frac{g(|Du|}{|Du|} Du\\Big = 0, $$ where g is a nonnegative, increasing, and continuous function trapped in between two power functions $|Du|^{g_0 -1}$ and $|Du|^{g_1 -1}$ with $1weak solution is locally Holder continuous with some degree of commonality between degenerate and singular types. By using geometric characters, our proof does not rely on any of alternatives which is based on the size of solutions.

  13. On weakly singular and fully nonlinear travelling shallow capillary–gravity waves in the critical regime

    Energy Technology Data Exchange (ETDEWEB)

    Mitsotakis, Dimitrios, E-mail: dmitsot@gmail.com [Victoria University of Wellington, School of Mathematics, Statistics and Operations Research, PO Box 600, Wellington 6140 (New Zealand); Dutykh, Denys, E-mail: Denys.Dutykh@univ-savoie.fr [LAMA, UMR 5127 CNRS, Université Savoie Mont Blanc, Campus Scientifique, F-73376 Le Bourget-du-Lac Cedex (France); Assylbekuly, Aydar, E-mail: asylbekuly@mail.ru [Khoja Akhmet Yassawi International Kazakh–Turkish University, Faculty of Natural Science, Department of Mathematics, 161200 Turkestan (Kazakhstan); Zhakebayev, Dauren, E-mail: daurjaz@mail.ru [Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics, Department of Mathematical and Computer Modelling, 050000 Almaty (Kazakhstan)

    2017-05-25

    In this Letter we consider long capillary–gravity waves described by a fully nonlinear weakly dispersive model. First, using the phase space analysis methods we describe all possible types of localized travelling waves. Then, we especially focus on the critical regime, where the surface tension is exactly balanced by the gravity force. We show that our long wave model with a critical Bond number admits stable travelling wave solutions with a singular crest. These solutions are usually referred to in the literature as peakons or peaked solitary waves. They satisfy the usual speed-amplitude relation, which coincides with Scott–Russel's empirical formula for solitary waves, while their decay rate is the same regardless their amplitude. Moreover, they can be of depression or elevation type independent of their speed. The dynamics of these solutions are studied as well. - Highlights: • A model for long capillary–gravity weakly dispersive and fully nonlinear water waves is derived. • Shallow capillary–gravity waves are classified using phase plane analysis. • Peaked travelling waves are found in the critical regime. • The dynamics of peakons in Serre–Green–Naghdi equations is studied numerically.

  14. The Cucker-Smale Equation: Singular Communication Weight, Measure-Valued Solutions and Weak-Atomic Uniqueness

    Science.gov (United States)

    Mucha, Piotr B.; Peszek, Jan

    2018-01-01

    The Cucker-Smale flocking model belongs to a wide class of kinetic models that describe a collective motion of interacting particles that exhibit some specific tendency, e.g. to aggregate, flock or disperse. This paper examines the kinetic Cucker-Smale equation with a singular communication weight. Given a compactly supported measure as an initial datum we construct a global in time weak measure-valued solution in the space {C_{weak}(0,∞M)}. The solution is defined as a mean-field limit of the empirical distributions of particles, the dynamics of which is governed by the Cucker-Smale particle system. The studied communication weight is {ψ(s)=|s|^{-α}} with {α \\in (0,1/2)}. This range of singularity admits the sticking of characteristics/trajectories. The second result concerns the weak-atomic uniqueness property stating that a weak solution initiated by a finite sum of atoms, i.e. Dirac deltas in the form {m_i δ_{x_i} ⊗ δ_{v_i}}, preserves its atomic structure. Hence these coincide with unique solutions to the system of ODEs associated with the Cucker-Smale particle system.

  15. Initial layer theory and model equations of Volterra type

    International Nuclear Information System (INIS)

    Bijura, Angelina M.

    2003-10-01

    It is demonstrated here that there exist initial layers to singularly perturbed Volterra equations whose thicknesses are not of order of magnitude of 0(ε), ε → 0. It is also shown that the initial layer theory is extremely useful because it allows one to construct the approximate solution to an equation, which is almost identical to the exact solution. (author)

  16. On generalized Volterra systems

    Science.gov (United States)

    Charalambides, S. A.; Damianou, P. A.; Evripidou, C. A.

    2015-01-01

    We construct a large family of evidently integrable Hamiltonian systems which are generalizations of the KM system. The algorithm uses the root system of a complex simple Lie algebra. The Hamiltonian vector field is homogeneous cubic but in a number of cases a simple change of variables transforms such a system to a quadratic Lotka-Volterra system. We present in detail all such systems in the cases of A3, A4 and we also give some examples from higher dimensions. We classify all possible Lotka-Volterra systems that arise via this algorithm in the An case.

  17. Volterra, Fascism, and France.

    Science.gov (United States)

    Capristo, Annalisa

    2015-12-01

    My contribution focuses on two aspects strictly related each other. On one hand, the progressive marginalization of Volterra from Italian scientific and political life after the rise of Fascism - because of his public anti-Fascist stance, both as a senator and as a professor - until his definitive exclusion on racial grounds in 1938. On the other hand, the reactions of his French colleagues and friends to this ostracism, and the support he received from them. As it emerges from several sources (Volterra's correspondence, institutional documentation, conference proceedings, etc.), it was mainly thanks to their support that he was able to escape the complete isolation and the "civil death" to which the regime condemned many of its adversaries.

  18. Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution

    Science.gov (United States)

    Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.

    2012-10-01

    A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on ℝ+, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer-Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.

  19. Volterra Series Based Distortion Effect

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2010-01-01

    A large part of the characteristic sound of the electric guitar comes from nonlinearities in the signal path. Such nonlinearities may come from the input- or output-stage of the amplier, which is often equipped with vacuum tubes or a dedicated distortion pedal. In this paper the Volterra series...... expansion for non linear systems is investigated with respect to generating good distortion. The Volterra series allows for unlimited adjustment of the level and frequency dependency of each distortion component. Subjectively relevant ways of linking the dierent orders are discussed....

  20. Volterra Filtering for ADC Error Correction

    Directory of Open Access Journals (Sweden)

    J. Saliga

    2001-09-01

    Full Text Available Dynamic non-linearity of analog-to-digital converters (ADCcontributes significantly to the distortion of digitized signals. Thispaper introduces a new effective method for compensation such adistortion based on application of Volterra filtering. Considering ana-priori error model of ADC allows finding an efficient inverseVolterra model for error correction. Efficiency of proposed method isdemonstrated on experimental results.

  1. A Historical Gem from Vito Volterra.

    Science.gov (United States)

    Dunham, William

    1990-01-01

    Presented is the theorem proposed by Volterra based on the idea that there is no function continuous at each rational point and discontinuous at each irrational point. Discussed are the two conclusions that were drawn by Volterra based on his solution to this problem. (KR)

  2. Automatic Control Systems Modeling by Volterra Polynomials

    Directory of Open Access Journals (Sweden)

    S. V. Solodusha

    2012-01-01

    Full Text Available The problem of the existence of the solutions of polynomial Volterra integral equations of the first kind of the second degree is considered. An algorithm of the numerical solution of one class of Volterra nonlinear systems of the first kind is developed. Numerical results for test examples are presented.

  3. Coloured phase singularities

    International Nuclear Information System (INIS)

    Berry, M.V.

    2002-01-01

    For illumination with white light, the spectra near a typical isolated phase singularity (nodal point of the component wavelengths) can be described by a universal function of position, up to linear distortion and a weak dependence on the spectrum of the source. The appearance of the singularity when viewed by a human observer is predicted by transforming the spectrum to trichromatic variables and chromaticity coordinates, and then rendering the colours, scaled to constant luminosity, on a computer monitor. The pattern far from the singularity is a white that depends on the source temperature, and the centre of the pattern is flanked by intensely coloured 'eyes', one orange and one blue, separated by red, and one of the eyes is surrounded by a bright white circle. Only a small range of possible colours appears near the singularity; in particular, there is no green. (author)

  4. Timelike naked singularity

    International Nuclear Information System (INIS)

    Goswami, Rituparno; Joshi, Pankaj S.; Vaz, Cenalo; Witten, Louis

    2004-01-01

    We construct a class of spherically symmetric collapse models in which a naked singularity may develop as the end state of collapse. The matter distribution considered has negative radial and tangential pressures, but the weak energy condition is obeyed throughout. The singularity forms at the center of the collapsing cloud and continues to be visible for a finite time. The duration of visibility depends on the nature of energy distribution. Hence the causal structure of the resulting singularity depends on the nature of the mass function chosen for the cloud. We present a general model in which the naked singularity formed is timelike, neither pointlike nor null. Our work represents a step toward clarifying the necessary conditions for the validity of the Cosmic Censorship Conjecture

  5. Convergence analysis of the alternating RGLS algorithm for the identification of the reduced complexity Volterra model.

    Science.gov (United States)

    Laamiri, Imen; Khouaja, Anis; Messaoud, Hassani

    2015-03-01

    In this paper we provide a convergence analysis of the alternating RGLS (Recursive Generalized Least Square) algorithm used for the identification of the reduced complexity Volterra model describing stochastic non-linear systems. The reduced Volterra model used is the 3rd order SVD-PARAFC-Volterra model provided using the Singular Value Decomposition (SVD) and the Parallel Factor (PARAFAC) tensor decomposition of the quadratic and the cubic kernels respectively of the classical Volterra model. The Alternating RGLS (ARGLS) algorithm consists on the execution of the classical RGLS algorithm in alternating way. The ARGLS convergence was proved using the Ordinary Differential Equation (ODE) method. It is noted that the algorithm convergence canno׳t be ensured when the disturbance acting on the system to be identified has specific features. The ARGLS algorithm is tested in simulations on a numerical example by satisfying the determined convergence conditions. To raise the elegies of the proposed algorithm, we proceed to its comparison with the classical Alternating Recursive Least Squares (ARLS) presented in the literature. The comparison has been built on a non-linear satellite channel and a benchmark system CSTR (Continuous Stirred Tank Reactor). Moreover the efficiency of the proposed identification approach is proved on an experimental Communicating Two Tank system (CTTS). Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Continuous Multistep Methods for Volterra Integro-Differential

    African Journals Online (AJOL)

    Kamoh et al.

    DIFFERENTIAL EQUATIONS OF THE SECOND ORDER. 1Kamoh N.M. ... methods, Volterra integro-differential equation, Convergent, ...... Research of a Multistep Method Applied to Numerical Solution of. Volterra ... Congress on Engineering.

  7. On filtering over Îto-Volterra observations

    Directory of Open Access Journals (Sweden)

    Michael V. Basin

    2000-01-01

    Full Text Available In this paper, the Kalman-Bucy filter is designed for an Îto-Volterra process over Ito-Volterra observations that cannot be reduced to the case of a differential observation equation. The Kalman-Bucy filter is then designed for an Ito-Volterra process over discontinuous Ito-Volterra observations. Based on the obtained results, the filtering problem over discrete observations with delays is solved. Proofs of the theorems substantiating the filtering algorithms are given.

  8. Quasipolynomial generalization of Lotka-Volterra mappings

    International Nuclear Information System (INIS)

    Hernandez-Bermejo, Benito; Brenig, Leon

    2002-01-01

    In recent years, it has been shown that Lotka-Volterra mappings constitute a valuable tool from both the theoretical and the applied points of view, with developments in very diverse fields such as physics, population dynamics, chemistry and economy. The purpose of this work is to demonstrate that many of the most important ideas and algebraic methods that constitute the basis of the quasipolynomial formalism (originally conceived for the analysis of ordinary differential equations) can be extended into the mapping domain. The extension of the formalism into the discrete-time context is remarkable as far as the quasipolynomial methodology had never been shown to be applicable beyond the differential case. It will be demonstrated that Lotka-Volterra mappings play a central role in the quasipolynomial formalism for the discrete-time case. Moreover, the extension of the formalism into the discrete-time domain allows a significant generalization of Lotka-Volterra mappings as well as a whole transfer of algebraic methods into the discrete-time context. The result is a novel and more general conceptual framework for the understanding of Lotka-Volterra mappings as well as a new range of possibilities that become open not only for the theoretical analysis of Lotka-Volterra mappings and their generalizations, but also for the development of new applications. (author)

  9. Quasipolynomial generalization of Lotka-Volterra mappings

    Science.gov (United States)

    Hernández-Bermejo, Benito; Brenig, Léon

    2002-07-01

    In recent years, it has been shown that Lotka-Volterra mappings constitute a valuable tool from both the theoretical and the applied points of view, with developments in very diverse fields such as physics, population dynamics, chemistry and economy. The purpose of this work is to demonstrate that many of the most important ideas and algebraic methods that constitute the basis of the quasipolynomial formalism (originally conceived for the analysis of ordinary differential equations) can be extended into the mapping domain. The extension of the formalism into the discrete-time context is remarkable as far as the quasipolynomial methodology had never been shown to be applicable beyond the differential case. It will be demonstrated that Lotka-Volterra mappings play a central role in the quasipolynomial formalism for the discrete-time case. Moreover, the extension of the formalism into the discrete-time domain allows a significant generalization of Lotka-Volterra mappings as well as a whole transfer of algebraic methods into the discrete-time context. The result is a novel and more general conceptual framework for the understanding of Lotka-Volterra mappings as well as a new range of possibilities that become open not only for the theoretical analysis of Lotka-Volterra mappings and their generalizations, but also for the development of new applications.

  10. Nonpolynomial vector fields under the Lotka-Volterra normal form

    Science.gov (United States)

    Hernández-Bermejo, Benito; Fairén, Víctor

    1995-02-01

    We carry out the generalization of the Lotka-Volterra embedding to flows not explicitly recognizable under the generalized Lotka-Volterra format. The procedure introduces appropriate auxiliary variables, and it is shown how, to a great extent, the final Lotka-Volterra system is independent of their specific definition. Conservation of the topological equivalence during the process is also demonstrated.

  11. Turing pattern dynamics and adaptive discretization for a superdiffusive Lotka-Volterra system

    OpenAIRE

    Bendahmane , Mostafa; Ruiz-Baier , Ricardo; Tian , Canrong

    2016-01-01

    International audience; We focus our attention on the effects of introducing the fractional-in-space operator into a Lotka-Volterra competitive model describing population superdiffusion. First, we address the weak solvability of the coupled problem employing the Faedo-Galerkin method and compactness arguments. In addition, we are interested in how cross superdiffusion influences the formation of spatial patterns: a linear stability analysis has been carried out, showing that cross superdiffu...

  12. Efficient multidimensional regularization for Volterra series estimation

    Science.gov (United States)

    Birpoutsoukis, Georgios; Csurcsia, Péter Zoltán; Schoukens, Johan

    2018-05-01

    This paper presents an efficient nonparametric time domain nonlinear system identification method. It is shown how truncated Volterra series models can be efficiently estimated without the need of long, transient-free measurements. The method is a novel extension of the regularization methods that have been developed for impulse response estimates of linear time invariant systems. To avoid the excessive memory needs in case of long measurements or large number of estimated parameters, a practical gradient-based estimation method is also provided, leading to the same numerical results as the proposed Volterra estimation method. Moreover, the transient effects in the simulated output are removed by a special regularization method based on the novel ideas of transient removal for Linear Time-Varying (LTV) systems. Combining the proposed methodologies, the nonparametric Volterra models of the cascaded water tanks benchmark are presented in this paper. The results for different scenarios varying from a simple Finite Impulse Response (FIR) model to a 3rd degree Volterra series with and without transient removal are compared and studied. It is clear that the obtained models capture the system dynamics when tested on a validation dataset, and their performance is comparable with the white-box (physical) models.

  13. On a Volterra Stieltjes integral equation

    Directory of Open Access Journals (Sweden)

    P. T. Vaz

    1990-01-01

    Full Text Available The paper deals with a study of linear Volterra integral equations involving Lebesgue-Stieltjes integrals in two independent variables. The authors prove an existence theorem using the Banach fixed-point principle. An explicit example is also considered.

  14. elative controllability of nonlinear neutral Volterra Integrodiferential ...

    African Journals Online (AJOL)

    In this paper we established sufficient conditions for the relative controllability of the nonlinear neutral volterra integro-differential systems with distributed delays in the control. The results were established using the Schauder's fixed point theorem which is an extension of known results. Journal of the Nigerian Association of ...

  15. Integrability of some generalized Lotka - Volterra systems

    Energy Technology Data Exchange (ETDEWEB)

    Bountis, T.C.; Bier, M.; Hijmans, J.

    1983-08-08

    Several integrable systems of nonlinear ordinary differential equations of the Lotka-Volterra type are identified by the Painleve property and completely integrated. One such integrable case of N first order ode's is found, with N - 2 free parameters and N arbitrary. The concept of integrability of a general dynamical system, not necessarily derived from a hamiltonian, is also discussed.

  16. Integrable deformations of Lotka-Volterra systems

    International Nuclear Information System (INIS)

    Ballesteros, Angel; Blasco, Alfonso; Musso, Fabio

    2011-01-01

    The Hamiltonian structure of a class of three-dimensional (3D) Lotka-Volterra (LV) equations is revisited from a novel point of view by showing that the quadratic Poisson structure underlying its integrability structure is just a real three-dimensional Poisson-Lie group. As a consequence, the Poisson coalgebra map Δ (2) that is given by the group multiplication provides the keystone for the explicit construction of a new family of 3N-dimensional integrable systems that, under certain constraints, contain N sets of deformed versions of the 3D LV equations. Moreover, by considering the most generic Poisson-Lie structure on this group, a new two-parametric integrable perturbation of the 3D LV system through polynomial and rational perturbation terms is explicitly found. -- Highlights: → A new Poisson-Lie approach to the integrability of Lotka-Volterra system is given. → New integrable deformations of the 3D Lotka-Volterra system are obtained. → Integrable Lotka-Volterra-type equations in 3N dimensions are deduced.

  17. On chaos in Lotka–Volterra systems: an analytical approach

    International Nuclear Information System (INIS)

    Kozlov, Vladimir; Vakulenko, Sergey

    2013-01-01

    In this paper, we study Lotka–Volterra systems with N species and n resources. We show that the long time dynamics of these systems may be complicated. Depending on parameter choice, they can generate all types of hyperbolic dynamics, in particular, chaotic ones. Moreover, Lotka–Volterra systems can generate Lorenz dynamics. We state the conditions on the strong persistence of Lotka–Volterra systems when the number of resources is less than the number of species. (paper)

  18. Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model

    Science.gov (United States)

    Ni, Wenjie; Shi, Junping; Wang, Mingxin

    2018-06-01

    A diffusive Lotka-Volterra competition model with nonlocal intraspecific and interspecific competition between species is formulated and analyzed. The nonlocal competition strength is assumed to be determined by a diffusion kernel function to model the movement pattern of the biological species. It is shown that when there is no nonlocal intraspecific competition, the dynamics properties of nonlocal diffusive competition problem are similar to those of classical diffusive Lotka-Volterra competition model regardless of the strength of nonlocal interspecific competition. Global stability of nonnegative constant equilibria are proved using Lyapunov or upper-lower solution methods. On the other hand, strong nonlocal intraspecific competition increases the system spatiotemporal dynamic complexity. For the weak competition case, the nonlocal diffusive competition model may possess nonconstant positive equilibria for some suitably large nonlocal intraspecific competition coefficients.

  19. Comparative analysis of the influence of creep of concrete composite beams of steel - concrete model based on Volterra integral equation

    Directory of Open Access Journals (Sweden)

    Partov Doncho

    2017-01-01

    Full Text Available The paper presents analysis of the stress-strain behaviour and deflection changes due to creep in statically determinate composite steel-concrete beam according to EUROCODE 2, ACI209R-92 and Gardner&Lockman models. The mathematical model involves the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the steel part and an integral-type creep law of Boltzmann - Volterra for the concrete part considering the above mentioned models. On the basis of the theory of viscoelastic body of Maslov-Arutyunian-Trost-Zerna-Bažant for determining the redistribution of stresses in beam section between concrete plate and steel beam with respect to time 't', two independent Volterra integral equations of the second kind have been derived. Numerical method based on linear approximation of the singular kernel function in the integral equation is presented. Example with the model proposed is investigated.

  20. [Generalization of the Lotka-Volterra equation].

    Science.gov (United States)

    Nazarenko, V G

    1976-01-01

    A complete qualitative study of Lotka--Volterra model with cooperative interactions in the system predator-prey is carried out. The model is as follows: (see abstract). The character of all possible stationary states is investigated in the first quadrant of the phase plane of the model variables depending on the system parameters. It is shown that for the generalized model considered unstable and stable limit cycles only of the infinite amplitude are possible in the first quadrant.

  1. Calculation of Volterra kernels for solutions of nonlinear differential equations

    NARCIS (Netherlands)

    van Hemmen, JL; Kistler, WM; Thomas, EGF

    2000-01-01

    We consider vector-valued autonomous differential equations of the form x' = f(x) + phi with analytic f and investigate the nonanticipative solution operator phi bar right arrow A(phi) in terms of its Volterra series. We show that Volterra kernels of order > 1 occurring in the series expansion of

  2. Multi-Hamiltonian structure of Lotka-Volterra and quantum Volterra models

    International Nuclear Information System (INIS)

    Cronstroem, C.; Noga, M.

    1995-01-01

    We consider evolution equations of the Lotka-Volterra type, and elucidate especially their formulation as canonical Hamiltonian systems. The general conditions under which these equations admit several conserved quantities (multi-Hamiltonians) are analysed. A special case, which is related to the Liouville model on a lattice, is considered in detail, both as a classical and as a quantum system. (orig.)

  3. Optimal control of stochastic difference Volterra equations an introduction

    CERN Document Server

    Shaikhet, Leonid

    2015-01-01

    This book showcases a subclass of hereditary systems, that is, systems with behaviour depending not only on their current state but also on their past history; it is an introduction to the mathematical theory of optimal control for stochastic difference Volterra equations of neutral type. As such, it will be of much interest to researchers interested in modelling processes in physics, mechanics, automatic regulation, economics and finance, biology, sociology and medicine for all of which such equations are very popular tools. The text deals with problems of optimal control such as meeting given performance criteria, and stabilization, extending them to neutral stochastic difference Volterra equations. In particular, it contrasts the difference analogues of solutions to optimal control and optimal estimation problems for stochastic integral Volterra equations with optimal solutions for corresponding problems in stochastic difference Volterra equations. Optimal Control of Stochastic Difference Volterra Equation...

  4. Energy conditions and spacetime singularities

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1978-01-01

    In this paper, a number of theorems are proven which collectively show that singularities will occur in spacetime under weaker energy conditions than the strong energy condition. In particular, the Penrose theorem, which uses only the weak energy condition but which applies only to open universes, is extended to all closed universes which have a Cauchy surface whose universal covering manifold is not a three-sphere. Furthermore, it is shown that the strong energy condition in the Hawking-Penrose theorem can be replaced by the weak energy condition and the assumption that the strong energy condition holds only on the average. In addition, it is demonstrated that if the Universe is closed, then the existence of singularities follows from the averaged strong energy condition alone. It is argued that any globally hyperbolic spacetime which satisfies the weak energy condition and which contains a black hole must be null geodesically incomplete

  5. Integrability and Linearizability of the Lotka-Volterra System with a Saddle Point with Rational Hyperbolicity Ratio

    Science.gov (United States)

    Gravel, Simon; Thibault, Pierre

    In this paper, we consider normalizability, integrability and linearizability properties of the Lotka-Volterra system in the neighborhood of a singular point with eigenvalues 1 and - λ. The results are obtained by generalizing and expanding two methods already known: the power expansion of the first integral or of the linearizing transformation and the transformation of the saddle into a node. With these methods we find conditions that are valid for λ∈ R+ or λ∈ Q. These conditions will allow us to find all the integrable and linearizable systems for λ= {p}/{2} and {2}/{p} with p∈ N+.

  6. Mapping of the stochastic Lotka-Volterra model to models of population genetics and game theory

    Science.gov (United States)

    Constable, George W. A.; McKane, Alan J.

    2017-08-01

    The relationship between the M -species stochastic Lotka-Volterra competition (SLVC) model and the M -allele Moran model of population genetics is explored via timescale separation arguments. When selection for species is weak and the population size is large but finite, precise conditions are determined for the stochastic dynamics of the SLVC model to be mappable to the neutral Moran model, the Moran model with frequency-independent selection, and the Moran model with frequency-dependent selection (equivalently a game-theoretic formulation of the Moran model). We demonstrate how these mappings can be used to calculate extinction probabilities and the times until a species' extinction in the SLVC model.

  7. Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks

    Science.gov (United States)

    Faria, Teresa; Oliveira, José J.

    This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.

  8. Stabilization of Large Generalized Lotka-Volterra Foodwebs By Evolutionary Feedback

    Science.gov (United States)

    Ackland, G. J.; Gallagher, I. D.

    2004-10-01

    Conventional ecological models show that complexity destabilizes foodwebs, suggesting that foodwebs should have neither large numbers of species nor a large number of interactions. However, in nature the opposite appears to be the case. Here we show that if the interactions between species are allowed to evolve within a generalized Lotka-Volterra model such stabilizing feedbacks and weak interactions emerge automatically. Moreover, we show that trophic levels also emerge spontaneously from the evolutionary approach, and the efficiency of the unperturbed ecosystem increases with time. The key to stability in large foodwebs appears to arise not from complexity perse but from evolution at the level of the ecosystem which favors stabilizing (negative) feedbacks.

  9. Composite spectral functions for solving Volterra's population model

    International Nuclear Information System (INIS)

    Ramezani, M.; Razzaghi, M.; Dehghan, M.

    2007-01-01

    An approximate method for solving Volterra's population model for population growth of a species in a closed system is proposed. Volterra's model is a nonlinear integro-differential equation, where the integral term represents the effect of toxin. The approach is based upon composite spectral functions approximations. The properties of composite spectral functions consisting of few terms of orthogonal functions are presented and are utilized to reduce the solution of the Volterra's model to the solution of a system of algebraic equations. The method is easy to implement and yields very accurate result

  10. A Weak Comparison Principle for Reaction-Diffusion Systems

    Directory of Open Access Journals (Sweden)

    José Valero

    2012-01-01

    Full Text Available We prove a weak comparison principle for a reaction-diffusion system without uniqueness of solutions. We apply the abstract results to the Lotka-Volterra system with diffusion, a generalized logistic equation, and to a model of fractional-order chemical autocatalysis with decay. Moreover, in the case of the Lotka-Volterra system a weak maximum principle is given, and a suitable estimate in the space of essentially bounded functions L∞ is proved for at least one solution of the problem.

  11. On vector analogs of the modified Volterra lattice

    Energy Technology Data Exchange (ETDEWEB)

    Adler, V E; Postnikov, V V [L D Landau Institute for Theoretical Physics, 1a Semenov pr, 142432 Chernogolovka (Russian Federation); Sochi Branch of Peoples' Friendship University of Russia, 32 Kuibyshev str, 354000 Sochi (Russian Federation)], E-mail: adler@itp.ac.ru, E-mail: postnikovvv@rambler.ru

    2008-11-14

    The zero curvature representations, Baecklund transformations, nonlinear superposition principle and the simplest explicit solutions of soliton and breather type are presented for two vector generalizations of modified Volterra lattice. The relations with some other integrable equations are established.

  12. Reduced Complexity Volterra Models for Nonlinear System Identification

    Directory of Open Access Journals (Sweden)

    Hacıoğlu Rıfat

    2001-01-01

    Full Text Available A broad class of nonlinear systems and filters can be modeled by the Volterra series representation. However, its practical use in nonlinear system identification is sometimes limited due to the large number of parameters associated with the Volterra filter′s structure. The parametric complexity also complicates design procedures based upon such a model. This limitation for system identification is addressed in this paper using a Fixed Pole Expansion Technique (FPET within the Volterra model structure. The FPET approach employs orthonormal basis functions derived from fixed (real or complex pole locations to expand the Volterra kernels and reduce the number of estimated parameters. That the performance of FPET can considerably reduce the number of estimated parameters is demonstrated by a digital satellite channel example in which we use the proposed method to identify the channel dynamics. Furthermore, a gradient-descent procedure that adaptively selects the pole locations in the FPET structure is developed in the paper.

  13. Ecological communities with Lotka-Volterra dynamics

    Science.gov (United States)

    Bunin, Guy

    2017-04-01

    Ecological communities in heterogeneous environments assemble through the combined effect of species interaction and migration. Understanding the effect of these processes on the community properties is central to ecology. Here we study these processes for a single community subject to migration from a pool of species, with population dynamics described by the generalized Lotka-Volterra equations. We derive exact results for the phase diagram describing the dynamical behaviors, and for the diversity and species abundance distributions. A phase transition is found from a phase where a unique globally attractive fixed point exists to a phase where multiple dynamical attractors exist, leading to history-dependent community properties. The model is shown to possess a symmetry that also establishes a connection with other well-known models.

  14. Hamiltonian structure of the Lotka-Volterra equations

    Science.gov (United States)

    Nutku, Y.

    1990-03-01

    The Lotka-Volterra equations governing predator-prey relations are shown to admit Hamiltonian structure with respect to a generalized Poisson bracket. These equations provide an example of a system for which the naive criterion for the existence of Hamiltonian structure fails. We show further that there is a three-component generalization of the Lotka-Volterra equations which is a bi-Hamiltonian system.

  15. Lattice defects as Lotka-Volterra societies

    Energy Technology Data Exchange (ETDEWEB)

    Yost, F.G.

    1995-07-01

    Since the early part of this century the Lotka-Volterra or predator-prey equations have been known to simulate the stability, instability, and persistent oscillations observed in many biological and ecological societies. These equations have been modified in many ways and have been used to model phenomena as varied as childhood epidemics, enzyme reactions, and conventional warfare. In the work to be described, similarities are drawn between various lattice defects and Lotka-Volterra (LV) societies. Indeed, grain boundaries are known to ``consume`` dislocations, inclusions ``infect`` grain boundaries, and dislocations ``annihilate`` dislocations. Several specific cases of lattice defect interaction kinetics models are drawn from the materials science literature to make these comparisons. Each model will be interpreted as if it were a description of a biological system. Various approaches to the modification of this class of interaction kinetics will be presented and discussed. The earliest example is the Damask-Dienes treatment of vacancy-divacancy annealing kinetics. This historical model will be modified to include the effects of an intermediate species and the results will be compared with the original model. The second example to be examined is the Clark-Alden model for deformation-enhanced grain growth. Dislocation kinetics will be added to this model and results will be discussed considering the original model. The third example to be presented is the Ananthakrishna-Sahoo model of the Portevin-Le Chatelier effect that was offered in 1985 as an extension of the classical Cottrell atmosphere explanation. Their treatment will be modified by inclusion of random interference from a pesky but peripheral species and by allowing a rate constant to be a function of time.

  16. Quantum dress for a naked singularity

    Directory of Open Access Journals (Sweden)

    Marc Casals

    2016-09-01

    Full Text Available We investigate semiclassical backreaction on a conical naked singularity space–time with a negative cosmological constant in (2+1-dimensions. In particular, we calculate the renormalized quantum stress–energy tensor for a conformally coupled scalar field on such naked singularity space–time. We then obtain the backreacted metric via the semiclassical Einstein equations. We show that, in the regime where the semiclassical approximation can be trusted, backreaction dresses the naked singularity with an event horizon, thus enforcing (weak cosmic censorship.

  17. A unified construction for the algebro-geometric quasiperiodic solutions of the Lotka-Volterra and relativistic Lotka-Volterra hierarchy

    Science.gov (United States)

    Zhao, Peng; Fan, Engui

    2015-04-01

    In this paper, a new type of integrable differential-difference hierarchy, namely, the generalized relativistic Lotka-Volterra (GRLV) hierarchy, is introduced. This hierarchy is closely related to Lotka-Volterra lattice and relativistic Lotka-Volterra lattice, which allows us to provide a unified and effective way to obtain some exact solutions for both the Lotka-Volterra hierarchy and the relativistic Lotka-Volterra hierarchy. In particular, we shall construct algebro-geometric quasiperiodic solutions for the LV hierarchy and the RLV hierarchy in a unified manner on the basis of the finite gap integration theory.

  18. The conditions of existence of first integrals and Hamiltonian structures of Lotka-Volterra and Volterra systems

    International Nuclear Information System (INIS)

    Dubovik, V.M.; Galperin, A.G.; Richvitsky, V.S.; Slepnyov, S.K.

    2000-01-01

    A study of a certain subset of Volterra equations has revealed that some statements about time-independent constants of motion, Hamiltonian functions, and Poisson structure matrices appearing in the Lotka-Volterra equations, either regarded as proven or of the sort that could be proven, are not valid, in fact. Particular cases are given as examples to explain the reasons for the occurring phenomena

  19. Weakly oval electron lense

    International Nuclear Information System (INIS)

    Daumenov, T.D.; Alizarovskaya, I.M.; Khizirova, M.A.

    2001-01-01

    The method of the weakly oval electrical field getting generated by the axially-symmetrical field is shown. Such system may be designed with help of the cylindric form coaxial electrodes with the built-in quadrupole duplet. The singularity of the indicated weakly oval lense consists of that it provides the conducting both mechanical and electronic adjustment. Such lense can be useful for elimination of the near-axis astigmatism in the electron-optical system

  20. Prediction of rotor blade-vortex interaction using Volterra integrals

    Energy Technology Data Exchange (ETDEWEB)

    Wong, A.; Nitzsche, F. [Carleton Univ., Dept. of Mechanical and Aerospace Engineering, Ottawa, Ontario (Canada)]. E-mail: Fred_Nitzsche@carleton.ca; Khalid, M. [National Research Council Canada, Inst. for Aerospace Research, Ottawa, Ontario (Canada)

    2004-07-01

    The theory of Volterra integral equations for nonlinear system is applied to the prediction of the nonlinear aerodynamic response of an NACA 0012 airfoil experiencing blade-vortex interaction. The phenomenon is first modeled in two-dimensions using an Euler/Navier-Stoke code, and the resulting unsteady aerodynamic flow field sequences are appropriately combined to form a training dataset. The Volterra kernels are identified in the time-domain characteristics of the selected data, which is in turn used to predict the nonlinear aerodynamic response of the airfoil. The Volterra kernel based data is then compared against a standard airfoil response. The predicted lift time histories of the airfoil are shown to be in good agreement with the aerodynamic data. (author)

  1. Representation of neural networks as Lotka-Volterra systems

    International Nuclear Information System (INIS)

    Moreau, Yves; Vandewalle, Joos; Louies, Stephane; Brenig, Leon

    1999-01-01

    We study changes of coordinates that allow the representation of the ordinary differential equations describing continuous-time recurrent neural networks into differential equations describing predator-prey models--also called Lotka-Volterra systems. We transform the equations for the neural network first into quasi-monomial form, where we express the vector field of the dynamical system as a linear combination of products of powers of the variables. In practice, this transformation is possible only if the activation function is the hyperbolic tangent or the logistic sigmoied. From this quasi-monomial form, we can directly transform the system further into Lotka-Volterra equations. The resulting Lotka-Volterra system is of higher dimension than the original system, but the behavior of its first variables is equivalent to the behavior of the original neural network

  2. Prediction of rotor blade-vortex interaction using Volterra integrals

    International Nuclear Information System (INIS)

    Wong, A.; Nitzsche, F.; Khalid, M.

    2004-01-01

    The theory of Volterra integral equations for nonlinear system is applied to the prediction of the nonlinear aerodynamic response of an NACA 0012 airfoil experiencing blade-vortex interaction. The phenomenon is first modeled in two-dimensions using an Euler/Navier-Stoke code, and the resulting unsteady aerodynamic flow field sequences are appropriately combined to form a training dataset. The Volterra kernels are identified in the time-domain characteristics of the selected data, which is in turn used to predict the nonlinear aerodynamic response of the airfoil. The Volterra kernel based data is then compared against a standard airfoil response. The predicted lift time histories of the airfoil are shown to be in good agreement with the aerodynamic data. (author)

  3. Van Hove singularities revisited

    International Nuclear Information System (INIS)

    Dzyaloshinskii, I.

    1987-07-01

    Beginning with the work of Hirsch and Scalapino the importance of ln 2 -Van Hove singularity in T c -enhancement in La 2 CuO 4 -based compounds was realized, which is nicely reviewed by Rice. However, the theoretical treatment carried out before is incomplete. Two things were apparently not paid due attention to: interplay of particle-particle and particle-hole channels and Umklapp processes. In what follows a two-dimensional weak coupling model of LaCuO 4 will be solved exactly in the ln 2 -approximation. The result in the Hubbard limit (one bare charge) is that the system is unstable at any sign of interaction. Symmetry breaking moreover is pretty peculiar. Of course, there are separate singlet superconducting pairings in the pp-channel (attraction) and SDW (repulsion) and CDW (attraction) in the ph-channel. It is natural that Umklapps produce an SDW + CDW mixture at either sign of the interaction. What is unusual is that both the pp-ph interplay and the Umklapps give rise to a monster-coherent SS + SDW + CDW mixture, again at either sign of the bare charge. In the general model where all 4 charges involved are substantially different, the system might remain metallic. A more realistic approach which takes into account dopping in La-M-Cu-O and interlayer interaction provides at least a qualitative understanding of the experimental picture. 10 refs, 5 figs

  4. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  5. Sporadic simple groups and quotient singularities

    International Nuclear Information System (INIS)

    Cheltsov, I A; Shramov, C A

    2013-01-01

    We show that if a faithful irreducible representation of a central extension of a sporadic simple group with centre contained in the commutator subgroup gives rise to an exceptional (resp. weakly exceptional but not exceptional) quotient singularity, then that simple group is the Hall-Janko group (resp. the Suzuki group)

  6. Lp-valued stochastic convolution integral driven by Volterra noise

    Czech Academy of Sciences Publication Activity Database

    Čoupek, P.; Maslowski, B.; Ondreját, Martin

    2018-01-01

    Roč. 18, č. 6 (2018), č. článku 1850048. ISSN 0219-4937 R&D Projects: GA ČR(CZ) GA15-08819S Institutional support: RVO:67985556 Keywords : Volterra process * Rosenblatt process * hypercontractivity Subject RIV: BA - General Mathematics Impact factor: 0.820, year: 2016

  7. Continuous multistep methods for volterra integro-differential ...

    African Journals Online (AJOL)

    A new class of numerical methods for Volterra integro-differential equations of the second order is developed. The methods are based on interpolation and collocation of the shifted Legendre polynomial as basis function with Trapezoidal quadrature rules. The convergence analysis revealed that the methods are consistent ...

  8. Evolution of Black-Box Models Based on Volterra Series

    Directory of Open Access Journals (Sweden)

    Daniel D. Silveira

    2015-01-01

    Full Text Available This paper presents a historical review of the many behavioral models actually used to model radio frequency power amplifiers and a new classification of these behavioral models. It also discusses the evolution of these models, from a single polynomial to multirate Volterra models, presenting equations and estimation methods. New trends in RF power amplifier behavioral modeling are suggested.

  9. A Lotka-Volterra competition model with seasonal succession.

    Science.gov (United States)

    Hsu, Sze-Bi; Zhao, Xiao-Qiang

    2012-01-01

    A complete classification for the global dynamics of a Lotka-Volterra two species competition model with seasonal succession is obtained via the stability analysis of equilibria and the theory of monotone dynamical systems. The effects of two death rates in the bad season and the proportion of the good season on the competition outcomes are also discussed. © Springer-Verlag 2011

  10. On the integrability of some generalized Lotka-Volterra systems

    Science.gov (United States)

    Bier, M.; Hijmans, J.; Bountis, T. C.

    1983-08-01

    Several integrable systems of nonlinear ordinary differential equations of the Lotka-Volterra type are identified by the Painleveproperty and completely integrated. One such integrable case of N first order ode's is found, with N-2 free parameters and N arbitrary. The concept of integrability of a general dynamical system, not necessarily derived from a Hamiltonian, is also discussed.

  11. Invariants for the generalized Lotka-Volterra equations

    Science.gov (United States)

    Cairó, Laurent; Feix, Marc R.; Goedert, Joao

    A generalisation of Lotka-Volterra System is given when self limiting terms are introduced in the model. We use a modification of the Carleman embedding method to find invariants for this system of equations. The position and stability of the equilibrium point and the regression of system under invariant conditions are studied.

  12. Quantum evolution across singularities

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg

    2008-01-01

    Attempts to consider evolution across space-time singularities often lead to quantum systems with time-dependent Hamiltonians developing an isolated singularity as a function of time. Examples include matrix theory in certain singular time-dependent backgounds and free quantum fields on the two-dimensional compactified Milne universe. Due to the presence of the singularities in the time dependence, the conventional quantum-mechanical evolution is not well-defined for such systems. We propose a natural way, mathematically analogous to renormalization in conventional quantum field theory, to construct unitary quantum evolution across the singularity. We carry out this procedure explicitly for free fields on the compactified Milne universe and compare our results with the matching conditions considered in earlier work (which were based on the covering Minkowski space)

  13. Introduction to singularities

    CERN Document Server

    Ishii, Shihoko

    2014-01-01

    This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundar...

  14. Properties of kinematic singularities

    Energy Technology Data Exchange (ETDEWEB)

    Coley, A A [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada); Hervik, S [Department of Mathematics and Natural Sciences, University of Stavanger, N-4036 Stavanger (Norway); Lim, W C [Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany); MacCallum, M A H, E-mail: aac@mathstat.dal.c, E-mail: sigbjorn.hervik@uis.n, E-mail: wclim@aei.mpg.d, E-mail: m.a.h.maccallum@qmul.ac.u [School of Mathematical Sciences, Queen Mary University of London, E1 4NS (United Kingdom)

    2009-11-07

    The locally rotationally symmetric tilted perfect fluid Bianchi type V cosmological model provides examples of future geodesically complete spacetimes that admit a 'kinematic singularity' at which the fluid congruence is inextendible but all frame components of the Weyl and Ricci tensors remain bounded. We show that for any positive integer n there are examples of Bianchi type V spacetimes admitting a kinematic singularity such that the covariant derivatives of the Weyl and Ricci tensors up to the nth order also stay bounded. We briefly discuss singularities in classical spacetimes.

  15. Nonlinear singular elliptic equations

    International Nuclear Information System (INIS)

    Dong Minh Duc.

    1988-09-01

    We improve the Poincare inequality, the Sobolev imbedding theorem and the Trudinger imbedding theorem and prove a Mountain pass theorem. Applying these results we study a nonlinear singular mixed boundary problem. (author). 22 refs

  16. The Big Bang Singularity

    Science.gov (United States)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  17. Surface Plasmon Singularities

    Directory of Open Access Journals (Sweden)

    Gabriel Martínez-Niconoff

    2012-01-01

    Full Text Available With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.

  18. A slow pushed front in a Lotka–Volterra competition model

    International Nuclear Information System (INIS)

    Holzer, Matt; Scheel, Arnd

    2012-01-01

    We study invasion speeds in the Lotka–Volterra competition model when the rate of diffusion of one species is small. Our main result is the construction of the selected front and a rigorous asymptotic approximation of its propagation speed, valid to second order. We use techniques from geometric singular perturbation theory and geometric desingularization. The main challenge arises from the slow passage through a saddle-node bifurcation. From a perspective of linear versus nonlinear speed selection, this front provides an interesting example as the propagation speed is slower than the linear spreading speed. However, our front shares many characteristics with pushed fronts that arise when the influence of nonlinearity leads to faster than linear speeds of propagation. We show that this is a result of the linear spreading speed arising as a simple pole of the resolvent instead of as a branch pole. Using the pointwise Green's function, we show that this pole poses no a priori obstacle to marginal stability of the nonlinear travelling front, thus explaining how nonlinear systems can exhibit slower spreading that their linearization in a robust fashion

  19. Algorithms in Singular

    Directory of Open Access Journals (Sweden)

    Hans Schonemann

    1996-12-01

    Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].

  20. Numerical method of singular problems on singular integrals

    International Nuclear Information System (INIS)

    Zhao Huaiguo; Mou Zongze

    1992-02-01

    As first part on the numerical research of singular problems, a numerical method is proposed for singular integrals. It is shown that the procedure is quite powerful for solving physics calculation with singularity such as the plasma dispersion function. Useful quadrature formulas for some class of the singular integrals are derived. In general, integrals with more complex singularities can be dealt by this method easily

  1. Solvability of Urysohn and Urysohn-Volterra equations with hysteresis in weighted spaces

    International Nuclear Information System (INIS)

    Darwish Mohamed Abdalla

    2005-09-01

    The existence of solutions to nonlinear integral equations of the second kind with hysteresis, of Urysohn-Volterra and Urysohn types has been established. We develop the solvability theory of Urysohn-Volterra equation with hysteresis in weighted spaces proposed by the author [M.A. Darwish, On solvability of Urysohn-Volterra equations with hysteresis in weighted spaces, J. Integral Equations and Application, 14(2) (2002), 151-163]. (author)

  2. A phenomenological Hamiltonian for the Lotka-Volterra problem

    International Nuclear Information System (INIS)

    Georgian, T.; Findley, G.L.

    1996-01-01

    We have presented a Hamiltonian theory of phenomenological chemical kinetics. In the present paper, we extend this treatment to the Lotka-Volterra model of sustained oscillations. Our approach begins with the usual definition of an intrinsic reaction coordinate space (x 1 ,x 2 ) for the Lotka-Volterra problem, which leads to the rate equations x 1 =ax 1 -bx 1 x 2 , x 2 =-cx 2 +bx 1 x 2 , with a,b and c being real constants. We thereafter present a Hamiltonian function H(x,y)[y 1 = x 1 and y 2 = x 2 ] and an associated holonomic constraint, which give rise to the above rates as half of Hamilton's equations. We provide trajectories by numerical integration (4th order Runge-Kutta) and show that H(x,y) is a constant of the motion. Finally, issues involved in developing an analytic solution to this problem are discussed

  3. A simple spatiotemporal chaotic Lotka-Volterra model

    International Nuclear Information System (INIS)

    Sprott, J.C.; Wildenberg, J.C.; Azizi, Yousef

    2005-01-01

    A mathematically simple example of a high-dimensional (many-species) Lotka-Volterra model that exhibits spatiotemporal chaos in one spatial dimension is described. The model consists of a closed ring of identical agents, each competing for fixed finite resources with two of its four nearest neighbors. The model is prototypical of more complicated models in its quasiperiodic route to chaos (including attracting 3-tori), bifurcations, spontaneous symmetry breaking, and spatial pattern formation

  4. Turing patterns in a modified Lotka-Volterra model

    International Nuclear Information System (INIS)

    McGehee, Edward A.; Peacock-Lopez, Enrique

    2005-01-01

    In this Letter we consider a modified Lotka-Volterra model widely known as the Bazykin model, which is the MacArthur-Rosenzweig (MR) model that includes a prey-dependent response function and is modified with the inclusion of intraspecies interactions. We show that a quadratic intra-prey interaction term, which is the most realistic nonlinearity, yields sufficient conditions for Turing patterns. For the Bazykin model we find the Turing region in parameter space and Turing patterns in one dimension

  5. Positive periodic solutions of delayed periodic Lotka-Volterra systems

    International Nuclear Information System (INIS)

    Lin Wei; Chen Tianping

    2005-01-01

    In this Letter, for a general class of delayed periodic Lotka-Volterra systems, we prove some new results on the existence of positive periodic solutions by Schauder's fixed point theorem. The global asymptotical stability of positive periodic solutions is discussed further, and conditions for exponential convergence are given. The conditions we obtained are weaker than the previously known ones and can be easily reduced to several special cases

  6. Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations

    Directory of Open Access Journals (Sweden)

    E. Messina

    2008-01-01

    Full Text Available We consider nonlinear difference equations of unbounded order of the form xi=bi−∑j=0iai,jfi−j(xj,  i=0,1,2,…, where fj(x  (j=0,…,i are suitable functions. We establish sufficient conditions for the boundedness and the convergence of xi as i→+∞. Some of these conditions are interesting mainly for studying stability of numerical methods for Volterra integral equations.

  7. Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory

    Science.gov (United States)

    Lucia, David J.; Beran, Philip S.; Silva, Walter A.

    2003-01-01

    This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.

  8. Lotka-Volterra representation of general nonlinear systems.

    Science.gov (United States)

    Hernández-Bermejo, B; Fairén, V

    1997-02-01

    In this article we elaborate on the structure of the generalized Lotka-Volterra (GLV) form for nonlinear differential equations. We discuss here the algebraic properties of the GLV family, such as the invariance under quasimonomial transformations and the underlying structure of classes of equivalence. Each class possesses a unique representative under the classical quadratic Lotka-Volterra form. We show how other standard modeling forms of biological interest, such as S-systems or mass-action systems, are naturally embedded into the GLV form, which thus provides a formal framework for their comparison and for the establishment of transformation rules. We also focus on the issue of recasting of general nonlinear systems into the GLV format. We present a procedure for doing so and point at possible sources of ambiguity that could make the resulting Lotka-Volterra system dependent on the path followed. We then provide some general theorems that define the operational and algorithmic framework in which this is not the case.

  9. Non-singular spiked harmonic oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Guardiola, R.

    1990-01-01

    A perturbative study of a class of non-singular spiked harmonic oscillators defined by the hamiltonian H = d sup(2)/dr sup(2) + r sup(2) + λ/r sup(α) in the domain [0,∞] is carried out, in the two extremes of a weak coupling and a strong coupling regimes. A path has been found to connect both expansions for α near 2. (author)

  10. Singularities in FLRW spacetimes

    Science.gov (United States)

    het Lam, Huibert; Prokopec, Tomislav

    2017-12-01

    We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept following that geodesic. That indicates a breakdown of the particle's description, which is why we should not consider those trajectories for the definition of an initial singularity. When one only considers test particles that do not have this breakdown of their trajectory, it turns out that the only singular FLRW spacetimes are the ones that have a scale parameter that vanishes at some initial time.

  11. Weak theorems on differential inequalities for two-dimensional functional differential systems

    Czech Academy of Sciences Publication Activity Database

    Šremr, Jiří

    2008-01-01

    Roč. 65, č. 2 (2008), s. 157-189 ISSN 0032-5155 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : two-dimensional functional differential system * weak theorem on differential inequalities * Volterra operator Subject RIV: BA - General Mathematics

  12. Any order approximate analytical solution of the nonlinear Volterra's integral equation for accelerator dynamic systems

    International Nuclear Information System (INIS)

    Liu Chunliang; Xie Xi; Chen Yinbao

    1991-01-01

    The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation

  13. Generalized symmetries and conserved quantities of the Lotka-Volterra model

    Science.gov (United States)

    Baumann, G.; Freyberger, M.

    1991-07-01

    We examine the generalized symmetries of the Lotka-Volterra model to find the parameter values at which one time-dependent integral of motion exists. In this case the integral can be read off from the symmetries themselves. We also demonstrate the connection to a Hamiltonian structure of the Lotka-Volterra model.

  14. On various integrable discretizations of a general two-component Volterra system

    International Nuclear Information System (INIS)

    Babalic, Corina N; Carstea, A S

    2013-01-01

    We present two integrable discretizations of a general differential–difference bicomponent Volterra system. The results are obtained by discretizing directly the corresponding Hirota bilinear equations in two different ways. Multisoliton solutions are presented together with a new discrete form of Lotka–Volterra equation obtained by an alternative bilinearization. (paper)

  15. Comparative nonlinear modeling of renal autoregulation in rats: Volterra approach versus artificial neural networks

    DEFF Research Database (Denmark)

    Chon, K H; Holstein-Rathlou, N H; Marsh, D J

    1998-01-01

    kernel estimation method based on Laguerre expansions. The results for the two types of artificial neural networks and the Volterra models are comparable in terms of normalized mean square error (NMSE) of the respective output prediction for independent testing data. However, the Volterra models obtained...

  16. Pseudospherical surfaces with singularities

    DEFF Research Database (Denmark)

    Brander, David

    2017-01-01

    We study a generalization of constant Gauss curvature −1 surfaces in Euclidean 3-space, based on Lorentzian harmonic maps, that we call pseudospherical frontals. We analyse the singularities of these surfaces, dividing them into those of characteristic and non-characteristic type. We give methods...

  17. Supersymmetry in singular spaces

    NARCIS (Netherlands)

    Bergshoeff, Eric

    2002-01-01

    We discuss supersymmetry in spaces with a boundary, i.e. singular spaces. In particular, we discuss the situation in ten and five dimensions. In both these cases we review the construction of supersymmetric domain wall actions situated at the boundary. These domain walls act as sources inducing a

  18. Singularities in FLRW Spacetimes

    NARCIS (Netherlands)

    Lam, Huibert het; Prokopec, Tom

    2017-01-01

    We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept

  19. Charged singularities: repulsive effects

    Energy Technology Data Exchange (ETDEWEB)

    De Felice, F; Nobili, L [Padua Univ. (Italy). Ist. di Fisica; Calvani, M [Padua Univ. (Italy). Ist. di Astronomia

    1980-07-01

    The repulsive phenomena which a particle experiences in the vicinity of a naked singularity are investigated in the Kerr-Newman space-time. The aim is to extend the knowledge of this fact to charged solutions and to have a direct indication of how, in these situations, the gravitational and electrostatic interactions are competing.

  20. Papapetrou's naked singularity is a strong curvature singularity

    International Nuclear Information System (INIS)

    Hollier, G.P.

    1986-01-01

    Following Papapetrou [1985, a random walk in General Relativity ed. J. Krishna-Rao (New Delhi: Wiley Eastern)], a spacetime with a naked singularity is analysed. This singularity is shown to be a strong curvature singularity and thus a counterexample to a censorship conjecture. (author)

  1. Singular potentials in quantum mechanics

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Koo, E. Ley

    1995-10-01

    This paper is a review of some mathematical methods as recently developed and applied to deal with singular potentials in Quantum Mechanics. Regular and singular perturbative methods as well as variational treatments are considered. (author). 25 refs

  2. Singularities: the Brieskorn anniversary volume

    National Research Council Canada - National Science Library

    Brieskorn, Egbert; Arnolʹd, V. I; Greuel, G.-M; Steenbrink, J. H. M

    1998-01-01

    ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Main theorem ... 3 Ideals of ideal-unimodal plane curve singularities. . . . . . . . . . . . . . . . References ... Gert-Martin Greuel and Gerhard Pfister...

  3. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics.

  4. Holographic complexity and spacetime singularities

    Energy Technology Data Exchange (ETDEWEB)

    Barbón, José L.F. [Instituto de Física Teórica IFT UAM/CSIC,C/ Nicolás Cabrera 13, Campus Universidad Autónoma de Madrid,Madrid 28049 (Spain); Rabinovici, Eliezer [Racah Institute of Physics, The Hebrew University,Jerusalem 91904 (Israel); Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2016-01-15

    We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.

  5. Are naked singularities really visible

    Energy Technology Data Exchange (ETDEWEB)

    Calvani, M [Padua Univ. (Italy). Ist. di Astronomia; De Felice, F [Alberta Univ., Edmonton (Canada); Nobili, L [Padua Univ. (Italy). Ist. di Fisica

    1978-12-09

    The question whether a Kerr naked singularity is actually visible from infinity is investigated; it is shown that in fact any signal which could be emitted from the singularity is infinitely red-shifted. This implies that naked singularities would be indistinguishable from a black hole.

  6. Holographic complexity and spacetime singularities

    International Nuclear Information System (INIS)

    Barbón, José L.F.; Rabinovici, Eliezer

    2016-01-01

    We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.

  7. The period function of the generalized Lotka-Volterra centers

    Science.gov (United States)

    Villadelprat, J.

    2008-05-01

    The present paper deals with the period function of the quadratic centers. In the literature different terminologies are used to classify these centers, but essentially there are four families: Hamiltonian, reversible , codimension four Q4 and generalized Lotka-Volterra systems . Chicone [C. Chicone, Review in MathSciNet, Ref. 94h:58072] conjectured that the reversible centers have at most two critical periods, and that the centers of the three other families have a monotonic period function. With regard to the second part of this conjecture, only the monotonicity of the Hamiltonian and Q4 families [W.A. Coppel, L. Gavrilov, The period function of a Hamiltonian quadratic system, Differential Integral Equations 6 (1993) 1357-1365; Y. Zhao, The monotonicity of period function for codimension four quadratic system Q4, J. Differential Equations 185 (2002) 370-387] has been proved. Concerning the family, no substantial progress has been made since the middle 80s, when several authors showed independently the monotonicity of the classical Lotka-Volterra centers [F. Rothe, The periods of the Volterra-Lokta system, J. Reine Angew. Math. 355 (1985) 129-138; R. Schaaf, Global behaviour of solution branches for some Neumann problems depending on one or several parameters, J. Reine Angew. Math. 346 (1984) 1-31; J. Waldvogel, The period in the Lotka-Volterra system is monotonic, J. Math. Anal. Appl. 114 (1986) 178-184]. By means of the first period constant one can easily conclude that the period function of the centers in the family is monotone increasing near the inner boundary of its period annulus (i.e., the center itself). Thus, according to Chicone's conjecture, it should be also monotone increasing near the outer boundary, which in the Poincaré disc is a polycycle. In this paper we show that this is true. In addition we prove that, except for a zero measure subset of the parameter plane, there is no bifurcation of critical periods from the outer boundary. Finally we

  8. Coexistence and Survival in Conservative Lotka-Volterra Networks

    Science.gov (United States)

    Knebel, Johannes; Krüger, Torben; Weber, Markus F.; Frey, Erwin

    2013-04-01

    Analyzing coexistence and survival scenarios of Lotka-Volterra (LV) networks in which the total biomass is conserved is of vital importance for the characterization of long-term dynamics of ecological communities. Here, we introduce a classification scheme for coexistence scenarios in these conservative LV models and quantify the extinction process by employing the Pfaffian of the network’s interaction matrix. We illustrate our findings on global stability properties for general systems of four and five species and find a generalized scaling law for the extinction time.

  9. Generalized Lotka—Volterra systems connected with simple Lie algebras

    International Nuclear Information System (INIS)

    Charalambides, Stelios A; Damianou, Pantelis A; Evripidou, Charalambos A

    2015-01-01

    We devise a new method for producing Hamiltonian systems by constructing the corresponding Lax pairs. This is achieved by considering a larger subset of the positive roots than the simple roots of the root system of a simple Lie algebra. We classify all subsets of the positive roots of the root system of type A n for which the corresponding Hamiltonian systems are transformed, via a simple change of variables, to Lotka-Volterra systems. For some special cases of subsets of the positive roots of the root system of type A n , we produce new integrable Hamiltonian systems. (paper)

  10. Generalized Lotka—Volterra systems connected with simple Lie algebras

    Science.gov (United States)

    Charalambides, Stelios A.; Damianou, Pantelis A.; Evripidou, Charalambos A.

    2015-06-01

    We devise a new method for producing Hamiltonian systems by constructing the corresponding Lax pairs. This is achieved by considering a larger subset of the positive roots than the simple roots of the root system of a simple Lie algebra. We classify all subsets of the positive roots of the root system of type An for which the corresponding Hamiltonian systems are transformed, via a simple change of variables, to Lotka-Volterra systems. For some special cases of subsets of the positive roots of the root system of type An, we produce new integrable Hamiltonian systems.

  11. String networks in ZN Lotka–Volterra competition models

    International Nuclear Information System (INIS)

    Avelino, P.P.; Bazeia, D.; Menezes, J.; Oliveira, B.F. de

    2014-01-01

    In this Letter we give specific examples of Z N Lotka–Volterra competition models leading to the formation of string networks. We show that, in order to promote coexistence, the species may arrange themselves around regions with a high number density of empty sites generated by predator–prey interactions between competing species. These configurations extend into the third dimension giving rise to string networks. We investigate the corresponding dynamics using both stochastic and mean field theory simulations, showing that the coarsening of these string networks follows a scaling law which is analogous to that found in other physical systems in condensed matter and cosmology

  12. Volterra model and quark hadronization into multicomponent hadron system

    International Nuclear Information System (INIS)

    Darbaidze, Ya.Z.; Rostovtsev, V.A.

    1989-01-01

    The examples of the multiparticle process characteristic dependence on the number of a low correlated components are considered. The possibility for reducing the differential equation system, which was obtained earlier, to a dissipative type Volterra model of competing biological species for the same food is discussed. An algorithm for the analytical computation of the high order differential equation as a resultant of the of the arising system is given. The examples of linearization and solution of these equations describing the associated multiplicities of charge particles are represented. 25 refs.; 1 tab

  13. Dynamical insurance models with investment: Constrained singular problems for integrodifferential equations

    Science.gov (United States)

    Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.

    2016-01-01

    Previous and new results are used to compare two mathematical insurance models with identical insurance company strategies in a financial market, namely, when the entire current surplus or its constant fraction is invested in risky assets (stocks), while the rest of the surplus is invested in a risk-free asset (bank account). Model I is the classical Cramér-Lundberg risk model with an exponential claim size distribution. Model II is a modification of the classical risk model (risk process with stochastic premiums) with exponential distributions of claim and premium sizes. For the survival probability of an insurance company over infinite time (as a function of its initial surplus), there arise singular problems for second-order linear integrodifferential equations (IDEs) defined on a semiinfinite interval and having nonintegrable singularities at zero: model I leads to a singular constrained initial value problem for an IDE with a Volterra integral operator, while II model leads to a more complicated nonlocal constrained problem for an IDE with a non-Volterra integral operator. A brief overview of previous results for these two problems depending on several positive parameters is given, and new results are presented. Additional results are concerned with the formulation, analysis, and numerical study of "degenerate" problems for both models, i.e., problems in which some of the IDE parameters vanish; moreover, passages to the limit with respect to the parameters through which we proceed from the original problems to the degenerate ones are singular for small and/or large argument values. Such problems are of mathematical and practical interest in themselves. Along with insurance models without investment, they describe the case of surplus completely invested in risk-free assets, as well as some noninsurance models of surplus dynamics, for example, charity-type models.

  14. The cosmological singularity

    CERN Document Server

    Belinski, Vladimir

    2018-01-01

    Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...

  15. Deformations of surface singularities

    CERN Document Server

    Szilárd, ágnes

    2013-01-01

    The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry.  This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...

  16. Multiscale singularity trees

    DEFF Research Database (Denmark)

    Somchaipeng, Kerawit; Sporring, Jon; Johansen, Peter

    2007-01-01

    We propose MultiScale Singularity Trees (MSSTs) as a structure to represent images, and we propose an algorithm for image comparison based on comparing MSSTs. The algorithm is tested on 3 public image databases and compared to 2 state-of-theart methods. We conclude that the computational complexity...... of our algorithm only allows for the comparison of small trees, and that the results of our method are comparable with state-of-the-art using much fewer parameters for image representation....

  17. Dyslexia singular brain

    International Nuclear Information System (INIS)

    Habis, M.; Robichon, F.; Demonet, J.F.

    1996-01-01

    Of late ten years, neurologists are studying the brain of the dyslectics. The cerebral imagery (NMR imaging, positron computed tomography) has allowed to confirm the anatomical particularities discovered by some of them: asymmetry default of cerebral hemispheres, size abnormally large of the white substance mass which connect the two hemispheres. The functional imagery, when visualizing this singular brain at work, allows to understand why it labors to reading. (O.M.)

  18. Lotka-Volterra competition models for sessile organisms.

    Science.gov (United States)

    Spencer, Matthew; Tanner, Jason E

    2008-04-01

    Markov models are widely used to describe the dynamics of communities of sessile organisms, because they are easily fitted to field data and provide a rich set of analytical tools. In typical ecological applications, at any point in time, each point in space is in one of a finite set of states (e.g., species, empty space). The models aim to describe the probabilities of transitions between states. In most Markov models for communities, these transition probabilities are assumed to be independent of state abundances. This assumption is often suspected to be false and is rarely justified explicitly. Here, we start with simple assumptions about the interactions among sessile organisms and derive a model in which transition probabilities depend on the abundance of destination states. This model is formulated in continuous time and is equivalent to a Lotka-Volterra competition model. We fit this model and a variety of alternatives in which transition probabilities do not depend on state abundances to a long-term coral reef data set. The Lotka-Volterra model describes the data much better than all models we consider other than a saturated model (a model with a separate parameter for each transition at each time interval, which by definition fits the data perfectly). Our approach provides a basis for further development of stochastic models of sessile communities, and many of the methods we use are relevant to other types of community. We discuss possible extensions to spatially explicit models.

  19. Quantum healing of classical singularities in power-law spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Helliwell, T M [Department of Physics, Harvey Mudd College, Claremont, CA 91711 (United States); Konkowski, D A [Department of Mathematics, US Naval Academy, Annapolis, MD 21402 (United States)

    2007-07-07

    We study a broad class of spacetimes whose metric coefficients reduce to powers of a radius r in the limit of small r. Among these four-parameter 'power-law' metrics, we identify those parameters for which the spacetimes have classical singularities as r {yields} 0. We show that a large set of such classically-singular spacetimes is nevertheless non-singular quantum mechanically, in that the Hamiltonian operator is essentially self-adjoint, so that the evolution of quantum wave packets lacks the ambiguity associated with scattering off singularities. Using these metrics, the broadest class yet studied to compare classical with quantum singularities, we explore the physical reasons why some that are singular classically are 'healed' quantum mechanically, while others are not. We show that most (but not all) of the remaining quantum-mechanically singular spacetimes can be excluded if either the weak energy condition or the dominant energy condition is invoked, and we briefly discuss the effect of this work on the strong cosmic censorship conjecture.

  20. On the behaviour of Navier–Stokes equations near a possible singular point

    International Nuclear Information System (INIS)

    Kang, Kyungkeun; Lee, Jihoon

    2010-01-01

    We show that if a singularity of suitable weak solutions to Navier–Stokes equations occurs, then either p or at least two of ∂ i v i , i = 1, 2, 3, have neither upper bounds nor lower bounds in any neighbourhood of the singularity. In the case of axially symmetric solutions, we prove that either p or ∂ r v r is not bounded both below and above near a singular point, if it exists

  1. Volterra equalization of complex modulation utilizing frequency chirp in directly modulated lasers

    Science.gov (United States)

    Hu, Shaohua; Yi, Xingwen; Zhang, Jing; Song, Yang; Zhu, Mingyue; Qiu, Kun

    2018-02-01

    We apply Volterra-based equalization for complex modulated optical signals utilizing the frequency chirp in DMLs. We experimentally demonstrate that the higher order Volterra filter is necessary in the higher speed transmissions. For further study, we isolate the adiabatic chirp by injection locking and realize the optical PM transmission. We make a comparison among IM, FM and PM with Volterra equalization, finding that PM and FM are more power insensitive and suitable for high speed, power limited fiber transmission. The performance can be further improved by exploiting the diversity gain.

  2. Lie Point Symmetries and Exact Solutions of the Coupled Volterra System

    International Nuclear Information System (INIS)

    Ping, Liu; Sen-Yue, Lou

    2010-01-01

    The coupled Volterra system, an integrable discrete form of a coupled Korteweg–de Vries (KdV) system applied widely in fluids, Bose–Einstein condensation and atmospheric dynamics, is studied with the help of the Lie point symmetries. Two types of delayed differential reduction systems are derived from the coupled Volterra system by means of the symmetry reduction approach and symbolic computation. Cnoidal wave and solitary wave solutions for a delayed differential reduction system and the coupled Volterra system are proposed, respectively. (general)

  3. SOLVING FRACTIONAL-ORDER COMPETITIVE LOTKA-VOLTERRA MODEL BY NSFD SCHEMES

    Directory of Open Access Journals (Sweden)

    S.ZIBAEI

    2016-12-01

    Full Text Available In this paper, we introduce fractional-order into a model competitive Lotka- Volterra prey-predator system. We will discuss the stability analysis of this fractional system. The non-standard nite difference (NSFD scheme is implemented to study the dynamic behaviors in the fractional-order Lotka-Volterra system. Proposed non-standard numerical scheme is compared with the forward Euler and fourth order Runge-Kutta methods. Numerical results show that the NSFD approach is easy and accurate for implementing when applied to fractional-order Lotka-Volterra model.

  4. An equivalent condition for stability properties of Lotka-Volterra systems

    International Nuclear Information System (INIS)

    Chu Tianguang

    2007-01-01

    We give a solvable Lie algebraic condition for the equivalence of four typical stability notions (asymptotic stability, D-stability, total stability, and Volterra-Lyapunov stability) concerning Lotka-Volterra systems. Our approach makes use of the decomposition of the interaction matrix into symmetric and skew-symmetric parts, which may be related to the cooperative and competitive interaction pattern of a Lotka-Volterra system. The present result covers a known condition and can yield a larger set of interaction matrices for equivalence of the stability properties

  5. Dark energy and dark matter perturbations in singular universes

    International Nuclear Information System (INIS)

    Denkiewicz, Tomasz

    2015-01-01

    We discuss the evolution of density perturbations of dark matter and dark energy in cosmological models which admit future singularities in a finite time. Up to now geometrical tests of the evolution of the universe do not differentiate between singular universes and ΛCDM scenario. We solve perturbation equations using the gauge invariant formalism. The analysis shows that the detailed reconstruction of the evolution of perturbations within singular cosmologies, in the dark sector, can exhibit important differences between the singular universes models and the ΛCDM cosmology. This is encouraging for further examination and gives hope for discriminating between those models with future galaxy weak lensing experiments like the Dark Energy Survey (DES) and Euclid or CMB observations like PRISM and CoRE

  6. General two-species interacting Lotka-Volterra system: Population dynamics and wave propagation

    Science.gov (United States)

    Zhu, Haoqi; Wang, Mao-Xiang; Lai, Pik-Yin

    2018-05-01

    The population dynamics of two interacting species modeled by the Lotka-Volterra (LV) model with general parameters that can promote or suppress the other species is studied. It is found that the properties of the two species' isoclines determine the interaction of species, leading to six regimes in the phase diagram of interspecies interaction; i.e., there are six different interspecific relationships described by the LV model. Four regimes allow for nontrivial species coexistence, among which it is found that three of them are stable, namely, weak competition, mutualism, and predator-prey scenarios can lead to win-win coexistence situations. The Lyapunov function for general nontrivial two-species coexistence is also constructed. Furthermore, in the presence of spatial diffusion of the species, the dynamics can lead to steady wavefront propagation and can alter the population map. Propagating wavefront solutions in one dimension are investigated analytically and by numerical solutions. The steady wavefront speeds are obtained analytically via nonlinear dynamics analysis and verified by numerical solutions. In addition to the inter- and intraspecific interaction parameters, the intrinsic speed parameters of each species play a decisive role in species populations and wave properties. In some regimes, both species can copropagate with the same wave speeds in a finite range of parameters. Our results are further discussed in the light of possible biological relevance and ecological implications.

  7. (Weakly) three-dimensional caseology

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1996-01-01

    The singular eigenfunction technique of Case for solving one-dimensional planar symmetry linear transport problems is extended to a restricted class of three-dimensional problems. This class involves planar geometry, but with forcing terms (either boundary conditions or internal sources) which are weakly dependent upon the transverse spatial variables. Our analysis involves a singular perturbation about the classic planar analysis, and leads to the usual Case discrete and continuum modes, but modulated by weakly dependent three-dimensional spatial functions. These functions satisfy parabolic differential equations, with a different diffusion coefficient for each mode. Representative one-speed time-independent transport problems are solved in terms of these generalised Case eigenfunctions. Our treatment is very heuristic, but may provide an impetus for more rigorous analysis. (author)

  8. Stochastic singular optics

    CSIR Research Space (South Africa)

    Roux, FS

    2013-09-01

    Full Text Available Roux Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013 CSIR National Laser Centre, Pretoria, South Africa – p. 1/24 Contents ⊲ Defining Stochastic Singular Optics (SSO) ⊲ Tools of Stochastic... of vortices: topological charge ±1 (higher order are unstable). Positive and negative vortex densities np(x, y, z) and nn(x, y, z) ⊲ Vortex density: V = np + nn ⊲ Topological charge density: T = np − nn – p. 4/24 Subfields of SSO ⊲ Homogeneous, normally...

  9. Cosmological models without singularities

    International Nuclear Information System (INIS)

    Petry, W.

    1981-01-01

    A previously studied theory of gravitation in flat space-time is applied to homogeneous and isotropic cosmological models. There exist two different classes of models without singularities: (i) ever-expanding models, (ii) oscillating models. The first class contains models with hot big bang. For these models there exist at the beginning of the universe-in contrast to Einstein's theory-very high but finite densities of matter and radiation with a big bang of very short duration. After short time these models pass into the homogeneous and isotropic models of Einstein's theory with spatial curvature equal to zero and cosmological constant ALPHA >= O. (author)

  10. Classification of integrable Volterra-type lattices on the sphere: isotropic case

    International Nuclear Information System (INIS)

    Adler, V E

    2008-01-01

    The symmetry approach is used for classification of integrable isotropic vector Volterra lattices on the sphere. The list of integrable lattices consists mainly of new equations. Their symplectic structure and associated PDE of vector NLS type are discussed

  11. Bifurcation structure of positive stationary solutions for a Lotka-Volterra competition model with diffusion I

    Science.gov (United States)

    Kan-On, Yukio

    2007-04-01

    This paper is concerned with the bifurcation structure of positive stationary solutions for a generalized Lotka-Volterra competition model with diffusion. To establish the structure, the bifurcation theory and the interval arithmetic are employed.

  12. The cyclicity of period annulus of a quadratic reversible Lotka–Volterra system

    International Nuclear Information System (INIS)

    Li, Chengzhi; Llibre, Jaume

    2009-01-01

    We prove that by perturbing the periodic annulus of the quadratic polynomial reversible Lotka–Volterra differential system, inside the class of all quadratic polynomial differential systems we can obtain at most two limit cycles

  13. Stationary Response of Lotka—Volterra System with Real Noises

    International Nuclear Information System (INIS)

    Qi Lu-Yuan; Xu Wei; Gao Wei-Ting

    2013-01-01

    A stochastic version of Lotka—Volterra model subjected to real noises is proposed and investigated. The approximate stationary probability densities for both predator and prey are obtained analytically. The original system is firstly transformed to a pair of Itô stochastic differential equations. The Itô formula is then carried out to obtain the Itô stochastic differential equation for the period orbit function. The orbit function is considered as slowly varying process under reasonable assumptions. By applying the stochastic averaging method to the orbit function in one period, the averaged Itô stochastic differential equation of the motion orbit and the corresponding Fokker—Planck equation are derived. The probability density functions of the two species are thus formulated. Finally, a classical real noise model is given as an example to show the proposed approximate method. The accuracy of the proposed procedure is verified by Monte Carlo simulation. (interdisciplinary physics and related areas of science and technology)

  14. Lie Symmetry of the Diffusive Lotka–Volterra System with Time-Dependent Coefficients

    Directory of Open Access Journals (Sweden)

    Vasyl’ Davydovych

    2018-02-01

    Full Text Available Lie symmetry classification of the diffusive Lotka–Volterra system with time-dependent coefficients in the case of a single space variable is studied. A set of such symmetries in an explicit form is constructed. A nontrivial ansatz reducing the Lotka–Volterra system with correctly-specified coefficients to the system of ordinary differential equations (ODEs and an example of the exact solution with a biological interpretation are found.

  15. On the Restriction of the Location of Stable Points for Generalized Lotka-Volterra

    OpenAIRE

    Livesay, Michael Richard

    2017-01-01

    We develop tools to determine which fixed points in a generalized Lotka-Volterra system are stable, under certain non-degeneracy conditions. We characterize which faces of the boundary of the domain of the Lotka-Volterra system could contain a stable fixed point. Under various relaxed conditions, we show that whenever a face of the boundary contains a stable point there are no other stable points in any strictly larger face of the boundary.

  16. Residues and duality for singularity categories of isolated Gorenstein singularities

    OpenAIRE

    Murfet, Daniel

    2009-01-01

    We study Serre duality in the singularity category of an isolated Gorenstein singularity and find an explicit formula for the duality pairing in terms of generalised fractions and residues. For hypersurfaces we recover the residue formula of the string theorists Kapustin and Li. These results are obtained from an explicit construction of complete injective resolutions of maximal Cohen-Macaulay modules.

  17. Weak currents

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1976-01-01

    A survey of the fundamental ideas on weak currents such as CVC and PCAC and a presentation of the Cabibbo current and the neutral weak currents according to the Salam-Weinberg model and the Glashow-Iliopoulos-Miami model are given [fr

  18. Singular Poisson tensors

    International Nuclear Information System (INIS)

    Littlejohn, R.G.

    1982-01-01

    The Hamiltonian structures discovered by Morrison and Greene for various fluid equations were obtained by guessing a Hamiltonian and a suitable Poisson bracket formula, expressed in terms of noncanonical (but physical) coordinates. In general, such a procedure for obtaining a Hamiltonian system does not produce a Hamiltonian phase space in the usual sense (a symplectic manifold), but rather a family of symplectic manifolds. To state the matter in terms of a system with a finite number of degrees of freedom, the family of symplectic manifolds is parametrized by a set of Casimir functions, which are characterized by having vanishing Poisson brackets with all other functions. The number of independent Casimir functions is the corank of the Poisson tensor J/sup ij/, the components of which are the Poisson brackets of the coordinates among themselves. Thus, these Casimir functions exist only when the Poisson tensor is singular

  19. Weak decays

    International Nuclear Information System (INIS)

    Wojcicki, S.

    1978-11-01

    Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references

  20. Weak interactions

    International Nuclear Information System (INIS)

    Ogava, S.; Savada, S.; Nakagava, M.

    1983-01-01

    The problem of the use of weak interaction laws to study models of elementary particles is discussed. The most typical examples of weak interaction is beta-decay of nucleons and muons. Beta-interaction is presented by quark currents in the form of universal interaction of the V-A type. Universality of weak interactions is well confirmed using as examples e- and μ-channels of pion decay. Hypothesis on partial preservation of axial current is applicable to the analysis of processes with pion participation. In the framework of the model with four flavours lepton decays of hadrons are considered. Weak interaction without lepton participation are also considered. Properties of neutral currents are described briefly

  1. Weak interactions

    International Nuclear Information System (INIS)

    Chanda, R.

    1981-01-01

    The theoretical and experimental evidences to form a basis for Lagrangian Quantum field theory for Weak Interactions are discussed. In this context, gauge invariance aspects of such interactions are showed. (L.C.) [pt

  2. Naked singularities are not singular in distorted gravity

    Energy Technology Data Exchange (ETDEWEB)

    Garattini, Remo, E-mail: Remo.Garattini@unibg.it [Università degli Studi di Bergamo, Facoltà di Ingegneria, Viale Marconi 5, 24044 Dalmine (Bergamo) (Italy); I.N.F.N. – sezione di Milano, Milan (Italy); Majumder, Barun, E-mail: barunbasanta@iitgn.ac.in [Indian Institute of Technology Gandhinagar, Ahmedabad, Gujarat 382424 (India)

    2014-07-15

    We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheeler–DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity.

  3. Naked singularities are not singular in distorted gravity

    Science.gov (United States)

    Garattini, Remo; Majumder, Barun

    2014-07-01

    We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheele-DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity.

  4. Naked singularities are not singular in distorted gravity

    International Nuclear Information System (INIS)

    Garattini, Remo; Majumder, Barun

    2014-01-01

    We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheeler–DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity

  5. Loop quantum cosmology and singularities.

    Science.gov (United States)

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  6. Singularity resolution in quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We examine the singularity resolution issue in quantum gravity by studying a new quantization of standard Friedmann-Robertson-Walker geometrodynamics. The quantization procedure is inspired by the loop quantum gravity program, and is based on an alternative to the Schroedinger representation normally used in metric variable quantum cosmology. We show that in this representation for quantum geometrodynamics there exists a densely defined inverse scale factor operator, and that the Hamiltonian constraint acts as a difference operator on the basis states. We find that the cosmological singularity is avoided in the quantum dynamics. We discuss these results with a view to identifying the criteria that constitute 'singularity resolution' in quantum gravity

  7. The theory of singular perturbations

    CERN Document Server

    De Jager, E M

    1996-01-01

    The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat

  8. Weak interactions

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1978-01-01

    Weak interactions are studied from a phenomenological point of view, by using a minimal number of theoretical hypotheses. Charged-current phenomenology, and then neutral-current phenomenology are discussed. This all is described in terms of a global SU(2) symmetry plus an electromagnetic correction. The intermediate-boson hypothesis is introduced and lower bounds on the range of the weak force are inferred. This phenomenology does not yet reconstruct all the predictions of the conventional SU(2)xU(1) gauge theory. To do that requires an additional assumption of restoration of SU(2) symmetry at asymptotic energies

  9. Singularity: Raychaudhuri equation once again

    Indian Academy of Sciences (India)

    Cosmology; Raychaudhuri equation; Universe; quantum gravity; loop quan- tum gravity ... than the observation verifying the prediction of theory. This gave .... which was now expanding, would have had a singular beginning in a hot Big Bang.

  10. On the Volterra integral equation relating creep and relaxation

    International Nuclear Information System (INIS)

    Anderssen, R S; De Hoog, F R; Davies, A R

    2008-01-01

    The evolving stress–strain response of a material to an applied deformation is causal. If the current response depends on the earlier history of the stress–strain dynamics of the material (i.e. the material has memory), then Volterra integral equations become the natural framework within which to model the response. For viscoelastic materials, when the response is linear, the dual linear Boltzmann causal integral equations are the appropriate model. The choice of one rather than the other depends on whether the applied deformation is a stress or a strain, and the associated response is, respectively, a creep or a relaxation. The duality between creep and relaxation is known explicitly and is referred to as the 'interconversion equation'. Rheologically, its importance relates to the fact that it allows the creep to be determined from knowledge of the relaxation and vice versa. Computationally, it has been known for some time that the recovery of the relaxation from the creep is more problematic than the creep from the relaxation. Recent research, using discrete models for the creep and relaxation, has confirmed that this is an essential feature of interconversion. In this paper, the corresponding result is generalized for continuous models of the creep and relaxation

  11. HOC Based Blind Identification of Hydroturbine Shaft Volterra System

    Directory of Open Access Journals (Sweden)

    Bing Bai

    2017-01-01

    Full Text Available In order to identify the quadratic Volterra system simplified from the hydroturbine shaft system, a blind identification method based on the third-order cumulants and a reversely recursive method are proposed. The input sequence of the system under consideration is an unobservable independent identically distributed (i.i.d., zero-mean and non-Gaussian stationary signal, and the observed signals are the superposition of the system output signal and Gaussian noise. To calculate the third-order moment of the output signal, a computer loop judgment method is put forward to determine the coefficient. When using optimization method to identify the time domain kernels, we combined the traditional optimization algorithm (direct search method with genetic algorithm (GA and constituted the hybrid genetic algorithm (HGA. Finally, according to the prototype observation signal and the time domain kernel parameters obtained from identification, the input signal of the system can be gained recursively. To test the proposed method, three numerical experiments and engineering application have been carried out. The results show that the method is applicable to the blind identification of the hydroturbine shaft system and has strong universality; the input signal obtained by the reversely recursive method can be approximately taken as the random excitation acted on the runner of the hydroturbine shaft system.

  12. Food Web Assembly Rules for Generalized Lotka-Volterra Equations.

    Directory of Open Access Journals (Sweden)

    Jan O Haerter

    2016-02-01

    Full Text Available In food webs, many interacting species coexist despite the restrictions imposed by the competitive exclusion principle and apparent competition. For the generalized Lotka-Volterra equations, sustainable coexistence necessitates nonzero determinant of the interaction matrix. Here we show that this requirement is equivalent to demanding that each species be part of a non-overlapping pairing, which substantially constrains the food web structure. We demonstrate that a stable food web can always be obtained if a non-overlapping pairing exists. If it does not, the matrix rank can be used to quantify the lack of niches, corresponding to unpaired species. For the species richness at each trophic level, we derive the food web assembly rules, which specify sustainable combinations. In neighboring levels, these rules allow the higher level to avert competitive exclusion at the lower, thereby incorporating apparent competition. In agreement with data, the assembly rules predict high species numbers at intermediate levels and thinning at the top and bottom. Using comprehensive food web data, we demonstrate how omnivores or parasites with hosts at multiple trophic levels can loosen the constraints and help obtain coexistence in food webs. Hence, omnivory may be the glue that keeps communities intact even under extinction or ecological release of species.

  13. Food Web Assembly Rules for Generalized Lotka-Volterra Equations.

    Science.gov (United States)

    Haerter, Jan O; Mitarai, Namiko; Sneppen, Kim

    2016-02-01

    In food webs, many interacting species coexist despite the restrictions imposed by the competitive exclusion principle and apparent competition. For the generalized Lotka-Volterra equations, sustainable coexistence necessitates nonzero determinant of the interaction matrix. Here we show that this requirement is equivalent to demanding that each species be part of a non-overlapping pairing, which substantially constrains the food web structure. We demonstrate that a stable food web can always be obtained if a non-overlapping pairing exists. If it does not, the matrix rank can be used to quantify the lack of niches, corresponding to unpaired species. For the species richness at each trophic level, we derive the food web assembly rules, which specify sustainable combinations. In neighboring levels, these rules allow the higher level to avert competitive exclusion at the lower, thereby incorporating apparent competition. In agreement with data, the assembly rules predict high species numbers at intermediate levels and thinning at the top and bottom. Using comprehensive food web data, we demonstrate how omnivores or parasites with hosts at multiple trophic levels can loosen the constraints and help obtain coexistence in food webs. Hence, omnivory may be the glue that keeps communities intact even under extinction or ecological release of species.

  14. Extinction in neutrally stable stochastic Lotka-Volterra models

    Science.gov (United States)

    Dobrinevski, Alexander; Frey, Erwin

    2012-05-01

    Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.

  15. Lotka-Volterra system in a random environment

    Science.gov (United States)

    Dimentberg, Mikhail F.

    2002-03-01

    Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting species (predator-prey or parasite-host pairs) is conservative. This may imply unrealistically high sensitivity of the system's behavior to environmental variations. Thus, a generalized LV model is considered with the equation for preys' reproduction containing the following additional terms: quadratic ``damping'' term that accounts for interspecies competition, and term with white-noise random variations of the preys' reproduction factor that simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-Kolmogorov equation for stationary probability densities (PDF's) of the population sizes. It shows that both population sizes are independent γ-distributed stationary random processes. Increasing level of the environmental variations does not lead to extinction of the populations. However it may lead to an intermittent behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks while remaining on a very low level most of the time. This intermittency is described analytically by direct use of the solutions for the PDF's as well as by applying theory of excursions of random functions and by predicting PDF of peaks in the predators' population size.

  16. Verhulst-Lotka-Volterra (VLV) model of ideological struggle

    Science.gov (United States)

    Vitanov, Nikolay K.; Dimitrova, Zlatinka I.; Ausloos, Marcel

    2010-11-01

    A model for ideological struggles is formulated. The underlying set is a closed one, like a country but in which the population size is variable in time. The dynamics of the struggle is described by model equations of Verhulst-Lotka-Volterra kind. Several “ideologies” compete to increase their number of adepts. Such followers can be either converted from one ideology to another or become followers of an ideology though being previously ideologically-free. A reverse process is also allowed. Two kinds of conversions are considered: unitary conversion, e.g. by means of mass communication tools, or binary conversion, e.g. by means of interactions between people. It is found that the steady state, when it exists, depends on the number of ideologies. Moreover when the number of ideologies increases some tension arises between them. This tension can change in the course of time. We propose to measure the ideology tensions through an appropriately defined scale index. Finally it is shown that a slight change in the conditions of the environment can prevent the extinction of some ideology; after almost collapsing the ideology can spread again and can affect a significant part of the country’s population. Two kinds of such resurrection effects are described as phoenix effects.

  17. Some new retarded nonlinear Volterra-Fredholm type integral inequalities with maxima in two variables and their applications.

    Science.gov (United States)

    Xu, Run; Ma, Xiangting

    2017-01-01

    In this paper, we establish some new retarded nonlinear Volterra-Fredholm type integral inequalities with maxima in two independent variables, and we present the applications to research the boundedness of solutions to retarded nonlinear Volterra-Fredholm type integral equations.

  18. Local and nonlocal space-time singularities

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    1985-01-01

    The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established

  19. Security analysis of chaotic communication systems based on Volterra-Wiener-Korenberg model

    International Nuclear Information System (INIS)

    Lei Min; Meng Guang; Feng Zhengjin

    2006-01-01

    Pseudo-randomicity is an important cryptological characteristic for proof of encryption algorithms. This paper proposes a nonlinear detecting method based on Volterra-Wiener-Korenberg model and suggests an autocorrelation function to analyze the pseudo-randomicity of chaotic secure systems under different sampling interval. The results show that: (1) the increase of the order of the chaotic transmitter will not necessarily result in a high degree of security; (2) chaotic secure systems have higher and stronger pseudo-randomicity at sparse sampling interval due to the similarity of chaotic time series to the noise; (3) Volterra-Wiener-Korenberg method can also give a further appropriate sparse sampling interval for improving the security of chaotic secure communication systems. For unmasking chaotic communication systems, the Volterra-Wiener-Korenberg technique can be applied to analyze the chaotic time series with surrogate data

  20. Numerical Study of Two-Dimensional Volterra Integral Equations by RDTM and Comparison with DTM

    Directory of Open Access Journals (Sweden)

    Reza Abazari

    2013-01-01

    Full Text Available The two-dimensional Volterra integral equations are solved using more recent semianalytic method, the reduced differential transform method (the so-called RDTM, and compared with the differential transform method (DTM. The concepts of DTM and RDTM are briefly explained, and their application to the two-dimensional Volterra integral equations is studied. The results obtained by DTM and RDTM together are compared with exact solution. As an important result, it is depicted that the RDTM results are more accurate in comparison with those obtained by DTM applied to the same Volterra integral equations. The numerical results reveal that the RDTM is very effective, convenient, and quite accurate compared to the other kind of nonlinear integral equations. It is predicted that the RDTM can be found widely applicable in engineering sciences.

  1. Three-dimensional discrete-time Lotka-Volterra models with an application to industrial clusters

    Science.gov (United States)

    Bischi, G. I.; Tramontana, F.

    2010-10-01

    We consider a three-dimensional discrete dynamical system that describes an application to economics of a generalization of the Lotka-Volterra prey-predator model. The dynamic model proposed is used to describe the interactions among industrial clusters (or districts), following a suggestion given by [23]. After studying some local and global properties and bifurcations in bidimensional Lotka-Volterra maps, by numerical explorations we show how some of them can be extended to their three-dimensional counterparts, even if their analytic and geometric characterization becomes much more difficult and challenging. We also show a global bifurcation of the three-dimensional system that has no two-dimensional analogue. Besides the particular economic application considered, the study of the discrete version of Lotka-Volterra dynamical systems turns out to be a quite rich and interesting topic by itself, i.e. from a purely mathematical point of view.

  2. Global attractivity of positive periodic solution to periodic Lotka-Volterra competition systems with pure delay

    Science.gov (United States)

    Tang, Xianhua; Cao, Daomin; Zou, Xingfu

    We consider a periodic Lotka-Volterra competition system without instantaneous negative feedbacks (i.e., pure-delay systems) x(t)=x(t)[r(t)-∑j=1na(t)x(t-τ(t))], i=1,2,…,n. We establish some 3/2-type criteria for global attractivity of a positive periodic solution of the system, which generalize the well-known Wright's 3/2 criteria for the autonomous delay logistic equation, and thereby, address the open problem proposed by both Kuang [Y. Kuang, Global stability in delayed nonautonomous Lotka-Volterra type systems without saturated equilibria, Differential Integral Equations 9 (1996) 557-567] and Teng [Z. Teng, Nonautonomous Lotka-Volterra systems with delays, J. Differential Equations 179 (2002) 538-561].

  3. The Jungle Universe: coupled cosmological models in a Lotka-Volterra framework

    Science.gov (United States)

    Perez, Jérôme; Füzfa, André; Carletti, Timoteo; Mélot, Laurence; Guedezounme, Lazare

    2014-06-01

    In this paper, we exploit the fact that the dynamics of homogeneous and isotropic Friedmann-Lemaître universes is a special case of generalized Lotka-Volterra system where the competitive species are the barotropic fluids filling the Universe. Without coupling between those fluids, Lotka-Volterra formulation offers a pedagogical and simple way to interpret usual Friedmann-Lemaître cosmological dynamics. A natural and physical coupling between cosmological fluids is proposed which preserves the structure of the dynamical equations. Using the standard tools of Lotka-Volterra dynamics, we obtain the general Lyapunov function of the system when one of the fluids is coupled to dark energy. This provides in a rigorous form a generic asymptotic behavior for cosmic expansion in presence of coupled species, beyond the standard de Sitter, Einstein-de Sitter and Milne cosmologies. Finally, we conjecture that chaos can appear for at least four interacting fluids.

  4. Nonlinear System Identification via Basis Functions Based Time Domain Volterra Model

    Directory of Open Access Journals (Sweden)

    Yazid Edwar

    2014-07-01

    Full Text Available This paper proposes basis functions based time domain Volterra model for nonlinear system identification. The Volterra kernels are expanded by using complex exponential basis functions and estimated via genetic algorithm (GA. The accuracy and practicability of the proposed method are then assessed experimentally from a scaled 1:100 model of a prototype truss spar platform. Identification results in time and frequency domain are presented and coherent functions are performed to check the quality of the identification results. It is shown that results between experimental data and proposed method are in good agreement.

  5. Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems

    Science.gov (United States)

    Hernández-Bermejo, Benito; Fairén, Víctor

    1998-11-01

    This work is devoted to the establishment of a Poisson structure for a format of equations known as generalized Lotka-Volterra systems. These equations, which include the classical Lotka-Volterra systems as a particular case, have been deeply studied in the literature. They have been shown to constitute a whole hierarchy of systems, the characterization of which is made in the context of simple algebra. Our main result is to show that this algebraic structure is completely translatable into the Poisson domain. Important Poisson structures features, such as the symplectic foliation and the Darboux canonical representation, rise as a result of rather simple matrix manipulations.

  6. On the singularities of solutions to singular perturbation problems

    International Nuclear Information System (INIS)

    Fruchard, A; Schaefke, R

    2005-01-01

    We consider a singularly perturbed complex first order ODE εu ' Φ(x, u, a, ε), x, u element of C, ε > 0 is a small complex parameter and a element of C is a control parameter. It is proven that the singularities of some solutions are regularly spaced and that they move from one to the next as a runs about a loop of index one around a value of overstability. This gives a positive answer to a question of J. L. Callot

  7. On the singularities of solutions to singular perturbation problems

    Energy Technology Data Exchange (ETDEWEB)

    Fruchard, A [Laboratoire de Mathematiques, Informatique et Applications, Faculte des Sciences et Techniques, Universite de Haute Alsace, 4 rue des Freres Lumiere, 68093 Mulhouse cedex (France); Schaefke, R [Departement de Mathematiques, Universite Louis Pasteur, 7 rue Rene-Descartes, 67084 Strasbourg cedex (France)

    2005-01-01

    We consider a singularly perturbed complex first order ODE {epsilon}u ' {phi}(x, u, a, {epsilon}), x, u element of C, {epsilon} > 0 is a small complex parameter and a element of C is a control parameter. It is proven that the singularities of some solutions are regularly spaced and that they move from one to the next as a runs about a loop of index one around a value of overstability. This gives a positive answer to a question of J. L. Callot.

  8. Weak relativity

    CERN Document Server

    Selleri, Franco

    2015-01-01

    Weak Relativity is an equivalent theory to Special Relativity according to Reichenbach’s definition, where the parameter epsilon equals to 0. It formulates a Neo-Lorentzian approach by replacing the Lorentz transformations with a new set named “Inertial Transformations”, thus explaining the Sagnac effect, the twin paradox and the trip from the future to the past in an easy and elegant way. The cosmic microwave background is suggested as a possible privileged reference system. Most importantly, being a theory based on experimental proofs, rather than mutual consensus, it offers a physical description of reality independent of the human observation.

  9. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    International Nuclear Information System (INIS)

    Levanony, Dana; Ori, Amos

    2010-01-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  10. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    Science.gov (United States)

    Levanony, Dana; Ori, Amos

    2010-05-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  11. Is the cosmological singularity compulsory

    International Nuclear Information System (INIS)

    Bekenstein, J.D.; Meisels, A.

    1980-01-01

    The cosmological singularity is inherent in all conventional general relativistic cosmological models. There can be no question that it is an unphysical feature; yet there does not seem to be any convervative way of eliminating it. Here we present singularity-free isotropic cosmological models which are indistinguishable from general relativistic ones at late times. They are based on the general theory of variable rest masses that we developed recently. Outside cosmology this theory simulates general relativity well. Thus it provides a framework incorporating those features which have made geneal relativity so sucessful while providing a way out of singularity dilemma. The cosmological models can be made to incorporate Dirac's large numbers hypothesis. G(now)/G(0)approx.10 -38

  12. A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)

    2017-12-15

    We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)

  13. Singularities in geodesic surface congruence

    International Nuclear Information System (INIS)

    Cho, Yong Seung; Hong, Soon-Tae

    2008-01-01

    In the stringy cosmology, we investigate singularities in geodesic surface congruences for the timelike and null strings to yield the Raychaudhuri type equations possessing correction terms associated with the novel features owing to the strings. Assuming the stringy strong energy condition, we have a Hawking-Penrose type inequality equation. If the initial expansion is negative so that the congruence is converging, we show that the expansion must pass through the singularity within a proper time. We observe that the stringy strong energy conditions of both the timelike and null string congruences produce the same inequality equation.

  14. Singular perturbation of simple eigenvalues

    International Nuclear Information System (INIS)

    Greenlee, W.M.

    1976-01-01

    Two operator theoretic theorems which generalize those of asymptotic regular perturbation theory and which apply to singular perturbation problems are proved. Application of these theorems to concrete problems is involved, but the perturbation expansions for eigenvalues and eigenvectors are developed in terms of solutions of linear operator equations. The method of correctors, as well as traditional boundary layer techniques, can be used to apply these theorems. The current formulation should be applicable to highly singular ''hard core'' potential perturbations of the radial equation of quantum mechanics. The theorems are applied to a comparatively simple model problem whose analysis is basic to that of the quantum mechanical problem

  15. Singularity Theory and its Applications

    CERN Document Server

    Stewart, Ian; Mond, David; Montaldi, James

    1991-01-01

    A workshop on Singularities, Bifuraction and Dynamics was held at Warwick in July 1989, as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory and applications in the sciences. The papers are original research, stimulated by the symposium and workshop: All have been refereed and none will appear elsewhere. The main topic of volume II is new methods for the study of bifurcations in nonlinear dynamical systems, and applications of these.

  16. Ambient cosmology and spacetime singularities

    International Nuclear Information System (INIS)

    Antoniadis, Ignatios; Cotsakis, Spiros

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary. (orig.)

  17. Ambient cosmology and spacetime singularities

    CERN Document Server

    Antoniadis, Ignatios

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.

  18. Singular moduli and Arakelov intersection

    International Nuclear Information System (INIS)

    Weng Lin.

    1994-05-01

    The value of the modular function j(τ) at imaginary quadratic arguments τ in the upper half plane is usually called singular moduli. In this paper, we use Arakelov intersection to give the prime factorizations of a certain combination of singular moduli, coming from the Hecke correspondence. Such a result may be considered as the degenerate one of Gross and Zagier on Heegner points and derivatives of L-series in their paper [GZ1], and is parallel to the result in [GZ2]. (author). 2 refs

  19. Singularities in minimax optimization of networks

    DEFF Research Database (Denmark)

    Madsen, Kaj; Schjær-Jacobsen, Hans

    1976-01-01

    A theoretical treatment of singularities in nonlinear minimax optimization problems, which allows for a classification in regular and singular problems, is presented. A theorem for determining a singularity that is present in a given problem is formulated. A group of problems often used in the li......A theoretical treatment of singularities in nonlinear minimax optimization problems, which allows for a classification in regular and singular problems, is presented. A theorem for determining a singularity that is present in a given problem is formulated. A group of problems often used...

  20. Method of mechanical quadratures for solving singular integral equations of various types

    Science.gov (United States)

    Sahakyan, A. V.; Amirjanyan, H. A.

    2018-04-01

    The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.

  1. Qualitative aspects of Volterra integro-dynamic system on time scales

    Directory of Open Access Journals (Sweden)

    Vasile Lupulescu

    2013-01-01

    Full Text Available This paper deals with the resolvent, asymptotic stability and boundedness of the solution of time-varying Volterra integro-dynamic system on time scales in which the coefficient matrix is not necessarily stable. We generalize at time scale some known properties about asymptotic behavior and boundedness from the continuous case. Some new results for discrete case are obtained.

  2. Explicit solution of the Volterra integral equation for transient fields on inhomogeneous arbitrarily shaped dielectric bodies

    KAUST Repository

    Al Jarro, Ahmed

    2011-09-01

    A new predictor-corrector scheme for solving the Volterra integral equation to analyze transient electromagnetic wave interactions with arbitrarily shaped inhomogeneous dielectric bodies is considered. Numerical results demonstrating stability and accuracy of the proposed method are presented. © 2011 IEEE.

  3. Numerical solutions of stochastic Lotka-Volterra equations via operational matrices

    Directory of Open Access Journals (Sweden)

    F. Hosseini Shekarabi

    2016-03-01

    Full Text Available In this paper, an efficient and convenient method for numerical solutions of stochastic Lotka-Volterra dynamical system is proposed. Here, we consider block pulse functions and their operational matrices of integration. Illustrative example is included to demonstrate the procedure and accuracy of the operational matrices based on block pulse functions.

  4. A Volterra series approach to the approximation of stochastic nonlinear dynamics

    NARCIS (Netherlands)

    Wouw, van de N.; Nijmeijer, H.; Campen, van D.H.

    2002-01-01

    A response approximation method for stochastically excited, nonlinear, dynamic systems is presented. Herein, the output of the nonlinear system isapproximated by a finite-order Volterra series. The original nonlinear system is replaced by a bilinear system in order to determine the kernels of this

  5. Four positive periodic solutions of a discrete time Lotka-Volterra competitive system with harvesting terms

    Directory of Open Access Journals (Sweden)

    Xinggui Liu

    2011-01-01

    Full Text Available In this paper, by using Mawhin's continuation theorem of coincidence degree theory, we establish the existence of at least four positive periodic solutions for a discrete time Lotka-Volterra competitive system with harvesting terms. An example is given to illustrate the effectiveness of our results.

  6. The Volterra's integral equation theory for accelerator single-freedom nonlinear components

    International Nuclear Information System (INIS)

    Wang Sheng; Xie Xi

    1996-01-01

    The Volterra's integral equation equivalent to the dynamic equation of accelerator single-freedom nonlinear components is given, starting from which the transport operator of accelerator single-freedom nonlinear components and its inverse transport operator are obtained. Therefore, another algorithm for the expert system of the beam transport operator of accelerator single-freedom nonlinear components is developed

  7. Characterisation of Exponential Convergence to Nonequilibrium Limits for Stochastic Volterra Equations

    Directory of Open Access Journals (Sweden)

    John A. D. Appleby

    2008-01-01

    Full Text Available This paper considers necessary and sufficient conditions for the solution of a stochastically and deterministically perturbed Volterra equation to converge exponentially to a nonequilibrium and nontrivial limit. Convergence in an almost sure and pth mean sense is obtained.

  8. Application of homotopy perturbation method for systems of Volterra integral equations of the first kind

    International Nuclear Information System (INIS)

    Biazar, J.; Eslami, M.; Aminikhah, H.

    2009-01-01

    In this article, an application of He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the first kind. Some non-linear examples are prepared to illustrate the efficiency and simplicity of the method. Applying the method for linear systems is so easily that it does not worth to have any example.

  9. He's homotopy perturbation method for solving systems of Volterra integral equations of the second kind

    International Nuclear Information System (INIS)

    Biazar, J.; Ghazvini, H.

    2009-01-01

    In this paper, the He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the second kind. Some examples are presented to illustrate the ability of the method for linear and non-linear such systems. The results reveal that the method is very effective and simple.

  10. Neural network modeling of nonlinear systems based on Volterra series extension of a linear model

    Science.gov (United States)

    Soloway, Donald I.; Bialasiewicz, Jan T.

    1992-01-01

    A Volterra series approach was applied to the identification of nonlinear systems which are described by a neural network model. A procedure is outlined by which a mathematical model can be developed from experimental data obtained from the network structure. Applications of the results to the control of robotic systems are discussed.

  11. Periodic dynamics of delayed Lotka–Volterra competition systems with discontinuous harvesting policies via differential inclusions

    International Nuclear Information System (INIS)

    Cai, Zuowei; Huang, Lihong

    2013-01-01

    Highlights: • A more practical form of harvesting management policy (DHP) has been proposed. • We analyze the periodic dynamics of a class of discontinuous and delayed Lotka–Volterra competition systems. • We present a new method to obtain the existence of positive periodic solutions via differential inclusions. • The global convergence in measure of harvesting solution is discussed. -- Abstract: This paper considers a general class of delayed Lotka–Volterra competition systems where the harvesting policies are modeled by discontinuous functions or by non-Lipschitz functions. By means of differential inclusions theory, cone expansion and compression fixed point theorem of multi-valued maps and nonsmooth analysis theory with generalized Lyapunov approach, a series of useful criteria on existence, uniqueness and global asymptotic stability of the positive periodic solution is established for the delayed Lotka–Volterra competition systems with discontinuous right-hand sides. Moreover, the global convergence in measure of harvesting solution is discussed. Our results improve and extend previous works on periodic dynamics of delayed Lotka–Volterra competition systems with not only continuous or even Lipschitz continuous but also discontinuous harvesting functions. Finally, we give some corollaries and numerical examples to show the applicability and effectiveness of the proposed criteria

  12. New stability and boundedness results to Volterra integro-differential equations with delay

    Directory of Open Access Journals (Sweden)

    Cemil Tunç

    2016-04-01

    Full Text Available In this paper, we consider a certain non-linear Volterra integro-differential equations with delay. We study stability and boundedness of solutions. The technique of proof involves defining suitable Lyapunov functionals. Our results improve and extend the results obtained in literature.

  13. Nonlinear Delay Discrete Inequalities and Their Applications to Volterra Type Difference Equations

    Directory of Open Access Journals (Sweden)

    Yu Wu

    2010-01-01

    Full Text Available Delay discrete inequalities with more than one nonlinear term are discussed, which generalize some known results and can be used in the analysis of various problems in the theory of certain classes of discrete equations. Application examples to show boundedness and uniqueness of solutions of a Volterra type difference equation are also given.

  14. Global asymptotic stability for a nonautonomous Lotka-Volterra competition system

    OpenAIRE

    TANIGUCHI, Kunihiko

    2014-01-01

    We consider nonautonomous N-dimensional generalized Lotka-Volterra competition systems. Under certain conditions we show that there exists a unique solution u* whose components are bounded above and below by positive constants on R, and u* attracts any solution. If such system is periodic, so is u*.

  15. A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations

    OpenAIRE

    Sun, Jiebao; Zhang, Dazhi; Wu, Boying

    2011-01-01

    We consider a cooperating two-species Lotka-Volterra model of degenerate parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system.

  16. Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays

    International Nuclear Information System (INIS)

    Song Yongli; Han Maoan; Peng Yahong

    2004-01-01

    We consider a Lotka-Volterra competition system with two delays. We first investigate the stability of the positive equilibrium and the existence of Hopf bifurcations, and then using the normal form theory and center manifold argument, derive the explicit formulas which determine the stability, direction and other properties of bifurcating periodic solutions

  17. On positive periodic solution of periodic competition Lotka-Volterra system with time delay and diffusion

    International Nuclear Information System (INIS)

    Sun Wen; Chen Shihua; Hong Zhiming; Wang Changping

    2007-01-01

    A two-species periodic competition Lotka-Volterra system with time delay and diffusion is investigated. Some sufficient conditions of the existence of positive periodic solution are established for the system by using the continuation theorem of coincidence degree theory

  18. Biorthogonal Systems Approximating the Solution of the Nonlinear Volterra Integro-Differential Equation

    Directory of Open Access Journals (Sweden)

    Berenguer MI

    2010-01-01

    Full Text Available This paper deals with obtaining a numerical method in order to approximate the solution of the nonlinear Volterra integro-differential equation. We define, following a fixed-point approach, a sequence of functions which approximate the solution of this type of equation, due to some properties of certain biorthogonal systems for the Banach spaces and .

  19. Global existence for Volterra-Fredholm type neutral impulsive functional integrodifferential equations

    Directory of Open Access Journals (Sweden)

    V. Vijayakumar

    2012-09-01

    Full Text Available n this paper, we study the global existence of solutions for the initial value problems for Volterra-Fredholm type neutral impulsive functional integrodifferential equations. Using the Leray-Schauder's Alternative theorem, we derive conditions under which a solution exists globally. An application is provided to illustrate the theory.

  20. On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis

    DEFF Research Database (Denmark)

    E. Barndorff-Nielsen, Ole; Benth, Fred Espen; Szozda, Benedykt

    This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G* of Potthoff-Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discussed...

  1. On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Benth, Fred Espen; Szozda, Benedykt

    This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G∗ of Potthoff--Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discusse...

  2. On Regularly Varying and History-Dependent Convergence Rates of Solutions of a Volterra Equation with Infinite Memory

    Directory of Open Access Journals (Sweden)

    Appleby JohnAD

    2010-01-01

    Full Text Available We consider the rate of convergence to equilibrium of Volterra integrodifferential equations with infinite memory. We show that if the kernel of Volterra operator is regularly varying at infinity, and the initial history is regularly varying at minus infinity, then the rate of convergence to the equilibrium is regularly varying at infinity, and the exact pointwise rate of convergence can be determined in terms of the rate of decay of the kernel and the rate of growth of the initial history. The result is considered both for a linear Volterra integrodifferential equation as well as for the delay logistic equation from population biology.

  3. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    recent times, string theory is providing new perspectives of such singularities which .... holes appear as stacks of a large number of D-branes wrapped in internal .... results into a well-known measure factor which makes the wave function into a.

  4. Charged singularities: the causality violation

    Energy Technology Data Exchange (ETDEWEB)

    De Felice, F; Nobili, L [Padua Univ. (Italy). Ist. di Fisica; Calvani, M [Padua Univ. (Italy). Ist. di Astronomia

    1980-12-01

    A search is made for examples of particle trajectories which, approaching a naked singularity from infinity, make up for lost time before going back to infinity. In the Kerr-Newman metric a whole family of such trajectories is found showing that the causality violation is indeed a non-avoidable pathology.

  5. Interval matrices: Regularity generates singularity

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří; Shary, S.P.

    2018-01-01

    Roč. 540, 1 March (2018), s. 149-159 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * regularity * singularity * P-matrix * absolute value equation * diagonally singilarizable matrix Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016

  6. Asymptotic Distribution of Eigenvalues of Weakly Dilute Wishart Matrices

    Energy Technology Data Exchange (ETDEWEB)

    Khorunzhy, A. [Institute for Low Temperature Physics (Ukraine)], E-mail: khorunjy@ilt.kharkov.ua; Rodgers, G. J. [Brunel University, Uxbridge, Department of Mathematics and Statistics (United Kingdom)], E-mail: g.j.rodgers@brunel.ac.uk

    2000-03-15

    We study the eigenvalue distribution of large random matrices that are randomly diluted. We consider two random matrix ensembles that in the pure (nondilute) case have a limiting eigenvalue distribution with a singular component at the origin. These include the Wishart random matrix ensemble and Gaussian random matrices with correlated entries. Our results show that the singularity in the eigenvalue distribution is rather unstable under dilution and that even weak dilution destroys it.

  7. Nature of protein family signatures: insights from singular value analysis of position-specific scoring matrices.

    Directory of Open Access Journals (Sweden)

    Akira R Kinjo

    Full Text Available Position-specific scoring matrices (PSSMs are useful for detecting weak homology in protein sequence analysis, and they are thought to contain some essential signatures of the protein families. In order to elucidate what kind of ingredients constitute such family-specific signatures, we apply singular value decomposition to a set of PSSMs and examine the properties of dominant right and left singular vectors. The first right singular vectors were correlated with various amino acid indices including relative mutability, amino acid composition in protein interior, hydropathy, or turn propensity, depending on proteins. A significant correlation between the first left singular vector and a measure of site conservation was observed. It is shown that the contribution of the first singular component to the PSSMs act to disfavor potentially but falsely functionally important residues at conserved sites. The second right singular vectors were highly correlated with hydrophobicity scales, and the corresponding left singular vectors with contact numbers of protein structures. It is suggested that sequence alignment with a PSSM is essentially equivalent to threading supplemented with functional information. In addition, singular vectors may be useful for analyzing and annotating the characteristics of conserved sites in protein families.

  8. Computation at a coordinate singularity

    Science.gov (United States)

    Prusa, Joseph M.

    2018-05-01

    Coordinate singularities are sometimes encountered in computational problems. An important example involves global atmospheric models used for climate and weather prediction. Classical spherical coordinates can be used to parameterize the manifold - that is, generate a grid for the computational spherical shell domain. This particular parameterization offers significant benefits such as orthogonality and exact representation of curvature and connection (Christoffel) coefficients. But it also exhibits two polar singularities and at or near these points typical continuity/integral constraints on dependent fields and their derivatives are generally inadequate and lead to poor model performance and erroneous results. Other parameterizations have been developed that eliminate polar singularities, but problems of weaker singularities and enhanced grid noise compared to spherical coordinates (away from the poles) persist. In this study reparameterization invariance of geometric objects (scalars, vectors and the forms generated by their covariant derivatives) is utilized to generate asymptotic forms for dependent fields of interest valid in the neighborhood of a pole. The central concept is that such objects cannot be altered by the metric structure of a parameterization. The new boundary conditions enforce symmetries that are required for transformations of geometric objects. They are implemented in an implicit polar filter of a structured grid, nonhydrostatic global atmospheric model that is simulating idealized Held-Suarez flows. A series of test simulations using different configurations of the asymptotic boundary conditions are made, along with control simulations that use the default model numerics with no absorber, at three different grid sizes. Typically the test simulations are ∼ 20% faster in wall clock time than the control-resulting from a decrease in noise at the poles in all cases. In the control simulations adverse numerical effects from the polar

  9. Remarks on gauge variables and singular Lagrangians

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.

    1977-01-01

    The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)

  10. Singular multiparameter dynamic equations with distributional ...

    African Journals Online (AJOL)

    Singular multiparameter dynamic equations with distributional potentials on time scales. ... In this paper, we consider both singular single and several multiparameter ... multiple function which is of one sign and nonzero on the given time scale.

  11. Analysis of singularity in redundant manipulators

    International Nuclear Information System (INIS)

    Watanabe, Koichi

    2000-03-01

    In the analysis of arm positions and configurations of redundant manipulators, the singularity avoidance problems are important themes. This report presents singularity avoidance computations of a 7 DOF manipulator by using a computer code based on human-arm models. The behavior of the arm escaping from the singular point can be identified satisfactorily through the use of 3-D plotting tools. (author)

  12. Weak cosmic censorship: as strong as ever.

    Science.gov (United States)

    Hod, Shahar

    2008-03-28

    Spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. This is the essence of the weak cosmic censorship conjecture. The hypothesis, put forward by Penrose 40 years ago, is still one of the most important open questions in general relativity. In this Letter, we reanalyze extreme situations which have been considered as counterexamples to the weak cosmic censorship conjecture. In particular, we consider the absorption of scalar particles with large angular momentum by a black hole. Ignoring back reaction effects may lead one to conclude that the incident wave may overspin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when back reaction effects are properly taken into account, the stability of the black-hole event horizon is irrefutable. We therefore conclude that cosmic censorship is actually respected in this type of gedanken experiments.

  13. On Regularly Varying and History-Dependent Convergence Rates of Solutions of a Volterra Equation with Infinite Memory

    OpenAIRE

    John A. D. Appleby

    2010-01-01

    We consider the rate of convergence to equilibrium of Volterra integrodifferential equations with infinite memory. We show that if the kernel of Volterra operator is regularly varying at infinity, and the initial history is regularly varying at minus infinity, then the rate of convergence to the equilibrium is regularly varying at infinity, and the exact pointwise rate of convergence can be determined in terms of the rate of decay of the kernel and the rate of growth of the initial history. ...

  14. Multidimensional singular integrals and integral equations

    CERN Document Server

    Mikhlin, Solomon Grigorievich; Stark, M; Ulam, S

    1965-01-01

    Multidimensional Singular Integrals and Integral Equations presents the results of the theory of multidimensional singular integrals and of equations containing such integrals. Emphasis is on singular integrals taken over Euclidean space or in the closed manifold of Liapounov and equations containing such integrals. This volume is comprised of eight chapters and begins with an overview of some theorems on linear equations in Banach spaces, followed by a discussion on the simplest properties of multidimensional singular integrals. Subsequent chapters deal with compounding of singular integrals

  15. Fundamental solutions of singular SPDEs

    International Nuclear Information System (INIS)

    Selesi, Dora

    2011-01-01

    Highlights: → Fundamental solutions of linear SPDEs are constructed. → Wick-convolution product is introduced for the first time. → Fourier transformation maps Wick-convolution into Wick product. → Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. → Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P(ω, D) ◊ u(x, ω) = A(x, ω) are considered, where A is a singular generalized stochastic process and P(ω, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A ◊ I ◊(-1) , where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.

  16. Why the Singularity Cannot Happen

    OpenAIRE

    Modis, Theodore

    2012-01-01

    The concept of a Singularity as described in Ray Kurzweil's book cannot happen for a number of reasons. One reason is that all natural growth processes that follow exponential patterns eventually reveal themselves to be following S-curves thus excluding runaway situations. The remaining growth potential from Kurzweil's ''knee'', which could be approximated as the moment when an S-curve pattern begins deviating from the corresponding exponential, is a factor of only one order of magnitude grea...

  17. Black holes, singularities and predictability

    International Nuclear Information System (INIS)

    Wald, R.M.

    1984-01-01

    The paper favours the view that singularities may play a central role in quantum gravity. The author reviews the arguments leading to the conclusion, that in the process of black hole formation and evaporation, an initial pure state evolves to a final density matrix, thus signaling a breakdown in ordinary quantum dynamical evolution. Some related issues dealing with predictability in the dynamical evolution, are also discussed. (U.K.)

  18. On singularities of lattice varieties

    OpenAIRE

    Mukherjee, Himadri

    2013-01-01

    Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.

  19. Quantum propagation across cosmological singularities

    Science.gov (United States)

    Gielen, Steffen; Turok, Neil

    2017-05-01

    The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.

  20. Wentzel-Bardeen singularity in coupled Luttinger liquids: Transport properties

    International Nuclear Information System (INIS)

    Martin, T.

    1994-01-01

    The recent progress on 1 D interacting electrons systems and their applications to study the transport properties of quasi one dimensional wires is reviewed. We focus on strongly correlated elections coupled to low energy acoustic phonons in one dimension. The exponents of various response functions are calculated, and their striking sensitivity to the Wentzel-Bardeen singularity is discussed. For the Hubbard model coupled to phonons the equivalent of a phase diagram is established. By increasing the filling factor towards half filling the WB singularity is approached. This in turn suppresses antiferromagnetic fluctuations and drives the system towards the superconducting regime, via a new intermediate (metallic) phase. The implications of this phenomenon on the transport properties of an ideal wire as well as the properties of a wire with weak or strong scattering are analyzed in a perturbative renormalization group calculation. This allows to recover the three regimes predicted from the divergence criteria of the response functions

  1. Lecture notes on mean curvature flow, barriers and singular perturbations

    CERN Document Server

    Bellettini, Giovanni

    2013-01-01

    The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems.

  2. Naked singularity formation in Brans-Dicke theory

    Energy Technology Data Exchange (ETDEWEB)

    Ziaie, Amir Hadi; Atazadeh, Khedmat [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of); Tavakoli, Yaser, E-mail: am.ziaie@mail.sbu.ac.i, E-mail: k-atazadeh@sbu.ac.i, E-mail: tavakoli@ubi.p [Departamento de Fisica, Universidade da Beira Interior, Rua Marques d' Avila e Bolama, 6200 Covilha (Portugal)

    2010-04-07

    Gravitational collapse of the Brans-Dicke scalar field with non-zero potential in the presence of matter fluid obeying the barotropic equation of state, p = wrho, is studied. Utilizing the concept of the expansion parameter, it is seen that the cosmic censorship conjecture may be violated for w=-1/3 and w=-2/3 which correspond to the cosmic string and domain wall, respectively. We have shown that physically, it is the rate of collapse that governs the formation of a black hole or a naked singularity as the final fate of dynamical evolution and only for these two cases can the singularity be naked as the collapse end state. Also the weak energy condition is satisfied by the collapsing configuration.

  3. Singularities in Free Surface Flows

    Science.gov (United States)

    Thete, Sumeet Suresh

    Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental

  4. Mathematical models with singularities a zoo of singular creatures

    CERN Document Server

    Torres, Pedro J

    2015-01-01

    The book aims to provide an unifying view of a variety (a 'zoo') of mathematical models with some kind of singular nonlinearity, in the sense that it becomes infinite when the state variable approaches a certain point. Up to 11 different concrete models are analyzed in separate chapters. Each chapter starts with a discussion of the basic model and its physical significance. Then the main results and typical proofs are outlined, followed by open problems. Each chapter is closed by a suitable list of references. The book may serve as a guide for researchers interested in the modelling of real world processes.

  5. Instantaneous nonlinear assessment of complex cardiovascular dynamics by Laguerre-Volterra point process models.

    Science.gov (United States)

    Valenza, Gaetano; Citi, Luca; Barbieri, Riccardo

    2013-01-01

    We report an exemplary study of instantaneous assessment of cardiovascular dynamics performed using point-process nonlinear models based on Laguerre expansion of the linear and nonlinear Wiener-Volterra kernels. As quantifiers, instantaneous measures such as high order spectral features and Lyapunov exponents can be estimated from a quadratic and cubic autoregressive formulation of the model first order moment, respectively. Here, these measures are evaluated on heartbeat series coming from 16 healthy subjects and 14 patients with Congestive Hearth Failure (CHF). Data were gathered from the on-line repository PhysioBank, which has been taken as landmark for testing nonlinear indices. Results show that the proposed nonlinear Laguerre-Volterra point-process methods are able to track the nonlinear and complex cardiovascular dynamics, distinguishing significantly between CHF and healthy heartbeat series.

  6. A remark on the stability and boundedness criteria in retarded Volterra integro-differential equations

    Directory of Open Access Journals (Sweden)

    Cemil Tunç

    2017-10-01

    Full Text Available In this article, the authors obtain some clear assumptions for the asymptotic stability (AS and boundedness (B of solutions of non-linear retarded Volterra integro-differential equations (VIDEs of first order by constructing a new Lyapunov functional (LF. The results obtained are new and differ from those found in the literature, and they also contain and improve a result found in the literature under more less restrictive conditions. We establish an example and give a discussion to indicate the applicability of the weaker conditions obtained. We also employ MATLAB-Simulink to display the behaviors of the orbits of the (VIDEs considered. Keywords: Nonlinear, Volterra integro-differential equations, First order, Asymptotic stability, Boundedness, Lyapunov functional, MSC: 34D05, 34K20, 45J05

  7. Geometry of carrying simplices of 3-species competitive Lotka–Volterra systems

    International Nuclear Information System (INIS)

    Baigent, Stephen

    2013-01-01

    We investigate the existence, uniqueness and Gaussian curvature of the invariant carrying simplices of 3 species autonomous totally competitive Lotka–Volterra systems. Explicit examples are given where the carrying simplex is convex or concave, but also where the curvature is not single-signed. Our method monitors the curvature of an evolving surface that converges uniformly to the carrying simplex, and generally relies on establishing that the Gaussian image of the evolving surface is confined to an invariant cone. We also discuss the relationship between the curvature of the carrying simplex near an interior fixed point and its Split Lyapunov stability. Finally we comment on extensions to general Lotka–Volterra systems that are not competitive. (paper)

  8. The discrete hungry Lotka Volterra system and a new algorithm for computing matrix eigenvalues

    Science.gov (United States)

    Fukuda, Akiko; Ishiwata, Emiko; Iwasaki, Masashi; Nakamura, Yoshimasa

    2009-01-01

    The discrete hungry Lotka-Volterra (dhLV) system is a generalization of the discrete Lotka-Volterra (dLV) system which stands for a prey-predator model in mathematical biology. In this paper, we show that (1) some invariants exist which are expressed by dhLV variables and are independent from the discrete time and (2) a dhLV variable converges to some positive constant or zero as the discrete time becomes sufficiently large. Some characteristic polynomial is then factorized with the help of the dhLV system. The asymptotic behaviour of the dhLV system enables us to design an algorithm for computing complex eigenvalues of a certain band matrix.

  9. Sharp conditions for global stability of Lotka-Volterra systems with distributed delays

    Science.gov (United States)

    Faria, Teresa

    We give a criterion for the global attractivity of a positive equilibrium of n-dimensional non-autonomous Lotka-Volterra systems with distributed delays. For a class of autonomous Lotka-Volterra systems, we show that such a criterion is sharp, in the sense that it provides necessary and sufficient conditions for the global asymptotic stability independently of the choice of the delay functions. The global attractivity of positive equilibria is established by imposing a diagonal dominance of the instantaneous negative feedback terms, and relies on auxiliary results showing the boundedness of all positive solutions. The paper improves and generalizes known results in the literature, namely by considering systems with distributed delays rather than discrete delays.

  10. Lie and conditional symmetries of the three-component diffusive Lotka–Volterra system

    International Nuclear Information System (INIS)

    Cherniha, Roman; Davydovych, Vasyl’

    2013-01-01

    Lie and Q-conditional symmetries of the classical three-component diffusive Lotka–Volterra system in the case of one space variable are studied. The group-classification problems for finding Lie symmetries and Q-conditional symmetries of the first type are completely solved. Notably, non-Lie symmetries (Q-conditional symmetry operators) for a multi-component nonlinear reaction–diffusion system are constructed for the first time. The results are compared with those derived for the two-component diffusive Lotka–Volterra system. The conditional symmetry obtained for the non-Lie reduction of the three-component system used for modeling competition between three species in population dynamics is applied and the relevant exact solutions are found. Particularly, the exact solution describing different scenarios of competition between three species is constructed. (paper)

  11. Dynamical behaviors determined by the Lyapunov function in competitive Lotka-Volterra systems

    Science.gov (United States)

    Tang, Ying; Yuan, Ruoshi; Ma, Yian

    2013-01-01

    Dynamical behaviors of the competitive Lotka-Volterra system even for 3 species are not fully understood. In this paper, we study this problem from the perspective of the Lyapunov function. We construct explicitly the Lyapunov function using three examples of the competitive Lotka-Volterra system for the whole state space: (1) the general 2-species case, (2) a 3-species model, and (3) the model of May-Leonard. The basins of attraction for these examples are demonstrated, including cases with bistability and cyclical behavior. The first two examples are the generalized gradient system, where the energy dissipation may not follow the gradient of the Lyapunov function. In addition, under a new type of stochastic interpretation, the Lyapunov function also leads to the Boltzmann-Gibbs distribution on the final steady state when multiplicative noise is added.

  12. Numerical Solution of Nonlinear Volterra Integral Equations System Using Simpson’s 3/8 Rule

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2012-01-01

    Full Text Available The Simpson’s 3/8 rule is used to solve the nonlinear Volterra integral equations system. Using this rule the system is converted to a nonlinear block system and then by solving this nonlinear system we find approximate solution of nonlinear Volterra integral equations system. One of the advantages of the proposed method is its simplicity in application. Further, we investigate the convergence of the proposed method and it is shown that its convergence is of order O(h4. Numerical examples are given to show abilities of the proposed method for solving linear as well as nonlinear systems. Our results show that the proposed method is simple and effective.

  13. Nonlinear features identified by Volterra series for damage detection in a buckled beam

    Directory of Open Access Journals (Sweden)

    Shiki S. B.

    2014-01-01

    Full Text Available The present paper proposes a new index for damage detection based on nonlinear features extracted from prediction errors computed by multiple convolutions using the discrete-time Volterra series. A reference Volterra model is identified with data in the healthy condition and used for monitoring the system operating with linear or nonlinear behavior. When the system has some structural change, possibly associated with damage, the index metrics computed could give an alert to separate the linear and nonlinear contributions, besides provide a diagnostic about the structural state. To show the applicability of the method, an experimental test is performed using nonlinear vibration signals measured in a clamped buckled beam subject to different levels of force applied and with simulated damages through discontinuities inserted in the beam surface.

  14. The discrete hungry Lotka–Volterra system and a new algorithm for computing matrix eigenvalues

    International Nuclear Information System (INIS)

    Fukuda, Akiko; Ishiwata, Emiko; Iwasaki, Masashi; Nakamura, Yoshimasa

    2009-01-01

    The discrete hungry Lotka–Volterra (dhLV) system is a generalization of the discrete Lotka–Volterra (dLV) system which stands for a prey–predator model in mathematical biology. In this paper, we show that (1) some invariants exist which are expressed by dhLV variables and are independent from the discrete time and (2) a dhLV variable converges to some positive constant or zero as the discrete time becomes sufficiently large. Some characteristic polynomial is then factorized with the help of the dhLV system. The asymptotic behaviour of the dhLV system enables us to design an algorithm for computing complex eigenvalues of a certain band matrix

  15. Joint and collaborative representation with local Volterra kernels convolution feature for face recognition

    Science.gov (United States)

    Feng, Guang; Li, Hengjian; Dong, Jiwen; Chen, Xi; Yang, Huiru

    2018-04-01

    In this paper, we proposed a joint and collaborative representation with Volterra kernel convolution feature (JCRVK) for face recognition. Firstly, the candidate face images are divided into sub-blocks in the equal size. The blocks are extracted feature using the two-dimensional Voltera kernels discriminant analysis, which can better capture the discrimination information from the different faces. Next, the proposed joint and collaborative representation is employed to optimize and classify the local Volterra kernels features (JCR-VK) individually. JCR-VK is very efficiently for its implementation only depending on matrix multiplication. Finally, recognition is completed by using the majority voting principle. Extensive experiments on the Extended Yale B and AR face databases are conducted, and the results show that the proposed approach can outperform other recently presented similar dictionary algorithms on recognition accuracy.

  16. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    OpenAIRE

    Dan Li; Jing’an Cui; Guohua Song

    2014-01-01

    This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a) to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b) we show that the delay stochastic differential equation with jumps associate...

  17. Some stability and boundedness criteria for a class of Volterra integro-differential systems

    Directory of Open Access Journals (Sweden)

    Jito Vanualailai

    2002-01-01

    Full Text Available Using Lyapunov and Lyapunov-like functionals, we study the stability and boundedness of the solutions of a system of Volterra integrodifferential equations. Our results, also extending some of the more well-known criteria, give new sufficient conditions for stability of the zero solution of the nonperturbed system, and prove that the same conditions for the perturbed system yield boundedness when the perturbation is $L^2$.

  18. The human body metabolism process mathematical simulation based on Lotka-Volterra model

    Science.gov (United States)

    Oliynyk, Andriy; Oliynyk, Eugene; Pyptiuk, Olexandr; DzierŻak, RóŻa; Szatkowska, Małgorzata; Uvaysova, Svetlana; Kozbekova, Ainur

    2017-08-01

    The mathematical model of metabolism process in human organism based on Lotka-Volterra model has beeng proposed, considering healing regime, nutrition system, features of insulin and sugar fragmentation process in the organism. The numerical algorithm of the model using IV-order Runge-Kutta method has been realized. After the result of calculations the conclusions have been made, recommendations about using the modeling results have been showed, the vectors of the following researches are defined.

  19. Fault Detection for Shipboard Monitoring – Volterra Kernel and Hammerstein Model Approaches

    DEFF Research Database (Denmark)

    Lajic, Zoran; Blanke, Mogens; Nielsen, Ulrik Dam

    2009-01-01

    In this paper nonlinear fault detection for in-service monitoring and decision support systems for ships will be presented. The ship is described as a nonlinear system, and the stochastic wave elevation and the associated ship responses are conveniently modelled in frequency domain. The transform....... The transformation from time domain to frequency domain has been conducted by use of Volterra theory. The paper takes as an example fault detection of a containership on which a decision support system has been installed....

  20. Gelfand-Dikii Hamiltonian operator and co-ad joint representation of the Volterra group

    International Nuclear Information System (INIS)

    Lebedev, D.R.; Manin, Yu.I.

    1978-01-01

    It is shown that the Gelfand-Dikii Hamiltonian structure is an analogue of a very special class of finite-dimensional symplectic structures, namely, the Kirillow structures on the orbits of the co-adjoint representation of the Lie groups. The Lie group is represented by the Volterra operators. The main interest lies in the possibility of application of the ideology of ''geometric quantization'' to the Lax equations

  1. Delay-Induced Oscillations in a Competitor-Competitor-Mutualist Lotka-Volterra Model

    Directory of Open Access Journals (Sweden)

    Changjin Xu

    2017-01-01

    Full Text Available This paper deals with a competitor-competitor-mutualist Lotka-Volterra model. A series of sufficient criteria guaranteeing the stability and the occurrence of Hopf bifurcation for the model are obtained. Several concrete formulae determine the properties of bifurcating periodic solutions by applying the normal form theory and the center manifold principle. Computer simulations are given to support the theoretical predictions. At last, biological meaning and a conclusion are presented.

  2. Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach spaces

    Institute of Scientific and Technical Information of China (English)

    LI Shoufu

    2005-01-01

    A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.

  3. The influence of noise on nonlinear time series detection based on Volterra-Wiener-Korenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Lei Min [State Key Laboratory of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200030 (China)], E-mail: leimin@sjtu.edu.cn; Meng Guang [State Key Laboratory of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-04-15

    This paper studies the influence of noises on Volterra-Wiener-Korenberg (VWK) nonlinear test model. Our numerical results reveal that different types of noises lead to different behavior of VWK model detection. For dynamic noise, it is difficult to distinguish chaos from nonchaotic but nonlinear determinism. For time series, measure noise has no impact on chaos determinism detection. This paper also discusses various behavior of VWK model detection with surrogate data for different noises.

  4. Fibonacci collocation method with a residual error Function to solve linear Volterra integro differential equations

    Directory of Open Access Journals (Sweden)

    Salih Yalcinbas

    2016-01-01

    Full Text Available In this paper, a new collocation method based on the Fibonacci polynomials is introduced to solve the high-order linear Volterra integro-differential equations under the conditions. Numerical examples are included to demonstrate the applicability and validity of the proposed method and comparisons are made with the existing results. In addition, an error estimation based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation.

  5. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    Energy Technology Data Exchange (ETDEWEB)

    Szederkenyi, Gabor; Hangos, Katalin M

    2004-04-26

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  6. Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation

    OpenAIRE

    Mi, Yuzhen

    2016-01-01

    This paper investigates Lotka-Volterra system under a small perturbation vxx=-μ(1-a2u-v)v+ϵf(ϵ,v,vx,u,ux), uxx=-(1-u-a1v)u+ϵg(ϵ,v,vx,u,ux). By the Fourier series expansion technique method, the fixed point theorem, the perturbation theorem, and the reversibility, we prove that near μ=0 the system has a generalized homoclinic solution exponentially approaching a periodic solution.

  7. Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation

    Directory of Open Access Journals (Sweden)

    Yuzhen Mi

    2016-01-01

    Full Text Available This paper investigates Lotka-Volterra system under a small perturbation vxx=-μ(1-a2u-vv+ϵf(ϵ,v,vx,u,ux, uxx=-(1-u-a1vu+ϵg(ϵ,v,vx,u,ux. By the Fourier series expansion technique method, the fixed point theorem, the perturbation theorem, and the reversibility, we prove that near μ=0 the system has a generalized homoclinic solution exponentially approaching a periodic solution.

  8. Global asymptotic behavior in a Lotka–Volterra competition system with spatio-temporal delays

    International Nuclear Information System (INIS)

    Zhang, Jia-Fang; Chen, Heshan

    2014-01-01

    This paper is concerned with a Lotka–Volterra competition system with spatio-temporal delays. By using the linearization method, we show the local asymptotic behavior of the nonnegative steady-state solutions. Especially, the global asymptotic stability of the positive steady-state solution is investigated by the method of upper and lower solutions. The result of global asymptotic stability implies that the system has no nonconstant positive steady-state solution

  9. The persistence in a Lotka-Volterra competition systems with impulsive

    International Nuclear Information System (INIS)

    Zhen Jin; Han Maoan; Li Guihua

    2005-01-01

    In this paper, a nonautonomous two-dimensional competitive Lotka-Volterra system with impulsive is considered. we study the persistence and extinction, giving two inequalities involving averages of the growth rates and impulsive value, which guarantees persistence of the system. An extension of the principle of competition exclusion is obtained in this paper. Moreover, several examples are also worked out, they show that the impulsive can change the persistence of the system

  10. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    Science.gov (United States)

    Szederkényi, Gábor; Hangos, Katalin M.

    2004-04-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  11. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    International Nuclear Information System (INIS)

    Szederkenyi, Gabor; Hangos, Katalin M.

    2004-01-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities

  12. Cross-diffusional effect in a telegraph reaction diffusion Lotka-Volterra two competitive system

    International Nuclear Information System (INIS)

    Abdusalam, H.A; Fahmy, E.S.

    2003-01-01

    It is known now that, telegraph equation is more suitable than ordinary diffusion equation in modelling reaction diffusion in several branches of sciences. Telegraph reaction diffusion Lotka-Volterra two competitive system is considered. We observed that this system can give rise to diffusive instability only in the presence of cross-diffusion. Local and global stability analysis in the cross-diffusional effect are studied by considering suitable Lyapunov functional

  13. Entropy, free energy and phase transitions in the lattice Lotka-Volterra model

    International Nuclear Information System (INIS)

    Chichigina, O. A.; Tsekouras, G. A.; Provata, A.

    2006-01-01

    A thermodynamic approach is developed for reactive dynamic models restricted to substrates of arbitrary dimensions, including fractal substrates. The thermodynamic formalism is successfully applied to the lattice Lotka-Volterra (LLV) model of autocatalytic reactions on various lattice substrates. Different regimes of reactions described as phases, and phase transitions, are obtained using this approach. The predictions of thermodynamic theory confirm extensive numerical kinetic Monte Carlo simulations on square and fractal lattices. Extensions of the formalism to multispecies LLV models are also presented

  14. The Stationary Distribution and Extinction of Generalized Multispecies Stochastic Lotka-Volterra Predator-Prey System

    OpenAIRE

    Yin, Fancheng; Yu, Xiaoyan

    2015-01-01

    This paper is concerned with the existence of stationary distribution and extinction for multispecies stochastic Lotka-Volterra predator-prey system. The contributions of this paper are as follows. (a) By using Lyapunov methods, the sufficient conditions on existence of stationary distribution and extinction are established. (b) By using the space decomposition technique and the continuity of probability, weaker conditions on extinction of the system are obtained. Finally, a numer...

  15. Algebraic features of some generalizations of the Lotka-Volterra system

    Science.gov (United States)

    Bibik, Yu. V.; Sarancha, D. A.

    2010-10-01

    For generalizations of the Lotka-Volterra system, an integration method is proposed based on the nontrivial algebraic structure of these generalizations. The method makes use of an auxiliary first-order differential equation derived from the phase curve equation with the help of this algebraic structure. Based on this equation, a Hamiltonian approach can be developed and canonical variables (moreover, action-angle variables) can be constructed.

  16. The Convergence Study of the Homotopy Analysis Method for Solving Nonlinear Volterra-Fredholm Integrodifferential Equations

    Directory of Open Access Journals (Sweden)

    Behzad Ghanbari

    2014-01-01

    Full Text Available We aim to study the convergence of the homotopy analysis method (HAM in short for solving special nonlinear Volterra-Fredholm integrodifferential equations. The sufficient condition for the convergence of the method is briefly addressed. Some illustrative examples are also presented to demonstrate the validity and applicability of the technique. Comparison of the obtained results HAM with exact solution shows that the method is reliable and capable of providing analytic treatment for solving such equations.

  17. On important precursor of singular optics (tutorial)

    Science.gov (United States)

    Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.

    2018-01-01

    The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].

  18. A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.

    Science.gov (United States)

    Zhao, Haiquan; Zhang, Jiashu

    2009-12-01

    To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.

  19. Mapping local singularities using magnetic data to investigate the volcanic rocks of the Qikou depression, Dagang oilfield, eastern China

    Directory of Open Access Journals (Sweden)

    G. Chen

    2013-07-01

    Full Text Available The spatial structural characteristics of geological anomaly, including singularity and self-similarity, can be analysed using fractal or multifractal modelling. Here we apply the multifractal methods to potential fields to demonstrate that singularities can characterise geological bodies, including rock density and magnetic susceptibility. In addition to enhancing weak gravity and magnetic anomalies with respect to either strong or weak background levels, the local singularity index (α ≈ 2 can be used to delineate the edges of geological bodies. Two models were established to evaluate the effectiveness of mapping singularities for extracting weak anomalies and delineating edges of buried geological bodies. The Qikou depression of the Dagang oilfield in eastern China has been chosen as a study area for demonstrating the extraction of weak anomalies of volcanic rocks, using the singularity mapping technique to analyse complex magnetic anomalies caused by complex geological background. The results have shown that the singularities of magnetic data mapped in the paper are associated with buried volcanic rocks, which have been verified by both drilling and seismic survey, and the S–N and E–W faults in the region. The targets delineated for deeply seated faults and volcanic rocks in the Qikou depression should be further investigated for the potential application in undiscovered oil and gas reservoirs exploration.

  20. Symmetry generators in singular theories

    International Nuclear Information System (INIS)

    Lavrov, P.M.; Tyutin, I.V.

    1989-01-01

    It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)

  1. Can we observationally test the weak cosmic censorship conjecture?

    International Nuclear Information System (INIS)

    Kong, Lingyao; Malafarina, Daniele; Bambi, Cosimo

    2014-01-01

    In general relativity, gravitational collapse of matter fields ends with the formation of a spacetime singularity, where the matter density becomes infinite and standard physics breaks down. According to the weak cosmic censorship conjecture, singularities produced in the gravitational collapse cannot be seen by distant observers and must be hidden within black holes. The validity of this conjecture is still controversial and at present we cannot exclude that naked singularities can be created in our Universe from regular initial data. In this paper, we study the radiation emitted by a collapsing cloud of dust and check whether it is possible to distinguish the birth of a black hole from the one of a naked singularity. In our simple dust model, we find that the properties of the radiation emitted in the two scenarios is qualitatively similar. That suggests that observational tests of the cosmic censorship conjecture may be very difficult, even in principle. (orig.)

  2. Can we observationally test the weak cosmic censorship conjecture?

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingyao; Malafarina, Daniele; Bambi, Cosimo [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China)

    2014-08-15

    In general relativity, gravitational collapse of matter fields ends with the formation of a spacetime singularity, where the matter density becomes infinite and standard physics breaks down. According to the weak cosmic censorship conjecture, singularities produced in the gravitational collapse cannot be seen by distant observers and must be hidden within black holes. The validity of this conjecture is still controversial and at present we cannot exclude that naked singularities can be created in our Universe from regular initial data. In this paper, we study the radiation emitted by a collapsing cloud of dust and check whether it is possible to distinguish the birth of a black hole from the one of a naked singularity. In our simple dust model, we find that the properties of the radiation emitted in the two scenarios is qualitatively similar. That suggests that observational tests of the cosmic censorship conjecture may be very difficult, even in principle. (orig.)

  3. Topological resolution of gauge theory singularities

    Science.gov (United States)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-01

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  4. Topological resolution of gauge theory singularities

    Energy Technology Data Exchange (ETDEWEB)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  5. Singularities of Type-Q ABS Equations

    Directory of Open Access Journals (Sweden)

    James Atkinson

    2011-07-01

    Full Text Available The type-Q equations lie on the top level of the hierarchy introduced by Adler, Bobenko and Suris (ABS in their classification of discrete counterparts of KdV-type integrable partial differential equations. We ask what singularities are possible in the solutions of these equations, and examine the relationship between the singularities and the principal integrability feature of multidimensional consistency. These questions are considered in the global setting and therefore extend previous considerations of singularities which have been local. What emerges are some simple geometric criteria that determine the allowed singularities, and the interesting discovery that generically the presence of singularities leads to a breakdown in the global consistency of such systems despite their local consistency property. This failure to be globally consistent is quantified by introducing a natural notion of monodromy for isolated singularities.

  6. The geometry of warped product singularities

    Science.gov (United States)

    Stoica, Ovidiu Cristinel

    In this article, the degenerate warped products of singular semi-Riemannian manifolds are studied. They were used recently by the author to handle singularities occurring in General Relativity, in black holes and at the big-bang. One main result presented here is that a degenerate warped product of semi-regular semi-Riemannian manifolds with the warping function satisfying a certain condition is a semi-regular semi-Riemannian manifold. The connection and the Riemann curvature of the warped product are expressed in terms of those of the factor manifolds. Examples of singular semi-Riemannian manifolds which are semi-regular are constructed as warped products. Applications include cosmological models and black holes solutions with semi-regular singularities. Such singularities are compatible with a certain reformulation of the Einstein equation, which in addition holds at semi-regular singularities too.

  7. The dominant balance at cosmological singularities

    International Nuclear Information System (INIS)

    Cotsakis, Spiros; Barrow, John D

    2007-01-01

    We define the notion of a finite-time singularity of a vector field and then discuss a technique suitable for the asymptotic analysis of vector fields and their integral curves in the neighborhood of such a singularity. Having in mind the application of this method to cosmology, we also provide an analysis of the time singularities of an isotropic universe filled with a perfect fluid in general relativity

  8. Exact solutions and singularities in string theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail

  9. Dressing up a Kerr naked singularity

    Energy Technology Data Exchange (ETDEWEB)

    Calvani, M [Padua Univ. (Italy). Ist. di Astronomia; Nobili, L [Padua Univ. (Italy). Ist. di Fisica

    1979-06-11

    The evolution of a naked singularity surrounded by an accreting disk of matter is studied; two kinds of disks are considered: the standard thin-disk model and the thick barytropic model, for several initial conditions. It is shown that any Kerr naked singularity slows down in a finite time to a maximal Kerr black hole. The final mass, the luminosity and the time of evolution of the singularity are evaluated.

  10. Naked singularity, firewall, and Hawking radiation.

    Science.gov (United States)

    Zhang, Hongsheng

    2017-06-21

    Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.

  11. Spacetime averaging of exotic singularity universes

    International Nuclear Information System (INIS)

    Dabrowski, Mariusz P.

    2011-01-01

    Taking a spacetime average as a measure of the strength of singularities we show that big-rips (type I) are stronger than big-bangs. The former have infinite spacetime averages while the latter have them equal to zero. The sudden future singularities (type II) and w-singularities (type V) have finite spacetime averages. The finite scale factor (type III) singularities for some values of the parameters may have an infinite average and in that sense they may be considered stronger than big-bangs.

  12. On local invariants of singular symplectic forms

    Science.gov (United States)

    Domitrz, Wojciech

    2017-04-01

    We find a complete set of local invariants of singular symplectic forms with the structurally stable Martinet hypersurface on a 2 n-dimensional manifold. In the C-analytic category this set consists of the Martinet hypersurface Σ2, the restriction of the singular symplectic form ω to TΣ2 and the kernel of ω n - 1 at the point p ∈Σ2. In the R-analytic and smooth categories this set contains one more invariant: the canonical orientation of Σ2. We find the conditions to determine the kernel of ω n - 1 at p by the other invariants. In dimension 4 we find sufficient conditions to determine the equivalence class of a singular symplectic form-germ with the structurally smooth Martinet hypersurface by the Martinet hypersurface and the restriction of the singular symplectic form to it. We also study the singular symplectic forms with singular Martinet hypersurfaces. We prove that the equivalence class of such singular symplectic form-germ is determined by the Martinet hypersurface, the canonical orientation of its regular part and the restriction of the singular symplectic form to its regular part if the Martinet hypersurface is a quasi-homogeneous hypersurface with an isolated singularity.

  13. Reconstructing weak values without weak measurements

    International Nuclear Information System (INIS)

    Johansen, Lars M.

    2007-01-01

    I propose a scheme for reconstructing the weak value of an observable without the need for weak measurements. The post-selection in weak measurements is replaced by an initial projector measurement. The observable can be measured using any form of interaction, including projective measurements. The reconstruction is effected by measuring the change in the expectation value of the observable due to the projector measurement. The weak value may take nonclassical values if the projector measurement disturbs the expectation value of the observable

  14. Coupled singular and non singular thermoelastic system and double lapalce decomposition methods

    OpenAIRE

    Hassan Gadain; Hassan Gadain

    2016-01-01

    In this paper, the double Laplace decomposition methods are applied to solve the non singular and singular one dimensional thermo-elasticity coupled system and. The technique is described and illustrated with some examples

  15. Mixed-Mode Oscillations Due to a Singular Hopf Bifurcation in a Forest Pest Model

    DEFF Research Database (Denmark)

    Brøns, Morten; Desroches, Mathieu; Krupa, Martin

    2015-01-01

    In a forest pest model, young trees are distinguished from old trees. The pest feeds on old trees. The pest grows on a fast scale, the young trees on an intermediate scale, and the old trees on a slow scale. A combination of a singular Hopf bifurcation and a “weak return” mechanism, characterized...

  16. Papapetrou's naked singularity is a strong curvature singularity

    Energy Technology Data Exchange (ETDEWEB)

    Hollier, G.P.

    1986-11-01

    Following Papapetrou (1985, a random walk in General Relativity ed. J. Krishna-Rao (New Delhi: Wiley Eastern)), a spacetime with a naked singularity is analysed. This singularity is shown to be a strong curvature singularity and thus a counterexample to a censorship conjecture.

  17. Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review

    Science.gov (United States)

    Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.

    2017-03-01

    Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.

  18. Cross-talk dynamics of optical solitons in a broadband Kerr nonlinear system with weak cubic loss

    International Nuclear Information System (INIS)

    Peleg, Avner; Nguyen, Quan M.; Chung, Yeojin

    2010-01-01

    We study the dynamics of fast soliton collisions in a Kerr nonlinear optical waveguide with weak cubic loss. We obtain analytic expressions for the amplitude and frequency shifts in a single two-soliton collision and show that the impact of a fast three-soliton collision is given by the sum of the two-soliton interactions. Our analytic predictions are confirmed by numerical simulations with the perturbed nonlinear Schroedinger (NLS) equation. Furthermore, we show that the deterministic collision-induced dynamics of soliton amplitudes in a broadband waveguide system with N frequency channels is described by a Lotka-Volterra model for N competing species. For a two-channel system we find that stable transmission with equal prescribed amplitudes can be achieved by a proper choice of linear amplifier gain. The predictions of the Lotka-Volterra model are confirmed by numerical solution of a perturbed coupled-NLS model.

  19. Gap asymptotics in a weakly bent leaky quantum wire

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Kondej, S.

    2015-01-01

    Roč. 48, č. 49 (2015), s. 495301 ISSN 1751-8113 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : singular Schroedinger operators * delta interaction * leaky quantum wires * weak perturbation * asymptotic expansion Subject RIV: BE - Theoretical Physics Impact factor: 1.933, year: 2015

  20. The Semantics of Plurals: A Defense of Singularism

    Science.gov (United States)

    Florio, Salvatore

    2010-01-01

    In this dissertation, I defend "semantic singularism", which is the view that syntactically plural terms, such as "they" or "Russell and Whitehead", are semantically singular. A semantically singular term is a term that denotes a single entity. Semantic singularism is to be distinguished from "syntactic singularism", according to which…

  1. Stable singularities in string theory

    International Nuclear Information System (INIS)

    Aspinwall, P.S.; Morrison, D.R.; Gross, M.

    1996-01-01

    We study a topological obstruction of a very stringy nature concerned with deforming the target space of an N=2 non-linear σ-model. This target space has a singularity which may be smoothed away according to the conventional rules of geometry, but when one studies the associated conformal field theory one sees that such a deformation is not possible without a discontinuous change in some of the correlation functions. This obstruction appears to come from torsion in the homology of the target space (which is seen by deforming the theory by an irrelevant operator). We discuss the link between this phenomenon and orbifolds with discrete torsion as studied by Vafa and Witten. (orig.). With 3 figs

  2. Economías singulares

    Directory of Open Access Journals (Sweden)

    Elvio Alccinelli

    2001-07-01

    Full Text Available En este artículo pretendemos mostrar que le conjunto de las economías singulares, si bien pequeño desde el punto de vista de la topología y/o desde el punto de vista de la teoría de la medida, tiene importantes efectos en el desarrollo de los regímenes económicos. Es el responsable de los cambios abruptos en los estados de equilibrio y de la multiplicidad de tales estados. Permite además establecer a partir de los tipos de singularidades posibles, una partición del conjunto de economías según tenga lugar uno u otro tipo de singularidad cuya presencia o no, caracteriza el comportamiento posible de la economía en cuestión.

  3. Quantum transitions through cosmological singularities

    Energy Technology Data Exchange (ETDEWEB)

    Bramberger, Sebastian F.; Lehners, Jean-Luc [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 14476 Potsdam-Golm (Germany); Hertog, Thomas; Vreys, Yannick, E-mail: sebastian.bramberger@aei.mpg.de, E-mail: thomas.hertog@kuleuven.be, E-mail: jlehners@aei.mpg.de, E-mail: yannick.vreys@kuleuven.be [Institute for Theoretical Physics, KU Leuven, 3001 Leuven (Belgium)

    2017-07-01

    In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.

  4. Coulomb branches with complex singularities

    Science.gov (United States)

    Argyres, Philip C.; Martone, Mario

    2018-06-01

    We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.

  5. Quantum transitions through cosmological singularities

    International Nuclear Information System (INIS)

    Bramberger, Sebastian F.; Lehners, Jean-Luc; Hertog, Thomas; Vreys, Yannick

    2017-01-01

    In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.

  6. Discrete variable representation for singular Hamiltonians

    DEFF Research Database (Denmark)

    Schneider, B. I.; Nygaard, Nicolai

    2004-01-01

    We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...

  7. Building Reproducible Science with Singularity Containers

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Michael Bauer first began working with containers at GSI national lab in Darmstadt, Germany, in 2017 while taking a semester off of school at the University of Michigan. Michael met Greg Kurtzer, project lead of Singularity, during his time at GSI and he began contributing heavily to the Singularity project. At the start of summer 2017, Greg hired Michael to work at the ...

  8. Reasons for singularity in robot teleoperation

    DEFF Research Database (Denmark)

    Marhenke, Ilka; Fischer, Kerstin; Savarimuthu, Thiusius Rajeeth

    2014-01-01

    In this paper, the causes for singularity of a robot arm in teleoperation for robot learning from demonstration are analyzed. Singularity is the alignment of robot joints, which prevents the configuration of the inverse kinematics. Inspired by users' own hypotheses, we investigated speed and dela...

  9. The Geometry of Black Hole Singularities

    Directory of Open Access Journals (Sweden)

    Ovidiu Cristinel Stoica

    2014-01-01

    Full Text Available Recent results show that important singularities in General Relativity can be naturally described in terms of finite and invariant canonical geometric objects. Consequently, one can write field equations which are equivalent to Einstein's at nonsingular points but, in addition remain well-defined and smooth at singularities. The black hole singularities appear to be less undesirable than it was thought, especially after we remove the part of the singularity due to the coordinate system. Black hole singularities are then compatible with global hyperbolicity and do not make the evolution equations break down, when these are expressed in terms of the appropriate variables. The charged black holes turn out to have smooth potential and electromagnetic fields in the new atlas. Classical charged particles can be modeled, in General Relativity, as charged black hole solutions. Since black hole singularities are accompanied by dimensional reduction, this should affect Feynman's path integrals. Therefore, it is expected that singularities induce dimensional reduction effects in Quantum Gravity. These dimensional reduction effects are very similar to those postulated in some approaches to make Quantum Gravity perturbatively renormalizable. This may provide a way to test indirectly the effects of singularities, otherwise inaccessible.

  10. Singularities in the nonisotropic Boltzmann equation

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Martiarena, M.L.; Zanette, D.

    1987-09-01

    We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs

  11. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  12. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order

    OpenAIRE

    Nguyen-Xuan, H.; Liu, G. R.; Bordas, Stéphane; Natarajan, S.; Rabczuk, T.

    2013-01-01

    This paper presents a singular edge-based smoothed finite element method (sES-FEM) for mechanics problems with singular stress fields of arbitrary order. The sES-FEM uses a basic mesh of three-noded linear triangular (T3) elements and a special layer of five-noded singular triangular elements (sT5) connected to the singular-point of the stress field. The sT5 element has an additional node on each of the two edges connected to the singular-point. It allows us to represent simple and efficient ...

  13. A singularity extraction technique for computation of antenna aperture fields from singular plane wave spectra

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel

    2008-01-01

    An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...

  14. Biclustering via Sparse Singular Value Decomposition

    KAUST Repository

    Lee, Mihee

    2010-02-16

    Sparse singular value decomposition (SSVD) is proposed as a new exploratory analysis tool for biclustering or identifying interpretable row-column associations within high-dimensional data matrices. SSVD seeks a low-rank, checkerboard structured matrix approximation to data matrices. The desired checkerboard structure is achieved by forcing both the left- and right-singular vectors to be sparse, that is, having many zero entries. By interpreting singular vectors as regression coefficient vectors for certain linear regressions, sparsity-inducing regularization penalties are imposed to the least squares regression to produce sparse singular vectors. An efficient iterative algorithm is proposed for computing the sparse singular vectors, along with some discussion of penalty parameter selection. A lung cancer microarray dataset and a food nutrition dataset are used to illustrate SSVD as a biclustering method. SSVD is also compared with some existing biclustering methods using simulated datasets. © 2010, The International Biometric Society.

  15. One dimensional systems with singular perturbations

    International Nuclear Information System (INIS)

    Alvarez, J J; Gadella, M; Nieto, L M; Glasser, L M; Lara, L P

    2011-01-01

    This paper discusses some one dimensional quantum models with singular perturbations. Eventually, a mass discontinuity is added at the points that support the singular perturbations. The simplest model includes an attractive singular potential with a mass jump both located at the origin. We study the form of the only bound state. Another model exhibits a hard core at the origin plus one or more repulsive deltas with mass jumps at the points supporting these deltas. We study the location and the multiplicity of these resonances for the case of one or two deltas and settle the basis for a generalization. Finally, we consider the harmonic oscillator and the infinite square well plus a singular potential at the origin. We see how the energy of bound states is affected by the singular perturbation.

  16. Noncrossing timelike singularities of irrotational dust collapse

    International Nuclear Information System (INIS)

    Liang, E.P.T.

    1979-01-01

    Known naked singularities in spherical dust collapse are either due to shell-crossing or localized to the central world line. They will probably be destroyed by pressure gradients or blue-shift instabilities. To violate the cosmic censorship hypothesis in a more convincing and general context, collapse solutions with naked singularities that are at least nonshell-crossing and nonlocalized need to be constructed. Some results concerning the probable structure of a class of nonshellcrossing and nonlocalized timelike singularities are reviewed. The cylindrical dust model is considered but this model is not asymptotically flat. To make these noncrossing singularities viable counter examples to the cosmic censorship hypothesis, the occurrence of such singularities in asymptotically flat collapse needs to be demonstrated. (UK)

  17. Singular perturbation techniques in the gravitational self-force problem

    International Nuclear Information System (INIS)

    Pound, Adam

    2010-01-01

    Much of the progress in the gravitational self-force problem has involved the use of singular perturbation techniques. Yet the formalism underlying these techniques is not widely known. I remedy this situation by explicating the foundations and geometrical structure of singular perturbation theory in general relativity. Within that context, I sketch precise formulations of the methods used in the self-force problem: dual expansions (including matched asymptotic expansions), for which I identify precise matching conditions, one of which is a weak condition arising only when multiple coordinate systems are used; multiscale expansions, for which I provide a covariant formulation; and a self-consistent expansion with a fixed worldline, for which I provide a precise statement of the exact problem and its approximation. I then present a detailed analysis of matched asymptotic expansions as they have been utilized in calculating the self-force. Typically, the method has relied on a weak matching condition, which I show cannot determine a unique equation of motion. I formulate a refined condition that is sufficient to determine such an equation. However, I conclude that the method yields significantly weaker results than do alternative methods.

  18. Minimal solution for inconsistent singular fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    M. Nikuie

    2013-10-01

    Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.

  19. An integrable symmetric (2+1)-dimensional Lotka-Volterra equation and a family of its solutions

    International Nuclear Information System (INIS)

    Hu Xingbiao; Li Chunxia; Nimmo, Jonathan J C; Yu Guofu

    2005-01-01

    A symmetric (2+1)-dimensional Lotka-Volterra equation is proposed. By means of a dependent variable transformation, the equation is firstly transformed into multilinear form and further decoupled into bilinear form by introducing auxiliary independent variables. A bilinear Baecklund transformation is found and then the corresponding Lax pair is derived. Explicit solutions expressed in terms of pfaffian solutions of the bilinear form of the symmetric (2+1)-dimensional Lotka-Volterra equation are given. As a special case of the pfaffian solutions, we obtain soliton solutions and dromions

  20. A predictor-corrector scheme for solving the Volterra integral equation

    KAUST Repository

    Al Jarro, Ahmed

    2011-08-01

    The occurrence of late time instabilities is a common problem of almost all time marching methods developed for solving time domain integral equations. Implicit marching algorithms are now considered stable with various efforts that have been developed for removing low and high frequency instabilities. On the other hand, literature on stabilizing explicit schemes, which might be considered more efficient since they do not require a matrix inversion at each time step, is practically non-existent. In this work, a stable but still explicit predictor-corrector scheme is proposed for solving the Volterra integral equation and its efficacy is verified numerically. © 2011 IEEE.

  1. Solutions of First-Order Volterra Type Linear Integrodifferential Equations by Collocation Method

    Directory of Open Access Journals (Sweden)

    Olumuyiwa A. Agbolade

    2017-01-01

    Full Text Available The numerical solutions of linear integrodifferential equations of Volterra type have been considered. Power series is used as the basis polynomial to approximate the solution of the problem. Furthermore, standard and Chebyshev-Gauss-Lobatto collocation points were, respectively, chosen to collocate the approximate solution. Numerical experiments are performed on some sample problems already solved by homotopy analysis method and finite difference methods. Comparison of the absolute error is obtained from the present method and those from aforementioned methods. It is also observed that the absolute errors obtained are very low establishing convergence and computational efficiency.

  2. A differential-difference hierarchy associated with relativistic Toda and Volterra hierarchies

    International Nuclear Information System (INIS)

    Fan Engui; Dai Huihui

    2008-01-01

    By embedding a free function into a compatible zero curvature equation, we enlarge the original differential-difference hierarchy into a new hierarchy with the free function which still admits zero curvature representation. The new hierarchy not only includes the original hierarchy, but also the well-known relativistic Toda hierarchy and the Volterra hierarchy as special reductions by properly choosing the free function. Infinitely many conservation laws and Darboux transformation for a representative differential-difference system are constructed based on its Lax representation. The exact solutions follow by applying the Darboux transformation

  3. The solution of linear and nonlinear systems of Volterra functional equations using Adomian-Pade technique

    International Nuclear Information System (INIS)

    Dehghan, Mehdi; Shakourifar, Mohammad; Hamidi, Asgar

    2009-01-01

    The purpose of this study is to implement Adomian-Pade (Modified Adomian-Pade) technique, which is a combination of Adomian decomposition method (Modified Adomian decomposition method) and Pade approximation, for solving linear and nonlinear systems of Volterra functional equations. The results obtained by using Adomian-Pade (Modified Adomian-Pade) technique, are compared to those obtained by using Adomian decomposition method (Modified Adomian decomposition method) alone. The numerical results, demonstrate that ADM-PADE (MADM-PADE) technique, gives the approximate solution with faster convergence rate and higher accuracy than using the standard ADM (MADM).

  4. A modified Lotka-Volterra model for the evolution of coordinate symbiosis in energy enterprise

    Science.gov (United States)

    Zhou, Li; Wang, Teng; Lyu, Xiaohuan; Yu, Jing

    2018-02-01

    Recent developments in energy markets make the operating industries more dynamic and complex, and energy enterprises cooperate more closely in the industrial chain and symbiosis. In order to further discuss the evolution of coordinate symbiosis in energy enterprises, a modified Lotka-Volterra equation is introduced to develop a symbiosis analysis model of energy groups. According to the equilibrium and stability analysis, a conclusion is obtained that if the upstream energy group and the downstream energy group are in symbiotic state, the growth of their utility will be greater than their independent value. Energy enterprises can get mutual benefits and positive promotions in industrial chain by their cooperation.

  5. Stochastic Lotka-Volterra equations: A model of lagged diffusion of technology in an interconnected world

    Science.gov (United States)

    Chakrabarti, Anindya S.

    2016-01-01

    We present a model of technological evolution due to interaction between multiple countries and the resultant effects on the corresponding macro variables. The world consists of a set of economies where some countries are leaders and some are followers in the technology ladder. All of them potentially gain from technological breakthroughs. Applying Lotka-Volterra (LV) equations to model evolution of the technology frontier, we show that the way technology diffuses creates repercussions in the partner economies. This process captures the spill-over effects on major macro variables seen in the current highly globalized world due to trickle-down effects of technology.

  6. String networks in Z{sub N} Lotka–Volterra competition models

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, P.P., E-mail: Pedro.Avelino@astro.up.pt [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Bazeia, D. [Instituto de Física, Universidade de São Paulo, 05314-970 São Paulo, SP (Brazil); Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Menezes, J. [Centro de Física do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Caixa Postal 1524, 59072-970 Natal, RN (Brazil); Oliveira, B.F. de [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR (Brazil)

    2014-01-17

    In this Letter we give specific examples of Z{sub N} Lotka–Volterra competition models leading to the formation of string networks. We show that, in order to promote coexistence, the species may arrange themselves around regions with a high number density of empty sites generated by predator–prey interactions between competing species. These configurations extend into the third dimension giving rise to string networks. We investigate the corresponding dynamics using both stochastic and mean field theory simulations, showing that the coarsening of these string networks follows a scaling law which is analogous to that found in other physical systems in condensed matter and cosmology.

  7. The matrix realization of affine Jacobi varieties and the extended Lotka-Volterra lattice

    International Nuclear Information System (INIS)

    Inoue, Rei

    2004-01-01

    We study completely integrable Hamiltonian systems whose monodromy matrices are related to the representatives for the set of gauge equivalence classes M F of polynomial matrices. Let X be the algebraic curve given by the common characteristic equation for M F . We construct the isomorphism from the set of representatives to an affine part of the Jacobi variety of X. This variety corresponds to the invariant manifold of the system, where the Hamiltonian flow is linearized. As an application, we discuss the algebraic complete integrability of the extended Lotka-Volterra lattice with a periodic boundary condition

  8. Nonmonotonic Behavior of Supermultiplet Pattern Formation in a Noisy Lotka-Volterra System

    International Nuclear Information System (INIS)

    Fiasconaro, A.; Valenti, D.; Spagnolo, B.

    2004-01-01

    The noise-induced pattern formation in a population dynamical model of three interacting species in the coexistence regime is investigated. A coupled map lattice of Lotka-Volterra equations in the presence of multiplicative noise is used to analyze the spatiotemporal evolution. The spatial correlation of the species concentration as a function of time and of the noise intensity is investigated. A nonmonotonic behavior of the area of the patterns as a function of both noise intensity and evolution time is found. (author)

  9. Stable power laws in variable economies; Lotka-Volterra implies Pareto-Zipf

    Science.gov (United States)

    Solomon, S.; Richmond, P.

    2002-05-01

    In recent years we have found that logistic systems of the Generalized Lotka-Volterra type (GLV) describing statistical systems of auto-catalytic elements posses power law distributions of the Pareto-Zipf type. In particular, when applied to economic systems, GLV leads to power laws in the relative individual wealth distribution and in market returns. These power laws and their exponent α are invariant to arbitrary variations in the total wealth of the system and to other endogenously and exogenously induced variations.

  10. Entire solutions of a diffusive and competitive Lotka–Volterra type system with nonlocal delays

    International Nuclear Information System (INIS)

    Wang, Mingxin; Lv, Guangying

    2010-01-01

    This paper is concerned with the entire solution of a diffusive and competitive Lotka–Volterra type system with nonlocal delays. The existence of the entire solution is proved by transforming the system with nonlocal delays to a four-dimensional system without delay and using the comparing argument and the sub-super-solution method. Here an entire solution means a classical solution defined for all space and time variables, which behaves as two wave fronts coming from both sides of the x-axis

  11. The inverse problem of determining several coefficients in a nonlinear Lotka–Volterra system

    International Nuclear Information System (INIS)

    Roques, Lionel; Cristofol, Michel

    2012-01-01

    In this paper, we prove a uniqueness result in the inverse problem of determining several non-constant coefficients of a system of two parabolic equations, which corresponds to a Lotka–Volterra competition model. Our result gives a sufficient condition for the uniqueness of the determination of four coefficients of the system. This sufficient condition only involves pointwise measurements of the solution (u, v) of the system and of the spatial derivative ∂u/∂x or ∂v/∂x of one component at a single point x 0 , during a time interval (0, ε). Our results are illustrated by numerical computations. (paper)

  12. Dynamics of a Lotka-Volterra type model with applications to marine phage population dynamics

    International Nuclear Information System (INIS)

    Gavin, C; Pokrovskii, A; Prentice, M; Sobolev, V

    2006-01-01

    The famous Lotka-Volterra equations play a fundamental role in the mathematical modeling of various ecological and chemical systems. A new modification of these equations has been recently suggested to model the structure of marine phage populations, which are the most abundant biological entities in the biosphere. The purpose of the paper is: (i) to make some methodical remarks concerning this modification; (ii) to discuss new types of canards which arise naturally in this context; (iii) to present results of some numerical experiments

  13. On the existence of solutions for Volterra integral inclusions in Banach spaces

    Directory of Open Access Journals (Sweden)

    Evgenios P. Avgerinos

    1993-01-01

    Full Text Available In this paper we examine a class of nonlinear integral inclusions defined in a separable Banach space. For this class of inclusions of Volterra type we establish two existence results, one for inclusions with a convex-valued orientor field and the other for inclusions with nonconvex-valued orientor field. We present conditions guaranteeing that the multivalued map that represents the right-hand side of the inclusion is α-condensing using for the proof of our results a known fixed point theorem for α-condensing maps.

  14. Variational Iteration Method for Volterra Functional Integrodifferential Equations with Vanishing Linear Delays

    Directory of Open Access Journals (Sweden)

    Ali Konuralp

    2014-01-01

    Full Text Available Application process of variational iteration method is presented in order to solve the Volterra functional integrodifferential equations which have multi terms and vanishing delays where the delay function θ(t vanishes inside the integral limits such that θ(t=qt for 0

  15. Identificación de sistemas no lineales usando series Volterra – Laguerre

    OpenAIRE

    Medina Ramos, Carlos Celestino; Medina Ramos, Carlos Celestino

    2011-01-01

    Este trabajo de Tesis está enfocado en la identificación de sistemas no lineales de modelo dinámico no conocido, adicionalmente y en base a los resultados obtenidos, se propone la aplicación del sistema de Control Predictivo no Lineal Basado en Modelos, NMPC, usando el algoritmo de la Matriz Dinámica de Control no Lineal, NDMC. El primer objetivo de este trabajo consiste en implementar una metodología para la identificación de sistemas no lineales usando series de Volterra truncadas; proye...

  16. Quantum cosmology and late-time singularities

    International Nuclear Information System (INIS)

    Kamenshchik, A Yu

    2013-01-01

    The development of dark energy models has stimulated interest to cosmological singularities, which differ from the traditional Big Bang and Big Crunch singularities. We review a broad class of phenomena connected with soft cosmological singularities in classical and quantum cosmology. We discuss the classification of singularities from the geometrical point of view and from the point of view of the behavior of finite size objects, crossing such singularities. We discuss in some detail quantum and classical cosmology of models based on perfect fluids (anti-Chaplygin gas and anti-Chaplygin gas plus dust), of models based on the Born–Infeld-type fields and of the model of a scalar field with a potential inversely proportional to the field itself. We dwell also on the phenomenon of the phantom divide line crossing in the scalar field models with cusped potentials. Then we discuss the Friedmann equations modified by quantum corrections to the effective action of the models under considerations and the influence of such modification on the nature and the existence of soft singularities. We review also quantum cosmology of models, where the initial quantum state of the universe is presented by the density matrix (mixed state). Finally, we discuss the exotic singularities arising in the braneworld cosmological models. (topical review)

  17. Initial singularity and pure geometric field theories

    Science.gov (United States)

    Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.

    2018-01-01

    In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.

  18. Discrete variable representation for singular Hamiltonians

    DEFF Research Database (Denmark)

    Schneider, B. I.; Nygaard, Nicolai

    2004-01-01

    We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...... solely on an orthogonal polynomial basis is adequate, provided the Gauss-Lobatto or Gauss-Radau quadrature rule is used. This ensures that the mesh contains the singular points and by simply discarding the DVR functions corresponding to those points, all matrix elements become well behaved. the boundary...

  19. Transmutation of singularities in optical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Tyc, Tomas [Institute of Theoretical Physics and Astrophysics, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Leonhardt, Ulf [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)], E-mail: tomtyc@physics.muni.cz

    2008-11-15

    We propose a method for eliminating a class of singularities in optical media where the refractive index goes to zero or infinity at one or more isolated points. Employing transformation optics, we find a refractive index distribution equivalent to the original one that is nonsingular but shows a slight anisotropy. In this way, the original singularity is 'transmuted' into another, weaker type of singularity where the permittivity and permeability tensors are discontinuous at one point. The method is likely to find applications in designing and improving optical devices by making them easier to implement or to operate in a broad band of the spectrum.

  20. Singular mean-filed games

    KAUST Repository

    Cirant, Marco; Gomes, Diogo A.; Pimentel, Edgard A.; Sá nchez-Morgado, Hé ctor

    2016-01-01

    Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form $g(m)=-m^{-\\alpha}$. We consider stationary and time-dependent settings. The function $g$ is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents to spread and prevents the creation of solutions with a very-low density. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that $\\frac 1 m$ is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for $m^{-1}$.

  1. Singular mean-filed games

    KAUST Repository

    Cirant, Marco

    2016-11-22

    Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form $g(m)=-m^{-\\\\alpha}$. We consider stationary and time-dependent settings. The function $g$ is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents to spread and prevents the creation of solutions with a very-low density. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that $\\\\frac 1 m$ is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for $m^{-1}$.

  2. Nonlinear degradation of a visible-light communication link: A Volterra-series approach

    Science.gov (United States)

    Kamalakis, Thomas; Dede, Georgia

    2018-06-01

    Visible light communications can be used to provide illumination and data communication at the same time. In this paper, a reverse-engineering approach is presented for assessing the impact of nonlinear signal distortion in visible light communication links. The approach is based on the Volterra series expansion and has the advantage of accurately accounting for memory effects in contrast to the static nonlinear models that are popular in the literature. Volterra kernels describe the end-to-end system response and can be inferred from measurements. Consequently, this approach does not rely on any particular physical models and assumptions regarding the individual link components. We provide the necessary framework for estimating the nonlinear distortion on the symbol estimates of a discrete multitone modulated link. Various design aspects such as waveform clipping and predistortion are also incorporated in the analysis. Using this framework, the nonlinear signal-to-interference is calculated for the system at hand. It is shown that at high signal amplitudes, the nonlinear signal-to-interference can be less than 25 dB.

  3. Filtered-X Affine Projection Algorithms for Active Noise Control Using Volterra Filters

    Directory of Open Access Journals (Sweden)

    Sicuranza Giovanni L

    2004-01-01

    Full Text Available We consider the use of adaptive Volterra filters, implemented in the form of multichannel filter banks, as nonlinear active noise controllers. In particular, we discuss the derivation of filtered-X affine projection algorithms for homogeneous quadratic filters. According to the multichannel approach, it is then easy to pass from these algorithms to those of a generic Volterra filter. It is shown in the paper that the AP technique offers better convergence and tracking capabilities than the classical LMS and NLMS algorithms usually applied in nonlinear active noise controllers, with a limited complexity increase. This paper extends in two ways the content of a previous contribution published in Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03, Grado, Italy, June 2003. First of all, a general adaptation algorithm valid for any order of affine projections is presented. Secondly, a more complete set of experiments is reported. In particular, the effects of using multichannel filter banks with a reduced number of channels are investigated and relevant results are shown.

  4. Shocks and finite-time singularities in Hele-Shaw flow

    Energy Technology Data Exchange (ETDEWEB)

    Teodorescu, Razvan [Los Alamos National Laboratory; Wiegmann, P [UNIV OF MONTREAL; Lee, S-y [UNIV OF CHICAGO

    2008-01-01

    Hele-Shaw flow at vanishing surface tension is ill-defined. In finite time, the flow develops cusplike singularities. We show that the ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating in the viscous fluid. The graph of shocks grows and branches. Velocity and pressure jump across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive solution in algebro-geometrical terms as an evolution of Krichever-Boutroux complex curve. We study in details the most generic (2,3) cusp singularity which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions.

  5. Band structure of an electron in a kind of periodic potentials with singularities

    Science.gov (United States)

    Hai, Kuo; Yu, Ning; Jia, Jiangping

    2018-06-01

    Noninteracting electrons in some crystals may experience periodic potentials with singularities and the governing Schrödinger equation cannot be defined at the singular points. The band structure of a single electron in such a one-dimensional crystal has been calculated by using an equivalent integral form of the Schrödinger equation. Both the perturbed and exact solutions are constructed respectively for the cases of a general singular weak-periodic system and its an exactly solvable version, Kronig-Penney model. Any one of them leads to a special band structure of the energy-dependent parameter, which results in an effective correction to the previous energy-band structure and gives a new explanation for forming the band structure. The used method and obtained results could be a valuable aid in the study of energy bands in solid-state physics, and the new explanation may trigger investigation to different physical mechanism of electron band structures.

  6. Singularities in cosmologies with interacting fluids

    International Nuclear Information System (INIS)

    Cotsakis, Spiros; Kittou, Georgia

    2012-01-01

    We study the dynamics near finite-time singularities of flat isotropic universes filled with two interacting but otherwise arbitrary perfect fluids. The overall dynamical picture reveals a variety of asymptotic solutions valid locally around the spacetime singularity. We find the attractor of all solutions with standard decay, and for ‘phantom’ matter asymptotically at early times. We give a number of special asymptotic solutions describing universes collapsing to zero size and others ending at a big rip singularity. We also find a very complicated singularity corresponding to a logarithmic branch point that resembles a cyclic universe, and give an asymptotic local series representation of the general solution in the neighborhood of infinity.

  7. Singularities: the state of the art

    International Nuclear Information System (INIS)

    Clarke, C.J.S.; Schmidt, B.G.

    1977-01-01

    A brief, but precise and unified account is given of the results that have been rigorously established at the time of writing concerning the existence and nature of singularities in classical relativity. (author)

  8. Technological Singularity: What Do We Really Know?

    Directory of Open Access Journals (Sweden)

    Alexey Potapov

    2018-04-01

    Full Text Available The concept of the technological singularity is frequently reified. Futurist forecasts inferred from this imprecise reification are then criticized, and the reified ideas are incorporated in the core concept. In this paper, I try to disentangle the facts related to the technological singularity from more speculative beliefs about the possibility of creating artificial general intelligence. I use the theory of metasystem transitions and the concept of universal evolution to analyze some misconceptions about the technological singularity. While it may be neither purely technological, nor truly singular, we can predict that the next transition will take place, and that the emerged metasystem will demonstrate exponential growth in complexity with a doubling time of less than half a year, exceeding the complexity of the existing cybernetic systems in few decades.

  9. Algunas aclaraciones acerca del conocimiento del singular.

    Directory of Open Access Journals (Sweden)

    Carlos Llano Cifuentes

    2013-11-01

    Full Text Available Llano tries to explain the main purpose of El Conocimiento del Singular, showing how the individuals about which the book is concerned are basically human individuals: people as decision makers.

  10. Topological Signals of Singularities in Ricci Flow

    Directory of Open Access Journals (Sweden)

    Paul M. Alsing

    2017-08-01

    Full Text Available We implement methods from computational homology to obtain a topological signal of singularity formation in a selection of geometries evolved numerically by Ricci flow. Our approach, based on persistent homology, produces precise, quantitative measures describing the behavior of an entire collection of data across a discrete sample of times. We analyze the topological signals of geometric criticality obtained numerically from the application of persistent homology to models manifesting singularities under Ricci flow. The results we obtain for these numerical models suggest that the topological signals distinguish global singularity formation (collapse to a round point from local singularity formation (neckpinch. Finally, we discuss the interpretation and implication of these results and future applications.

  11. Asymptotic safety, singularities, and gravitational collapse

    International Nuclear Information System (INIS)

    Casadio, Roberto; Hsu, Stephen D.H.; Mirza, Behrouz

    2011-01-01

    Asymptotic safety (an ultraviolet fixed point with finite-dimensional critical surface) offers the possibility that a predictive theory of quantum gravity can be obtained from the quantization of classical general relativity. However, it is unclear what becomes of the singularities of classical general relativity, which, it is hoped, might be resolved by quantum effects. We study dust collapse with a running gravitational coupling and find that a future singularity can be avoided if the coupling becomes exactly zero at some finite energy scale. The singularity can also be avoided (pushed off to infinite proper time) if the coupling approaches zero sufficiently rapidly at high energies. However, the evolution deduced from perturbation theory still implies a singularity at finite proper time.

  12. Stable computation of generalized singular values

    Energy Technology Data Exchange (ETDEWEB)

    Drmac, Z.; Jessup, E.R. [Univ. of Colorado, Boulder, CO (United States)

    1996-12-31

    We study floating-point computation of the generalized singular value decomposition (GSVD) of a general matrix pair (A, B), where A and B are real matrices with the same numbers of columns. The GSVD is a powerful analytical and computational tool. For instance, the GSVD is an implicit way to solve the generalized symmetric eigenvalue problem Kx = {lambda}Mx, where K = A{sup {tau}}A and M = B{sup {tau}}B. Our goal is to develop stable numerical algorithms for the GSVD that are capable of computing the singular value approximations with the high relative accuracy that the perturbation theory says is possible. We assume that the singular values are well-determined by the data, i.e., that small relative perturbations {delta}A and {delta}B (pointwise rounding errors, for example) cause in each singular value {sigma} of (A, B) only a small relative perturbation {vert_bar}{delta}{sigma}{vert_bar}/{sigma}.

  13. On Borel singularities in quantum field theory

    International Nuclear Information System (INIS)

    Chadha, S.; Olesen, P.

    1977-10-01

    The authors consider the effective one-loop Lagrangian in a constant electric field. It is shown that perturbation theory behaves as n factorial giving rise to singularities in the Borel plane. Comparing with the known exact result it is shown how to integrate these singularities. It is suggested that renormalons in QED and QCD should be integrated in a similar way. A speculation is made on a possible interpretation of this integration. (Auth.)

  14. Singularity theorems from weakened energy conditions

    International Nuclear Information System (INIS)

    Fewster, Christopher J; Galloway, Gregory J

    2011-01-01

    We establish analogues of the Hawking and Penrose singularity theorems based on (a) averaged energy conditions with exponential damping; (b) conditions on local stress-energy averages inspired by the quantum energy inequalities satisfied by a number of quantum field theories. As particular applications, we establish singularity theorems for the Einstein equations coupled to a classical scalar field, which violates the strong energy condition, and the nonminimally coupled scalar field, which also violates the null energy condition.

  15. Hybrid MPI/OpenMP parallelization of the explicit Volterra integral equation solver for multi-core computer architectures

    KAUST Repository

    Al Jarro, Ahmed; Bagci, Hakan

    2011-01-01

    A hybrid MPI/OpenMP scheme for efficiently parallelizing the explicit marching-on-in-time (MOT)-based solution of the time-domain volume (Volterra) integral equation (TD-VIE) is presented. The proposed scheme equally distributes tested field values

  16. Interaction of Acidithiobacillus ferrooxidans, Rhizobium phaseoli and Rhodotorula sp. in bioleaching process based on Lotka–Volterra model

    Directory of Open Access Journals (Sweden)

    Xuecheng Zheng

    2016-07-01

    Conclusion: The relationship among microorganisms during leaching could be described appropriately by Lotka–Volterra model between the initial and peak values. The relationship of A. ferrooxidans and R. phaseoli could be considered as mutualism, whereas, the relationship of A. ferrooxidans and R. phaseoli could be considered as commensalism.

  17. The existence of periodic solutions of the n-species Lotka-Volterra competition systems with impulsive

    Energy Technology Data Exchange (ETDEWEB)

    Jin Zhen E-mail: jinzhn@263.net; Ma Zhien; Maoan Han

    2004-10-01

    In this paper, we study the existence of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with impulses. By using the method coincidence degree theorem, a set of easily verifiable sufficient conditions are obtained for the existence of at least one strictly positive periodic solutions. Some known results are improved and generalized.

  18. The existence of periodic solutions of the n-species Lotka-Volterra competition systems with impulsive

    International Nuclear Information System (INIS)

    Jin Zhen; Ma Zhien; Maoan Han

    2004-01-01

    In this paper, we study the existence of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with impulses. By using the method coincidence degree theorem, a set of easily verifiable sufficient conditions are obtained for the existence of at least one strictly positive periodic solutions. Some known results are improved and generalized

  19. Phase portraits of cubic polynomial vector fields of Lotka-Volterra type having a rational first integral of degree 2

    International Nuclear Information System (INIS)

    Cairo, Laurent; Llibre, Jaume

    2007-01-01

    We classify all the global phase portraits of the cubic polynomial vector fields of Lotka-Volterra type having a rational first integral of degree 2. For such vector fields there are exactly 28 different global phase portraits in the Poincare disc up to a reversal of sense of all orbits

  20. Observational constraints on cosmological future singularities

    Energy Technology Data Exchange (ETDEWEB)

    Beltran Jimenez, Jose [Aix Marseille Univ, Universite de Toulon CNRS, CPT, Marseille (France); Lazkoz, Ruth [Euskal Herriko Unibertsitatea, Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Bilbao (Spain); Saez-Gomez, Diego [Faculdade de Ciencias da Universidade de Lisboa, Departamento de Fisica, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Salzano, Vincenzo [University of Szczecin, Institute of Physics, Szczecin (Poland)

    2016-11-15

    In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H(z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means ∝2.8 Gyrs from the present time. (orig.)

  1. Observational constraints on cosmological future singularities

    International Nuclear Information System (INIS)

    Beltran Jimenez, Jose; Lazkoz, Ruth; Saez-Gomez, Diego; Salzano, Vincenzo

    2016-01-01

    In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H(z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means ∝2.8 Gyrs from the present time. (orig.)

  2. Naked singularities and cosmic censorship: comment on the current situation

    International Nuclear Information System (INIS)

    Seifert, H.J.

    1979-01-01

    The current discussion is mainly concerned with how, or indeed, whether space-times possessing naked singularities can be ruled out as being too unrealistic or not being singular at all. The present position is summarized, with references, under the following headings: the Hawking-Penrose existence theorems, hydrodynamical singularities and the strength of naked singularities. (UK)

  3. Painleve singularity analysis applied to charged particle dynamics during reconnection

    International Nuclear Information System (INIS)

    Larson, J.W.

    1992-01-01

    For a plasma in the collisionless regime, test-particle modelling can lend some insight into the macroscopic behavior of the plasma, e.g. conductivity and heating. A common example for which this technique is used is a system with electric and magnetic fields given by B = δyx + zy + yz and E = εz, where δ, γ, and ε are constant parameters. This model can be used to model plasma behavior near neutral lines, (γ = 0), as well as current sheets (γ = 0, δ = 0). The integrability properties of the particle motion in such fields might affect the plasma's macroscopic behavior, and the author has asked the question open-quotes For what values of δ, γ, and ε is the system integrable?close quotes To answer this question, the author has employed Painleve singularity analysis, which is an examination of the singularity properties of a test particle's equations of motion in the complex time plane. This analysis has identified two field geometries for which the system's particle dynamics are integrable in terms of the second Painleve transcendent: the circular O-line case and the case of the neutral sheet configuration. These geometries yield particle dynamics that are integrable in the Liouville sense (i.e., there exist the proper number of integrals in involution) in an extended phase space which includes the time as a canonical coordinate, and this property is also true for nonzero γ. The singularity property tests also identified a large, dense set of X-line and O-line field geometries that yield dynamics that may possess the weak Painleve property. In the case of the X-line geometries, this result shows little relevance to the physical nature of the system, but the existence of a dense set of elliptical O-line geometries with this property may be related to the fact that for ε positive, one can construct asymptotic solutions in the limit t → ∞

  4. Conformally-flat, non-singular static metric in infinite derivative gravity

    Science.gov (United States)

    Buoninfante, Luca; Koshelev, Alexey S.; Lambiase, Gaetano; Marto, João; Mazumdar, Anupam

    2018-06-01

    In Einstein's theory of general relativity the vacuum solution yields a blackhole with a curvature singularity, where there exists a point-like source with a Dirac delta distribution which is introduced as a boundary condition in the static case. It has been known for a while that ghost-free infinite derivative theory of gravity can ameliorate such a singularity at least at the level of linear perturbation around the Minkowski background. In this paper, we will show that the Schwarzschild metric does not satisfy the boundary condition at the origin within infinite derivative theory of gravity, since a Dirac delta source is smeared out by non-local gravitational interaction. We will also show that the spacetime metric becomes conformally-flat and singularity-free within the non-local region, which can be also made devoid of an event horizon. Furthermore, the scale of non-locality ought to be as large as that of the Schwarzschild radius, in such a way that the gravitational potential in any metric has to be always bounded by one, implying that gravity remains weak from the infrared all the way up to the ultraviolet regime, in concurrence with the results obtained in [arXiv:1707.00273]. The singular Schwarzschild blackhole can now be potentially replaced by a non-singular compact object, whose core is governed by the mass and the effective scale of non-locality.

  5. Cosmologies with quasiregular singularities. II. Stability considerations

    International Nuclear Information System (INIS)

    Konkowski, D.A.; Helliwell, T.M.

    1985-01-01

    The stability properties of a class of spacetimes with quasiregular singularities is discussed. Quasiregular singularities are the end points of incomplete, inextendible geodesics at which the Riemann tensor and its derivatives remain at least bounded in all parallel-propagated orthonormal (PPON) frames; observers approaching such a singularity would find that their world lines come to an end in a finite proper time. The Taub-NUT (Newman-Unti-Tamburino)-type cosmologies investigated are R 1 x T 3 and R 3 x S 1 flat Kasner spacetimes, the two-parameter family of spatially homogeneous but anisotropic Bianchi type-IX Taub-NUT spacetimes, and an infinite-dimensional family of Einstein-Rosen-Gowdy spacetimes studied by Moncrief. The behavior of matter near the quasiregular singularity in each of these spacetimes is explored through an examination of the behavior of the stress-energy tensors and scalars for conformally coupled and minimally coupled, massive and massless scalar waves as observed in both coordinate and PPON frames. A conjecture is postulated concerning the stability of the nature of the singularity in these spacetimes. The conjecture for a Taub-NUT-type background spacetime is that if a test-field stress-energy tensor evaluated in a PPON frame mimics the behavior of the Riemann tensor components which indicate a particular type of singularity (quasiregular, nonscalar curvature, or scalar curvature), then a complete nonlinear backreaction calculation, in which the fields are allowed to influence the geometry, would show that this type of singularity actually occurs. Evidence supporting the conjecture is presented for spacetimes whose symmetries are unchanged when fields with the same symmetries are added

  6. Weakly clopen functions

    International Nuclear Information System (INIS)

    Son, Mi Jung; Park, Jin Han; Lim, Ki Moon

    2007-01-01

    We introduce a new class of functions called weakly clopen function which includes the class of almost clopen functions due to Ekici [Ekici E. Generalization of perfectly continuous, regular set-connected and clopen functions. Acta Math Hungar 2005;107:193-206] and is included in the class of weakly continuous functions due to Levine [Levine N. A decomposition of continuity in topological spaces. Am Math Mon 1961;68:44-6]. Some characterizations and several properties concerning weakly clopenness are obtained. Furthermore, relationships among weak clopenness, almost clopenness, clopenness and weak continuity are investigated

  7. Weak value controversy

    Science.gov (United States)

    Vaidman, L.

    2017-10-01

    Recent controversy regarding the meaning and usefulness of weak values is reviewed. It is argued that in spite of recent statistical arguments by Ferrie and Combes, experiments with anomalous weak values provide useful amplification techniques for precision measurements of small effects in many realistic situations. The statistical nature of weak values is questioned. Although measuring weak values requires an ensemble, it is argued that the weak value, similarly to an eigenvalue, is a property of a single pre- and post-selected quantum system. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  8. Blind I/Q imbalance and nonlinear ISI mitigation in Nyquist-SCM direct detection system with cascaded widely linear and Volterra equalizer

    Science.gov (United States)

    Liu, Na; Ju, Cheng

    2018-02-01

    Nyquist-SCM signal after fiber transmission, direct detection (DD), and analog down-conversion suffers from linear ISI, nonlinear ISI, and I/Q imbalance, simultaneously. Theoretical analysis based on widely linear (WL) and Volterra series is given to explain the relationship and interaction of these three interferences. A blind equalization algorithm, cascaded WL and Volterra equalizer, is designed to mitigate these three interferences. Furthermore, the feasibility of the proposed cascaded algorithm is experimentally demonstrated based on a 40-Gbps data rate 16-quadrature amplitude modulation (QAM) virtual single sideband (VSSB) Nyquist-SCM DD system over 100-km standard single mode fiber (SSMF) transmission. In addition, the performances of conventional strictly linear equalizer, WL equalizer, Volterra equalizer, and cascaded WL and Volterra equalizer are experimentally evaluated, respectively.

  9. Generalized teleparallel cosmology and initial singularity crossing

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Adel; Nashed, Gamal, E-mail: Adel.Awad@bue.edu.eg, E-mail: gglnashed@sci.asu.edu.eg [Center for Theoretical Physics, the British University in Egypt, Suez Desert Road, Sherouk City 11837 (Egypt)

    2017-02-01

    We present a class of cosmological solutions for a generalized teleparallel gravity with f ( T )= T +α̃ (− T ) {sup n} , where α̃ is some parameter and n is an integer or half-integer. Choosing α̃ ∼ G {sup n} {sup −1}, where G is the gravitational constant, and working with an equation of state p = w ρ, one obtains a cosmological solution with multiple branches. The dynamics of the solution describes standard cosmology at late times, but the higher-torsion correction changes the nature of the initial singularity from big bang to a sudden singularity. The milder behavior of the sudden singularity enables us to extend timelike or lightlike curves, through joining two disconnected branches of solution at the singularity, leaving the singularity traversable. We show that this extension is consistent with the field equations through checking the known junction conditions for generalized teleparallel gravity. This suggests that these solutions describe a contracting phase a prior to the expanding phase of the universe.

  10. Singular perturbation theory for interacting fermions in two dimensions

    International Nuclear Information System (INIS)

    Chubukov, A.V.; Maslov, D.L.; Gangadharaiah, S.; Glazman, L.I.

    2004-11-01

    We consider a system of interacting fermions in two dimensions beyond the second-order perturbation theory in the interaction. It is shown that the mass-shell singularities in the self-energy, arising already at the second order of the perturbation theory, manifest a nonperturbative effect: an interaction with the zero-sound mode. Resuming the perturbation theory for a weak, short-range interaction and accounting for a finite curvature of the fermion spectrum, we eliminate the singularities and obtain the results for the quasi-particle self-energy and the spectral function to all orders in the interaction with the zero-sound mode. A threshold for emission of zero-sound waves leads a non-monotonic variation of the self-energy with energy (or momentum) near the mass shell. Consequently, the spectral function has a kink-like feature. We also study in detail a non-analytic temperature dependence of the specific heat, C(T) ∝T 2 . It turns out that although the interaction with the collective mode results in an enhancement of the fermion self-energy, this interaction does not affect the non-analytic term in C(T) due to a subtle cancellation between the contributions from the real and imaginary parts of the self-energy. For a short-range and weak interaction, this implies that the second-order perturbation theory suffices to determine the non-analytic part of C(T). We also obtain a general form of the non-analytic term in C(T), valid for the case of a generic Fermi liquid, i.e., beyond the perturbation theory. (author)

  11. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    Directory of Open Access Journals (Sweden)

    Dan Li

    2014-01-01

    Full Text Available This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b we show that the delay stochastic differential equation with jumps associated with our model has a unique global positive solution and give sufficient conditions that ensure stochastically ultimate boundedness, moment average boundedness in time, and asymptotic polynomial growth of our model; (c the sufficient conditions for the extinction of the system are obtained, which generalized the former results and showed that the sufficiently large random jump magnitudes and intensity (average rate of jump events arrival may lead to extinction of the population.

  12. Bifurcation analysis in the diffusive Lotka-Volterra system: An application to market economy

    International Nuclear Information System (INIS)

    Wijeratne, A.W.; Yi Fengqi; Wei Junjie

    2009-01-01

    A diffusive Lotka-Volterra system is formulated in this paper that represents the dynamics of market share at duopoly. A case in Sri Lankan mobile telecom market was considered that conceptualized the model in interest. Detailed Hopf bifurcation, transcritical and pitchfork bifurcation analysis were performed. The distribution of roots of the characteristic equation suggests that a stable coexistence equilibrium can be achieved by increasing the innovation while minimizing competition by each competitor while regulating existing policies and introducing new ones for product differentiation and value addition. The avenue is open for future research that may use real time information in order to formulate mathematically sound tools for decision making in competitive business environments.

  13. Bifurcation analysis in the diffusive Lotka-Volterra system: An application to market economy

    Energy Technology Data Exchange (ETDEWEB)

    Wijeratne, A.W. [Department of Mathematics, Harbin Institute of Technology, Harbin 150001 (China); Department of Agri-Business Management, Sabaragamuwa University of Sri Lanka, Belihuloya 70140 (Sri Lanka); Yi Fengqi [Department of Mathematics, Harbin Institute of Technology, Harbin 150001 (China); Wei Junjie [Department of Mathematics, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: weijj@hit.edu.cn

    2009-04-30

    A diffusive Lotka-Volterra system is formulated in this paper that represents the dynamics of market share at duopoly. A case in Sri Lankan mobile telecom market was considered that conceptualized the model in interest. Detailed Hopf bifurcation, transcritical and pitchfork bifurcation analysis were performed. The distribution of roots of the characteristic equation suggests that a stable coexistence equilibrium can be achieved by increasing the innovation while minimizing competition by each competitor while regulating existing policies and introducing new ones for product differentiation and value addition. The avenue is open for future research that may use real time information in order to formulate mathematically sound tools for decision making in competitive business environments.

  14. The diffusive Lotka-Volterra predator-prey system with delay.

    Science.gov (United States)

    Al Noufaey, K S; Marchant, T R; Edwards, M P

    2015-12-01

    Semi-analytical solutions for the diffusive Lotka-Volterra predator-prey system with delay are considered in one and two-dimensional domains. The Galerkin method is applied, which approximates the spatial structure of both the predator and prey populations. This approach is used to obtain a lower-order, ordinary differential delay equation model for the system of governing delay partial differential equations. Steady-state and transient solutions and the region of parameter space, in which Hopf bifurcations occur, are all found. In some cases simple linear expressions are found as approximations, to describe steady-state solutions and the Hopf parameter regions. An asymptotic analysis for the periodic solution near the Hopf bifurcation point is performed for the one-dimensional domain. An excellent agreement is shown in comparisons between semi-analytical and numerical solutions of the governing equations. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Volterra series based predistortion for broadband RF power amplifiers with memory effects

    Institute of Scientific and Technical Information of China (English)

    Jin Zhe; Song Zhihuan; He Jiaming

    2008-01-01

    RF power amplifiers(PAs)are usually considered as memoryless devices in most existing predistortion techniques.However,in broadband communication systems,such as WCDMA,the PA memory effects are significant,and memoryless predistortion cannot linearize the PAs effectively.After analyzing the PA memory effects,a novel predistortion method based on the simplified Volterra series is proposed to linearize broadband RF PAs with memory effects.The indirect learning architecture is adopted to design the predistortion scheme and the recursive least squares algorithm with forgetting factor is applied to identify the parameters of the predistorter.Simulation results show that the proposed predistortion method can compensate the nonlinear distortion and memory effects of broadband RF PAs effectively.

  16. Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model

    Science.gov (United States)

    Afraimovich, Valentin; Tristan, Irma; Huerta, Ramon; Rabinovich, Mikhail I.

    2008-12-01

    Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently complex model with the necessary predicting power requires solutions that are structurally stable. Small variations of the system parameters should not qualitatively perturb its solutions. When one is interested in just asymptotic results of evolution (as time goes to infinity), then the problem has a straightforward mathematical image involving simple attractors (fixed points or limit cycles) of a dynamical system. However, for an accurate prediction of evolution, the analysis of transient solutions is critical. In this paper, in the framework of the traditional Lotka-Volterra model (generalized in some sense), we show that the transient solution representing multispecies sequential competition can be reproducible and predictable with high probability.

  17. Dynamic behaviors of the periodic Lotka-Volterra competing system with impulsive perturbations

    International Nuclear Information System (INIS)

    Liu Bing; Teng Zhidong; Liu Wanbo

    2007-01-01

    In this paper, we investigate a classical periodic Lotka-Volterra competing system with impulsive perturbations. The conditions for the linear stability of trivial periodic solution and semi-trivial periodic solutions are given by applying Floquet theory of linear periodic impulsive equation, and we also give the conditions for the global stability of these solutions as a consequence of some abstract monotone iterative schemes introduced in this paper, which will be also used to get some sufficient conditions for persistence. By using the method of coincidence degree, the conditions for the existence of at least one strictly positive (componentwise) periodic solution are derived. The theoretical results are confirmed by a specific example and numerical simulations. It shows that the dynamic behaviors of the system we consider are quite different from the corresponding system without pulses

  18. Application of Reproducing Kernel Method for Solving Nonlinear Fredholm-Volterra Integrodifferential Equations

    Directory of Open Access Journals (Sweden)

    Omar Abu Arqub

    2012-01-01

    Full Text Available This paper investigates the numerical solution of nonlinear Fredholm-Volterra integro-differential equations using reproducing kernel Hilbert space method. The solution ( is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximate solution ( is obtained and it is proved to converge to the exact solution (. Furthermore, the proposed method has an advantage that it is possible to pick any point in the interval of integration and as well the approximate solution and its derivative will be applicable. Numerical examples are included to demonstrate the accuracy and applicability of the presented technique. The results reveal that the method is very effective and simple.

  19. An introduction to mathematical population dynamics along the trail of Volterra and Lotka

    CERN Document Server

    Iannelli, Mimmo

    2014-01-01

    This book is an introduction to mathematical biology for students with no experience in biology, but who have some mathematical background. The work is focused on population dynamics and ecology, following a tradition that goes back to Lotka and Volterra, and includes a part devoted to the spread of infectious diseases, a field where mathematical modeling is extremely popular. These themes are used as the area where to understand different types of mathematical modeling and the possible meaning of qualitative agreement of modeling with data. The book also includes a collections of problems designed to approach more advanced questions. This material has been used in the courses at the University of Trento, directed at students in their fourth year of studies in Mathematics. It can also be used as a reference as it provides up-to-date developments in several areas.

  20. Corrigendum to ;Lotka-Volterra systems satisfying a strong Painlevé property; [Phys. Lett. A 380 (47) (2016) 3977-3982

    Science.gov (United States)

    Bountis, Tassos; Vanhaecke, Pol

    2017-12-01

    The comment made after the proof of Proposition 3.3, in our paper [T. Bountis, P. Vanhaecke, Lotka-Volterra systems satisfying a strong Pailevé property, Phys. Lett. A 380 (47) (2016) 3977-3982], saying that the proposition can be generalized when linear terms are added to the Lotka-Volterra systems considered in the paper, is wrong. In general such deformed systems are not even Hamiltonian.

  1. Phantom cosmology without Big Rip singularity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Institucio Catalana de Recerca i Estudis Avancats - ICREA and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Tomsk (Russian Federation); Yurov, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)

    2012-03-23

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time ('phantom energy' without 'Big Rip' singularity) and (ii) energy density tends to constant value with time ('cosmological constant' with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  2. Radioanatomy of the singular nerve canal

    Energy Technology Data Exchange (ETDEWEB)

    Muren, C. [Dept. of Diagnostic Radiology, Sabbatsbergs Hospital, Stockholm (Sweden); Wadin, K. [University Hospital, Uppsala (Sweden); Dimopoulos, P. [University Hospital, Uppsala (Sweden)

    1991-08-01

    The singular canal conveys vestibular nerve fibers from the ampulla of the posterior semicircular canal to the posteroinferior border of the internal auditory meatus. Radiographic identification of this anatomic structure helps to distinguish it from a fracture. It is also a landmark in certain surgical procedures. Computed tomography (CT) examinations of deep-frozen temporal bone specimens were compared with subsequently prepared plastic casts of these bones, showing good correlation between the anatomy and the images. The singular canal and its variable anatomy were studied in CT examinations of 107 patients. The singular canal could be identified, in both the axial and in the coronal planes. Its point of entry into the internal auditory meatus varied considerably. (orig.)

  3. Enveloping branes and brane-world singularities

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios; Cotsakis, Spiros [CERN-Theory Division, Department of Physics, Geneva 23 (Switzerland); Klaoudatou, Ifigeneia [University of the Aegean, Research Group of Geometry, Dynamical Systems and Cosmology, Department of Information and Communication Systems Engineering, Samos (Greece)

    2014-12-01

    The existence of envelopes is studied for systems of differential equations in connection with the method of asymptotic splittings which allows one to determine the singularity structure of the solutions. The result is applied to brane-worlds consisting of a 3-brane in a five-dimensional bulk, in the presence of an analog of a bulk perfect fluid parameterizing a generic class of bulk matter. We find that all flat brane solutions suffer from a finite-distance singularity contrary to previous claims. We then study the possibility of avoiding finite-distance singularities by cutting the bulk and gluing regular solutions at the position of the brane. Further imposing physical conditions such as finite Planck mass on the brane and positive energy conditions on the bulk fluid, excludes, however, this possibility as well. (orig.)

  4. Phantom cosmology without Big Rip singularity

    International Nuclear Information System (INIS)

    Astashenok, Artyom V.; Nojiri, Shin'ichi; Odintsov, Sergei D.; Yurov, Artyom V.

    2012-01-01

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time (“phantom energy” without “Big Rip” singularity) and (ii) energy density tends to constant value with time (“cosmological constant” with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  5. Global embeddings for branes at toric singularities

    CERN Document Server

    Balasubramanian, Vijay; Braun, Volker; García-Etxebarria, Iñaki

    2012-01-01

    We describe how local toric singularities, including the Toric Lego construction, can be embedded in compact Calabi-Yau manifolds. We study in detail the addition of D-branes, including non-compact flavor branes as typically used in semi-realistic model building. The global geometry provides constraints on allowable local models. As an illustration of our discussion we focus on D3 and D7-branes on (the partially resolved) (dP0)^3 singularity, its embedding in a specific Calabi-Yau manifold as a hypersurface in a toric variety, the related type IIB orientifold compactification, as well as the corresponding F-theory uplift. Our techniques generalize naturally to complete intersections, and to a large class of F-theory backgrounds with singularities.

  6. Holographic subregion complexity for singular surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bakhshaei, Elaheh [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Mollabashi, Ali [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Shirzad, Ahmad [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)

    2017-10-15

    Recently holographic prescriptions were proposed to compute the quantum complexity of a given state in the boundary theory. A specific proposal known as 'holographic subregion complexity' is supposed to calculate the complexity of a reduced density matrix corresponding to a static subregion. We study different families of singular subregions in the dual field theory and find the divergence structure and universal terms of holographic subregion complexity for these singular surfaces. We find that there are new universal terms, logarithmic in the UV cut-off, due to the singularities of a family of surfaces including a kink in (2 + 1) dimensions and cones in even dimensional field theories. We also find examples of new divergent terms such as squared logarithm and negative powers times the logarithm of the UV cut-off parameter. (orig.)

  7. Singularity hypotheses a scientific and philosophical assessment

    CERN Document Server

    Moor, James; Søraker, Johnny; Steinhart, Eric

    2012-01-01

    Singularity Hypotheses: A Scientific and Philosophical Assessment offers authoritative, jargon-free essays and critical commentaries on accelerating technological progress and the notion of technological singularity. It focuses on conjectures about the intelligence explosion, transhumanism, and whole brain emulation. Recent years have seen a plethora of forecasts about the profound, disruptive impact that is likely to result from further progress in these areas. Many commentators however doubt the scientific rigor of these forecasts, rejecting them as speculative and unfounded. We therefore invited prominent computer scientists, physicists, philosophers, biologists, economists and other thinkers to assess the singularity hypotheses. Their contributions go beyond speculation, providing deep insights into the main issues and a balanced picture of the debate.

  8. Singularities in four-body final-state amplitudes

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1978-01-01

    Like three-body amplitudes, four-body amplitudes have subenergy threshold singularities over and above total-energy singularities. In the four-body problem we encounter a new type of subenergy singularity besides the usual two- and three-body subenergy threshold singularities. This singularity will be referred to as ''independent-pair threshold singularity'' and involves pair-subenergy threshold singularities in each of the two independent pair subenergies in four-body final states. We also study the particularly interesting case of resonant two- and three-body interactions in the four-body isobar model and the rapid (singular) dependence of the isobar amplitudes they generate in the four-body phase space. All these singularities are analyzed in the multiple-scattering formalism and it is shown that they arise from the ''next-to-last'' rescattering and hence may be represented correctly by an approximate amplitude which has that rescattering

  9. Partial regularity of weak solutions to a PDE system with cubic nonlinearity

    Science.gov (United States)

    Liu, Jian-Guo; Xu, Xiangsheng

    2018-04-01

    In this paper we investigate regularity properties of weak solutions to a PDE system that arises in the study of biological transport networks. The system consists of a possibly singular elliptic equation for the scalar pressure of the underlying biological network coupled to a diffusion equation for the conductance vector of the network. There are several different types of nonlinearities in the system. Of particular mathematical interest is a term that is a polynomial function of solutions and their partial derivatives and this polynomial function has degree three. That is, the system contains a cubic nonlinearity. Only weak solutions to the system have been shown to exist. The regularity theory for the system remains fundamentally incomplete. In particular, it is not known whether or not weak solutions develop singularities. In this paper we obtain a partial regularity theorem, which gives an estimate for the parabolic Hausdorff dimension of the set of possible singular points.

  10. Endpoint singularities in unintegrated parton distributions

    CERN Document Server

    Hautmann, F

    2007-01-01

    We examine the singular behavior from the endpoint region x -> 1 in parton distributions unintegrated in both longitudinal and transverse momenta. We identify and regularize the singularities by using the subtraction method, and compare this with the cut-off regularization method. The counterterms for the distributions with subtractive regularization are given in coordinate space by compact all-order expressions in terms of eikonal-line operators. We carry out an explicit calculation at one loop for the unintegrated quark distribution. We discuss the relation of the unintegrated parton distributions in subtractive regularization with the ordinary parton distributions.

  11. Characteristic classes, singular embeddings, and intersection homology.

    Science.gov (United States)

    Cappell, S E; Shaneson, J L

    1987-06-01

    This note announces some results on the relationship between global invariants and local topological structure. The first section gives a local-global formula for Pontrjagin classes or L-classes. The second section describes a corresponding decomposition theorem on the level of complexes of sheaves. A final section mentions some related aspects of "singular knot theory" and the study of nonisolated singularities. Analogous equivariant analogues, with local-global formulas for Atiyah-Singer classes and their relations to G-signatures, will be presented in a future paper.

  12. Cosmic censorship and the strengths of singularities

    International Nuclear Information System (INIS)

    Newman, R.P.

    1986-01-01

    This paper considers the principal definitions concerning limiting curvature strength on geodesics, and on non-spacelike geodesics in particular. They are formulated in terms of focussing conditions. Two definitions suggest themselves, and these are given in terms of a concept of a generalized Jacobi field. An historical survey is presented on some important developments concerning examples of naked singularities. The historical context is recalled in which these models, and cosmic censorship in general, have arisen. It is the author's opinion that one can expect to obtain theoretical limitations on the strengths of any naked singularities which do occur

  13. A combinatorial method for the vanishing of the Poisson brackets of an integrable Lotka-Volterra system

    International Nuclear Information System (INIS)

    Itoh, Yoshiaki

    2009-01-01

    The combinatorial method is useful to obtain conserved quantities for some nonlinear integrable systems, as an alternative to the Lax representation method. Here we extend the combinatorial method and introduce an elementary geometry to show the vanishing of the Poisson brackets of the Hamiltonian structure for a Lotka-Volterra system of competing species. We associate a set of points on a circle with a set of species of the Lotka-Volterra system, where the dominance relations between points are given by the dominance relations between the species. We associate each term of the conserved quantities with a subset of points on the circle, which simplifies to show the vanishing of the Poisson brackets

  14. Second class weak currents

    International Nuclear Information System (INIS)

    Delorme, J.

    1978-01-01

    The definition and general properties of weak second class currents are recalled and various detection possibilities briefly reviewed. It is shown that the existing data on nuclear beta decay can be consistently analysed in terms of a phenomenological model. Their implication on the fundamental structure of weak interactions is discussed [fr

  15. Weak C* Hopf Symmetry

    OpenAIRE

    Rehren, K. -H.

    1996-01-01

    Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discussed.

  16. Bagging Weak Predictors

    DEFF Research Database (Denmark)

    Lukas, Manuel; Hillebrand, Eric

    Relations between economic variables can often not be exploited for forecasting, suggesting that predictors are weak in the sense that estimation uncertainty is larger than bias from ignoring the relation. In this paper, we propose a novel bagging predictor designed for such weak predictor variab...

  17. Singular Linear Differential Equations in Two Variables

    NARCIS (Netherlands)

    Braaksma, B.L.J.; Put, M. van der

    2008-01-01

    The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no

  18. Singular continuous spectrum for palindromic Schroedinger operators

    International Nuclear Information System (INIS)

    Hof, A.; Knill, O.; Simon, B.

    1995-01-01

    We give new examples of discrete Schroedinger operators with potentials taking finitely many values that have purely singular continuous spectrum. If the hull X of the potential is strictly ergodic, then the existence of just one potential x in X for which the operator has no eigenvalues implies that there is a generic set in X for which the operator has purely singular continuous spectrum. A sufficient condition for the existence of such an x is that there is a z element of X that contains arbitrarily long palindromes. Thus we can define a large class of primitive substitutions for which the operators are purely singularly continuous for a generic subset in X. The class includes well-known substitutions like Fibonacci, Thue-Morse, Period Doubling, binary non-Pisot and ternary non-Pisot. We also show that the operator has no absolutely continuous spectrum for all x element of X if X derives from a primitive substitution. For potentials defined by circle maps, x n =l J (θ 0 +nα), we show that the operator has purely singular continuous spectrum for a generic subset in X for all irrational α and every half-open interval J. (orig.)

  19. 'Footballs', conical singularities, and the Liouville equation

    International Nuclear Information System (INIS)

    Redi, Michele

    2005-01-01

    We generalize the football shaped extra dimensions scenario to an arbitrary number of branes. The problem is related to the solution of the Liouville equation with singularities, and explicit solutions are presented for the case of three branes. The tensions of the branes do not need to be tuned with each other but only satisfy mild global constraints

  20. Mobile communications technology: The singular factor responsible ...

    African Journals Online (AJOL)

    This paper investigated the factors responsible for the growth of Internet usage on the African continent. The principal finding was that increasing growth of Internet usage is also down to one singular factor: mobile communications technology. The proliferation of mobile phone usage in Africa has resulted in the sustained ...

  1. Diamagnetism of quantum gases with singular potentials

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Savoie, Baptiste

    2010-01-01

    We consider a gas of quasi-free quantum particles confined to a finite box, subjected to singular magnetic and electric fields. We prove in great generality that the finite volume grand-canonical pressure is analytic with respect to the chemical potential and the intensity of the external magnetic...

  2. Supersymmetric quantum mechanics under point singularities

    International Nuclear Information System (INIS)

    Uchino, Takashi; Tsutsui, Izumi

    2003-01-01

    We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed

  3. A singularity theorem based on spatial averages

    Indian Academy of Sciences (India)

    journal of. July 2007 physics pp. 31–47. A singularity theorem based on spatial ... In this paper I would like to present a result which confirms – at least partially – ... A detailed analysis of how the model fits in with the .... Further, the statement that the spatial average ...... Financial support under grants FIS2004-01626 and no.

  4. Symmetries and singularities in Hamiltonian systems

    International Nuclear Information System (INIS)

    Miranda, Eva

    2009-01-01

    This paper contains several results concerning the role of symmetries and singularities in the mathematical formulation of many physical systems. We concentrate in systems which find their mathematical model on a symplectic or Poisson manifold and we present old and new results from a global perspective.

  5. Singular interactions supported by embedded curves

    International Nuclear Information System (INIS)

    Kaynak, Burak Tevfik; Turgut, O Teoman

    2012-01-01

    In this work, singular interactions supported by embedded curves on Riemannian manifolds are discussed from a more direct and physical perspective, via the heat kernel approach. We show that the renormalized problem is well defined, the ground state is finite and the corresponding wavefunction is positive. The renormalization group invariance of the model is also discussed. (paper)

  6. Resolving curvature singularities in holomorphic gravity

    NARCIS (Netherlands)

    Mantz, C.L.M.; Prokopec, T.

    2011-01-01

    We formulate a holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature

  7. Classical resolution of singularities in dilaton cosmologies

    NARCIS (Netherlands)

    Bergshoeff, EA; Collinucci, A; Roest, D; Russo, JG; Townsend, PK

    2005-01-01

    For models of dilaton gravity with a possible exponential potential, such as the tensor-scalar sector of ITA supergravity, we show how cosmological solutions correspond to trajectories in a 2D Milne space (parametrized by the dilaton and the scale factor). Cosmological singularities correspond to

  8. Normal forms of Hopf-zero singularity

    International Nuclear Information System (INIS)

    Gazor, Majid; Mokhtari, Fahimeh

    2015-01-01

    The Lie algebra generated by Hopf-zero classical normal forms is decomposed into two versal Lie subalgebras. Some dynamical properties for each subalgebra are described; one is the set of all volume-preserving conservative systems while the other is the maximal Lie algebra of nonconservative systems. This introduces a unique conservative–nonconservative decomposition for the normal form systems. There exists a Lie-subalgebra that is Lie-isomorphic to a large family of vector fields with Bogdanov–Takens singularity. This gives rise to a conclusion that the local dynamics of formal Hopf-zero singularities is well-understood by the study of Bogdanov–Takens singularities. Despite this, the normal form computations of Bogdanov–Takens and Hopf-zero singularities are independent. Thus, by assuming a quadratic nonzero condition, complete results on the simplest Hopf-zero normal forms are obtained in terms of the conservative–nonconservative decomposition. Some practical formulas are derived and the results implemented using Maple. The method has been applied on the Rössler and Kuramoto–Sivashinsky equations to demonstrate the applicability of our results. (paper)

  9. Normal forms of Hopf-zero singularity

    Science.gov (United States)

    Gazor, Majid; Mokhtari, Fahimeh

    2015-01-01

    The Lie algebra generated by Hopf-zero classical normal forms is decomposed into two versal Lie subalgebras. Some dynamical properties for each subalgebra are described; one is the set of all volume-preserving conservative systems while the other is the maximal Lie algebra of nonconservative systems. This introduces a unique conservative-nonconservative decomposition for the normal form systems. There exists a Lie-subalgebra that is Lie-isomorphic to a large family of vector fields with Bogdanov-Takens singularity. This gives rise to a conclusion that the local dynamics of formal Hopf-zero singularities is well-understood by the study of Bogdanov-Takens singularities. Despite this, the normal form computations of Bogdanov-Takens and Hopf-zero singularities are independent. Thus, by assuming a quadratic nonzero condition, complete results on the simplest Hopf-zero normal forms are obtained in terms of the conservative-nonconservative decomposition. Some practical formulas are derived and the results implemented using Maple. The method has been applied on the Rössler and Kuramoto-Sivashinsky equations to demonstrate the applicability of our results.

  10. A Systolic Architecture for Singular Value Decomposition,

    Science.gov (United States)

    1983-01-01

    Presented at the 1 st International Colloquium on Vector and Parallel Computing in Scientific Applications, Paris, March 191J Contract N00014-82-K.0703...Gene Golub. Private comunication . given inputs x and n 2 , compute 2 2 2 2 /6/ G. H. Golub and F. T. Luk : "Singular Value I + X1 Decomposition

  11. Singularity is the Future of ICT Research

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2014-06-01

    Jun 1, 2014 ... innovation if the black race are not to be left one hundred years ... aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori ..... An overview of models of technological singularity ... the Singularity—representing a profound and disruptive transformation in.

  12. Analysis of potential urban unstable areas and landslide-induced damages on Volterra historical site through a remote sensing approach

    Science.gov (United States)

    Del Soldato, Matteo; Bianchini, Silvia; Nolesini, Teresa; Frodella, William; Casagli, Nicola

    2017-04-01

    Multisystem remote sensing techniques were exploited to provide a comprehensive overview of Volterra (Italy) site stability with regards to its landscape, urban fabric and cultural heritage. Interferometric Synthetic Aperture Radar (InSAR) techniques allow precise measurements of Earth surface displacement, as well as the detection of building deformations on large urban areas. In the field of cultural heritage conservation Infrared thermography (IRT) provides surface temperature mapping and therefore detects various potential criticalities, such as moisture, seepage areas, cracks and structural anomalies. Between winter 2014 and spring 2015 the historical center and south-western sectors of Volterra (Tuscany region, central Italy) were affected by instability phenomena. The spatial distribution, typology and effect on the urban fabrics of the landslide phenomena were investigated by analyzing the geological and geomorphological settings, traditional geotechnical monitoring and advanced remote sensing data such as Persistent Scatterers Interferometry (PSI). The ground deformation rates and the maximum settlement values derived from SAR acquisitions of historical ENVISAT and recent COSMO-SkyMed sensors, in 2003-2009 and 2010-2015 respectively, were compared with background geological data, constructive features, in situ evidences and detailed field inspections in order to classify landslide-damaged buildings. In this way, the detected movements and their potential correspondences with recognized damages were investigated in order to perform an assessment of the built-up areas deformations and damages on Volterra. The IRT technique was applied in order to survey the surface temperature of the historical Volterra wall-enclosure, and allowed highlighting thermal anomalies on this cultural heritage element of the site. The obtained results permitted to better correlate the landslide effects of the recognized deformations in the urban fabric, in order to provide useful

  13. A Fibonacci collocation method for solving a class of Fredholm–Volterra integral equations in two-dimensional spaces

    Directory of Open Access Journals (Sweden)

    Farshid Mirzaee

    2014-06-01

    Full Text Available In this paper, we present a numerical method for solving two-dimensional Fredholm–Volterra integral equations (F-VIE. The method reduces the solution of these integral equations to the solution of a linear system of algebraic equations. The existence and uniqueness of the solution and error analysis of proposed method are discussed. The method is computationally very simple and attractive. Finally, numerical examples illustrate the efficiency and accuracy of the method.

  14. Generalized Parton Distributions and their Singularities

    Energy Technology Data Exchange (ETDEWEB)

    Anatoly Radyushkin

    2011-04-01

    A new approach to building models of generalized parton distributions (GPDs) is discussed that is based on the factorized DD (double distribution) Ansatz within the single-DD formalism. The latter was not used before, because reconstructing GPDs from the forward limit one should start in this case with a very singular function $f(\\beta)/\\beta$ rather than with the usual parton density $f(\\beta)$. This results in a non-integrable singularity at $\\beta=0$ exaggerated by the fact that $f(\\beta)$'s, on their own, have a singular $\\beta^{-a}$ Regge behavior for small $\\beta$. It is shown that the singularity is regulated within the GPD model of Szczepaniak et al., in which the Regge behavior is implanted through a subtracted dispersion relation for the hadron-parton scattering amplitude. It is demonstrated that using proper softening of the quark-hadron vertices in the regions of large parton virtualities results in model GPDs $H(x,\\xi)$ that are finite and continuous at the "border point'' $x=\\xi$. Using a simple input forward distribution, we illustrate the implementation of the new approach for explicit construction of model GPDs. As a further development, a more general method of regulating the $\\beta=0$ singularities is proposed that is based on the separation of the initial single DD $f(\\beta, \\alpha)$ into the "plus'' part $[f(\\beta,\\alpha)]_{+}$ and the $D$-term. It is demonstrated that the "DD+D'' separation method allows to (re)derive GPD sum rules that relate the difference between the forward distribution $f(x)=H(x,0)$ and the border function $H(x,x)$ with the $D$-term function $D(\\alpha)$.

  15. São Carlos Workshop on Real and Complex Singularities

    CERN Document Server

    Ruas, Maria

    2007-01-01

    The São Carlos Workshop on Real and Complex Singularities is the longest running workshop in singularities. It is held every two years and is a key international event for people working in the field. This volume contains papers presented at the eighth workshop, held at the IML, Marseille, July 19–23, 2004. The workshop offers the opportunity to establish the state of the art and to present new trends, new ideas and new results in all of the branches of singularities. This is reflected by the contributions in this book. The main topics discussed are equisingularity of sets and mappings, geometry of singular complex analytic sets, singularities of mappings, characteristic classes, classification of singularities, interaction of singularity theory with some of the new ideas in algebraic geometry imported from theoretical physics, and applications of singularity theory to geometry of surfaces in low dimensional euclidean spaces, to differential equations and to bifurcation theory.

  16. Singularly perturbed Burger-Huxley equation: Analytical solution ...

    African Journals Online (AJOL)

    user

    solutions of singularly perturbed nonlinear differential equations. ... for solving generalized Burgers-Huxley equation but this equation is not singularly ...... Solitary waves solutions of the generalized Burger Huxley equations, Journal of.

  17. EDITORIAL: The plurality of optical singularities

    Science.gov (United States)

    Berry, Michael; Dennis, Mark; Soskin, Marat

    2004-05-01

    This collection of papers arose from an Advanced Research Workshop on Singular Optics, held at the Bogolyubov Institute in Kiev, Ukraine, during 24-28 June 2003. The workshop was generously financed by NATO, with welcome additional support from Institute of Physics Publishing and the National Academy of Sciences of Ukraine. There had been two previous international meetings devoted to singular optics, in Crimea in 1997 and 2000, reflecting the strong involvement of former Soviet Union countries in this research. Awareness of singular optics is growing within the wider optics community, indicated by symposia on the subject at several general optics meetings. As the papers demonstrate, the field of singular optics has reached maturity. Although the subject originated in an observation on ultrasound, it has been largely theory-driven until recently. Now, however, there is close contact between theory and experiment, and we speculate that this is one reason for its accelerated development. To single out particular papers for mention here would be invidious, and since the papers speak for themselves it is not necessary to describe them all. Instead, we will confine ourselves to a brief description of the main areas included in singular optics, to illustrate the broad scope of the subject. Optical vortices are lines of phase singularity: nodal lines where the intensity of the light, represented by a complex scalar field, vanishes. The subject has emerged from flatland, where the vortices are points characterized by topological charges, into the much richer world of vortex lines in three dimensions. By combining Laguerre-Gauss or Bessel beams, or reflecting light from plates with spiral steps, intricate arrangements can be generated, with vortices that are curved, looped, knotted, linked or braided. With light whose state of polarization varies with position, different singularities occur, associated with the vector nature of light. These are also lines, on which the

  18. Electro-weak theory

    International Nuclear Information System (INIS)

    Deshpande, N.G.

    1980-01-01

    By electro-weak theory is meant the unified field theory that describes both weak and electro-magnetic interactions. The development of a unified electro-weak theory is certainly the most dramatic achievement in theoretical physics to occur in the second half of this century. It puts weak interactions on the same sound theoretical footing as quantum elecrodynamics. Many theorists have contributed to this development, which culminated in the works of Glashow, Weinberg and Salam, who were jointly awarded the 1979 Nobel Prize in physics. Some of the important ideas that contributed to this development are the theory of beta decay formulated by Fermi, Parity violation suggested by Lee and Yang, and incorporated into immensely successful V-A theory of weak interactions by Sudarshan and Marshak. At the same time ideas of gauge invariance were applied to weak interaction by Schwinger, Bludman and Glashow. Weinberg and Salam then went one step further and wrote a theory that is renormalizable, i.e., all higher order corrections are finite, no mean feat for a quantum field theory. The theory had to await the development of the quark model of hadrons for its completion. A description of the electro-weak theory is given

  19. Weak interactions with nuclei

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1983-01-01

    Nuclei provide systems where the strong, electomagnetic, and weak interactions are all present. The current picture of the strong interactions is based on quarks and quantum chromodynamics (QCD). The symmetry structure of this theory is SU(3)/sub C/ x SU(2)/sub W/ x U(1)/sub W/. The electroweak interactions in nuclei can be used to probe this structure. Semileptonic weak interactions are considered. The processes under consideration include beta decay, neutrino scattering and weak neutral-current interactions. The starting point in the analysis is the effective Lagrangian of the Standard Model

  20. THE EXT RACORPOREAL FERTILIZATION TECHNOLOGIES AND THE SINGULARITY PROBLEMS

    Directory of Open Access Journals (Sweden)

    S. V. Denysenko

    2013-05-01

    Full Text Available The peculiarities of modern medicine development connected with the technological and informative singularity are analyzed. The risks of realization of extracorporeal fertilization are examined from positions of development of informative singularity. The warning problems of origin of singularity are discussed on t h e base of t h e newest technologies development.

  1. On the nature of naked singularities in Vaidya spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, I.H. (Aligarh Muslim Univ. (India). Dept. of Physics); Joshi, P.S. (Tata Inst. of Fundamental Research, Bombay (India))

    1989-11-01

    The Vaidya-Papapetrou model containing a naked singularity is analysed for outgoing causal geodesics joining the singularity. The curvature growth along these trajectories is examined to show that this is a strong curvature singularity, providing a counter-example to certain forms of cosmic censorship hypotheses. (author).

  2. On the nature of naked singularities in Vaidya spacetimes

    International Nuclear Information System (INIS)

    Dwivedi, I.H.

    1989-01-01

    The Vaidya-Papapetrou model containing a naked singularity is analysed for outgoing causal geodesics joining the singularity. The curvature growth along these trajectories is examined to show that this is a strong curvature singularity, providing a counter-example to certain forms of cosmic censorship hypotheses. (author)

  3. 7 CFR 1200.50 - Words in the singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Words in the singular form. 1200.50 Section 1200.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING....50 Words in the singular form. Words in this subpart in the singular form shall be deemed to import...

  4. 7 CFR 900.1 - Words in the singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.1 Section 900.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...

  5. 7 CFR 900.20 - Words in the singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.20 Section 900.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... § 900.20 Words in the singular form. Words in this subpart in the singular form shall be deemed to...

  6. 7 CFR 900.36 - Words in the singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.36 Section 900.36 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Marketing Orders § 900.36 Words in the singular form. Words in this subpart in the singular form shall be...

  7. 7 CFR 900.100 - Words in the singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.100 Section 900.100 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...

  8. 7 CFR 46.1 - Words in singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Words in singular form. 46.1 Section 46.1 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Words in singular form. Words in this part in the singular form shall be deemed to import the plural...

  9. 7 CFR 900.50 - Words in the singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.50 Section 900.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...

  10. 7 CFR 61.1 - Words in singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Words in singular form. 61.1 Section 61.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Words in singular form. Words used in the regulations in this subpart in the singular form shall be...

  11. Singularities and the geometry of spacetime

    Science.gov (United States)

    Hawking, Stephen

    2014-11-01

    The aim of this essay is to investigate certain aspects of the geometry of the spacetime manifold in the General Theory of Relativity with particular reference to the occurrence of singularities in cosmological solutions and their relation with other global properties. Section 2 gives a brief outline of Riemannian geometry. In Section 3, the General Theory of Relativity is presented in the form of two postulates and two requirements which are common to it and to the Special Theory of Relativity, and a third requirement, the Einstein field equations, which distinguish it from the Special Theory. There does not seem to be any alternative set of field equations which would not have some undeseriable features. Some exact solutions are described. In Section 4, the physical significance of curvature is investigated using the deviation equation for timelike and null curves. The Riemann tensor is decomposed into the Ricci tensor which represents the gravitational effect at a point of matter at that point and the Welyl tensor which represents the effect at a point of gravitational radiation and matter at other points. The two tensors are related by the Bianchi identities which are presented in a form analogous to the Maxwell equations. Some lemmas are given for the occurrence of conjugate points on timelike and null geodesics and their relation with the variation of timelike and null curves is established. Section 5 is concerned with properties of causal relations between points of spacetime. It is shown that these could be used to determine physically the manifold structure of spacetime if the strong causality assumption held. The concepts of a null horizon and a partial Cauchy surface are introduced and are used to prove a number of lemmas relating to the existence of a timelike curve of maximum length between two sets. In Section 6, the definition of a singularity of spacetime is given in terms of geodesic incompleteness. The various energy assumptions needed to prove

  12. Pontryagin-Thom-Szucs type construction for non-positive codimensional singular maps with prescribed singular fibers

    OpenAIRE

    Kalmar, Boldizsar

    2006-01-01

    We give a Pontryagin-Thom-Szucs type construction for non-positive codimensional singular maps, and obtain results about cobordism and bordism groups of -1 codimensional stable maps with prescribed singular fibers.

  13. History of Weak Interactions

    Science.gov (United States)

    Lee, T. D.

    1970-07-01

    While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.

  14. Hunting the weak bosons

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The possibility of the production of weak bosons in the proton-antiproton colliding beam facilities which are currently being developed, is discussed. The production, decay and predicted properties of these particles are described. (W.D.L.).

  15. Dissipation, intermittency, and singularities in incompressible turbulent flows

    Science.gov (United States)

    Debue, P.; Shukla, V.; Kuzzay, D.; Faranda, D.; Saw, E.-W.; Daviaud, F.; Dubrulle, B.

    2018-05-01

    We examine the connection between the singularities or quasisingularities in the solutions of the incompressible Navier-Stokes equation (INSE) and the local energy transfer and dissipation, in order to explore in detail how the former contributes to the phenomenon of intermittency. We do so by analyzing the velocity fields (a) measured in the experiments on the turbulent von Kármán swirling flow at high Reynolds numbers and (b) obtained from the direct numerical simulations of the INSE at a moderate resolution. To compute the local interscale energy transfer and viscous dissipation in experimental and supporting numerical data, we use the weak solution formulation generalization of the Kármán-Howarth-Monin equation. In the presence of a singularity in the velocity field, this formulation yields a nonzero dissipation (inertial dissipation) in the limit of an infinite resolution. Moreover, at finite resolutions, it provides an expression for local interscale energy transfers down to the scale where the energy is dissipated by viscosity. In the presence of a quasisingularity that is regularized by viscosity, the formulation provides the contribution to the viscous dissipation due to the presence of the quasisingularity. Therefore, our formulation provides a concrete support to the general multifractal description of the intermittency. We present the maps and statistics of the interscale energy transfer and show that the extreme events of this transfer govern the intermittency corrections and are compatible with a refined similarity hypothesis based on this transfer. We characterize the probability distribution functions of these extreme events via generalized Pareto distribution analysis and find that the widths of the tails are compatible with a similarity of the second kind. Finally, we make a connection between the topological and the statistical properties of the extreme events of the interscale energy transfer field and its multifractal properties.

  16. Charged weak currents

    International Nuclear Information System (INIS)

    Turlay, R.

    1979-01-01

    In this review of charged weak currents I shall concentrate on inclusive high energy neutrino physics. There are surely still things to learn from the low energy weak interaction but I will not discuss it here. Furthermore B. Tallini will discuss the hadronic final state of neutrino interactions. Since the Tokyo conference a few experimental results have appeared on charged current interaction, I will present them and will also comment on important topics which have been published during the last past year. (orig.)

  17. Friedmann-like cosmological models without singularity

    International Nuclear Information System (INIS)

    Kuchowicz, B.

    1978-01-01

    The Einstein-Cartan theory of gravitation ('general relativity with spin') provides a specific spin-spin contact interaction of matter, in addition to the usual long-range gravity. This new interaction enables us to prevent singularities in cosmological models. it is shown how this mechanism works in the case when the standard Einstein-Cartan equations are valid at a micro-physical level, and some spin-spin terms remain from the averaging procedure for randomly distributed spins. In contrast with the case of aligned spin distributions, it is possible to take over the isotropic and spatially homogeneous (i.e., Friedmannian) models into the Einstein-Cartan theory. These models can be made free from singularity, thanks to the self-interaction of spinning fluid. (author)

  18. Singularities in the general theory of relativity

    International Nuclear Information System (INIS)

    Treder, H.J.

    1980-01-01

    'Regular solutions of Einstein's equations' mean very different things. In the case of the empty-space equations, Rsub(ik) = o, such solutions must be metrics gsub(ik)(xsup(l)) without additionaly singular 'field sources' (Einstein's 'Particle problem'). However the 'phenomenological matter' is defined by the Einstein equations Rsub(ik) - 1/2gsub(ik)R = -kappaTsub(ik) itselves. Therefore if 10 regular functions gsub(ik)(xsup(l)) are given (which the inequalities of Lorentz-signature fulfil) then these gsub(ik) define 10 functions Tsub(ik)(xsup(l)) without singularities. But, the matter-tensor Tsub(ik) must fulfil the two inequalities T >= o, T 0 0 >= 1/2 T only and therefore the Einstein-equations with 'phenomenological matter' mean the two inequalities R >= o, R 0 0 <= o which are incompatible with a permanently regular metric with Lorentz-signature, generally. (author)

  19. Singularity theory and equivariant symplectic maps

    CERN Document Server

    Bridges, Thomas J

    1993-01-01

    The monograph is a study of the local bifurcations of multiparameter symplectic maps of arbitrary dimension in the neighborhood of a fixed point.The problem is reduced to a study of critical points of an equivariant gradient bifurcation problem, using the correspondence between orbits ofa symplectic map and critical points of an action functional. New results onsingularity theory for equivariant gradient bifurcation problems are obtained and then used to classify singularities of bifurcating period-q points. Of particular interest is that a general framework for analyzing group-theoretic aspects and singularities of symplectic maps (particularly period-q points) is presented. Topics include: bifurcations when the symplectic map has spatial symmetry and a theory for the collision of multipliers near rational points with and without spatial symmetry. The monograph also includes 11 self-contained appendices each with a basic result on symplectic maps. The monograph will appeal to researchers and graduate student...

  20. Dirac operator on spaces with conical singularities

    International Nuclear Information System (INIS)

    Chou, A.W.

    1982-01-01

    The Dirac operator on compact spaces with conical singularities is studied via the separation of variables formula and the functional calculus of the Dirac Laplacian on the cone. A Bochner type vanishing theorem which gives topological obstructions to the existence of non-negative scalar curvature k greater than or equal to 0 in the singular case is proved. An index formula relating the index of the Dirac operator to the A-genus and Eta-invariant similar to that of Atiyah-Patodi-Singer is obtained. In an appendix, manifolds with boundary with non-negative scalar curvature k greater than or equal to 0 are studied, and several new results on constructing complete metrics with k greater than or equal to on them are obtained

  1. Further holographic investigations of big bang singularities

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Netta [Department of Physics, UCSB,Santa Barbara, CA 93106 (United States); Hertog, Thomas [Institute for Theoretical Physics, KU Leuven,3001 Leuven (Belgium); Horowitz, Gary T. [Department of Physics, UCSB,Santa Barbara, CA 93106 (United States)

    2015-07-09

    We further explore the quantum dynamics near past cosmological singularities in anisotropic Kasner-AdS solutions using gauge/gravity duality. The dual description of the bulk evolution involves N=4 super Yang-Mills on the contracting branch of an anisotropic de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlator between two points separated in a direction with negative Kasner exponent p always exhibits a pole at horizon scales, in any dimension, which we interpret as a dual signature of the classical bulk singularity. This indicates that the geodesic approximation selects a non-normalizable Yang-Mills state.

  2. Further holographic investigations of big bang singularities

    Science.gov (United States)

    Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T.

    2015-07-01

    We further explore the quantum dynamics near past cosmological singularities in anisotropic Kasner-AdS solutions using gauge/gravity duality. The dual description of the bulk evolution involves super Yang-Mills on the contracting branch of an anisotropic de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlator between two points separated in a direction with negative Kasner exponent p always exhibits a pole at horizon scales, in any dimension, which we interpret as a dual signature of the classical bulk singularity. This indicates that the geodesic approximation selects a non-normalizable Yang-Mills state.

  3. Singular tachyon kinks from regular profiles

    International Nuclear Information System (INIS)

    Copeland, E.J.; Saffin, P.M.; Steer, D.A.

    2003-01-01

    We demonstrate how Sen's singular kink solution of the Born-Infeld tachyon action can be constructed by taking the appropriate limit of initially regular profiles. It is shown that the order in which different limits are taken plays an important role in determining whether or not such a solution is obtained for a wide class of potentials. Indeed, by introducing a small parameter into the action, we are able circumvent the results of a recent paper which derived two conditions on the asymptotic tachyon potential such that the singular kink could be recovered in the large amplitude limit of periodic solutions. We show that this is explained by the non-commuting nature of two limits, and that Sen's solution is recovered if the order of the limits is chosen appropriately

  4. The technological singularity and exponential medicine

    OpenAIRE

    Iraj Nabipour; Majid Assadi

    2016-01-01

    The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested th...

  5. Singular reduction of Nambu-Poisson manifolds

    Science.gov (United States)

    Das, Apurba

    The version of Marsden-Ratiu Poisson reduction theorem for Nambu-Poisson manifolds by a regular foliation have been studied by Ibáñez et al. In this paper, we show that this reduction procedure can be extended to the singular case. Under a suitable notion of Hamiltonian flow on the reduced space, we show that a set of Hamiltonians on a Nambu-Poisson manifold can also be reduced.

  6. Weak interactions: muon decay

    International Nuclear Information System (INIS)

    Sachs, A.M.; Sirlin, A.

    1975-01-01

    The traditional theory of the dominant mode of muon decay is presented, a survey of the experiments which have measured the observable features of the decay is given, and those things which can be learned about the parameters and nature of the theory from the experimental results are indicated. The following aspects of the theory of muon decay are presented first: general four-fermion theory, two-component theory of the neutrino, V--A theory, two-component and V--A theories vs general four-fermion theory, intermediate-boson hypothesis, radiative corrections, radiative corrections in the intermediate-boson theory, and endpoint singularities and corrections of order α 2 . Experiments on muon lifetime, isotropic electron spectrum, total asymmetry and energy dependence of asymmetry of electrons from polarized muons, and electron polarization are described, and a summary of experimental results is given. 7 figures, 2 tables, 109 references

  7. Non-equilibrium relaxation in a stochastic lattice Lotka-Volterra model

    Science.gov (United States)

    Chen, Sheng; Täuber, Uwe C.

    2016-04-01

    We employ Monte Carlo simulations to study a stochastic Lotka-Volterra model on a two-dimensional square lattice with periodic boundary conditions. If the (local) prey carrying capacity is finite, there exists an extinction threshold for the predator population that separates a stable active two-species coexistence phase from an inactive state wherein only prey survive. Holding all other rates fixed, we investigate the non-equilibrium relaxation of the predator density in the vicinity of the critical predation rate. As expected, we observe critical slowing-down, i.e., a power law dependence of the relaxation time on the predation rate, and algebraic decay of the predator density at the extinction critical point. The numerically determined critical exponents are in accord with the established values of the directed percolation universality class. Following a sudden predation rate change to its critical value, one finds critical aging for the predator density autocorrelation function that is also governed by universal scaling exponents. This aging scaling signature of the active-to-absorbing state phase transition emerges at significantly earlier times than the stationary critical power laws, and could thus serve as an advanced indicator of the (predator) population’s proximity to its extinction threshold.

  8. Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations.

    Science.gov (United States)

    Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W

    2015-01-01

    Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.

  9. Survival behavior in the cyclic Lotka-Volterra model with a randomly switching reaction rate

    Science.gov (United States)

    West, Robert; Mobilia, Mauro; Rucklidge, Alastair M.

    2018-02-01

    We study the influence of a randomly switching reproduction-predation rate on the survival behavior of the nonspatial cyclic Lotka-Volterra model, also known as the zero-sum rock-paper-scissors game, used to metaphorically describe the cyclic competition between three species. In large and finite populations, demographic fluctuations (internal noise) drive two species to extinction in a finite time, while the species with the smallest reproduction-predation rate is the most likely to be the surviving one (law of the weakest). Here we model environmental (external) noise by assuming that the reproduction-predation rate of the strongest species (the fastest to reproduce and predate) in a given static environment randomly switches between two values corresponding to more and less favorable external conditions. We study the joint effect of environmental and demographic noise on the species survival probabilities and on the mean extinction time. In particular, we investigate whether the survival probabilities follow the law of the weakest and analyze their dependence on the external noise intensity and switching rate. Remarkably, when, on average, there is a finite number of switches prior to extinction, the survival probability of the predator of the species whose reaction rate switches typically varies nonmonotonically with the external noise intensity (with optimal survival about a critical noise strength). We also outline the relationship with the case where all reaction rates switch on markedly different time scales.

  10. Survival behavior in the cyclic Lotka-Volterra model with a randomly switching reaction rate.

    Science.gov (United States)

    West, Robert; Mobilia, Mauro; Rucklidge, Alastair M

    2018-02-01

    We study the influence of a randomly switching reproduction-predation rate on the survival behavior of the nonspatial cyclic Lotka-Volterra model, also known as the zero-sum rock-paper-scissors game, used to metaphorically describe the cyclic competition between three species. In large and finite populations, demographic fluctuations (internal noise) drive two species to extinction in a finite time, while the species with the smallest reproduction-predation rate is the most likely to be the surviving one (law of the weakest). Here we model environmental (external) noise by assuming that the reproduction-predation rate of the strongest species (the fastest to reproduce and predate) in a given static environment randomly switches between two values corresponding to more and less favorable external conditions. We study the joint effect of environmental and demographic noise on the species survival probabilities and on the mean extinction time. In particular, we investigate whether the survival probabilities follow the law of the weakest and analyze their dependence on the external noise intensity and switching rate. Remarkably, when, on average, there is a finite number of switches prior to extinction, the survival probability of the predator of the species whose reaction rate switches typically varies nonmonotonically with the external noise intensity (with optimal survival about a critical noise strength). We also outline the relationship with the case where all reaction rates switch on markedly different time scales.

  11. The Port Service Ecosystem Research Based on the Lotka-Volterra Model

    Directory of Open Access Journals (Sweden)

    Li Wenjuan

    2017-11-01

    Full Text Available Under the new normal of China’s economy, the competition among the port enterprises is not only the competition of the core competence of the port, the port industry chain or the port supply chain, but also the competition of the port service ecosystem. In this paper, the concept and characteristics of the port service ecosystem is discussed, a hierarchical model of the port service ecosystem is constructed. As an extended logistic model, Lotka-Volterra model is applied to study the competitive co-evolution and mutually beneficial co-evolution of enterprises in the port service ecosystem. This paper simulates the co-evolution of enterprises in the port service ecosystem by using MATLAB programming. The simulation results show that the breadth of the niche of the enterprises is changing with the change of the competition coefficient and the coefficient of mutual benefit in the port service ecosystem. Based on that, some proposals are put forward to ensure the healthy and orderly development of the port service ecosystem.

  12. Global analysis of an impulsive delayed Lotka-Volterra competition system

    Science.gov (United States)

    Xia, Yonghui

    2011-03-01

    In this paper, a retarded impulsive n-species Lotka-Volterra competition system with feedback controls is studied. Some sufficient conditions are obtained to guarantee the global exponential stability and global asymptotic stability of a unique equilibrium for such a high-dimensional biological system. The problem considered in this paper is in many aspects more general and incorporates as special cases various problems which have been extensively studied in the literature. Moreover, applying the obtained results to some special cases, I derive some new criteria which generalize and greatly improve some well known results. A method is proposed to investigate biological systems subjected to the effect of both impulses and delays. The method is based on Banach fixed point theory and matrix's spectral theory as well as Lyapunov function. Moreover, some novel analytic techniques are employed to study GAS and GES. It is believed that the method can be extended to other high-dimensional biological systems and complex neural networks. Finally, two examples show the feasibility of the results.

  13. Positive periodic solutions of periodic neutral Lotka-Volterra system with distributed delays

    International Nuclear Information System (INIS)

    Li Yongkun

    2008-01-01

    By using a fixed point theorem of strict-set-contraction, some criteria are established for the existence of positive periodic solutions of the following periodic neutral Lotka-Volterra system with distributed delays (dx i (t))/(dt) =x i (t)[a i (t)-Σ j=1 n b ij (t)∫ -T ij 0 K ij (θ)x j ( t+θ)dθ-Σ j=1 n c ij (t)∫ -T ij 0 K ij (θ) x j ' (t+θ)dθ],i=1,2,...,n, where a i ,b ij ,c ij element of C(R,R + ) (i, j = 1, 2, ..., n) are ω-periodic functions, T ij ,T ij element of (0,∞) (i, j = 1, 2, ..., n) and K ij ,K ij element of (R,R + ) satisfying ∫ -T ij 0 K ij (θ)dθ=1,∫ -T ij 0 K ij (θ)dθ=1, i, j = 1, 2, ..., n

  14. Lotka-Volterra systems in environments with randomly disordered temporal periodicity

    Science.gov (United States)

    Naess, Arvid; Dimentberg, Michael F.; Gaidai, Oleg

    2008-08-01

    A generalized Lotka-Volterra model for a pair of interacting populations of predators and prey is studied. The model accounts for the prey’s interspecies competition and therefore is asymptotically stable, whereas its oscillatory behavior is induced by temporal variations in environmental conditions simulated by those in the prey’s reproduction rate. Two models of the variations are considered, each of them combining randomness with “hidden” periodicity. The stationary joint probability density function (PDF) of the number of predators and prey is calculated numerically by the path integration (PI) method based on the use of characteristic functions and the fast Fourier transform. The numerical results match those for the asymptotic case of white-noise variations for which an analytical solution is available. Several examples are studied, with calculations of important characteristics of oscillations, for example the expected rate of up-crossings given the level of the predator number. The calculated PDFs may be of predominantly random (unimodal) or predominantly periodic nature (bimodal). Thus, the PI method has been demonstrated to be a powerful tool for studies of the dynamics of predator-prey pairs. The method captures the random oscillations as observed in nature, taking into account potential periodicity in the environmental conditions.

  15. Theoretical analysis and simulations of the generalized Lotka-Volterra model

    Science.gov (United States)

    Malcai, Ofer; Biham, Ofer; Richmond, Peter; Solomon, Sorin

    2002-09-01

    The dynamics of generalized Lotka-Volterra systems is studied by theoretical techniques and computer simulations. These systems describe the time evolution of the wealth distribution of individuals in a society, as well as of the market values of firms in the stock market. The individual wealths or market values are given by a set of time dependent variables wi, i=1,...,N. The equations include a stochastic autocatalytic term (representing investments), a drift term (representing social security payments), and a time dependent saturation term (due to the finite size of the economy). The wi's turn out to exhibit a power-law distribution of the form P(w)~w-1-α. It is shown analytically that the exponent α can be expressed as a function of one parameter, which is the ratio between the constant drift component (social security) and the fluctuating component (investments). This result provides a link between the lower and upper cutoffs of this distribution, namely, between the resources available to the poorest and those available to the richest in a given society. The value of α is found to be insensitive to variations in the saturation term, which represent the expansion or contraction of the economy. The results are of much relevance to empirical studies that show that the distribution of the individual wealth in different countries during different periods in the 20th century has followed a power-law distribution with 1<α<2.

  16. A new approach to stochastic transport via the functional Volterra expansion

    International Nuclear Information System (INIS)

    Ziya Akcasu, A.; Corngold, N.

    2005-01-01

    In this paper we present a new algorithm (FDA) for the calculation of the mean and the variance of the flux in stochastic transport when the transport equation contains a spatially random parameter θ(r), such as the density of the medium. The approach is based on the renormalized functional Volterra expansion of the flux around its mean. The attractive feature of the approach is that it explicitly displays the functional dependence of the flux on the products of θ(r i ), and hence enables one to take ensemble averages directly to calculate the moments of the flux in terms of the correlation functions of the underlying random process. The renormalized deterministic transport equation for the mean flux has been obtained to the second order in θ(r), and a functional relationship between the variance and the mean flux has been derived to calculate the variance to this order. The feasibility and accuracy of FDA has been demonstrated in the case of stochastic diffusion, using the diffusion equation with a spatially random diffusion coefficient. The connection of FDA with the well-established approximation schemes in the field of stochastic linear differential equations, such as the Bourret approximation, developed by Van Kampen using cumulant expansion, and by Terwiel using projection operator formalism, which has recently been extended to stochastic transport by Corngold. We hope that FDA's potential will be explored numerically in more realistic applications of the stochastic transport. (authors)

  17. Constraint theory, singular lagrangians and multitemporal dynamics

    International Nuclear Information System (INIS)

    Lusanna, L.

    1988-01-01

    Singular Lagrangians and constraint theory permeate theoretical physics, as shown by the relevance of gauge theories, string models and general relativity. Their study used finite---dimensional models as a guide to develop the theory, but their main use was in classical field theory, due to the necessity of understanding their quantization. The covariant quantization of singular Lagrangians led to the BRST approach and to the theory of the effective action. On the other hand their phase---space formulation, culminated with the BFV approach for first class, second class and reducible constraints. It, in turn, gave new insights in the theory of singular Lagrangians and constraints and in their cohomological aspects. However the Hamiltonian approach to field theory is highly nontrivial, is open to criticism due to its problems with locality, geometry and manifest covariance and its canonical quantization has still to be developed, because there is no proof of the renormalizability of the Schroedinger representation of field theory. This paper discusses how, notwithstanding these developments, there is still a big amount of ambiguity at every level of the theory

  18. An Exact Solution of the Binary Singular Problem

    Directory of Open Access Journals (Sweden)

    Baiqing Sun

    2014-01-01

    Full Text Available Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points, I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this method.

  19. Weak radiative hyperon decays

    International Nuclear Information System (INIS)

    Roberts, B.L.; Booth, E.C.; Gall, K.P.; McIntyre, E.K.; Miller, J.P.; Whitehouse, D.A.; Bassalleck, B.; Hall, J.R.; Larson, K.D.; Wolfe, D.M.; Fickinger, W.J.; Robinson, D.K.; Hallin, A.L.; Hasinoff, M.D.; Measday, D.F.; Noble, A.J.; Waltham, C.E.; Hessey, N.P.; Lowe, J.; Horvath, D.; Salomon, M.

    1990-01-01

    New measurements of the Σ + and Λ weak radiative decays are discussed. The hyperons were produced at rest by the reaction K - p → Yπ where Y = Σ + or Λ. The monoenergetic pion was used to tag the hyperon production, and the branching ratios were determined from the relative amplitudes of Σ + → pγ to Σ + → pπ 0 and Λ → nγ to Λ → nπ 0 . The photons from weak radiative decays and from π 0 decays were detected with modular NaI arrays. (orig.)

  20. Singular Spectrum Near a Singular Point of Friedrichs Model Operators of Absolute Type

    International Nuclear Information System (INIS)

    Iakovlev, Serguei I.

    2006-01-01

    In L 2 (R) we consider a family of self adjoint operators of the Friedrichs model: A m =|t| m +V. Here |t| m is the operator of multiplication by the corresponding function of the independent variable t element of R, and (perturbation) is a trace-class integral operator with a continuous Hermitian kernel ν(t,x) satisfying some smoothness condition. These absolute type operators have one singular point of order m>0. Conditions on the kernel ν(t,x) are found guaranteeing the absence of the point spectrum and the singular continuous one of such operators near the origin. These conditions are actually necessary and sufficient. They depend on the finiteness of the rank of a perturbation operator and on the order of singularity. The sharpness of these conditions is confirmed by counterexamples

  1. Existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with several deviating arguments.

    Science.gov (United States)

    Fan, M; Wang, K; Jiang, D

    1999-08-01

    In this paper, we study the existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems. By using the method of coincidence degree and Lyapunov functional, a set of easily verifiable sufficient conditions are derived for the existence of at least one strictly positive (componentwise) periodic solution of periodic n-species Lotka-Volterra competition systems with several deviating arguments and the existence of a unique globally asymptotically stable periodic solution with strictly positive components of periodic n-species Lotka-Volterra competition system with several delays. Some new results are obtained. As an application, we also examine some special cases of the system we considered, which have been studied extensively in the literature. Some known results are improved and generalized.

  2. Startpoints via weak contractions

    OpenAIRE

    Agyingi, Collins Amburo; Gaba, Yaé Ulrich

    2018-01-01

    Startpoints (resp. endpoints) can be defined as "oriented fixed points". They arise naturally in the study of fixed for multi-valued maps defined on quasi-metric spaces. In this article, we give a new result in the startpoint theory for quasi-pseudometric spaces. The result we present is obtained via a generalized weakly contractive set-valued map.

  3. Weakly Coretractable Modules

    Science.gov (United States)

    Hadi, Inaam M. A.; Al-aeashi, Shukur N.

    2018-05-01

    If R is a ring with identity and M is a unitary right R-module. Here we introduce the class of weakly coretractable module. Some basic properties are investigated and some relationships between these modules and other related one are introduced.

  4. Stability in distribution of a stochastic hybrid competitive Lotka–Volterra model with Lévy jumps

    International Nuclear Information System (INIS)

    Zhao, Yu; Yuan, Sanling

    2016-01-01

    Stability in distribution, implying the existence of the invariant probability measure, is an important measure of stochastic hybrid system. However, the effect of Lévy jumps on the stability in distribution is still unclear. In this paper, we consider a n-species competitive Lotka–Volterra model with Lévy jumps under regime-switching. First, we prove the existence of the global positive solution, obtain the upper and lower boundedness. Then, asymptotic stability in distribution as the main result of our paper is derived under some sufficient conditions. Finally, numerical simulations are carried out to support our theoretical results and a brief discussion is given.

  5. Hybrid MPI/OpenMP parallelization of the explicit Volterra integral equation solver for multi-core computer architectures

    KAUST Repository

    Al Jarro, Ahmed

    2011-08-01

    A hybrid MPI/OpenMP scheme for efficiently parallelizing the explicit marching-on-in-time (MOT)-based solution of the time-domain volume (Volterra) integral equation (TD-VIE) is presented. The proposed scheme equally distributes tested field values and operations pertinent to the computation of tested fields among the nodes using the MPI standard; while the source field values are stored in all nodes. Within each node, OpenMP standard is used to further accelerate the computation of the tested fields. Numerical results demonstrate that the proposed parallelization scheme scales well for problems involving three million or more spatial discretization elements. © 2011 IEEE.

  6. Existence of limit cycles in a three level trophic chain with Lotka–Volterra and Holling type II functional responses

    International Nuclear Information System (INIS)

    Castellanos, Víctor; Chan-López, Ramón E.

    2017-01-01

    In this paper we analyze a three level trophic chain model, considering a logistic growth for the lowest trophic level, a Lotka–Volterra and Holling type II functional responses for predators in the middle and in the cusp in the chain, respectively. The differential system is based on the Leslie–Gower scheme. We establish conditions on the parameters that guarantee the coexistence of populations in the habitat. We find that an Andronov–Hopf bifurcation takes place. The first Lyapunov coefficient is computed explicitly and we show the existence of a stable limit cycle. Numerically, we observe a strange attractor and there exist evidence of the model to exhibit chaotic dynamics.

  7. Predicting the effects of ionising radiation on ecosystems by a generic model based on the Lotka-Volterra equations

    International Nuclear Information System (INIS)

    Monte, Luigi

    2009-01-01

    The present work describes a model for predicting the population dynamics of the main components (resources and consumers) of terrestrial ecosystems exposed to ionising radiation. The ecosystem is modelled by the Lotka-Volterra equations with consumer competition. Linear dose-response relationships without threshold are assumed to relate the values of the model parameters to the dose rates. The model accounts for the migration of consumers from areas characterised by different levels of radionuclide contamination. The criteria to select the model parameter values are motivated by accounting for the results of the empirical studies of past decades. Examples of predictions for long-term chronic exposure are reported and discussed.

  8. Application of multi-scale wavelet entropy and multi-resolution Volterra models for climatic downscaling

    Science.gov (United States)

    Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, Venkataramana

    2018-01-01

    This study proposes a wavelet-based multi-resolution modeling approach for statistical downscaling of GCM variables to mean monthly precipitation for five locations at Krishna Basin, India. Climatic dataset from NCEP is used for training the proposed models (Jan.'69 to Dec.'94) and are applied to corresponding CanCM4 GCM variables to simulate precipitation for the validation (Jan.'95-Dec.'05) and forecast (Jan.'06-Dec.'35) periods. The observed precipitation data is obtained from the India Meteorological Department (IMD) gridded precipitation product at 0.25 degree spatial resolution. This paper proposes a novel Multi-Scale Wavelet Entropy (MWE) based approach for clustering climatic variables into suitable clusters using k-means methodology. Principal Component Analysis (PCA) is used to obtain the representative Principal Components (PC) explaining 90-95% variance for each cluster. A multi-resolution non-linear approach combining Discrete Wavelet Transform (DWT) and Second Order Volterra (SoV) is used to model the representative PCs to obtain the downscaled precipitation for each downscaling location (W-P-SoV model). The results establish that wavelet-based multi-resolution SoV models perform significantly better compared to the traditional Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) based frameworks. It is observed that the proposed MWE-based clustering and subsequent PCA, helps reduce the dimensionality of the input climatic variables, while capturing more variability compared to stand-alone k-means (no MWE). The proposed models perform better in estimating the number of precipitation events during the non-monsoon periods whereas the models with clustering without MWE over-estimate the rainfall during the dry season.

  9. Spectral asymptotics for nonsmooth singular Green operators

    DEFF Research Database (Denmark)

    Grubb, Gerd

    2014-01-01

    is a singular Green operator. It is well-known in smooth cases that when G is of negative order −t on a bounded domain, its eigenvalues ors-numbers have the behavior (*)s j (G) ∼ cj −t/(n−1) for j → ∞, governed by the boundary dimension n − 1. In some nonsmooth cases, upper estimates (**)s j (G) ≤ Cj −t/(n−1...

  10. Singularity spectrum of self-organized criticality

    International Nuclear Information System (INIS)

    Canessa, E.

    1992-10-01

    I introduce a simple continuous probability theory based on the Ginzburg-Landau equation that provides for the first time a common analytical basis to relate and describe the main features of two seemingly different phenomena of condensed-matter physics, namely self-organized criticality and multifractality. Numerical support is given by a comparison with reported simulation data. Within the theory the origin of self-organized critical phenomena is analysed in terms of a nonlinear singularity spectrum different form the typical convex shape due to multifractal measures. (author). 29 refs, 5 figs

  11. Singularity Structure of Maximally Supersymmetric Scattering Amplitudes

    DEFF Research Database (Denmark)

    Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy

    2014-01-01

    We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....

  12. The Singularity May Never Be Near

    OpenAIRE

    Walsh, Toby

    2017-01-01

    There is both much optimisim and pessimism around artificial intelligence (AI) today. The optimists are investing millions of dollars, and even in some cases billions of dollars into AI. The pessimists, on the other hand, predict that AI will end many things: jobs, warfare, and even the human race. Both the optimists and the pessimists often appeal to the idea of a technological singularity, a point in time where machine intelligence starts to run away, and a new, more in- telligent “species”...

  13. Compacted dimensions and singular plasmonic surfaces

    Science.gov (United States)

    Pendry, J. B.; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele

    2017-11-01

    In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer.

  14. A novel strategy for signal denoising using reweighted SVD and its applications to weak fault feature enhancement of rotating machinery

    Science.gov (United States)

    Zhao, Ming; Jia, Xiaodong

    2017-09-01

    Singular value decomposition (SVD), as an effective signal denoising tool, has been attracting considerable attention in recent years. The basic idea behind SVD denoising is to preserve the singular components (SCs) with significant singular values. However, it is shown that the singular values mainly reflect the energy of decomposed SCs, therefore traditional SVD denoising approaches are essentially energy-based, which tend to highlight the high-energy regular components in the measured signal, while ignoring the weak feature caused by early fault. To overcome this issue, a reweighted singular value decomposition (RSVD) strategy is proposed for signal denoising and weak feature enhancement. In this work, a novel information index called periodic modulation intensity is introduced to quantify the diagnostic information in a mechanical signal. With this index, the decomposed SCs can be evaluated and sorted according to their information levels, rather than energy. Based on that, a truncated linear weighting function is proposed to control the contribution of each SC in the reconstruction of the denoised signal. In this way, some weak but informative SCs could be highlighted effectively. The advantages of RSVD over traditional approaches are demonstrated by both simulated signals and real vibration/acoustic data from a two-stage gearbox as well as train bearings. The results demonstrate that the proposed method can successfully extract the weak fault feature even in the presence of heavy noise and ambient interferences.

  15. Beyond the singularity of the 2-D charged black hole

    International Nuclear Information System (INIS)

    Giveon, Amit; Rabinovici, Eliezer; Sever, Amit

    2003-01-01

    Two dimensional charged black holes in string theory can be obtained as exact SL(2,R) x U(1)/U(1) quotient CFTs. The geometry of the quotient is induced from that of the group, and in particular includes regions beyond the black hole singularities. Moreover, wavefunctions in such black holes are obtained from gauge invariant vertex operators in the SL(2,R) CFT, hence their behavior beyond the singularity is determined. When the black hole is charged we find that the wavefunctions are smooth at the singularities. Unlike the uncharged case, scattering waves prepared beyond the singularity are not fully reflected; part of the wave is transmitted through the singularity. Hence, the physics outside the horizon of a charged black hole is sensitive to conditions set behind the past singularity. (author)

  16. Introduction to weak interactions

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    An account is first given of the electromagnetic interactions of complex, scalar, vector and spinor fields. It is shown that the electromagnetic field may be considered as a gauge field. Yang-Mills fields and the field theory invariant with respect to the non-Abelian gauge transformation group are then described. The construction, owing to this invariance principle, of conserved isospin currents associated with gauge fields is also demonstrated. This is followed by a historical survey of the development of the weak interaction theory, established at first to describe beta disintegration processes by analogy with electrodynamics. The various stages are mentioned from the discovery of principles and rules and violation of principles, such as those of invariance with respect to spatial reflection and charge conjugation to the formulation of the effective current-current Lagrangian and research on the structure of weak currents [fr

  17. Analytic solution of the BCS gap equation with a logarithmic singularity in the density of states

    International Nuclear Information System (INIS)

    Bhardwaj, A.; Muthu, S.K.

    1999-01-01

    The Bardeen-Cooper-Schrieffer (BCS) gap equation is solved analytically for a density of states function with a logarithmic singularity. It is an extension of our earlier work where we had assumed a constant density of states. We continue to work in the weak-coupling limit and consider both phononic and non-phononic pairings. Expressions are obtained for T c , Δ 0 (the gap at T=0), and the jump in the electronic specific heat at T=T c . We also calculate the isotope exponent and show that it is possible to reproduce the broad features of the experimental results in this framework. (orig.)

  18. Logarithmic of mass singularities theorem in non massive quantum electrodynamics

    International Nuclear Information System (INIS)

    Mares G, R.; Luna, H.

    1997-01-01

    We give an explicit example of the use of dimensional regularization to calculate in a unified approach, all the ultraviolet, infrared and mass singularities, by considering the LMS (logarithms of mass singularities) theorem in the frame of massless QED (Quantum electrodynamics). In the calculation of the divergent part of the cross section, all singularities are found to cancel provided soft and hard photon emission are both taken into account. (Author)

  19. Singular vectors of Malikov-Fagin-Fux in topological theories

    International Nuclear Information System (INIS)

    Semikhatov, A.M.

    1993-01-01

    Coincidence of singular vectors in relation to the sl(2) Katza-Mudi algebra and the algebra of the N=2 (twisted) supersymmetry is established. On the base of the Kazama-Suzuki simplest model is obtained a representation for the sl(2) currents in terms of an interacting with mater gravitation. From the Malikov-Fagin-Fux formulae for the sl(2) singular currents is obtained the general expression for singular vectors in topological theories

  20. Observer-dependent sign inversions of polarization singularities.

    Science.gov (United States)

    Freund, Isaac

    2014-10-15

    We describe observer-dependent sign inversions of the topological charges of vector field polarization singularities: C points (points of circular polarization), L points (points of linear polarization), and two virtually unknown singularities we call γ(C) and α(L) points. In all cases, the sign of the charge seen by an observer can change as she changes the direction from which she views the singularity. Analytic formulas are given for all C and all L point sign inversions.

  1. Transmutation of planar media singularities in a conformal cloak.

    Science.gov (United States)

    Liu, Yichao; Mukhtar, Musawwadah; Ma, Yungui; Ong, C K

    2013-11-01

    Invisibility cloaking based on optical transformation involves materials singularity at the branch cut points. Many interesting optical devices, such as the Eaton lens, also require planar media index singularities in their implementation. We show a method to transmute two singularities simultaneously into harmless topological defects formed by anisotropic permittivity and permeability tensors. Numerical simulation is performed to verify the functionality of the transmuted conformal cloak consisting of two kissing Maxwell fish eyes.

  2. Deficiency indices and singular boundary conditions in quantum mechanics

    International Nuclear Information System (INIS)

    Bulla, W.

    1984-01-01

    We consider Schroedinger operators H in L 2 (Rsup(n)), n from IN, with countably infinitely many local singularities of the potential which are separated from each other by a positive distance. It is proved that due to locality each singularity yields a separate contribution to the deficiency index of H. In the special case where the singularities are pointlike and the potential exhibits certain symmetries near these points we give an explicit construction of self-adjoint boundary conditions

  3. Naked singularities in self-similar spherical gravitational collapse

    International Nuclear Information System (INIS)

    Ori, A.; Piran, T.

    1987-01-01

    We present general-relativistic solutions of self-similar spherical collapse of an adiabatic perfect fluid. We show that if the equation of state is soft enough (Γ-1<<1), a naked singularity forms. The singularity resembles the shell-focusing naked singularities that arise in dust collapse. This solution increases significantly the range of matter fields that should be ruled out in order that the cosmic-censorship hypothesis will hold

  4. 7 CFR 900.80 - Words in the singular form.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.80 Section 900.80....C. 608b(b) and 7 U.S.C. 608e Covering Fruits, Vegetables, and Nuts § 900.80 Words in the singular form. Words in this subpart in the singular form shall be deemed to import the plural, and vice versa...

  5. Weak states and security

    OpenAIRE

    Rakipi, Albert

    2006-01-01

    Cataloged from PDF version of article. Although the weak 1 failing states have often been deseribed as the single most important problem for the international order s ince the en d of Cold W ar (F .Fukuyaına 2004:92) several dimensions of this phenomenon still remain unexplored. While this phenomenon has been present in the international politics even earlier, only the post Cold W ar period accentuated its relationship with security issues. Following the Cold W ar' s "peacef...

  6. Composite weak bosons

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M.

    1988-04-01

    Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.

  7. Survival and weak chaos.

    Science.gov (United States)

    Nee, Sean

    2018-05-01

    Survival analysis in biology and reliability theory in engineering concern the dynamical functioning of bio/electro/mechanical units. Here we incorporate effects of chaotic dynamics into the classical theory. Dynamical systems theory now distinguishes strong and weak chaos. Strong chaos generates Type II survivorship curves entirely as a result of the internal operation of the system, without any age-independent, external, random forces of mortality. Weak chaos exhibits (a) intermittency and (b) Type III survivorship, defined as a decreasing per capita mortality rate: engineering explicitly defines this pattern of decreasing hazard as 'infant mortality'. Weak chaos generates two phenomena from the normal functioning of the same system. First, infant mortality- sensu engineering-without any external explanatory factors, such as manufacturing defects, which is followed by increased average longevity of survivors. Second, sudden failure of units during their normal period of operation, before the onset of age-dependent mortality arising from senescence. The relevance of these phenomena encompasses, for example: no-fault-found failure of electronic devices; high rates of human early spontaneous miscarriage/abortion; runaway pacemakers; sudden cardiac death in young adults; bipolar disorder; and epilepsy.

  8. Coefficients of singularities and mixed methods for the mixed Dirichlet-Neumann problem for the Stokes operator on a polygon

    International Nuclear Information System (INIS)

    Chettab, M.; Lubuma, M.S.

    1990-08-01

    The behaviour of the weak solution of the Stokes problem on a polygon is considered with emphasis on the maximal regularity of the solution and on global formulae for the coefficients of singularities. This regularity leads to a slow convergent mixed finite element method of fractional order less than one while the use of the above formulae provides better approximations for the solution and for the coefficients. (author). 32 refs

  9. Quantum singularities in the FRW universe revisited

    International Nuclear Information System (INIS)

    Letelier, Patricio S.; Pitelli, Joao Paulo M.

    2010-01-01

    The components of the Riemann tensor in the tetrad basis are quantized and, through the Einstein equation, we find the local expectation value in the ontological interpretation of quantum mechanics of the energy density and pressure of a perfect fluid with equation of state p=(1/3)ρ in the flat Friedmann-Robertson-Walker quantum cosmological model. The quantum behavior of the equation of state and energy conditions are then studied, and it is shown that the energy conditions are violated since the singularity is removed with the introduction of quantum cosmology, but in the classical limit both the equation of state and the energy conditions behave as in the classical model. We also calculate the expectation value of the scale factor for several wave packets in the many-worlds interpretation in order to show the independence of the nonsingular character of the quantum cosmological model with respect to the wave packet representing the wave function of the Universe. It is also shown that, with the introduction of nonnormalizable wave packets, solutions of the Wheeler-DeWitt equation, the singular character of the scale factor, can be recovered in the ontological interpretation.

  10. Finite-time singularity signature of hyperinflation

    Science.gov (United States)

    Sornette, D.; Takayasu, H.; Zhou, W.-X.

    2003-07-01

    We present a novel analysis extending the recent work of Mizuno et al. (Physica A 308 (2002) 411) on the hyperinflations of Germany (1920/1/1-1923/11/1), Hungary (1945/4/30-1946/7/15), Brazil (1969-1994), Israel (1969-1985), Nicaragua (1969-1991), Peru (1969-1990) and Bolivia (1969-1985). On the basis of a generalization of Cagan's model of inflation based on the mechanism of “inflationary expectation” of positive feedbacks between realized growth rate and people's expected growth rate, we find that hyperinflations can be characterized by a power law singularity culminating at a critical time tc. Mizuno et al.'s double-exponential function can be seen as a discrete time-step approximation of our more general non-linear ODE formulation of the price dynamics which exhibits a finite-time singular behavior. This extension of Cagan's model, which makes natural the appearance of a critical time tc, has the advantage of providing a well-defined end of the clearly unsustainable hyperinflation regime. We find an excellent and reliable agreement between theory and data for Germany, Hungary, Peru and Bolivia. For Brazil, Israel and Nicaragua, the super-exponential growth seems to be already contaminated significantly by the existence of a cross-over to a stationary regime.

  11. Consideration on Singularities in Learning Theory and the Learning Coefficient

    Directory of Open Access Journals (Sweden)

    Miki Aoyagi

    2013-09-01

    Full Text Available We consider the learning coefficients in learning theory and give two new methods for obtaining these coefficients in a homogeneous case: a method for finding a deepest singular point and a method to add variables. In application to Vandermonde matrix-type singularities, we show that these methods are effective. The learning coefficient of the generalization error in Bayesian estimation serves to measure the learning efficiency in singular learning models. Mathematically, the learning coefficient corresponds to a real log canonical threshold of singularities for the Kullback functions (relative entropy in learning theory.

  12. Identification of discrete chaotic maps with singular points

    Directory of Open Access Journals (Sweden)

    P. G. Akishin

    2001-01-01

    Full Text Available We investigate the ability of artificial neural networks to reconstruct discrete chaotic maps with singular points. We use as a simple test model the Cusp map. We compare the traditional Multilayer Perceptron, the Chebyshev Neural Network and the Wavelet Neural Network. The numerical scheme for the accurate determination of a singular point is also developed. We show that combining a neural network with the numerical algorithm for the determination of the singular point we are able to accurately approximate discrete chaotic maps with singularities.

  13. Numerical investigation of stress singularities in cracked bimaterial body

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Šestáková, Lucie; Hutař, Pavel

    2008-01-01

    Roč. 385-387, - (2008), s. 125-128 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics /7./. Seoul, 09.09.2008-11.09.2008] R&D Projects: GA AV ČR(CZ) KJB200410803; GA ČR GP106/06/P239; GA ČR GA106/08/1409 Institutional research plan: CEZ:AV0Z20410507 Keywords : bimaterial interface * stress singularity exponent * corner singularity * vertex singularity * general singular stress concentrator Subject RIV: JL - Materials Fatigue, Friction Mechanics

  14. The road to singularities, and the roses on the way

    International Nuclear Information System (INIS)

    Collins, C.B.

    1978-01-01

    A survey of current investigations of space-time singularities is given. The different approaches adopted by various research schools is discussed, and an analogy is drawn between this study and the mounting of an expedition that sets out on a long trail of discovery. A heuristic discussion is given of the latest classification of singularities and some brief comments are made on how physically relevant each type of singularity is. Roughly speaking, it seems that the milder types (at which quantities remain well behaved) are pathological cases, whereas the crude 'big-bang' type of singularity is more generic. (author)

  15. Can non-commutativity resolve the big-bang singularity?

    Energy Technology Data Exchange (ETDEWEB)

    Maceda, M.; Madore, J. [Laboratoire de Physique Theorique, Universite de Paris-Sud, Batiment 211, 91405, Orsay (France); Manousselis, P. [Department of Engineering Sciences, University of Patras, 26110, Patras (Greece); Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Zoupanos, G. [Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Theory Division, CERN, 1211, Geneva 23 (Switzerland)

    2004-08-01

    A possible way to resolve the singularities of general relativity is proposed based on the assumption that the description of space-time using commuting coordinates is not valid above a certain fundamental scale. Beyond that scale it is assumed that the space-time has non-commutative structure leading in turn to a resolution of the singularity. As a first attempt towards realizing the above programme a modification of the Kasner metric is constructed which is commutative only at large time scales. At small time scales, near the singularity, the commutation relations among the space coordinates diverge. We interpret this result as meaning that the singularity has been completely delocalized. (orig.)

  16. Singular Solutions to a (3 + 1-D Protter-Morawetz Problem for Keldysh-Type Equations

    Directory of Open Access Journals (Sweden)

    Nedyu Popivanov

    2017-01-01

    Full Text Available We study a boundary value problem for (3 + 1-D weakly hyperbolic equations of Keldysh type (problem PK. The Keldysh-type equations are known in some specific applications in plasma physics, optics, and analysis on projective spaces. Problem PK is not well-posed since it has infinite-dimensional cokernel. Actually, this problem is analogous to a similar one proposed by M. Protter in 1952, but for Tricomi-type equations which, in part, are closely connected with transonic fluid dynamics. We consider a properly defined, in a special function space, generalized solution to problem PK for which existence and uniqueness theorems hold. It is known that it may have a strong power-type singularity at one boundary point even for very smooth right-hand sides of the equation. In the present paper we study the asymptotic behavior of the generalized solutions of problem PK at the singular point. There are given orthogonality conditions on the right-hand side of the equation, which are necessary and sufficient for the existence of a generalized solution with fixed order of singularity.

  17. Relation of extended Van Hove singularities to high-temperature superconductivity within strong-coupling theory

    International Nuclear Information System (INIS)

    Radtke, R.J.; Norman, M.R.

    1994-01-01

    Recent angle-resolved photoemission (ARPES) experiments have indicated that the electronic dispersion in some of the cuprates possesses an extended saddle point near the Fermi level which gives rise to a density of states that diverges like a power law instead of the weaker logarithmic divergence usually considered. We investigate whether this strong singularity can give rise to high transition temperatures by computing the critical temperature T c and isotope effect coefficient α within a strong-coupling Eliashberg theory which accounts for the full energy variation of the density of states. Using band structures extracted from ARPES measurements, we demonstrate that, while the weak-coupling solutions suggest a strong influence of the strength of the Van Hove singularity on T c and α, strong-coupling solutions show less sensitivity to the singularity strength and do not support the hypothesis that band-structure effects alone can account for either the large T c 's or the different T c 's within the copper oxide family. This conclusion is supported when our results are plotted as a function of the physically relevant self-consistent coupling constant, which shows universal behavior at very strong coupling

  18. Formal Derivation of Lotka-Volterra-Haken Amplitude Equations of Task-Related Brain Activity in Multiple, Consecutively Performed Tasks

    Science.gov (United States)

    Frank, T. D.

    The Lotka-Volterra-Haken equations have been frequently used in ecology and pattern formation. Recently, the equations have been proposed by several research groups as amplitude equations for task-related patterns of brain activity. In this theoretical study, the focus is on the circular causality aspect of pattern formation systems as formulated within the framework of synergetics. Accordingly, the stable modes of a pattern formation system inhibit the unstable modes, whereas the unstable modes excite the stable modes. Using this circular causality principle it is shown that under certain conditions the Lotka-Volterra-Haken amplitude equations can be derived from a general model of brain activity akin to the Wilson-Cowan model. The model captures the amplitude dynamics for brain activity patterns in experiments involving several consecutively performed multiple-choice tasks. This is explicitly demonstrated for two-choice tasks involving grasping and walking. A comment on the relevance of the theoretical framework for clinical psychology and schizophrenia is given as well.

  19. Mechanical quadrature method as applied to singular integral equations with logarithmic singularity on the right-hand side

    Science.gov (United States)

    Amirjanyan, A. A.; Sahakyan, A. V.

    2017-08-01

    A singular integral equation with a Cauchy kernel and a logarithmic singularity on its righthand side is considered on a finite interval. An algorithm is proposed for the numerical solution of this equation. The contact elasticity problem of a П-shaped rigid punch indented into a half-plane is solved in the case of a uniform hydrostatic pressure occurring under the punch, which leads to a logarithmic singularity at an endpoint of the integration interval. The numerical solution of this problem shows the efficiency of the proposed approach and suggests that the singularity has to be taken into account in solving the equation.

  20. Metric dimensional reduction at singularities with implications to Quantum Gravity

    International Nuclear Information System (INIS)

    Stoica, Ovidiu Cristinel

    2014-01-01

    A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being just non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity. - Highlights: • The singularities we introduce are described by finite geometric/physical objects. • Our singularities are accompanied by dimensional reduction effects. • They affect the metric, the measure, the topology, the gravitational DOF (Weyl = 0). • Effects proposed in other approaches to Quantum Gravity are obtained naturally. • The geometric dimensional reduction obtained

  1. Hypernuclear weak decay puzzle

    International Nuclear Information System (INIS)

    Barbero, C.; Horvat, D.; Narancic, Z.; Krmpotic, F.; Kuo, T.T.S.; Tadic, D.

    2002-01-01

    A general shell model formalism for the nonmesonic weak decay of the hypernuclei has been developed. It involves a partial wave expansion of the emitted nucleon waves, preserves naturally the antisymmetrization between the escaping particles and the residual core, and contains as a particular case the weak Λ-core coupling formalism. The extreme particle-hole model and the quasiparticle Tamm-Dancoff approximation are explicitly worked out. It is shown that the nuclear structure manifests itself basically through the Pauli principle, and a very simple expression is derived for the neutron- and proton-induced decays rates Γ n and Γ p , which does not involve the spectroscopic factors. We use the standard strangeness-changing weak ΛN→NN transition potential which comprises the exchange of the complete pseudoscalar and vector meson octets (π,η,K,ρ,ω,K * ), taking into account some important parity-violating transition operators that are systematically omitted in the literature. The interplay between different mesons in the decay of Λ 12 C is carefully analyzed. With the commonly used parametrization in the one-meson-exchange model (OMEM), the calculated rate Γ NM =Γ n +Γ p is of the order of the free Λ decay rate Γ 0 (Γ NM th congruent with Γ 0 ) and is consistent with experiments. Yet the measurements of Γ n/p =Γ n /Γ p and of Γ p are not well accounted for by the theory (Γ n/p th p th > or approx. 0.60Γ 0 ). It is suggested that, unless additional degrees of freedom are incorporated, the OMEM parameters should be radically modified

  2. Measurement of weak radioactivity

    CERN Document Server

    Theodorsson , P

    1996-01-01

    This book is intended for scientists engaged in the measurement of weak alpha, beta, and gamma active samples; in health physics, environmental control, nuclear geophysics, tracer work, radiocarbon dating etc. It describes the underlying principles of radiation measurement and the detectors used. It also covers the sources of background, analyzes their effect on the detector and discusses economic ways to reduce the background. The most important types of low-level counting systems and the measurement of some of the more important radioisotopes are described here. In cases where more than one type can be used, the selection of the most suitable system is shown.

  3. On Weak Markov's Principle

    DEFF Research Database (Denmark)

    Kohlenbach, Ulrich Wilhelm

    2002-01-01

    We show that the so-called weak Markov's principle (WMP) which states that every pseudo-positive real number is positive is underivable in E-HA + AC. Since allows one to formalize (atl eastl arge parts of) Bishop's constructive mathematics, this makes it unlikely that WMP can be proved within...... the framework of Bishop-style mathematics (which has been open for about 20 years). The underivability even holds if the ine.ective schema of full comprehension (in all types) for negated formulas (in particular for -free formulas) is added, which allows one to derive the law of excluded middle...

  4. Weak interaction rates

    International Nuclear Information System (INIS)

    Sugarbaker, E.

    1995-01-01

    I review available techniques for extraction of weak interaction rates in nuclei. The case for using hadron charge exchange reactions to estimate such rates is presented and contrasted with alternate methods. Limitations of the (p,n) reaction as a probe of Gamow-Teller strength are considered. Review of recent comparisons between beta-decay studies and (p,n) is made, leading to cautious optimism regarding the final usefulness of (p,n)- derived GT strengths to the field of astrophysics. copyright 1995 American Institute of Physics

  5. A vida singular de um jovem militante

    Directory of Open Access Journals (Sweden)

    Áurea Maria Guimarães

    2012-01-01

    Full Text Available Esse artigo é fruto de uma pesquisa realizada no período de 2007 a 2010, junto a jovens militantes da cidade de Campinas, com o objetivo de compreender as diferentes maneiras que conduziam esses jovens tanto a reproduzir um modelo de vida quanto a criar outras possibilidades de militância na relação com esse modelo. Entre as histórias orais de vida narradas por jovens que militavam em diferentes grupos ou instituições, escolhi a vida de Biula, representante do movimento estudantil secundarista, procurando evidenciar que a singularidade desta vida, como também e a de outros jovens, estava conectada à problematização que faziam no interior de certas práticas, histórica e culturalmente constituídas, possibilitando a criação de novas formas de subjetivação nas quais se modificava a experiência que tinham deles mesmos na relação com os seus heróis ou modelos de referência. Palavras-chave: história oral – transcriação – heróis – resistência - processos de singularização.   THE SINGULAR LIFE OF A YOUNG MILITANT ABSTRACT   This article is the result of a research carried out from 2007 to 2010 with   young militants in the city of Campinas, aiming to understand the different ways which conducted these youngsters to both reproduce a life model and create other possibilities of militancy in the relationship with this model. Among oral stories narrated by young militants from different groups or institutions, I have chosen the life of Biula, a representative of the secondary students’ movement, trying to show that the singularity of this life and other youngsters’ lives was connected to the problematization they promoted within certain practices, historically and culturally built, thus enabling the creation of new subjectification modes in which the experience they had of themselves in the relationship with their heroes or reference models has changed. Key words: oral history -  transcreation – heroes

  6. Weakly Supervised Dictionary Learning

    Science.gov (United States)

    You, Zeyu; Raich, Raviv; Fern, Xiaoli Z.; Kim, Jinsub

    2018-05-01

    We present a probabilistic modeling and inference framework for discriminative analysis dictionary learning under a weak supervision setting. Dictionary learning approaches have been widely used for tasks such as low-level signal denoising and restoration as well as high-level classification tasks, which can be applied to audio and image analysis. Synthesis dictionary learning aims at jointly learning a dictionary and corresponding sparse coefficients to provide accurate data representation. This approach is useful for denoising and signal restoration, but may lead to sub-optimal classification performance. By contrast, analysis dictionary learning provides a transform that maps data to a sparse discriminative representation suitable for classification. We consider the problem of analysis dictionary learning for time-series data under a weak supervision setting in which signals are assigned with a global label instead of an instantaneous label signal. We propose a discriminative probabilistic model that incorporates both label information and sparsity constraints on the underlying latent instantaneous label signal using cardinality control. We present the expectation maximization (EM) procedure for maximum likelihood estimation (MLE) of the proposed model. To facilitate a computationally efficient E-step, we propose both a chain and a novel tree graph reformulation of the graphical model. The performance of the proposed model is demonstrated on both synthetic and real-world data.

  7. The technological singularity and exponential medicine

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2016-01-01

    Full Text Available The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested that three revolutions in science and technology consisting genetic and molecular science, nanotechnology, and robotic (artificial intelligence provided an exponential growth rate for medicine. The "exponential medicine" is going to create more disruptive technologies in healthcare industry. The exponential medicine shifts the paradigm of medical philosophy and produces significant impacts on the healthcare system and patient-physician relationship.   

  8. Dual Vector Spaces and Physical Singularities

    Science.gov (United States)

    Rowlands, Peter

    Though we often refer to 3-D vector space as constructed from points, there is no mechanism from within its definition for doing this. In particular, space, on its own, cannot accommodate the singularities that we call fundamental particles. This requires a commutative combination of space as we know it with another 3-D vector space, which is dual to the first (in a physical sense). The combination of the two spaces generates a nilpotent quantum mechanics/quantum field theory, which incorporates exact supersymmetry and ultimately removes the anomalies due to self-interaction. Among the many natural consequences of the dual space formalism are half-integral spin for fermions, zitterbewegung, Berry phase and a zero norm Berwald-Moor metric for fermionic states.

  9. String wave function across a Kasner singularity

    International Nuclear Information System (INIS)

    Copeland, Edmund J.; Niz, Gustavo; Turok, Neil

    2010-01-01

    A collision of orbifold planes in 11 dimensions has been proposed as an explanation of the hot big bang. When the two planes are close to each other, the winding membranes become the lightest modes of the theory, and can be effectively described in terms of fundamental strings in a ten-dimensional background. Near the brane collision, the 11-dimensional metric is a Euclidean space times a 1+1-dimensional Milne universe. However, one may expect small perturbations to lead into a more general Kasner background. In this paper we extend the previous classical analysis of winding membranes to Kasner backgrounds, and using the Hamiltonian equations, solve for the wave function of loops with circular symmetry. The evolution across the singularity is regular, and explained in terms of the excitement of higher oscillation modes. We also show there is finite particle production and unitarity is preserved.

  10. Branes at Singularities in Type 0 String Theory

    OpenAIRE

    Alishahiha, M; Brandhuber, A; Oz, Y

    1999-01-01

    We consider Type 0B D3-branes placed at conical singularities and analyze in detail the conifold singularity. We study the non supersymmetric gauge theories on their worldvolume and their conjectured dual gravity descriptions. In the ultraviolet the solutions exhibit a logarithmic running of the gauge coupling. In the infrared we find confining solutions and IR fixed points.

  11. Eigenstructure of of singular systems. Perturbation analysis of simple eigenvalues

    OpenAIRE

    García Planas, María Isabel; Tarragona Romero, Sonia

    2014-01-01

    The problem to study small perturbations of simple eigenvalues with a change of parameters is of general interest in applied mathematics. After to introduce a systematic way to know if an eigenvalue of a singular system is simple or not, the aim of this work is to study the behavior of a simple eigenvalue of singular linear system family

  12. Singularities of elastic scattering amplitude by long-range potentials

    International Nuclear Information System (INIS)

    Kvitsinsky, A.A.; Komarov, I.V.; Merkuriev, S.P.

    1982-01-01

    The angular peculiarities and the zero energy singularities of the elastic scattering amplitude by a long-range potential are described. The singularities of the elastic (2 → 2) scattering amplitude for a system of three Coulomb particles are considered [ru

  13. Non-uniqueness of the source for singular gauge fields

    International Nuclear Information System (INIS)

    Lanyi, G.; Pappas, R.

    1977-01-01

    It is shown that the singular Wu-Yang solution for SU(2) gauge fields may be interpreted as due to a point source at the origin. However, the electric or magnetic nature of the source depends on whether one approaches the singularity by means of a 'smeared' potential or a 'smeared' field strength. (Auth.)

  14. Solitary wave solution to a singularly perturbed generalized Gardner ...

    Indian Academy of Sciences (India)

    2017-03-24

    Mar 24, 2017 ... Abstract. This paper is concerned with the existence of travelling wave solutions to a singularly perturbed gen- eralized Gardner equation with nonlinear terms of any order. By using geometric singular perturbation theory and based on the relation between solitary wave solution and homoclinic orbits of the ...

  15. K3-fibered Calabi-Yau threefolds II, singular fibers

    OpenAIRE

    Hunt, Bruce

    1999-01-01

    In part I of this paper we constructed certain fibered Calabi-Yaus by a quotient construction in the context of weighted hypersurfaces. In this paper look at the case of K3 fibrations more closely and study the singular fibers which occur. This differs from previous work since the fibrations we discuss have constant modulus, and the singular fibers have torsion monodromy.

  16. Some BMO estimates for vector-valued multilinear singular integral ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the multilinear operator related to some singular integral operators is obtained. The main purpose of this paper is to establish the BMO end-point estimates for some vector-valued multilinear operators related to certain singular integral operators. First, let us introduce some notations [10,16]. Throughout this paper, Q = Q(x,r).

  17. Infinite derivative gravity : non-singular cosmology & blackhole solutions

    NARCIS (Netherlands)

    Mazumdar, Anupam

    2017-01-01

    Both Einstein's theory of General Relativity and Newton's theory of gravity possess a short dis- tance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and

  18. A Note on Inclusion Intervals of Matrix Singular Values

    Directory of Open Access Journals (Sweden)

    Shu-Yu Cui

    2012-01-01

    Full Text Available We establish an inclusion relation between two known inclusion intervals of matrix singular values in some special case. In addition, based on the use of positive scale vectors, a known inclusion interval of matrix singular values is also improved.

  19. Simpson's neutrino and the singular see-saw

    International Nuclear Information System (INIS)

    Allen, T.J.; Johnson, R.; Ranfone, S.; Schechter, J.; Walle, J.W.F.

    1991-01-01

    The authors of this paper derive explicit forms for the neutrino and lepton mixing-matrices which describe the generic singular see-saw model. The dependence on the hierarchy parameter is contrasted with the non-singular case. Application is made to Simpson's 17 keV neutrino

  20. On reliability of singular-value decomposition in attractor reconstruction

    International Nuclear Information System (INIS)

    Palus, M.; Dvorak, I.

    1990-12-01

    Applicability of singular-value decomposition for reconstructing the strange attractor from one-dimensional chaotic time series, proposed by Broomhead and King, is extensively tested and discussed. Previously published doubts about its reliability are confirmed: singular-value decomposition, by nature a linear method, is only of a limited power when nonlinear structures are studied. (author). 29 refs, 9 figs